
HP 9000 Series 200/300 Computers

BASIC 4.0 Language Reference

Flio- HEWLETT
.:~ PACKARD HP 9000 Series 200/300 Computers

BASIC 4.0 Language Reference

Flio- HEWLETT
.:~ PACKARD

r-.) r-.)

BASIC 4.0 Language Reference
for the HP 9000 Series 2001300 Computers

Manual Reorder No. 98613-90051

© Copyright 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations , is expressly prohibited.

Restricted Rights Legend
Use , duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(8) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road , Fort Collins. Colorado 80525

BASIC 4.0 Language Reference
for the HP 9000 Series 2001300 Computers

Manual Reorder No. 98613-90051

© Copyright 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations , is expressly prohibited.

Restricted Rights Legend
Use , duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(8) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road , Fort Collins. Colorado 80525

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

July 1985 ... Edition 1

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett­
Packard shall not be liable for errors contained herein or direct, indirect, special, incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from
your local Sales and Service Office.

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

July 1985 ... Edition 1

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett­
Packard shall not be liable for errors contained herein or direct, indirect, special, incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Table of Contents

Language History 1
Language History. 1

Keyboards . 7
Using the Keyword Dictionary .. 7

Legal Usage Table " 7
Syntax Drawings Explained. 8
Keywords and Spaces 8

BASIC Language Reference for HP Series 200/300 SRM Workstations 473
Syntax for Remote File and Directory Specification . 474

Remote File Specifier . 474
Directory Path 475
Remote msus .. 476
Directory Specifier. .. 478

Access Capability Requirements 479
Table of Access Capabilities Required for Keyword Use 480
Using Protected Files Created on a Pascal Workstation 481

Summary of BASIC Keyword Use on SRM. .. 482
ASSIGN 483
CAT 484
CHECKREAD. .. 488
CONTROL .. 489
COpy 490
CREATE ASCII 491
CREATE BOAT.. .. 492
CREATE DIR. .. 493
ENTER 494
GET 495
INITIALIZE .. 496
LOAD 497
LOADSUB 498
LOCK 499
MASS STORAGE IS (MSl) .. 500
ON TIMEOUT 501
OUTPUT 502
PLOTTER IS . 503
PRINTER IS 504
PROTECT . 505
PURGE 507
RENAME 508
RE-SAVE . 509
RESET 510
RE-STORE 511
SAVE 512

iii

Table of Contents

Language History 1
Language History. 1

Keyboards . 7
Using the Keyword Dictionary .. 7

Legal Usage Table " 7
Syntax Drawings Explained. 8
Keywords and Spaces 8

BASIC Language Reference for HP Series 200/300 SRM Workstations 473
Syntax for Remote File and Directory Specification . 474

Remote File Specifier . 474
Directory Path 475
Remote msus .. 476
Directory Specifier. .. 478

Access Capability Requirements 479
Table of Access Capabilities Required for Keyword Use 480
Using Protected Files Created on a Pascal Workstation 481

Summary of BASIC Keyword Use on SRM. .. 482
ASSIGN 483
CAT 484
CHECKREAD. .. 488
CONTROL .. 489
COpy 490
CREATE ASCII 491
CREATE BOAT.. .. 492
CREATE DIR. .. 493
ENTER 494
GET 495
INITIALIZE .. 496
LOAD 497
LOADSUB 498
LOCK 499
MASS STORAGE IS (MSl) .. 500
ON TIMEOUT 501
OUTPUT 502
PLOTTER IS . 503
PRINTER IS 504
PROTECT . 505
PURGE 507
RENAME 508
RE-SAVE . 509
RESET 510
RE-STORE 511
SAVE 512

iii

iv

SCRATCH A 513
STATUS 514
STORE 515
STORE SYSTEM 516
SYSTEM$. 517
TRANSFER 518
UNLOCK 519
SRM BASIC Error Codes for HP Series 200/300 Computers 520

Glossary 521

Interface Registers .. 533
I/O Path Status and Control Registers. .. 533
CRT Status and Control Registers. 535
Keyboard Status and Control Registers .. 538
HP-IB Status and Control Registers 541
RS-232 Status and Control Registers .. 546
GPIO Status and Control Registers 551
BCD Status and Control Registers. 553
Data Communications Status and Control Registers. 556
Powerfail Status and Control Registers. 565
EPROM Programmer Status and Control Registers . 567
PARITY, CACHE and FLOAT Status and Control Registers . 569
Summary of SRM Status Registers 570

Useful Tables 571
Option Numbers 571
Interface Select Codes 571
Display-Enhancement Characters 572
US ASCII Character Codes .. 573
U.S.lEuropean Display Characters 575
U.S.lEuropean Display Characters 577
U.S.lEuropean Display Characters 579
Katakana Display Characters 581
Katakana Display Characters. 583
Master Reset Table . 585
Graphic Reset Table 588
Interface Reset Table 589
Second Byte of Non-ASCII Key Sequences 591
Selected High-Precision Metric Conversion Factors 592

Error Messages .. 593

Keyword Summary 603
Vocabulary 609

Manual Comment Sheet Instructions 610

iv

SCRATCH A 513
STATUS 514
STORE 515
STORE SYSTEM 516
SYSTEM$. 517
TRANSFER 518
UNLOCK 519
SRM BASIC Error Codes for HP Series 200/300 Computers 520

Glossary 521

Interface Registers .. 533
I/O Path Status and Control Registers. .. 533
CRT Status and Control Registers. 535
Keyboard Status and Control Registers .. 538
HP-IB Status and Control Registers 541
RS-232 Status and Control Registers .. 546
GPIO Status and Control Registers 551
BCD Status and Control Registers. 553
Data Communications Status and Control Registers. 556
Powerfail Status and Control Registers. 565
EPROM Programmer Status and Control Registers . 567
PARITY, CACHE and FLOAT Status and Control Registers . 569
Summary of SRM Status Registers 570

Useful Tables 571
Option Numbers 571
Interface Select Codes 571
Display-Enhancement Characters 572
US ASCII Character Codes .. 573
U.S.lEuropean Display Characters 575
U.S.lEuropean Display Characters 577
U.S.lEuropean Display Characters 579
Katakana Display Characters 581
Katakana Display Characters. 583
Master Reset Table . 585
Graphic Reset Table 588
Interface Reset Table 589
Second Byte of Non-ASCII Key Sequences 591
Selected High-Precision Metric Conversion Factors 592

Error Messages .. 593

Keyword Summary 603
Vocabulary 609

Manual Comment Sheet Instructions 610

Language History

Language History
This manual documents the BASIC 4.0 Language System used on HP 9000 Series 200/300
computers. There are several versions (other than 4.0) of this language in use today. The
following table is provided for those users who have more than one BASIC version, or who are
upgrading to BASIC 4. O. The table lists each statement available on any version and notes where
optional BIN files are needed.

ABORT
ABORTIO
ABS
ACS
ALLOCATE
ALPHA
AND
AREA
ASN
ASSIGN
ATN
AXES
BASE
BEEP
BINANO
BINCMP
BINEOR
BINIOR
BIT
BREAK
CALL

Statement

CAT
CHANGE
CHECKREAO
CHR$
CLEAR
CLIP
COM
CONT
CONTROL
COpy
COPYLINES
COS
CREATE ASCII
CREATE BOAT
CREATE OIR
CRT
CSIZE

BASIC 2.0/2.1 BASIC 3.0/4.0

10
AP2.0 TRANS

GRAPH

GRAPH2.1 GRAPHX

GRAPH
AP2.0 MAT

AP2.0 10

AP2.0 POEV
AP2.0 MS

10
GRAPH

AP2.0 POEV

SRM SRM
AP2.0

GRAPH

1

Language History

Language History
This manual documents the BASIC 4.0 Language System used on HP 9000 Series 200/300
computers. There are several versions (other than 4.0) of this language in use today. The
following table is provided for those users who have more than one BASIC version, or who are
upgrading to BASIC 4. O. The table lists each statement available on any version and notes where
optional BIN files are needed.

ABORT
ABORTIO
ABS
ACS
ALLOCATE
ALPHA
AND
AREA
ASN
ASSIGN
ATN
AXES
BASE
BEEP
BINANO
BINCMP
BINEOR
BINIOR
BIT
BREAK
CALL

Statement

CAT
CHANGE
CHECKREAO
CHR$
CLEAR
CLIP
COM
CONT
CONTROL
COpy
COPYLINES
COS
CREATE ASCII
CREATE BOAT
CREATE OIR
CRT
CSIZE

BASIC 2.0/2.1 BASIC 3.0/4.0

10
AP2.0 TRANS

GRAPH

GRAPH2.1 GRAPHX

GRAPH
AP2.0 MAT

AP2.0 10

AP2.0 POEV
AP2.0 MS

10
GRAPH

AP2.0 POEV

SRM SRM
AP2.0

GRAPH

1

2

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

DATA
DATE AP2.0 CLOCK
DATE$ AP2.0 CLOCK
DEALLOCATE
DEFFN
DEG
DEL
DELSUB
DET AP2.0 MAT
DIGITIZE GRAPH2.0 GRAPHX
DIM
DISABLE
DISABLE INTR 10
DISP
DIV
DOT AP2.0 MAT
DRAW GRAPH
DROUND
DUMP ALPHA
DUMP GRAPHICS GRAPH
DUMP DEVICE IS GRAPH
OVAL AP2.0
DVAL$ AP2.0
EDIT
EDIT KEY AP2.0 KBD
ENABLE
ENABLEINTR 10
END
ENTER
ERRDS AP2.0
ERRL
ERRM$ AP2.0
ERRN
EXOR
EXP
FIND AP2.0 PDEV
FN
FOR .. NEXT
FRACT AP2.0
FRAME GRAPH
GCLEAR GRAPH
GESCAPE GRAPH2.1 GRAPHX
GET
GINIT GRAPH
GLOAD GRAPH
GOSUB
GOTO
GRAPHICS GRAPH
GRAPHICS INPUT IS GRAPH2.0 GRAPHX
GRID GRAPH
GSTORE GRAPH

2

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

DATA
DATE AP2.0 CLOCK
DATE$ AP2.0 CLOCK
DEALLOCATE
DEFFN
DEG
DEL
DELSUB
DET AP2.0 MAT
DIGITIZE GRAPH2.0 GRAPHX
DIM
DISABLE
DISABLE INTR 10
DISP
DIV
DOT AP2.0 MAT
DRAW GRAPH
DROUND
DUMP ALPHA
DUMP GRAPHICS GRAPH
DUMP DEVICE IS GRAPH
OVAL AP2.0
DVAL$ AP2.0
EDIT
EDIT KEY AP2.0 KBD
ENABLE
ENABLEINTR 10
END
ENTER
ERRDS AP2.0
ERRL
ERRM$ AP2.0
ERRN
EXOR
EXP
FIND AP2.0 PDEV
FN
FOR .. NEXT
FRACT AP2.0
FRAME GRAPH
GCLEAR GRAPH
GESCAPE GRAPH2.1 GRAPHX
GET
GINIT GRAPH
GLOAD GRAPH
GOSUB
GOTO
GRAPHICS GRAPH
GRAPHICS INPUT IS GRAPH2.0 GRAPHX
GRID GRAPH
GSTORE GRAPH

3

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

IDRAW GRAPH
IF. .. THEN
IMAGE
IMOVE GRAPH
INDENT AP2.0 PDEV
INITIALIZE
INPUT
INT
INTEGER
IPLOT GRAPH
IPLOT array GRAPHX
IVAL AP2.0
IVAL$ AP2.0
KBD AP2.0
KBD$
KNOBX
KNOBY n.a.
LABEL GRAPH
LDIR GRAPH
LEN
LET
LEXICAL ORDER IS AP2.0 LEX
LGT
LINE TYPE GRAPH
LINPUT
LIST
LIST BIN n.a.
LIST KEY AP2.0 KBD
LOAD
LOAD BIN
LOAD KEY AP2.0 KBD
LOADSUB
LOCAL 10
LOCAL LOCKOUT 10
LOCK SRM SRM
LOG
LOOP
LORG GRAPH
LWC$ AP2.0
MASS STORAGE IS
MAT AP2.0 MAT
MAT REORDER AP2.0 MAT
MAT SORT AP2.0 MAT
MAX AP2.0 MAT
MAXREAL n.a.
MIN AP2.0 MAT
MIN REAL n.a.
MOD
MODULO n.a.
MOVE GRAPH
MOVELINES AP2.0 PDEV

3

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

IDRAW GRAPH
IF. .. THEN
IMAGE
IMOVE GRAPH
INDENT AP2.0 PDEV
INITIALIZE
INPUT
INT
INTEGER
IPLOT GRAPH
IPLOT array GRAPHX
IVAL AP2.0
IVAL$ AP2.0
KBD AP2.0
KBD$
KNOBX
KNOBY n.a.
LABEL GRAPH
LDIR GRAPH
LEN
LET
LEXICAL ORDER IS AP2.0 LEX
LGT
LINE TYPE GRAPH
LINPUT
LIST
LIST BIN n.a.
LIST KEY AP2.0 KBD
LOAD
LOAD BIN
LOAD KEY AP2.0 KBD
LOADSUB
LOCAL 10
LOCAL LOCKOUT 10
LOCK SRM SRM
LOG
LOOP
LORG GRAPH
LWC$ AP2.0
MASS STORAGE IS
MAT AP2.0 MAT
MAT REORDER AP2.0 MAT
MAT SORT AP2.0 MAT
MAX AP2.0 MAT
MAXREAL n.a.
MIN AP2.0 MAT
MIN REAL n.a.
MOD
MODULO n.a.
MOVE GRAPH
MOVELINES AP2.0 PDEV

4

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

NOT
NPAR
NUM
ON/OFF CYCLE AP2.0 CLOCK
ON/OFF DELAY AP2.0 CLOCK
ON/OFF END
ON/OFF EOR AP2.0 TRANS
ON/OFF EOT AP2.0 TRANS
ON/OFF ERROR
ON/OFF INTR 10
ON/OFF KBD
ON/OFF KEY
ON/OFF KNOB
ON/OFF SIGNAL AP2.0 10
ON/OFF TIME AP2.0 CLOCK
ON/OFF TIMEOUT
ON
OPTION BASE
OR
OUTPUT
PASS CONTROL AP2.0 10
PAUSE
PEN GRAPH
PENUP GRAPH
PDIR n.a. GRAPH
PI
PIVOT GRAPH
PLOT GRAPH
PLOT array GRAPH2.1 GRAPHX
PLOTTER IS GRAPH
PLOTTER IS file n.a. GRAPH
POLYGON GRAPH2.1 GRAPHX
POLYLINE GRAPH2.1 GRAPHX
POS
PPOll 10
PPOll CONFIGURE 10
PPOll RESPONSE AP2.0 10
PPOll UNCONFIGURE 10
PRINT
PRINT lABEL n.a. MS
PRINTAll IS
PRINTER IS
PRINTER IS file n.a.
PROTECT
PROUND AP2.0
PRT AP2.0
PURGE

4

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

NOT
NPAR
NUM
ON/OFF CYCLE AP2.0 CLOCK
ON/OFF DELAY AP2.0 CLOCK
ON/OFF END
ON/OFF EOR AP2.0 TRANS
ON/OFF EOT AP2.0 TRANS
ON/OFF ERROR
ON/OFF INTR 10
ON/OFF KBD
ON/OFF KEY
ON/OFF KNOB
ON/OFF SIGNAL AP2.0 10
ON/OFF TIME AP2.0 CLOCK
ON/OFF TIMEOUT
ON
OPTION BASE
OR
OUTPUT
PASS CONTROL AP2.0 10
PAUSE
PEN GRAPH
PENUP GRAPH
PDIR n.a. GRAPH
PI
PIVOT GRAPH
PLOT GRAPH
PLOT array GRAPH2.1 GRAPHX
PLOTTER IS GRAPH
PLOTTER IS file n.a. GRAPH
POLYGON GRAPH2.1 GRAPHX
POLYLINE GRAPH2.1 GRAPHX
POS
PPOll 10
PPOll CONFIGURE 10
PPOll RESPONSE AP2.0 10
PPOll UNCONFIGURE 10
PRINT
PRINT lABEL n.a. MS
PRINTAll IS
PRINTER IS
PRINTER IS file n.a.
PROTECT
PROUND AP2.0
PRT AP2.0
PURGE

5

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

RAD
RANDOMIZE
RANK AP2.0 MAT
RATIO GRAPH
READ
READIO
READ LABEL n.a. MS
READ LOCATOR GRAPH2.0 GRAPHX
REAL
RECTANGLE GRAPH2.1 GRAPHX
REDIM AP2.0 MAT
REM
REMOTE 10
REN
RENAME
REPEAT. .. UNTIL
REQUEST AP2.0 10
RE-SAVE
RES n.a.
RESET AP2.0 10
RESTORE
RE-STORE
RE-STORE BIN n.a.
RE-STORE KEY AP2.0 KBD
RESUME INTf:RACTIVE
RETURN
REV$ AP2.0
RND
ROTATE
RPLOT GRAPH GRAPH
RPLOT array AP2.0 GRAPHX
RPT$
RUN
SAVE
SC AP2.0
SCRATCH
SCRATCH BIN n.a.
SCRATCH KEY AP2.0 KBD
SECURE n.a. PDEV
SELECT.. . CASE
SEND 10
SET ECHO GRAPH2.0 GRAPHX
SET LOCATOR n.a. GRAPHX
SET PEN GRAPH2.1 GRAPHX
SET TIME
SET TIMEDATE
SGN
SHIFT

5

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

RAD
RANDOMIZE
RANK AP2.0 MAT
RATIO GRAPH
READ
READIO
READ LABEL n.a. MS
READ LOCATOR GRAPH2.0 GRAPHX
REAL
RECTANGLE GRAPH2.1 GRAPHX
REDIM AP2.0 MAT
REM
REMOTE 10
REN
RENAME
REPEAT. .. UNTIL
REQUEST AP2.0 10
RE-SAVE
RES n.a.
RESET AP2.0 10
RESTORE
RE-STORE
RE-STORE BIN n.a.
RE-STORE KEY AP2.0 KBD
RESUME INTf:RACTIVE
RETURN
REV$ AP2.0
RND
ROTATE
RPLOT GRAPH GRAPH
RPLOT array AP2.0 GRAPHX
RPT$
RUN
SAVE
SC AP2.0
SCRATCH
SCRATCH BIN n.a.
SCRATCH KEY AP2.0 KBD
SECURE n.a. PDEV
SELECT.. . CASE
SEND 10
SET ECHO GRAPH2.0 GRAPHX
SET LOCATOR n.a. GRAPHX
SET PEN GRAPH2.1 GRAPHX
SET TIME
SET TIMEDATE
SGN
SHIFT

6

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

SHOW GRAPH
SIGNAL AP2.0 10
SIN
SIZE AP2.0 MAT
SPOLL 10
SQR
STATUS
STOP
STORE
STORE BIN n.a.
STORE KEY AP2.0 KBD
STORE SYSTEM n.a.
SUB
SUBEXIT
SUM AP2.0 MAT
SUSPEND INTERACTIVE
SYMBOL GRAPH2.1 GRAPHX
SYSBOOT n.a.
SYSTEM PRIORITY AP2.0
SYSTEM$ AP2.0
SYSTEM$ PLOTTER IS GRAPH2.0 GRAPH
SYSTEM$ GRAPHICS INPUT IS GRAPH2.0 GRAPH
SYSTEM$ LEXICAL ORDER IS AP2.0 LEX
SYSTEM$ KEYBOARD LANGUAGE AP2.0 LEX
TAN
TIME AP2.0 CLOCK
TIME$ AP2.0 CLOCK
TIMEDATE
TRACE ALL PDEV
TRACE OFF PDEV
TRACE PAUSE PDEV
TRACK GRAPH2.0 GRAPHX
TRANSFER AP2.0 TRANS
TRIGGER 10
TRIM$ AP2.0
UNLOCK SRM SRM
UPC$ AP2.0
VAL
VAL$
VIEWPORT GRAPH
WAIT
WAITFOREOR AP2.0 TRANS
WAIT FOR EOT AP2.0 TRANS
WHERE GRAPH2.1 GRAPHX
WHILE
WINDOW GRAPH
WRITEIO
XREF AP2.0 XREF

6

Statement BASIC 2.0/2.1 BASIC 3.0/4.0

SHOW GRAPH
SIGNAL AP2.0 10
SIN
SIZE AP2.0 MAT
SPOLL 10
SQR
STATUS
STOP
STORE
STORE BIN n.a.
STORE KEY AP2.0 KBD
STORE SYSTEM n.a.
SUB
SUBEXIT
SUM AP2.0 MAT
SUSPEND INTERACTIVE
SYMBOL GRAPH2.1 GRAPHX
SYSBOOT n.a.
SYSTEM PRIORITY AP2.0
SYSTEM$ AP2.0
SYSTEM$ PLOTTER IS GRAPH2.0 GRAPH
SYSTEM$ GRAPHICS INPUT IS GRAPH2.0 GRAPH
SYSTEM$ LEXICAL ORDER IS AP2.0 LEX
SYSTEM$ KEYBOARD LANGUAGE AP2.0 LEX
TAN
TIME AP2.0 CLOCK
TIME$ AP2.0 CLOCK
TIMEDATE
TRACE ALL PDEV
TRACE OFF PDEV
TRACE PAUSE PDEV
TRACK GRAPH2.0 GRAPHX
TRANSFER AP2.0 TRANS
TRIGGER 10
TRIM$ AP2.0
UNLOCK SRM SRM
UPC$ AP2.0
VAL
VAL$
VIEWPORT GRAPH
WAIT
WAITFOREOR AP2.0 TRANS
WAIT FOR EOT AP2.0 TRANS
WHERE GRAPH2.1 GRAPHX
WHILE
WINDOW GRAPH
WRITEIO
XREF AP2.0 XREF

Keyboards
The Series 200/300 Computers support three keyboard styles:

• HP 98203B

• HP 98203A

• HP 46020A

Throughout the manuals which document the BASIC Language System, specific keys are men­
tioned. Because many key labels are different on each keyboard, you will not have all the keys
mentioned. For example, (EXECUTE) and (RETURN) normally have the same meaning, but only one
of them appears on anyone keyboard. The BASIC User's Guide discusses the keyboards.

Within this manual, the keys for each keyboard are listed the first time they are used in a statement
description. Thereafter, only one keyboard's keys are used.

Using the Keyword Dictionary
This section contains an alphabetical reference to all the keywords currently available with the
BASIC language system of the Series 200/300 computers. Each entry defines the keyword,
shows the proper syntax for its use, gives some example statements, and explains relevant
semantic details. A cross reference is prOVided in the back that groups the keywords into several
functional categories.

Legal Usage Table
Above each drawing is a small table indicating the legal uses of the keyword. Option ReqUired
indicates what must be resident in the computer (other than BASIC 4.0) in order to use the
keyword. Specific headings under Semantics may list a requirement for the specific feature being
discussed if the keyword has expanded semantics with binary extensions. Shaded areas of the
syntax diagram flag syntactic changes which depend upon the binary extensions to the language.

"Keyboard Executable" means that a properly constructed statement containing that keyword can
be typed into the keyboard input line and executed by a press of the (EXECUTE) , (ENTER) , or
(RETURN) key. "Programmable" means that a properly constructed statement containing that
keyword can be placed after a line number and stored in a program. Certain non-programmable
keywords can be "forced" into a program by sending them to the keyboard buffer with an
OUTPUT 2 statement. This is not what is meant by "Programmable".

" In an IF ... THEN ... " means that a properly constructed statement containing that keyword can be
placed after "THEN" in a single-line IF ... THEN statement. Keywords that are prohibited in a
single-line IF ... THEN are not necessarily prohibited in a multiple-line IF ... THEN structure. Con­
structs such as IF ... THEN, REPEAL.UNTIL, and FOR .. . NEXT statements are executed con­
ditionally when they are included in a multiple-line IF. .. THEN structure. All other prohibited state­
ments (see IF ... THEN) are used only during pre-run. Therefore, the action of those statements will
not be conditional, even though the IF .. . THEN wording may make them appear to be conditional.

7

Keyboards
The Series 200/300 Computers support three keyboard styles:

• HP 98203B

• HP 98203A

• HP 46020A

Throughout the manuals which document the BASIC Language System, specific keys are men­
tioned. Because many key labels are different on each keyboard, you will not have all the keys
mentioned. For example, (EXECUTE) and (RETURN) normally have the same meaning, but only one
of them appears on anyone keyboard. The BASIC User's Guide discusses the keyboards.

Within this manual, the keys for each keyboard are listed the first time they are used in a statement
description. Thereafter, only one keyboard's keys are used.

Using the Keyword Dictionary
This section contains an alphabetical reference to all the keywords currently available with the
BASIC language system of the Series 200/300 computers. Each entry defines the keyword,
shows the proper syntax for its use, gives some example statements, and explains relevant
semantic details. A cross reference is prOVided in the back that groups the keywords into several
functional categories.

Legal Usage Table
Above each drawing is a small table indicating the legal uses of the keyword. Option ReqUired
indicates what must be resident in the computer (other than BASIC 4.0) in order to use the
keyword. Specific headings under Semantics may list a requirement for the specific feature being
discussed if the keyword has expanded semantics with binary extensions. Shaded areas of the
syntax diagram flag syntactic changes which depend upon the binary extensions to the language.

"Keyboard Executable" means that a properly constructed statement containing that keyword can
be typed into the keyboard input line and executed by a press of the (EXECUTE) , (ENTER) , or
(RETURN) key. "Programmable" means that a properly constructed statement containing that
keyword can be placed after a line number and stored in a program. Certain non-programmable
keywords can be "forced" into a program by sending them to the keyboard buffer with an
OUTPUT 2 statement. This is not what is meant by "Programmable".

" In an IF ... THEN ... " means that a properly constructed statement containing that keyword can be
placed after "THEN" in a single-line IF ... THEN statement. Keywords that are prohibited in a
single-line IF ... THEN are not necessarily prohibited in a multiple-line IF ... THEN structure. Con­
structs such as IF ... THEN, REPEAL.UNTIL, and FOR .. . NEXT statements are executed con­
ditionally when they are included in a multiple-line IF. .. THEN structure. All other prohibited state­
ments (see IF ... THEN) are used only during pre-run. Therefore, the action of those statements will
not be conditional, even though the IF .. . THEN wording may make them appear to be conditional.

7

8

Syntax Drawings Explained
Statement syntax is represented pictorially. All characters enclosed by a rounded envelope
must be entered exactly as shown. Words enclosed by a rectangular box are names of items
used in the statement. A description of each item is given either in the table following the
drawing, another drawing, or the Glossary. Statement elements are connected by lines. Each
line can be followed in only one direction , as indicated by the arrow at the end of the line . Any
combination of statement elements that can be generated by following the lines in the proper
direction is syntactically correct. An element is optional if there is a path around it. Optional
items usually have default values. The table or text following the drawing specifies the default
value that is used when an optional item is not included in a statement.

Comments may be added to any valid line. A comment is created by placing an exclamation
point after a statement, or after a line number or line label. The text following the exclamation
point may contain any characters in any order.

The drawings do not necessarily deal with the proper use of spaces (ASCII blanks) . In general,
whenever you are traversing a line, any number of spaces may be entered. If two envelopes are
touching, it indicates that no spaces are allowed between the two items. However, this conven­
tion is not always possible in drawings with optional paths, so it is important to understand the
following rules for spacing.

Keywords and Spaces
The computer uses spaces, as well as required punctuation, to distinguish the boundaries
between various keywords, names, and other items. In general, at least one space is required
between a keyword and a name if they are not separated by other punctuation. Spaces cannot
be placed in the middle of keywords or other reserved groupings of symbols . Also, keywords
are recognized whether they are typed in uppercase or lowercase. Therefore , to use the letters
of a keyword as a name, the name entered must contain some mixture of uppercase and
lowercase letters. The following are some examples of these guidelines.

Space Between Keywords and Names
The keyword N E){ T and the variable Co un t are properly entered with a space between them, as
in N E){ Teo un t. Without the space, the entire group of characters is interpreted as the name
Nextcount .

No Spaces in Keywords or Reserved Groupings
The keyword DEL SUB cannot be entered as DEL SUB. The array specifier (*) cannot be
entered as (*). A function call to "A$" must be entered as FNA$, not as FN A $. The I/O
path name " @Meter" must be entered as @t1e t e r , not as @ t1 e t e L The " exceptions" are
keywords that contain spaces, such as END I F and OPT I ON BASE.

Using Keyword Letters for a Name
Attempting to store the line IF){=1 THEN END will generate an error because END is a
keyword not allowed in an IF . . . THEN . To create a line label called " End" , type
IF)(= 1 THE N ENd. This or any other mixture of uppercase and lowercase will prevent the
name from being recognized as a keyword.

Also note that names may begin with the letters of an infix operator (such as MOD, DIV, and
EXOR). In such cases, you should type the name with a case switch in the infix operator portion of
the name (e.g., MOdULE, DiVISOR).

8

Syntax Drawings Explained
Statement syntax is represented pictorially. All characters enclosed by a rounded envelope
must be entered exactly as shown. Words enclosed by a rectangular box are names of items
used in the statement. A description of each item is given either in the table following the
drawing, another drawing, or the Glossary. Statement elements are connected by lines. Each
line can be followed in only one direction , as indicated by the arrow at the end of the line . Any
combination of statement elements that can be generated by following the lines in the proper
direction is syntactically correct. An element is optional if there is a path around it. Optional
items usually have default values. The table or text following the drawing specifies the default
value that is used when an optional item is not included in a statement.

Comments may be added to any valid line. A comment is created by placing an exclamation
point after a statement, or after a line number or line label. The text following the exclamation
point may contain any characters in any order.

The drawings do not necessarily deal with the proper use of spaces (ASCII blanks) . In general,
whenever you are traversing a line, any number of spaces may be entered. If two envelopes are
touching, it indicates that no spaces are allowed between the two items. However, this conven­
tion is not always possible in drawings with optional paths, so it is important to understand the
following rules for spacing.

Keywords and Spaces
The computer uses spaces, as well as required punctuation, to distinguish the boundaries
between various keywords, names, and other items. In general, at least one space is required
between a keyword and a name if they are not separated by other punctuation. Spaces cannot
be placed in the middle of keywords or other reserved groupings of symbols . Also, keywords
are recognized whether they are typed in uppercase or lowercase. Therefore , to use the letters
of a keyword as a name, the name entered must contain some mixture of uppercase and
lowercase letters. The following are some examples of these guidelines.

Space Between Keywords and Names
The keyword N E){ T and the variable Co un t are properly entered with a space between them, as
in N E){ Teo un t. Without the space, the entire group of characters is interpreted as the name
Nextcount .

No Spaces in Keywords or Reserved Groupings
The keyword DEL SUB cannot be entered as DEL SUB. The array specifier (*) cannot be
entered as (*). A function call to "A$" must be entered as FNA$, not as FN A $. The I/O
path name " @Meter" must be entered as @t1e t e r , not as @ t1 e t e L The " exceptions" are
keywords that contain spaces, such as END I F and OPT I ON BASE.

Using Keyword Letters for a Name
Attempting to store the line IF){=1 THEN END will generate an error because END is a
keyword not allowed in an IF . . . THEN . To create a line label called " End" , type
IF)(= 1 THE N ENd. This or any other mixture of uppercase and lowercase will prevent the
name from being recognized as a keyword.

Also note that names may begin with the letters of an infix operator (such as MOD, DIV, and
EXOR). In such cases, you should type the name with a case switch in the infix operator portion of
the name (e.g., MOdULE, DiVISOR).

(

Option Required
Keyboard Executable
Programmagle
In an IF ... THEN .. .

10
Yes
Yes
Yes

This statement ceases activity on the specified interface.

Item Description/Default

interface select code numeric expression, rounded to an integer

I/O path name name assigned to an HP-IB interface select
code

Example Statements
ABORT 7
IF Stop_code THEN ABORT @Source

Semantics
HP-IB Interfaces

ABORT

Range
Restrictions

5,7 thru 31

any valid name (see ASSIGN)

Executing this statement ceases activity on the specified HP-IB interface; other interfaces may
not be specified. If the computer is the system controller but not currently the active controller,
executing ABORT causes the computer to assume active control.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

IFC (duration ATN
Active ;;. 100fLsec) MTA

Controller REN UNL
ATN ATN

Error Error
IFC (duration

Not Active ;;. 100 fLsec) * No
Controller REN Action

ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

Data Communications Interfaces
Directing this statement to a Data Communications interface clears the buffers and disconnects
the interface.

9

(

Option Required
Keyboard Executable
Programmagle
In an IF ... THEN .. .

10
Yes
Yes
Yes

This statement ceases activity on the specified interface.

Item Description/Default

interface select code numeric expression, rounded to an integer

I/O path name name assigned to an HP-IB interface select
code

Example Statements
ABORT 7
IF Stop_code THEN ABORT @Source

Semantics
HP-IB Interfaces

ABORT

Range
Restrictions

5,7 thru 31

any valid name (see ASSIGN)

Executing this statement ceases activity on the specified HP-IB interface; other interfaces may
not be specified. If the computer is the system controller but not currently the active controller,
executing ABORT causes the computer to assume active control.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

IFC (duration ATN
Active ;;. 100fLsec) MTA

Controller REN UNL
ATN ATN

Error Error
IFC (duration

Not Active ;;. 100 fLsec) * No
Controller REN Action

ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

Data Communications Interfaces
Directing this statement to a Data Communications interface clears the buffers and disconnects
the interface.

9

10

ABORTIO
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
Yes
Yes
Yes

This statement terminates a TRANSFER which is currently taking place through an I/O path
assigned to a device , group of devices, or mass storage file .

Item

I/O path name

Description/Default

name assigned to a device, a group of devices, or
a mass storage file

Example Statements
ABO RT IO @Interface
IF St oP_flag THEN ABORTIO @Devi c e

Semantics

Range
Restrictions

any valid name

This statement terminates a TRANSFER (in either direction) currently taking place through the
specified I/O path name. The I/O path name must be assigned to an interface select code, device
selector, or mass storage file ; if the I/O path name is assigned to a buffer, error 170 is reported.

An end-of-transfer (EOT) branch is initiated if an ON EOT branch is currently defined for the I/O
path name; however, no currently defined EOR branch will be initiated.

The ABORTIO has no effect if no TRANSFER is taking place through the I/O path name.

If a TRANSFER to or from an I/O path name was terminated by an error, executing ABORTIO on
that I/O path name causes the error to be reported.

10

ABORTIO
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
Yes
Yes
Yes

This statement terminates a TRANSFER which is currently taking place through an I/O path
assigned to a device , group of devices, or mass storage file .

Item

I/O path name

Description/Default

name assigned to a device, a group of devices, or
a mass storage file

Example Statements
ABO RT IO @Interface
IF St oP_flag THEN ABORTIO @Devi c e

Semantics

Range
Restrictions

any valid name

This statement terminates a TRANSFER (in either direction) currently taking place through the
specified I/O path name. The I/O path name must be assigned to an interface select code, device
selector, or mass storage file ; if the I/O path name is assigned to a buffer, error 170 is reported.

An end-of-transfer (EOT) branch is initiated if an ON EOT branch is currently defined for the I/O
path name; however, no currently defined EOR branch will be initiated.

The ABORTIO has no effect if no TRANSFER is taking place through the I/O path name.

If a TRANSFER to or from an I/O path name was terminated by an error, executing ABORTIO on
that I/O path name causes the error to be reported.

ABS
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns the absolute value of its argument. The result will be of the same type
(REAL or INTEGER) as the argument. (Except for the ABS of the INTEGER - 32 768, which
causes an error).

numeri c
e x pression

Example Statements
Magnitude=ABS (V ector)
PRINT "l,Jalue = " iABS()-(1)

11

ABS
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns the absolute value of its argument. The result will be of the same type
(REAL or INTEGER) as the argument. (Except for the ABS of the INTEGER - 32 768, which
causes an error).

numeri c
e x pression

Example Statements
Magnitude=ABS (V ector)
PRINT "l,Jalue = " iABS()-(1)

11

12

ACS
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This function returns the principal value of the angle which has a cosine equal to the argument.
This is the arccosine function .

Item Description/Default

argument numeric expression

Example Statements
Anlle=ACS(Cosine)
PRINT "Anile =";ACS(){1)

Semantics

Range
Restrictions

-1 thru + 1

The value returned is REAL. If the current angle mode is DEG, the range of the result is 0 thru
180 degrees. If the current angle mode is RAD, the range of the result is 0 thru 'iT radians. The
angle mode is radians unless you specify degrees with the DEG statement.

12

ACS
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This function returns the principal value of the angle which has a cosine equal to the argument.
This is the arccosine function .

Item Description/Default

argument numeric expression

Example Statements
Anlle=ACS(Cosine)
PRINT "Anile =";ACS(){1)

Semantics

Range
Restrictions

-1 thru + 1

The value returned is REAL. If the current angle mode is DEG, the range of the result is 0 thru
180 degrees. If the current angle mode is RAD, the range of the result is 0 thru 'iT radians. The
angle mode is radians unless you specify degrees with the DEG statement.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

ALLOCATE

This statement dynamically allocates memory for arrays and string variables during program
execution.

$l-T--------------,,.-.-(

Item Description/Default
Range

Restrictions
----------------~----------------------------------_r--------,
array name

lower bound

upper bound

string name

string length

name of a numeric array

numeric expression, rounded to an integer;
Default = OPTION BASE value (0 or 1)

numeric expression, rounded to an integer

name of a string variable

numeric expression, rounded to an integer

any valid name

-32768 thru +32767
(see "array" in Glossary)

- 32768 thru + 32767
(see "array" in Glossary)

any valid name

1 thru 32767

13

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

ALLOCATE

This statement dynamically allocates memory for arrays and string variables during program
execution.

$l-T--------------,,.-.-(

Item Description/Default
Range

Restrictions
----------------~----------------------------------_r--------,
array name

lower bound

upper bound

string name

string length

name of a numeric array

numeric expression, rounded to an integer;
Default = OPTION BASE value (0 or 1)

numeric expression, rounded to an integer

name of a string variable

numeric expression, rounded to an integer

any valid name

-32768 thru +32767
(see "array" in Glossary)

- 32768 thru + 32767
(see "array" in Glossary)

any valid name

1 thru 32767

13

14 ALLOCATE

Example Statements
AL LOCATE TeMP(Low:Hi~h)

AL LOCATE R$[LEN(A$)+1J

Semantics
Memory reserved by the ALLOCATE statement can be freed by the DEALLOCATE statement.
However, because of the stack discipline used when allocating, the freed memory space does
not become available unless all subsequently allocated items are also deallocated. For example,
assume that A$ is allocated first, then B$, and finally C$. If a DEALLOCATE A$ statement is
executed, the memory space for A$ is not reclaimed until B$ and C$ are deallocated. This same
stack is used for setting up ON-event branches, so subsequent ON-event statements can also
block the reclamation of deallocated memory.

The variables in an ALLOCATE statement cannot have appeared in COM, DIM, INTEGER or
REAL declaration statements. If variable(s) are to be allocated in a subprogram, the variable(s)
cannot have been included in the subprogram's formal parameter list. Implicitly declared vari­
ables cannot be allocated. Numeric variables which are not specified as INTEGER are assumed to
be REAL. A variable can be re-allocated in its program context only if it has been deallocated and
its type and number of dimensions remain the same.

Exiting a subprogram automatically deallocates any memory space allocated within that pro­
gram context.

ALLOCATE can be executed from the keyboard while a program is running or paused. Howev­
er, the variable must have been declared in an ALLOCATE statement in the current program
context, and the variable must have already been allocated and deallocated.

14 ALLOCATE

Example Statements
AL LOCATE TeMP(Low:Hi~h)

AL LOCATE R$[LEN(A$)+1J

Semantics
Memory reserved by the ALLOCATE statement can be freed by the DEALLOCATE statement.
However, because of the stack discipline used when allocating, the freed memory space does
not become available unless all subsequently allocated items are also deallocated. For example,
assume that A$ is allocated first, then B$, and finally C$. If a DEALLOCATE A$ statement is
executed, the memory space for A$ is not reclaimed until B$ and C$ are deallocated. This same
stack is used for setting up ON-event branches, so subsequent ON-event statements can also
block the reclamation of deallocated memory.

The variables in an ALLOCATE statement cannot have appeared in COM, DIM, INTEGER or
REAL declaration statements. If variable(s) are to be allocated in a subprogram, the variable(s)
cannot have been included in the subprogram's formal parameter list. Implicitly declared vari­
ables cannot be allocated. Numeric variables which are not specified as INTEGER are assumed to
be REAL. A variable can be re-allocated in its program context only if it has been deallocated and
its type and number of dimensions remain the same.

Exiting a subprogram automatically deallocates any memory space allocated within that pro­
gram context.

ALLOCATE can be executed from the keyboard while a program is running or paused. Howev­
er, the variable must have been declared in an ALLOCATE statement in the current program
context, and the variable must have already been allocated and deallocated.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement turns the alphanumeric display on or off.

Example Statements
ALPHA ON
IF Graph THEN ALPHA OFF

Semantics

ALPHA

Items sent to the printout area while the alphanumeric display is disabled are placed in the
display memory even though they are not visible. Items sent to the keyboard input line, the
display line, or the system message line will turn on the alphanumeric display. The alpha­
numeric and graphic displays can both be on at the same time.

The alphanumeric area is enabled after power-on, RESET and SCRATCH A. Pressing the
ALPHA key on the keyboard also enables the alphanumeric display.

This statement has no effect on a bit-mapped display when the alpha write-enable mask specifies
all planes. This is the default state on those displays.

15

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement turns the alphanumeric display on or off.

Example Statements
ALPHA ON
IF Graph THEN ALPHA OFF

Semantics

ALPHA

Items sent to the printout area while the alphanumeric display is disabled are placed in the
display memory even though they are not visible. Items sent to the keyboard input line, the
display line, or the system message line will turn on the alphanumeric display. The alpha­
numeric and graphic displays can both be on at the same time.

The alphanumeric area is enabled after power-on, RESET and SCRATCH A. Pressing the
ALPHA key on the keyboard also enables the alphanumeric display.

This statement has no effect on a bit-mapped display when the alpha write-enable mask specifies
all planes. This is the default state on those displays.

15

16

AND
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This operator returns a 1 or a 0 based upon the logical AND of the arguments.

numeric
expression

Example Statements

numeric
expres s ion

IF Flag AND Test2 THEN Process
Final=Initial AND Valid

Semantics

None
Yes
Yes
Yes

A non-zero value (positive or negative) is treated as a logical 1; only zero is treated as a logical
O.

The logical AND is shown in this table:

A B AANDB

o 0 0
o 1 0
1 0 0
1 1 1

16

AND
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This operator returns a 1 or a 0 based upon the logical AND of the arguments.

numeric
expression

Example Statements

numeric
expres s ion

IF Flag AND Test2 THEN Process
Final=Initial AND Valid

Semantics

None
Yes
Yes
Yes

A non-zero value (positive or negative) is treated as a logical 1; only zero is treated as a logical
O.

The logical AND is shown in this table:

A B AANDB

o 0 0
o 1 0
1 0 0
1 1 1

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPHX
Yes
Yes
Yes

AREA

This statement defines or selects an area fill color. The fill color is used in all subsequent graphics
operations requiring area fill.

hue

saturation

luminosity

red

green

blue

Item Description/Default

numeric expression

numeric expression

numeric expression

numeric expression

numeric expression

numeric expression

luminosity

blue ~---.l

Range
Restrictions

o thru 1

o thru 1

o thru 1

o thru 1

o thru 1

o thru 1

pen selector numeric expression, rounded to an integer - 32 768 thru + 32 767

Example Statements
AREA COLOR Hue ,S aturation ,LufTlinosity
AREA COLOR X*.3,RND,A"2
AREA INTENSITY Red(I) ,Green(I) ,Blue(I)
AREA INTENSITY X*.3,RND,A"2
AREA PEN 1
AREA PEN -Pen

17

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPHX
Yes
Yes
Yes

AREA

This statement defines or selects an area fill color. The fill color is used in all subsequent graphics
operations requiring area fill.

hue

saturation

luminosity

red

green

blue

Item Description/Default

numeric expression

numeric expression

numeric expression

numeric expression

numeric expression

numeric expression

luminosity

blue ~---.l

Range
Restrictions

o thru 1

o thru 1

o thru 1

o thru 1

o thru 1

o thru 1

pen selector numeric expression, rounded to an integer - 32 768 thru + 32 767

Example Statements
AREA COLOR Hue ,S aturation ,LufTlinosity
AREA COLOR X*.3,RND,A"2
AREA INTENSITY Red(I) ,Green(I) ,Blue(I)
AREA INTENSITY X*.3,RND,A"2
AREA PEN 1
AREA PEN -Pen

17

18 AREA

Semantics
The default fill color is the color specified by Pen 1. This color is solid white after power-up,
SCRATCH A, or GINIT.

A fill color remains in effect until the execution of an AREA, GINIT, or SCRATCH A. Other
statements which may alter the current fill color (depending on the data passed to them) are
SYMBOL, PLOT, RPLOT, or IPLOT when used with an array . SET PEN affects pen colors, and
therefore can also affect fill colors specified with AREA statements.

Specifying color with the SET PEN and AREA PEN statements (resulting in non-dithered color)
results in a much more accurate representation of the desired color than the same color requested
with an AREA COLOR or AREA INTENSITY statement. To see the difference , compare the five
color plates shown in this entry with the corresponding plates in the SET PEN statement.

AREA PEN

Note
The following color plates do not exactly represent what your eye
would see on the CRT. The reason for this is that photographic film
cannot capture all the colors a CRT can produce, and the printing
process cannot reproduce all the colors that film can capture.

A fill color specified with AREA PEN is guaranteed to be non-dithered , and the AREA PEN
statement executes much faster than AREA COLOR or AREA INTENSITY.

The pen numbers have the same effect as described in the PEN statement for line color except
that in the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement. Pen 0 in normal pen mode erases; it does not complement.

AREA COLOR
When AREA COLOR is executed on a color monitor, the HSL parameters are converted to RGB
values. Then, if the color requested is not available in the color map, the computer creates the
closest possible color in RGB color space to the one requested by filling the 4 x 4 dither cell with
the best combination of colors from the color map.

In non-color map mode, there are eight colors total, and they cannot be redefined. This simulates
the operation of the HP98627 A. In color map mode, there are sixteen or 256 total colors
depending on your hardware, and they can be redefined with SET PEN.

18 AREA

Semantics
The default fill color is the color specified by Pen 1. This color is solid white after power-up,
SCRATCH A, or GINIT.

A fill color remains in effect until the execution of an AREA, GINIT, or SCRATCH A. Other
statements which may alter the current fill color (depending on the data passed to them) are
SYMBOL, PLOT, RPLOT, or IPLOT when used with an array . SET PEN affects pen colors, and
therefore can also affect fill colors specified with AREA statements.

Specifying color with the SET PEN and AREA PEN statements (resulting in non-dithered color)
results in a much more accurate representation of the desired color than the same color requested
with an AREA COLOR or AREA INTENSITY statement. To see the difference , compare the five
color plates shown in this entry with the corresponding plates in the SET PEN statement.

AREA PEN

Note
The following color plates do not exactly represent what your eye
would see on the CRT. The reason for this is that photographic film
cannot capture all the colors a CRT can produce, and the printing
process cannot reproduce all the colors that film can capture.

A fill color specified with AREA PEN is guaranteed to be non-dithered , and the AREA PEN
statement executes much faster than AREA COLOR or AREA INTENSITY.

The pen numbers have the same effect as described in the PEN statement for line color except
that in the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement. Pen 0 in normal pen mode erases; it does not complement.

AREA COLOR
When AREA COLOR is executed on a color monitor, the HSL parameters are converted to RGB
values. Then, if the color requested is not available in the color map, the computer creates the
closest possible color in RGB color space to the one requested by filling the 4 x 4 dither cell with
the best combination of colors from the color map.

In non-color map mode, there are eight colors total, and they cannot be redefined. This simulates
the operation of the HP98627 A. In color map mode, there are sixteen or 256 total colors
depending on your hardware, and they can be redefined with SET PEN.

AREA 19

The following plate of the screen shows the changes brought about by varying one of the HSL
parameters at a time. The bottom bar shows that when saturation (the amount of color) is zero,
hue makes no difference , and varying luminosity results in a gray scale.

The following color wheel represents the colors selected as the hue value goes from 0 through 1.
Any value between zero and one, inclusive, can be chosen to select color. The resolution (the
amount the value can change before the color on the screen changes) depends on what the value
of the hue is as well as the values of the other two parameters.

HSL Color Wheel

AREA 19

The following plate of the screen shows the changes brought about by varying one of the HSL
parameters at a time. The bottom bar shows that when saturation (the amount of color) is zero,
hue makes no difference , and varying luminosity results in a gray scale.

The following color wheel represents the colors selected as the hue value goes from 0 through 1.
Any value between zero and one, inclusive, can be chosen to select color. The resolution (the
amount the value can change before the color on the screen changes) depends on what the value
of the hue is as well as the values of the other two parameters.

HSL Color Wheel

20 AREA

The next plate shows the effect that varying saturation and luminosity have on the color
produced. Each of the small color wheels is a miniature version of the large one above, except it
has fewer segments.

Effects of Saturation and Luminosity on Color

AREA INTENSITY
The following plate demonstrates the effect of varying the intensity of one color component when
the other two remain constant.

RGB Addition: One Color at a Time

20 AREA

The next plate shows the effect that varying saturation and luminosity have on the color
produced. Each of the small color wheels is a miniature version of the large one above, except it
has fewer segments.

Effects of Saturation and Luminosity on Color

AREA INTENSITY
The following plate demonstrates the effect of varying the intensity of one color component when
the other two remain constant.

RGB Addition: One Color at a Time

AREA 21

The next plate shows combinations of red, green and blue. The values are given in fifteenths: 0
fifteenths,S fifteenths , 10 fifteenths , and 15 fifteenths-every fifth value. The values for each
color component are represented in that color.

The HP98627A
When an HP98627 A is used, the HSL values specified in an AREA COLOR statement are
converted to RGB. The parameters of an AREA INTENSITY statement are already in RGB. The
RGB values specify the fraction of dots per 4 x 4-pixel area to be turned on in each memory
plane. The red value corresponds to memory plane 1, the green value to memory plane 2 , and
the blue value to memory plane 3.

The AREA PEN selects one of the eight non-dithered colors available with no intensity control on
the color guns. See the PEN entry for the order of these colors.

The HP98627 A dithers in a very similar way to the color monitors when the color map is not
enabled (see PLOTTER IS), using only eight colors when calculating the closest combination.

Monochromatic eRTs
When doing shading on a monochromatic CRT, dithering is always used. Dithering takes place in
a 4 x 4 cell , which allows zero through sixteen of the dots to be turned on, for a total of seventeen
shades of gray.

Since AREA PEN does not use dithering, only black and white are available. If the pen selector is
positive, the resulting fill coior is white ; if zero or negative , the resulting fill color is black.

When an AREA COLOR is executed, the hue and saturation parameters are ignored. Only the
luminosity value is used to determine the fraction of pixels to be turned on.

AREA 21

The next plate shows combinations of red, green and blue. The values are given in fifteenths: 0
fifteenths,S fifteenths , 10 fifteenths , and 15 fifteenths-every fifth value. The values for each
color component are represented in that color.

The HP98627A
When an HP98627 A is used, the HSL values specified in an AREA COLOR statement are
converted to RGB. The parameters of an AREA INTENSITY statement are already in RGB. The
RGB values specify the fraction of dots per 4 x 4-pixel area to be turned on in each memory
plane. The red value corresponds to memory plane 1, the green value to memory plane 2 , and
the blue value to memory plane 3.

The AREA PEN selects one of the eight non-dithered colors available with no intensity control on
the color guns. See the PEN entry for the order of these colors.

The HP98627 A dithers in a very similar way to the color monitors when the color map is not
enabled (see PLOTTER IS), using only eight colors when calculating the closest combination.

Monochromatic eRTs
When doing shading on a monochromatic CRT, dithering is always used. Dithering takes place in
a 4 x 4 cell , which allows zero through sixteen of the dots to be turned on, for a total of seventeen
shades of gray.

Since AREA PEN does not use dithering, only black and white are available. If the pen selector is
positive, the resulting fill coior is white ; if zero or negative , the resulting fill color is black.

When an AREA COLOR is executed, the hue and saturation parameters are ignored. Only the
luminosity value is used to determine the fraction of pixels to be turned on.

22 AREA

When an AREA INTENSITY is executed, the largest of the three values is used, and it specifies the
fraction of pixels to be turned on.

Alternate Pen Mode Fills
If the alternate drawing mode is in effect when the fill is performed, the area will be filled with
non-dominant color. See GESCAPE operation selectors 4 and 5 .

In the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement.

ASCII
See the CREATE ASCII and LEXICAL ORDER IS statements.

22 AREA

When an AREA INTENSITY is executed, the largest of the three values is used, and it specifies the
fraction of pixels to be turned on.

Alternate Pen Mode Fills
If the alternate drawing mode is in effect when the fill is performed, the area will be filled with
non-dominant color. See GESCAPE operation selectors 4 and 5 .

In the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement.

ASCII
See the CREATE ASCII and LEXICAL ORDER IS statements.

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
Yes
Yes
Yes

ASN

This function returns the principal value of the angle which has a sine equal to the argument.
This is the arcsine function .

Item D escri pti on/D efa ult

argument numeric expression

Example Statements
Ang l e =AS N(Sine)
PRINT "Angle =" jASN(){1)

Semantics

Range
Restrictions

- 1 thru + 1

The value returned is REAL. If the current angle mode is DEG, the range of the result is - 90
thru + 90 degrees. If the current angle mode is RAD, the range of the result is - 'IT /2 thru + 'IT /2
radians. The angle mode is radians unless you specify degrees with the DEG statement.

23

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
Yes
Yes
Yes

ASN

This function returns the principal value of the angle which has a sine equal to the argument.
This is the arcsine function .

Item D escri pti on/D efa ult

argument numeric expression

Example Statements
Ang l e =AS N(Sine)
PRINT "Angle =" jASN(){1)

Semantics

Range
Restrictions

- 1 thru + 1

The value returned is REAL. If the current angle mode is DEG, the range of the result is - 90
thru + 90 degrees. If the current angle mode is RAD, the range of the result is - 'IT /2 thru + 'IT /2
radians. The angle mode is radians unless you specify degrees with the DEG statement.

23

24

ASSIGN Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement is used to perform one of the following actions: assign an I/O path name and
attributes to a device, a group of devices, a mass storage file , or a buffer; change attributes; or
close an I/O path name. (If using ASSIGN with SRM, also refer to the "SRM" section of this
manual.)

'-----------------~ * ~--~

lite r al fo rm of file specifier:

file
name

24

ASSIGN Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement is used to perform one of the following actions: assign an I/O path name and
attributes to a device, a group of devices, a mass storage file , or a buffer; change attributes; or
close an I/O path name. (If using ASSIGN with SRM, also refer to the "SRM" section of this
manual.)

'-----------------~ * ~--~

lite r al fo rm of file specifier:

file
name

ASSIGN 25

at tr ibutes:

FORMAT

CONVERT

10

ASSIGN 25

at tr ibutes:

FORMAT

CONVERT

10

26 ASSIGN

Item

110 path name

device selector

file specifier

string variable name

numeric array name

buffer size
(in bytes)

file name

protect code

msus

conversion string

end-of-line characters

time period

return variable name

Description/Default

name identifying an 110 path

numeric expression

string expression

name of a string variable

name of a numeric array

numeric expression, rounded to an integer

literal

literal, first two non-blank characters are signifi­
cant

literal

name of a string variable

string expression:
Default = CR and LF

numeric expression. rounded to the nearest
0.001 seconds:
Default=O

name of a numeric variable

Range
Restrictions

any valid name

(see Glossary)

(see drawing)

any valid name

any valid name

1 thru available memory
minus 490

any valid file name

">" not allowed

(see MASS
STORAGE IS)

up to 256 characters
(with INDEX):

even number of
characters

(with PAIRS)

up to 8 characters

0.001 thru 32.767

any valid name

26 ASSIGN

Item

110 path name

device selector

file specifier

string variable name

numeric array name

buffer size
(in bytes)

file name

protect code

msus

conversion string

end-of-line characters

time period

return variable name

Description/Default

name identifying an 110 path

numeric expression

string expression

name of a string variable

name of a numeric array

numeric expression, rounded to an integer

literal

literal, first two non-blank characters are signifi­
cant

literal

name of a string variable

string expression:
Default = CR and LF

numeric expression. rounded to the nearest
0.001 seconds:
Default=O

name of a numeric variable

Range
Restrictions

any valid name

(see Glossary)

(see drawing)

any valid name

any valid name

1 thru available memory
minus 490

any valid file name

">" not allowed

(see MASS
STORAGE IS)

up to 256 characters
(with INDEX):

even number of
characters

(with PAIRS)

up to 8 characters

0.001 thru 32.767

any valid name

Example Statements
ASSIGN @File TO NaMeS&MsusS
ASSIGN @Source TO Isc;FoRMAT OFF
ASSIGN @Source;FoRMAT ON
ASSIGN @Device TO 724
ASSIGN @Listeners TO 711,712,715
ASSIGN @Dest TO *

ASSIGN @Buf_1 TO BUFFER String_variableS
ASSIGN @Buf_2 TO BUFFER NUMeric_array(*)
ASSIGN @Buf_3 TO BUFFER [128]

ASSIGN @Resource TO Gpio;WoRD,CoNVERT IN BY INDE X InS
ASSIGN @Resource;CoNVERT OUT BY INDEX OutS
ASSIGN @Resource TO Hpib;EoL EalS END DELAY ,05
ASSIGN @Resource TO Rs_232;PARIT Y ODD

Semantics

ASSIGN 27

The ASSIGN statement has three primary purposes. Its main purpose is to create an 110 path
name and assign that name to an 110 resource and attributes that describe the use of that
resource. The statement is also used to change the attributes of an existing 110 path and to close
an 110 path.

Associated with an 110 path name is a unique data type that uses about 200 bytes of memory. 110
path names can be placed in COM statements and can be passed by reference as parameters to
subprograms. They cannot be evaluated in a numeric or string expression and cannot be passed
by value.

Once an 110 path name has been assigned to a resource, OUTPUT, ENTER, TRANSFER,
STATUS, and CONTROL operations can be directed to that 110 path name. This provides the
convenience of re-directing 110 operations in a program by simply changing the appropriate
ASSIGN statement. The resource assigned to the 110 path name may be an interface, a device, a
group of devices on HP-IB, a mass storage file or a buffer. Note that the Status and Control
registers of an I/O path are different from the Status and Control registers of an interface. All
Status and Control registers are summarized in the " Interface Registers" section at the back of
the book.

The FORMAT Attributes
Assigning the FORMAT ON attribute to an I/O path name directs the computer to use its ASCII
data representation while sending and receiving data through the 110 path. Assigning the
FORMAT OFF attribute to an 110 path name directs the computer to use its internal data
representation when using the I/O path.

LIF ASCII format (Similar to ASCII representation) is always used with ASCII files; thus, if either
FORMAT ON or FORMAT OFF is specified for the 110 path name of an ASCII file , it will be
ignored.

Example Statements
ASSIGN @File TO NaMeS&MsusS
ASSIGN @Source TO Isc;FoRMAT OFF
ASSIGN @Source;FoRMAT ON
ASSIGN @Device TO 724
ASSIGN @Listeners TO 711,712,715
ASSIGN @Dest TO *

ASSIGN @Buf_1 TO BUFFER String_variableS
ASSIGN @Buf_2 TO BUFFER NUMeric_array(*)
ASSIGN @Buf_3 TO BUFFER [128]

ASSIGN @Resource TO Gpio;WoRD,CoNVERT IN BY INDE X InS
ASSIGN @Resource;CoNVERT OUT BY INDEX OutS
ASSIGN @Resource TO Hpib;EoL EalS END DELAY ,05
ASSIGN @Resource TO Rs_232;PARIT Y ODD

Semantics

ASSIGN 27

The ASSIGN statement has three primary purposes. Its main purpose is to create an 110 path
name and assign that name to an 110 resource and attributes that describe the use of that
resource. The statement is also used to change the attributes of an existing 110 path and to close
an 110 path.

Associated with an 110 path name is a unique data type that uses about 200 bytes of memory. 110
path names can be placed in COM statements and can be passed by reference as parameters to
subprograms. They cannot be evaluated in a numeric or string expression and cannot be passed
by value.

Once an 110 path name has been assigned to a resource, OUTPUT, ENTER, TRANSFER,
STATUS, and CONTROL operations can be directed to that 110 path name. This provides the
convenience of re-directing 110 operations in a program by simply changing the appropriate
ASSIGN statement. The resource assigned to the 110 path name may be an interface, a device, a
group of devices on HP-IB, a mass storage file or a buffer. Note that the Status and Control
registers of an I/O path are different from the Status and Control registers of an interface. All
Status and Control registers are summarized in the " Interface Registers" section at the back of
the book.

The FORMAT Attributes
Assigning the FORMAT ON attribute to an I/O path name directs the computer to use its ASCII
data representation while sending and receiving data through the 110 path. Assigning the
FORMAT OFF attribute to an 110 path name directs the computer to use its internal data
representation when using the I/O path.

LIF ASCII format (Similar to ASCII representation) is always used with ASCII files; thus, if either
FORMAT ON or FORMAT OFF is specified for the 110 path name of an ASCII file , it will be
ignored.

28 ASSIGN

If a FORMAT attribute is not explicitly given to an I/O path, a default is assigned. The following
table shows the default FORMAT attribute assigned to computer resources.

Resource

interface/device
ASCII file
BOAT file
buffer

Default Attributes

FORMATON
(always ASCII format)
FORMAT OFF
FORMATON

The FORMAT OFF attribute cannot be assigned to an I/O path which currently possesses any
non-default CONVERT or PARITY attribute(s} , and vice versa.

Using Devices
I/O path names are assigned to devices by placing the device selector after the keyword TO. For
example, ASS I GN @Di 5 pIa}' TO 1 creates the I/O path name "@Oisp~" and assi ns it to
the internal CRT. The statement ASS I GN @Me t e r 5 TO 710,711,712 creates the I/O path
name "@Meters" and assigns it to a group of three devices on HP-IB. When multiple devices are
specified, they must be on the same interface.

When an I/O path name which specifies multiple devices is used in an OUTPUT statement, all
devices referred to by the I/O path name receive the data. When an I/O path name which specifies
multiple devices is used in an ENTER statement, the first device specified sends the data to the
computer and to the rest of the devices. When an I/O path name which specifies multiple HP-IB
devices is used in either CLEAR, lOCAL, PPOll CONFIGURE, PPOll UNCONFIGURE,
REMOTE, or TRIGGER statement, all devices associated with the I/O path name. receive the
HP-IB message.

A device can have more than one 110 path name associated with it. Each I/O path name can have
different attributes, depending upon how the device is used. The specific I/O path name used for
an I/O operation determines which set of attributes is used for that operation.

Using Files
Assigning an I/O path name to a file name associates the I/O path with a file on the mass storage
media. The mass storage file must be a data file, either ASCII or BOAT. The file must already exist
on the media, as ASSIGN does not do an implied CREATE.

ASCII and BOAT files have a position pointer which is associated with each I/O path name. The
position pointer identifies the next byte to be written or read, and the value of the position pointer
is updated with each ENTER or OUTPUT that uses that I/O path name. The position pointer is
reset to the beginning of the file when the file is opened. A file is opened by any ASSIGN
statement that includes the file specifier. It is best if a file is open with only one I/O path name at a
time.

BOAT files have an additional pointer for end-of-file. The end-of-file value from the media is read
when the file is opened. The end-of-file pointer is updated on the media at the following times:

• When the current end-of-file changes.

• When END is specified in an OUTPUT statement directed to the file.

• When a CONTROL statement directed to the I/O path name changes the position of the
end-of-file pointer.

28 ASSIGN

If a FORMAT attribute is not explicitly given to an I/O path, a default is assigned. The following
table shows the default FORMAT attribute assigned to computer resources.

Resource

interface/device
ASCII file
BOAT file
buffer

Default Attributes

FORMATON
(always ASCII format)
FORMAT OFF
FORMATON

The FORMAT OFF attribute cannot be assigned to an I/O path which currently possesses any
non-default CONVERT or PARITY attribute(s} , and vice versa.

Using Devices
I/O path names are assigned to devices by placing the device selector after the keyword TO. For
example, ASS I GN @Di 5 pIa}' TO 1 creates the I/O path name "@Oisp~" and assi ns it to
the internal CRT. The statement ASS I GN @Me t e r 5 TO 710,711,712 creates the I/O path
name "@Meters" and assigns it to a group of three devices on HP-IB. When multiple devices are
specified, they must be on the same interface.

When an I/O path name which specifies multiple devices is used in an OUTPUT statement, all
devices referred to by the I/O path name receive the data. When an I/O path name which specifies
multiple devices is used in an ENTER statement, the first device specified sends the data to the
computer and to the rest of the devices. When an I/O path name which specifies multiple HP-IB
devices is used in either CLEAR, lOCAL, PPOll CONFIGURE, PPOll UNCONFIGURE,
REMOTE, or TRIGGER statement, all devices associated with the I/O path name. receive the
HP-IB message.

A device can have more than one 110 path name associated with it. Each I/O path name can have
different attributes, depending upon how the device is used. The specific I/O path name used for
an I/O operation determines which set of attributes is used for that operation.

Using Files
Assigning an I/O path name to a file name associates the I/O path with a file on the mass storage
media. The mass storage file must be a data file, either ASCII or BOAT. The file must already exist
on the media, as ASSIGN does not do an implied CREATE.

ASCII and BOAT files have a position pointer which is associated with each I/O path name. The
position pointer identifies the next byte to be written or read, and the value of the position pointer
is updated with each ENTER or OUTPUT that uses that I/O path name. The position pointer is
reset to the beginning of the file when the file is opened. A file is opened by any ASSIGN
statement that includes the file specifier. It is best if a file is open with only one I/O path name at a
time.

BOAT files have an additional pointer for end-of-file. The end-of-file value from the media is read
when the file is opened. The end-of-file pointer is updated on the media at the following times:

• When the current end-of-file changes.

• When END is specified in an OUTPUT statement directed to the file.

• When a CONTROL statement directed to the I/O path name changes the position of the
end-of-file pointer.

ASSIGN 29

Using Buffers (Requires TRANS)
The ASSIGN statement is also used to create a buffer (called an "unnamed" buffer) and assign
an I/O path name to it or to assign an lIO path name to a buffer (called a "named" buffer) which
has been previously declared in a COM, DIM, INTEGER, or REAL declaration statement. Once
assigned an I/O path name, a buffer may be the source or destination of a TRANSFER, the
destination of an OUTPUT, or the source of an ENTER statement.

I/O path names assigned to buffers contain information describing the buffer, such as buffer
capacity, current number of bytes, and empty and fill pointers. This information can be read from
STATUS registers of the lIO path name; some of this information may be modified by writing to
CONTROL registers. See the "Interface Registers" tabbed section for lIO path register defini­
tions.

The ASSIGN statement that assigns the lIO path name to a named buffer (or creates an unnamed
buffer) sets these registers to their initial values: the buffer type is set to either 1 (named buffer) or
2 (unnamed buffer) ; the empty and fill pointers are set to 1; the current-number-of-bytes register
and all other registers are set to O.

Named buffers can also be accessed through their variable names in the same manner that other
variables of that data type can be accessed. However, with this type of access, the buffer registers
are not updated; only the data in the buffer changes. For example, using LET to place characters
in a named string-variable buffer does not change the empty and fill pointers or the current­
number-of-bytes register; only the buffer contents and string's current length can be changed. It
is highly recommended that the string's current length (set to the string's dimensioned length by
ASSIGN) not be changed in this manner. Unnamed buffers can be accessed only through their
lIO path names.

Using ENTER, OUTPUT, or TRANSFER to access a named buffer through its lIO path name
updates the appropriate buffer registers automatically; this is unlike accessing a named buffer
through its declared variable name (as above) .

An lIO path name cannot be assigned to a buffer which will not exist for as long as the lIO path
name; this " lifetime" requirement has several implications. Buffers cannot be declared in
ALLOCATE statements. If a buffer's lIO path name is to appear in a COM block, the buffer must
appear in the same COM block; thus, I/O path names assigned to unnamed buffers cannot
appear in COM. If a buffer's lIO path name is to be used as a formal parameter of a subprogram,
the buffer to which it will be assigned must appear in the same formal parameter list or appear in a
COM which is accessible to that subprogram context. An lIO path name which is a formal
parameter to a subprogram cannot be assigned to an unnamed buffer in the subprogram.

ASSIGN 29

Using Buffers (Requires TRANS)
The ASSIGN statement is also used to create a buffer (called an "unnamed" buffer) and assign
an I/O path name to it or to assign an lIO path name to a buffer (called a "named" buffer) which
has been previously declared in a COM, DIM, INTEGER, or REAL declaration statement. Once
assigned an I/O path name, a buffer may be the source or destination of a TRANSFER, the
destination of an OUTPUT, or the source of an ENTER statement.

I/O path names assigned to buffers contain information describing the buffer, such as buffer
capacity, current number of bytes, and empty and fill pointers. This information can be read from
STATUS registers of the lIO path name; some of this information may be modified by writing to
CONTROL registers. See the "Interface Registers" tabbed section for lIO path register defini­
tions.

The ASSIGN statement that assigns the lIO path name to a named buffer (or creates an unnamed
buffer) sets these registers to their initial values: the buffer type is set to either 1 (named buffer) or
2 (unnamed buffer) ; the empty and fill pointers are set to 1; the current-number-of-bytes register
and all other registers are set to O.

Named buffers can also be accessed through their variable names in the same manner that other
variables of that data type can be accessed. However, with this type of access, the buffer registers
are not updated; only the data in the buffer changes. For example, using LET to place characters
in a named string-variable buffer does not change the empty and fill pointers or the current­
number-of-bytes register; only the buffer contents and string's current length can be changed. It
is highly recommended that the string's current length (set to the string's dimensioned length by
ASSIGN) not be changed in this manner. Unnamed buffers can be accessed only through their
lIO path names.

Using ENTER, OUTPUT, or TRANSFER to access a named buffer through its lIO path name
updates the appropriate buffer registers automatically; this is unlike accessing a named buffer
through its declared variable name (as above) .

An lIO path name cannot be assigned to a buffer which will not exist for as long as the lIO path
name; this " lifetime" requirement has several implications. Buffers cannot be declared in
ALLOCATE statements. If a buffer's lIO path name is to appear in a COM block, the buffer must
appear in the same COM block; thus, I/O path names assigned to unnamed buffers cannot
appear in COM. If a buffer's lIO path name is to be used as a formal parameter of a subprogram,
the buffer to which it will be assigned must appear in the same formal parameter list or appear in a
COM which is accessible to that subprogram context. An lIO path name which is a formal
parameter to a subprogram cannot be assigned to an unnamed buffer in the subprogram.

30 ASSIGN

Addition Attributes (Requires 10)
The BYTE attribute specifies that all data is to be sent and received as bytes when the 110 path
name is used in an ENTER, OUTPUT, PRINT, or TRANSFER statement that accesses a device,
file , or buffer and when the 110 path name is specified as the PRINTER IS or PRINTALL IS
device. In a TRANSFER, the attribute of BYTE or WORD associated with the non-buffer 110 path
name determines how the data is sent.

When neither BYTE nor WORD is specified in any ASSIGN statement for an 110 path, BYTE is
the default attribute. Once the BYTE attribute is assigned (either explicitly or by default) to an 110
path name, it cannot be changed to the WORD attribute by using the normal method of changing
attributes (see Changing Attributes below) ; the converse is also true for the WORD attribute .

The WORD attribute specifies that all data is to be sent and received as words (in the same
situations as with BYTE above) . If the interface to which the 110 path is assigned cannot handle
16-bit data, an error will be reported when the ASSIGN is executed; Similarly, if the buffer has a
capacity which is an odd number of bytes, an error will be reported . If the FORMAT ON attribute
is in effect, the data will be buffered to allow sending words. The first byte is placed in a
two-character buffer; when the second byte is placed in this buffer, the two bytes are sent as one
word. A Null character, CHR$(O} , may be sent to this buffer to force alignment on word
boundaries at the follOWing times: before the first byte is sent, before a numeric item is sent with a
W image, after an EOL sequence, or after the last byte is sent to the destination. These Nulls may
be converted to another character by using the CONVERT attribute (see below) . If WORD has
been set explicitly, it remains in effect even when the other defaults are restored (see Changing
Attributes) . The only way to change the WORD attribute is to explicitly close the path name.

The CONVERT attribute is used to specify a character-conversion table to be used during
OUTPUT and ENTER operations; OUT specifies conversions are to be made during all OUT­
PUTs through the 110 path, and IN specifies conversions with all ENTERs. The default attributes
are CONVERT IN OFF and CONVERT OUT OFF, which specify that no conversions are to be
made in either direction. No non-default CONVERT attribute can be assigned to an 110 path
name that currently possesses the FORMAT OFF attribute, and vice versa.

CONVERT .. . BY INDEX specifies that each original character's code is used to index the replace­
ment character in the specified conversion string, with the only exception that CHR$(O} is
replaced by the 256th character in the string. For instance, CHR$(10} is replaced by the 10th
character, and CHR$(O) is replaced by the 256th character in the conversion string. If the string
contains less than 256 characters, characters with codes that do not index a conversion-string
character will not be converted.

CONVERT ... BY PAIRS specifies that the conversion string contains pairs of characters, each pair
consisting of an original character followed by its replacement character. Before each character is
moved through the interface, the original characters in the conversion string (the odd characters)
are searched for the character' s occurrence. If the character is found , it will be replaced by the
succeeding character in the conversion string; if it is not found , no conversion takes place. If
duplicate original characters exist in the conversion string, only the first occurrence is used.

The conversion-string variable must exist for as long as the 110 path name (see explanation of the
"lifetime" requirement in the preceding section on Using Buffers). Changes made to the value of
this variable immediately affect all subsequent conversions which use the variable.

30 ASSIGN

Addition Attributes (Requires 10)
The BYTE attribute specifies that all data is to be sent and received as bytes when the 110 path
name is used in an ENTER, OUTPUT, PRINT, or TRANSFER statement that accesses a device,
file , or buffer and when the 110 path name is specified as the PRINTER IS or PRINTALL IS
device. In a TRANSFER, the attribute of BYTE or WORD associated with the non-buffer 110 path
name determines how the data is sent.

When neither BYTE nor WORD is specified in any ASSIGN statement for an 110 path, BYTE is
the default attribute. Once the BYTE attribute is assigned (either explicitly or by default) to an 110
path name, it cannot be changed to the WORD attribute by using the normal method of changing
attributes (see Changing Attributes below) ; the converse is also true for the WORD attribute .

The WORD attribute specifies that all data is to be sent and received as words (in the same
situations as with BYTE above) . If the interface to which the 110 path is assigned cannot handle
16-bit data, an error will be reported when the ASSIGN is executed; Similarly, if the buffer has a
capacity which is an odd number of bytes, an error will be reported . If the FORMAT ON attribute
is in effect, the data will be buffered to allow sending words. The first byte is placed in a
two-character buffer; when the second byte is placed in this buffer, the two bytes are sent as one
word. A Null character, CHR$(O} , may be sent to this buffer to force alignment on word
boundaries at the follOWing times: before the first byte is sent, before a numeric item is sent with a
W image, after an EOL sequence, or after the last byte is sent to the destination. These Nulls may
be converted to another character by using the CONVERT attribute (see below) . If WORD has
been set explicitly, it remains in effect even when the other defaults are restored (see Changing
Attributes) . The only way to change the WORD attribute is to explicitly close the path name.

The CONVERT attribute is used to specify a character-conversion table to be used during
OUTPUT and ENTER operations; OUT specifies conversions are to be made during all OUT­
PUTs through the 110 path, and IN specifies conversions with all ENTERs. The default attributes
are CONVERT IN OFF and CONVERT OUT OFF, which specify that no conversions are to be
made in either direction. No non-default CONVERT attribute can be assigned to an 110 path
name that currently possesses the FORMAT OFF attribute, and vice versa.

CONVERT .. . BY INDEX specifies that each original character's code is used to index the replace­
ment character in the specified conversion string, with the only exception that CHR$(O} is
replaced by the 256th character in the string. For instance, CHR$(10} is replaced by the 10th
character, and CHR$(O) is replaced by the 256th character in the conversion string. If the string
contains less than 256 characters, characters with codes that do not index a conversion-string
character will not be converted.

CONVERT ... BY PAIRS specifies that the conversion string contains pairs of characters, each pair
consisting of an original character followed by its replacement character. Before each character is
moved through the interface, the original characters in the conversion string (the odd characters)
are searched for the character' s occurrence. If the character is found , it will be replaced by the
succeeding character in the conversion string; if it is not found , no conversion takes place. If
duplicate original characters exist in the conversion string, only the first occurrence is used.

The conversion-string variable must exist for as long as the 110 path name (see explanation of the
"lifetime" requirement in the preceding section on Using Buffers). Changes made to the value of
this variable immediately affect all subsequent conversions which use the variable.

ASSIGN 31

When CONVERT OUT is in effect, the specified conversions are made after any end-of-line
(EOL) characters have been inserted into the data but before parity generation is performed (if in
effect). When CONVERT IN is in effect, conversions are made after parity is checked but before
the data is checked for any item-terminator or statement-terminator characters.

The EOL attribute specifies the end-of-line (EOL) sequence sent after all data during normal
OUTPUT operations and when the "L" image specifier is used. Up to eight characters may be
specified as the EOL characters; an error is reported if the string contains more than eight
characters. The characters are put into the output data before any conversion is performed (if
CONVERT is in effect) . If END is included in the EOL attribute, an interface-dependent END
indication is sent with the last character of the EOL sequence; however, if no EOL sequence is
sent, the END indication is also suppressed. If DELAY is included, the computer delays the
specified number of seconds (after sending the last character) before continuing. END and
DELAY apply only to devices; both are ignored when a file or buffer is the destination . The
default EOL sequence consists of sending a carriage-return and a line-feed character with no
END indication and no delay period. This default is restored when EOL is OFF.

The PARITY attribute specifies that parity is to be generated for each byte of data sent by
OUTPUT and checked for each byte of data received by ENTER. The parity bit is the most
significant bit of each byte (bit 7). The default mode is PARITY OFF. No non-default PARITY
attribute can be assigned to an I/O path name which currently possesses the FORMAT OFF
attribute, and vice versa.

The follOWing PARITY options are available:

Option

OFF
EVEN
ODD
ONE
ZERO

Effect on Incoming Data

No check is performed
Check for even parity
Check for odd parity
Check for parity bit set (1)
Check for parity bit clear (0)

Effect on Outbound Data

No parity is generated
Generate even parity
Generate odd parity
Set parity bit (1)
Clear parity bit (0)

Parity is generated after conversions have been made on outbound data and is checked before
conversions on inbound data. After parity is checked on incoming data , the parity bit is cleared;
however, when PARITY OFF is in effect, bit 7 is not affected.

If a PARITY attribute is in effect with the WORD attribute , the most-significant bit of each byte of
the word is affected.

Determining the Outcome of an ASSIGN (Requires IO)

Although RETURN is not an attribute, including it in the list of attributes directs the system to
place a code in a numeric variable to indicate the ASSIGN operation's outcome. If the operation
is successful, a 0 is returned. If a non-zero value is returned, it is the error number which otherwise
would have been reported. When the latter occurs, the previous status of the I/O path name is
retained; the default attributes are not restored. If more than one error occurs during the
ASSIGN, the outcome code returned may not be either the first or the last error number.

If RETURN is the only item in an ASSIGN statement, the default attributes are not restored to the
I/O path (see Changing Attributes below) . For example , executing a statement such as
ASSIGN @Io_path jRETURN OutcOfTle does not restore the default attributes.

ASSIGN 31

When CONVERT OUT is in effect, the specified conversions are made after any end-of-line
(EOL) characters have been inserted into the data but before parity generation is performed (if in
effect). When CONVERT IN is in effect, conversions are made after parity is checked but before
the data is checked for any item-terminator or statement-terminator characters.

The EOL attribute specifies the end-of-line (EOL) sequence sent after all data during normal
OUTPUT operations and when the "L" image specifier is used. Up to eight characters may be
specified as the EOL characters; an error is reported if the string contains more than eight
characters. The characters are put into the output data before any conversion is performed (if
CONVERT is in effect) . If END is included in the EOL attribute, an interface-dependent END
indication is sent with the last character of the EOL sequence; however, if no EOL sequence is
sent, the END indication is also suppressed. If DELAY is included, the computer delays the
specified number of seconds (after sending the last character) before continuing. END and
DELAY apply only to devices; both are ignored when a file or buffer is the destination . The
default EOL sequence consists of sending a carriage-return and a line-feed character with no
END indication and no delay period. This default is restored when EOL is OFF.

The PARITY attribute specifies that parity is to be generated for each byte of data sent by
OUTPUT and checked for each byte of data received by ENTER. The parity bit is the most
significant bit of each byte (bit 7). The default mode is PARITY OFF. No non-default PARITY
attribute can be assigned to an I/O path name which currently possesses the FORMAT OFF
attribute, and vice versa.

The follOWing PARITY options are available:

Option

OFF
EVEN
ODD
ONE
ZERO

Effect on Incoming Data

No check is performed
Check for even parity
Check for odd parity
Check for parity bit set (1)
Check for parity bit clear (0)

Effect on Outbound Data

No parity is generated
Generate even parity
Generate odd parity
Set parity bit (1)
Clear parity bit (0)

Parity is generated after conversions have been made on outbound data and is checked before
conversions on inbound data. After parity is checked on incoming data , the parity bit is cleared;
however, when PARITY OFF is in effect, bit 7 is not affected.

If a PARITY attribute is in effect with the WORD attribute , the most-significant bit of each byte of
the word is affected.

Determining the Outcome of an ASSIGN (Requires IO)

Although RETURN is not an attribute, including it in the list of attributes directs the system to
place a code in a numeric variable to indicate the ASSIGN operation's outcome. If the operation
is successful, a 0 is returned. If a non-zero value is returned, it is the error number which otherwise
would have been reported. When the latter occurs, the previous status of the I/O path name is
retained; the default attributes are not restored. If more than one error occurs during the
ASSIGN, the outcome code returned may not be either the first or the last error number.

If RETURN is the only item in an ASSIGN statement, the default attributes are not restored to the
I/O path (see Changing Attributes below) . For example , executing a statement such as
ASSIGN @Io_path jRETURN OutcOfTle does not restore the default attributes.

32 ASSIGN

Changing Attr ibutes
The attributes of a currently valid I/O path may be changed, without otherwise disturbing the
state of that I/O path or the resource(s) to which it is assigned, by omitting the "TO resource"
clause of the ASSIGN statement. For example, ASS I GN @Fi 1 e ; FORMAT OFF assigns the
FORMAT OFF attribute to the I/O path name "@File" without changing the file pointers (if
assigned to a mass storage file) . The only exception is that once either the BYTE or WORD
attribute is assigned to the I/O path name, the attribute cannot be changed in this manner; the I/O
path name must either be closed and then assigned to the resource or be re-assigned to change
either of these attributes.

A statement such as ASS I G N @D e I) ice restores the default attributes to the I/O path name, if it is
currently assigned. As stated in the preceding paragraph , the only exception is that once the
WORD attribute is explicitly assigned to an I/O path name, the default BYTE attribute cannot be
restored in this manner.

Closing I/O Paths
There are a number of ways that I/O paths are closed and the I/O path names rendered invalid.
Closing an I/O path cancels any ON-event actions for that I/O path. I/O path names that are not
included in a COM statement are closed at the following times:

• When they are explicitly closed; for example, ASS I GN @Fi 1 e TO *
• When a currently assigned I/O path name is re-assigned to a resource, the original 110 path is

closed before the new one is opened. The re-assignment can be to the same resource or a
different resource. No closing occurs when the ASSIGN statement only changes attributes
and does not include the " TO ... " clause.

• When an I/O path name is a local variable within a subprogram, it is closed when the
subprogram is exited by SUBEND, SUBEXIT, RETURN < expression >, or ON < event>
RECOVER.

• When SCRATCH, SCRATCH A, or SCRATCH C is executed, any form of STOP occurs, or
an END, LOAD, or GET is executed.

110 path names that a re included in a COM statement remain open and valid during a LOAD,
GET, STOP, END, or simple SCRATCH. I/O path names in COM are only closed at the following
times:

• When they are explicitly closed; for example, ASS I GN @Fi 1 e TO *
• When SCRATCH A or SCRATCH C is executed

• When a LOAD, GET, or EDIT operation brings in a program that has a COM statement that
does not exactly match the COM statement containing the open I/O path names.

Additionally, when RESET is pressed, all I/O path names are rendered invalid without going
through some of the updating steps that are normally taken to close an 110 path. This is usually
not a problem, but there are rare situations which might leave file pointers in the wrong state if
their 110 path is closed by a RESET. Explicit closing is preferred and recommended.

When ASSIGN is used to close either the source or destination 110 path name of a currently active
TRANSFER, the 110 path is not actually closed until the TRANSFER is completed. When 110 path
names are closed in this manner, any pending (logged but not serviced) EOR or EOT events are
lost (they do not initiate their respective branches) . With buffers' 110 path names, the 110 path
name might not be closed until two TRANSFERs (one in each direction) are completed.

32 ASSIGN

Changing Attr ibutes
The attributes of a currently valid I/O path may be changed, without otherwise disturbing the
state of that I/O path or the resource(s) to which it is assigned, by omitting the "TO resource"
clause of the ASSIGN statement. For example, ASS I GN @Fi 1 e ; FORMAT OFF assigns the
FORMAT OFF attribute to the I/O path name "@File" without changing the file pointers (if
assigned to a mass storage file) . The only exception is that once either the BYTE or WORD
attribute is assigned to the I/O path name, the attribute cannot be changed in this manner; the I/O
path name must either be closed and then assigned to the resource or be re-assigned to change
either of these attributes.

A statement such as ASS I G N @D e I) ice restores the default attributes to the I/O path name, if it is
currently assigned. As stated in the preceding paragraph , the only exception is that once the
WORD attribute is explicitly assigned to an I/O path name, the default BYTE attribute cannot be
restored in this manner.

Closing I/O Paths
There are a number of ways that I/O paths are closed and the I/O path names rendered invalid.
Closing an I/O path cancels any ON-event actions for that I/O path. I/O path names that are not
included in a COM statement are closed at the following times:

• When they are explicitly closed; for example, ASS I GN @Fi 1 e TO *
• When a currently assigned I/O path name is re-assigned to a resource, the original 110 path is

closed before the new one is opened. The re-assignment can be to the same resource or a
different resource. No closing occurs when the ASSIGN statement only changes attributes
and does not include the " TO ... " clause.

• When an I/O path name is a local variable within a subprogram, it is closed when the
subprogram is exited by SUBEND, SUBEXIT, RETURN < expression >, or ON < event>
RECOVER.

• When SCRATCH, SCRATCH A, or SCRATCH C is executed, any form of STOP occurs, or
an END, LOAD, or GET is executed.

110 path names that a re included in a COM statement remain open and valid during a LOAD,
GET, STOP, END, or simple SCRATCH. I/O path names in COM are only closed at the following
times:

• When they are explicitly closed; for example, ASS I GN @Fi 1 e TO *
• When SCRATCH A or SCRATCH C is executed

• When a LOAD, GET, or EDIT operation brings in a program that has a COM statement that
does not exactly match the COM statement containing the open I/O path names.

Additionally, when RESET is pressed, all I/O path names are rendered invalid without going
through some of the updating steps that are normally taken to close an 110 path. This is usually
not a problem, but there are rare situations which might leave file pointers in the wrong state if
their 110 path is closed by a RESET. Explicit closing is preferred and recommended.

When ASSIGN is used to close either the source or destination 110 path name of a currently active
TRANSFER, the 110 path is not actually closed until the TRANSFER is completed. When 110 path
names are closed in this manner, any pending (logged but not serviced) EOR or EOT events are
lost (they do not initiate their respective branches) . With buffers' 110 path names, the 110 path
name might not be closed until two TRANSFERs (one in each direction) are completed.

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
Yes
Yes

ATN

This function returns the principal value of the angle which has a tangent equal to the argu­
ment. This is the arctangent function.

numer ic
e xpressi on

Example Statements
Ansle=ATN(TanSent)
PRINT "Ansle =";ATN()-U)

Semantics
The value returned is REAL. If the current angle mode is DEG, the range of the result is - 90
thru + 90 degrees. If the current angle mode is RAD, the range of the result is - Til2 thru + Til2
radians. The angle mode is radians unless you specify degrees with the DEG statement.

33

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
Yes
Yes

ATN

This function returns the principal value of the angle which has a tangent equal to the argu­
ment. This is the arctangent function.

numer ic
e xpressi on

Example Statements
Ansle=ATN(TanSent)
PRINT "Ansle =";ATN()-U)

Semantics
The value returned is REAL. If the current angle mode is DEG, the range of the result is - 90
thru + 90 degrees. If the current angle mode is RAD, the range of the result is - Til2 thru + Til2
radians. The angle mode is radians unless you specify degrees with the DEG statement.

33

34

AXES
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

This statement draws a pair of axes, with optional, equally-spaced tick marks.

Item

x tick spacing

y tick spacing

y axis location

x axis location

major
ti c k s iz e

Description/ Default

numeric expression in current units;
Default = 0, no ticks

numeric expression in current units;
Default = 0, no ticks

numeric expression specifying the location
of the y axis in x-axis units;
Default = 0

numeric expression specifying the location
of the x axis in y-axis units;
Default = 0

Range
Restrictions

(see text)

(see text)

GRAPH
Yes
Yes
Yes

34

AXES
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

This statement draws a pair of axes, with optional, equally-spaced tick marks.

Item

x tick spacing

y tick spacing

y axis location

x axis location

major
ti c k s iz e

Description/ Default

numeric expression in current units;
Default = 0, no ticks

numeric expression in current units;
Default = 0, no ticks

numeric expression specifying the location
of the y axis in x-axis units;
Default = 0

numeric expression specifying the location
of the x axis in y-axis units;
Default = 0

Range
Restrictions

(see text)

(see text)

GRAPH
Yes
Yes
Yes

Item

x major count

y major count

major tick size

Description/Default

numeric expression , rounded to an integer,
specifying the number of tick intervals be­
tween major tick marks;
Default = 1 (every tick is major)

numeric expression, rounded to an integer,
specifying the number of tick intervals be­
tween major tick marks;
Default = 1 (every tick is major)

numeric expression in graphic display units;
Default = 2

Example Statements
A){ES 10tl0
A){ES)(tY tMidx tMidy tMaxx/l0 tMaxy/l0

Semantics

Range
Restrictions

1 thru 32767

1 thru 32 767

AXES 35

The axes are drawn so they extend across the soft clip area. The tick marks are symmetric about
the axes, but are clipped by the soft clip area . Tick marks are positioned-&o that a major tick
mark coincides with the axis origin, whether or not that intersection is yi'S1ble. Both axes and tick
marks are drawn with the current line type and pen. Minor tick mark~ are drawn half the size of
major tick marks. I

The X and Y tick spacing must not generate more than 32 768 tick marks in the clip area
(including the axis) , or error 20 will be generated.

If either axis lies outside the current clip area , that portion of the tick mark which extends into the
non-clipped area is drawn.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Locati on of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling
Note 2 The starting point for labels drawn after other labels is affected by LO lA.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by POIA.

X

LDIR PDIR

Note 4

X
X

Note 2

Item

x major count

y major count

major tick size

Description/Default

numeric expression , rounded to an integer,
specifying the number of tick intervals be­
tween major tick marks;
Default = 1 (every tick is major)

numeric expression, rounded to an integer,
specifying the number of tick intervals be­
tween major tick marks;
Default = 1 (every tick is major)

numeric expression in graphic display units;
Default = 2

Example Statements
A){ES 10tl0
A){ES)(tY tMidx tMidy tMaxx/l0 tMaxy/l0

Semantics

Range
Restrictions

1 thru 32767

1 thru 32 767

AXES 35

The axes are drawn so they extend across the soft clip area. The tick marks are symmetric about
the axes, but are clipped by the soft clip area . Tick marks are positioned-&o that a major tick
mark coincides with the axis origin, whether or not that intersection is yi'S1ble. Both axes and tick
marks are drawn with the current line type and pen. Minor tick mark~ are drawn half the size of
major tick marks. I

The X and Y tick spacing must not generate more than 32 768 tick marks in the clip area
(including the axis) , or error 20 will be generated.

If either axis lies outside the current clip area , that portion of the tick mark which extends into the
non-clipped area is drawn.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Locati on of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling
Note 2 The starting point for labels drawn after other labels is affected by LO lA.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by POIA.

X

LDIR PDIR

Note 4

X
X

Note 2

36

BASE
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This function returns the lower subscript bound of a dimension of an array. This value is always
an INTEGER. (See also OPTION BASE.)

Item

array name

dimension

Description/Default

name of an array

numeric expression, rounded to an integer

Example Statements
Lowerbound=BASE(Array$,l'
Upperbound(2'=BASE(A,2'+SIZE(A,2'-1

BDAT
See the CREATE BOAT statement.

Range
Restrictions

any valid name

1 thru 6;
:%; the RANK of the array

36

BASE
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This function returns the lower subscript bound of a dimension of an array. This value is always
an INTEGER. (See also OPTION BASE.)

Item

array name

dimension

Description/Default

name of an array

numeric expression, rounded to an integer

Example Statements
Lowerbound=BASE(Array$,l'
Upperbound(2'=BASE(A,2'+SIZE(A,2'-1

BDAT
See the CREATE BOAT statement.

Range
Restrictions

any valid name

1 thru 6;
:%; the RANK of the array

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement produces one of 64 audible tones.

Item

frequency

seconds

Description/Default

numeric expression , rounded to the
nearest tone; Default = 1220.7 Hz

numeric expression , rounded to the
nearest hundredth; Default = 0.2

Example Statements
BEEP 81.38*Tone,.5
BEEP

Semantics

Range
Restrictions

BEEP

Recommended
Range

81 thru 5208

0.01 thru 2.55

The frequency and duration of the tone are subject to the resolution of the built in tone generator.
The frequency specified is rounded to the nearest frequency shown below. For example, any
specified frequency from 40.7 to 122.08 produces a beep of 81.38 Hz. If the frequency specified
is larger than 5167.63, a tone of 5208.32 is produced. If it is less than 40.69, it is considered to be
a 0 and no tone is produced.

37

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement produces one of 64 audible tones.

Item

frequency

seconds

Description/Default

numeric expression , rounded to the
nearest tone; Default = 1220.7 Hz

numeric expression , rounded to the
nearest hundredth; Default = 0.2

Example Statements
BEEP 81.38*Tone,.5
BEEP

Semantics

Range
Restrictions

BEEP

Recommended
Range

81 thru 5208

0.01 thru 2.55

The frequency and duration of the tone are subject to the resolution of the built in tone generator.
The frequency specified is rounded to the nearest frequency shown below. For example, any
specified frequency from 40.7 to 122.08 produces a beep of 81.38 Hz. If the frequency specified
is larger than 5167.63, a tone of 5208.32 is produced. If it is less than 40.69, it is considered to be
a 0 and no tone is produced.

37

38 BEEP

The frequency changes when sent to an HP 46020A keyboard. Rounding is performed by the
system to produce the number in the first column of the following table. When sent to the HP
46020A keyboard the frequencies change to the corresponding number in the second column.

Standard HP 46020A Standard HP 46020A

81.38 81.45 2685.54 2688.16
162.76 162.12 2766.92 2777.77
244.14 244.37 2848.30 2873.55
325.52 324.25 2929.68 2976.18
406.90 408.49 3011.06 2976.18
488.28 496.03 3092.44 3086.41
569.66 578.70 3173.82 3205.12
651.04 651.03 3255.20 3205.12
732.42 744.04 3336.58 3333.32
813.80 833.33 3417.96 3472.21
895.18 905.79 3499.34 3472.21
976.56 992.06 3580.72 3623.17

1057.94 1096.49 3662.10 3623.17
1139.32 1157.40 3743.48 3787.86
1220.70 1225.49 3824.86 3787.86
1302.08 1302.08 3906.24 3968.24
1383.46 1388.88 3987.62 3968.24
1464.84 1461. 98 4069.00 4166.65
1546.22 1543.20 4150.38 4166.65
1627.60 1633.98 4231 .76 4166.65
1708.98 1700.67 4313.14 4385.95
1790.36 1773.04 4394.52 4385.95
1871. 74 1851.84 4475.90 4385.95
1953.12 1937.98 4557.28 4629.61
2034.50 2032.51 4638.66 4629.61
2115.88 2136.74 4720.04 4629.61
2197.26 2192.97 4801.42 4901.94
2278.64 2252.24 4882.80 4901.94
2360.02 2380.94 4964.18 4901.94
2441.40 2450.97 5045.56 4901.94
2522.78 2525.24 5126.94 5208.31
2604.16 2604.16 5208.32 5208.31

The resolution of the seconds parameter is .01 seconds. Any duration shorter than .005
seconds is treated as near zero. Any duration longer than 2.55 seconds is treated as 2.55
seconds.

BIN See the LOAD statement.

38 BEEP

The frequency changes when sent to an HP 46020A keyboard. Rounding is performed by the
system to produce the number in the first column of the following table. When sent to the HP
46020A keyboard the frequencies change to the corresponding number in the second column.

Standard HP 46020A Standard HP 46020A

81.38 81.45 2685.54 2688.16
162.76 162.12 2766.92 2777.77
244.14 244.37 2848.30 2873.55
325.52 324.25 2929.68 2976.18
406.90 408.49 3011.06 2976.18
488.28 496.03 3092.44 3086.41
569.66 578.70 3173.82 3205.12
651.04 651.03 3255.20 3205.12
732.42 744.04 3336.58 3333.32
813.80 833.33 3417.96 3472.21
895.18 905.79 3499.34 3472.21
976.56 992.06 3580.72 3623.17

1057.94 1096.49 3662.10 3623.17
1139.32 1157.40 3743.48 3787.86
1220.70 1225.49 3824.86 3787.86
1302.08 1302.08 3906.24 3968.24
1383.46 1388.88 3987.62 3968.24
1464.84 1461. 98 4069.00 4166.65
1546.22 1543.20 4150.38 4166.65
1627.60 1633.98 4231 .76 4166.65
1708.98 1700.67 4313.14 4385.95
1790.36 1773.04 4394.52 4385.95
1871. 74 1851.84 4475.90 4385.95
1953.12 1937.98 4557.28 4629.61
2034.50 2032.51 4638.66 4629.61
2115.88 2136.74 4720.04 4629.61
2197.26 2192.97 4801.42 4901.94
2278.64 2252.24 4882.80 4901.94
2360.02 2380.94 4964.18 4901.94
2441.40 2450.97 5045.56 4901.94
2522.78 2525.24 5126.94 5208.31
2604.16 2604.16 5208.32 5208.31

The resolution of the seconds parameter is .01 seconds. Any duration shorter than .005
seconds is treated as near zero. Any duration longer than 2.55 seconds is treated as 2.55
seconds.

BIN See the LOAD statement.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the value of a bit-by-bit logical-and of its arguments.

-....(BINAND ~ argument ~ argument ~

Item Description/Default

BINAND

Range
Restrictions

argument numeric expression, rounded to an integer - 32768 thru + 32767

Example Statements
Low_bits=BINAND(Byte,15)
IF BINAND(Stat,3) THEN Bit_set

Semantics
The arguments for this function are represented as 16-bit two's-complement integers. Each bit
in an argument is anded with the corresponding bit in the other argument. The results of all the
ands are used to construct the integer which is returned.

For example, the statement C t r 1 _ IAI 0 r d = BIN AND (C t r 1 _ 1, -, 0 r d , - 8) clears bit 3 of
CtrLword without changing any other bits.

bit 15 bit 0

12 = 0000000000001100 old CtrLword
-9 = 1111111111110111 mask to clear bit 3

4 = 0000000000000100 new CtrLword

39

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the value of a bit-by-bit logical-and of its arguments.

-....(BINAND ~ argument ~ argument ~

Item Description/Default

BINAND

Range
Restrictions

argument numeric expression, rounded to an integer - 32768 thru + 32767

Example Statements
Low_bits=BINAND(Byte,15)
IF BINAND(Stat,3) THEN Bit_set

Semantics
The arguments for this function are represented as 16-bit two's-complement integers. Each bit
in an argument is anded with the corresponding bit in the other argument. The results of all the
ands are used to construct the integer which is returned.

For example, the statement C t r 1 _ IAI 0 r d = BIN AND (C t r 1 _ 1, -, 0 r d , - 8) clears bit 3 of
CtrLword without changing any other bits.

bit 15 bit 0

12 = 0000000000001100 old CtrLword
-9 = 1111111111110111 mask to clear bit 3

4 = 0000000000000100 new CtrLword

39

40

BINCMP
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns the value of the bit-by-bit complement of its argument.

-.c BINCMP)-+(D----.j argument ~

Item Description/Default

argument numeric expression, rounded to an integer

Example Statements
True=BINCMP(Inuerse)
PRINT X,BINCMP(X)

Semantics

Range
Restrictions

- 32 768 thru + 32 767

The argument for this function is represented as a 16-bit two's-complement integer. Each bit in
the representation of the argument is complemented, and the resulting integer is returned.

For example, the complement of - 9:

bit 15 bit 0

-9 = 1111111111110111

0000000000001000 = 8

40

BINCMP
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns the value of the bit-by-bit complement of its argument.

-.c BINCMP)-+(D----.j argument ~

Item Description/Default

argument numeric expression, rounded to an integer

Example Statements
True=BINCMP(Inuerse)
PRINT X,BINCMP(X)

Semantics

Range
Restrictions

- 32 768 thru + 32 767

The argument for this function is represented as a 16-bit two's-complement integer. Each bit in
the representation of the argument is complemented, and the resulting integer is returned.

For example, the complement of - 9:

bit 15 bit 0

-9 = 1111111111110111

0000000000001000 = 8

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

BINEOR

This function returns the value of a bit-by-bit exclusive-or of its arguments.

---c BINEOR ~ argument ~ ar g u me nt ~

Item Description/ Default

argument numeric expression , rounded to an integer

Example Statements
Tog91e=BINEOR(To991etl)
True_byte=BINEOR(Inverse_byte t 255)

Semantics

Range
Restrictions

- 32 768 thru + 32 767

The arguments for this function are represented as 16-bit two's-complement integers. Each bit
in an argument is exclusively ored with the corresponding bit in the other argument. The results
of all the exclusive ors are used to construct the integer which is returned.

For example, the statement C t r 1 _ 1,.1 0 r d = B I hi E 0 R (C t r 1 _ 1,.1 0 r d ; 4) inverts bit 2 of
CtrLword without changing any other bits.

bit 15 bit 0

12 = 0000000000001100 old CtrLword
4 = 0000000000000100 mask to invert bit 2

8 = 0000000000001000 new CtrLword

41

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

BINEOR

This function returns the value of a bit-by-bit exclusive-or of its arguments.

---c BINEOR ~ argument ~ ar g u me nt ~

Item Description/ Default

argument numeric expression , rounded to an integer

Example Statements
Tog91e=BINEOR(To991etl)
True_byte=BINEOR(Inverse_byte t 255)

Semantics

Range
Restrictions

- 32 768 thru + 32 767

The arguments for this function are represented as 16-bit two's-complement integers. Each bit
in an argument is exclusively ored with the corresponding bit in the other argument. The results
of all the exclusive ors are used to construct the integer which is returned.

For example, the statement C t r 1 _ 1,.1 0 r d = B I hi E 0 R (C t r 1 _ 1,.1 0 r d ; 4) inverts bit 2 of
CtrLword without changing any other bits.

bit 15 bit 0

12 = 0000000000001100 old CtrLword
4 = 0000000000000100 mask to invert bit 2

8 = 0000000000001000 new CtrLword

41

42

BINIOR
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

This function returns the value of a bit-by-bit inclusive-or of its arguments.

--...(BINIOR ~ argument ~ argument f-.0-

Item Description/Default
Range

Restrictions

None
Yes
Yes
Yes

argument numeric expression , rounded to an integer -32768 thru +32767

Example Statements
Bits_set=BINIO R (Value1,Value2)
Top _ on=BINIOR (All _ bits ,2···15)

Semantics
The arguments for this function are represented as 16-bit two's-complement integers. Each bit
in an argument is inclusively ored with the corresponding bit in the other argument. The results
of all the inclusive ors are used to construct the integer which is returned.

For example, the statement C t r 1 _IAI 0 r oj = BIN lOR (C t r 1 _IAI 0 r oj ,G) sets bits 1 & 2 of
CtrLword without changing any other bits.

bit 15 bit 0

19 = 0000000000010011 old CtrLword
6 = 0000000000000110 mask to set bits 1 & 2

23 = 0000000000010111 new CtrLword

42

BINIOR
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

This function returns the value of a bit-by-bit inclusive-or of its arguments.

--...(BINIOR ~ argument ~ argument f-.0-

Item Description/Default
Range

Restrictions

None
Yes
Yes
Yes

argument numeric expression , rounded to an integer -32768 thru +32767

Example Statements
Bits_set=BINIO R (Value1,Value2)
Top _ on=BINIOR (All _ bits ,2···15)

Semantics
The arguments for this function are represented as 16-bit two's-complement integers. Each bit
in an argument is inclusively ored with the corresponding bit in the other argument. The results
of all the inclusive ors are used to construct the integer which is returned.

For example, the statement C t r 1 _IAI 0 r oj = BIN lOR (C t r 1 _IAI 0 r oj ,G) sets bits 1 & 2 of
CtrLword without changing any other bits.

bit 15 bit 0

19 = 0000000000010011 old CtrLword
6 = 0000000000000110 mask to set bits 1 & 2

23 = 0000000000010111 new CtrLword

Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

This function returns a 1 or 0 representing the value of the specified bit of its argument.

~ argument ~ bit position ~

Item Description/Default
Range

Restrictions

BIT

argument numeric expression, rounded to an integer - 32 768 thru + 32 767

bit position numeric expression, rounded to an integer o thru 15

Example Statements
Fla9'=BIT(Info ,0)
IF BIT(Word,Test) THEN PRINT "Bit :j:j:";Test;"is set"

Semantics
The argument for this function is represented as a 16-bit two's-complement integer. Bit 0 is the
least-significant bit and bit 15 is the most-significant bit. The following example reads the
controller status register of the internal HP-IB and takes a branch to "Active" if the interface is
currently the active controller.

100 STATUS 7,3;S
110 IF BIT(S,G) THEN Active

Re9' 3 = control status
Bit G = active control

43

Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

This function returns a 1 or 0 representing the value of the specified bit of its argument.

~ argument ~ bit position ~

Item Description/Default
Range

Restrictions

BIT

argument numeric expression, rounded to an integer - 32 768 thru + 32 767

bit position numeric expression, rounded to an integer o thru 15

Example Statements
Fla9'=BIT(Info ,0)
IF BIT(Word,Test) THEN PRINT "Bit :j:j:";Test;"is set"

Semantics
The argument for this function is represented as a 16-bit two's-complement integer. Bit 0 is the
least-significant bit and bit 15 is the most-significant bit. The following example reads the
controller status register of the internal HP-IB and takes a branch to "Active" if the interface is
currently the active controller.

100 STATUS 7,3;S
110 IF BIT(S,G) THEN Active

Re9' 3 = control status
Bit G = active control

43

44

BREAK
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

This statement directs a serial or datacomm interface to send a Break sequence.

Item

I/O path name

interface select code

Description/Default

name assigned to an interface select code

numeric expression, rounded to an integer

Example Statements
BREAK 8
BREAK @Da t a _ co IIlil1

Semantics

Range
Restrictions

any valid name

8 thru 31

10
Yes
Yes
Yes

A Break sequence is a signal sent on the Data Out signal line. On the HP 98626 Serial Interface, a
logic High of 400-ms duration followed by a logic Low of 60-ms duration is sent. If an outbound
TRANSFER is taking place through this interface, the Break is sent after the TRANSFER is
finished; the Break is sent immediately if an inbound TRANSFER is taking place. On the HP
98628 Datacomm Interface, the Break is sent immediately; the operation is identical to writing to
CONTROL Register 6.

If the interface is not a serial-type interface, error 170 is reported. If an I/O path name assigned to
a device selector with addressing information, error 170 is reported. If the specified interface is
not present, error 163 is reported.

BUFFER
See the DIM, REAL, INTEGER, COM, ASSIGN, SUB, and DEF FN statements.

BYTE
See the ASSIGN statement.

44

BREAK
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

This statement directs a serial or datacomm interface to send a Break sequence.

Item

I/O path name

interface select code

Description/Default

name assigned to an interface select code

numeric expression, rounded to an integer

Example Statements
BREAK 8
BREAK @Da t a _ co IIlil1

Semantics

Range
Restrictions

any valid name

8 thru 31

10
Yes
Yes
Yes

A Break sequence is a signal sent on the Data Out signal line. On the HP 98626 Serial Interface, a
logic High of 400-ms duration followed by a logic Low of 60-ms duration is sent. If an outbound
TRANSFER is taking place through this interface, the Break is sent after the TRANSFER is
finished; the Break is sent immediately if an inbound TRANSFER is taking place. On the HP
98628 Datacomm Interface, the Break is sent immediately; the operation is identical to writing to
CONTROL Register 6.

If the interface is not a serial-type interface, error 170 is reported. If an I/O path name assigned to
a device selector with addressing information, error 170 is reported. If the specified interface is
not present, error 163 is reported.

BUFFER
See the DIM, REAL, INTEGER, COM, ASSIGN, SUB, and DEF FN statements.

BYTE
See the ASSIGN statement.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

CALL

This statement transfers program execution to the specified SUB or CSUB subprogram and may
pass items to the subprogram. SUB programs are created with the SUB statement. (Also see the
ON .. . statements.)

pass parameters:

subprogram
name

pass
parameters

va riable
name

Passed b y Reference

Passed b y Value

string of numeric
arra y element

string expressions containing monadic
operators, dyadic operators. or functions

string expressions containing monadic
operators, dyadic operators, or functions

45

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

CALL

This statement transfers program execution to the specified SUB or CSUB subprogram and may
pass items to the subprogram. SUB programs are created with the SUB statement. (Also see the
ON .. . statements.)

pass parameters:

subprogram
name

pass
parameters

va riable
name

Passed b y Reference

Passed b y Value

string of numeric
arra y element

string expressions containing monadic
operators, dyadic operators. or functions

string expressions containing monadic
operators, dyadic operators, or functions

45

46 CALL

Item

subprogram name

I/O path name

variable name

substring

literal

numeric constant

Description/Default

name of the SUB or CSUB subprograms to be
called

name assigned to a device, devices, or mass stor­
age file

name of a string or numeric variable

string expression containing substring notation

string constant composed ·of characters from the
keyboard, including those generated using the
ANY CHAR key

numeric quantity expressed using numerals, and
optionally a sign, decimal point, or exponent
notation

Example Statements
CALL Process(Ref dl,Jalue) t@Path)
CALL Transform(Array(*»
IF Flag THEN CALL Special

Semantics

Range
Restrictions

any valid name

any valid name (see
ASSIGN)

pny valid name

(see Glossary)

A subprogram may be invoked by a stored program line, or by a statement executed from the
keyboard. Invoking a subprogram changes the program context. Subprograms may be invoked
recursively. The keyword CALL may be omitted if it would be the first word in a program line.
However, the keyword CALL is required in all other instances (such as a CALL from the
keyboard and a CALL in an IF. .. THEN ... statement).

The pass parameters must be of the same type (numeric, string, or 110 path name) as the
corresponding parameters in the SUB or CSUB statement. Numeric values passed by value are
converted to the numeric type (REAL or INTEGER) of the corresponding formal parameter.
Variables passed by reference must match the corresponding parameter in the SUB statement
exactly. An entire array may be passed by reference by using the asterisk specifier.

If there is more than one subprogram with the same name, the lowest-numbered subprogram is
invoked by a CALL.

Program execution generally resumes at the line following the subprogram CALL. However, if
the subprogram is invoked by an event-initiated branch (ON END, ON ERROR, ON INTR, ON
KEY, ON KNOB, or ON TIMEOUT), program execution resumes at the point at which the
event-initiated branch was permitted.

When CALL is executed from the keyboard, the current state of the computer determines the
computer's state when the subprogram executes a STOP. If the computer was paused or
stopped when CALL was executed, its state does not change. If the computer was running
when the CALL was executed, the program pauses at the program line which was interrupted
by the CALL for the subprogram, and resumes execution at that point after the subprogram is
exited.

46 CALL

Item

subprogram name

I/O path name

variable name

substring

literal

numeric constant

Description/Default

name of the SUB or CSUB subprograms to be
called

name assigned to a device, devices, or mass stor­
age file

name of a string or numeric variable

string expression containing substring notation

string constant composed ·of characters from the
keyboard, including those generated using the
ANY CHAR key

numeric quantity expressed using numerals, and
optionally a sign, decimal point, or exponent
notation

Example Statements
CALL Process(Ref dl,Jalue) t@Path)
CALL Transform(Array(*»
IF Flag THEN CALL Special

Semantics

Range
Restrictions

any valid name

any valid name (see
ASSIGN)

pny valid name

(see Glossary)

A subprogram may be invoked by a stored program line, or by a statement executed from the
keyboard. Invoking a subprogram changes the program context. Subprograms may be invoked
recursively. The keyword CALL may be omitted if it would be the first word in a program line.
However, the keyword CALL is required in all other instances (such as a CALL from the
keyboard and a CALL in an IF. .. THEN ... statement).

The pass parameters must be of the same type (numeric, string, or 110 path name) as the
corresponding parameters in the SUB or CSUB statement. Numeric values passed by value are
converted to the numeric type (REAL or INTEGER) of the corresponding formal parameter.
Variables passed by reference must match the corresponding parameter in the SUB statement
exactly. An entire array may be passed by reference by using the asterisk specifier.

If there is more than one subprogram with the same name, the lowest-numbered subprogram is
invoked by a CALL.

Program execution generally resumes at the line following the subprogram CALL. However, if
the subprogram is invoked by an event-initiated branch (ON END, ON ERROR, ON INTR, ON
KEY, ON KNOB, or ON TIMEOUT), program execution resumes at the point at which the
event-initiated branch was permitted.

When CALL is executed from the keyboard, the current state of the computer determines the
computer's state when the subprogram executes a STOP. If the computer was paused or
stopped when CALL was executed, its state does not change. If the computer was running
when the CALL was executed, the program pauses at the program line which was interrupted
by the CALL for the subprogram, and resumes execution at that point after the subprogram is
exited.

47

CASE
See the SELECT CASE . .. c~nstruct.

47

CASE
See the SELECT CASE . .. c~nstruct.

48

CAT Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement lists all or specified portions of the contents of a mass storage directory or
information regarding a specified PROG file . (If using CAT with SRM, also refer to the "SRM"
section of this manual.)

beginn in g
c h a racter (s) I-------------------t

MS

l itera l form of file speci f ier:

~r-,-------------.__r--------r_~~~
~ ~L..._p....::rCo;.;:ot_=.de;:..ec_tJH5=J ~,--ms_u_s ~ V-

48

CAT Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement lists all or specified portions of the contents of a mass storage directory or
information regarding a specified PROG file . (If using CAT with SRM, also refer to the "SRM"
section of this manual.)

beginn in g
c h a racter (s) I-------------------t

MS

l itera l form of file speci f ier:

~r-,-------------.__r--------r_~~~
~ ~L..._p....::rCo;.;:ot_=.de;:..ec_tJH5=J ~,--ms_u_s ~ V-

Item

media specifier

file specifier

catalog device selector

string array name

beginning character(s)

number of files

return variable name

msus

file name

protect code

Description/ Default

string expression:
Default = MASS STORAGE IS device

string expression

numeric expression, rounded to an integer:
Default = PRINTER IS device

name of a string array (see text)

string expression

numeric expression. rounded to an integer

name of a numeric variable

literal

name of a file

literal; first two non-blank characters are signifi­
cant

Range
Restrictions

(see MASS
STORAGE IS)

(see drawing)

(see Glossary)

any valid name

1 to 10 characters

1 thru 32767

any valid name

(see MASS
STORAGE IS)

any valid file name

">" not allowed

CAT 49

Item

media specifier

file specifier

catalog device selector

string array name

beginning character(s)

number of files

return variable name

msus

file name

protect code

Description/ Default

string expression:
Default = MASS STORAGE IS device

string expression

numeric expression, rounded to an integer:
Default = PRINTER IS device

name of a string array (see text)

string expression

numeric expression. rounded to an integer

name of a numeric variable

literal

name of a file

literal; first two non-blank characters are signifi­
cant

Range
Restrictions

(see MASS
STORAGE IS)

(see drawing)

(see Glossary)

any valid name

1 to 10 characters

1 thru 32767

any valid name

(see MASS
STORAGE IS)

any valid file name

">" not allowed

CAT 49

50 CAT

Example Statements
CAT
CAT TO #701
CAT ":INTERNAL,4,1"

CAT "Pros1"
CATiSELECT "D",SKIP Ten_files
CAT TO Directon-$(*)iNO HEADER

Semantics
A directory entry is listed for each file on the media. The catalog shows the name of each file,
whether or not it is protected, the file's type and length, the number of bytes per logical record.
The types recognized in BASIC are ASCII, BDAT (BASIC data), BIN (binary program), PROG
(BASIC program), or SYSTM (language system).

CAT to a Device
A protected file has an asterisk in the PRO column entry when the catalog is directed to a device.
An ID number is listed for any unrecognized file types. The starting location (address) is also
shown. The standard catalog format is shown below.

:INTERNAL
VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS

SYSTEM_BAS
AUToST

SYSTM
PRoG

1024
5

CAT to a String Array (Requires MS)

256
256

16
1045

The catalog can be sent to a string array. The array must be one-dimensional, and each element
of the array must contain at least 80 characters for a directory listing or 45 characters for a
PROG file listing. If the directory information does not fill the array, the remaining elements are
set to null strings. If the directory information "overflows" the array, the overflow is not
reported as an error. When a CAT of a mass storage directory is sent to a string array, the
catalog's format is different than when sent to a device. This format (the SRM directory format)
is shown below. Protect status is shown by letters, instead of an asterisk. An unprotected file has
the entry MRW in the PUB ACC (public access) column. A protected BDAT file has no entry in
that column. Other types of protected files show R (read access). In addition to the standard
information, this format also shows OPEN in the OPEN STAT column when a file is currently
assigned.

: INTERNAL, 4
LABEL: B9836
FORMAT: LIF
AI.'AILABLE SPACE: 11

FILE NAME
=====================
SYSTEM_BAS
AUToST

SYS FILE
LEI.' TYPE TYPE

98}(G SYSTM
98){6 PRoG

NUMBER RECORD MODIFIED PUB OPEN
RECORDS LENGTH DATE TIME ACC STAT

======== ======== ================
1024 256 MRW

5 256 MRW

50 CAT

Example Statements
CAT
CAT TO #701
CAT ":INTERNAL,4,1"

CAT "Pros1"
CATiSELECT "D",SKIP Ten_files
CAT TO Directon-$(*)iNO HEADER

Semantics
A directory entry is listed for each file on the media. The catalog shows the name of each file,
whether or not it is protected, the file's type and length, the number of bytes per logical record.
The types recognized in BASIC are ASCII, BDAT (BASIC data), BIN (binary program), PROG
(BASIC program), or SYSTM (language system).

CAT to a Device
A protected file has an asterisk in the PRO column entry when the catalog is directed to a device.
An ID number is listed for any unrecognized file types. The starting location (address) is also
shown. The standard catalog format is shown below.

:INTERNAL
VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS

SYSTEM_BAS
AUToST

SYSTM
PRoG

1024
5

CAT to a String Array (Requires MS)

256
256

16
1045

The catalog can be sent to a string array. The array must be one-dimensional, and each element
of the array must contain at least 80 characters for a directory listing or 45 characters for a
PROG file listing. If the directory information does not fill the array, the remaining elements are
set to null strings. If the directory information "overflows" the array, the overflow is not
reported as an error. When a CAT of a mass storage directory is sent to a string array, the
catalog's format is different than when sent to a device. This format (the SRM directory format)
is shown below. Protect status is shown by letters, instead of an asterisk. An unprotected file has
the entry MRW in the PUB ACC (public access) column. A protected BDAT file has no entry in
that column. Other types of protected files show R (read access). In addition to the standard
information, this format also shows OPEN in the OPEN STAT column when a file is currently
assigned.

: INTERNAL, 4
LABEL: B9836
FORMAT: LIF
AI.'AILABLE SPACE: 11

FILE NAME
=====================
SYSTEM_BAS
AUToST

SYS FILE
LEI.' TYPE TYPE

98}(G SYSTM
98){6 PRoG

NUMBER RECORD MODIFIED PUB OPEN
RECORDS LENGTH DATE TIME ACC STAT

======== ======== ================
1024 256 MRW

5 256 MRW

CAT 51

To aid in accessing the catalog information in a string, the following table gives the location of
some important fields in the string.

File Name
File Type

Field

Number of Records
Record Length

Catalogs of PROG Files (Requires MS)

Position (in String)

1 thru 21
32 thru 36
38 thru 45
47 thru 54

If the file specifier is for a PROG file, the following information is included: a list of binary
programs in the file , a list of all contexts in the program, and each context's type and size. If any
binary programs have a version code different from the BASIC version code, both a warning and
the version codes of the binary program and BASIC system are included with the listing. CAT of a
PROG file uses the same format, whether the destination is a device or a string.

SAMPLE
NAME SIZE TYPE

MAIN 692 BASIC
Esc 924 COMPILED UTILITY
FNDl.lflIfTI }, 166 BASIC

AVAILABLE ENTRIES 0

Partial Catalogs (Requires MS)
Including the SELECT option directs the computer to list only the files that begin with or match
the value of the specified string expression. If the string expression contains more than 10
characters, only the first 10 are used. If SELECT is not included, all files are sent to the destination
(if possible).

Including the SKIP option directs the computer to skip the specified number of (selected) file
entries before sending entries to the destination. If SKIP is not included, no files are skipped.

How Many Entries? (Requires MS)
Including COUNT provides a means of determining the number of lines sent to the destination.
The variable that follows COUNT receives the sum of the number of lines in the catalog header
(and trailer for PROG files) plus the number of selected files ; keep in mind that the number of
selected files includes the number of files sent to the destination plus the number of files skipped,
if any. Catalogs sent to external devices have a five-line header; catalogs sent to string arrays have
a seven-line header; and catalogs of individual PROG files have a three-line header and a
one-line trailer. If an "overflow" of a string array occurs, the count is set to the number of
string-array elements plus the number of files skipped. If a value of 0 is returned, no entries were
sent to the destination (i. e ., the number of files skipped is greater than or equal to the number of
files selected).

Suppressing the Heading (Requires MS)
Including the NO HEADER option directs the computer to omit the directory header (and trailer)
that would otherwise be included. If NO HEADER is specified, the lines of the header (and trailer)
are then omitted from the COUNT variable.

CAT 51

To aid in accessing the catalog information in a string, the following table gives the location of
some important fields in the string.

File Name
File Type

Field

Number of Records
Record Length

Catalogs of PROG Files (Requires MS)

Position (in String)

1 thru 21
32 thru 36
38 thru 45
47 thru 54

If the file specifier is for a PROG file, the following information is included: a list of binary
programs in the file , a list of all contexts in the program, and each context's type and size. If any
binary programs have a version code different from the BASIC version code, both a warning and
the version codes of the binary program and BASIC system are included with the listing. CAT of a
PROG file uses the same format, whether the destination is a device or a string.

SAMPLE
NAME SIZE TYPE

MAIN 692 BASIC
Esc 924 COMPILED UTILITY
FNDl.lflIfTI }, 166 BASIC

AVAILABLE ENTRIES 0

Partial Catalogs (Requires MS)
Including the SELECT option directs the computer to list only the files that begin with or match
the value of the specified string expression. If the string expression contains more than 10
characters, only the first 10 are used. If SELECT is not included, all files are sent to the destination
(if possible).

Including the SKIP option directs the computer to skip the specified number of (selected) file
entries before sending entries to the destination. If SKIP is not included, no files are skipped.

How Many Entries? (Requires MS)
Including COUNT provides a means of determining the number of lines sent to the destination.
The variable that follows COUNT receives the sum of the number of lines in the catalog header
(and trailer for PROG files) plus the number of selected files ; keep in mind that the number of
selected files includes the number of files sent to the destination plus the number of files skipped,
if any. Catalogs sent to external devices have a five-line header; catalogs sent to string arrays have
a seven-line header; and catalogs of individual PROG files have a three-line header and a
one-line trailer. If an "overflow" of a string array occurs, the count is set to the number of
string-array elements plus the number of files skipped. If a value of 0 is returned, no entries were
sent to the destination (i. e ., the number of files skipped is greater than or equal to the number of
files selected).

Suppressing the Heading (Requires MS)
Including the NO HEADER option directs the computer to omit the directory header (and trailer)
that would otherwise be included. If NO HEADER is specified, the lines of the header (and trailer)
are then omitted from the COUNT variable.

52

CHANGE
Option Required
Keyboard Executa ble
Programma ble

PDEV
Yes
No

This command allows you to search for and replace one character sequence with another while
editing a program.

be g i nni n g
li n e label

Item

old text

new text

beginning line number

beginning line label

ending line number

ending line label

literal

literal

ending
line label

Description/ Default

integer constant identifying a program line

name of a program line

integer constant identifying a program line

name of a program line

Example Statements

Range
Restrictions

1 to 32766

any valid name

1 to 32766

any valid name

CHANGE "ROIAI" TO "CO li.1 111 1"1 " IN 2560,3310
CHANGE "Novell1be r" TO "Deoell1be r" iALL
CHANGE "TREE" TO ""
CHANGE " his oar" TO "his ""car''''''

(A " delete" function)
(Quotes allowed)

52

CHANGE
Option Required
Keyboard Executa ble
Programma ble

PDEV
Yes
No

This command allows you to search for and replace one character sequence with another while
editing a program.

be g i nni n g
li n e label

Item

old text

new text

beginning line number

beginning line label

ending line number

ending line label

literal

literal

ending
line label

Description/ Default

integer constant identifying a program line

name of a program line

integer constant identifying a program line

name of a program line

Example Statements

Range
Restrictions

1 to 32766

any valid name

1 to 32766

any valid name

CHANGE "ROIAI" TO "CO li.1 111 1"1 " IN 2560,3310
CHANGE "Novell1be r" TO "Deoell1be r" iALL
CHANGE "TREE" TO ""
CHANGE " his oar" TO "his ""car''''''

(A " delete" function)
(Quotes allowed)

CHANGE 53

Semantics
The CHANGE command allows you to find all occurrences of a specified character sequence and
replace it with another. This occurs whether they are variable names , keywords , literals , or line
numbers. Note that if line numbers are changed, unexpected results may occur.

If ALL is specified, all legal changes are made automatically , without additional keyboard
intervention. If ALL is not specified, the computer finds each occurrence, tentatively changes Old
String to New String, and asks you to confirm the change. You confirm a particular change by
pressing (ENTER) or (RETURN) , and bypass a particular change by pressing (CONTINUE) , (CONT) ,
(CLEAR LINE) (ENTER) or (SHIFT) (CLEAR LINE) (ENTER) on HP 46020A. When the specified range is
exhausted or the end of the program is reached, the CHANGE command is terminated and the
message "<New String> not found" is displayed. CD and CD exit from the CHANGE
command. (EXECUTE) confirms a change and exits the CHANGE mode.

During the course of a CHANGE, if a syntax error is caused by the altered text, the appropriate error
message is displayed. When the line is corrected and entered, the CHANGE command continues.

If a change causes a line to become longer than the maximum length of a line of code, a syntax error is
generated, the offending change will not take place, and the CHANGE command is aborted. The
CHANGE command will also be aborted if a replacement results in the alteration of a line number,
although the line whose number was changed now exists in two locations.

If the starting line number does not exist, the next line is used. If the ending line number does not exist,
the previous line is used. If a line label doesn 't exist, an error occurs and the CHANGE is cancelled.

If there were no occurrences found, the cursor is left at the end of the first line searched. If one or more
occurrences were found , the cursor is left at the end of the line containing the last occurrence.

CHANGE is not allowed while a program is running; however, it may be executed while a program is
paused. The program is continuable if it has not been altered by pressing (ENTER) or (DEL LN).

While in the CHANGE mode, keyboard execution is only possible with the (EXECUTE) key. Using
(ENTER) or (RETURN) causes an error.

CHANGE 53

Semantics
The CHANGE command allows you to find all occurrences of a specified character sequence and
replace it with another. This occurs whether they are variable names , keywords , literals , or line
numbers. Note that if line numbers are changed, unexpected results may occur.

If ALL is specified, all legal changes are made automatically , without additional keyboard
intervention. If ALL is not specified, the computer finds each occurrence, tentatively changes Old
String to New String, and asks you to confirm the change. You confirm a particular change by
pressing (ENTER) or (RETURN) , and bypass a particular change by pressing (CONTINUE) , (CONT) ,
(CLEAR LINE) (ENTER) or (SHIFT) (CLEAR LINE) (ENTER) on HP 46020A. When the specified range is
exhausted or the end of the program is reached, the CHANGE command is terminated and the
message "<New String> not found" is displayed. CD and CD exit from the CHANGE
command. (EXECUTE) confirms a change and exits the CHANGE mode.

During the course of a CHANGE, if a syntax error is caused by the altered text, the appropriate error
message is displayed. When the line is corrected and entered, the CHANGE command continues.

If a change causes a line to become longer than the maximum length of a line of code, a syntax error is
generated, the offending change will not take place, and the CHANGE command is aborted. The
CHANGE command will also be aborted if a replacement results in the alteration of a line number,
although the line whose number was changed now exists in two locations.

If the starting line number does not exist, the next line is used. If the ending line number does not exist,
the previous line is used. If a line label doesn 't exist, an error occurs and the CHANGE is cancelled.

If there were no occurrences found, the cursor is left at the end of the first line searched. If one or more
occurrences were found , the cursor is left at the end of the line containing the last occurrence.

CHANGE is not allowed while a program is running; however, it may be executed while a program is
paused. The program is continuable if it has not been altered by pressing (ENTER) or (DEL LN).

While in the CHANGE mode, keyboard execution is only possible with the (EXECUTE) key. Using
(ENTER) or (RETURN) causes an error.

54

CHECKREAD
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

MS
Yes
Yes
Yes

This statement enables or disables optional read-after-write verification of data sent to mass
storage media. (If using CHECKREAD with SRM, also refer to the "SRM" section of this
manual.)

(CHECKREAD)~rG0t-+-l ON

~
"I

Example Statements
IF IMPortant_data THEN CHECK READ ON
CHECK READ OFF

Semantics
Executing CHECKREAD ON directs the computer to perform a read-after-write verification of
every sector of data sent to mass storage files by any of the following statements (executed in any
program context):

COpy
CREATE ASCII
CREATE BDAT
OUTPUT

PRINT LABEL
PROTECT
PURGE
RENAME
SAVE

RE-SAVE
STORE
RE-STORE
TRANSFER

If the bit-by-bit comparison does not detect an exact match, an error is reported.

Executing CHECKREAD OFF cancels this optional verification.

Keep in mind that using this feature may increase data reliability, but at the expense of reduced
disc-access speed and increased disc wear.

CHECKREAD does not affect PRINTER IS file or PLOTTER IS file .

54

CHECKREAD
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

MS
Yes
Yes
Yes

This statement enables or disables optional read-after-write verification of data sent to mass
storage media. (If using CHECKREAD with SRM, also refer to the "SRM" section of this
manual.)

(CHECKREAD)~rG0t-+-l ON

~
"I

Example Statements
IF IMPortant_data THEN CHECK READ ON
CHECK READ OFF

Semantics
Executing CHECKREAD ON directs the computer to perform a read-after-write verification of
every sector of data sent to mass storage files by any of the following statements (executed in any
program context):

COpy
CREATE ASCII
CREATE BDAT
OUTPUT

PRINT LABEL
PROTECT
PURGE
RENAME
SAVE

RE-SAVE
STORE
RE-STORE
TRANSFER

If the bit-by-bit comparison does not detect an exact match, an error is reported.

Executing CHECKREAD OFF cancels this optional verification.

Keep in mind that using this feature may increase data reliability, but at the expense of reduced
disc-access speed and increased disc wear.

CHECKREAD does not affect PRINTER IS file or PLOTTER IS file .

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
Yes
Yes
Yes

CHR$

This function converts a numeric value into an ASCII character. The low order byte of the
16-bit integer representation of the argument is used; the high order byte is ignored. A table of
ASCII characters and their decimal equivalent values may be found in the back of this book.

Item Description/ Default

argument numeric expression, rounded to an integer

Example Statements
A$[Marker;lJ=CHR$(Di~it+128)

Esc$=CHR$(27)

Range Recommended
Restrictions Range

- 32 768 thru 0 thru 255
+ 32767

55

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
Yes
Yes
Yes

CHR$

This function converts a numeric value into an ASCII character. The low order byte of the
16-bit integer representation of the argument is used; the high order byte is ignored. A table of
ASCII characters and their decimal equivalent values may be found in the back of this book.

Item Description/ Default

argument numeric expression, rounded to an integer

Example Statements
A$[Marker;lJ=CHR$(Di~it+128)

Esc$=CHR$(27)

Range Recommended
Restrictions Range

- 32 768 thru 0 thru 255
+ 32767

55

56

CLEAR
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

This statement clears HP-1B devices or Data Communications interfaces.

Item Description/Default
Range

Restrictions

10
Yes
Yes
Yes

I/O path name name assigned to a device or devices any valid name (see ASSIGN)

device selector numeric expression, rounded to an integer

Example Statements
CLEAR 7
CLEAR Isc*100+Address
CLEAR @Source

Semantics
HP-IB Interfaces

(see Glossary)

This statement allows the computer to put all or only selected HP-1B devices into a defined ,
device-dependent state. The computer must be the active controller to execute this statement.
When primary addresses are specified, the bus is reconfigured and the SDC (Selected Device
Clear) message is sent to all devices which are addressed by the LAG message.

Summary of Bus Actions
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN

Active ATN
MTA

ATN
MTA

UNl UNl
Controller DCl

lAG
DCl

lAG
SDC SDC

Not Active
Error

Controller

Data Communications Interfaces
CLEAR may also be directed to a Data Communications interface. The result is to clear the
interface buffers; if the interface is suspended, a disconnect is also executed.

56

CLEAR
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

This statement clears HP-1B devices or Data Communications interfaces.

Item Description/Default
Range

Restrictions

10
Yes
Yes
Yes

I/O path name name assigned to a device or devices any valid name (see ASSIGN)

device selector numeric expression, rounded to an integer

Example Statements
CLEAR 7
CLEAR Isc*100+Address
CLEAR @Source

Semantics
HP-IB Interfaces

(see Glossary)

This statement allows the computer to put all or only selected HP-1B devices into a defined ,
device-dependent state. The computer must be the active controller to execute this statement.
When primary addresses are specified, the bus is reconfigured and the SDC (Selected Device
Clear) message is sent to all devices which are addressed by the LAG message.

Summary of Bus Actions
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN

Active ATN
MTA

ATN
MTA

UNl UNl
Controller DCl

lAG
DCl

lAG
SDC SDC

Not Active
Error

Controller

Data Communications Interfaces
CLEAR may also be directed to a Data Communications interface. The result is to clear the
interface buffers; if the interface is suspended, a disconnect is also executed.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

CLIP

This statement redefines the soft clip area and enables or disables the soft clip limits.

Item

left edge

right edge

bottom edge

top edge

Description/Default

numeric expression in current units

numeric expression in curent units

numeric expression in current units

numeric expression in current units

Example Statements
CLIP LefttRishttOtlOO
CLIP OFF

Semantics

top
edge

Range
Restrictions

Executing CLIP with parameters allows the soft clip area to be changed from the boundary set by
PLOTTER IS and VIEWPORT to the soft clip limits . If CLIP is not executed, the area most
recently defined by either VIEWPORT or the PLOTTER IS statement is the clipping area. All
plotted points, lines or labels are clipped at this boundary.

The hard clip area is specified by the PLOTTER IS statement. The soft clip area is specified by the
VIEWPORT and CLIP statements. CLIP ON sets the soft clip boundaries to the last specified
CLIP or VIEWPORT boundaries, or to the hard clip boundaries if no CLIP or VIEWPORT has
been executed. CLIP OFF sets the soft clip boundaries to the hard clip limits.

CMD
See the SEND statement.

COLOR
See the AREA and SET PEN statements. See the PLOTTER IS statement for " COLOR MAP".

57

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

CLIP

This statement redefines the soft clip area and enables or disables the soft clip limits.

Item

left edge

right edge

bottom edge

top edge

Description/Default

numeric expression in current units

numeric expression in curent units

numeric expression in current units

numeric expression in current units

Example Statements
CLIP LefttRishttOtlOO
CLIP OFF

Semantics

top
edge

Range
Restrictions

Executing CLIP with parameters allows the soft clip area to be changed from the boundary set by
PLOTTER IS and VIEWPORT to the soft clip limits . If CLIP is not executed, the area most
recently defined by either VIEWPORT or the PLOTTER IS statement is the clipping area. All
plotted points, lines or labels are clipped at this boundary.

The hard clip area is specified by the PLOTTER IS statement. The soft clip area is specified by the
VIEWPORT and CLIP statements. CLIP ON sets the soft clip boundaries to the last specified
CLIP or VIEWPORT boundaries, or to the hard clip boundaries if no CLIP or VIEWPORT has
been executed. CLIP OFF sets the soft clip boundaries to the hard clip limits.

CMD
See the SEND statement.

COLOR
See the AREA and SET PEN statements. See the PLOTTER IS statement for " COLOR MAP".

57

58

COM
Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
No

Yes
No

This statement dimensions and reserves memory for variables in a special "common" memory
area so more than one program context can access the variables.

Expanded dia gra m:

I/O path
na me

58

COM
Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
No

Yes
No

This statement dimensions and reserves memory for variables in a special "common" memory
area so more than one program context can access the variables.

Expanded dia gra m:

I/O path
na me

Item

block name

numeric name

string name

lower bound

upper bound

string length

110 path name

Description/Default

name identifying a labeled COM area

name of a numeric variable

name of a string variable

integer constant;
Default = OPTION BASE value (0 or 1)

integer constant

integer constant

name assigned to a device, devices, mass storage
file , or buffer

Example Statements
COM \I \I ...,

1\ tit L

COM IGraphl Title$,@Del.lice tINTEGER Points(*)
COM INTEGER I ,J ,REAL Arrad-128:127)
COM INTEGER Buf(127) BUFFER,C$[25GJ BUFFER

Semantics

Range
Restrictions

any valid name

any valid name

any valid name

COM 59

- 32 767 thru + 32 767
(see "array" in Glossary)

-32767 thru +32767
(see "array" in Glossary)

1 thru 32767

any valid name(see
ASSIGN)

Storage for COM is allocated at prerun time in an area of memory which is separate from the data
storage used for program contexts. This reserved portion of memory remains allocated until
SCRATCH A or SCRATCH C is executed. Changing the definition of the COM space is
accomplished by a full program prerun. This can be done by:

• Pressing the ~ or (STEP) key when no program is running.

• Executing a RUN command when no program is running.

• Executing any GET or LOAD from a program.

• Executing a GET or LOAD command that tells program execution to to begin.

When COM allocation is performed at prerun, the new program's COM area is compared against
the COM area currently in memory. When comparing the old and new areas, the computer looks
first at the types and structures declared in the COM statements. If the " text" indicates that there
is no way the areas could match , then those areas are considered mismatched. If the declarations
are consistent, but the shape of an array in memory does not match the shape in a new COM
declaration , the computer takes the effect of REDIM into account. If the COM areas could be
matched by a REDlM, they are considered to be in agreement. When this happens, the treatment
of the arrays in memory depends upon the program state. If the COM matching occurred because
of a programmed LOADSUB, the arrays in memory keep their current shape. If the COM
matching occurred for any other reason (such as RUN or programmed LOAD) , the arrays in
memory are redimensioned to match the declarations. Any variable values are left intact. All
other COM areas are rendered undefined . and their storage area is not recovered by the
computer. New COM variables are initialized at prerun: numeric variables to 0 , string variables to
the null string.

Item

block name

numeric name

string name

lower bound

upper bound

string length

110 path name

Description/Default

name identifying a labeled COM area

name of a numeric variable

name of a string variable

integer constant;
Default = OPTION BASE value (0 or 1)

integer constant

integer constant

name assigned to a device, devices, mass storage
file , or buffer

Example Statements
COM \I \I ...,

1\ tit L

COM IGraphl Title$,@Del.lice tINTEGER Points(*)
COM INTEGER I ,J ,REAL Arrad-128:127)
COM INTEGER Buf(127) BUFFER,C$[25GJ BUFFER

Semantics

Range
Restrictions

any valid name

any valid name

any valid name

COM 59

- 32 767 thru + 32 767
(see "array" in Glossary)

-32767 thru +32767
(see "array" in Glossary)

1 thru 32767

any valid name(see
ASSIGN)

Storage for COM is allocated at prerun time in an area of memory which is separate from the data
storage used for program contexts. This reserved portion of memory remains allocated until
SCRATCH A or SCRATCH C is executed. Changing the definition of the COM space is
accomplished by a full program prerun. This can be done by:

• Pressing the ~ or (STEP) key when no program is running.

• Executing a RUN command when no program is running.

• Executing any GET or LOAD from a program.

• Executing a GET or LOAD command that tells program execution to to begin.

When COM allocation is performed at prerun, the new program's COM area is compared against
the COM area currently in memory. When comparing the old and new areas, the computer looks
first at the types and structures declared in the COM statements. If the " text" indicates that there
is no way the areas could match , then those areas are considered mismatched. If the declarations
are consistent, but the shape of an array in memory does not match the shape in a new COM
declaration , the computer takes the effect of REDIM into account. If the COM areas could be
matched by a REDlM, they are considered to be in agreement. When this happens, the treatment
of the arrays in memory depends upon the program state. If the COM matching occurred because
of a programmed LOADSUB, the arrays in memory keep their current shape. If the COM
matching occurred for any other reason (such as RUN or programmed LOAD) , the arrays in
memory are redimensioned to match the declarations. Any variable values are left intact. All
other COM areas are rendered undefined . and their storage area is not recovered by the
computer. New COM variables are initialized at prerun: numeric variables to 0 , string variables to
the null string.

60 COM

Each context may have as many COM statements as needed (within the limits of computer
memory), and COM statements may be interspersed between other statements. If there is an
OPTION BASE statement in the context, it must appear before COM statement. COM variables
do not have to have the same names in different contexts. Formal parameters of subprograms are
not allowed in COM statements. A COM mismatch between contexts causes an error.

If a COM area requires more than one statement to describe its contents, COM statements
defining that block may not be intermixed with COM statements defining other COM areas.

Numeric variables in a COM list can have their type specified as either REAL or INTEGER.
Specifying a variable type implies that all variables which follow in the list are of the same type.
The type remains in effect until another type is specified. String variables and I/O path names are
considered a type of variable and change the specified type. Numeric variables are assumed to be
REA~ unless their type has been changed to INTEGER.

COM statements (blank or labeled) in different contexts which refer to an array or string must
specify it to be of the same size and shape. The lowest-numbered COM satement containing an
array or string name must explicitly specify the subscript bounds and/or string length. Subse­
quent COM statements can reference a string by name only or an array only by using an asterisk
specifier.

No array can have more than six dimensions. The total number of elements is limited by the
computer's memory size. The lower bound value must be less than or equal to the upper bound
value. The default lower bound is specified by the OPTION BASE statement.

Any LOADSUB which attempts to define or change COM areas while a program is running
generates ERROR 145.

Unlabeled or Blank COM
Blank COM does not contain a block name in its declaration. Blank COM (if it is used) must be
created in a main context. The main program can contain any number of blank COM statements.
Blank COM areas can be accessed by subprograms, if the COM statements in the subprograms
agree in type and shape with the main program COM statements.

Labeled COM
Labeled COM contains a name for the COM area in its declaration. Memory is allocated for
labeled COM at prerun time according to the lowest-numbered occurrence of the labeled COM
statement. Each context which contains a labeled COM statement with the same label refers to
the same labeled COM block.

Declaring Buffers
To declare COM variables to be buffers, each variable's name must be followed by the keyword
BUFFER; the designation BUFFER applies only to the variable which it follows.

60 COM

Each context may have as many COM statements as needed (within the limits of computer
memory), and COM statements may be interspersed between other statements. If there is an
OPTION BASE statement in the context, it must appear before COM statement. COM variables
do not have to have the same names in different contexts. Formal parameters of subprograms are
not allowed in COM statements. A COM mismatch between contexts causes an error.

If a COM area requires more than one statement to describe its contents, COM statements
defining that block may not be intermixed with COM statements defining other COM areas.

Numeric variables in a COM list can have their type specified as either REAL or INTEGER.
Specifying a variable type implies that all variables which follow in the list are of the same type.
The type remains in effect until another type is specified. String variables and I/O path names are
considered a type of variable and change the specified type. Numeric variables are assumed to be
REA~ unless their type has been changed to INTEGER.

COM statements (blank or labeled) in different contexts which refer to an array or string must
specify it to be of the same size and shape. The lowest-numbered COM satement containing an
array or string name must explicitly specify the subscript bounds and/or string length. Subse­
quent COM statements can reference a string by name only or an array only by using an asterisk
specifier.

No array can have more than six dimensions. The total number of elements is limited by the
computer's memory size. The lower bound value must be less than or equal to the upper bound
value. The default lower bound is specified by the OPTION BASE statement.

Any LOADSUB which attempts to define or change COM areas while a program is running
generates ERROR 145.

Unlabeled or Blank COM
Blank COM does not contain a block name in its declaration. Blank COM (if it is used) must be
created in a main context. The main program can contain any number of blank COM statements.
Blank COM areas can be accessed by subprograms, if the COM statements in the subprograms
agree in type and shape with the main program COM statements.

Labeled COM
Labeled COM contains a name for the COM area in its declaration. Memory is allocated for
labeled COM at prerun time according to the lowest-numbered occurrence of the labeled COM
statement. Each context which contains a labeled COM statement with the same label refers to
the same labeled COM block.

Declaring Buffers
To declare COM variables to be buffers, each variable's name must be followed by the keyword
BUFFER; the designation BUFFER applies only to the variable which it follows.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
No
No

CONT

This command resumes execution of a paused program at the specified line. (For information
about CONT as a secondary keyword, see the TRANSFER statement.)

Item

line number

line label

Description/Default

integer constant identifying a program line;
Default = next program line

name identifying a program line

Example Statements
CO NT 550
CONT Sort

Semantics

Range
Restrictions

1 thru 32766

any valid name

Continue can be executed by pressing the (CONTINUE) key or by typing a CONT command and
preSSing (EXECUTE 1, (ENTER) or (RETURN) . Variables retain their current values whenever CONT is
executed. CONT causes the program to resume execution at the next statement which would have
occurred unless a line is specified.

When a line label is specified, program execution resumes at the specified line, provided that
the line is in either the main program or the current subprogram. If a line number is specified,
program execution resumes at the specified line, provided that the line is in the current program
context. If there is no line in the current context with the specified line number, program
execution resumes at the next higher-numbered line. If the specified line label does not exist in
the proper context, an error results.

61

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
No
No

CONT

This command resumes execution of a paused program at the specified line. (For information
about CONT as a secondary keyword, see the TRANSFER statement.)

Item

line number

line label

Description/Default

integer constant identifying a program line;
Default = next program line

name identifying a program line

Example Statements
CO NT 550
CONT Sort

Semantics

Range
Restrictions

1 thru 32766

any valid name

Continue can be executed by pressing the (CONTINUE) key or by typing a CONT command and
preSSing (EXECUTE 1, (ENTER) or (RETURN) . Variables retain their current values whenever CONT is
executed. CONT causes the program to resume execution at the next statement which would have
occurred unless a line is specified.

When a line label is specified, program execution resumes at the specified line, provided that
the line is in either the main program or the current subprogram. If a line number is specified,
program execution resumes at the specified line, provided that the line is in the current program
context. If there is no line in the current context with the specified line number, program
execution resumes at the next higher-numbered line. If the specified line label does not exist in
the proper context, an error results.

61

(2

CONTROL
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement sends control information to an interface or to the internal table associated with an
I/O path name. (This keyword is also used in PASS CONTROL.)(1£ using CONTROL with SRM,
also refer to the "SRM" section of this manual.)

Item

interface select
code

110 path name

register number

control word

Description/Default

numeric expression, rounded to an integer

name assigned to a device, devices, or
mass storage file

numeric expression, rounded to an integer;
Default = 0

numeric expression, rounded to an integer

Example Statements
CONTROL @Rand _filet7 ; File_length
CONTROL l;RowtColumn
CONTROL 7t3;Z8

control
word

Range
Restrictions

1 thru 40

any valid name
(see ASSIGN)

interface
dependent

- 23 1 thru
+ 23 1 -1

Recommended
Range

1 thru 32
(interface

dependent)

o thru 65 535
(interface
dependent)

(2

CONTROL
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement sends control information to an interface or to the internal table associated with an
I/O path name. (This keyword is also used in PASS CONTROL.)(1£ using CONTROL with SRM,
also refer to the "SRM" section of this manual.)

Item

interface select
code

110 path name

register number

control word

Description/Default

numeric expression, rounded to an integer

name assigned to a device, devices, or
mass storage file

numeric expression, rounded to an integer;
Default = 0

numeric expression, rounded to an integer

Example Statements
CONTROL @Rand _filet7 ; File_length
CONTROL l;RowtColumn
CONTROL 7t3;Z8

control
word

Range
Restrictions

1 thru 40

any valid name
(see ASSIGN)

interface
dependent

- 23 1 thru
+ 23 1 -1

Recommended
Range

1 thru 32
(interface

dependent)

o thru 65 535
(interface
dependent)

CONTROL 63

Semantics

When the Destination is an 110 Path Name

The only time CONTROL is allowed to an I/O path name is when the I/O path name is assigned to
a BOAT file or a buffer. I/O path names have an association table that can be thought of as a set of
registers. Control words are written to the association table, starting with the specified "register"
and continuing in turn through the remaining " registers" until all control words are used. The
number of control words must not exceed the number of " registers" available. Register assign­
ments can be found in the Interface Registers section at the back of the book.

When the Destination is an Interface

Control words are written to the interface registers, starting with the specified register number,
and continuing in turn through the remaining registers until all the control words are used. The
number of control words must not exceed the number of registers available. Register assign­
ments can be found in the Interface Registers section at the back of the book.

CONVERT
See the ASSIGN statement.

CONTROL 63

Semantics

When the Destination is an 110 Path Name

The only time CONTROL is allowed to an I/O path name is when the I/O path name is assigned to
a BOAT file or a buffer. I/O path names have an association table that can be thought of as a set of
registers. Control words are written to the association table, starting with the specified "register"
and continuing in turn through the remaining " registers" until all control words are used. The
number of control words must not exceed the number of " registers" available. Register assign­
ments can be found in the Interface Registers section at the back of the book.

When the Destination is an Interface

Control words are written to the interface registers, starting with the specified register number,
and continuing in turn through the remaining registers until all the control words are used. The
number of control words must not exceed the number of registers available. Register assign­
ments can be found in the Interface Registers section at the back of the book.

CONVERT
See the ASSIGN statement.

64

COpy
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement allows copying of individual files or entire discs. (If using COpy with SRM, also
refer to the "SRM" section of this manual.)

old mass stora ge
unit s pe cifier

new file
}-----.,~ s p e c i fie r I-----.--+l

new mass storage
unit specifier

literal form of file specifie r:

file
name

Item

file "pecifier

mass storage unit
specifier

file name

protect code

msus

Description/Default

string expression

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
copy "OLD_FILE" TO "NeIAI_file"
COPY File$ TO File$&Msus$
COPY ":INTERNAL,4,(l" TO ":INTERNAL,4,1"
COPY Int_disc$ TO Ext_disc$

Semantics
Copying a File

Range
Restrictions

(see drawing)

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

The contents of the old file is copied into the new file, and a directory entry is created. A protect
code, to prevent accidental erasure, may be specified for the new file . The old file and the new file
can exist on the same device, but the new file name must be unique.

64

COpy
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement allows copying of individual files or entire discs. (If using COpy with SRM, also
refer to the "SRM" section of this manual.)

old mass stora ge
unit s pe cifier

new file
}-----.,~ s p e c i fie r I-----.--+l

new mass storage
unit specifier

literal form of file specifie r:

file
name

Item

file "pecifier

mass storage unit
specifier

file name

protect code

msus

Description/Default

string expression

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
copy "OLD_FILE" TO "NeIAI_file"
COPY File$ TO File$&Msus$
COPY ":INTERNAL,4,(l" TO ":INTERNAL,4,1"
COPY Int_disc$ TO Ext_disc$

Semantics
Copying a File

Range
Restrictions

(see drawing)

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

The contents of the old file is copied into the new file, and a directory entry is created. A protect
code, to prevent accidental erasure, may be specified for the new file . The old file and the new file
can exist on the same device, but the new file name must be unique.

COpy 65

COpy is canceled and an error is returned if there is not enough room on the destination device
or if the new file name already exists in the destination directory.

If the mass storage unit specifier (msus) is omitted from a file specifier, the MASS STORAGE IS
device is assumed.

Copying an Entire Disc
Discs can be duplicated if the destination media is as large as, or larger than, the source media.
COPY from a larger capacity media to a smaller capacity media is only possible when the amount
of data on the larger will fit on the smaller.. The directory and any files on the destination media
are destroyed. The directory size on the destination media becomes the same size as that on the
source media .

When copying a disc , msus 's must be specified and unique. File names are not allowed.
Disc-to-disc copy time is dependent on media type and interleave factors.

COpy 65

COpy is canceled and an error is returned if there is not enough room on the destination device
or if the new file name already exists in the destination directory.

If the mass storage unit specifier (msus) is omitted from a file specifier, the MASS STORAGE IS
device is assumed.

Copying an Entire Disc
Discs can be duplicated if the destination media is as large as, or larger than, the source media.
COPY from a larger capacity media to a smaller capacity media is only possible when the amount
of data on the larger will fit on the smaller.. The directory and any files on the destination media
are destroyed. The directory size on the destination media becomes the same size as that on the
source media .

When copying a disc , msus 's must be specified and unique. File names are not allowed.
Disc-to-disc copy time is dependent on media type and interleave factors.

66

COPYLINES
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
No
No

This command allows you to copy one or more contiguous program lines to another location
while editing a program.

COPYLINES

beginning
line number

beginni n g
line l abel

Item

beginning line number

beginning line label

ending line number

ending line label

target line number

target line label

ending
line number

ending
line label

Description/Default

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

Example Statements
COPYLINES 1200 TO 235 0
COPYLINES 100,230 TO Labe l l
COPYLINES Util_start ,Util_end TO 16340

target
line number

target
line label

Range
Restrictions

1 to 32766

any valid name

1 to 32766

any valid name

1 to 32766

any valid name

66

COPYLINES
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
No
No

This command allows you to copy one or more contiguous program lines to another location
while editing a program.

COPYLINES

beginning
line number

beginni n g
line l abel

Item

beginning line number

beginning line label

ending line number

ending line label

target line number

target line label

ending
line number

ending
line label

Description/Default

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

Example Statements
COPYLINES 1200 TO 235 0
COPYLINES 100,230 TO Labe l l
COPYLINES Util_start ,Util_end TO 16340

target
line number

target
line label

Range
Restrictions

1 to 32766

any valid name

1 to 32766

any valid name

1 to 32766

any valid name

COPYLINES 67

Semantics
If the beginning line identifier is not specified, only one line is copied.

The target line identifier will be the line number of the first line of the copied program segment.
Copied lines are renumbered if necessary . The code (if any) which is "pushed down" to make
room for the copied code is renumbered if necessary.

line number references to the copied code are updated as they would be for a REN command,
with these exception: line number references in lines not being copied remain linked to the source
lines rather than being renumbered. Also. references to non-existent lines are renumbered as if the
lines existed.

If there are any DEF FN or SUB statements in the copied code, the target line number must be
greater than any existing line number.

If you try to copy a program segment to a line number contained in the segment, an error will
result and no copying will occur.

If the starting line number does not exist, the next line is used. If the ending line number does not
exist, the previous line is used. If a line label doesn't exist, an error occurs and no copying occurs.

If an error occurs during a COPYLINES (for example, a memory overflow), the copy is termin­
ated and the program is left partially modified.

COPYLINES 67

Semantics
If the beginning line identifier is not specified, only one line is copied.

The target line identifier will be the line number of the first line of the copied program segment.
Copied lines are renumbered if necessary . The code (if any) which is "pushed down" to make
room for the copied code is renumbered if necessary.

line number references to the copied code are updated as they would be for a REN command,
with these exception: line number references in lines not being copied remain linked to the source
lines rather than being renumbered. Also. references to non-existent lines are renumbered as if the
lines existed.

If there are any DEF FN or SUB statements in the copied code, the target line number must be
greater than any existing line number.

If you try to copy a program segment to a line number contained in the segment, an error will
result and no copying will occur.

If the starting line number does not exist, the next line is used. If the ending line number does not
exist, the previous line is used. If a line label doesn't exist, an error occurs and no copying occurs.

If an error occurs during a COPYLINES (for example, a memory overflow), the copy is termin­
ated and the program is left partially modified.

68

cos
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the cosine of the argument. The range of the returned real value is - 1
thru + 1.

Item Description/Default

argument numeric expression in current units of angle

Example Statements
Cosine=C05(Angle)
PRINT C050(+45)

COUNT
See the CAT and TRANSFER statements.

Range
Restrictions

absolute value less than :
1. 7083127722 E + 10 deg.

or in radians:
2.981 568244292 04 E + 8

68

cos
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the cosine of the argument. The range of the returned real value is - 1
thru + 1.

Item Description/Default

argument numeric expression in current units of angle

Example Statements
Cosine=C05(Angle)
PRINT C050(+45)

COUNT
See the CAT and TRANSFER statements.

Range
Restrictions

absolute value less than :
1. 7083127722 E + 10 deg.

or in radians:
2.981 568244292 04 E + 8

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

CREATE ASCII

This statement creates an ASCII file on the mass storage media. (If using CREATE ASCII with
SRM, also refer to the "SRM" section of this manual.)

CREATE ASCII

li t era l fo rm of file s p ecifi e r:

Item

file specifier

file name

msus

number of records

Description/ Default

string expression

literal

literal

numeric expression, rounded to an integer

Example Statements
CREATE ASC I I "TE){T" t 10 0
CREATE ASCI I Naftl e$B: " : INTERNAL" tLe n gth

Semantics

Range
Restrictions

(see drawing)

any valid file name

(see MASS
STORAGE IS)

1 thru 31 _ 1

CREATE ASCII creates a new ASCII file and directory entry on the mass storage media.
CREATE ASCII does not open the file. Opening of files is done by the ASSIGN statement. The
physical records of an ASCII file have a fixed length of 256 bytes; logical records have variable
lengths, which are automatically determined when the OUTPUT, SAVE, or RE-SAVE state­
ments are used. In the event of an error, no directory entry is made and the file is not created.

69

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

CREATE ASCII

This statement creates an ASCII file on the mass storage media. (If using CREATE ASCII with
SRM, also refer to the "SRM" section of this manual.)

CREATE ASCII

li t era l fo rm of file s p ecifi e r:

Item

file specifier

file name

msus

number of records

Description/ Default

string expression

literal

literal

numeric expression, rounded to an integer

Example Statements
CREATE ASC I I "TE){T" t 10 0
CREATE ASCI I Naftl e$B: " : INTERNAL" tLe n gth

Semantics

Range
Restrictions

(see drawing)

any valid file name

(see MASS
STORAGE IS)

1 thru 31 _ 1

CREATE ASCII creates a new ASCII file and directory entry on the mass storage media.
CREATE ASCII does not open the file. Opening of files is done by the ASSIGN statement. The
physical records of an ASCII file have a fixed length of 256 bytes; logical records have variable
lengths, which are automatically determined when the OUTPUT, SAVE, or RE-SAVE state­
ments are used. In the event of an error, no directory entry is made and the file is not created.

69

70

CREATE BDAT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement creates a BOAT file on the mass storage media. (If using CREATE BOAT with
SRM, also refer to the "SRM" section of this manual.)

CREATE BOAT number
of records

literal fo rm of f ile specifier:

Item

file specifier

file name

protect code

msus

number of records

record size

Description/Default

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

numeric expression, rounded to an integer

numeric expression, rounded to next even inte­
ger (except 1). Specifies bytes/record.
Default = 256

Example Statements
CREATE BOAT "Georse" t48
CREATE BOAT "Special<PC>" tLength t128
CREATE BOAT Name$&Msus$tBytest1

Semantics

Range
Restrictions

(see drawing)

any valid file name

" > " not allowed

(see MASS
STORAGE IS)

1 thru 2 11 - 256

1 thru 65 534

CREATE BOAT creates a new BOAT file and directory entry on the mass storage media.
CREATE BOAT does not open the file. Opening of files is done by the ASSIGN statement. If a
protect code is included after the file name, the first two characters become the protect code of
the file . In the event of an error, no directory entry is made and the file is not created. A sector is
created at the beginning of the file for system use. This sector cannot be accessed by BASIC
programs.

70

CREATE BDAT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement creates a BOAT file on the mass storage media. (If using CREATE BOAT with
SRM, also refer to the "SRM" section of this manual.)

CREATE BOAT number
of records

literal fo rm of f ile specifier:

Item

file specifier

file name

protect code

msus

number of records

record size

Description/Default

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

numeric expression, rounded to an integer

numeric expression, rounded to next even inte­
ger (except 1). Specifies bytes/record.
Default = 256

Example Statements
CREATE BOAT "Georse" t48
CREATE BOAT "Special<PC>" tLength t128
CREATE BOAT Name$&Msus$tBytest1

Semantics

Range
Restrictions

(see drawing)

any valid file name

" > " not allowed

(see MASS
STORAGE IS)

1 thru 2 11 - 256

1 thru 65 534

CREATE BOAT creates a new BOAT file and directory entry on the mass storage media.
CREATE BOAT does not open the file. Opening of files is done by the ASSIGN statement. If a
protect code is included after the file name, the first two characters become the protect code of
the file . In the event of an error, no directory entry is made and the file is not created. A sector is
created at the beginning of the file for system use. This sector cannot be accessed by BASIC
programs.

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This INTEGER function returns 1, the device selector of the alpha display.

Example Statements
PRINTER IS CRT
ENTER CRT ; Array(*)

71

CRT
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This INTEGER function returns 1, the device selector of the alpha display.

Example Statements
PRINTER IS CRT
ENTER CRT ; Array(*)

71

CRT

72

CSIZE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement sets the size and aspect (width/height) ratio of the character cell used by the
LABEL and SYMBOL statements.

Item

height

Width/height
ratio

Description/Default

numeric expression; Default = 5

width/height ratio numeric expression; Default = 0.6

Example Statements
CSIZE 10
CSIZE Size ,Width

Semantics

Range
Restrictions

At power-on, RESET, and GINIT, the height is 5 graphic-display-units (GOUs), and the aspect
ratio is 0.6 (width = 3 GOUs, or 0.6 x 5 GOUs) . A negative number for either parameter
inverts the character along the associated dimension. The drawing below shows the relation
between the character cell and a character.

Ch a rae t e t-· ina Ch a t-· ae t e r' Ce 1 1

72

CSIZE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement sets the size and aspect (width/height) ratio of the character cell used by the
LABEL and SYMBOL statements.

Item

height

Width/height
ratio

Description/Default

numeric expression; Default = 5

width/height ratio numeric expression; Default = 0.6

Example Statements
CSIZE 10
CSIZE Size ,Width

Semantics

Range
Restrictions

At power-on, RESET, and GINIT, the height is 5 graphic-display-units (GOUs), and the aspect
ratio is 0.6 (width = 3 GOUs, or 0.6 x 5 GOUs) . A negative number for either parameter
inverts the character along the associated dimension. The drawing below shows the relation
between the character cell and a character.

Ch a rae t e t-· ina Ch a t-· ae t e r' Ce 1 1

CSUB
This keyword stands for " Compiled SUBprogram" . CSUB statements are created in Pascal using
a special CSUB preparation utility. They are loaded using the LOADSUB statement and can be
deleted using the DELSUB statement. When viewed in BASIC's edit mode , these subprograms
look like SUB statements. except for the keyword. They are invoked with CALL, just like normal
SUB subprograms.

Because of their special nature , certain rules must be followed when editing a program containing
CSUB statments. These lines will not be recognized if entered in BASIC (they must be created in
Pascal). Therefore , any operation which requires the line to be checked for proper syntax will fail.
This includes such operations as GET, MOVELINES and the (EXECUTE) , (ENTER), (RETURN) keys.
Operations which do not check syntax are allowed. This includes things like scrolling and re­
numbering.

Sometimes a CSUB will appear as multiple CSUB statements because of multiple entry points. In
these cases, the group of statements cannot be broken; you cannot insert a comment line between
the statements, delete a single statement in the group. or interfere with the order in any way.

CSUM
See the MAT statement.

CYCLE
See the OFF CYCLE and the ON CYCLE statements.

73

CSUB
This keyword stands for " Compiled SUBprogram" . CSUB statements are created in Pascal using
a special CSUB preparation utility. They are loaded using the LOADSUB statement and can be
deleted using the DELSUB statement. When viewed in BASIC's edit mode , these subprograms
look like SUB statements. except for the keyword. They are invoked with CALL, just like normal
SUB subprograms.

Because of their special nature , certain rules must be followed when editing a program containing
CSUB statments. These lines will not be recognized if entered in BASIC (they must be created in
Pascal). Therefore , any operation which requires the line to be checked for proper syntax will fail.
This includes such operations as GET, MOVELINES and the (EXECUTE) , (ENTER), (RETURN) keys.
Operations which do not check syntax are allowed. This includes things like scrolling and re­
numbering.

Sometimes a CSUB will appear as multiple CSUB statements because of multiple entry points. In
these cases, the group of statements cannot be broken; you cannot insert a comment line between
the statements, delete a single statement in the group. or interfere with the order in any way.

CSUM
See the MAT statement.

CYCLE
See the OFF CYCLE and the ON CYCLE statements.

73

74

DATA
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

This statement contains data which can be read by READ statements. (For information about
DA TA as a secondary keyword, see the SEND statement.)

Item

numeric constant

literal

numeri c
c o n s tan t

Description/Default

numeric quantity expressed using numerals ,
and optionally a sign, decimal point, or
exponent notation

string constant composed of characters from
the keyboard, including those generated us­
ing the ANY CHAR key

Example Statements
DATA lt1.414t1.732t2
DATA IAIO rd 1 tlAIO rd2 tlAI O rd3
DATA "ex-point(!) " t"9uote("")" t"COftl ftla(t)"

Semantics

Range
Restrictions

A program or subprogram may contain any number of DATA statements at any locations.
When a program is run, the first item in the lowest numbered DATA statement is read by the
first READ statement encountered. When a subprogram is called, the location of the next item
to be read in the calling context is remembered in anticipation of returning from the subpro­
gram. Within the subprogram, the first item read is the first item in the lowest numbered DATA
statement within the subprogram. When program execution returns to the calling context, the
READ operations pick up where they left off in the DATA items.

74

DATA
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

This statement contains data which can be read by READ statements. (For information about
DA TA as a secondary keyword, see the SEND statement.)

Item

numeric constant

literal

numeri c
c o n s tan t

Description/Default

numeric quantity expressed using numerals ,
and optionally a sign, decimal point, or
exponent notation

string constant composed of characters from
the keyboard, including those generated us­
ing the ANY CHAR key

Example Statements
DATA lt1.414t1.732t2
DATA IAIO rd 1 tlAIO rd2 tlAI O rd3
DATA "ex-point(!) " t"9uote("")" t"COftl ftla(t)"

Semantics

Range
Restrictions

A program or subprogram may contain any number of DATA statements at any locations.
When a program is run, the first item in the lowest numbered DATA statement is read by the
first READ statement encountered. When a subprogram is called, the location of the next item
to be read in the calling context is remembered in anticipation of returning from the subpro­
gram. Within the subprogram, the first item read is the first item in the lowest numbered DATA
statement within the subprogram. When program execution returns to the calling context, the
READ operations pick up where they left off in the DATA items.

DATA 75

A numeric constant must be read into a variable which can store the value it represents. The
computer cannot determine the intent of the programmer; although attempting to read a string
value into a numeric variable will generate an error, numeric constants will be read into string
variables with no complaint. In fact , the computer considers the contents of all DATA state­
ments to be literals, and processes items to be read into numeric variables with a VAL function,
which can result in error 32 if the numeric data is not of the proper form (see VAL) .

Unquoted literals may not contain quote marks (which delimit strings), commas (which delimit
data items), or exclamation marks (which indicate the start of a comment). Leading and trailing
blanks are deleted from unquoted literals. Enclosing a literal in quote marks enables you to
include any punctuation you wish , including quote marks, which are represented by a set of two
quote marks.

DATA 75

A numeric constant must be read into a variable which can store the value it represents. The
computer cannot determine the intent of the programmer; although attempting to read a string
value into a numeric variable will generate an error, numeric constants will be read into string
variables with no complaint. In fact , the computer considers the contents of all DATA state­
ments to be literals, and processes items to be read into numeric variables with a VAL function,
which can result in error 32 if the numeric data is not of the proper form (see VAL) .

Unquoted literals may not contain quote marks (which delimit strings), commas (which delimit
data items), or exclamation marks (which indicate the start of a comment). Leading and trailing
blanks are deleted from unquoted literals. Enclosing a literal in quote marks enables you to
include any punctuation you wish , including quote marks, which are represented by a set of two
quote marks.

76

DATE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

CLOCK
Yes
Yes
Yes

This function converts the formatted date (DO MMM YYYY) into a numeric value used to set the
clock.

~ for matted date ~

lite r al form of formatted date:

Item Description/ Default
Range Recommended

Restrictions Range

formatted date string expression (see drawing) (see text)

day integer constant 1 thru the
end-of-month

month literal; letter case ignored JAN, FEB,
MAR, APR,
MAY, JUN,
JUL, AUG,
SEP, OCT,
NOV, DEC

year integer constant -1469899 1900 thru
thru 2079

1469899

delimiter literal; single character (see text) space

76

DATE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

CLOCK
Yes
Yes
Yes

This function converts the formatted date (DO MMM YYYY) into a numeric value used to set the
clock.

~ for matted date ~

lite r al form of formatted date:

Item Description/ Default
Range Recommended

Restrictions Range

formatted date string expression (see drawing) (see text)

day integer constant 1 thru the
end-of-month

month literal; letter case ignored JAN, FEB,
MAR, APR,
MAY, JUN,
JUL, AUG,
SEP, OCT,
NOV, DEC

year integer constant -1469899 1900 thru
thru 2079

1469899

delimiter literal; single character (see text) space

Example Statements
PRINT DATE("26 MAR 1882")
SET TIMEDATE DATE("l Jan 1883")
Da}'s=(DATE("l JAN 1883")-DATE("11 NOI,) 1882"» DI I,) 86400

Semantics

DATE 77

Using a value from the DATE function as the argument for SET TIMEDA TE will set the clock to
midnight on the date specified. Results from the DATE and TIME functions must be combined to
set the date and time of day.

If the DATE function is used as an argument for SET TIMEDA TE to set the clock, the date must be
in the range: 1 Mar 1900 thru 4 Aug 2079.

Specifying an invalid date, such as the thirty-first of February, will result in an error.

Leading blanks or non-numeric characters are ignored. ASCII spaces are recommended as
delimiters between the day, month and year. However, any non-alphanumeric character, except
the negative sign (-), may be used as the delimiter.

Example Statements
PRINT DATE("26 MAR 1882")
SET TIMEDATE DATE("l Jan 1883")
Da}'s=(DATE("l JAN 1883")-DATE("11 NOI,) 1882"» DI I,) 86400

Semantics

DATE 77

Using a value from the DATE function as the argument for SET TIMEDA TE will set the clock to
midnight on the date specified. Results from the DATE and TIME functions must be combined to
set the date and time of day.

If the DATE function is used as an argument for SET TIMEDA TE to set the clock, the date must be
in the range: 1 Mar 1900 thru 4 Aug 2079.

Specifying an invalid date, such as the thirty-first of February, will result in an error.

Leading blanks or non-numeric characters are ignored. ASCII spaces are recommended as
delimiters between the day, month and year. However, any non-alphanumeric character, except
the negative sign (-), may be used as the delimiter.

78

DATE$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
Yes
Yes
Yes

This function formats a number of seconds as a date (DO MMM YYYY).

Item DescriptionlDefault

seconds numeric expression

Example Statements
PRINT DATE$(TIMEDATE)
DISP DATE$(2.112520GOBE+ll)

Semantics

Range
Restrictions

-4.623683256 E + 13
thru

4.6534263350399 E + 13

Recommended
Range

2.086629 12 E + 11
thru

2.143252224 E + 11

The date returned is in the form: DO MMM YYYY, where DO is the day of the month, MMM is the
month mnemonic, and YYYY is the year.

The day is blank filled to two character positions. Single ASCII spaces delimit the day, month, and
year.

The first letter of the month is capitalized and the rest are lowercase characters.

Years less than the year 0 are expressed as negative years.

78

DATE$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
Yes
Yes
Yes

This function formats a number of seconds as a date (DO MMM YYYY).

Item DescriptionlDefault

seconds numeric expression

Example Statements
PRINT DATE$(TIMEDATE)
DISP DATE$(2.112520GOBE+ll)

Semantics

Range
Restrictions

-4.623683256 E + 13
thru

4.6534263350399 E + 13

Recommended
Range

2.086629 12 E + 11
thru

2.143252224 E + 11

The date returned is in the form: DO MMM YYYY, where DO is the day of the month, MMM is the
month mnemonic, and YYYY is the year.

The day is blank filled to two character positions. Single ASCII spaces delimit the day, month, and
year.

The first letter of the month is capitalized and the rest are lowercase characters.

Years less than the year 0 are expressed as negative years.

Option Required
Keyboard Executable
Programma b Ie
In an IF. .. THEN ...

None
Yes
Yes
Yes

DEALLOCATE

This statement de allocates memory space reserved by the ALLOCATE statement.

DEALLOCATE

Item Description/Default

variable name name of an array or string variable

Example Statements
DEALLOCATE AtB,C$
DEALLOCATE Array(*l

Semantics

Range
Restrictions

any valid name

Memory space reserved by ALLOCATE exists in the same section of memory as that used by
ON-event statements. Since entries in this area are "stacked" as they come in, space for
variables which have been DEALLOCATED may not be available immediately. It will not be
available until all the space "above it" is freed. This includes variables allocated after it, as well
as ON-event entries. Exiting a subprogram automatically de allocates space for variables which
were allocated in that subprogram.

Strings and arrays must be deallocated completely. Deallocation of an array is requested by the
(*) specifier.

Attempting to DEALLOCATE a variable which is not currently allocated in the current context
results in an error. When DEALLOCATE is executed from the keyboard, de allocation occurs
within the current context.

79

Option Required
Keyboard Executable
Programma b Ie
In an IF. .. THEN ...

None
Yes
Yes
Yes

DEALLOCATE

This statement de allocates memory space reserved by the ALLOCATE statement.

DEALLOCATE

Item Description/Default

variable name name of an array or string variable

Example Statements
DEALLOCATE AtB,C$
DEALLOCATE Array(*l

Semantics

Range
Restrictions

any valid name

Memory space reserved by ALLOCATE exists in the same section of memory as that used by
ON-event statements. Since entries in this area are "stacked" as they come in, space for
variables which have been DEALLOCATED may not be available immediately. It will not be
available until all the space "above it" is freed. This includes variables allocated after it, as well
as ON-event entries. Exiting a subprogram automatically de allocates space for variables which
were allocated in that subprogram.

Strings and arrays must be deallocated completely. Deallocation of an array is requested by the
(*) specifier.

Attempting to DEALLOCATE a variable which is not currently allocated in the current context
results in an error. When DEALLOCATE is executed from the keyboard, de allocation occurs
within the current context.

79

80

DEFFN
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
No

This statement indicates the beginning of a function subprogram. It also indicates whether the
function is string or numeric and defines the formal parameter list.

fu~~~~on r--r--------,--.~------------------------~r_~~ '-______ ~L __ ~ __ ~

parameter list :

required
parameters

optional
parameters

Note: A u s e r-def in ed functio n
ma y co n ta in any number of
RET URN s t ateme nts.

numeric
name

numeric
name

80

DEFFN
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
No

This statement indicates the beginning of a function subprogram. It also indicates whether the
function is string or numeric and defines the formal parameter list.

fu~~~~on r--r--------,--.~------------------------~r_~~ '-______ ~L __ ~ __ ~

parameter list :

required
parameters

optional
parameters

Note: A u s e r-def in ed functio n
ma y co n ta in any number of
RET URN s t ateme nts.

numeric
name

numeric
name

Item

function name

numeric name

string name

110 path name

program segment

Description/Default

name of the user-defined function

name of a numeric variable

name of a string variable

name assigned to a device, devices , or mass
storage file

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram

Example Statements
DEF FNTrimS(StringS)

Range
Restrictions

any valid name

any valid name

any valid name

any valid name
(see ASSIGN)

DEF FNTransform(@Printer,INTEGER Array(*) , OPTIONAL TextS)

Semantics

DEF FN 81

User-defined functions must appear after the main program. The first line of the function must
be a DEF FN statement. The last line must be an FNEND statement. Comments after the
FNEND are considered to be part of the function.

Parameters to the left of the keyword OPTIONAL are required and must be supplied whenever
the user-defined function is invoked (see FN) . Parameters to the right of OPTIONAL are
optional, and only need to be supplied if they are needed for a specific operation. Optional
parameters are associated from left to right with any remaining pass parameters until the pass
parameter list is exhausted. An error is generated if the function tries to use an optional
parameter which did not have a value passed to it. The function NPAR can be used to deter­
mine the number of parameters supplied by the function call.

Variables in a subprogram's formal parameter list may not be declared in COM or other
declaratory statements within the subprogram. A user-defined function may not contain any
SUB statements or DEF FN statements. User-defined functions can be called recurSively and
may contain local variables. A unique labeled COM must be used if the local variables are to
preserve their values between invocations of the user-defined function .

Item

function name

numeric name

string name

110 path name

program segment

Description/Default

name of the user-defined function

name of a numeric variable

name of a string variable

name assigned to a device, devices , or mass
storage file

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram

Example Statements
DEF FNTrimS(StringS)

Range
Restrictions

any valid name

any valid name

any valid name

any valid name
(see ASSIGN)

DEF FNTransform(@Printer,INTEGER Array(*) , OPTIONAL TextS)

Semantics

DEF FN 81

User-defined functions must appear after the main program. The first line of the function must
be a DEF FN statement. The last line must be an FNEND statement. Comments after the
FNEND are considered to be part of the function.

Parameters to the left of the keyword OPTIONAL are required and must be supplied whenever
the user-defined function is invoked (see FN) . Parameters to the right of OPTIONAL are
optional, and only need to be supplied if they are needed for a specific operation. Optional
parameters are associated from left to right with any remaining pass parameters until the pass
parameter list is exhausted. An error is generated if the function tries to use an optional
parameter which did not have a value passed to it. The function NPAR can be used to deter­
mine the number of parameters supplied by the function call.

Variables in a subprogram's formal parameter list may not be declared in COM or other
declaratory statements within the subprogram. A user-defined function may not contain any
SUB statements or DEF FN statements. User-defined functions can be called recurSively and
may contain local variables. A unique labeled COM must be used if the local variables are to
preserve their values between invocations of the user-defined function .

82 DEF FN

The RETURN < expression > statement is important in a user-defined function. If the program
actually encounters an FNEND during execution (which can only happen if the RETURN is
missing or misplaced), error 5 is generated. The < expression> in the RETURN statement must
be numeric for numeric functions, and string for string functions. A string function is indicated
by the dollar sign suffix on the function name.

The purpose of a user-defined function is to compute a single value. While it is possible to alter
variables passed by reference and variables in COM, this can produce undesirable side effects,
and should be avoided. If more than one value needs to be passed back to the program, SUB
subprograms should be used.

If you want to use a formal parameter as a BUFFER, it must be declared as a BUFFER in both the
formal parameter list and the calling context.

82 DEF FN

The RETURN < expression > statement is important in a user-defined function. If the program
actually encounters an FNEND during execution (which can only happen if the RETURN is
missing or misplaced), error 5 is generated. The < expression> in the RETURN statement must
be numeric for numeric functions, and string for string functions. A string function is indicated
by the dollar sign suffix on the function name.

The purpose of a user-defined function is to compute a single value. While it is possible to alter
variables passed by reference and variables in COM, this can produce undesirable side effects,
and should be avoided. If more than one value needs to be passed back to the program, SUB
subprograms should be used.

If you want to use a formal parameter as a BUFFER, it must be declared as a BUFFER in both the
formal parameter list and the calling context.

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement selects degrees as the unit of measure for expressing angles.

Semantics

DEG

All functions which return an angle will return an angle in degrees. All operations with param­
eters representing angles will interpret the angle in degrees.

A subprogram "inherits" the angle mode of the calling context. If the angle mode is changed in
a subprogram, the mode of the calling context is restored when execution returns to the calling
context. If no angle mode is specified in a program, the default is radians (see RAD).

83

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement selects degrees as the unit of measure for expressing angles.

Semantics

DEG

All functions which return an angle will return an angle in degrees. All operations with param­
eters representing angles will interpret the angle in degrees.

A subprogram "inherits" the angle mode of the calling context. If the angle mode is changed in
a subprogram, the mode of the calling context is restored when execution returns to the calling
context. If no angle mode is specified in a program, the default is radians (see RAD).

83

84

DEL

This command deletes program lines.

Item

beginning
line label

ending line
label

Description/Default

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

Range
Restrictions

beg inn i n g lin e integer constant identifying a program line
number

1 thru 32766

beginning line label name of a program line

ending line number integer constant identifying a program line

ending line label name of a program line

Example Statements
DEL 15
DEL So rt ,8888

Semantics

any valid name

1 thru 32766

any valid name

None
Yes
No
No

DEL cannot be executed while a program is running. If DEL is executed while a program is
paused, the computer changes to the stopped state.

When a line is specified by a line label, the computer uses the lowest numbered line which has
the label. If the label does not exist, error 3 is generated. An attempt to delete a non-existent
program line is ignored when the line is specified by a line number. An error results if the ending
line number is less then the beginning line number. If only one line is specified, only that line is
deleted.

When deleting SUB and FN subprograms, the range of lines specified must include the state­
ments delimiting the beginning and ending of the subprogram (DEF FN and FNEND for user­
defined function subprograms; SUB and SUBEND for SUB subprograms) , as well as all com­
ments following the delimiting statement for the end of the subprogram. Contiguous subpro­
grams may be deleted in one operation.

84

DEL

This command deletes program lines.

Item

beginning
line label

ending line
label

Description/Default

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

Range
Restrictions

beg inn i n g lin e integer constant identifying a program line
number

1 thru 32766

beginning line label name of a program line

ending line number integer constant identifying a program line

ending line label name of a program line

Example Statements
DEL 15
DEL So rt ,8888

Semantics

any valid name

1 thru 32766

any valid name

None
Yes
No
No

DEL cannot be executed while a program is running. If DEL is executed while a program is
paused, the computer changes to the stopped state.

When a line is specified by a line label, the computer uses the lowest numbered line which has
the label. If the label does not exist, error 3 is generated. An attempt to delete a non-existent
program line is ignored when the line is specified by a line number. An error results if the ending
line number is less then the beginning line number. If only one line is specified, only that line is
deleted.

When deleting SUB and FN subprograms, the range of lines specified must include the state­
ments delimiting the beginning and ending of the subprogram (DEF FN and FNEND for user­
defined function subprograms; SUB and SUBEND for SUB subprograms) , as well as all com­
ments following the delimiting statement for the end of the subprogram. Contiguous subpro­
grams may be deleted in one operation.

85

DELAY
See the ASSIGN, OFF DELAY, ON DELAY, PRINTALL IS, and PRINTER IS statements.

DELIM
See the TRANSFER statement.

85

DELAY
See the ASSIGN, OFF DELAY, ON DELAY, PRINTALL IS, and PRINTER IS statements.

DELIM
See the TRANSFER statement.

86

DELSUB
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
Yes
Yes
Yes

This statement deletes one or more SUB subprograms or user-defined function subprograms
from memory.

DELSUB

Item

subprogram name

function name

s ubpr og ram
name

Description/ Default

name of a SUB or CSUB subprogram

name of a user-defined function

Example Statements
DEL SUB FNT r i (rl$

DELSUB Speciall ,Specia13

Semantics

Range
Restrictions

any valid name

any valid name

Subprograms being deleted do not need to be contiguous in memory. The order of the names
in the deletion list does not have to agree with the order of the subprograms in memory. If there
are subprograms with the same name, the one occurring first (lowest line number) is deleted.

The lines deleted begin with the line delimiting the beginning of the subprogram (SUB or DEF
FN) and include the comments following the line delimiting the end of the subprogram (SUBEND
or FNEND). If TO END is included, all subprograms following the specified subprogram are also
deleted , from the last subprogram to the specified subprogram.

You cannot delete:

• Busy subprograms (ones being executed) .

• Subprograms which are referenced by active ON-event CALL statements.

If an error occurs while attempting to delete a subprogram with a DELSUB statement, the
subprogram is not deleted, and neither are subprograms listed to the right of the subprogram
which could not be deleted.

86

DELSUB
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
Yes
Yes
Yes

This statement deletes one or more SUB subprograms or user-defined function subprograms
from memory.

DELSUB

Item

subprogram name

function name

s ubpr og ram
name

Description/ Default

name of a SUB or CSUB subprogram

name of a user-defined function

Example Statements
DEL SUB FNT r i (rl$

DELSUB Speciall ,Specia13

Semantics

Range
Restrictions

any valid name

any valid name

Subprograms being deleted do not need to be contiguous in memory. The order of the names
in the deletion list does not have to agree with the order of the subprograms in memory. If there
are subprograms with the same name, the one occurring first (lowest line number) is deleted.

The lines deleted begin with the line delimiting the beginning of the subprogram (SUB or DEF
FN) and include the comments following the line delimiting the end of the subprogram (SUBEND
or FNEND). If TO END is included, all subprograms following the specified subprogram are also
deleted , from the last subprogram to the specified subprogram.

You cannot delete:

• Busy subprograms (ones being executed) .

• Subprograms which are referenced by active ON-event CALL statements.

If an error occurs while attempting to delete a subprogram with a DELSUB statement, the
subprogram is not deleted, and neither are subprograms listed to the right of the subprogram
which could not be deleted.

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This REAL function returns the determinant of a matrix.

Item

matrix name

Description/Default

name of a square, two-dimensional numeric
array;
Default = see text

Example Statements
Dete rrTlinant=DET
PRINT DET(A)

Semantics

DET

Range
Restrictions

any valid name

If you do not specify a matrix, DET returns the determinant of the most recently inverted matrix.
This value is not affected by context switching. If no matrix has been inverted since power-on,
pre-run, SCRATCH or SCRATCH A, 0 is returned.

The determinant is significant as an indication of whether an inverse is valid. If the determinant of
a matrix equals 0, then the matrix has no inverse. If the determinant is very small compared with
the elements of its matrix, then the inverse may be invalid and should be checked.

87

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This REAL function returns the determinant of a matrix.

Item

matrix name

Description/Default

name of a square, two-dimensional numeric
array;
Default = see text

Example Statements
Dete rrTlinant=DET
PRINT DET(A)

Semantics

DET

Range
Restrictions

any valid name

If you do not specify a matrix, DET returns the determinant of the most recently inverted matrix.
This value is not affected by context switching. If no matrix has been inverted since power-on,
pre-run, SCRATCH or SCRATCH A, 0 is returned.

The determinant is significant as an indication of whether an inverse is valid. If the determinant of
a matrix equals 0, then the matrix has no inverse. If the determinant is very small compared with
the elements of its matrix, then the inverse may be invalid and should be checked.

87

88

DIGITIZE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPHX
Yes
Yes
Yes

This statement inputs the X and Y coordinates of a digitized point from the locator specified by
GRAPHICS INPUT IS.

x coordinate
name y co~~~~nate 1--.---------.--1

Item

x coordinate name

y coordinate name

string name

Description/Default

name of a numeric variable

name of a numeric variable

name of a string variable

Example Statements
DIGITIZE){,y

IF Flag THEN DIGITIZE){pos ,Ypos ,Status$

Semantics

Range
Restrictions

any valid name

any valid name

any valid name

The returned coordinates are in the unit-of-measure currently defined for the PLOTTER IS and
GRAPHICS INPUT IS devices. The unit-of-measure may be default units or those defined by
either the WINDOW or SHOW statement. If an INTEGER numeric variable is specified and the
value entered is out of range, error 20 is reported.

If graphics input is from the keyboard, DIGITIZE is satisfied by pressing any of the following keys:

(EXECUTE), (]ill] , (ENTER) , ~, (STOP) , (RETURN) , (PAUSE) , (]ill] , (CONTINUE) , and
(CO NT).

The optional string variable is used to input the device status of the GRAPHICS INPUT IS device.
This status string contains eight bytes, defined as follows.

Byte

Meaning

2 3 4 5 6 7 8

88

DIGITIZE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPHX
Yes
Yes
Yes

This statement inputs the X and Y coordinates of a digitized point from the locator specified by
GRAPHICS INPUT IS.

x coordinate
name y co~~~~nate 1--.---------.--1

Item

x coordinate name

y coordinate name

string name

Description/Default

name of a numeric variable

name of a numeric variable

name of a string variable

Example Statements
DIGITIZE){,y

IF Flag THEN DIGITIZE){pos ,Ypos ,Status$

Semantics

Range
Restrictions

any valid name

any valid name

any valid name

The returned coordinates are in the unit-of-measure currently defined for the PLOTTER IS and
GRAPHICS INPUT IS devices. The unit-of-measure may be default units or those defined by
either the WINDOW or SHOW statement. If an INTEGER numeric variable is specified and the
value entered is out of range, error 20 is reported.

If graphics input is from the keyboard, DIGITIZE is satisfied by pressing any of the following keys:

(EXECUTE), (]ill] , (ENTER) , ~, (STOP) , (RETURN) , (PAUSE) , (]ill] , (CONTINUE) , and
(CO NT).

The optional string variable is used to input the device status of the GRAPHICS INPUT IS device.
This status string contains eight bytes, defined as follows.

Byte

Meaning

2 3 4 5 6 7 8

DIGITIZE 89

Byte 1: Digitize status; If the locator device supports only single point digitizing, this byte is always
a "1" . If the locator device supports continuous digitizing, this byte is a "1" for all points in a
stream of continuous points except the last point, which will be returned with a "0" . The method
of indicating the beginning and ending of a continuous point stream is device dependent. If the
numeric value represented by this byte is used as the pen control value for a PLOT statement,
continuous digitizing will be copied to the display device.

Bytes 2, 4, and 6: commas; used as delimiters.

Bytes 3: Significance of digitized point; "0" indicates that the point is outside the P1, P2 limits;
" 1" indicates that the point is outside the viewport, but inside the P1 , P2limits; "2" indicates that
the point is inside the current viewport limits .

Byte 5: Tracking status; " 0" indicates off, " 1" indicates on.

Byte 7 and 8: The number of the buttons which are currently down. To interpret the ASCII
number returned, change the number to its binary fo rm and look at each bit. If the bit is " 1" , the
corresponding button is down. If the bit is "0", the corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of proximity, a "button 7" is indicated in the
"button number" bytes. Bytes 7 and 8 will be exactly " 64" regardless of whether any actual
buttons are being held down at the time. Proximity is reported only from HP-HIL locators; the HP
9111A always returns "00" in bytes 7 and 8. On a 35723A TouchScreen, going out of proximity
(i.e., removing your finger from the screen) will trigger a digitize. Coming into proximity on a
tablet with a button pressed will also trigger a digitize, even if the button was originally pressed
while in proximity.

DIGITIZE 89

Byte 1: Digitize status; If the locator device supports only single point digitizing, this byte is always
a "1" . If the locator device supports continuous digitizing, this byte is a "1" for all points in a
stream of continuous points except the last point, which will be returned with a "0" . The method
of indicating the beginning and ending of a continuous point stream is device dependent. If the
numeric value represented by this byte is used as the pen control value for a PLOT statement,
continuous digitizing will be copied to the display device.

Bytes 2, 4, and 6: commas; used as delimiters.

Bytes 3: Significance of digitized point; "0" indicates that the point is outside the P1, P2 limits;
" 1" indicates that the point is outside the viewport, but inside the P1 , P2limits; "2" indicates that
the point is inside the current viewport limits .

Byte 5: Tracking status; " 0" indicates off, " 1" indicates on.

Byte 7 and 8: The number of the buttons which are currently down. To interpret the ASCII
number returned, change the number to its binary fo rm and look at each bit. If the bit is " 1" , the
corresponding button is down. If the bit is "0", the corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of proximity, a "button 7" is indicated in the
"button number" bytes. Bytes 7 and 8 will be exactly " 64" regardless of whether any actual
buttons are being held down at the time. Proximity is reported only from HP-HIL locators; the HP
9111A always returns "00" in bytes 7 and 8. On a 35723A TouchScreen, going out of proximity
(i.e., removing your finger from the screen) will trigger a digitize. Coming into proximity on a
tablet with a button pressed will also trigger a digitize, even if the button was originally pressed
while in proximity.

90 DIM

DIM
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
No

This statement dimensions and reserves memory for REAL numeric arrays, strings and string
arrays.

numeric
array n ame

Item Description/Default

numeric array name name of a numeric array

string name name of a string variable

lower bound integer constant;
Default = OPTION BASE value (0 or 1)

upper bound integer constant

string length integer constant

Range
Restrictions

any valid name

any valid name

- 32 767 thru + 32 767
(see "array" in Glossary)

- 32 767 thru + 32 767
(see "array" in Glossary)

1 thru 32 767

90 DIM

DIM
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
No

This statement dimensions and reserves memory for REAL numeric arrays, strings and string
arrays.

numeric
array n ame

Item Description/Default

numeric array name name of a numeric array

string name name of a string variable

lower bound integer constant;
Default = OPTION BASE value (0 or 1)

upper bound integer constant

string length integer constant

Range
Restrictions

any valid name

any valid name

- 32 767 thru + 32 767
(see "array" in Glossary)

- 32 767 thru + 32 767
(see "array" in Glossary)

1 thru 32 767

Example Statements
DIM Strin9'$[1 0 0 J ,N a fTle$ (12)[32J
DI M Ar r a y(-128:127 , lG)
DIM Strin9'_scaler $ [25GJ BUFFE R, Real_ar r a y(12 7) BUFFER

Semantics

DIM 91

A program can have any number of DIM statements. The same variable cannot be declared
twice within a program (variables declared in a subprogram are distinct from those declared in a
main program, except those declared in COM). The DIM statements can appear anywhere
within a program, as long as they do not precede an OPTION BASE statement. Dimensioning
occurs at pre-run or subprogram entry time. Dynamic run time allocation of memory is pro­
vided by the ALLOCATE statement.

No array can have more than six dimensions. Each dimension can have a maximum of 32 767
elements. The actual maximum number of elements for an array depends on available
memory.

All numeric arrays declared in a DIM statement are REAL, and each element of type REAL
requires 8 bytes of storage. A string requires one byte of storage per character, plus two bytes of
overhead.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for · these
elements is reserved whether you use them or not. Any time a lower bound is not specified, it
defaults to the OPTION BASE value.

Declaring Buffers
To declare variables to be buffers, each variable's name must be followed by the keyword
BUFFER; the designation BUFFER applies only to the variable which it follows . String arrays
cannot be declared to be buffers.

Example Statements
DIM Strin9'$[1 0 0 J ,N a fTle$ (12)[32J
DI M Ar r a y(-128:127 , lG)
DIM Strin9'_scaler $ [25GJ BUFFE R, Real_ar r a y(12 7) BUFFER

Semantics

DIM 91

A program can have any number of DIM statements. The same variable cannot be declared
twice within a program (variables declared in a subprogram are distinct from those declared in a
main program, except those declared in COM). The DIM statements can appear anywhere
within a program, as long as they do not precede an OPTION BASE statement. Dimensioning
occurs at pre-run or subprogram entry time. Dynamic run time allocation of memory is pro­
vided by the ALLOCATE statement.

No array can have more than six dimensions. Each dimension can have a maximum of 32 767
elements. The actual maximum number of elements for an array depends on available
memory.

All numeric arrays declared in a DIM statement are REAL, and each element of type REAL
requires 8 bytes of storage. A string requires one byte of storage per character, plus two bytes of
overhead.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for · these
elements is reserved whether you use them or not. Any time a lower bound is not specified, it
defaults to the OPTION BASE value.

Declaring Buffers
To declare variables to be buffers, each variable's name must be followed by the keyword
BUFFER; the designation BUFFER applies only to the variable which it follows . String arrays
cannot be declared to be buffers.

92

DISABLE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
Yes
Yes

This statement disables all event-initiated branches currently defined , except ON END, ON
ERROR, and ON TIMEOUT.

(DISABLE)--l

Semantics
If an event occurs while the currently defined event-initiated branches are disabled, only the
first occurrence of each event is logged; there is no record of how many of each type of event
has occurred.

If event-initiated branches are enabled after being disabled, all logged events will initiate their
respective branches if and when system priority permits. ON ERROR, ON END, as ON TIME­
OUT branches are not disabled by DISABLE.

92

DISABLE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
Yes
Yes

This statement disables all event-initiated branches currently defined , except ON END, ON
ERROR, and ON TIMEOUT.

(DISABLE)--l

Semantics
If an event occurs while the currently defined event-initiated branches are disabled, only the
first occurrence of each event is logged; there is no record of how many of each type of event
has occurred.

If event-initiated branches are enabled after being disabled, all logged events will initiate their
respective branches if and when system priority permits. ON ERROR, ON END, as ON TIME­
OUT branches are not disabled by DISABLE.

DISABLE INTR
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN. .. Yes

This statement disables interrupts from an interface by turning off the interrupt generating
mechanism on the interface.

~ ~ interface ~ DISABLE INTR select code

Item Description/Default

interface select code numeric expression, rounded to an integer

Example Statements
DISABLE INTR 7
DISABLE INTR Isc

Range
Restrictions

5, and 7 thru 31

93

DISABLE INTR
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN. .. Yes

This statement disables interrupts from an interface by turning off the interrupt generating
mechanism on the interface.

~ ~ interface ~ DISABLE INTR select code

Item Description/Default

interface select code numeric expression, rounded to an integer

Example Statements
DISABLE INTR 7
DISABLE INTR Isc

Range
Restrictions

5, and 7 thru 31

93

94

DISP
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This statement causes the display items to be sent to the display line on the CRT.

Expanded diagram:

"' E
(lJ

+'
.r<

(lJ

01
m
E
.r<

"' E
(lJ

+'
.r<

'" m
rl

0.

"' .r<

D

string
expression

string
array name

numeric
expression

numeric
array name

image line
number

image line
label

display
items

trailing punctuation
not allowed with USING

tab function not allowed with USING

literal form of image specifier:

image
specifier list

image
specifier list

None
Yes
Yes
Yes

94

DISP
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This statement causes the display items to be sent to the display line on the CRT.

Expanded diagram:

"' E
(lJ

+'
.r<

(lJ

01
m
E
.r<

"' E
(lJ

+'
.r<

'" m
rl

0.

"' .r<

D

string
expression

string
array name

numeric
expression

numeric
array name

image line
number

image line
label

display
items

trailing punctuation
not allowed with USING

tab function not allowed with USING

literal form of image specifier:

image
specifier list

image
specifier list

None
Yes
Yes
Yes

Item Description/ Default

image line label name identifying an IMAGE statement

image line number integer constant identifying an IMAGE
statement

image specifier string expression

string array name name of a string array

numeric array name of a numeric array
name

column numeric expression, rounded to an integer

image specifier list literal

repeat factor integer constant

literal string constant composed of characters
from the keyboard, including those gener-
ated using the ANY CHAR key

Example Statements
DISP PrOfrlPt$;
DISP TA5(5) ,Fi rst ,TA5(ZO) ,Second
DISP USING 15Z.DD" ;Monei

DISP 95

Range Recommended
Restrictions Range

any valid name

1 thru 32 766

(see drawing)

any valid name

any valid name

- 32768 thru 1 thru
+32767 screenwidth

(see next
drawing)

1 thru 32767

quote mark not
allowed

Item Description/ Default

image line label name identifying an IMAGE statement

image line number integer constant identifying an IMAGE
statement

image specifier string expression

string array name name of a string array

numeric array name of a numeric array
name

column numeric expression, rounded to an integer

image specifier list literal

repeat factor integer constant

literal string constant composed of characters
from the keyboard, including those gener-
ated using the ANY CHAR key

Example Statements
DISP PrOfrlPt$;
DISP TA5(5) ,Fi rst ,TA5(ZO) ,Second
DISP USING 15Z.DD" ;Monei

DISP 95

Range Recommended
Restrictions Range

any valid name

1 thru 32 766

(see drawing)

any valid name

any valid name

- 32768 thru 1 thru
+32767 screenwidth

(see next
drawing)

1 thru 32767

quote mark not
allowed

96 DISP

image specifier list

%

K

-K

B

W

+

r-----------------------------~~Hr_----------------------------~

Shaded items
require IO

Radix specifier cannot
be used without a
digit specifier ,

..

96 DISP

image specifier list

%

K

-K

B

W

+

r-----------------------------~~Hr_----------------------------~

Shaded items
require IO

Radix specifier cannot
be used without a
digit specifier ,

..

DISP 97

Semantics
Standard Numeric Format
The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to IE - 4 and less than IE + 6, it is rounded
to 12 digits and displayed in floating point notation. If it is not within these limits, it is displayed in
scientific notation. The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

Automatic End-Of-Line Sequence
After the display list is exhausted, an End Of Line (EOL) sequence is sent to the display line,
unless it is suppressed by trailing punctuation or a pound-sign image specifier.

Control Codes
Some ASCII control codes have a special effect in DISP statements:

Character Keystroke Name Action

CHR$(7) CTRL-G bell Sound the beeper

CHR$(8) CTRL-H backspace Move the cursor back one
character.

CHR$(12) CTRL-L formfeed Clear the display line.

CHR$(13) CTRL-M carriage Move cursor to column 1.
return The next character sent to

the display clears the dis-
play line, unless it is a car-
riage return

CRT Enhancements
There are several character enhancements (such as inverse and underlining) available on some
CRTs. They are accessed through characters with decimal values above 127. For a list of the
characters and their effects, see the "Display Enhancement Characters" table in "Useful Tables"
at the back of this book.

Arrays
Arrays may be displayed in their entirety by using the asterisk specifier. They are displayed in
row-major order (right-most subscript varies most rapidly) and their format depends on the print
mode selected.

Display Without USING
If DISP is used without USING, the punctuation following an item determines the width of the
item's display field ; a semicolon selects the compact field, and a comma selects the default display
field . When the display item is an array with the asterisk array specifier, each array element is
considered a separate display item. Any trailing punctation will suppress the automatic EOL
sequence, in addition to selecting the display field to be used for the display item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are displayed
with one trailing blank. String items are displayed with no leading or trailing blanks.

DISP 97

Semantics
Standard Numeric Format
The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to IE - 4 and less than IE + 6, it is rounded
to 12 digits and displayed in floating point notation. If it is not within these limits, it is displayed in
scientific notation. The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

Automatic End-Of-Line Sequence
After the display list is exhausted, an End Of Line (EOL) sequence is sent to the display line,
unless it is suppressed by trailing punctuation or a pound-sign image specifier.

Control Codes
Some ASCII control codes have a special effect in DISP statements:

Character Keystroke Name Action

CHR$(7) CTRL-G bell Sound the beeper

CHR$(8) CTRL-H backspace Move the cursor back one
character.

CHR$(12) CTRL-L formfeed Clear the display line.

CHR$(13) CTRL-M carriage Move cursor to column 1.
return The next character sent to

the display clears the dis-
play line, unless it is a car-
riage return

CRT Enhancements
There are several character enhancements (such as inverse and underlining) available on some
CRTs. They are accessed through characters with decimal values above 127. For a list of the
characters and their effects, see the "Display Enhancement Characters" table in "Useful Tables"
at the back of this book.

Arrays
Arrays may be displayed in their entirety by using the asterisk specifier. They are displayed in
row-major order (right-most subscript varies most rapidly) and their format depends on the print
mode selected.

Display Without USING
If DISP is used without USING, the punctuation following an item determines the width of the
item's display field ; a semicolon selects the compact field, and a comma selects the default display
field . When the display item is an array with the asterisk array specifier, each array element is
considered a separate display item. Any trailing punctation will suppress the automatic EOL
sequence, in addition to selecting the display field to be used for the display item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are displayed
with one trailing blank. String items are displayed with no leading or trailing blanks.

98 DISP

The default display field displays items with trailing blanks to fill to the beginning of the next
lO-character field .

Numeric data is displayed with one leading blank if the number is positive, or with a minus sign if
the number is negative, whether in compact or default field.

In the TAB function , a column parameter less than one is treated as one. A column parameter
greater than the screen width (in characters) is treated as equal to the screen width .

Display With USING
When the computer executes a DISP USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun­
tered. If nothing is required from the display items, the field specifier is acted upon without
accessing the display list. When the field specifer requires characters, it accesses the next item in
the display list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
display item. If the image specifiers are exhausted before the display items, they are reused,
starting at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field . If the number contains more digits to
the right of the decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on the DISP statement are shown in the following table:

Image
Specifier

K

- K
H

- H
S

M

D

z

*

Mea ning

Compact fie ld. Displays a number or string in standard form with no leading or trailing
blanks.

Same as K.

Similar to K, except the number is displayed using the European number format (comma
radix). (Requires 10)

Same as H. (Requires 10)

Displays the number's sign (+ or -) .

Displays the number's sign if negative. a blank if positive.

Displays one digit character. A leading zero is replaced by a blank. If the number is negative
and no sign image is specified. the minus sign will occupy a leading digit position. If a sign is
displayed, it will " float" to the left of the left-most digit.

Same as D, except that leading zeros are displayed.

Same as Z, except that asterisks are displayed instead of leading zeros. (Requires 10)

98 DISP

The default display field displays items with trailing blanks to fill to the beginning of the next
lO-character field .

Numeric data is displayed with one leading blank if the number is positive, or with a minus sign if
the number is negative, whether in compact or default field.

In the TAB function , a column parameter less than one is treated as one. A column parameter
greater than the screen width (in characters) is treated as equal to the screen width .

Display With USING
When the computer executes a DISP USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun­
tered. If nothing is required from the display items, the field specifier is acted upon without
accessing the display list. When the field specifer requires characters, it accesses the next item in
the display list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
display item. If the image specifiers are exhausted before the display items, they are reused,
starting at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field . If the number contains more digits to
the right of the decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on the DISP statement are shown in the following table:

Image
Specifier

K

- K
H

- H
S

M

D

z

*

Mea ning

Compact fie ld. Displays a number or string in standard form with no leading or trailing
blanks.

Same as K.

Similar to K, except the number is displayed using the European number format (comma
radix). (Requires 10)

Same as H. (Requires 10)

Displays the number's sign (+ or -) .

Displays the number's sign if negative. a blank if positive.

Displays one digit character. A leading zero is replaced by a blank. If the number is negative
and no sign image is specified. the minus sign will occupy a leading digit position. If a sign is
displayed, it will " float" to the left of the left-most digit.

Same as D, except that leading zeros are displayed.

Same as Z, except that asterisks are displayed instead of leading zeros. (Requires 10)

Image
Specifier

R

E

ESZ

ESZZ

ESZZZ

A

x
literal

B

W

y

+

Meaning

Disp[ays a decimal-point radix indicator.

Disp[ays a comma radix indicator (European radix). (Requires [0)

Disp[ays an E. a sign. and a two-digit exponent.

Disp[ays a n E. a sign . and a one-digit exponent.

Same as E.

Disp[ays an E, a sign, and a three-digit exponent.

D[SP 99

Disp[ays a string character. Trailing blanks are output if the number of characters speci­
fied is greater than the number available in the corresponding string. If the image
specifier is exha usted before the corresponding string. the remaining characters are
ignored.

Disp[ays a blank.

Displays the characters contained in the literal.

Displays the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an [NTEGER. and the least-significant byte is sent.
If the number is greater than 32 767 . then 255 is used: if the number is less than
- 32 768 , then 0 is used.

Displays two cha racters represen ted by the two bytes of a 16-bit, two' s-complement
in teger. The corresponding numeric item is rounded to an [NTEGER. [f it is greater than
32 767 , then 32 767 is used: if it is less than - 32 768 . then - 32 768 is used. The
most-significant byte is sent first.

Same as W. (Requires [0)

Suppresses the automatic output of an EOL (End-Of-Line) sequence following the last
display item.

Ignored in DISP images.

Changes the automatic EOL sequence that normally follows the last display item to a
single carriage-return. (Requires [0)

Changes the EOL automatic sequence that normally follows the last display item to a
single line-feed. (Requi res [0)

I Sends a carriage-return and a line-feed to the display line.

L Same as I.

@ Sends a form-feed to the display line.

Image
Specifier

R

E

ESZ

ESZZ

ESZZZ

A

x
literal

B

W

y

+

Meaning

Disp[ays a decimal-point radix indicator.

Disp[ays a comma radix indicator (European radix). (Requires [0)

Disp[ays an E. a sign. and a two-digit exponent.

Disp[ays a n E. a sign . and a one-digit exponent.

Same as E.

Disp[ays an E, a sign, and a three-digit exponent.

D[SP 99

Disp[ays a string character. Trailing blanks are output if the number of characters speci­
fied is greater than the number available in the corresponding string. If the image
specifier is exha usted before the corresponding string. the remaining characters are
ignored.

Disp[ays a blank.

Displays the characters contained in the literal.

Displays the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an [NTEGER. and the least-significant byte is sent.
If the number is greater than 32 767 . then 255 is used: if the number is less than
- 32 768 , then 0 is used.

Displays two cha racters represen ted by the two bytes of a 16-bit, two' s-complement
in teger. The corresponding numeric item is rounded to an [NTEGER. [f it is greater than
32 767 , then 32 767 is used: if it is less than - 32 768 . then - 32 768 is used. The
most-significant byte is sent first.

Same as W. (Requires [0)

Suppresses the automatic output of an EOL (End-Of-Line) sequence following the last
display item.

Ignored in DISP images.

Changes the automatic EOL sequence that normally follows the last display item to a
single carriage-return. (Requires [0)

Changes the EOL automatic sequence that normally follows the last display item to a
single line-feed. (Requi res [0)

I Sends a carriage-return and a line-feed to the display line.

L Same as I.

@ Sends a form-feed to the display line.

100

DIV
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This operator returns the integer portion of the quotient of the dividend and the divisor.

--1 dividend ~ divisor ~

Item Description/Default

dividend numeric expression

divisor numeric expression

Example Statements
Quotient=Dividend DIV Divisor
PRINT "Hours =" iMinutes DII,) GO

Semantics

Range
Restrictions

not equal to 0

None
Yes
Yes
Yes

DIV returns a REAL value unless both arguments are INTEGER. In the latter case the returned
value is INTEGER. A DIV B is identical to SGN(A/B) x INT(ABS(A/B)).

100

DIV
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This operator returns the integer portion of the quotient of the dividend and the divisor.

--1 dividend ~ divisor ~

Item Description/Default

dividend numeric expression

divisor numeric expression

Example Statements
Quotient=Dividend DIV Divisor
PRINT "Hours =" iMinutes DII,) GO

Semantics

Range
Restrictions

not equal to 0

None
Yes
Yes
Yes

DIV returns a REAL value unless both arguments are INTEGER. In the latter case the returned
value is INTEGER. A DIV B is identical to SGN(A/B) x INT(ABS(A/B)).

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

MAT
Yes
Yes
Yes

This function returns the inner (dot) product of two numeric vectors.

Item Description/Default

vector name name of a one-dimensional numeric array

Example Statements
PRINT DOT(A,B)
B=DOT(A,A)

Semantics

DOT

Range
Restrictions

any valid name

The dot product is calculated by multiplying corresponding elements of the two vectors and then
summing the products . The two vectors must be the same current size. If both vectors are
INTEGER, the product will be an INTEGER. Otherwise, the product will be of type REAL.

101

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

MAT
Yes
Yes
Yes

This function returns the inner (dot) product of two numeric vectors.

Item Description/Default

vector name name of a one-dimensional numeric array

Example Statements
PRINT DOT(A,B)
B=DOT(A,A)

Semantics

DOT

Range
Restrictions

any valid name

The dot product is calculated by multiplying corresponding elements of the two vectors and then
summing the products . The two vectors must be the same current size. If both vectors are
INTEGER, the product will be an INTEGER. Otherwise, the product will be of type REAL.

101

102

DRAW
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement draws a line from the pen 's current position to the specified X and Y coordinate
position using the current line type and pen number.

@--.j x c o or d i n a te f--.O---.j y coo rdin a te ~

Item Description/Default

x coordinate numeric expression, in current units

y coordinate numeric expression, in current units

Example Statements
DRAW 10t80
DRAW Next_x tNext_ y

Semantics

Range
Restrictions

The X and Y coordinate information is interpreted according to the current unit-of-measure. Draw
is affected by the PIVOT transformation.

A DRAW to the current position generates a point. DRAW updates the logical pen position at the
completion of the DRAW statement, and leaves the pen down on an external plotter. The line is
clipped at the current clipping boundary.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical pen
position is updated.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and d raws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Label s Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling .
Note 2: The starting point for labe ls d rawn after other labels is affected by LDIR.
Note 3: The starti ng point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

102

DRAW
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement draws a line from the pen 's current position to the specified X and Y coordinate
position using the current line type and pen number.

@--.j x c o or d i n a te f--.O---.j y coo rdin a te ~

Item Description/Default

x coordinate numeric expression, in current units

y coordinate numeric expression, in current units

Example Statements
DRAW 10t80
DRAW Next_x tNext_ y

Semantics

Range
Restrictions

The X and Y coordinate information is interpreted according to the current unit-of-measure. Draw
is affected by the PIVOT transformation.

A DRAW to the current position generates a point. DRAW updates the logical pen position at the
completion of the DRAW statement, and leaves the pen down on an external plotter. The line is
clipped at the current clipping boundary.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical pen
position is updated.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and d raws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Label s Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling .
Note 2: The starting point for labe ls d rawn after other labels is affected by LDIR.
Note 3: The starti ng point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
Yes
Yes
Yes

DROUND

This function rounds a numeric expression to the specified number of digits. If the specified
number of digits is greater than 15, no rounding takes place. If the number of digits specified is
less than 1, 0 is returned.

Item Description/Default

argument numeric expression

number of digits numeric expression , rounded to an integer

Example Statements
Test _ real=DROUND(True_real t12)
PRINT "Approx. I,Jolts ="jDROUND(I,Jolts t 3)

Range
Restrictions

Recommended
Range

1 thru 15

103

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
Yes
Yes
Yes

DROUND

This function rounds a numeric expression to the specified number of digits. If the specified
number of digits is greater than 15, no rounding takes place. If the number of digits specified is
less than 1, 0 is returned.

Item Description/Default

argument numeric expression

number of digits numeric expression , rounded to an integer

Example Statements
Test _ real=DROUND(True_real t12)
PRINT "Approx. I,Jolts ="jDROUND(I,Jolts t 3)

Range
Restrictions

Recommended
Range

1 thru 15

103

104

DUMP
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement copies the contents of an alphanumeric or graphics display to a printing device.

GRAPH

Item

source device
selector

destination
device selector

s ou rce
d e v l ce se l e ct or

Description/Default

numeric expression, rounded to an integer;
Default = last CRT plotter

numeric expression, rounded to an integer;
Default = DUMP DEVICE IS device

Example Statements
DUMP ALPHA
DUMP GRAPHICS #702
DUMP GRAPHICS 28 TO #702

Semantics

destinatio n
device selector

Range
Restrictions

see Glossary

external interfaces only

(see Glossary)

DUMP ALPHA copies the contents of the alphanumeric display to a printer. With a bit-mapped
display, the alpha buffer is sent to the printer as alphanumeric characters .

DUMP GRAPHICS copies the entire contents of the CRT graphics display, which may contain
bit-mapped alpha, to a printer. Performing DUMP GRAPHICS to a device which does not
support the HP Raster Interface Standard will produce unpredictable results. The HP 2631 G, HP
9876, and the ThinkJet printers are among devices that support this standard.

If the destination device is not explicitly specified, it is assumed to the current DUMP DEVICE IS
device.

If EXPANDED is specified in the DUMP DEVICE IS statement, the source graphics image is
doubled in both X and Y directions before being sent to the destination device. However, if both
source and destination devices are explicitly specified, the image is sent without being expanded.

104

DUMP
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement copies the contents of an alphanumeric or graphics display to a printing device.

GRAPH

Item

source device
selector

destination
device selector

s ou rce
d e v l ce se l e ct or

Description/Default

numeric expression, rounded to an integer;
Default = last CRT plotter

numeric expression, rounded to an integer;
Default = DUMP DEVICE IS device

Example Statements
DUMP ALPHA
DUMP GRAPHICS #702
DUMP GRAPHICS 28 TO #702

Semantics

destinatio n
device selector

Range
Restrictions

see Glossary

external interfaces only

(see Glossary)

DUMP ALPHA copies the contents of the alphanumeric display to a printer. With a bit-mapped
display, the alpha buffer is sent to the printer as alphanumeric characters .

DUMP GRAPHICS copies the entire contents of the CRT graphics display, which may contain
bit-mapped alpha, to a printer. Performing DUMP GRAPHICS to a device which does not
support the HP Raster Interface Standard will produce unpredictable results. The HP 2631 G, HP
9876, and the ThinkJet printers are among devices that support this standard.

If the destination device is not explicitly specified, it is assumed to the current DUMP DEVICE IS
device.

If EXPANDED is specified in the DUMP DEVICE IS statement, the source graphics image is
doubled in both X and Y directions before being sent to the destination device. However, if both
source and destination devices are explicitly specified, the image is sent without being expanded.

DUMP 105

If a DUMP GRAPHICS operation is stopped by pressing the (CLR 1/0) key, the printer mayor may not
terminate its graphics mode. Sending the printer up to 192 null characters [CHR$(O)] can be used to
terminate the graphics mode on a printer such as the HP 9876.

If the source has multiple planes of graphics memory associated with a pixel, an inclusive-OR is
performed on all the bits corresponding to the pixel. This determines whether to print it as black or
white.

If a currently active CRT is explicitly specified as the source, the CRT's contents are dumped to the
printer; however, if the specified CRT has not been activated, error 708 is reported.

Plotters are de-activated by power-up, GINIT, SCRATCH A, or (RESET) . A plotting device is
activated when it is specified in a PLOTTER IS statement. In addition , the internal CRT is also
(implicitly) activated by any of the following operations after de-activation: any pen movement;
GCLEAR; GLOAD (to the current default destination) ; GSTORE (from the current default source) ;
and DUMP GRAPHICS (from the current default source).

If a non-CRT source which is the current PLOTTER IS device is explicitly specified, the DUMP
GRAPHICS is not performed; however, if an non-CRT source which is not the current PLOTTER IS
device is explicitly specified, error 708 is reported.

On multi-plane bit-wrapped display devices, which use a graphics write-enable mask, only the
bits indicated by Is will be ORed together and dumped.

Displays with Nonsquare Pixels
For machines which have a display with nonsquare pixels (the HP 98542A and the HP 98543A),
a non-expanded DUMP GRAPHICS will produce an image that matches the CRT only if no alpha
appears in the graphics planes. Since most printers print square pixels, this routine treats graphics
pixel pairs as single elements and prints one square for each pixel pair in the frame buffer.
Because alpha works with individual pixels, and not with pixel pairs, mixed alpha and graphics
will appear blurred on a DUMP GRAPH I CS non-expanded output. Using the D(PANDED option causes
the vertical length (the height on the CRT) to be doubled as before, but dumps each separate
pixel. In this mode, mixed alpha and graphics will appear the same on the dump as on the CRT.

Note
Some printers are not capable of printing 1024 graphics dots per line,
so images dumped will be truncated to fit the printer.

DUMP 105

If a DUMP GRAPHICS operation is stopped by pressing the (CLR 1/0) key, the printer mayor may not
terminate its graphics mode. Sending the printer up to 192 null characters [CHR$(O)] can be used to
terminate the graphics mode on a printer such as the HP 9876.

If the source has multiple planes of graphics memory associated with a pixel, an inclusive-OR is
performed on all the bits corresponding to the pixel. This determines whether to print it as black or
white.

If a currently active CRT is explicitly specified as the source, the CRT's contents are dumped to the
printer; however, if the specified CRT has not been activated, error 708 is reported.

Plotters are de-activated by power-up, GINIT, SCRATCH A, or (RESET) . A plotting device is
activated when it is specified in a PLOTTER IS statement. In addition , the internal CRT is also
(implicitly) activated by any of the following operations after de-activation: any pen movement;
GCLEAR; GLOAD (to the current default destination) ; GSTORE (from the current default source) ;
and DUMP GRAPHICS (from the current default source).

If a non-CRT source which is the current PLOTTER IS device is explicitly specified, the DUMP
GRAPHICS is not performed; however, if an non-CRT source which is not the current PLOTTER IS
device is explicitly specified, error 708 is reported.

On multi-plane bit-wrapped display devices, which use a graphics write-enable mask, only the
bits indicated by Is will be ORed together and dumped.

Displays with Nonsquare Pixels
For machines which have a display with nonsquare pixels (the HP 98542A and the HP 98543A),
a non-expanded DUMP GRAPHICS will produce an image that matches the CRT only if no alpha
appears in the graphics planes. Since most printers print square pixels, this routine treats graphics
pixel pairs as single elements and prints one square for each pixel pair in the frame buffer.
Because alpha works with individual pixels, and not with pixel pairs, mixed alpha and graphics
will appear blurred on a DUMP GRAPH I CS non-expanded output. Using the D(PANDED option causes
the vertical length (the height on the CRT) to be doubled as before, but dumps each separate
pixel. In this mode, mixed alpha and graphics will appear the same on the dump as on the CRT.

Note
Some printers are not capable of printing 1024 graphics dots per line,
so images dumped will be truncated to fit the printer.

106

DUMP DEVICE IS
Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

GRAPH
Yes
Yes
Yes

This statement specifies which device receives the data when either DUMP ALPHA or DUMP
GRAPHICS is executed without a device selector.

DUMP DEVICE IS

Item

device selector

Description/Default

numeric expression, rounded to an integer;
Default = 701

Example Statements
DUMP DEVICE IS 72 1
DUMP DEVICE IS Printer,EXPANDED

Semantics

Range
Restrictions

external interfaces only
(see Glossary)

Doing a DUMP GRAPHICS to a printer which does not support the HP Raster Interface
Standard will produce unpredictable results. The HP 9876 and the HP 2631G are among the
devices which support the standard.

Specifying EXPANDED results in graphics dumps that are twice as big on each axis (except for
displays with nonsquare pixels - see DUMP GRAPHICS for details) and turned sideways. This
gives four dots on the printer for each dot on the display. The resulting picture does not fit on one
page of an HP 9876 or HP 2631G printer.

106

DUMP DEVICE IS
Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

GRAPH
Yes
Yes
Yes

This statement specifies which device receives the data when either DUMP ALPHA or DUMP
GRAPHICS is executed without a device selector.

DUMP DEVICE IS

Item

device selector

Description/Default

numeric expression, rounded to an integer;
Default = 701

Example Statements
DUMP DEVICE IS 72 1
DUMP DEVICE IS Printer,EXPANDED

Semantics

Range
Restrictions

external interfaces only
(see Glossary)

Doing a DUMP GRAPHICS to a printer which does not support the HP Raster Interface
Standard will produce unpredictable results. The HP 9876 and the HP 2631G are among the
devices which support the standard.

Specifying EXPANDED results in graphics dumps that are twice as big on each axis (except for
displays with nonsquare pixels - see DUMP GRAPHICS for details) and turned sideways. This
gives four dots on the printer for each dot on the display. The resulting picture does not fit on one
page of an HP 9876 or HP 2631G printer.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

DVAL

This function converts a binary, octal, decimal, or hexadecimal character string into a REAL
whole number.

Item

string argument

radix

Description/Default

string expression, containing digits valid for the
specified base

numeric expression, rounded to an integer

Example Statements
Add ress=DI,)AL("FF59000Ll" dG)

Rea 1 = D I,) A L ("0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 " ,2)

NUMber=DVAL (OctalS,B)

Semantics

Range
Restrictions

(see tables)

2, 8, lO, or16

The radix is a numeric expression that will be rounded to an integer and must evaluate to 2, 8, 10,
or 16.

The string expression must contain only the characters allowed for the particular number base
indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two's complement form . If all 32 digits are specified and the
leading digit is aI , the returned value is negative.

Octal strings are presumed to be in the octal representation of two's complement form. If all 11
digits are specified, and the leading digit is a 2 or a 3 , the returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.

Hex strings are presumed to be in the hex representation of the two's complement binary form.
The letters A through F may be specified in either upper or lower case. If all 8 digits are specified
and the leading digit is 8 through F the returned value is negative.

107

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

DVAL

This function converts a binary, octal, decimal, or hexadecimal character string into a REAL
whole number.

Item

string argument

radix

Description/Default

string expression, containing digits valid for the
specified base

numeric expression, rounded to an integer

Example Statements
Add ress=DI,)AL("FF59000Ll" dG)

Rea 1 = D I,) A L ("0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 " ,2)

NUMber=DVAL (OctalS,B)

Semantics

Range
Restrictions

(see tables)

2, 8, lO, or16

The radix is a numeric expression that will be rounded to an integer and must evaluate to 2, 8, 10,
or 16.

The string expression must contain only the characters allowed for the particular number base
indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two's complement form . If all 32 digits are specified and the
leading digit is aI , the returned value is negative.

Octal strings are presumed to be in the octal representation of two's complement form. If all 11
digits are specified, and the leading digit is a 2 or a 3 , the returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.

Hex strings are presumed to be in the hex representation of the two's complement binary form.
The letters A through F may be specified in either upper or lower case. If all 8 digits are specified
and the leading digit is 8 through F the returned value is negative.

107

108 OVAL

Radix Base String Range String Length

2 binary ° th ru 1 to 32 characters
11111111111111111111111111111111

8 octal ° th ru 37777777777 1 to 11 characters

10 decimal - 2147483648 thru 2147483647 1 to 11 characters

16 hexadecimal ° thru FFFFFFFF 1 to 8 characters

Radix Legal Characters Comments

2 +,0,1

8

10

16

+ ,0,1 ,2,3,4,5,6,7

+, - ,0 ,1,2,3,4,5,6,
7,8 ,9

+ ,0,1,2,3,4,5,6,
7,8 ,9,A,B,C,D,E,F,
a,b,c,d,e,f

Range restricts the leading character. Sign, if
used, must be a leading character.

Sign, if used, must be a leading character.

Ala = 10, Bib = 11, Clc = 12, Old = 13
E/e = 14, Fif = 15

108 OVAL

Radix Base String Range String Length

2 binary ° th ru 1 to 32 characters
11111111111111111111111111111111

8 octal ° th ru 37777777777 1 to 11 characters

10 decimal - 2147483648 thru 2147483647 1 to 11 characters

16 hexadecimal ° thru FFFFFFFF 1 to 8 characters

Radix Legal Characters Comments

2 +,0,1

8

10

16

+ ,0,1 ,2,3,4,5,6,7

+, - ,0 ,1,2,3,4,5,6,
7,8 ,9

+ ,0,1,2,3,4,5,6,
7,8 ,9,A,B,C,D,E,F,
a,b,c,d,e,f

Range restricts the leading character. Sign, if
used, must be a leading character.

Sign, if used, must be a leading character.

Ala = 10, Bib = 11, Clc = 12, Old = 13
E/e = 14, Fif = 15

Option Required
Keyboard Executable
Programmable
In an IF..THEN ...

None
Yes
Yes
Yes

DVAL$

This function converts a whole number into a binary, octal, decimal , or hexadecimal string.

Item

"32-bit" argument

radix

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
F$= Dt,JAL $(- 1 , 18)
Bina r y$=DVAL $(Count DIV 258,2)

S emantics

Range
Restrictions

2, 8, 10, or 16

The rounded argument must be a value that can be expressed (in binary) using 32 bits or less.

The radix must evaluate to be 2 , 8, 10, or 16; representing binary, octal, decimal, or hexadecimal
notation.

If the radix is 2 , the returned string is in two's complement form and contains 32 characters. If the
numeric expression is negative, the leading digit will be 1. If the value is zero or positive there will
be leading zeros.

If the radix is 8 , the returned string is the octal representation of the two's complement binary
form and contains 11 digits. Negative values return a leading digit of 2 or 3.

If the radix is 10, the returned string contains 11 characters. Leading zeros are added to the string
if necessary. Negative values have a leading minus sign.

If the radix is 16, the returned string is the hexadecimal representation of the two's complement
binary form and contains 8 characters. Negative values return with the leading digit in the range 8
thru F.

109

Option Required
Keyboard Executable
Programmable
In an IF..THEN ...

None
Yes
Yes
Yes

DVAL$

This function converts a whole number into a binary, octal, decimal , or hexadecimal string.

Item

"32-bit" argument

radix

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
F$= Dt,JAL $(- 1 , 18)
Bina r y$=DVAL $(Count DIV 258,2)

S emantics

Range
Restrictions

2, 8, 10, or 16

The rounded argument must be a value that can be expressed (in binary) using 32 bits or less.

The radix must evaluate to be 2 , 8, 10, or 16; representing binary, octal, decimal, or hexadecimal
notation.

If the radix is 2 , the returned string is in two's complement form and contains 32 characters. If the
numeric expression is negative, the leading digit will be 1. If the value is zero or positive there will
be leading zeros.

If the radix is 8 , the returned string is the octal representation of the two's complement binary
form and contains 11 digits. Negative values return a leading digit of 2 or 3.

If the radix is 10, the returned string contains 11 characters. Leading zeros are added to the string
if necessary. Negative values have a leading minus sign.

If the radix is 16, the returned string is the hexadecimal representation of the two's complement
binary form and contains 8 characters. Negative values return with the leading digit in the range 8
thru F.

109

110 DVAL$

Radix Base Range of Returned String String Length

2 binary 00000000000000000000000000000000 32 characters
thru

11111111111111111111111111111111

8 octal 00000000000 thru 37777777777 11 characters

10 decimal -2147483648 thru 2147483647 11 characters

16 hexadecimal 00000000 thru FFFFFFFF 8 characters

110 DVAL$

Radix Base Range of Returned String String Length

2 binary 00000000000000000000000000000000 32 characters
thru

11111111111111111111111111111111

8 octal 00000000000 thru 37777777777 11 characters

10 decimal -2147483648 thru 2147483647 11 characters

16 hexadecimal 00000000 thru FFFFFFFF 8 characters

111

r ,

ECHO
See the SET ECHO statement.

EDGE
See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT and SYMBOL statements.

111

r ,

ECHO
See the SET ECHO statement.

EDGE
See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT and SYMBOL statements.

112

EDIT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
No
No

This command allows you to enter or edit either a program or typing-aid key definitions.

n~:~r r------------J
KBD

Item Description/Default

line number integer constant identifying program line;
Default (see Semantics)

line label name of a program line

increment integer constant; Default = 10

key number integer constant

Example Statements
EDIT
EDIT 1000,5
EDIT KEY 4

Semantics

Range
Restrictions

1 thru 32766

any valid name

1 thru 32766

o thru 23

The EDIT command allows you to scroll through a program in the computer by using the arrow
keys, ~, ~, or the knob. Lines may be added to the end of a program by going to the
bottom of the program. A new line number will be provided automatically. Lines may be added
between existing program lines by using the insert line key, and lines may be deleted by using the
delete line key. Lines may be modified by typing the desired characters over the existing line, using
the insert character and delete character keys as necessary. (ENTER), (EXECUTE) or (RETURN) are
used to store the newly created or modified lines.

Edit mode is exited by pressing (CONTINUE), (CLR SCR), (Clear display), (PAUSE), ~ (on HP
46020A) , (RESET), ~, or ~ or by executing CAT, LIST, GET, or LOAD. If the program was
changed while paused, preSSing (CONTINUE) will generate an error, since modifying a program moves it
to the stopped state.

112

EDIT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
No
No

This command allows you to enter or edit either a program or typing-aid key definitions.

n~:~r r------------J
KBD

Item Description/Default

line number integer constant identifying program line;
Default (see Semantics)

line label name of a program line

increment integer constant; Default = 10

key number integer constant

Example Statements
EDIT
EDIT 1000,5
EDIT KEY 4

Semantics

Range
Restrictions

1 thru 32766

any valid name

1 thru 32766

o thru 23

The EDIT command allows you to scroll through a program in the computer by using the arrow
keys, ~, ~, or the knob. Lines may be added to the end of a program by going to the
bottom of the program. A new line number will be provided automatically. Lines may be added
between existing program lines by using the insert line key, and lines may be deleted by using the
delete line key. Lines may be modified by typing the desired characters over the existing line, using
the insert character and delete character keys as necessary. (ENTER), (EXECUTE) or (RETURN) are
used to store the newly created or modified lines.

Edit mode is exited by pressing (CONTINUE), (CLR SCR), (Clear display), (PAUSE), ~ (on HP
46020A) , (RESET), ~, or ~ or by executing CAT, LIST, GET, or LOAD. If the program was
changed while paused, preSSing (CONTINUE) will generate an error, since modifying a program moves it
to the stopped state.

EDIT 113

EDIT Without Parameters
If no program is currently in the computer, the edit mode is entered at line 10, and the line
numbers are incremented by 10 as each new line is stored. If a program is in the computer, the
line at which the editor enters the program is dependent upon recent history. If an error has
paused program execution, the editor enters the program at the line flagged by the error
message. Otherwise, the editor enters the program at the line most recently edited (or the
beginning of the program after a LOAD operation).

EDIT With Parameters
If no program is in the computer, a line number (not a label) must be used to specify the beginning
line for the program. The increment will determine the interval between line numbers. If a
program is in the computer, any increment provided is not used until lines are added to the end of
the program. If the line specified is between two existing lines, the lowest-numbered line greater
than the specified line is used. If a line label is used to specify a line, the lowest-numbered line with
that label is used. If the label cannot be found, an error is generated.

EDIT KEY (Requires KBD)
To enter the EDIT KEY mode, type ED I T KEY , followed by the key number, and press (EXECUTE),
(ENTER), or (RETURN). Also, the desired softkey can be pressed after typing or pressing EDIT. When
EDIT KEY mode is entered, the current key definition (if any) is displayed. You then edit the
contents as if it were any other keyboard line. Non-ASCII keys may be included in the key
definition by holding (CTRL) while pressing the desired key. Non-ASCII keystrokes are represented
by an inverse-video "K" followed by another character associated with the key. The table Second
Byte of Non-ASCII Key Sequences in the "Useful Tables" section of this manual has a list of the
characters associated with the special keys.

Note

On the HP 98203A keyboard, many non-ASCII keys cannot be accessed
by the method of holding (CTRL) while pressing the desired key. Howev­
er, any of the non-ASCII keys can be entered into a softkey definition by
pressing (ANY CHAR) 255, followed by the character associated with that
non-ASCII key.

To accept the modified key definition , press ~ or (RETURN); to abort without changing the
current definition , press (PAUSE) , (CLR SCR) , or (Clear display) .

When a program is waiting for a response to an INPUT, LINPUT or ENTER, the typing aid
definitions (defined with EDIT KEY) are in effect. When a program is running but not waiting for
user input, the active ON KEY definitions supercede the typing aid definitions. Softkeys without
ON KEY definitions retain their typing-aid function .

ELSE
See the IF. .. THEN statement.

EDIT 113

EDIT Without Parameters
If no program is currently in the computer, the edit mode is entered at line 10, and the line
numbers are incremented by 10 as each new line is stored. If a program is in the computer, the
line at which the editor enters the program is dependent upon recent history. If an error has
paused program execution, the editor enters the program at the line flagged by the error
message. Otherwise, the editor enters the program at the line most recently edited (or the
beginning of the program after a LOAD operation).

EDIT With Parameters
If no program is in the computer, a line number (not a label) must be used to specify the beginning
line for the program. The increment will determine the interval between line numbers. If a
program is in the computer, any increment provided is not used until lines are added to the end of
the program. If the line specified is between two existing lines, the lowest-numbered line greater
than the specified line is used. If a line label is used to specify a line, the lowest-numbered line with
that label is used. If the label cannot be found, an error is generated.

EDIT KEY (Requires KBD)
To enter the EDIT KEY mode, type ED I T KEY , followed by the key number, and press (EXECUTE),
(ENTER), or (RETURN). Also, the desired softkey can be pressed after typing or pressing EDIT. When
EDIT KEY mode is entered, the current key definition (if any) is displayed. You then edit the
contents as if it were any other keyboard line. Non-ASCII keys may be included in the key
definition by holding (CTRL) while pressing the desired key. Non-ASCII keystrokes are represented
by an inverse-video "K" followed by another character associated with the key. The table Second
Byte of Non-ASCII Key Sequences in the "Useful Tables" section of this manual has a list of the
characters associated with the special keys.

Note

On the HP 98203A keyboard, many non-ASCII keys cannot be accessed
by the method of holding (CTRL) while pressing the desired key. Howev­
er, any of the non-ASCII keys can be entered into a softkey definition by
pressing (ANY CHAR) 255, followed by the character associated with that
non-ASCII key.

To accept the modified key definition , press ~ or (RETURN); to abort without changing the
current definition , press (PAUSE) , (CLR SCR) , or (Clear display) .

When a program is waiting for a response to an INPUT, LINPUT or ENTER, the typing aid
definitions (defined with EDIT KEY) are in effect. When a program is running but not waiting for
user input, the active ON KEY definitions supercede the typing aid definitions. Softkeys without
ON KEY definitions retain their typing-aid function .

ELSE
See the IF. .. THEN statement.

114

ENABLE
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement re-enables all event-initiated branches which were suspended by DISABLE. ON
END, ON ERROR, and ON TIMEOUT are not affected by ENABLE and DISABLE.

(ENABLE)--l

114

ENABLE
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement re-enables all event-initiated branches which were suspended by DISABLE. ON
END, ON ERROR, and ON TIMEOUT are not affected by ENABLE and DISABLE.

(ENABLE)--l

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN .. .

10
Yes
Yes
Yes

ENABLE INTR

This statement enables the specified interface to generate an interrupt which can cause end-of­
statement branches.

ENABLE INTA

Item Description/ Default

interface select code numeric expression, rounded to an integer

bit mask numeric expression, rounded to an integer

Example Statements
ENABLE INTR 7
ENABLE INTR Isc;Mask

Semantics

Range
Restrictions

5, and 7 thru 31

- 32768 thru + 32767

If a bit mask is specified, its value is stored in the interface's interrupt-enable register. Consult
the documentation provided with each interface for the correct interpretation of its bit mask
values.

If no bit mask is specified, the previous bit mask for the select code is restored. A bit mask of all
zeros is used when there is no previous bit mask.

115

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN .. .

10
Yes
Yes
Yes

ENABLE INTR

This statement enables the specified interface to generate an interrupt which can cause end-of­
statement branches.

ENABLE INTA

Item Description/ Default

interface select code numeric expression, rounded to an integer

bit mask numeric expression, rounded to an integer

Example Statements
ENABLE INTR 7
ENABLE INTR Isc;Mask

Semantics

Range
Restrictions

5, and 7 thru 31

- 32768 thru + 32767

If a bit mask is specified, its value is stored in the interface's interrupt-enable register. Consult
the documentation provided with each interface for the correct interpretation of its bit mask
values.

If no bit mask is specified, the previous bit mask for the select code is restored. A bit mask of all
zeros is used when there is no previous bit mask.

115

116

END
Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
No

This statement marks the end of the main program. (For information about END as a secondary
keyword, see the OUTPUT and SEND statements.)

Semantics
END must be the last statement (other than comments) of a main program. Only one END
statement is allowed in a program. (program execution may also be terminated with a STOP
statement, and multiple STOP statements are allowed.) END terminates program execution,
stops any event-initiated branches, and clears any unserviced event-initiated branches. CON­
TINUE is not allowed after an END statement.

Subroutines used by the main program must occur prior to the END statement. Subprograms
and user-defined functions must occur after the END statement.

116

END
Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
No

This statement marks the end of the main program. (For information about END as a secondary
keyword, see the OUTPUT and SEND statements.)

Semantics
END must be the last statement (other than comments) of a main program. Only one END
statement is allowed in a program. (program execution may also be terminated with a STOP
statement, and multiple STOP statements are allowed.) END terminates program execution,
stops any event-initiated branches, and clears any unserviced event-initiated branches. CON­
TINUE is not allowed after an END statement.

Subroutines used by the main program must occur prior to the END statement. Subprograms
and user-defined functions must occur after the END statement.

117

END IF
See the IF .. . THEN statement.

END LOOP
See the LOOP statement.

END SELECT
See the SELECT CASE ... construct.

END WHILE
See the WHILE statement.

117

END IF
See the IF .. . THEN statement.

END LOOP
See the LOOP statement.

END SELECT
See the SELECT CASE ... construct.

END WHILE
See the WHILE statement.

118

ENTER Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement is used to input data from a device, file , string, or buffer and assign the values
entered to variables. (If using ENTER with SRM, also refer to the "SRM" section of this manual.)

Expanded diagram:

enter
items

s~~~~~~r r-------------------------------~

s t rSiOn
U
; cnea me $ h--------------------------...,

'-'--'-'-:.;...='-'-~:....J''_../

numeric
name

image items ,-_______ A~ ________ ~

image 1 ine
number

image line
label

118

ENTER Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement is used to input data from a device, file , string, or buffer and assign the values
entered to variables. (If using ENTER with SRM, also refer to the "SRM" section of this manual.)

Expanded diagram:

enter
items

s~~~~~~r r-------------------------------~

s t rSiOn
U
; cnea me $ h--------------------------...,

'-'--'-'-:.;...='-'-~:....J''_../

numeric
name

image items ,-_______ A~ ________ ~

image 1 ine
number

image line
label

literal form of image specifier :

image
specifier list

Item

1/0 path name

record number

device selector

source string name

subscript

image line number

image line label

image specifier

numeric name

string name

beginning position

ending position

substring length

image
spec if ier list

Description/Default

name assigned to a device, devices, mass storage
file, or buffer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of a string variable

numeric expression, rounded to an integer

integer constant identifying an IMAGE statement

name identifying an IMAGE statement

string expression

name of a numeric variable

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range
Restrictions

ENTER 119

any valid name
(see ASSIGN)

1 thru 231-1

(see Glossary)

any valid name

- 32 767 thru + 32 767
(see "array" in

Glossary)

1 thru 32766

any valid name

(see drawing)

any valid name

any valid name

1 thru 32767
(see "substring"

in Glossary)

o thru 32767
(see "substring"

in Glossary)

o thru 32 767
(see "substring"

in Glossary)

image specifier list

repeat factor

literal

literal (see next drawing)

integer constant 1 thru 32 767

string constant composed of characters from the quote mark not allowed
keyboard, including those generated using the
ANY CHAR key

literal form of image specifier :

image
specifier list

Item

1/0 path name

record number

device selector

source string name

subscript

image line number

image line label

image specifier

numeric name

string name

beginning position

ending position

substring length

image
spec if ier list

Description/Default

name assigned to a device, devices, mass storage
file, or buffer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of a string variable

numeric expression, rounded to an integer

integer constant identifying an IMAGE statement

name identifying an IMAGE statement

string expression

name of a numeric variable

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range
Restrictions

ENTER 119

any valid name
(see ASSIGN)

1 thru 231-1

(see Glossary)

any valid name

- 32 767 thru + 32 767
(see "array" in

Glossary)

1 thru 32766

any valid name

(see drawing)

any valid name

any valid name

1 thru 32767
(see "substring"

in Glossary)

o thru 32767
(see "substring"

in Glossary)

o thru 32 767
(see "substring"

in Glossary)

image specifier list

repeat factor

literal

literal (see next drawing)

integer constant 1 thru 32 767

string constant composed of characters from the quote mark not allowed
keyboard, including those generated using the
ANY CHAR key

120 ENTER

image specifier list

%

K

-K

B

W

+

r-------------------------------~Hr_----------------------------~

f-------------------+{ y)-------------------t

Shad e d items
req uir e 10

Rad i x specifier cannot
be used without a
dlg1t specifier.

120 ENTER

image specifier list

%

K

-K

B

W

+

r-------------------------------~Hr_----------------------------~

f-------------------+{ y)-------------------t

Shad e d items
req uir e 10

Rad i x specifier cannot
be used without a
dlg1t specifier.

Example Statements
ENTER 705;Number,Strins$
ENTER @File;Array(*)
ENTER @Source USING FrTlt5iIterrllll tIterrl(2) tIterrl (3)
ENTER 12 USING 1#,GA " ;A$[2;GJ

Semantics
The Number Builder

ENTER 121

If the data being received is ASCII and the associated variable is numeric, a number builder is
used to create a numeric quantity from the ASCII representation. The number builder ignores all
leading non-numeric characters, ignores all blanks, and terminates on the first non-numeric
character, or the first character received with EO! true. (Numeric characters are 0 thru 9, +, -,
decimal point, e, and E, in a meaningful numeric order.) If the number cannot be converted to the
type of the associated variable, an error is generated. If more digits are received than can be
stored in a variable of type REAL, the rightmost digits are lost, but any exponent will be built
correctly. Overflow occurs only if the exponent overflows.

Arrays
Entire arrays may be entered by using the asterisk specifier. Each element in an array is treated as
an item by the ENTER statement, as if the elements were listed separately. The array is filled in
row major order (rightmost subscript varies fastest.)

Files as Source
If an I/O path has been assigned to a file , the file may be read with ENTER statements. The file
must be an ASCII or BOAT file. The attributes specified in the ASSIGN statement are used only if
the file is a BOAT file. Oata read from an ASCII file is always in ASCII format. Oata read from a
BOAT file is considered to be in internal format if FORMAT is OFF, and is read as ASCII
characters if FORMAT is ON.

Serial access is available for both ASCII and BOAT files. Random access is available for BOAT
files. The file pointer is important to both serial and random access. The file pointer is set to the
beginning of the file when the file is opened by an ASSIGN. The file pointer always points to the
next byte available for ENTER operations.

Random access uses the record number parameter to read items from a specific location in a file.
The record specified must be before the end-of-file. The ENTER begins at the beginning of the
specified record.

It is recommended that random and serial access to the same file not be mixed. Also, data should
be entered into variables of the same type as those used to output it (e.g. string for string, REAL
for REAL, etc.).

Example Statements
ENTER 705;Number,Strins$
ENTER @File;Array(*)
ENTER @Source USING FrTlt5iIterrllll tIterrl(2) tIterrl (3)
ENTER 12 USING 1#,GA " ;A$[2;GJ

Semantics
The Number Builder

ENTER 121

If the data being received is ASCII and the associated variable is numeric, a number builder is
used to create a numeric quantity from the ASCII representation. The number builder ignores all
leading non-numeric characters, ignores all blanks, and terminates on the first non-numeric
character, or the first character received with EO! true. (Numeric characters are 0 thru 9, +, -,
decimal point, e, and E, in a meaningful numeric order.) If the number cannot be converted to the
type of the associated variable, an error is generated. If more digits are received than can be
stored in a variable of type REAL, the rightmost digits are lost, but any exponent will be built
correctly. Overflow occurs only if the exponent overflows.

Arrays
Entire arrays may be entered by using the asterisk specifier. Each element in an array is treated as
an item by the ENTER statement, as if the elements were listed separately. The array is filled in
row major order (rightmost subscript varies fastest.)

Files as Source
If an I/O path has been assigned to a file , the file may be read with ENTER statements. The file
must be an ASCII or BOAT file. The attributes specified in the ASSIGN statement are used only if
the file is a BOAT file. Oata read from an ASCII file is always in ASCII format. Oata read from a
BOAT file is considered to be in internal format if FORMAT is OFF, and is read as ASCII
characters if FORMAT is ON.

Serial access is available for both ASCII and BOAT files. Random access is available for BOAT
files. The file pointer is important to both serial and random access. The file pointer is set to the
beginning of the file when the file is opened by an ASSIGN. The file pointer always points to the
next byte available for ENTER operations.

Random access uses the record number parameter to read items from a specific location in a file.
The record specified must be before the end-of-file. The ENTER begins at the beginning of the
specified record.

It is recommended that random and serial access to the same file not be mixed. Also, data should
be entered into variables of the same type as those used to output it (e.g. string for string, REAL
for REAL, etc.).

122 ENTER

Devices as Source
An 1/0 path name or a device selector may be used to ENTER from a device. If a device selector is
used, the default system attributes are used (see ASSIGN). If an lIO path name is used, the
ASSIGN statement determines the attributes used. If multiple devices were specified in the
ASSIGN, the ENTER sets the first device to be talker, and the rest to be listeners.

If FORMAT ON is the current attribute, the items are read as ASCII. If FORMAT OFF is the
current attribute, items are read from the device in the computer' s internal format. Two bytes are
read for each INTEGER, eight bytes for each REAL. Each string entered consists of a four byte
header containing the length of the string, followed by the actual string characters. The string
must contain an even number of characters; if the length is odd, an extra byte is entered to give
alignment on the word boundary.

CRT as Source
If the device selector is 1, the ENTER is from the CRT. The ENTER reads characters from the
CRT, beginnning at the current print position (print position may be modified by using TABXY in
a PRINT statement.) The print position is updated as the ENTER progresses. After the last
non-blank character in each line, a line-feed is sent with a simulated " EO!". After the last line is
read, the print position is off the screen. If the print position is off screen when an ENTER is
started, the off-screen text is first scrolled into the last line of the display.

Keyboard as Source
ENTER from device selector 2 may be used to read the keyboard. An entry can be terminated by
pressing (ENTER) , (EXECUTE) , (RETURN) , (CONTINUE), or Gill]. Using (ENTER), (EXECUTE), (RETURN) or
Gill] causes a CRILF to be appended to the entry. The (CONTINUE) key adds no characters to the
entry and does not terminated the ENTER statement. If an ENTER is stepped into, it is stepped out of,
even if the (CONTINUE) key is pressed. An HP-IB EOI may be simulated by pressing ~ c=L)
before the character to be sent, if this feature has been enabled by an appropriate CONTROL
statement to the keyboard (see the Control and Status Registers in the back of this book) .

Strings as Source
If a string name is used as the source, the string is treated similarly to a file. However, there is no
file pointer; each ENTER begins at the beginning of the string, and reads serially within the string.

Buffers as Source (Requires TRANS)
When entering from an lIO path assigned to a buffer, data is removed from the buffer beginning
at the location indicated by the buffer' s empty pointer. As data is received, the current number­
of-bytes register and empty pointer are adjusted accordingly. Encountering the fill pointer (buffer
empty) produces an error unless a continuous inbound TRANSFER is filling the buffer. In this
case, the ENTER will wait until more data is placed in the buffer.

Since devices are logically bound to buffers, an ENTER statement cannot intercept data while it is
traveling between the device and the buffer. If an lIO path is currently being used in an outbound
TRANSFER, and an ENTER statement uses it as a source, execution of the ENTER is deferred
until the completion of the TRANSFER. An ENTER can be concurrent with an inbound TRANS­
FER only if the source is the lIO path assigned to the buffer.

An ENTER from a string variable that is also a buffer will not update the buffer' s pointers and may
return meaningless data.

122 ENTER

Devices as Source
An 1/0 path name or a device selector may be used to ENTER from a device. If a device selector is
used, the default system attributes are used (see ASSIGN). If an lIO path name is used, the
ASSIGN statement determines the attributes used. If multiple devices were specified in the
ASSIGN, the ENTER sets the first device to be talker, and the rest to be listeners.

If FORMAT ON is the current attribute, the items are read as ASCII. If FORMAT OFF is the
current attribute, items are read from the device in the computer' s internal format. Two bytes are
read for each INTEGER, eight bytes for each REAL. Each string entered consists of a four byte
header containing the length of the string, followed by the actual string characters. The string
must contain an even number of characters; if the length is odd, an extra byte is entered to give
alignment on the word boundary.

CRT as Source
If the device selector is 1, the ENTER is from the CRT. The ENTER reads characters from the
CRT, beginnning at the current print position (print position may be modified by using TABXY in
a PRINT statement.) The print position is updated as the ENTER progresses. After the last
non-blank character in each line, a line-feed is sent with a simulated " EO!". After the last line is
read, the print position is off the screen. If the print position is off screen when an ENTER is
started, the off-screen text is first scrolled into the last line of the display.

Keyboard as Source
ENTER from device selector 2 may be used to read the keyboard. An entry can be terminated by
pressing (ENTER) , (EXECUTE) , (RETURN) , (CONTINUE), or Gill]. Using (ENTER), (EXECUTE), (RETURN) or
Gill] causes a CRILF to be appended to the entry. The (CONTINUE) key adds no characters to the
entry and does not terminated the ENTER statement. If an ENTER is stepped into, it is stepped out of,
even if the (CONTINUE) key is pressed. An HP-IB EOI may be simulated by pressing ~ c=L)
before the character to be sent, if this feature has been enabled by an appropriate CONTROL
statement to the keyboard (see the Control and Status Registers in the back of this book) .

Strings as Source
If a string name is used as the source, the string is treated similarly to a file. However, there is no
file pointer; each ENTER begins at the beginning of the string, and reads serially within the string.

Buffers as Source (Requires TRANS)
When entering from an lIO path assigned to a buffer, data is removed from the buffer beginning
at the location indicated by the buffer' s empty pointer. As data is received, the current number­
of-bytes register and empty pointer are adjusted accordingly. Encountering the fill pointer (buffer
empty) produces an error unless a continuous inbound TRANSFER is filling the buffer. In this
case, the ENTER will wait until more data is placed in the buffer.

Since devices are logically bound to buffers, an ENTER statement cannot intercept data while it is
traveling between the device and the buffer. If an lIO path is currently being used in an outbound
TRANSFER, and an ENTER statement uses it as a source, execution of the ENTER is deferred
until the completion of the TRANSFER. An ENTER can be concurrent with an inbound TRANS­
FER only if the source is the lIO path assigned to the buffer.

An ENTER from a string variable that is also a buffer will not update the buffer' s pointers and may
return meaningless data.

ENTER 123

ENTER With USING
When the computer executes an ENTER USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun­
tered. If no variable is required for the field specifier, the field specifier is acted upon without
referencing the enter items. When the field specifer references a variable, bytes are entered and
used to create a value for the next item in the enter list. Each element in an array is considered a
separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
enter item. If the image specifiers are exhausted before the enter items, the specifiers are reused,
starting at the beginning of the specifier list.

Entry into a string variable always terminates when the dimensioned length of the string is
reached. If more variables remain in the enter list when this happens, the next character received
is associated with the next item in the list.

When USING is specified, all data is interpreted as ASCII characters. FORMAT ON is always
assumed with USING, regardless of any attempt to specify FORMAT OFF.

Effects of the image specifiers on the ENTER statement are shown in the following table:

ENTER 123

ENTER With USING
When the computer executes an ENTER USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun­
tered. If no variable is required for the field specifier, the field specifier is acted upon without
referencing the enter items. When the field specifer references a variable, bytes are entered and
used to create a value for the next item in the enter list. Each element in an array is considered a
separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
enter item. If the image specifiers are exhausted before the enter items, the specifiers are reused,
starting at the beginning of the specifier list.

Entry into a string variable always terminates when the dimensioned length of the string is
reached. If more variables remain in the enter list when this happens, the next character received
is associated with the next item in the list.

When USING is specified, all data is interpreted as ASCII characters. FORMAT ON is always
assumed with USING, regardless of any attempt to specify FORMAT OFF.

Effects of the image specifiers on the ENTER statement are shown in the following table:

124 ENTER

Image
Specifier

K

Meaning

Freefield Entry.

Numeric: Entered characters are sent to the number builder. Leading non-numeric char­
acters are ignored. All blanks are ignored. Trailing non-numeric characters and
characters sent with EOI true are delimiters. Numeric characters include digits,
decimal point, +, -, e, and E when their order is meaningful.

String: Entered characters are placed in the string. Carriage-return not immediately
followed by line-feed is entered into the string. Entry to a string terminates on
CR/LF, LF, a character received with EO[true, or when the dimensioned length
of the string is reached.

- K Like K except that LF is entered into a string, and thus CR/LF and LF do not terminate the
entry.

H Like K, except that the European number format is used. Thus, a comma is the radix
indicator and a period is a terminator for a numeric item. (Requires [0)

- H Same as - K for strings; same as H for numbers. (Requires [0)

S Same action as D.

M Same action as D.

o Demands a character. Non-numerics are accepted to fill the character count. Blanks are
ignored, other non-numerics are delimiters.

Z Same action as D.

* Same action as D. (Requires 10)

Same action as D.

R

E

ESZ

ESZZ

Like 0 , R demands a character. When R is used in a numeric image, it directs the number
builder to use the European number format. Thus, a comma is the radix indicator and a
period is a terminator for the numeric item. (Requires [0)

Same action as 40.

Same action as 3D.

Same action as 40.

124 ENTER

Image
Specifier

K

Meaning

Freefield Entry.

Numeric: Entered characters are sent to the number builder. Leading non-numeric char­
acters are ignored. All blanks are ignored. Trailing non-numeric characters and
characters sent with EOI true are delimiters. Numeric characters include digits,
decimal point, +, -, e, and E when their order is meaningful.

String: Entered characters are placed in the string. Carriage-return not immediately
followed by line-feed is entered into the string. Entry to a string terminates on
CR/LF, LF, a character received with EO[true, or when the dimensioned length
of the string is reached.

- K Like K except that LF is entered into a string, and thus CR/LF and LF do not terminate the
entry.

H Like K, except that the European number format is used. Thus, a comma is the radix
indicator and a period is a terminator for a numeric item. (Requires [0)

- H Same as - K for strings; same as H for numbers. (Requires [0)

S Same action as D.

M Same action as D.

o Demands a character. Non-numerics are accepted to fill the character count. Blanks are
ignored, other non-numerics are delimiters.

Z Same action as D.

* Same action as D. (Requires 10)

Same action as D.

R

E

ESZ

ESZZ

Like 0 , R demands a character. When R is used in a numeric image, it directs the number
builder to use the European number format. Thus, a comma is the radix indicator and a
period is a terminator for the numeric item. (Requires [0)

Same action as 40.

Same action as 3D.

Same action as 40.

Image
Specifier

ESZZZ

A

X

literal

B

W

Y

Meaning

Same action as 50.

Demands a string character. Any character received is placed in the string.

Skips a character.

Skips one character for each character in the literal.

Demands one byte. The byte becomes a numeric quantity.

ENTER 125

Demands one 16-bit word, which is interpreted as a 16-bit, two's-complement integer. If
either an 110 path name with the BYTE attribute or a device selector is used to access an
8-bit interface, two bytes will be entered; the most-significant byte is entered first. If an 110
path name with the BYTE attribute is used to access a 16-bit interface, the BYTE attribute is
overridden and one word is entered in a single operation. If an 110 path name with the
WORD attribute is used to access a 16-bit interface, one byte is entered and ignored when
necessary to achieve alignment on a word boundary. If the source is a file , string variable, or
buffer, the WORD attribute is ignored and all data are entered as bytes; however, one byte
will be entered and ignored when necessary to achieve alignment on a word boundary.

Like W, except that pad bytes are never entered to achieve word alignment. If an 1/0 path
name with the BYTE is used to access a 16-bit interface, the BYTE attribute is not overrid­
den (as with W specifier above). (Requires 10)

Statement is terminated when the last ENTER item is terminated. EOI and line-feed are item
terminators, and early termination is not allowed.

% Like #, except that an END indication (such as EOI or end-of-file) is an immediate state­
ment terminator. Otherwise, no statement terminator is required. Early termination is
allowed if the current item is satisfied.

+ Specifies that an END indication is required with the last character of the last item to
terminate the ENTER statement. Line-feeds are not statement terminators. Line-feed is an
item terminator unless that function is suppressed by - K or - H. (Requires 10)

Specifies that a line-feed terminator is required as the last character of the last item to
terminate the statement. EOI is ignored, and other END indications, such as EOF or end-of­
data, cause an error if encountered before the line-feed. (Requires 10)

Demands a new field; skips all characters to the next line-feed. EOI is ignored.

L Ignored for ENTER.

@ Ignored for ENTER.

Image
Specifier

ESZZZ

A

X

literal

B

W

Y

Meaning

Same action as 50.

Demands a string character. Any character received is placed in the string.

Skips a character.

Skips one character for each character in the literal.

Demands one byte. The byte becomes a numeric quantity.

ENTER 125

Demands one 16-bit word, which is interpreted as a 16-bit, two's-complement integer. If
either an 110 path name with the BYTE attribute or a device selector is used to access an
8-bit interface, two bytes will be entered; the most-significant byte is entered first. If an 110
path name with the BYTE attribute is used to access a 16-bit interface, the BYTE attribute is
overridden and one word is entered in a single operation. If an 110 path name with the
WORD attribute is used to access a 16-bit interface, one byte is entered and ignored when
necessary to achieve alignment on a word boundary. If the source is a file , string variable, or
buffer, the WORD attribute is ignored and all data are entered as bytes; however, one byte
will be entered and ignored when necessary to achieve alignment on a word boundary.

Like W, except that pad bytes are never entered to achieve word alignment. If an 1/0 path
name with the BYTE is used to access a 16-bit interface, the BYTE attribute is not overrid­
den (as with W specifier above). (Requires 10)

Statement is terminated when the last ENTER item is terminated. EOI and line-feed are item
terminators, and early termination is not allowed.

% Like #, except that an END indication (such as EOI or end-of-file) is an immediate state­
ment terminator. Otherwise, no statement terminator is required. Early termination is
allowed if the current item is satisfied.

+ Specifies that an END indication is required with the last character of the last item to
terminate the ENTER statement. Line-feeds are not statement terminators. Line-feed is an
item terminator unless that function is suppressed by - K or - H. (Requires 10)

Specifies that a line-feed terminator is required as the last character of the last item to
terminate the statement. EOI is ignored, and other END indications, such as EOF or end-of­
data, cause an error if encountered before the line-feed. (Requires 10)

Demands a new field; skips all characters to the next line-feed. EOI is ignored.

L Ignored for ENTER.

@ Ignored for ENTER.

126 ENTER

ENTER Statement Termination
A simple ENTER statement (one without USING) expects to give values to all the variables in the
enter list and then receive a statement terminator. A statement terminator is an EOI, a line-feed
received at the end of the last variable (or within 256 characters after the end of the last variable),
an end-of-data indication, or an end-of-file . If a statement terminator is received before all the
variables are satisfied, or no terminator is received within 256 bytes after the last variable is
satisfied, an error occurs. The terminator requirements can be altered by using images.

An ENTER statement with USING, but without a % or # image specifier, is different from a simple
ENTER in one respect. EOI is not treated as a statement terminator unless it occurs on or after the
last variable. Thus, EOI is treated like a line-feed and can be used to terminate entry into each
variable.

An ENTER statement with USING that specifies a # image requires no statement terminator
other than a satisfied enter list. EOI and line feed end the entry into individual variables. The
ENTER statement terminates when the variable list has been satisfied.

An ENTER statement with USING that specifies a % image allows EOI as a statement terminator.
Like the # specifier, no special terminator is required. Unlike the # specifier, if an EOI is received,
it is treated as an immediate statement terminator. If the EOI occurs at a normal boundary
between items, the ENTER statement terminates without error and leaves the value of any
remaining variables unchanged.

EOL
See the ASSIGN, PRINTALL IS , and PRINTER IS statements.

EOR
See the OFF EaR, ON EaR, and TRANSFER statements.

EOT
See the OFF EaT and ON EaT statements.

126 ENTER

ENTER Statement Termination
A simple ENTER statement (one without USING) expects to give values to all the variables in the
enter list and then receive a statement terminator. A statement terminator is an EOI, a line-feed
received at the end of the last variable (or within 256 characters after the end of the last variable),
an end-of-data indication, or an end-of-file . If a statement terminator is received before all the
variables are satisfied, or no terminator is received within 256 bytes after the last variable is
satisfied, an error occurs. The terminator requirements can be altered by using images.

An ENTER statement with USING, but without a % or # image specifier, is different from a simple
ENTER in one respect. EOI is not treated as a statement terminator unless it occurs on or after the
last variable. Thus, EOI is treated like a line-feed and can be used to terminate entry into each
variable.

An ENTER statement with USING that specifies a # image requires no statement terminator
other than a satisfied enter list. EOI and line feed end the entry into individual variables. The
ENTER statement terminates when the variable list has been satisfied.

An ENTER statement with USING that specifies a % image allows EOI as a statement terminator.
Like the # specifier, no special terminator is required. Unlike the # specifier, if an EOI is received,
it is treated as an immediate statement terminator. If the EOI occurs at a normal boundary
between items, the ENTER statement terminates without error and leaves the value of any
remaining variables unchanged.

EOL
See the ASSIGN, PRINTALL IS , and PRINTER IS statements.

EOR
See the OFF EaR, ON EaR, and TRANSFER statements.

EOT
See the OFF EaT and ON EaT statements.

Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

ERRDS

This function returns an INTEGER representing the device selector of the lIO resource involved
in the most recent lIO error.

Example Statements
IF ERRDS=701 THEN GOSUB Printer_fault
IF ERRN=163 THEN Missin~=ERRDS

Semantics
The device selector will include a primary address if the interface addressed allows it (Le. HP-IB) .
If the resource is a file , the device specifier of the drive containing the file is returned. If the
resource is not a device, 0 is returned. If no lIO error has occured in a running program since
power-up, SCRATCH A, or pre-run, 0 is returned.

If an error occurs in a TRANSFER statement without WAIT, the error number is recorded in the
assignment table associated with the lIO path name assigned to the non-buffer end of the transfer
instead of being reported immediately. It is not reported until the next reference to the lIO path
name, and ERRDS will not be updated until this time.

127

Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

ERRDS

This function returns an INTEGER representing the device selector of the lIO resource involved
in the most recent lIO error.

Example Statements
IF ERRDS=701 THEN GOSUB Printer_fault
IF ERRN=163 THEN Missin~=ERRDS

Semantics
The device selector will include a primary address if the interface addressed allows it (Le. HP-IB) .
If the resource is a file , the device specifier of the drive containing the file is returned. If the
resource is not a device, 0 is returned. If no lIO error has occured in a running program since
power-up, SCRATCH A, or pre-run, 0 is returned.

If an error occurs in a TRANSFER statement without WAIT, the error number is recorded in the
assignment table associated with the lIO path name assigned to the non-buffer end of the transfer
instead of being reported immediately. It is not reported until the next reference to the lIO path
name, and ERRDS will not be updated until this time.

127

128

ERRL
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

This function returns a value of 1 if the most recent error occurred in the specified line; otherwise,
a value of 0 is returned.

Item Description/Default

line number integer constant

line label name of a program line

Example Statements
IF ERRL(220) THEN Parse_error
IF NOT ERRL(ParaMeters) THEN Other

Semantics

Range
Restrictions

1 thru 32766

any valid name

The specified line must be in the same context as the ERRL function, or an error will occur.

If an error occurs in a TRANSFER statement without WAIT, the error number is recorded in the
assignment table associated with the non-buffer end of the transfer instead of being reported
immediately. It is not reported until the next reference to the I/O path name, and ERRL will not be
updated until this time. Therefore, ERRL will actually refer to the line containing the new
reference to the I/O path name, not the line containing the TRANSFER statement that caused the
error.

Data Communications
This function returns 0 for all Data Communications errors.

128

ERRL
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

This function returns a value of 1 if the most recent error occurred in the specified line; otherwise,
a value of 0 is returned.

Item Description/Default

line number integer constant

line label name of a program line

Example Statements
IF ERRL(220) THEN Parse_error
IF NOT ERRL(ParaMeters) THEN Other

Semantics

Range
Restrictions

1 thru 32766

any valid name

The specified line must be in the same context as the ERRL function, or an error will occur.

If an error occurs in a TRANSFER statement without WAIT, the error number is recorded in the
assignment table associated with the non-buffer end of the transfer instead of being reported
immediately. It is not reported until the next reference to the I/O path name, and ERRL will not be
updated until this time. Therefore, ERRL will actually refer to the line containing the new
reference to the I/O path name, not the line containing the TRANSFER statement that caused the
error.

Data Communications
This function returns 0 for all Data Communications errors.

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN .. .

None
Yes
Yes
Yes

ERRM$

This function returns the text of the error message associated with the most recent program
execution error.

Example Statements
PRINT ERRM$
Erll$=ERRM$
ENTER Em$;Error_number,Error_line

Semantics
If no error has occurred since power on, prerun, SCRATCH, SCRATCH A, LOAD, or GET, the
null string will be returned. The line number and error number returned in the ERRM$ string are
the same as those used by ERRN and ERRL, which may be surprising when a TRANSFER is in
·effect. For details on the interaction, see ERRL and ERRN.

129

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN .. .

None
Yes
Yes
Yes

ERRM$

This function returns the text of the error message associated with the most recent program
execution error.

Example Statements
PRINT ERRM$
Erll$=ERRM$
ENTER Em$;Error_number,Error_line

Semantics
If no error has occurred since power on, prerun, SCRATCH, SCRATCH A, LOAD, or GET, the
null string will be returned. The line number and error number returned in the ERRM$ string are
the same as those used by ERRN and ERRL, which may be surprising when a TRANSFER is in
·effect. For details on the interaction, see ERRL and ERRN.

129

130

ERRN
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the number of the most recent program execution error. If no error has
occurred, a value of 0 is returned.

Example Statements
IF ERRN=80 THEN Disc_out
DISP "Error NurTlber" ; ERRN

Semantics
If an error occurs in a TRANSFER statement without WAIT, the error number is recorded in the
assignment table associated with the non-buffer end of the transfer instead of being reported
immediately. It is not reported until the next reference to the I/O path name, and ERRN will not be
updated until this time.

ERROR
See the OFF ERROR and ON ERROR statements.

EXIT IF
See the LOOP statement.

130

ERRN
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the number of the most recent program execution error. If no error has
occurred, a value of 0 is returned.

Example Statements
IF ERRN=80 THEN Disc_out
DISP "Error NurTlber" ; ERRN

Semantics
If an error occurs in a TRANSFER statement without WAIT, the error number is recorded in the
assignment table associated with the non-buffer end of the transfer instead of being reported
immediately. It is not reported until the next reference to the I/O path name, and ERRN will not be
updated until this time.

ERROR
See the OFF ERROR and ON ERROR statements.

EXIT IF
See the LOOP statement.

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
Yes
Yes
Yes

This operator returns a 1 or a 0 based on the logical exclusive-or of its arguments.

numeric
expression

nume ric
e xpression

Example Statements
OK=First_pass EXOR Old_data
IF A EXOR FlaS THEN Exi t

Semantics

EXOR

A non-zero value (positive or negative) is treated as a logical 1; only a zero is treated as a logical
O.

The EXOR function is summarized in this table .

A

o
o
1
1

B

o
1
o
1

AEXORB

o
1
1
o

131

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
Yes
Yes
Yes

This operator returns a 1 or a 0 based on the logical exclusive-or of its arguments.

numeric
expression

nume ric
e xpression

Example Statements
OK=First_pass EXOR Old_data
IF A EXOR FlaS THEN Exi t

Semantics

EXOR

A non-zero value (positive or negative) is treated as a logical 1; only a zero is treated as a logical
O.

The EXOR function is summarized in this table .

A

o
o
1
1

B

o
1
o
1

AEXORB

o
1
1
o

131

132

EXP
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This function raises e to the power of the argument. In the computer, Napierian
e = 2.718281828459 as.

Item Description/Default

argument numeric expression

Example Statements
Y=E)-(P(-}C' Z/Z)
PRINT "e to the";Z;"=";E}<P(Z)

Range
Restrictions

-708.396418532264
thru

+ 709.782 712 893 383 8

132

EXP
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This function raises e to the power of the argument. In the computer, Napierian
e = 2.718281828459 as.

Item Description/Default

argument numeric expression

Example Statements
Y=E)-(P(-}C' Z/Z)
PRINT "e to the";Z;"=";E}<P(Z)

Range
Restrictions

-708.396418532264
thru

+ 709.782 712 893 383 8

133

(
EXPANDED

See the DUMP DEVICE IS statement.

FILL
See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT, and SYMBOL statements.

133

(
EXPANDED

See the DUMP DEVICE IS statement.

FILL
See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT, and SYMBOL statements.

134

FIND
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

This command allows you to find a character sequence while editing a program.

text

te x t r-.-----------------------~------------------------~~

Item

literal

beginning
l i ne nu mber

b e g in n i n g
li n e l ab el

Description/Default

ending
li n e numb e r

e ndi ng
l i n e l a bel

Range
Restrictions

1 to 32766

PDEV
Yes
No
No

beginning line number

beginning line label

ending line number

ending line label

integer constant identifying program line

name of a program line any valid name

integer constant identifying program line

name of a program line

Example Statements
FIND "SUB Print"

FIND "Cost=" IN 250tLabel1
FIND "Inten!al" IN 1550

Semantics

1 to 32766

any valid name

This command causes a search to be made through the program currently in memory. It
compares the specified text to an internal "listing" of the program. Therefore, line numbers,
keywords, variables, and constants can be found .

If an occurrence of the specified text is found, the line containing it is displayed with the cursor
under the first character of that occurrence. The line can be modified or deleted if desired. If
(ENTER), (RETURN) or the delete line key is pressed, the search resumes with the next character.
Alternately, the search is resumed without modifying the program when (CONTINUE) is pressed. Note
that overlapping occurrences will not be detected; e.g, if you were looking for "issi", only one
occurrence would be found in "Mississippi" .

134

FIND
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

This command allows you to find a character sequence while editing a program.

text

te x t r-.-----------------------~------------------------~~

Item

literal

beginning
l i ne nu mber

b e g in n i n g
li n e l ab el

Description/Default

ending
li n e numb e r

e ndi ng
l i n e l a bel

Range
Restrictions

1 to 32766

PDEV
Yes
No
No

beginning line number

beginning line label

ending line number

ending line label

integer constant identifying program line

name of a program line any valid name

integer constant identifying program line

name of a program line

Example Statements
FIND "SUB Print"

FIND "Cost=" IN 250tLabel1
FIND "Inten!al" IN 1550

Semantics

1 to 32766

any valid name

This command causes a search to be made through the program currently in memory. It
compares the specified text to an internal "listing" of the program. Therefore, line numbers,
keywords, variables, and constants can be found .

If an occurrence of the specified text is found, the line containing it is displayed with the cursor
under the first character of that occurrence. The line can be modified or deleted if desired. If
(ENTER), (RETURN) or the delete line key is pressed, the search resumes with the next character.
Alternately, the search is resumed without modifying the program when (CONTINUE) is pressed. Note
that overlapping occurrences will not be detected; e.g, if you were looking for "issi", only one
occurrence would be found in "Mississippi" .

FIND 135

If the Beginning Line Number is given , the search commences at that line number. If the specified
line number doesn' t exist, the next line that does exist is used. If the Beginning Line Number is not
specified, then the search begins at the line currently being edited; or, (if you' re not in edit mode),
with the first line of the program. If a specified label doesn't exist, an error occurs.

The search continues through the last character of the Ending Line; or (if that was not·specified)
the end of the program. If you specify an Ending Line Number that does not exist, the highest­
numbered line which occurs before that line number is used.

If there were no occurrences found, the cursor is left at the end of the first line searched. If one or
more occurrences were found, the cursor is left at the end of the line containing the last
occurrence.

A FIND command is cancelled by entering a line after having changed its line number. Other keys
which will cancel a FIND are (EXECUTE) , (CLR 1/0) , (BREAK) , CIJ, a=) , or (INS LN) . Any of the keys
which cancel EDIT mode will also cancel a FIND.

FIND is not allowed while a program is running; however, it may be executed while a program is
paused. The program is continuable if it has not been altered by preSSing (ENTER), (RETURN),
(EXECUTE) or (DEL LN).

While in the FIND mode, keyboard execution is only possible with the (EXECUTE) key. Using (ENTER) or
(RETURN) causes an error.

FIND 135

If the Beginning Line Number is given , the search commences at that line number. If the specified
line number doesn' t exist, the next line that does exist is used. If the Beginning Line Number is not
specified, then the search begins at the line currently being edited; or, (if you' re not in edit mode),
with the first line of the program. If a specified label doesn't exist, an error occurs.

The search continues through the last character of the Ending Line; or (if that was not·specified)
the end of the program. If you specify an Ending Line Number that does not exist, the highest­
numbered line which occurs before that line number is used.

If there were no occurrences found, the cursor is left at the end of the first line searched. If one or
more occurrences were found, the cursor is left at the end of the line containing the last
occurrence.

A FIND command is cancelled by entering a line after having changed its line number. Other keys
which will cancel a FIND are (EXECUTE) , (CLR 1/0) , (BREAK) , CIJ, a=) , or (INS LN) . Any of the keys
which cancel EDIT mode will also cancel a FIND.

FIND is not allowed while a program is running; however, it may be executed while a program is
paused. The program is continuable if it has not been altered by preSSing (ENTER), (RETURN),
(EXECUTE) or (DEL LN).

While in the FIND mode, keyboard execution is only possible with the (EXECUTE) key. Using (ENTER) or
(RETURN) causes an error.

136

FN Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This keyword transfers program execution to the specified user-defined function and may pass
items to the function. The value returned by the function is used in place of the function call
when evaluating the statement containing the function call.

pass parameters:

-.L.--,-------+i@

variable
name

Passed by Reference

Passed by Value

string expressions containing monadic
operators. dyadic operators. or functions

numeric expression containing monadic
operators. dyadic operators. or functions

t

136

FN Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This keyword transfers program execution to the specified user-defined function and may pass
items to the function. The value returned by the function is used in place of the function call
when evaluating the statement containing the function call.

pass parameters:

-.L.--,-------+i@

variable
name

Passed by Reference

Passed by Value

string expressions containing monadic
operators. dyadic operators. or functions

numeric expression containing monadic
operators. dyadic operators. or functions

t

(

Item

function name

110 path name

variable name

substring

literal

numeric constant

Description/ Default

name of a user-defined function

name assigned to a device, devices, or mass
storage file

name of a numeric or string variable

string expression containing substring nota­
tion

string constant composed of characters from
the keyboard, including those generated us­
ing the ANY CHAR key

numeric quantity expressed using numerals ,
and optionally a sign, decimal point, or
exponent notation

Example Statements
PRINT X;FNChange(X)
Final$=FNTrim$(First$)
Res u 1 t = F N Pro un d (I t e III ,p 0 1,,1 e r)

Semantics

Range
Restrictions

any valid name

any valid name
(see ASSIGN)

any valid name

(see Glossary)

FN 137

A user-defined function may be invoked as part of a stored program line or as part of a statement
executed from the keyboard . If the function name is typed and then (EXECUTE), (ENTER) or
(RETURN) is pressed, the value returned by the function is displayed. The dollar sign suffix indicates
that the returned value will be a string. User-defined functions are created with the DEF FN statement.

The pass parameters must be of the same type (numeric or string) as the corresponding
parameters in the DEF FN statement. Numeric values passed by value are converted to the
numeric type (REAL or INTEGER) of the corresponding formal parameter. Variables passed by
reference must match the type of the corresponding parameter in the DEF FN statement
exactly. An entire array may be passed by reference by using the asterisk specifier.

Invoking a user-defined function changes the program context. The functions may be invoked
recursively.

If there is more than one user-defined function with the same name, the lowest numbered one
is invoked by FN.

(

Item

function name

110 path name

variable name

substring

literal

numeric constant

Description/ Default

name of a user-defined function

name assigned to a device, devices, or mass
storage file

name of a numeric or string variable

string expression containing substring nota­
tion

string constant composed of characters from
the keyboard, including those generated us­
ing the ANY CHAR key

numeric quantity expressed using numerals ,
and optionally a sign, decimal point, or
exponent notation

Example Statements
PRINT X;FNChange(X)
Final$=FNTrim$(First$)
Res u 1 t = F N Pro un d (I t e III ,p 0 1,,1 e r)

Semantics

Range
Restrictions

any valid name

any valid name
(see ASSIGN)

any valid name

(see Glossary)

FN 137

A user-defined function may be invoked as part of a stored program line or as part of a statement
executed from the keyboard . If the function name is typed and then (EXECUTE), (ENTER) or
(RETURN) is pressed, the value returned by the function is displayed. The dollar sign suffix indicates
that the returned value will be a string. User-defined functions are created with the DEF FN statement.

The pass parameters must be of the same type (numeric or string) as the corresponding
parameters in the DEF FN statement. Numeric values passed by value are converted to the
numeric type (REAL or INTEGER) of the corresponding formal parameter. Variables passed by
reference must match the type of the corresponding parameter in the DEF FN statement
exactly. An entire array may be passed by reference by using the asterisk specifier.

Invoking a user-defined function changes the program context. The functions may be invoked
recursively.

If there is more than one user-defined function with the same name, the lowest numbered one
is invoked by FN.

138

FNEND
See the DEF FN statement.

138

FNEND
See the DEF FN statement.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

FOR ... NEXT

This construct defines a loop which is repeated until the loop counter passes a specific value.
The step size may be positive or negative.

l oop
counter

Item

loop counter

initial value

final value

step size

program segment

Description/ Default

name of a numeric variable

numeric expression

numeric expression

numeric expression; Default = 1

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may
contain properly nested construct(s}.

Example Program Segments
100 FOR 1=4 TO 0 STEP -.1
110 PRINT IiSQR(I)
120 NDn I

1220 INTEGER Point
1230 FOR Point=1 TO LEN(AS)
1240 CALL Convert(AS[PointilJ)
1250 NE>-(T Point

Semantics

Range
Restrictions

any valid name

The loop counter is set equal to the initial value when the loop is entered. Each time the
corresponding NEXT statement is encountered, the step size (which defaults to 1) is added to
the loop counter, and the new value is tested against the final value. If the final value has not
been passed, the loop is executed again, beginning with the line immediately following the FOR
statement. If the final value has been passed, program execution continues at the line following
the NEXT statement. Note that the loop counter is not equal to the specified final value when
the loop is exited.

139

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

FOR ... NEXT

This construct defines a loop which is repeated until the loop counter passes a specific value.
The step size may be positive or negative.

l oop
counter

Item

loop counter

initial value

final value

step size

program segment

Description/ Default

name of a numeric variable

numeric expression

numeric expression

numeric expression; Default = 1

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may
contain properly nested construct(s}.

Example Program Segments
100 FOR 1=4 TO 0 STEP -.1
110 PRINT IiSQR(I)
120 NDn I

1220 INTEGER Point
1230 FOR Point=1 TO LEN(AS)
1240 CALL Convert(AS[PointilJ)
1250 NE>-(T Point

Semantics

Range
Restrictions

any valid name

The loop counter is set equal to the initial value when the loop is entered. Each time the
corresponding NEXT statement is encountered, the step size (which defaults to 1) is added to
the loop counter, and the new value is tested against the final value. If the final value has not
been passed, the loop is executed again, beginning with the line immediately following the FOR
statement. If the final value has been passed, program execution continues at the line following
the NEXT statement. Note that the loop counter is not equal to the specified final value when
the loop is exited.

139

140 FOR. .. NEXT

The loop counter is also tested against the final value as soon as the values are assigned when
the loop is first entered. If the loop counter has already passed the final value in the direction
the step would be going, the loop is not executed at all. The loop may be exited arbitrarily (such
as with a GOTO) , in which case the loop counter has whatever value it had obtained at the time
the loop was exited.

The initial, final and step size values are calculated when the loop is entered and are used while
the loop is repeating. If a variable or expression is used for any of these values, its value may be
changed after entering the loop without affecting how many times the loop is repeated. Howev­
er, changing the value of the loop counter itself can affect how many times the loop is repeated.

The loop counter variable is allowed in expressions that determine the initial, final, or step size
values. The previous value of the loop counter is not changed until after the initial, final, and
step size values are calculated.

If the step value evaluates to 0, the loop repeats infinitely and no error is given.

Nesting Constructs Properly
Each FOR statement is allowed one and only one matching NEXT statement. The NEXT
statement must be in the same context as the FOR statement. FOR. .. NEXT loops may be
nested, and may be contained in other constructs, as long as the loops and constructs are
properly nested and do not improperly overlap.

FORMAT
See the ASSIGN statement.

140 FOR. .. NEXT

The loop counter is also tested against the final value as soon as the values are assigned when
the loop is first entered. If the loop counter has already passed the final value in the direction
the step would be going, the loop is not executed at all. The loop may be exited arbitrarily (such
as with a GOTO) , in which case the loop counter has whatever value it had obtained at the time
the loop was exited.

The initial, final and step size values are calculated when the loop is entered and are used while
the loop is repeating. If a variable or expression is used for any of these values, its value may be
changed after entering the loop without affecting how many times the loop is repeated. Howev­
er, changing the value of the loop counter itself can affect how many times the loop is repeated.

The loop counter variable is allowed in expressions that determine the initial, final, or step size
values. The previous value of the loop counter is not changed until after the initial, final, and
step size values are calculated.

If the step value evaluates to 0, the loop repeats infinitely and no error is given.

Nesting Constructs Properly
Each FOR statement is allowed one and only one matching NEXT statement. The NEXT
statement must be in the same context as the FOR statement. FOR. .. NEXT loops may be
nested, and may be contained in other constructs, as long as the loops and constructs are
properly nested and do not improperly overlap.

FORMAT
See the ASSIGN statement.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

FRACT

This function returns a number greater than or equal to zero and less than 1, representing the
"fractional part" of the value of its argument. For all X, X = INT(X) + FRACT(X).

numeric
e x pression

Example Statements
PRINT FRACT(}()
Rifht_difits=FRACT(All_difits)

141

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

FRACT

This function returns a number greater than or equal to zero and less than 1, representing the
"fractional part" of the value of its argument. For all X, X = INT(X) + FRACT(X).

numeric
e x pression

Example Statements
PRINT FRACT(}()
Rifht_difits=FRACT(All_difits)

141

142

FRAME
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement draws a frame around the current clipping area using the current pen number
and line type. After drawing the frame, the current pen position coincides with the lower left
corner of the frame, and the pen is up.

FRENCH
See the LEXICAL ORDER IS statement.

142

FRAME
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement draws a frame around the current clipping area using the current pen number
and line type. After drawing the frame, the current pen position coincides with the lower left
corner of the frame, and the pen is up.

FRENCH
See the LEXICAL ORDER IS statement.

Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

GRAPH
Yes
Yes
Yes

"

GCLEAR

This statement clears the graphics display or sends a command to an external plotter to advance the
paper. With bit-mapped displays, the memory is cleared and the alpha is restored.

(GCLEAR)-l

Multi-Plane Bit-Mapped Displays
The GCLEAR statement clears all planes designated as graphics planes with the current graphics
write-mask. This includes any planes which are both alpha and graphics planes. See the
"Multi-Plane Bit-Mapped Displays" section in the Graphics Techniques manual for information
on enabling and displaying specific frame buffer planes.

Note
If any planes in the frame buffer are enabled by both the alpha mask
and the graphics mask, the common planes, as well as the graphics
planes, will be cleared. Then, the alpha data will be redisplayed in the
common planes. This may cause text which was previously hidden or
overwritten by graphics to reappear.

GERMAN
See the LEXICAL ORDER IS statement.

143

Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

GRAPH
Yes
Yes
Yes

"

GCLEAR

This statement clears the graphics display or sends a command to an external plotter to advance the
paper. With bit-mapped displays, the memory is cleared and the alpha is restored.

(GCLEAR)-l

Multi-Plane Bit-Mapped Displays
The GCLEAR statement clears all planes designated as graphics planes with the current graphics
write-mask. This includes any planes which are both alpha and graphics planes. See the
"Multi-Plane Bit-Mapped Displays" section in the Graphics Techniques manual for information
on enabling and displaying specific frame buffer planes.

Note
If any planes in the frame buffer are enabled by both the alpha mask
and the graphics mask, the common planes, as well as the graphics
planes, will be cleared. Then, the alpha data will be redisplayed in the
common planes. This may cause text which was previously hidden or
overwritten by graphics to reappear.

GERMAN
See the LEXICAL ORDER IS statement.

143

144

GESCAPE
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN Yes

This statement is used for communicating device-dependent information.

p ara mete r
array name

return
a r ray na me

Item

device selector

operation selector

parameter array name

return array name

Description/ Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of array which has a specific rank and size,
containing parameters necessary for executing
request

name of array which has a specific rank and size
into which the returned parameters are placed

Example Statements
GESCAPE 28,5 (Selects alternate drawing mode)

(Get the values in the color map) GESCAPE 3,2;Colof_Map(*1

Semantics

Range
Restrictions

(see Glossary)

(device dependent, see
Semantics)

any valid name

any valid name

The parameter array and return array are for sending data to the device and getting data from the
device, respectively. The use of the parameter array is currently unimplemented and is reserved
for future use.

Color Map Information
The number of entries in the color map can be determined with a GESCAPE operation selector 1.
The return array must be one-dimensional with at least one element.

The RGB values of the pens in the the color map can be obtained through GESCAPE operation
selector 2. The return array must be a two-dimensional three-column array with at least one row.
The values returned are in the range on 0 to 1 and are multiples of 1115 (one fifteenth) . The first
row in the array always contains the values for PEN 0; if you want PEN 12, you must have at least
thirteen rows in the array. Array filling occurs until either the array or the color map is exhausted.

144

GESCAPE
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN Yes

This statement is used for communicating device-dependent information.

p ara mete r
array name

return
a r ray na me

Item

device selector

operation selector

parameter array name

return array name

Description/ Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of array which has a specific rank and size,
containing parameters necessary for executing
request

name of array which has a specific rank and size
into which the returned parameters are placed

Example Statements
GESCAPE 28,5 (Selects alternate drawing mode)

(Get the values in the color map) GESCAPE 3,2;Colof_Map(*1

Semantics

Range
Restrictions

(see Glossary)

(device dependent, see
Semantics)

any valid name

any valid name

The parameter array and return array are for sending data to the device and getting data from the
device, respectively. The use of the parameter array is currently unimplemented and is reserved
for future use.

Color Map Information
The number of entries in the color map can be determined with a GESCAPE operation selector 1.
The return array must be one-dimensional with at least one element.

The RGB values of the pens in the the color map can be obtained through GESCAPE operation
selector 2. The return array must be a two-dimensional three-column array with at least one row.
The values returned are in the range on 0 to 1 and are multiples of 1115 (one fifteenth) . The first
row in the array always contains the values for PEN 0; if you want PEN 12, you must have at least
thirteen rows in the array. Array filling occurs until either the array or the color map is exhausted.

(

GESCAPE 145

Determining Hard Clip Limits and GSTORE Array Size
The hard clip limits of the current plotting device can be obtained through executing a GESCAPE
with operation selector 3. The return array must be a one-dimensional INTEGER array with at
least four elements. Values will be returned in the smallest resolvable units for that device. For a
CRT, units are pixels.

Operation selector 3 also returns information useful for GSTORE and GLOAO files . The fifth and sixth
elements returned give the two array dimensions to use (in conjunction with the ALLOCATE

statement) to GSTORE the contents of the specified display. For example, on a HP 98544A display
with all planes enabled for graphics, the dimensions returned would be 256 and 400-256 words
for each of the 400 lines. That is, 1024 pixels wide, and four pixels' worth of information in each
16-bit word. This allows the user to programmatically determine the size of the integer array to
allocate for storing an image and thus avoid machine-dependent code.

Drawing Mode Dominance
The normal drawing mode and the alternate drawing mode can be entered by using GESCAPE
operation selectors 4 and 5, respectively. Drawing in normal mode "covers up" any previously­
drawn image. Drawing in alternate mode with positive pen numbers causes the color-map entry
number at each pixel to be inclusively-ORed with the pen value currently being drawn with.
Drawing in alternate mode with negative pen numbers causes the color-map entry number at
each pixel to be exclusively-ORed with the pen value currently being drawn with. Drawing in
alternate mode with negative pen numbers causes the color-map entry number at each pixel to
be exclusively-ORed with the pen value currently being drawn with.

Multi-Plane Bit-Mapped Displays
The Write-Enable and Display-Enable Masks
If you have a multi-plane frame buffer and display, there are two user-definable masks which
control certain aspects of graphical operations. They are:

• The write-enable mask. This mask is an integer whose bits, from the least-significant bit end,
designate those frame buffer planes which will be affected by graphics operations. Bit values
of 1 denote enabled planes (planes to be written to), and bit values of 0 denote disabled
planes (planes which will not be written to). For example, if you have a four-plane frame
buffer, and you set the write-enable mask to 3 (binary (011), only values in frame buffer
planes 1 and 2 will be modified by graphical operations .

• The display-enable mask. This mask is an integer whose bits, from the least-significant bit
end, deSignate those frame buffer planes which are to be displayed. These bits mayor may
not indicate the same planes as the write-enable mask indicates. That is, you can write to
some planes, and display others. Bit values of 1 denote planes which are to be displayed, and
bit values of 0 denote planes which are not to be displayed. For example, if you have a
four-plane frame buffer, and you set the write-enable mask to 5 (binary 01(1), only values in
frame buffer planes 1 and 3 will be displayed.

NOTE
Both the write-enable mask and the display-enable mask are initial­
ized to all planes that exist in the machine at power up and SCRATCH A
time.

(

GESCAPE 145

Determining Hard Clip Limits and GSTORE Array Size
The hard clip limits of the current plotting device can be obtained through executing a GESCAPE
with operation selector 3. The return array must be a one-dimensional INTEGER array with at
least four elements. Values will be returned in the smallest resolvable units for that device. For a
CRT, units are pixels.

Operation selector 3 also returns information useful for GSTORE and GLOAO files . The fifth and sixth
elements returned give the two array dimensions to use (in conjunction with the ALLOCATE

statement) to GSTORE the contents of the specified display. For example, on a HP 98544A display
with all planes enabled for graphics, the dimensions returned would be 256 and 400-256 words
for each of the 400 lines. That is, 1024 pixels wide, and four pixels' worth of information in each
16-bit word. This allows the user to programmatically determine the size of the integer array to
allocate for storing an image and thus avoid machine-dependent code.

Drawing Mode Dominance
The normal drawing mode and the alternate drawing mode can be entered by using GESCAPE
operation selectors 4 and 5, respectively. Drawing in normal mode "covers up" any previously­
drawn image. Drawing in alternate mode with positive pen numbers causes the color-map entry
number at each pixel to be inclusively-ORed with the pen value currently being drawn with.
Drawing in alternate mode with negative pen numbers causes the color-map entry number at
each pixel to be exclusively-ORed with the pen value currently being drawn with. Drawing in
alternate mode with negative pen numbers causes the color-map entry number at each pixel to
be exclusively-ORed with the pen value currently being drawn with.

Multi-Plane Bit-Mapped Displays
The Write-Enable and Display-Enable Masks
If you have a multi-plane frame buffer and display, there are two user-definable masks which
control certain aspects of graphical operations. They are:

• The write-enable mask. This mask is an integer whose bits, from the least-significant bit end,
designate those frame buffer planes which will be affected by graphics operations. Bit values
of 1 denote enabled planes (planes to be written to), and bit values of 0 denote disabled
planes (planes which will not be written to). For example, if you have a four-plane frame
buffer, and you set the write-enable mask to 3 (binary (011), only values in frame buffer
planes 1 and 2 will be modified by graphical operations .

• The display-enable mask. This mask is an integer whose bits, from the least-significant bit
end, deSignate those frame buffer planes which are to be displayed. These bits mayor may
not indicate the same planes as the write-enable mask indicates. That is, you can write to
some planes, and display others. Bit values of 1 denote planes which are to be displayed, and
bit values of 0 denote planes which are not to be displayed. For example, if you have a
four-plane frame buffer, and you set the write-enable mask to 5 (binary 01(1), only values in
frame buffer planes 1 and 3 will be displayed.

NOTE
Both the write-enable mask and the display-enable mask are initial­
ized to all planes that exist in the machine at power up and SCRATCH A
time.

146 GESCAPE

Operation selector 6 , which works with all CRTs, allows the user to obtain the current graphics
write-enable and display-enable values. The first element of the return array contains the
write-enable mask; the second represents the display-enable mask. The return array must be a
one-dimensional integer array with at least one element. Array filling occurs until either the array
or the masks are exhausted.

Operation selector 7 , which works only with multi-plane Series 300 CRTs, allows the user to set
the graphics write-enable and display-enable values. The first element of the parameter array
contains the write-enable mask; the second represents the display-enable mask. Again, the
parameter array must be a one-dimensional integer array with one or more elements. If only one
element exists , the write-enable mask is set as specified and the display-enable mask remains
unchanged.

Legal values for both masks are:

• 0 through 15 for 4-plane systems,

• 0 through 255 for 8-plane systems.

Absolute Locator Hard Clip Limits
Operation selector 20 sets the hardclip limits for absolute HP-HIL locators. That is, it simulates, in
software, the changing of the hardclip limits. These limits must be inside the largest X and largest
Y, taken individually, for all absolute locators on the HP-HIL bus.

Operation selector 21 returns the current hardclip limits for absolute HP-HIL locators. These are
the values used in GRAPHICS INPUT IS scaling. Operation selector 21 is different than operation
selector 22 in that 22 always returns the values "hardwired" into the device(s) on the HP-HIL
bus, whereas the values returned by operation selector 21 may have come from operation
selector 20 or from the device on the bus.

Operation selector 22 returns the hardware-defined hardclip limits of all absolute locators on the
HP-HIL bus.

For the three GESCAPE selectors above-20, 21 , and 22-the parameter array must be a one­
dimensional integer array. Only the first two entries will be used for 20 and 21 : X2 and Y2. No
space is taken for the Xl and Y1 values, since the coordinates of PI (the lower, left-hand corner)
cannot be changed on HP-HIL absolute locators; Xl and Y1 will always be zeroes. For operation
selector 22, entries will be made until the array is full or all devices on the bus have been covered.
If more array entries exist after the devices are all represented, a-I will be put in what would be
the X coordinate entry of the next device to indicate the end of valid data. (Hardclip limits for
these devices are limited to the range 0 through 32 767.)

Unlike other GESCAPEs, selectors 20 through 22 do not require the device at the specified select
code to be currently active. Indeed, to be effective, GESCAPE 2,20 , which sets hard clip limits,
must be done before doing the GRAPHICS INPUT IS KBD, "TABLET" statement. Operations 20
and 21 will give "DE I,1 I CE NOT PRESENT" errors if no tablet (or HP-HIL interface) exists, but 22 will
return - 1 for its first entry in that case. All will give a configuration error if the K BD binary is not
present.

146 GESCAPE

Operation selector 6 , which works with all CRTs, allows the user to obtain the current graphics
write-enable and display-enable values. The first element of the return array contains the
write-enable mask; the second represents the display-enable mask. The return array must be a
one-dimensional integer array with at least one element. Array filling occurs until either the array
or the masks are exhausted.

Operation selector 7 , which works only with multi-plane Series 300 CRTs, allows the user to set
the graphics write-enable and display-enable values. The first element of the parameter array
contains the write-enable mask; the second represents the display-enable mask. Again, the
parameter array must be a one-dimensional integer array with one or more elements. If only one
element exists , the write-enable mask is set as specified and the display-enable mask remains
unchanged.

Legal values for both masks are:

• 0 through 15 for 4-plane systems,

• 0 through 255 for 8-plane systems.

Absolute Locator Hard Clip Limits
Operation selector 20 sets the hardclip limits for absolute HP-HIL locators. That is, it simulates, in
software, the changing of the hardclip limits. These limits must be inside the largest X and largest
Y, taken individually, for all absolute locators on the HP-HIL bus.

Operation selector 21 returns the current hardclip limits for absolute HP-HIL locators. These are
the values used in GRAPHICS INPUT IS scaling. Operation selector 21 is different than operation
selector 22 in that 22 always returns the values "hardwired" into the device(s) on the HP-HIL
bus, whereas the values returned by operation selector 21 may have come from operation
selector 20 or from the device on the bus.

Operation selector 22 returns the hardware-defined hardclip limits of all absolute locators on the
HP-HIL bus.

For the three GESCAPE selectors above-20, 21 , and 22-the parameter array must be a one­
dimensional integer array. Only the first two entries will be used for 20 and 21 : X2 and Y2. No
space is taken for the Xl and Y1 values, since the coordinates of PI (the lower, left-hand corner)
cannot be changed on HP-HIL absolute locators; Xl and Y1 will always be zeroes. For operation
selector 22, entries will be made until the array is full or all devices on the bus have been covered.
If more array entries exist after the devices are all represented, a-I will be put in what would be
the X coordinate entry of the next device to indicate the end of valid data. (Hardclip limits for
these devices are limited to the range 0 through 32 767.)

Unlike other GESCAPEs, selectors 20 through 22 do not require the device at the specified select
code to be currently active. Indeed, to be effective, GESCAPE 2,20 , which sets hard clip limits,
must be done before doing the GRAPHICS INPUT IS KBD, "TABLET" statement. Operations 20
and 21 will give "DE I,1 I CE NOT PRESENT" errors if no tablet (or HP-HIL interface) exists, but 22 will
return - 1 for its first entry in that case. All will give a configuration error if the K BD binary is not
present.

(

Operation
Selector

1

2

GESCAPE 147

Functions Available Through GESCAPE

Return Array

A(O) : Number of entries in the color map

A(O,O): Pen ° red color map value
A(O,l): Pen ° green color map value
A(0,2): Pen ° blue color map value Color-Mapped Graphic Devices

A(15 ,0): Pen 15 red color map value
A(15,1) : Pen 15 green color map value
A(15,2) : Pen 15 blue color map value

3 A(O) : X minimum hard clip value
A(l) : Y minimum hard clip value
A(2) : X maximum hard clip value
A(3): Y maximum hard clip value

} All Graphics Devices

A(4): Rows required for GSTORE integer array }
A(5): Columns required for GSTORE integer array All CRTs

4

5

Set normal drawing mode
} All Color CRT Graphics Devices

Set alternate drawing mode

6

7

A(O): Current graphics write-enable mask value
A(l) : Current graphics display-enable mask value

A(O) : Graphics write-enable mask value to be set
A(l): Graphics display-enable mask value to be set

} Ser;es 300 D;splays

20 A(O) : X maximum hard clip value to be set
A(l): Y maximum hard clip value to be set

21 A(O): Current X maximum hard clip value
A(l): Current Y maximum hard clip value

22 A(O): X maximum hard clip value for first absolute locator
A(l): Y maximum hard clip value for first absolute locator
A(2) : X maximum hard clip value for second absolute locator
A(3) : Y maximum hard clip value for second absolute locator

A(n): A value of - 1 indicates that there are no more absolute locators

HP-HIL Locators

(

Operation
Selector

1

2

GESCAPE 147

Functions Available Through GESCAPE

Return Array

A(O) : Number of entries in the color map

A(O,O): Pen ° red color map value
A(O,l): Pen ° green color map value
A(0,2): Pen ° blue color map value Color-Mapped Graphic Devices

A(15 ,0): Pen 15 red color map value
A(15,1) : Pen 15 green color map value
A(15,2) : Pen 15 blue color map value

3 A(O) : X minimum hard clip value
A(l) : Y minimum hard clip value
A(2) : X maximum hard clip value
A(3): Y maximum hard clip value

} All Graphics Devices

A(4): Rows required for GSTORE integer array }
A(5): Columns required for GSTORE integer array All CRTs

4

5

Set normal drawing mode
} All Color CRT Graphics Devices

Set alternate drawing mode

6

7

A(O): Current graphics write-enable mask value
A(l) : Current graphics display-enable mask value

A(O) : Graphics write-enable mask value to be set
A(l): Graphics display-enable mask value to be set

} Ser;es 300 D;splays

20 A(O) : X maximum hard clip value to be set
A(l): Y maximum hard clip value to be set

21 A(O): Current X maximum hard clip value
A(l): Current Y maximum hard clip value

22 A(O): X maximum hard clip value for first absolute locator
A(l): Y maximum hard clip value for first absolute locator
A(2) : X maximum hard clip value for second absolute locator
A(3) : Y maximum hard clip value for second absolute locator

A(n): A value of - 1 indicates that there are no more absolute locators

HP-HIL Locators

148

GET
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement reads the specified ASCII file and attempts to store the strings into memory as
program lines. (If using GET with SRM, also refer to the "SRM" section of this manual.)

a p p end
li n e numb e r

appe n d
line labe l

run
l i ne number

l itera l for m of fi l e s pecif i er :

fil e
na me

Item

file specifier

append line number

append line label

run line number

run line label

file name

msus

Description/ Default

string expression

integer constant identifying a program line

name of a program line

integer constant identifying a program line

name of a program line

literal

literal

Range
Restrictions

(see drawing)

1 thru 32766

any valid name

1 thru 32766

any valid name

any valid file name

(see MASS
STORAGE IS)

148

GET
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement reads the specified ASCII file and attempts to store the strings into memory as
program lines. (If using GET with SRM, also refer to the "SRM" section of this manual.)

a p p end
li n e numb e r

appe n d
line labe l

run
l i ne number

l itera l for m of fi l e s pecif i er :

fil e
na me

Item

file specifier

append line number

append line label

run line number

run line label

file name

msus

Description/ Default

string expression

integer constant identifying a program line

name of a program line

integer constant identifying a program line

name of a program line

literal

literal

Range
Restrictions

(see drawing)

1 thru 32766

any valid name

1 thru 32766

any valid name

any valid file name

(see MASS
STORAGE IS)

(

Example Statements
GET "George"
GET Next_prog$t180tl0

Semantics

GET 149

When GET is executed, the first line in the specified file is read and checked for a valid line
number. If no valid line number is found , the current program stays in memory and error 68 is
generated. If the GET was attempted from a running program, the program remains active and
the error 68 can be trapped with ON ERROR. If there is no ON ERROR in effect, the program
pauses.

If there is a valid line number at the start of the first line in the file , the GET operation proceeds.
Values for all variables except those in COM are lost and the current program is deleted from
the append line to the end. If no append line is specified, the entire current program is deleted.

As the file is brought in, each line is checked for proper syntax. The syntax checking during GET is
the same as if the lines were being typed from the keyboard, and any errors that would occur during
keyboard entry will also occur during GET. Any lines which contain syntax errors are listed on the
PRINTER IS device. Those erroneous lines which have valid line numbers are converted into
comments and syntax is checked again. If the GET encounters a line longer than 256 characters,
the operation is terminated and error 128 is reported. If any line caused any other syntax error, an
error 68 is reported at the completion of the GET operation. This error is not trappable because the
old program was deleted and the new one is not running yet.

Any line in the main program or any subprogram may be used for the append location. If an
append line number is specified, the lines from the file are renumbered by adding an offset to
their line numbers. This offset is the difference between the append line number and the first
line number in the file. This operation preserves the line-number intervals that exist in the file.
When a line containing an error (or an invalid line number caused by renumbering) is printed
on the PRINTER IS device , the line number shown is the one the line had in the file. Any
programmed references to line numbers that would be renumbered by REN are also renum­
bered by GET. If no append line is specified, the lines from the file are entered without
renumbering.

If a successful GET is executed from a program, execution resumes automatically after a prerun
initialization (see RUN). If no run line is specified, execution resumes at the lowest-numbered
line in the program. If a run line is specified, execution resumes at the specified line. The
specified run line must be a line in the main program segment.

If a successful GET is executed from the keyboard and a run line is specified, a prerun is
performed and program execution begins automatically at the specified line. If GET is executed
from the keyboard with no run line specified, RUN must be executed to start the program. GET
is not allowed from the keyboard while a program is running.

(

Example Statements
GET "George"
GET Next_prog$t180tl0

Semantics

GET 149

When GET is executed, the first line in the specified file is read and checked for a valid line
number. If no valid line number is found , the current program stays in memory and error 68 is
generated. If the GET was attempted from a running program, the program remains active and
the error 68 can be trapped with ON ERROR. If there is no ON ERROR in effect, the program
pauses.

If there is a valid line number at the start of the first line in the file , the GET operation proceeds.
Values for all variables except those in COM are lost and the current program is deleted from
the append line to the end. If no append line is specified, the entire current program is deleted.

As the file is brought in, each line is checked for proper syntax. The syntax checking during GET is
the same as if the lines were being typed from the keyboard, and any errors that would occur during
keyboard entry will also occur during GET. Any lines which contain syntax errors are listed on the
PRINTER IS device. Those erroneous lines which have valid line numbers are converted into
comments and syntax is checked again. If the GET encounters a line longer than 256 characters,
the operation is terminated and error 128 is reported. If any line caused any other syntax error, an
error 68 is reported at the completion of the GET operation. This error is not trappable because the
old program was deleted and the new one is not running yet.

Any line in the main program or any subprogram may be used for the append location. If an
append line number is specified, the lines from the file are renumbered by adding an offset to
their line numbers. This offset is the difference between the append line number and the first
line number in the file. This operation preserves the line-number intervals that exist in the file.
When a line containing an error (or an invalid line number caused by renumbering) is printed
on the PRINTER IS device , the line number shown is the one the line had in the file. Any
programmed references to line numbers that would be renumbered by REN are also renum­
bered by GET. If no append line is specified, the lines from the file are entered without
renumbering.

If a successful GET is executed from a program, execution resumes automatically after a prerun
initialization (see RUN). If no run line is specified, execution resumes at the lowest-numbered
line in the program. If a run line is specified, execution resumes at the specified line. The
specified run line must be a line in the main program segment.

If a successful GET is executed from the keyboard and a run line is specified, a prerun is
performed and program execution begins automatically at the specified line. If GET is executed
from the keyboard with no run line specified, RUN must be executed to start the program. GET
is not allowed from the keyboard while a program is running.

150

GINIT
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement establishes a set of default values for variables affecting graphics operations.

Semantics
The following operations are performed when GINIT is executed:

AREA PEN 1
CLI P OFF
CSIZE 5,0.6
LDI R 0
LIN E TYPE 1,5
LORG 1
MOt.JE 0,0
PDIR 0
PEN 1
PIt.JOT 0
GESCAPE CRT ,4 (PEN MODE NORMAL)
VIEWPORT O,RATIO*100,O,1 00
WINDOW O,RATIO*100, O,100

In addition an active plotter or graphics input device is terminated. If the plotter is a file , the file is
closed.

After a GINIT and before a PLOTTER IS statement is executed, the following statements select a
default plotter.

AXES
DRAW
DUMP GRAPHICS
FRAME
GCLEAR
GLOAD
GRID
GSTORE

IDRAW
IMOVE
IPLOT
LABEL
MOVE
PLOT
POLYGON
POLYLINE

RECTANGLE
RPLOT
SET ECHO
SET PEN
SYMBOL

150

GINIT
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement establishes a set of default values for variables affecting graphics operations.

Semantics
The following operations are performed when GINIT is executed:

AREA PEN 1
CLI P OFF
CSIZE 5,0.6
LDI R 0
LIN E TYPE 1,5
LORG 1
MOt.JE 0,0
PDIR 0
PEN 1
PIt.JOT 0
GESCAPE CRT ,4 (PEN MODE NORMAL)
VIEWPORT O,RATIO*100,O,1 00
WINDOW O,RATIO*100, O,100

In addition an active plotter or graphics input device is terminated. If the plotter is a file , the file is
closed.

After a GINIT and before a PLOTTER IS statement is executed, the following statements select a
default plotter.

AXES
DRAW
DUMP GRAPHICS
FRAME
GCLEAR
GLOAD
GRID
GSTORE

IDRAW
IMOVE
IPLOT
LABEL
MOVE
PLOT
POLYGON
POLYLINE

RECTANGLE
RPLOT
SET ECHO
SET PEN
SYMBOL

Option Required
Keyboard Executable
Programmable
In an IF ... THEN

GRAPH
Yes
Yes
Yes

GLOAD

This statement loads the contents of an INTEGER array into a frame buffer (the converse of
GSTORE).

destination
device selector

Item

destination
device selector

integer
array name

integer
array name

Description/Default

numeric expression, rounded to an integer:
Default = last CRT plotter

name of an INTEGER array.

Example Statements
GLOAD Picture(*)
IF Fla~ THEN GLOAD Array(*)
GLOAD CRT,Screen(*)
GLOAD 28,Screen(*)

Semantics

Range
Restrictions

(see Glossary)

any valid name

A frame buffer is an area of memory which contains the digital representation of a raster image. A
monochromatic image has a frame buffer of one bit deep. The Model 236 color monitor has a
four-bit frame buffer which allows sixteen colors. The HP 98627 A external color interface has a
three-bit frame buffer which allows eight colors. The 98543A and 98545A display boards have 4
planes, allowing 16 colors, and the 98700 has 4 or 8 planes, allowing 16 or 256 colors,
respectively.

If a destination device is not explicitly specified, the array's contents are loaded into the current
PLOTTER IS device (if it is a frame buffer) or into the last frame buffer device specified by a
PLOTTER IS statement.

GLOAD operates on active plotting devices. A plotting device is active when it is specified in a
PLOTTER IS statement. In addition, the internal CRT is also activated by any of the following
operations: any pen movement; GCLEAR; GLOAD to the current default destination; GSTORE
from the current default source; DUMP GRAPHICS from the current default source; and SET PEN.
Plotters are de-activated by power-up, GINIT, SCRATCH A or (RESEr).

151

Option Required
Keyboard Executable
Programmable
In an IF ... THEN

GRAPH
Yes
Yes
Yes

GLOAD

This statement loads the contents of an INTEGER array into a frame buffer (the converse of
GSTORE).

destination
device selector

Item

destination
device selector

integer
array name

integer
array name

Description/Default

numeric expression, rounded to an integer:
Default = last CRT plotter

name of an INTEGER array.

Example Statements
GLOAD Picture(*)
IF Fla~ THEN GLOAD Array(*)
GLOAD CRT,Screen(*)
GLOAD 28,Screen(*)

Semantics

Range
Restrictions

(see Glossary)

any valid name

A frame buffer is an area of memory which contains the digital representation of a raster image. A
monochromatic image has a frame buffer of one bit deep. The Model 236 color monitor has a
four-bit frame buffer which allows sixteen colors. The HP 98627 A external color interface has a
three-bit frame buffer which allows eight colors. The 98543A and 98545A display boards have 4
planes, allowing 16 colors, and the 98700 has 4 or 8 planes, allowing 16 or 256 colors,
respectively.

If a destination device is not explicitly specified, the array's contents are loaded into the current
PLOTTER IS device (if it is a frame buffer) or into the last frame buffer device specified by a
PLOTTER IS statement.

GLOAD operates on active plotting devices. A plotting device is active when it is specified in a
PLOTTER IS statement. In addition, the internal CRT is also activated by any of the following
operations: any pen movement; GCLEAR; GLOAD to the current default destination; GSTORE
from the current default source; DUMP GRAPHICS from the current default source; and SET PEN.
Plotters are de-activated by power-up, GINIT, SCRATCH A or (RESEr).

151

152 GLOAD

The array's contents are loaded into the specified frame buffer if a currently active frame buffer
(CRT) is explicitly specified as the destination. However, if the specified frame buffer is not
activated , error 708 occurs.

The GLOAD is not performed if a non-frame buffer destination which is the current PLOTTER IS
device is explicitly specified. However, if a non-frame buffer destination which is not the current
PLOTTER IS device is specified, error 708 occurs.

Pixel Representation
A pixel is a picture element. Each pixel on a monochromatic display is represented by one bit in
memory; a binary 1 represents a pixel that is on, while a binary 0 represents a pixel which is off.
Each INTEGER array element represents 16 pixels on a monochromatic display.

Pixels on color displays have different representation. The Model 236 color display requires four
bits to represent each pixel. The optional color monitor (HP 98627) requires three bits to
represent each pixel.

The number of pixels on the horizontal and vertical axes and the number of INTEGER array
elements necessary to represent the entire display is shown in the following table for each model
and display.

152 GLOAD

The array's contents are loaded into the specified frame buffer if a currently active frame buffer
(CRT) is explicitly specified as the destination. However, if the specified frame buffer is not
activated , error 708 occurs.

The GLOAD is not performed if a non-frame buffer destination which is the current PLOTTER IS
device is explicitly specified. However, if a non-frame buffer destination which is not the current
PLOTTER IS device is specified, error 708 occurs.

Pixel Representation
A pixel is a picture element. Each pixel on a monochromatic display is represented by one bit in
memory; a binary 1 represents a pixel that is on, while a binary 0 represents a pixel which is off.
Each INTEGER array element represents 16 pixels on a monochromatic display.

Pixels on color displays have different representation. The Model 236 color display requires four
bits to represent each pixel. The optional color monitor (HP 98627) requires three bits to
represent each pixel.

The number of pixels on the horizontal and vertical axes and the number of INTEGER array
elements necessary to represent the entire display is shown in the following table for each model
and display.

GLOAD 153

Horizontal Vertical INTEGER
Model Size Size Elements

216 (HP 9816) 400 300 7500
(monochromatic)

220 (HP 9920) 400 300 7500
(HP 98204A)
(HP 98204B)
(monochromatic) 512 390 12480

226 (HP 9826) 400 300 7500
(monochromatic)

HP 98627A 512 512 49152
(external color)

236 (HP 9836) 512 390 12480
(monochromatic)

236 (HP 9836C) 512 390 49920
(color)

237 (HP 9837) 1024 768 49152
(HP 98781A)
(bit-mapped,
monochromatic)

35731A (medium- 1024 400 25600
resolution
bit-mapped,
monochromatic)

35741A(medium- 1024 400 102400
resolution
bit-mapped,
color, 4 planes)

98781A 1024 768 49152
(high-resolution
bit-mapped,
monochromatic)

98782A 1024 768 196608
(high-resolution
bit-mapped,
color, 4 planes)

98700 1024 768 393216
(high-resolution
bit-mapped,
color, 8 planes)

The declared array size can be larger or smaller than the graphics memory size; the operation
stops when either graphics memory or the array is exhausted.

GLOAD 153

Horizontal Vertical INTEGER
Model Size Size Elements

216 (HP 9816) 400 300 7500
(monochromatic)

220 (HP 9920) 400 300 7500
(HP 98204A)
(HP 98204B)
(monochromatic) 512 390 12480

226 (HP 9826) 400 300 7500
(monochromatic)

HP 98627A 512 512 49152
(external color)

236 (HP 9836) 512 390 12480
(monochromatic)

236 (HP 9836C) 512 390 49920
(color)

237 (HP 9837) 1024 768 49152
(HP 98781A)
(bit-mapped,
monochromatic)

35731A (medium- 1024 400 25600
resolution
bit-mapped,
monochromatic)

35741A(medium- 1024 400 102400
resolution
bit-mapped,
color, 4 planes)

98781A 1024 768 49152
(high-resolution
bit-mapped,
monochromatic)

98782A 1024 768 196608
(high-resolution
bit-mapped,
color, 4 planes)

98700 1024 768 393216
(high-resolution
bit-mapped,
color, 8 planes)

The declared array size can be larger or smaller than the graphics memory size; the operation
stops when either graphics memory or the array is exhausted.

154 GLOAD

Since anyone dimension of an array cannot be more than 32 767 elements, for an array to be
large enough to hold the entire graphics representation, the array may have to be multi­
dimensional. For example,

I NT E G E R S ere e n (1 : 390 , 1 : G LI , 1 : 2) ! for Model 236 Color
IN T E G E R S ere en (1 : 51 2 , 1 : 32 , 1 : 3) !for HP 98627 A Color

Storage Format
The pixel representation on a monochromatic display are stored sequentially in the array using
GSTORE.

The pixel representation for color displays are stored in different formats using GSTORE.

Model 236 color display: Consecutive pairs of 16-bit words are used, regardless of the array
structure. P in the diagram is the 4-bit representation of the pixel.

Word 1 Word 2

I P5 I P1 I P6 I P2 I I P7 I P3 I P8 I P4 I

HP 98627 A color display: Each word contains the blue, green or red representation for 16 pixels.
P in the diagram is the I-bit color representation of the pixel.

Word 1 P1 P2 P3 P4 I P161 BLUE

Word 2 P1 P2 P3 P4 I P161 GREEN
~--~--~--~~--~--~--~

Word 3 P1 P2 P3 P4 I P161 RED

Word 4 I P17 I P18 I P19 I P20 I I P321 BLUE

Storage Format on Multi-Plane Bit-Mapped Displays
GLOAD loads information from an array into the graphics planes in the frame buffer. " Graphics
planes" means those planes which have been write-enabled for graphics operations via power­
up, SC RATCH A, or GESCAPE. You can change the graphics write mask with GESCAPE.

In the following paragraphs, reference is made to the "highest graphics plane." The " highest
graphics plane" is that plane in the frame buffer whose corresponding bit in the graphics
write-enable mask has the highest number. For example, the highest graphics plane with a write
mask of binary 1 000 is 4. Also note that although bits in a byte are numbered from 0 through 7
(right to left) , planes in the frame buffer are numbered 1 through 8.

154 GLOAD

Since anyone dimension of an array cannot be more than 32 767 elements, for an array to be
large enough to hold the entire graphics representation, the array may have to be multi­
dimensional. For example,

I NT E G E R S ere e n (1 : 390 , 1 : G LI , 1 : 2) ! for Model 236 Color
IN T E G E R S ere en (1 : 51 2 , 1 : 32 , 1 : 3) !for HP 98627 A Color

Storage Format
The pixel representation on a monochromatic display are stored sequentially in the array using
GSTORE.

The pixel representation for color displays are stored in different formats using GSTORE.

Model 236 color display: Consecutive pairs of 16-bit words are used, regardless of the array
structure. P in the diagram is the 4-bit representation of the pixel.

Word 1 Word 2

I P5 I P1 I P6 I P2 I I P7 I P3 I P8 I P4 I

HP 98627 A color display: Each word contains the blue, green or red representation for 16 pixels.
P in the diagram is the I-bit color representation of the pixel.

Word 1 P1 P2 P3 P4 I P161 BLUE

Word 2 P1 P2 P3 P4 I P161 GREEN
~--~--~--~~--~--~--~

Word 3 P1 P2 P3 P4 I P161 RED

Word 4 I P17 I P18 I P19 I P20 I I P321 BLUE

Storage Format on Multi-Plane Bit-Mapped Displays
GLOAD loads information from an array into the graphics planes in the frame buffer. " Graphics
planes" means those planes which have been write-enabled for graphics operations via power­
up, SC RATCH A, or GESCAPE. You can change the graphics write mask with GESCAPE.

In the following paragraphs, reference is made to the "highest graphics plane." The " highest
graphics plane" is that plane in the frame buffer whose corresponding bit in the graphics
write-enable mask has the highest number. For example, the highest graphics plane with a write
mask of binary 1 000 is 4. Also note that although bits in a byte are numbered from 0 through 7
(right to left) , planes in the frame buffer are numbered 1 through 8.

GLOAD 155

If the highest graphics plane currently enabled is 1 (or none) , act like there is 1. The storage
format is:

Word 1 PO P1 P2 P3 i P15 i

Word 2 i P16i P17i P18 P19 P31

If the highest graphics plane currently enabled is between 2 and 4, inclusive, act like there are 4.
The storage format is the same as the Model 236C format, described above.

If the highest graphics plane currently enabled is between 5 and 8 , inclusive, act like there are 8 .
The storage format is:

Word 1 PO PO PO I PO I PO PO PO PO P1 P1 P1 I P1 I P1 P1 P1 P1

Word 2 P2 P2 P2 I P2 I P2 P2 P2 P2 P3 P3 P3 I P3 I P3 P3 P3 P3

Images should be GLOADed on the same display and with the same write-enable mask that was
used when the image was GSTDREd. If these gUidelines are not observed, the GLOADed image may
bear no resemblance to the GSTOREd image.

To determine the number of elements needed in an integer array the right size to hold an image,
use the GESCAPE operation selector 3.

GLOAD 155

If the highest graphics plane currently enabled is 1 (or none) , act like there is 1. The storage
format is:

Word 1 PO P1 P2 P3 i P15 i

Word 2 i P16i P17i P18 P19 P31

If the highest graphics plane currently enabled is between 2 and 4, inclusive, act like there are 4.
The storage format is the same as the Model 236C format, described above.

If the highest graphics plane currently enabled is between 5 and 8 , inclusive, act like there are 8 .
The storage format is:

Word 1 PO PO PO I PO I PO PO PO PO P1 P1 P1 I P1 I P1 P1 P1 P1

Word 2 P2 P2 P2 I P2 I P2 P2 P2 P2 P3 P3 P3 I P3 I P3 P3 P3 P3

Images should be GLOADed on the same display and with the same write-enable mask that was
used when the image was GSTDREd. If these gUidelines are not observed, the GLOADed image may
bear no resemblance to the GSTOREd image.

To determine the number of elements needed in an integer array the right size to hold an image,
use the GESCAPE operation selector 3.

156

GOSUB
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN

None
No

Yes
Yes

This statement transfers program execution to the subroutine at the specified line. The specified
line must be in the current context. The current program line is remembered in anticipation of
returning (see RETURN). (Also see the ON ... statements.)

Item Description/Default

line label name of a program line

line number integer constant identifying a program line

Example Statements
GOSUB 120
IF NUMbers THEN GOSUB Process

Range
Restrictions

any valid name

1 thru 32766

156

GOSUB
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN

None
No

Yes
Yes

This statement transfers program execution to the subroutine at the specified line. The specified
line must be in the current context. The current program line is remembered in anticipation of
returning (see RETURN). (Also see the ON ... statements.)

Item Description/Default

line label name of a program line

line number integer constant identifying a program line

Example Statements
GOSUB 120
IF NUMbers THEN GOSUB Process

Range
Restrictions

any valid name

1 thru 32766

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
Yes

GOTO

This statement transfers program execution to the specified line. The specified line must be in
the current context. (Also see the ON ... statements.)

Item

line
l a bel

Description/ Default

line label name of a program line

line number integer constant identifying a program line

Example Statements
GOTO 550
GOTO Loop_start
IF Full THEN Exit

Range
Restrictions

any valid name

1 thru 32766

157

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
Yes

GOTO

This statement transfers program execution to the specified line. The specified line must be in
the current context. (Also see the ON ... statements.)

Item

line
l a bel

Description/ Default

line label name of a program line

line number integer constant identifying a program line

Example Statements
GOTO 550
GOTO Loop_start
IF Full THEN Exit

Range
Restrictions

any valid name

1 thru 32766

157

158

GRAPHICS
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement turns the graphics display on or off. This statement has no effect on the contents of
the graphics memory, it just controls whether it is displayed or not. At power-on or after
SCRATCH A, the graphics display is off. (Also see DUMP.)

Example Statements
GRAPHICS ON
IF Flag THEN GRAPHICS OFF

Semantics
Multi-Plane Bit-Mapped Displays
If you do not understand the concept of write-enable masks or display-enable masks, see GCLEAR

before reading the following paragraph.

GRA PH I CS ON/OFF applies only to the graphics display which also is the alpha display. For example,
suppose your configuration consists of a display which has both alpha and graphics, and another
display which has only graphics. In this case, there would be no way, with the GRAPHICS

statement, to turn graphics on or off on the display which has graphics exclusively.

With default alpha and graphics write-masks, the GRAPHICS ON and GRAPHICS OFF statements
have no effect on bit-mapped displays. If designated alpha and graphics write masks do not
overlap, then the statements will enable/disable graphics planes for displaying as with non-bit­
mapped systems. When the write masks overlap, planes that are used only for graphics (not
alpha) are enabled/disabled. For example, if the alpha write-enable mask is binary 1110 and the
graphics write-enable mask is binary 0011, GRAPHICS ON and GRAPHICS OFF would only affect
plane 1. Plane 2 is not affected because it is indicated by both the alpha and graphics write-enable
masks, and planes 3 and 4 are not affected because they are not indicated by the graphics
write-enable mask.

158

GRAPHICS
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement turns the graphics display on or off. This statement has no effect on the contents of
the graphics memory, it just controls whether it is displayed or not. At power-on or after
SCRATCH A, the graphics display is off. (Also see DUMP.)

Example Statements
GRAPHICS ON
IF Flag THEN GRAPHICS OFF

Semantics
Multi-Plane Bit-Mapped Displays
If you do not understand the concept of write-enable masks or display-enable masks, see GCLEAR

before reading the following paragraph.

GRA PH I CS ON/OFF applies only to the graphics display which also is the alpha display. For example,
suppose your configuration consists of a display which has both alpha and graphics, and another
display which has only graphics. In this case, there would be no way, with the GRAPHICS

statement, to turn graphics on or off on the display which has graphics exclusively.

With default alpha and graphics write-masks, the GRAPHICS ON and GRAPHICS OFF statements
have no effect on bit-mapped displays. If designated alpha and graphics write masks do not
overlap, then the statements will enable/disable graphics planes for displaying as with non-bit­
mapped systems. When the write masks overlap, planes that are used only for graphics (not
alpha) are enabled/disabled. For example, if the alpha write-enable mask is binary 1110 and the
graphics write-enable mask is binary 0011, GRAPHICS ON and GRAPHICS OFF would only affect
plane 1. Plane 2 is not affected because it is indicated by both the alpha and graphics write-enable
masks, and planes 3 and 4 are not affected because they are not indicated by the graphics
write-enable mask.

Note
Mixing AL PHA/ GRA PH I CS ON/OFF with explicit definition of the display­
enable mask may cause the (ALPHA) and/or (GRAPHICS) keys to have
unexpected results. The reason for this is that explicit setting of the
display mask is, in a manner of speaking, working "behind the back"
of the operating system. Thus, you could turn off graphics by mod­
ifying thf diSpljy-enable mask, and the internal variables which keep
track of ALPHA and (GRAPHICS) keypresses would not-indeed, could
not-have been updated. The reason these variables cannot be up­
dated is that you can set the display mask to a state in which "alpha
on" is only partially true; some alpha planes are on, and some aren't.
The same goes for graphics.

GRAPHICS 159

Note
Mixing AL PHA/ GRA PH I CS ON/OFF with explicit definition of the display­
enable mask may cause the (ALPHA) and/or (GRAPHICS) keys to have
unexpected results. The reason for this is that explicit setting of the
display mask is, in a manner of speaking, working "behind the back"
of the operating system. Thus, you could turn off graphics by mod­
ifying thf diSpljy-enable mask, and the internal variables which keep
track of ALPHA and (GRAPHICS) keypresses would not-indeed, could
not-have been updated. The reason these variables cannot be up­
dated is that you can set the display mask to a state in which "alpha
on" is only partially true; some alpha planes are on, and some aren't.
The same goes for graphics.

GRAPHICS 159

160

GRAPHICS INPUT IS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN Yes

This statement defines which device is to be used for graphics input in subsequent DIGITIZE, SET
LOCATOR, TRACK IS ... ON/OFF, and READ LOCATOR statements.

GRAPHICS INPUT IS

Item

device selector

digitizer specifier

Description/Default

numeric expression, rounded to an integer

string expression

Example Statements
GRAPHICS INPUT IS 70Gt"HPGL"
GRAPHICS INPUT IS DStHp$
GRAPHICS INPUT IS KBDt "KBD"
GRAPHICS INPUT IS KBDt"TABLET"

Semantics

Range
Restrictions

(see Glossary)

(see semantics)

The specified device is defined to be the graphics input device for subsequent graphics input
statements (DIGITIZE, READ LOCATOR, SET LOCATOR, and TRACK. . .IS ON). This input
device becomes undefined when a power-up, (RESET), GINIT, or SCRATCH A is executed. The
default input device is KBD, "KBD".

The operating system attempts to use the current VIEWPORT and WINDOW (or SHOW) para­
meters for both the current PLOTTER IS device and the specified GRAPHICS INPUT IS device, so
that the usable areas of the input and output devices correspond in a 1-to-1 mapping. If the aspect
ratios of the input and output devices are different, the input device limits are truncated to match the
output device's aspect ratio.

If the VIEWPORT statement specifies an area that does not exist on the input device, error 705 will be
reported.

If you specify the keyboard device selector, there are two possibilities for the digitizer specifier. To
specify relative pointing devices (e.g., the cursor keys, knob, or mouse), use "KBD" or "ARROW
KEYS". For a port path to the Series 500, use the string "ARROW KEYS" . To specify absolute
pointing devices (e.g., HP-HIL tablets or the TouchScreen), use the string "TABLET". "HPGL"
must be specified if the device selector is anything other than the keyboard select code.

When doing a DIGITIZE, the arrow keys and the knob move the graphics cursor. Otherwise, in
addition to moving the graphics cursor, they perform their normal' 'alpha" functions: scrolling text on
the screen, and moving the alpha cursor within the keyboard entry line.

160

GRAPHICS INPUT IS
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN Yes

This statement defines which device is to be used for graphics input in subsequent DIGITIZE, SET
LOCATOR, TRACK IS ... ON/OFF, and READ LOCATOR statements.

GRAPHICS INPUT IS

Item

device selector

digitizer specifier

Description/Default

numeric expression, rounded to an integer

string expression

Example Statements
GRAPHICS INPUT IS 70Gt"HPGL"
GRAPHICS INPUT IS DStHp$
GRAPHICS INPUT IS KBDt "KBD"
GRAPHICS INPUT IS KBDt"TABLET"

Semantics

Range
Restrictions

(see Glossary)

(see semantics)

The specified device is defined to be the graphics input device for subsequent graphics input
statements (DIGITIZE, READ LOCATOR, SET LOCATOR, and TRACK. . .IS ON). This input
device becomes undefined when a power-up, (RESET), GINIT, or SCRATCH A is executed. The
default input device is KBD, "KBD".

The operating system attempts to use the current VIEWPORT and WINDOW (or SHOW) para­
meters for both the current PLOTTER IS device and the specified GRAPHICS INPUT IS device, so
that the usable areas of the input and output devices correspond in a 1-to-1 mapping. If the aspect
ratios of the input and output devices are different, the input device limits are truncated to match the
output device's aspect ratio.

If the VIEWPORT statement specifies an area that does not exist on the input device, error 705 will be
reported.

If you specify the keyboard device selector, there are two possibilities for the digitizer specifier. To
specify relative pointing devices (e.g., the cursor keys, knob, or mouse), use "KBD" or "ARROW
KEYS". For a port path to the Series 500, use the string "ARROW KEYS" . To specify absolute
pointing devices (e.g., HP-HIL tablets or the TouchScreen), use the string "TABLET". "HPGL"
must be specified if the device selector is anything other than the keyboard select code.

When doing a DIGITIZE, the arrow keys and the knob move the graphics cursor. Otherwise, in
addition to moving the graphics cursor, they perform their normal' 'alpha" functions: scrolling text on
the screen, and moving the alpha cursor within the keyboard entry line.

GRAPHICS INPUT IS 161

HP-HIL Absolute Locators
This statement can specify HP-HIL absolute locators, which include graphics tablets as well as the
Touchscreen. As with relative locators, all devices of this type are lumped together and processed
as if they were a single device. This could lead to interference if two or more of these devices were
connected to the HP-HIL bus. The intent is to support one active absolute locator on the HP-HIL
bus, although careful use will allow more than one. In particular, the GESCA PE values of 20, 21 ,
and 22 allow use of the HP-HIL Touchscreen on the same bus as a Tablet, provided the stylus is
removed from the Tablet when the Touchscreen is in use.

Absolute Locator Hard Clip Limits
You can set the position of P2-the upper right corner of the digitizing area-on HP-HIL tablets by
using GESCAPE with operation selectors 20 through 22. This is conceptually similar to setting the
P2 point with HPGL commands on HPGL tablets. See GEscAPEfor further information.

GRAPHICS INPUT IS 161

HP-HIL Absolute Locators
This statement can specify HP-HIL absolute locators, which include graphics tablets as well as the
Touchscreen. As with relative locators, all devices of this type are lumped together and processed
as if they were a single device. This could lead to interference if two or more of these devices were
connected to the HP-HIL bus. The intent is to support one active absolute locator on the HP-HIL
bus, although careful use will allow more than one. In particular, the GESCA PE values of 20, 21 ,
and 22 allow use of the HP-HIL Touchscreen on the same bus as a Tablet, provided the stylus is
removed from the Tablet when the Touchscreen is in use.

Absolute Locator Hard Clip Limits
You can set the position of P2-the upper right corner of the digitizing area-on HP-HIL tablets by
using GESCAPE with operation selectors 20 through 22. This is conceptually similar to setting the
P2 point with HPGL commands on HPGL tablets. See GEscAPEfor further information.

162

GRID
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement draws a full grid pattern. The pen is left at the intersection of the X and Y axes.

x tick
spacing

Item

x tick spacing

y tick spacing

y axis location

x axis location

x major count

y major count

major tick size

Description/Default

numeric expression in current units;
Default = 0 , no ticks

numeric expression in current units;
Default = 0, no ticks

numeric expression specifying the location of the
y axis in x-axis units;
Default = °
numeric expression specifying the location of the
x axis in y-axis units;
Default = °
numeric expression, rounded to an integer, spe­
cifying the number of tick intervals between ma­
jor tick marks;
Default = 1 (every tick is major)

numeric expression, rounded to an integer, spe­
cifying the number of tick intervals between ma­
jor tick marks;
Default = 1 (every tick is major)

numeric expression in graphic display units;
Default = 2

Range
Restrictions

(see text)

(see text)

1 thru 32 767

1 thru 32767

162

GRID
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

This statement draws a full grid pattern. The pen is left at the intersection of the X and Y axes.

x tick
spacing

Item

x tick spacing

y tick spacing

y axis location

x axis location

x major count

y major count

major tick size

Description/Default

numeric expression in current units;
Default = 0 , no ticks

numeric expression in current units;
Default = 0, no ticks

numeric expression specifying the location of the
y axis in x-axis units;
Default = °
numeric expression specifying the location of the
x axis in y-axis units;
Default = °
numeric expression, rounded to an integer, spe­
cifying the number of tick intervals between ma­
jor tick marks;
Default = 1 (every tick is major)

numeric expression, rounded to an integer, spe­
cifying the number of tick intervals between ma­
jor tick marks;
Default = 1 (every tick is major)

numeric expression in graphic display units;
Default = 2

Range
Restrictions

(see text)

(see text)

1 thru 32 767

1 thru 32767

Example Statements
GRID 10 dO 10 10
GRID){fllin ,'(fllin t;'(inte rcept IYinte rcept 15,5

Semantics

GRID 163

Grids are drawn with the current line type and pen number. Major tick marks are drawn as lines
across the entire soft clipping area. A cross tick is drawn at the intersection of minor tick marks.

The X and Y tick spacing must not generate more than 32 768 grid marks in the clip area, or error
20 will be generated. Only the grid marks within the current clip area are drawn.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling
Note 2 The starting poi-nt for labels drawn after other labels is affected by LDIR
Note 3: The starting point for labels drawn afte r lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

Example Statements
GRID 10 dO 10 10
GRID){fllin ,'(fllin t;'(inte rcept IYinte rcept 15,5

Semantics

GRID 163

Grids are drawn with the current line type and pen number. Major tick marks are drawn as lines
across the entire soft clipping area. A cross tick is drawn at the intersection of minor tick marks.

The X and Y tick spacing must not generate more than 32 768 grid marks in the clip area, or error
20 will be generated. Only the grid marks within the current clip area are drawn.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling
Note 2 The starting poi-nt for labels drawn after other labels is affected by LDIR
Note 3: The starting point for labels drawn afte r lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

164

GSTORE Option Required
Keyboard Executabel
Programmable
In an IF.. . THEN

GRAPH
Yes
Yes
Yes

This statement stores the contents of the frame buffer into an INTEGER array (the converse of
GLOAD).

Item

s ou rce
d ev i c e s el e c tor

in t e ge r
a rr ay name

Description/Default

source device selector numeric expression, rounded to an integer;
Default = last CRT plotter

integer array name name of an INTEGER array)

Example Statements
GSTORE Screerd*l
IF Done THEN GSTORE 28,Picture(*l

Semantics

Range
Restrictions

(see Glossary)

any valid name

A frame buffer is an area of memory which contains the digital representation of a raster image. A
monochromatic image has a frame buffer of one bit deep. The Model 236 color monitor has a
four-bit frame buffer which allows sixteen colors. The HP 98627 A external color monitor has a
three-bit frame buffer which allows eight colors. The 98543A and 98545A display boards have 4
planes, allowing 16 colors, and the 98700 has 4 or 8 planes, allowing 16 or 256 colors,
respectively.

If a source device is not explicitly specified, the array's contents are loaded from the current
PLOTTER IS device (if it is a frame buffer) or from the last frame buffer device specified by a
PLOTTER IS statement.

GSTORE operates on active plotting devices. A plotting device is active when it is specified in a
PLOTTER IS statement. In addition, the internal CRT is also activated by any of the following
operations: any pen movement; GCLEAR; GLOAD to the current default destination; GSTORE
from the current default source; DUMP GRAPHICS from the current default source; and SET PEN.
Plotters are de-activated by power-up, GINIT, SCRATCH A or (RESET).

The frame buffer's contents are loaded into the specified array if a currently active frame buffer
(CRT) is explicitly specified as the source. However, if the specified frame buffer is not activated,
error 708 occurs.

The GSTORE is not performed if a non-frame buffer source which is the current PLOTTER IS
device is explicitly specified. However, if a non-frame buffer source which is not the current
PLOTTER IS device is specified, error 708 occurs.

164

GSTORE Option Required
Keyboard Executabel
Programmable
In an IF.. . THEN

GRAPH
Yes
Yes
Yes

This statement stores the contents of the frame buffer into an INTEGER array (the converse of
GLOAD).

Item

s ou rce
d ev i c e s el e c tor

in t e ge r
a rr ay name

Description/Default

source device selector numeric expression, rounded to an integer;
Default = last CRT plotter

integer array name name of an INTEGER array)

Example Statements
GSTORE Screerd*l
IF Done THEN GSTORE 28,Picture(*l

Semantics

Range
Restrictions

(see Glossary)

any valid name

A frame buffer is an area of memory which contains the digital representation of a raster image. A
monochromatic image has a frame buffer of one bit deep. The Model 236 color monitor has a
four-bit frame buffer which allows sixteen colors. The HP 98627 A external color monitor has a
three-bit frame buffer which allows eight colors. The 98543A and 98545A display boards have 4
planes, allowing 16 colors, and the 98700 has 4 or 8 planes, allowing 16 or 256 colors,
respectively.

If a source device is not explicitly specified, the array's contents are loaded from the current
PLOTTER IS device (if it is a frame buffer) or from the last frame buffer device specified by a
PLOTTER IS statement.

GSTORE operates on active plotting devices. A plotting device is active when it is specified in a
PLOTTER IS statement. In addition, the internal CRT is also activated by any of the following
operations: any pen movement; GCLEAR; GLOAD to the current default destination; GSTORE
from the current default source; DUMP GRAPHICS from the current default source; and SET PEN.
Plotters are de-activated by power-up, GINIT, SCRATCH A or (RESET).

The frame buffer's contents are loaded into the specified array if a currently active frame buffer
(CRT) is explicitly specified as the source. However, if the specified frame buffer is not activated,
error 708 occurs.

The GSTORE is not performed if a non-frame buffer source which is the current PLOTTER IS
device is explicitly specified. However, if a non-frame buffer source which is not the current
PLOTTER IS device is specified, error 708 occurs.

GSTORE 165

Pixel Representation
A pixel is a picture element. Each pixel on a monochromatic display is represented by one bit in
memory; a binary 1 represents a pixel that is on, while a binary 0 represents a pixel which is off.
Each INTEGER array element represents 16 pixels on a monochromatic display .

Pixels on color displays have different representation. The Model 236 color display requires four
bits to represent each pixel. The optional color monitor (HP 98627) requires three bits to
represent each pixel.

The number of pixels on the horizontal and vertical axes and the number of INTEGER array
elements necessary to represent the entire display is shown in the following table for each model
and display.

GSTORE 165

Pixel Representation
A pixel is a picture element. Each pixel on a monochromatic display is represented by one bit in
memory; a binary 1 represents a pixel that is on, while a binary 0 represents a pixel which is off.
Each INTEGER array element represents 16 pixels on a monochromatic display .

Pixels on color displays have different representation. The Model 236 color display requires four
bits to represent each pixel. The optional color monitor (HP 98627) requires three bits to
represent each pixel.

The number of pixels on the horizontal and vertical axes and the number of INTEGER array
elements necessary to represent the entire display is shown in the following table for each model
and display.

166 GSTORE

Horizontal Vertical INTEGER
Model Size Size Elements

216 (HP 9816) 400 300 7500
(monochromatic)

220 (HP 9920) 400 300 7500
(HP 98204A)
(HP 98204B)
(monochromatic) 512 390 12480

226 (HP 9826) 400 300 7500
(monochromatic)

HP 98627A 512 512 49152
(external color)

236 (HP 9836) 512 390 12480
(monochromatic)

236 (HP 9836C) 512 390 49920
(color)

237 (HP 9837) 1024 768 49152
(HP 98781A)
(hit-mapped,
monochromatic)

~
35731A (medium- 1024 400 25600

resolution
hit-mapped,
monochromatic)

35741A(medium- 1024 400 102400
resolution
hit-mapped,
color, 4 planes)

98781A 1024 768 49152
(high-resolution
hit-mapped,
monochromatic)

98782A 1024 768 196608
(high-resolution
hit-mapped,
color, 4 planes)

98700 1024 768 393216
(high-resolution
hit-mapped,
color, 8 planes)

The declared array size can be larger or smaller than the graphics memory size; the operation
stops when either graphics memory or the array is exhaused.

166 GSTORE

Horizontal Vertical INTEGER
Model Size Size Elements

216 (HP 9816) 400 300 7500
(monochromatic)

220 (HP 9920) 400 300 7500
(HP 98204A)
(HP 98204B)
(monochromatic) 512 390 12480

226 (HP 9826) 400 300 7500
(monochromatic)

HP 98627A 512 512 49152
(external color)

236 (HP 9836) 512 390 12480
(monochromatic)

236 (HP 9836C) 512 390 49920
(color)

237 (HP 9837) 1024 768 49152
(HP 98781A)
(hit-mapped,
monochromatic)

~
35731A (medium- 1024 400 25600

resolution
hit-mapped,
monochromatic)

35741A(medium- 1024 400 102400
resolution
hit-mapped,
color, 4 planes)

98781A 1024 768 49152
(high-resolution
hit-mapped,
monochromatic)

98782A 1024 768 196608
(high-resolution
hit-mapped,
color, 4 planes)

98700 1024 768 393216
(high-resolution
hit-mapped,
color, 8 planes)

The declared array size can be larger or smaller than the graphics memory size; the operation
stops when either graphics memory or the array is exhaused.

GSTORE 167

Since anyone dimension of an array cannot be more than 32 767 elements, for an array to be
large enough to hold the entire graphics representation, the array may have to be multi­
dimensional. For example,

I NT E G E R S ere e 1"1 (1 : 3 LI 0 t 1 : G LI t 1 : 2) !for Model 236 Color
IN T E G E R S ere e 1"1 (1 : 512 t 1 : 32 t 1 : 3) !for HP 98627 A Color

Storage Format
The pixel representation on a monochromatic display are stored sequentially in the array using
GSTORE.

The pixel representation for color displays are stored in different formats using GSTORE.

Model 236 color display: Consecutive pairs of 16-bit words are used , regardless of the array
structure. P in the diagram is the 4-bit representation of the pixel.

Word 1 Word 2

I P5 I P1 I P6 I P2 I I P7 I P3 I P8 I P4 I

HP 98627 A color display: Each word contains the blue, green or red representation for 16 pixels. P
in the diagram is the I-bit color representation of the pixel.

Word 1 L-P_1-L_P_2~_P_3~_P_4~ __ ~I_p_1_6~1 BLUE

Word 2 L-P_1~_P_2~_P_3~_P_4~ __ ~I_p_1_6~1 GREEN

Word 3 P1 P2 P3 P4 I P16 1 RED

Word 4 I P17 I P18 I P19 I P20 I I P321 BLUE

Multi-Plane Bit-Mapped Displays
GSTORE stores information from the graphics planes in the frame buffer into an array. "Graphics
planes" means those planes which have been write-enabled for graphics via powerup,
SCRATCH A, or GESCAPE.

In the following paragraphs, reference is made to the " highest graphics plane. " The " highest
graphics plane" is that plane in the frame buffer whose corresponding bit in the graphics
write-enable mask has the highest number. For example, the highest graphics plane with a write
mask of binary 1 000 is 4. Also note that although bits in a byte are numbered from 0 through 7
(right to left) , planes in the frame buffer are numbered 1 through 8.

GSTORE 167

Since anyone dimension of an array cannot be more than 32 767 elements, for an array to be
large enough to hold the entire graphics representation, the array may have to be multi­
dimensional. For example,

I NT E G E R S ere e 1"1 (1 : 3 LI 0 t 1 : G LI t 1 : 2) !for Model 236 Color
IN T E G E R S ere e 1"1 (1 : 512 t 1 : 32 t 1 : 3) !for HP 98627 A Color

Storage Format
The pixel representation on a monochromatic display are stored sequentially in the array using
GSTORE.

The pixel representation for color displays are stored in different formats using GSTORE.

Model 236 color display: Consecutive pairs of 16-bit words are used , regardless of the array
structure. P in the diagram is the 4-bit representation of the pixel.

Word 1 Word 2

I P5 I P1 I P6 I P2 I I P7 I P3 I P8 I P4 I

HP 98627 A color display: Each word contains the blue, green or red representation for 16 pixels. P
in the diagram is the I-bit color representation of the pixel.

Word 1 L-P_1-L_P_2~_P_3~_P_4~ __ ~I_p_1_6~1 BLUE

Word 2 L-P_1~_P_2~_P_3~_P_4~ __ ~I_p_1_6~1 GREEN

Word 3 P1 P2 P3 P4 I P16 1 RED

Word 4 I P17 I P18 I P19 I P20 I I P321 BLUE

Multi-Plane Bit-Mapped Displays
GSTORE stores information from the graphics planes in the frame buffer into an array. "Graphics
planes" means those planes which have been write-enabled for graphics via powerup,
SCRATCH A, or GESCAPE.

In the following paragraphs, reference is made to the " highest graphics plane. " The " highest
graphics plane" is that plane in the frame buffer whose corresponding bit in the graphics
write-enable mask has the highest number. For example, the highest graphics plane with a write
mask of binary 1 000 is 4. Also note that although bits in a byte are numbered from 0 through 7
(right to left) , planes in the frame buffer are numbered 1 through 8.

168 GSTORE

If the highest graphics plane currently enabled is 1 (or none) , act like there is 1. The storage
format is:

Word 1 PO P1 P2 P3 I P15 1

Word 2 I P161 P171 P1S1 P191 P31

If the highest graphics plane currently enabled is between 2 and 4 , inclusive , act like there are 4.
The storage format is the same as the Model 236C format, described above.

If the highest graphics plane currently enabled is between 5 and 8 , inclusive, act like there are 8 .
The storage format is:

Word 1 PO PO PO I PO I PO PO PO PO P1 P1 P1 I P1 I P1 P1 P1 P1

Word 2 P2 P2 P2 I P21 P2 P2 P2 P2 P3 P3 P3 I P3 1 P3 P3 P3 P3

Images should be GLoAoed on the same display and with the same write-enable mask that was
used when the image was GSTOREd. If these gUidelines are not observed, the GLOAOed image may
bear no resemblance to the GSTOREd image.

To determine the number of elements needed in an integer array the right size to hold an image,
use the GESCAPE operation selector 3.

When using graphics and alpha write masks, you may prefer not to overlap the masks; that is,
have any planes which are Simultaneously indicated by both masks. If planes enabled for aipha
overlap those enabled for graphics, some alpha information will be stored along with the graphics
information.

You can conserve space if you are using fewer than the maximum number of planes. For
example, on a 98700 with eight planes, if pens 0 through 15 only are being used, the graphics
write mask could be set to 15 (binary 000(1111) rather than the default of 255 (binary 11111111).

In this way, only half the memory would be required to GSTORE the image. You can change the
graphics write mask with GESCAPE.

Non-Square Pixel Displays
With nonsquare-pixel displays, GSTORE will store all pixels (e.g., all 1024 x 400 pixels) , thus
requiring over twice the amount of memory as with a Model 236C. This is to insure that any image
GSTOREd will appear exactly the same when GLOAOed back into the frame buffer. Since alpha uses
the nonsquare pixels as separate elements-not as pairs as in graphics-it is possible to have pixel
pairs with different values in each pixel. If pixel pairs were stored, images with mixed alpha and
graphics could appear blurred when reloaded.

168 GSTORE

If the highest graphics plane currently enabled is 1 (or none) , act like there is 1. The storage
format is:

Word 1 PO P1 P2 P3 I P15 1

Word 2 I P161 P171 P1S1 P191 P31

If the highest graphics plane currently enabled is between 2 and 4 , inclusive , act like there are 4.
The storage format is the same as the Model 236C format, described above.

If the highest graphics plane currently enabled is between 5 and 8 , inclusive, act like there are 8 .
The storage format is:

Word 1 PO PO PO I PO I PO PO PO PO P1 P1 P1 I P1 I P1 P1 P1 P1

Word 2 P2 P2 P2 I P21 P2 P2 P2 P2 P3 P3 P3 I P3 1 P3 P3 P3 P3

Images should be GLoAoed on the same display and with the same write-enable mask that was
used when the image was GSTOREd. If these gUidelines are not observed, the GLOAOed image may
bear no resemblance to the GSTOREd image.

To determine the number of elements needed in an integer array the right size to hold an image,
use the GESCAPE operation selector 3.

When using graphics and alpha write masks, you may prefer not to overlap the masks; that is,
have any planes which are Simultaneously indicated by both masks. If planes enabled for aipha
overlap those enabled for graphics, some alpha information will be stored along with the graphics
information.

You can conserve space if you are using fewer than the maximum number of planes. For
example, on a 98700 with eight planes, if pens 0 through 15 only are being used, the graphics
write mask could be set to 15 (binary 000(1111) rather than the default of 255 (binary 11111111).

In this way, only half the memory would be required to GSTORE the image. You can change the
graphics write mask with GESCAPE.

Non-Square Pixel Displays
With nonsquare-pixel displays, GSTORE will store all pixels (e.g., all 1024 x 400 pixels) , thus
requiring over twice the amount of memory as with a Model 236C. This is to insure that any image
GSTOREd will appear exactly the same when GLOAOed back into the frame buffer. Since alpha uses
the nonsquare pixels as separate elements-not as pairs as in graphics-it is possible to have pixel
pairs with different values in each pixel. If pixel pairs were stored, images with mixed alpha and
graphics could appear blurred when reloaded.

169

IDN
See the MAT statement.

169

IDN
See the MAT statement.

170

IDRAW Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement draws a line from the current pen position to a position calculated by adding the X
and Y displacements to the current pen position.

~ x d i splacement ~ y displa c eme nt ~

Item Description/Default

x displacement

y displacement

numeric expression in current units

numeric expression in current units

Example Statements
IDR AW){ +50 tO
IDf;'AW Delta _x t Delta _y

Semantics

Range
Restrictions

The X and Y displacement information is interpreted according to the current unit-of-measure.

The line is clipped at the current clipping boundary.

An I DRAW 0 to generates a point. IDRAW updates the logical pen position at the completion of
the IDRAW statement, and leaves the pen down on an external plotter. IDRAW is affected by the
PIVOT transformations.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical pen
position is updated.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and d raws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1. The starting point for labels drawn after lines or axes is affected by scaling .
Note 2 The starting point for labels drawn after other labels is affected by LOlA.
Note 3 The start ing point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by POIR.

X

LDIR PDIR

Note 4

X
X

Note 2

170

IDRAW Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement draws a line from the current pen position to a position calculated by adding the X
and Y displacements to the current pen position.

~ x d i splacement ~ y displa c eme nt ~

Item Description/Default

x displacement

y displacement

numeric expression in current units

numeric expression in current units

Example Statements
IDR AW){ +50 tO
IDf;'AW Delta _x t Delta _y

Semantics

Range
Restrictions

The X and Y displacement information is interpreted according to the current unit-of-measure.

The line is clipped at the current clipping boundary.

An I DRAW 0 to generates a point. IDRAW updates the logical pen position at the completion of
the IDRAW statement, and leaves the pen down on an external plotter. IDRAW is affected by the
PIVOT transformations.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical pen
position is updated.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and d raws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1. The starting point for labels drawn after lines or axes is affected by scaling .
Note 2 The starting point for labels drawn after other labels is affected by LOlA.
Note 3 The start ing point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by POIR.

X

LDIR PDIR

Note 4

X
X

Note 2

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

This statement provides conditional branching.

boolean
e xp ression

(END IF }-i

boolean
expression

(END IF}-i

Item

boolean expresion

line label

line number

statement

program segment

Cannot be a statement
used during prerun

I---.-+l s tat e me n t I--.--+l

Description/Default

numeric expression ; evaluated as true if
non-zero and false if zero

name of a program line

integer constant identifying a program line

a programmable statement

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram

IF ... THEN

Range
Restrictions

any valid name

1 thru 32766

(see following list)

171

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

This statement provides conditional branching.

boolean
e xp ression

(END IF }-i

boolean
expression

(END IF}-i

Item

boolean expresion

line label

line number

statement

program segment

Cannot be a statement
used during prerun

I---.-+l s tat e me n t I--.--+l

Description/Default

numeric expression ; evaluated as true if
non-zero and false if zero

name of a program line

integer constant identifying a program line

a programmable statement

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram

IF ... THEN

Range
Restrictions

any valid name

1 thru 32766

(see following list)

171

172 IF.. .THEN

Example Program Segments
150 IF Flag THEN Next _ file
lGO IF Pointer<l THEN Pointer=l

580 IF First_pass THEN
580 Flag=O
GOO INPUT ICofTlflland?" tCfTld$
Gl0 IF LEN(Cmd$) THEN GOSUB Parse
G20 END IF

1000 IF X<O THEN
1010 BEEP
1020 DISP "IfT1PrOper ArgUfTlent"
1030 ELSE
1040 Root=SQR(X)
1050 END IF

Semantics
If the boolean expression evaluates to 0, it is considered false; if the evaluation is non-zero, it is
considered true. Note that a boolean expression can be constructed with numeric or string
expressions separated by relational operators, as well as with a numeric expression.

Single Line IF ... THEN
If the conditional statement is a GOTO, execution is transferred to the specified line. The
specified line must exist in the current context. A line number or line label by itself is considered
an implied GOTO. For any other statement, the statement is executed, then program execution
resumes at the line following the IF ... THEN statement. If the tested condition is false , program
execution resumes at the line following the IF ... THEN statement, and the conditional statement
is not executed.

Prohibited Statements
The following statements must be identified at prerun time or are not executed during normal
program flow. Therefore, they are not allowed as the statement in a single line IF. .. THEN
construct.

CASE END IF IF REM
CASE ELSE END LOOP IMAGE REPEAT
COM END SELECT INTEGER SELECT
DATA END WHILE LOOP SUB
DEFFN EXIT IF NEXT SUB END
DIM FNEND OPTION BASE UNTIL
ELSE FOR REAL WHILE
END

172 IF.. .THEN

Example Program Segments
150 IF Flag THEN Next _ file
lGO IF Pointer<l THEN Pointer=l

580 IF First_pass THEN
580 Flag=O
GOO INPUT ICofTlflland?" tCfTld$
Gl0 IF LEN(Cmd$) THEN GOSUB Parse
G20 END IF

1000 IF X<O THEN
1010 BEEP
1020 DISP "IfT1PrOper ArgUfTlent"
1030 ELSE
1040 Root=SQR(X)
1050 END IF

Semantics
If the boolean expression evaluates to 0, it is considered false; if the evaluation is non-zero, it is
considered true. Note that a boolean expression can be constructed with numeric or string
expressions separated by relational operators, as well as with a numeric expression.

Single Line IF ... THEN
If the conditional statement is a GOTO, execution is transferred to the specified line. The
specified line must exist in the current context. A line number or line label by itself is considered
an implied GOTO. For any other statement, the statement is executed, then program execution
resumes at the line following the IF ... THEN statement. If the tested condition is false , program
execution resumes at the line following the IF ... THEN statement, and the conditional statement
is not executed.

Prohibited Statements
The following statements must be identified at prerun time or are not executed during normal
program flow. Therefore, they are not allowed as the statement in a single line IF. .. THEN
construct.

CASE END IF IF REM
CASE ELSE END LOOP IMAGE REPEAT
COM END SELECT INTEGER SELECT
DATA END WHILE LOOP SUB
DEFFN EXIT IF NEXT SUB END
DIM FNEND OPTION BASE UNTIL
ELSE FOR REAL WHILE
END

IF...THEN 173

When ELSE is specified, only one of the program segments will be executed. When the
condition is true , the segment between IF... THEN and ELSE is executed. When the condition is
false , the segment between ELSE and END IF is executed. In either case, when the construct is
exited, program execution continues with the statement after the END IF.

Branching into an IF ... THEN construct (such as with a GOTO) results in a branch to the
program line following the END IF when the ELSE statement is executed.

The prohibited statements listed above are allowed in multiple-line IF... THEN constructs.
However, these statements are not executed conditionally. The exceptions are other IF. .. THEN
statements or constructs such as FOR. .. NEXT, REPEAT. .. UNTIL, etc. These are executed
conditionally, but need to be properly nested. To be properly nested, the entire construct must be
contained in one program segment (see drawing).

IF...THEN 173

When ELSE is specified, only one of the program segments will be executed. When the
condition is true , the segment between IF... THEN and ELSE is executed. When the condition is
false , the segment between ELSE and END IF is executed. In either case, when the construct is
exited, program execution continues with the statement after the END IF.

Branching into an IF ... THEN construct (such as with a GOTO) results in a branch to the
program line following the END IF when the ELSE statement is executed.

The prohibited statements listed above are allowed in multiple-line IF... THEN constructs.
However, these statements are not executed conditionally. The exceptions are other IF. .. THEN
statements or constructs such as FOR. .. NEXT, REPEAT. .. UNTIL, etc. These are executed
conditionally, but need to be properly nested. To be properly nested, the entire construct must be
contained in one program segment (see drawing).

174

IMAGE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
No

This statement provides image specifiers for the ENTER, OUTPUT, DISP, LABEL, and PRINT
statements. Refer to the appropriate statement for details on the effect of the various image
specifiers.

Item

IMAGE statement
items

repeat factor

literal

IMAGE
statement items

IMAGE
statement items

Description/Default

literal

integer constant

string composed of characters from the
keyboard , including those generated
using the ANY CHAR key

Example Statements
IMAGE 4Z.DDt3XtKtl
IMAGE "Result = "tSDDDEt3(}{}{tZZ)
IMAGE #tB

Range
Restrictions

(see drawing)

1 thru 32767

quote mark not allowed

174

IMAGE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
No

This statement provides image specifiers for the ENTER, OUTPUT, DISP, LABEL, and PRINT
statements. Refer to the appropriate statement for details on the effect of the various image
specifiers.

Item

IMAGE statement
items

repeat factor

literal

IMAGE
statement items

IMAGE
statement items

Description/Default

literal

integer constant

string composed of characters from the
keyboard , including those generated
using the ANY CHAR key

Example Statements
IMAGE 4Z.DDt3XtKtl
IMAGE "Result = "tSDDDEt3(}{}{tZZ)
IMAGE #tB

Range
Restrictions

(see drawing)

1 thru 32767

quote mark not allowed

WAGE 1~

IMAGE statement items

~--r-------------------------------~#~-----------------------------.~-'

~--------------------------------------~% r-----------------------------------~

r---------------------------------~K

-K

B r-------------------------------~~

r-------------------------------~w~----------------------------~

r-----------------------------~~H~~--------------------------~

Shaded items
require 10

-H

y r---------------------------------~~

Radix specifier cannot
be used without a
digit specifier.

WAGE 1~

IMAGE statement items

~--r-------------------------------~#~-----------------------------.~-'

~--------------------------------------~% r-----------------------------------~

r---------------------------------~K

-K

B r-------------------------------~~

r-------------------------------~w~----------------------------~

r-----------------------------~~H~~--------------------------~

Shaded items
require 10

-H

y r---------------------------------~~

Radix specifier cannot
be used without a
digit specifier.

176

IMOVE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement lifts the pen and moves it from the current pen position to a position calculated by
adding the specified X and Y displacements to the current pen position.

~ x displacement ~ y displacement ~

Item Description/ Default

x displacement

y displacement

numeric expression in current units

numeric expression in current units

Example Statements
IMOl.' E){ +50,0
IMOl,'E Oelta_x ,Delta_ y

Semantics

Range
Restrictions

The X and Y displacements are interpreted according to the current unit-of-measure. IMOVE is
affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside current clip limits, no
physical pen movement is made; however, the logical pen is moved the specified displacement.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

176

IMOVE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement lifts the pen and moves it from the current pen position to a position calculated by
adding the specified X and Y displacements to the current pen position.

~ x displacement ~ y displacement ~

Item Description/ Default

x displacement

y displacement

numeric expression in current units

numeric expression in current units

Example Statements
IMOl.' E){ +50,0
IMOl,'E Oelta_x ,Delta_ y

Semantics

Range
Restrictions

The X and Y displacements are interpreted according to the current unit-of-measure. IMOVE is
affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside current clip limits, no
physical pen movement is made; however, the logical pen is moved the specified displacement.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
No
No

INDENT

This commands indents your program to reflect the structure that results from its constructs.

INDENT

Item

starting column

increment

Description/Default

integer constant; Default = 6

integer constant; Default = 2

Example Statements
IND EN T
INDENT 8,L)

Semantics

Range
Restrictions

o thru Screen Width - 8

o thru Screen Width - 8

The starting column specifies the column in which the first character of the first statement of each
context appears. The increment specifies the number of spaces that the beginning of the lines
move to the left or right when the nesting level of the program changes. Note that a line label may
override the indentation computed for a particular line. The INDENT command does not move
comments which start with an exclamation point, but it does move comments starting with REM.
However, if a BASIC program line is moved to the right a comment after it may have to be moved
to make room for it. In both of these cases (line labels and comments), the text moves only as far
as is necessary; no extra blanks are generated.

Indenting a program may cause the length of some of its lines to become longer than the machine
can list. This condition is indicated by the presence of an asterisk after the line numbers of the
lines which are overlength. If this occurs, the program will run properly, STORE properly and
LOAD properly. However, you cannot do a SAVE, then a GET. Doing an INDENT with smaller
values will alleviate this problem.

Indentation occurs after the following statements:

FOR
LOOP
SUB
IF ... THEN I

REPEAT
WHILE
SELECT
DEFFN

1 This is o nly true for IF .. THEN statements where the THEN is followed by an end-ai-line or an exclamation point.

177

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
No
No

INDENT

This commands indents your program to reflect the structure that results from its constructs.

INDENT

Item

starting column

increment

Description/Default

integer constant; Default = 6

integer constant; Default = 2

Example Statements
IND EN T
INDENT 8,L)

Semantics

Range
Restrictions

o thru Screen Width - 8

o thru Screen Width - 8

The starting column specifies the column in which the first character of the first statement of each
context appears. The increment specifies the number of spaces that the beginning of the lines
move to the left or right when the nesting level of the program changes. Note that a line label may
override the indentation computed for a particular line. The INDENT command does not move
comments which start with an exclamation point, but it does move comments starting with REM.
However, if a BASIC program line is moved to the right a comment after it may have to be moved
to make room for it. In both of these cases (line labels and comments), the text moves only as far
as is necessary; no extra blanks are generated.

Indenting a program may cause the length of some of its lines to become longer than the machine
can list. This condition is indicated by the presence of an asterisk after the line numbers of the
lines which are overlength. If this occurs, the program will run properly, STORE properly and
LOAD properly. However, you cannot do a SAVE, then a GET. Doing an INDENT with smaller
values will alleviate this problem.

Indentation occurs after the following statements:

FOR
LOOP
SUB
IF ... THEN I

REPEAT
WHILE
SELECT
DEFFN

1 This is o nly true for IF .. THEN statements where the THEN is followed by an end-ai-line or an exclamation point.

177

178 INDENT

The following statements cause a one-line indentation reversal; that is, indentation is reversed for
these statements but re-indented immediately after them:

CASE
CASE ELSE
ELSE

EXIT IF
FNEND
SUBEND

Indentation is reversed before the following statements:

END IF
END LOOP
END SELECT

END WHILE
NEXT
UNTIL

Indentation remains the same from line to line for all other statements.

Improperly matched nesting will cause improper indentation. Deeply nested constructs may
cause indentation to exceed Screen Width - 8 . However, visible indentation is bounded by
Starting Column and Screen Width - 8. If a large Increment is used, indentation may attempt to
go beyond Screen Width - 8 . This will not be allowed to occur, but an internal indentation
counter is maintained, so construct-forming statements will have matching indentation.

178 INDENT

The following statements cause a one-line indentation reversal; that is, indentation is reversed for
these statements but re-indented immediately after them:

CASE
CASE ELSE
ELSE

EXIT IF
FNEND
SUBEND

Indentation is reversed before the following statements:

END IF
END LOOP
END SELECT

END WHILE
NEXT
UNTIL

Indentation remains the same from line to line for all other statements.

Improperly matched nesting will cause improper indentation. Deeply nested constructs may
cause indentation to exceed Screen Width - 8 . However, visible indentation is bounded by
Starting Column and Screen Width - 8. If a large Increment is used, indentation may attempt to
go beyond Screen Width - 8 . This will not be allowed to occur, but an internal indentation
counter is maintained, so construct-forming statements will have matching indentation.

Option Required
Keyboard Executable
Programmable
In an IF. .THEN ...

None
Yes
Yes
Yes

INITIALIZE

This statement prepares mass storage media for use by the computer. When INITIALIZE is
executed, any data on the media is lost. (If using INITIALIZE with SRM, also refer to the' 'SRM"
section of this manual.)

INITIALIZE }--""T"""""'~ med i a spec i f ier t--r-------------------y-~

RAM vo lume
specifier

i nterlea ve
facto r

un its i z e t------------.J

litera l form of media spec ifi er :

literal form of RAM vo lume specifier:

Item

media specifier

interleave factor

format option

RAM volume
specifier

unit size

msus

Description/ Default

string expression

numeric expression, rounded to an integer;
Default = device dependent (see table)

numeric expression
Default = 0

string expression

numeric expression, rounded to an integer;
Specifies 256-byte sectors.
Default = 1056

literal

Example Statements
INITIALIZE": INTERNAL"
INITIALIZE Disc$,2
INITIALIZE " : MEMDRY,O" ,Sectors
INIT IALIZE ":HP,701" ,0, 4

Range Recommended
Restrictions Range

(see drawing)

-32768 1 thru 15
thru + 32767

device
dependent

(see drawing)

4 thru 32767 memory
dependent

(see MASS
STORAGE IS)

179

Option Required
Keyboard Executable
Programmable
In an IF. .THEN ...

None
Yes
Yes
Yes

INITIALIZE

This statement prepares mass storage media for use by the computer. When INITIALIZE is
executed, any data on the media is lost. (If using INITIALIZE with SRM, also refer to the' 'SRM"
section of this manual.)

INITIALIZE }--""T"""""'~ med i a spec i f ier t--r-------------------y-~

RAM vo lume
specifier

i nterlea ve
facto r

un its i z e t------------.J

litera l form of media spec ifi er :

literal form of RAM vo lume specifier:

Item

media specifier

interleave factor

format option

RAM volume
specifier

unit size

msus

Description/ Default

string expression

numeric expression, rounded to an integer;
Default = device dependent (see table)

numeric expression
Default = 0

string expression

numeric expression, rounded to an integer;
Specifies 256-byte sectors.
Default = 1056

literal

Example Statements
INITIALIZE": INTERNAL"
INITIALIZE Disc$,2
INITIALIZE " : MEMDRY,O" ,Sectors
INIT IALIZE ":HP,701" ,0, 4

Range Recommended
Restrictions Range

(see drawing)

-32768 1 thru 15
thru + 32767

device
dependent

(see drawing)

4 thru 32767 memory
dependent

(see MASS
STORAGE IS)

179

180

Semantics
Any media used by the computer must be initialized before its first use. Initialization rewrites the
directory, eliminating any access to old data. The media is partitioned into physical records. The
quality of the media is checked during initialization. Defective tracks are "spared" (marked so
that they will not be used).

The device type of the internal 5.25 inch disc drive is INTERNAL; the interface select code is 4;
the unit number of the right-hand drive is 0; the left-hand drive is 1.

The interleave factor establishes the distance in physical records between consecutively num­
bered records. The interleave factor is ignored if the mass storage device is not a disc. If you
specify 0 for the interleave factor, the default for the device is used.

Device Type

INTERNAL
CS80
HP9121
HP913X (floppy)
HP913X (hard)
HP9885
HP9895
HP8290X

Note

Default
Interleave

1
see Note

2
4
9
1
3
4

CS80 discs use the current interleave as the default. If the disc is
uninitialized , the interleave recommended for that disc is used. Fac­
tory-shipped interleave is 1 for the HP 7908, HP 7911 , HP 7912 and
HP 7914 discs. An uninitialized HP 9122 disc has a default interleave
of 2 .

Some mass storage devices allow you to select the format to which the disc is initialized. Omitting
the format option or specifying a format option of 0 initializes the disc to its default format. Refer
to the disc drive manual for format options available with your disc drive. For example, when
initializing a single sided flexible disc on the HP 9122 double sided flexible disc drive use format
option 4.

Initializing EPROM (Requires EPROM)
In order to initialize an EPROM unit, it must be completely erased. The select code specified in the
INITIALIZE statement must be the select code of the EPROM Programmer card currently
connected to the EPROM memory card; if not, error 72 is reported.

The unit number must be one greater than the greatest unit number of any initialized EPROM unit
currently in the system. For example, if the greatest unit number of an EPROM unit in the system
is 3 , then the unit to be initialized must be unit number 4.

180

Semantics
Any media used by the computer must be initialized before its first use. Initialization rewrites the
directory, eliminating any access to old data. The media is partitioned into physical records. The
quality of the media is checked during initialization. Defective tracks are "spared" (marked so
that they will not be used).

The device type of the internal 5.25 inch disc drive is INTERNAL; the interface select code is 4;
the unit number of the right-hand drive is 0; the left-hand drive is 1.

The interleave factor establishes the distance in physical records between consecutively num­
bered records. The interleave factor is ignored if the mass storage device is not a disc. If you
specify 0 for the interleave factor, the default for the device is used.

Device Type

INTERNAL
CS80
HP9121
HP913X (floppy)
HP913X (hard)
HP9885
HP9895
HP8290X

Note

Default
Interleave

1
see Note

2
4
9
1
3
4

CS80 discs use the current interleave as the default. If the disc is
uninitialized , the interleave recommended for that disc is used. Fac­
tory-shipped interleave is 1 for the HP 7908, HP 7911 , HP 7912 and
HP 7914 discs. An uninitialized HP 9122 disc has a default interleave
of 2 .

Some mass storage devices allow you to select the format to which the disc is initialized. Omitting
the format option or specifying a format option of 0 initializes the disc to its default format. Refer
to the disc drive manual for format options available with your disc drive. For example, when
initializing a single sided flexible disc on the HP 9122 double sided flexible disc drive use format
option 4.

Initializing EPROM (Requires EPROM)
In order to initialize an EPROM unit, it must be completely erased. The select code specified in the
INITIALIZE statement must be the select code of the EPROM Programmer card currently
connected to the EPROM memory card; if not, error 72 is reported.

The unit number must be one greater than the greatest unit number of any initialized EPROM unit
currently in the system. For example, if the greatest unit number of an EPROM unit in the system
is 3 , then the unit to be initialized must be unit number 4.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN

None
No

Yes
Yes

This statement is used to assign keyboard input to program variables.

Expanded diagram:

INPUT

S~~~~g~------------________________ -r __ r-______________ ~ ______________ ,.~~~

input
items

numeric
name

beg i n in g I---r'~r--I-<
position

ending
position

181

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN

None
No

Yes
Yes

This statement is used to assign keyboard input to program variables.

Expanded diagram:

INPUT

S~~~~g~------------________________ -r __ r-______________ ~ ______________ ,.~~~

input
items

numeric
name

beg i n in g I---r'~r--I-<
position

ending
position

181

182 INPUT

Item

prompt

string name

subscript

beginning position

ending position

substring length

numeric name

Description/Default

a literal composed of characters from the
keyboard, including those generated using the
ANY CHAR key;
Default = question mark

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of a numeric variable

Example Statements
INPUT "NafTle?" tN$ t"ID NUfTlber?" tId
INPUT Arra y (*)

Semantics

Range
Restrictions

any valid name

-32767 thru +32767
(see "array" in Glossary)

1 thru 32767
(see "substring" in

Glossary)

o thru 32 767
(see "substring" in

Glossary)

o thru 32767
(see "substring" in

Glossary)

any valid name

Values can be assigned through the keyboard for any numeric or string variable, substring, array,
or array element.

A prompt, which is allowed for each item in the input list, appears on the CRT display line. If the
last DISP or DISP USING statement suppressed its EOL sequence, the prompt is appended to the
current display line contents. If the last DISP or DISP USING did not suppress the EOL sequence,
the prompt replaces the current display line contents.

Not specifying a prompt results in a question mark being used as the prompt. Specifying the null
string (" ") for the prompt suppresses the question mark.

To respond to the prompt, the operator enters a number or a string. Leading and trailing blank
characters are deleted. Unquoted strings may not contain commas or quote marks. Placing
quotes around an input string allows any characters to be used as input. If " is intended to be a
character in a quoted string, use " " .

Multiple values can be entered indiVidually or separated by commas. Press the (CONTINUE),
(RETURN), (EXECUTE), (ENTER) or (STEP) after the final input response. Two consecutive commas
cause the corresponding variable to retain its original value. Terminating an input line with a
comma retains the old values for all remaining variables in the list.

182 INPUT

Item

prompt

string name

subscript

beginning position

ending position

substring length

numeric name

Description/Default

a literal composed of characters from the
keyboard, including those generated using the
ANY CHAR key;
Default = question mark

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of a numeric variable

Example Statements
INPUT "NafTle?" tN$ t"ID NUfTlber?" tId
INPUT Arra y (*)

Semantics

Range
Restrictions

any valid name

-32767 thru +32767
(see "array" in Glossary)

1 thru 32767
(see "substring" in

Glossary)

o thru 32 767
(see "substring" in

Glossary)

o thru 32767
(see "substring" in

Glossary)

any valid name

Values can be assigned through the keyboard for any numeric or string variable, substring, array,
or array element.

A prompt, which is allowed for each item in the input list, appears on the CRT display line. If the
last DISP or DISP USING statement suppressed its EOL sequence, the prompt is appended to the
current display line contents. If the last DISP or DISP USING did not suppress the EOL sequence,
the prompt replaces the current display line contents.

Not specifying a prompt results in a question mark being used as the prompt. Specifying the null
string (" ") for the prompt suppresses the question mark.

To respond to the prompt, the operator enters a number or a string. Leading and trailing blank
characters are deleted. Unquoted strings may not contain commas or quote marks. Placing
quotes around an input string allows any characters to be used as input. If " is intended to be a
character in a quoted string, use " " .

Multiple values can be entered indiVidually or separated by commas. Press the (CONTINUE),
(RETURN), (EXECUTE), (ENTER) or (STEP) after the final input response. Two consecutive commas
cause the corresponding variable to retain its original value. Terminating an input line with a
comma retains the old values for all remaining variables in the list.

INPUT 183

The assignment of a value to a variable in the INPUT list is done as soon as the terminator
(comma or key) is encountered. Not entering data and pressing (CONTINUE), (ENTER), (EXECUTE),
(RETURN) , or ~ retains the old values for all remaining variables in the list.

If (CONTINUE) , (ENTER), (EXECUTE), or (RETURN) is pressed to end the data input, program execution
continues at the next program line. If ~ is pressed, the program execution continues at the
next program line in single step mode. (If the INPUT was stepped into, it is stepped out of, even if
(CONTINUE) , (ENTER), (EXECUTE) , or (RETURN) is pressed.)

If too many values are supplied for an INPUT list, the extra values are ignored.

An entire array may be specified by the asterisk specifier. Inputs for the array are accepted in row
major (right most subscript varies most rapidly).

Live keyboard operations are not,allowed while an INPUT is awaiting data entry. (PAUSE) or (STOP)
on an HP 46020A keyboard can be pressed so live keyboard operations can be performed. The
INPUT statement is re-executed, beginning with the first item, when (CONTINUE) or (STEP) is press­
ed. All values for that particular INPUT statement must be re-entered.

ON KBD, ON KEY and ON KNOB events are deactivated during an INPUT statement. Errors do
not cause an ON ERROR branch . If an input response results in an error, re-entry begins with the
variable which would have received the erroneous response.

INPUT 183

The assignment of a value to a variable in the INPUT list is done as soon as the terminator
(comma or key) is encountered. Not entering data and pressing (CONTINUE), (ENTER), (EXECUTE),
(RETURN) , or ~ retains the old values for all remaining variables in the list.

If (CONTINUE) , (ENTER), (EXECUTE), or (RETURN) is pressed to end the data input, program execution
continues at the next program line. If ~ is pressed, the program execution continues at the
next program line in single step mode. (If the INPUT was stepped into, it is stepped out of, even if
(CONTINUE) , (ENTER), (EXECUTE) , or (RETURN) is pressed.)

If too many values are supplied for an INPUT list, the extra values are ignored.

An entire array may be specified by the asterisk specifier. Inputs for the array are accepted in row
major (right most subscript varies most rapidly).

Live keyboard operations are not,allowed while an INPUT is awaiting data entry. (PAUSE) or (STOP)
on an HP 46020A keyboard can be pressed so live keyboard operations can be performed. The
INPUT statement is re-executed, beginning with the first item, when (CONTINUE) or (STEP) is press­
ed. All values for that particular INPUT statement must be re-entered.

ON KBD, ON KEY and ON KNOB events are deactivated during an INPUT statement. Errors do
not cause an ON ERROR branch . If an input response results in an error, re-entry begins with the
variable which would have received the erroneous response.

184

INT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the greatest integer which is less than or equal to the expression. The
result will be of the same type (REAL or INTEGER) as the argument.

numeri c
expression

Example Statements
Whole=INT(Number)
IF X/Z=INT(X/Z) THEN Even

184

INT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the greatest integer which is less than or equal to the expression. The
result will be of the same type (REAL or INTEGER) as the argument.

numeri c
expression

Example Statements
Whole=INT(Number)
IF X/Z=INT(X/Z) THEN Even

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
No

INTEGER

This statement declares INTEGER variables, dimensions INTEGER arrays, and reserves mem­
ory for them. (For information about INTEGER as a secondary keyword, see the ALLOCATE,
COM, DEF FN, or SUB statements.)

Item Description/Default

numeric name name of a numeric variable

lower bound integer constant;
Default = OPTION BASE value (0 or 1)

upper bound integer constant

Example Statements
INTEGER I,J,K
INTEGER Array(-128:255l
INTEGER A(408Gl BUFFER

Semantics

Range
Restrictions

any valid name

-32767thru +32767
(see "array" in Glossary)

- 32 767 thru + 32767
(see "array" in Glossary)

An INTEGER variable (or an element of an INTEGER array) uses two bytes of storage space.
An INTEGER array can have a maximum of six dimensions. The maximum number of elements
is a function of your computer's memory size, but no single dimension can have more than
32 767 total elements.

Declaring Buffers
To declare INTEGER variables to be buffers, each variable's name must be followed by the
keyword BUFFER; the designation BUFFER applies only to the variable which it follows.

185

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
No

INTEGER

This statement declares INTEGER variables, dimensions INTEGER arrays, and reserves mem­
ory for them. (For information about INTEGER as a secondary keyword, see the ALLOCATE,
COM, DEF FN, or SUB statements.)

Item Description/Default

numeric name name of a numeric variable

lower bound integer constant;
Default = OPTION BASE value (0 or 1)

upper bound integer constant

Example Statements
INTEGER I,J,K
INTEGER Array(-128:255l
INTEGER A(408Gl BUFFER

Semantics

Range
Restrictions

any valid name

-32767thru +32767
(see "array" in Glossary)

- 32 767 thru + 32767
(see "array" in Glossary)

An INTEGER variable (or an element of an INTEGER array) uses two bytes of storage space.
An INTEGER array can have a maximum of six dimensions. The maximum number of elements
is a function of your computer's memory size, but no single dimension can have more than
32 767 total elements.

Declaring Buffers
To declare INTEGER variables to be buffers, each variable's name must be followed by the
keyword BUFFER; the designation BUFFER applies only to the variable which it follows.

185

186

INTENSITY
See the AREA and SET PEN statements.

INTERACTIVE
See the RESUME INTERACTIVE and SUSPEND INTERACTIVE statements.

INTR
See the OFF INTR and ON INTR statements.

INV
See the MAT statement.

186

INTENSITY
See the AREA and SET PEN statements.

INTERACTIVE
See the RESUME INTERACTIVE and SUSPEND INTERACTIVE statements.

INTR
See the OFF INTR and ON INTR statements.

INV
See the MAT statement.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN

GRAPH
Yes
Yes
Yes

IPLOT

This statement moves the pen from the current pen position to the point specified by adding the
specified X and Y displacements to the current pen position. It can be used to move without
drawing a line, or to draw a line, depending on the pen control parameter.

x
d i splacement

GRAPHX

Item

x displacement

y displacement

pen control

array name

y
displac e ment

Description/Default

numeric expression, in current units

numeric expression, in current units

Range
Restrictions

numeric expression , rounded to an integer; - 32768 thru +32 767
Default = 1 (down after move)

name of two-dimensional, two-column or three- . any valid name
column numeric array. Requires GRAPHX.

Example Statements
IPLOT)(t Y t Pen
IPLOT -5 t1 2
IPLOT Shape(*) t FILL t EDGE

Semantics
Non-Array Parameters
The specified X and Y displacement information is interpreted according to the current unit-of­
measure. Lines are drawn using the current pen color and line type.

The line is clipped at the current clipping boundary. IPLOT is affected by PIVOT and PDIR
transformations.

If none of the line is inside the current clip limits , the pen is not moved, but the logical pen position
is updated.

187

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN

GRAPH
Yes
Yes
Yes

IPLOT

This statement moves the pen from the current pen position to the point specified by adding the
specified X and Y displacements to the current pen position. It can be used to move without
drawing a line, or to draw a line, depending on the pen control parameter.

x
d i splacement

GRAPHX

Item

x displacement

y displacement

pen control

array name

y
displac e ment

Description/Default

numeric expression, in current units

numeric expression, in current units

Range
Restrictions

numeric expression , rounded to an integer; - 32768 thru +32 767
Default = 1 (down after move)

name of two-dimensional, two-column or three- . any valid name
column numeric array. Requires GRAPHX.

Example Statements
IPLOT)(t Y t Pen
IPLOT -5 t1 2
IPLOT Shape(*) t FILL t EDGE

Semantics
Non-Array Parameters
The specified X and Y displacement information is interpreted according to the current unit-of­
measure. Lines are drawn using the current pen color and line type.

The line is clipped at the current clipping boundary. IPLOT is affected by PIVOT and PDIR
transformations.

If none of the line is inside the current clip limits , the pen is not moved, but the logical pen position
is updated.

187

188 IPLOT

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and d raws) X X
Polygons and rectan gles X X
Characters (generated by LAB EL)
Axes (generated by AXES & GRID) X
Location of Label s Note 1 Note 3

Note 1. The starting poin t for labe ls drawn after lines or axes is affected by scal ing .
Note 2: The starting point for labels drawn after other labels is affected by LD IR.
Note 3: The start ing point for labels drawn afte r lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

The optional pen control parameter specifies the following plotting actions; the default value is
+ 1 (down after move).

Pen Control Pa rameter

Pen Control

-Even
- Odd
+ Even
+ Odd

Resultant Action

Pen up before move
Pen down before move
Pen up after move
Pen down after move

That is, even is up , odd is down, positive is after pen motion, negative is before pen motion. Zero
is considered positive.

Array Parameters
FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the array
is reached, or when the value in the third column is an even number less than three , or in the
ranges 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the IPLOT statement itself, it causes the polygons defined
within it to be filled with the current fill color and/or edged with the current pen color. If polygon
mode is entered from within the array, and the FILL/EDGE directive for that series of polygons
differs from the FILL/EDGE directive on the IPLOT statement itself, the directive in the array
replaces the directive on the statement. In other words, if a "start polygon mode" operation
selector (a 6 , 10, or 11) is encountered, any current FILL/EDGE directive (whether specified by a
keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the IPLOT statement, FILL must occur first. If neither one
is specified, simple line drawing mode is assumed; that is, polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled , but will be edged,
regardless of the directives on the statement.

188 IPLOT

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and d raws) X X
Polygons and rectan gles X X
Characters (generated by LAB EL)
Axes (generated by AXES & GRID) X
Location of Label s Note 1 Note 3

Note 1. The starting poin t for labe ls drawn after lines or axes is affected by scal ing .
Note 2: The starting point for labels drawn after other labels is affected by LD IR.
Note 3: The start ing point for labels drawn afte r lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

The optional pen control parameter specifies the following plotting actions; the default value is
+ 1 (down after move).

Pen Control Pa rameter

Pen Control

-Even
- Odd
+ Even
+ Odd

Resultant Action

Pen up before move
Pen down before move
Pen up after move
Pen down after move

That is, even is up , odd is down, positive is after pen motion, negative is before pen motion. Zero
is considered positive.

Array Parameters
FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the array
is reached, or when the value in the third column is an even number less than three , or in the
ranges 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the IPLOT statement itself, it causes the polygons defined
within it to be filled with the current fill color and/or edged with the current pen color. If polygon
mode is entered from within the array, and the FILL/EDGE directive for that series of polygons
differs from the FILL/EDGE directive on the IPLOT statement itself, the directive in the array
replaces the directive on the statement. In other words, if a "start polygon mode" operation
selector (a 6 , 10, or 11) is encountered, any current FILL/EDGE directive (whether specified by a
keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the IPLOT statement, FILL must occur first. If neither one
is specified, simple line drawing mode is assumed; that is, polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled , but will be edged,
regardless of the directives on the statement.

IPLOT 189

When using an IPLOT statement with an array, the following table of operation seJectors applies.
An operation selector is the value in the third column of a row of the array to be plotted. The array
must be a two-dimensional , two-column or three-column array. If the third column exists, it will
contain operation selectors which instruct the computer to carry out certain operations. Polygons
may be defined, edged (using the current pen) , filled (using the current fill color), pen and line
type may be selected, and so forth . See the list below.

Operation
Column 1 Column 2 Selector Meaning

X y - 2 Pen up before moving
X y -1 Pen down before moving
X y 0 Pen up after moving (Same as + 2)
X Y 1 Pen down after moving
X y 2 Pen up after moving

pen number ignored 3 Select pen
line type repeat value 4 Select line type

color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value

ignored ignored > 15 Ignored

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same manner as
the third parameter in a non-array IPLOT statement. As mentioned above, even means lift the
pen up , odd means put the pen down, positive means act after pen motion, negative means act
before pen motion. Zero is considered positive.

Selecting Pens
The operation selector of 3 is used to select pens. The value in column one is the pen number
desired. The value in column two is ignored.

Selecting Line Types
The operation selector of 4 is used to select line types. The line type (column one) selects the
pattern, and the repeat value (column two) is the length in GDUs that the line extends before a
single occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is
evaluated and rounded down to the next multiple of 5 , with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills . This works
identically to the AREA PEN statement. Column one contains the pen number.

IPLOT 189

When using an IPLOT statement with an array, the following table of operation seJectors applies.
An operation selector is the value in the third column of a row of the array to be plotted. The array
must be a two-dimensional , two-column or three-column array. If the third column exists, it will
contain operation selectors which instruct the computer to carry out certain operations. Polygons
may be defined, edged (using the current pen) , filled (using the current fill color), pen and line
type may be selected, and so forth . See the list below.

Operation
Column 1 Column 2 Selector Meaning

X y - 2 Pen up before moving
X y -1 Pen down before moving
X y 0 Pen up after moving (Same as + 2)
X Y 1 Pen down after moving
X y 2 Pen up after moving

pen number ignored 3 Select pen
line type repeat value 4 Select line type

color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value

ignored ignored > 15 Ignored

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same manner as
the third parameter in a non-array IPLOT statement. As mentioned above, even means lift the
pen up , odd means put the pen down, positive means act after pen motion, negative means act
before pen motion. Zero is considered positive.

Selecting Pens
The operation selector of 3 is used to select pens. The value in column one is the pen number
desired. The value in column two is ignored.

Selecting Line Types
The operation selector of 4 is used to select line types. The line type (column one) selects the
pattern, and the repeat value (column two) is the length in GDUs that the line extends before a
single occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is
evaluated and rounded down to the next multiple of 5 , with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills . This works
identically to the AREA PEN statement. Column one contains the pen number.

190 IPLOT

Defining a Fill Color
Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two , respectively , and column three has the value 14. Following this
row in the array (not necessarily immediately) , is a row whose operation selector in column three
has the value of 15. The first column in that row contains the blue value. These numbers range
from 0 to 32 767 , where 0 is no color and 32 767 is full intensity. Operation selectors 14 and 15
together comprise the equivalent of an AREA INTENSITY statement, which means it can be used
on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation selector
14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner. There
are three groups of five bits right-justified in the word, that is , the most significant bit in the word is
ignored. Each group of five bits contains a number which determines the intensity of the
corresponding color component, which ranges from zero to sixteen. The value in each field will
be sixteen minus the intensity of the color component. For example , if the vallie in the first
column of the array is zero, all three five-bit values would thus be zero. Sixteen minus zero in all
three cases would turn on all three color components to full intensity, and the resultant color
would be a bright white.

Assuming you have the desired intensities for red, green , and blue ranging from zero to one in the
variables P , G, and B, respectively, the value for the first column in the array could be defined
thus:

An- ay (PO lnl Ii) =:3HIF T(16 *< 1-5) ;-10)+ S HIF T(16*(i - G) /-5)+16* (1-R)

If there is a pen color in the color map identical to that which you request here, that non-dithered
color will be used. If there is not a similar color, you will get a dithered pattern .

Polygons
A six, ten , or eleven in the third column of the array begins a "polygon mode" . If the operation
selector is 6 , the polygon will be filled with the current fill color. If the operation selector is 10, the
polygon will be edged with the current pen number and line type. If the operation selector is 11 ,
the polygon will be both filled and edged. Many individual polygons (series of draws separated by
moves) can be filled without terminating the mode with an operation selector 7. The first and
second columns are ignored; therefore they should not contain the X and Y values of the first
point of a polygon .

190 IPLOT

Defining a Fill Color
Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two , respectively , and column three has the value 14. Following this
row in the array (not necessarily immediately) , is a row whose operation selector in column three
has the value of 15. The first column in that row contains the blue value. These numbers range
from 0 to 32 767 , where 0 is no color and 32 767 is full intensity. Operation selectors 14 and 15
together comprise the equivalent of an AREA INTENSITY statement, which means it can be used
on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation selector
14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner. There
are three groups of five bits right-justified in the word, that is , the most significant bit in the word is
ignored. Each group of five bits contains a number which determines the intensity of the
corresponding color component, which ranges from zero to sixteen. The value in each field will
be sixteen minus the intensity of the color component. For example , if the vallie in the first
column of the array is zero, all three five-bit values would thus be zero. Sixteen minus zero in all
three cases would turn on all three color components to full intensity, and the resultant color
would be a bright white.

Assuming you have the desired intensities for red, green , and blue ranging from zero to one in the
variables P , G, and B, respectively, the value for the first column in the array could be defined
thus:

An- ay (PO lnl Ii) =:3HIF T(16 *< 1-5) ;-10)+ S HIF T(16*(i - G) /-5)+16* (1-R)

If there is a pen color in the color map identical to that which you request here, that non-dithered
color will be used. If there is not a similar color, you will get a dithered pattern .

Polygons
A six, ten , or eleven in the third column of the array begins a "polygon mode" . If the operation
selector is 6 , the polygon will be filled with the current fill color. If the operation selector is 10, the
polygon will be edged with the current pen number and line type. If the operation selector is 11 ,
the polygon will be both filled and edged. Many individual polygons (series of draws separated by
moves) can be filled without terminating the mode with an operation selector 7. The first and
second columns are ignored; therefore they should not contain the X and Y values of the first
point of a polygon .

IPLOT 191

Operation selector 7 in the third column of a plotted array terminates definition of a polygon to be
edged and/or filled and also terminates the polygon mode (entered by operation selectors 6 , 10,
or 11) . The values in the first and second columns are ignored, and the X and Y values of the last
data point should not be in them. Edging and/or filling will begin immediately upon encountering
this operation selector.

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot be
changed from within the IPLOT statement, so one probably would not have more than one
operation selector 12 in an array to IPLOT, since the last FRAME will overwrite all the previous
ones.

Premature Termination
Operation selector 8 causes the IPLOT statement to be terminated. The IPLOT statement will
successfully terminate if the actual end of the array has been reached, so the use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility reasons.
Operation selectors less than - 2 are not ignored. If the value in the third column is less than zero ,
only evenness/oddness is considered.

IPLOT 191

Operation selector 7 in the third column of a plotted array terminates definition of a polygon to be
edged and/or filled and also terminates the polygon mode (entered by operation selectors 6 , 10,
or 11) . The values in the first and second columns are ignored, and the X and Y values of the last
data point should not be in them. Edging and/or filling will begin immediately upon encountering
this operation selector.

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot be
changed from within the IPLOT statement, so one probably would not have more than one
operation selector 12 in an array to IPLOT, since the last FRAME will overwrite all the previous
ones.

Premature Termination
Operation selector 8 causes the IPLOT statement to be terminated. The IPLOT statement will
successfully terminate if the actual end of the array has been reached, so the use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility reasons.
Operation selectors less than - 2 are not ignored. If the value in the third column is less than zero ,
only evenness/oddness is considered.

192

IVAL
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This function converts a binary, octal, decimal, or hexadecimal string expression into an
INTEGER

Item Description/Default

string argument string expression, containing digits valid for the
specified base

radix numeric expression, rounded to an integer

Example Statements
NUfllber=I!.JAl(IFDFO" ,16)

I = I !.JAl (II 1111111111111 1 10 II ,2)

DISP HJAL<Octal$,8)

Semantics

Range
Restrictions

(see table)

2, 8, 10, or 16

The radix is a numeric expression that will be rounded to an integer and must evaluate to 2, 8, 10,
or 16.

The string expression must contain only the characters allowed for the particular number base
indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two's-complement form. If all 16 digits are specified and the
leading digit is a 1, the returned value is negative.

Octal strings are presumed to be in the octal representation of two's-complement form. If all 6
digits are specified, and the leading digit is a 1, the returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.

Hex strings are presumed to be in the hex representation of the two's-complement binary form .
The letters A through F may be specified in either upper or lower case. If all 4 digits are specified
and the leading digit is 8 through F the returned value is negative.

192

IVAL
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This function converts a binary, octal, decimal, or hexadecimal string expression into an
INTEGER

Item Description/Default

string argument string expression, containing digits valid for the
specified base

radix numeric expression, rounded to an integer

Example Statements
NUfllber=I!.JAl(IFDFO" ,16)

I = I !.JAl (II 1111111111111 1 10 II ,2)

DISP HJAL<Octal$,8)

Semantics

Range
Restrictions

(see table)

2, 8, 10, or 16

The radix is a numeric expression that will be rounded to an integer and must evaluate to 2, 8, 10,
or 16.

The string expression must contain only the characters allowed for the particular number base
indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two's-complement form. If all 16 digits are specified and the
leading digit is a 1, the returned value is negative.

Octal strings are presumed to be in the octal representation of two's-complement form. If all 6
digits are specified, and the leading digit is a 1, the returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.

Hex strings are presumed to be in the hex representation of the two's-complement binary form .
The letters A through F may be specified in either upper or lower case. If all 4 digits are specified
and the leading digit is 8 through F the returned value is negative.

Radix Base String Range String Length

2 binary ° thru 1111111111111111 1 to 16 characters

8 octal ° thru 177777 1 to 6 characters

10 decimal - 32768 thru + 32768 1 to 6 characters

16 hexadecimal ° thru FFFF 1 to 4 characters

Radix Legal Characters

2 + ,0 ,1

8 + ,0,1,2,3,4,5,6,7

10 +, - ,0,1,2,3,4, 5,
6,7,8,9

16 +, 0,1,2,3,4,5,6,7,
8 ,9,A,B,C,D,E,F,
a,b,c,d,e,f

Comments

Range restricts the leading character.
Sign must be a leading character.

Signs must be a leading character.

Ala = 10, Bib = 11 , Clc = 12, Old = 13
E/e = 14, F/f = 15

IVAL 193

Radix Base String Range String Length

2 binary ° thru 1111111111111111 1 to 16 characters

8 octal ° thru 177777 1 to 6 characters

10 decimal - 32768 thru + 32768 1 to 6 characters

16 hexadecimal ° thru FFFF 1 to 4 characters

Radix Legal Characters

2 + ,0 ,1

8 + ,0,1,2,3,4,5,6,7

10 +, - ,0,1,2,3,4, 5,
6,7,8,9

16 +, 0,1,2,3,4,5,6,7,
8 ,9,A,B,C,D,E,F,
a,b,c,d,e,f

Comments

Range restricts the leading character.
Sign must be a leading character.

Signs must be a leading character.

Ala = 10, Bib = 11 , Clc = 12, Old = 13
E/e = 14, F/f = 15

IVAL 193

194

IVAL$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This function converts an INTEGER into a binary, octal, decimal, or hexadecimal string.

Item

"16-bit" argument

radix

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
F$=HJAL$(-l d6)
Binar y$ = IVAL$ (Co un t DIV 256,2)

Semantics

Range
Restrictions

(see table)

2, 8, 10, or16

None
Yes
Yes
Yes

The rounded argument must be a value that can be expressed (in binary) using 16 bits or less.

The radix must evaluate to be 2 , 8 , 10, or 16; representing binary, octal, decimal, or hexadecimal
notation.

If the radix is 2, the returned string is in two' s-complement form and contains 16 characters. If the
numeric expression is negative, the leading digit will be 1. If the value is zero or positive there will
be leading zeros.

If the radix is 8, the returned string is the octal representation of the two's-complement binary
form and contains 6 digits. Negative values return a leading digit of 1.

If the radix is 10, the returned string contains 6 characters. Leading zeros are added to the string if
necessary. Negative values have a leading minus sign.

If the radix is 16, the returned string is the hexadecimal representation of the two's-complement
binary form and contains 4 characters. Negative values return a leading digit in the range 8 thru F.

Radix Base Range of Returned String String Length

2 binary 0000000000000000 16 characters
thru

1111111111111111

8 octal 000000 thru 177777 6 characters

10 decimal - 32768 thru 032768 6 characters

16 hexadecimal 0000 thru FFFF 4 characters

194

IVAL$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This function converts an INTEGER into a binary, octal, decimal, or hexadecimal string.

Item

"16-bit" argument

radix

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
F$=HJAL$(-l d6)
Binar y$ = IVAL$ (Co un t DIV 256,2)

Semantics

Range
Restrictions

(see table)

2, 8, 10, or16

None
Yes
Yes
Yes

The rounded argument must be a value that can be expressed (in binary) using 16 bits or less.

The radix must evaluate to be 2 , 8 , 10, or 16; representing binary, octal, decimal, or hexadecimal
notation.

If the radix is 2, the returned string is in two' s-complement form and contains 16 characters. If the
numeric expression is negative, the leading digit will be 1. If the value is zero or positive there will
be leading zeros.

If the radix is 8, the returned string is the octal representation of the two's-complement binary
form and contains 6 digits. Negative values return a leading digit of 1.

If the radix is 10, the returned string contains 6 characters. Leading zeros are added to the string if
necessary. Negative values have a leading minus sign.

If the radix is 16, the returned string is the hexadecimal representation of the two's-complement
binary form and contains 4 characters. Negative values return a leading digit in the range 8 thru F.

Radix Base Range of Returned String String Length

2 binary 0000000000000000 16 characters
thru

1111111111111111

8 octal 000000 thru 177777 6 characters

10 decimal - 32768 thru 032768 6 characters

16 hexadecimal 0000 thru FFFF 4 characters

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN.. . Yes

This INTEGER function returns a 2, the select code of the keyboard.

Example Statements
STATUS KBDlKbd_status
OUTPUT KBDlClear$;

195

KBD
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN.. . Yes

This INTEGER function returns a 2, the select code of the keyboard.

Example Statements
STATUS KBDlKbd_status
OUTPUT KBDlClear$;

195

KBD

196

KBD$
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN.. . Yes

This function returns the contents of the buffer established by ON KBD.

Example Statements
Ke}'s$=KBO$
IF Active THEN Command$=Command$&KBO$

Semantics
When an ON KBD branch is in effect, all subsequent keystrokes are trapped and held in a special
"keyboard" buffer. The KBD$ function returns the contents of this buffer and then clears it. A
null string is returned if the buffer is empty or no ON KBD branch is active.

Non-ASCII keys are stored in the buffer as two bytes; the first has a decimal value of 255, and the
second specifies the key. Pressing (CTRL) and a non-ASCII key Simultaneously generates three
bytes; the first two have a decimal value of 255, and the third specifies the key. See the Second
Byte of Non-ASCII Key Sequences table in the "Useful Tables" section for a list of these
keycodes.

The buffer can hold 256 characters. Further keystrokes are not saved and produce beeps. An
overflow flag is set after the buffer is full. This flag can be checked by reading keyboard status
register 5 and is cleared by reading the status register SCRATCH A. and a (RESEr) operation.

The buffer is cleared by KBD$. OFF KBD. SCRATCH. SCRATCH A, INPUT, LINPUT, ENTER 2,
and a (RESET) operation.

KEY
See the OFF KEY and ON KEY statements.

KNOB
See the OFF KNOB and the ON KNOB statements.

196

KBD$
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN.. . Yes

This function returns the contents of the buffer established by ON KBD.

Example Statements
Ke}'s$=KBO$
IF Active THEN Command$=Command$&KBO$

Semantics
When an ON KBD branch is in effect, all subsequent keystrokes are trapped and held in a special
"keyboard" buffer. The KBD$ function returns the contents of this buffer and then clears it. A
null string is returned if the buffer is empty or no ON KBD branch is active.

Non-ASCII keys are stored in the buffer as two bytes; the first has a decimal value of 255, and the
second specifies the key. Pressing (CTRL) and a non-ASCII key Simultaneously generates three
bytes; the first two have a decimal value of 255, and the third specifies the key. See the Second
Byte of Non-ASCII Key Sequences table in the "Useful Tables" section for a list of these
keycodes.

The buffer can hold 256 characters. Further keystrokes are not saved and produce beeps. An
overflow flag is set after the buffer is full. This flag can be checked by reading keyboard status
register 5 and is cleared by reading the status register SCRATCH A. and a (RESEr) operation.

The buffer is cleared by KBD$. OFF KBD. SCRATCH. SCRATCH A, INPUT, LINPUT, ENTER 2,
and a (RESET) operation.

KEY
See the OFF KEY and ON KEY statements.

KNOB
See the OFF KNOB and the ON KNOB statements.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

KNOBX

This function returns the net number of horizontal knob pulses counted since the last time the
KNOBX counter was zeroed.

Example Statements
Position=KNOB>{
IF KNOBX<O THEN Backwards

Semantics
Sampling occurs during the time interval established by the ON KNOB statement. The counter
is zeroed when the KNOBX function is called and at the times specified in the Reset Table at the
back of this manual. Clockwise rotation gives positive counts; counter-clockwise rotation gives
negative counts. There are 120 counts for one revolution of the knob. If there is no active ON
KNOB definition, KNOBX returns zero.

Counts are accumulated by the KNOBX function during each ON KNOB sampling interval. The
pulse count during each sampling interval is limited to -127 thru + 128. The limits of the
KNOBX function are - 32768 thru + 32 767.

You can use a relative pointing device, such as the HP 46060A on an HP 46020A keyboard , if the
KBD BIN is loaded.

Note
KNOBX functions differently if BIN file KNB2_0 is loaded. Refer to
the Knob section in Chapter 15 of the BASIC Programming Tech­
niques manual for more information.

197

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

KNOBX

This function returns the net number of horizontal knob pulses counted since the last time the
KNOBX counter was zeroed.

Example Statements
Position=KNOB>{
IF KNOBX<O THEN Backwards

Semantics
Sampling occurs during the time interval established by the ON KNOB statement. The counter
is zeroed when the KNOBX function is called and at the times specified in the Reset Table at the
back of this manual. Clockwise rotation gives positive counts; counter-clockwise rotation gives
negative counts. There are 120 counts for one revolution of the knob. If there is no active ON
KNOB definition, KNOBX returns zero.

Counts are accumulated by the KNOBX function during each ON KNOB sampling interval. The
pulse count during each sampling interval is limited to -127 thru + 128. The limits of the
KNOBX function are - 32768 thru + 32 767.

You can use a relative pointing device, such as the HP 46060A on an HP 46020A keyboard , if the
KBD BIN is loaded.

Note
KNOBX functions differently if BIN file KNB2_0 is loaded. Refer to
the Knob section in Chapter 15 of the BASIC Programming Tech­
niques manual for more information.

197

198

KNOBY
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the net number of vertical knob pulses counted since the last time the
KNOBY counter was zeroed.

Example Statements
F'osition=KNOBY
IF KNOBY<O THEN BacKwards

Semantics
Sampling occurs during the time interval established by the ON KNOB statement. The counter is
zeroed when the KNOBY function is called and at the times specified in the Reset Table at the
back of this manual. Clockwise rotation gives positive counts: counter-clockwise rotation gives
negative counts. There are 120 counts for one revolution of the knob. If there is no active ON
KNOB definition. KNOBY returns zero.

Counts are accumulated by the KNOBY function during each ON KNOB sampling interval. The
pulse count during each sampling interval is limited to -127 thru + 128. The limits of the
KNOBY function are - 32 768 thru + 32 767.

You can use a relative pointing device, such as the HP 46060A on an HP 46020A keyboard, if the
KBD BIN is loaded.

Note
KNOBY functions differently if BIN file KNB2_0 is loaded. Refer to
the Knob section in Chapter 15 of the BASIC Programming Tech­
niques manual for more information.

198

KNOBY
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the net number of vertical knob pulses counted since the last time the
KNOBY counter was zeroed.

Example Statements
F'osition=KNOBY
IF KNOBY<O THEN BacKwards

Semantics
Sampling occurs during the time interval established by the ON KNOB statement. The counter is
zeroed when the KNOBY function is called and at the times specified in the Reset Table at the
back of this manual. Clockwise rotation gives positive counts: counter-clockwise rotation gives
negative counts. There are 120 counts for one revolution of the knob. If there is no active ON
KNOB definition. KNOBY returns zero.

Counts are accumulated by the KNOBY function during each ON KNOB sampling interval. The
pulse count during each sampling interval is limited to -127 thru + 128. The limits of the
KNOBY function are - 32 768 thru + 32 767.

You can use a relative pointing device, such as the HP 46060A on an HP 46020A keyboard, if the
KBD BIN is loaded.

Note
KNOBY functions differently if BIN file KNB2_0 is loaded. Refer to
the Knob section in Chapter 15 of the BASIC Programming Tech­
niques manual for more information.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

LABEL

This statement produces alphanumeric labels on graphic devices. (For information about LABEL
as a secondary keyword, see the ON KEY statement.)

Ex panded diagram:

Ol
E
Ql
+'
·rl

Ql
Ol
ro
E
·rl

Ol
E
Ql
+'
·rl

,.,
III
rl

0.
Ol
·rl
U

string
expression

numeric
expression

image line
number

image line
label

tab function not allowed with US ING

literal form of image specifier :

image
specifier list

image
specifier list

trailing punctuation
not allowed with USING

199

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

LABEL

This statement produces alphanumeric labels on graphic devices. (For information about LABEL
as a secondary keyword, see the ON KEY statement.)

Ex panded diagram:

Ol
E
Ql
+'
·rl

Ql
Ol
ro
E
·rl

Ol
E
Ql
+'
·rl

,.,
III
rl

0.
Ol
·rl
U

string
expression

numeric
expression

image line
number

image line
label

tab function not allowed with US ING

literal form of image specifier :

image
specifier list

image
specifier list

trailing punctuation
not allowed with USING

199

200 LABEL

r
ima ge s pe cifier

~4

%

K

- K

B

W

+

r-------------------------------------~ H

- H

r---------------------------------~ y

S h ad e d items
re qui r e 10

l i st

Radix speci f ier ca nnot
be used without a
d igit specifier .

L~

200 LABEL

r
ima ge s pe cifier

~4

%

K

- K

B

W

+

r-------------------------------------~ H

- H

r---------------------------------~ y

S h ad e d items
re qui r e 10

l i st

Radix speci f ier ca nnot
be used without a
d igit specifier .

L~

Item

image line number

image line label

image specifier

string array name

numeric array name

image specifier list

repeat factor

literal

Description/Default

integer constant identifying an IMAGE statement

name identifying an IMAGE statement

string expression

name of a string array

name of a numeric array

literal

integer constant

string constant composed of characters from the
keyboard, including those generated using the
ANY CHAR key

Example Statements
LABEL NUMber,StringS
LABEL USING "5Z.DD"iMoney

Semantics

Range
Restrictions

1 thru 32766

LABEL 201

any valid name

(see drawing)

any valid name

any valid name

(see next drawing)

1 thru 32767

quote mark not allowed

The label begins at the current logical pen position. with the current pen . Labels are clipped at the
current clip boundary. Other statements which affect label generation are PEN, LINE TYPE,
PIVOT, CSIZE. LORG , and LDIR. The current pen position is updated at the end of the label
operation.

Standard Numeric Format
The standard numeric format depends on the value of the number being output. If the absolute
value of the number is greater than or equal to IE - 4 and less than 1 E + 6, it is rounded to 12
digits and output in floating point notation . If it is not within these limits, it is output in scientific
notation. The standard numeric format is used unless USING is selected, and may be specified by
using K in an image specifier.

Item

image line number

image line label

image specifier

string array name

numeric array name

image specifier list

repeat factor

literal

Description/Default

integer constant identifying an IMAGE statement

name identifying an IMAGE statement

string expression

name of a string array

name of a numeric array

literal

integer constant

string constant composed of characters from the
keyboard, including those generated using the
ANY CHAR key

Example Statements
LABEL NUMber,StringS
LABEL USING "5Z.DD"iMoney

Semantics

Range
Restrictions

1 thru 32766

LABEL 201

any valid name

(see drawing)

any valid name

any valid name

(see next drawing)

1 thru 32767

quote mark not allowed

The label begins at the current logical pen position. with the current pen . Labels are clipped at the
current clip boundary. Other statements which affect label generation are PEN, LINE TYPE,
PIVOT, CSIZE. LORG , and LDIR. The current pen position is updated at the end of the label
operation.

Standard Numeric Format
The standard numeric format depends on the value of the number being output. If the absolute
value of the number is greater than or equal to IE - 4 and less than 1 E + 6, it is rounded to 12
digits and output in floating point notation . If it is not within these limits, it is output in scientific
notation. The standard numeric format is used unless USING is selected, and may be specified by
using K in an image specifier.

202 LABEL

Automatic End-Of-Line Sequence
After the label list is exhausted, an End-of-Line (EOL) sequence is sent to the logical pen, unless it
is suppressed by trailing punctuation or a pound-sign image specifier. The EOL sequence is also
sent after every 256 characters. This " plotter buffer exceeded" EOL is not suppressed by trailing
punctuation, but is suppressed by the pound-sign specifier.

Control Codes
Some ASCII control codes have a special effect in LABEL statements.

Character Keystroke Name Action

CHR$ (8) CTRL-H backspace Back up the width of one char-
acte r ce ll.

CHR$(10) CTRL-J Iinefeed Move down the height of one
character cell.

CHR$ (1 3) CTRL-M carriage return Move back the length of th e
label just completed .

Any control character that the LABEL statement does not recognize is treated as an ASCII blank
[CHR$(32)].

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling .
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point fo r labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by PDIR.

Arrays

X

LDIR PDIR

Note 4

X
X

Note 2

Arrays may be output as labels by using the asterisk specifier. They are output in row-major order
(right-most subscript varies most rapidly) and their format depends on the label mode selected.

202 LABEL

Automatic End-Of-Line Sequence
After the label list is exhausted, an End-of-Line (EOL) sequence is sent to the logical pen, unless it
is suppressed by trailing punctuation or a pound-sign image specifier. The EOL sequence is also
sent after every 256 characters. This " plotter buffer exceeded" EOL is not suppressed by trailing
punctuation, but is suppressed by the pound-sign specifier.

Control Codes
Some ASCII control codes have a special effect in LABEL statements.

Character Keystroke Name Action

CHR$ (8) CTRL-H backspace Back up the width of one char-
acte r ce ll.

CHR$(10) CTRL-J Iinefeed Move down the height of one
character cell.

CHR$ (1 3) CTRL-M carriage return Move back the length of th e
label just completed .

Any control character that the LABEL statement does not recognize is treated as an ASCII blank
[CHR$(32)].

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling .
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point fo r labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by PDIR.

Arrays

X

LDIR PDIR

Note 4

X
X

Note 2

Arrays may be output as labels by using the asterisk specifier. They are output in row-major order
(right-most subscript varies most rapidly) and their format depends on the label mode selected.

LABEL 203

LABEL Without Using
If LABEL is used without USING. the punctuation following an item determines the width of the
item's label field : a semicolon selects the compact field , and a comma selects the default label
field. When the label item is an array with the aste risk array specifier, each array element is
considered a separate label item. Any trailing punctation will suppress the automatic EOL
sequence. in addition to selecting the label field to be used for the label item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are output with
one trailing blank. String items are output with no leading or trailing blanks.

The default label field labels items with trailing blanks to fill to the beginning of the next
10-character field .

Numeric data is output with one leading blank if the number is positive . or with a minus sign if the
number is negative, whether in compact or default field.

LABEL With Using
When the computer executes a LABEL USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun­
tered. If nothing is required from the label items, the field specifier is acted upon without accessing
the label list. When the field specifer requires characters, it accesses the next item in the label list,
using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
label item. If the image specifiers are exhausted before the label items , they are reused, starting at
the beginning.

If a numeric item requires more decimal places to the left of the decimal point than provided by
the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used, and
can generate unexpected overflows of the image field . If the number contains more digits to the
right of the decimal point than are specified. it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifer, trailing blanks are used to fill out the field.

LABEL 203

LABEL Without Using
If LABEL is used without USING. the punctuation following an item determines the width of the
item's label field : a semicolon selects the compact field , and a comma selects the default label
field. When the label item is an array with the aste risk array specifier, each array element is
considered a separate label item. Any trailing punctation will suppress the automatic EOL
sequence. in addition to selecting the label field to be used for the label item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are output with
one trailing blank. String items are output with no leading or trailing blanks.

The default label field labels items with trailing blanks to fill to the beginning of the next
10-character field .

Numeric data is output with one leading blank if the number is positive . or with a minus sign if the
number is negative, whether in compact or default field.

LABEL With Using
When the computer executes a LABEL USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun­
tered. If nothing is required from the label items, the field specifier is acted upon without accessing
the label list. When the field specifer requires characters, it accesses the next item in the label list,
using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
label item. If the image specifiers are exhausted before the label items , they are reused, starting at
the beginning.

If a numeric item requires more decimal places to the left of the decimal point than provided by
the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used, and
can generate unexpected overflows of the image field . If the number contains more digits to the
right of the decimal point than are specified. it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifer, trailing blanks are used to fill out the field.

204 LABEL

Effects of the image specifiers on the LABEL statement are shown in the following table:

Image
Specifier Meaning

K Compact field. Outputs a number or string as a label in standard form with no leading or
trailing blanks.

- K Same as K.

H Similar to K, except the number is output using the European number format (comma
radix). (Requires 10)

- H Same as H. (Requires 10)

S Outputs the number's sign (+ or -) as a label.

M Outputs the number's sign as a label if negative, a blank if positive.

o Outputs one digit character as a label. A leading zero is replaced by a blank. If the number is
negative and no sign image is specified, the minus sign will occupy a leading digit position. If
a sign is output, it will " float" to the left of the left-most digit.

Z Same as 0 , except that leading zeros are output.

* Same as Z, except that asterisks are output instead of leading zeros. (Requires
rO)

R

E

ESZ

ESZZ

ESZZZ

Outputs a decimal-point radix indicator as a label.

Outputs a comma radix indicator as a label (European radix) . (Requires 10)

Outputs as a label: an E, a sign , and a two-digit exponent.

Outputs as a label: an E, a sign. and a one-digit exponent.

Same as E.

Outputs as a label: an E, a sign , and a three-digit exponent.

204 LABEL

Effects of the image specifiers on the LABEL statement are shown in the following table:

Image
Specifier Meaning

K Compact field. Outputs a number or string as a label in standard form with no leading or
trailing blanks.

- K Same as K.

H Similar to K, except the number is output using the European number format (comma
radix). (Requires 10)

- H Same as H. (Requires 10)

S Outputs the number's sign (+ or -) as a label.

M Outputs the number's sign as a label if negative, a blank if positive.

o Outputs one digit character as a label. A leading zero is replaced by a blank. If the number is
negative and no sign image is specified, the minus sign will occupy a leading digit position. If
a sign is output, it will " float" to the left of the left-most digit.

Z Same as 0 , except that leading zeros are output.

* Same as Z, except that asterisks are output instead of leading zeros. (Requires
rO)

R

E

ESZ

ESZZ

ESZZZ

Outputs a decimal-point radix indicator as a label.

Outputs a comma radix indicator as a label (European radix) . (Requires 10)

Outputs as a label: an E, a sign , and a two-digit exponent.

Outputs as a label: an E, a sign. and a one-digit exponent.

Same as E.

Outputs as a label: an E, a sign , and a three-digit exponent.

LABEL 205

Image
Specifier Meaning

A Outputs a string character as a label. Trailing blanks are output if the number of characters
specified is greater than the number available in the corresponding string. If the image
specifier is exhausted before the corresponding string. the remaining characters are ignored.

X Outputs a blank as a label.

literal Outputs as a label the characters contained in the literal.

B Outputs as a label the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an INTEGER and the least-significant byte is sent. If the
number is greater than 32 767. then 255 is used: if the number is less than - 32 768, then 0
is used.

W Outputs as a label two characters represented by the two bytes of a 16-bit, two's­
complement integer. The corresponding numeric item is rounded to an INTEGER. If it is
greater than 32 767. then 32 767 is used: if it is less than - 32 768, then - 32 768 is used.
The most-significant byte is sent first.

Y Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence follOWing the last
label item.

% Ignored in LABEL images.

+ Changes the automatic EOL sequence that normally follows the last label item to a single
carriage-return. (Requires 10.)

Changes the automatic EOL sequence that normally follows follows the last label item to a
single line-feed. (Requires 10)

Sends a carriage-return and a line-feed to the PLOTTER IS device.

L Same as I.

@' Sends a form-feed to the PLOTTER IS device: produces a blank.

LABEL 205

Image
Specifier Meaning

A Outputs a string character as a label. Trailing blanks are output if the number of characters
specified is greater than the number available in the corresponding string. If the image
specifier is exhausted before the corresponding string. the remaining characters are ignored.

X Outputs a blank as a label.

literal Outputs as a label the characters contained in the literal.

B Outputs as a label the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an INTEGER and the least-significant byte is sent. If the
number is greater than 32 767. then 255 is used: if the number is less than - 32 768, then 0
is used.

W Outputs as a label two characters represented by the two bytes of a 16-bit, two's­
complement integer. The corresponding numeric item is rounded to an INTEGER. If it is
greater than 32 767. then 32 767 is used: if it is less than - 32 768, then - 32 768 is used.
The most-significant byte is sent first.

Y Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence follOWing the last
label item.

% Ignored in LABEL images.

+ Changes the automatic EOL sequence that normally follows the last label item to a single
carriage-return. (Requires 10.)

Changes the automatic EOL sequence that normally follows follows the last label item to a
single line-feed. (Requires 10)

Sends a carriage-return and a line-feed to the PLOTTER IS device.

L Same as I.

@' Sends a form-feed to the PLOTTER IS device: produces a blank.

206

LDIR
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement defines the angle at which a label or symbol is drawn. The angle is interpreted as
counterclockwise, from horizontal. The current angle mode is used.

Item

angle

Description/Default

numeric expression in current units of angle;
Default = 0

Example Statements
LDIR 80
LDIR ACS(Side)

Semantics

Range
Restrictions

(same as COS)

LDIR affects the appearance of LABEL LABEL USING and SYMBOL output.

The angle is interpreted as shown below.

LDIR EXRMPLES (in Degrees)

206

LDIR
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement defines the angle at which a label or symbol is drawn. The angle is interpreted as
counterclockwise, from horizontal. The current angle mode is used.

Item

angle

Description/Default

numeric expression in current units of angle;
Default = 0

Example Statements
LDIR 80
LDIR ACS(Side)

Semantics

Range
Restrictions

(same as COS)

LDIR affects the appearance of LABEL LABEL USING and SYMBOL output.

The angle is interpreted as shown below.

LDIR EXRMPLES (in Degrees)

LEN
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN.. . Yes

This function returns the current number of characters in the argument. The length of the null
string (II II) is O.

s t ring
e xpress i on

Example Statements
Last=LEN(Strinr$)
IF NOT LEN(A$) THEN EMPty

207

LEN
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF... THEN.. . Yes

This function returns the current number of characters in the argument. The length of the null
string (II II) is O.

s t ring
e xpress i on

Example Statements
Last=LEN(Strinr$)
IF NOT LEN(A$) THEN EMPty

207

208

LET Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This is the assignment statement, which is used to assign values to variables.

numeric
name

numeric
expres s ion

string
expression

beg inning I--Y--T"""""'~
position

Item Description/Default

numeric name name of a numeric variable

string name name of a string variable

subscript numeric expression, rounded to an integer

beginning position numeric expression, rounded to an integer

ending position numeric expression, rounded to an integer

substring length numeric expression, rounded to an integer

Example Statements
LET NUlTlbe r=33
Array(I+l)=Array(I)/2
Str i ng$="Hello Scott"
A$ (7) [1 ; 2] = CHR$ (27) &:" Z"

Range
Restrictions

any valid name

any valid name

- 32767 thru + 32 767
(see "array" in Glossary)

1 thru 32767
(see "substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

208

LET Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This is the assignment statement, which is used to assign values to variables.

numeric
name

numeric
expres s ion

string
expression

beg inning I--Y--T"""""'~
position

Item Description/Default

numeric name name of a numeric variable

string name name of a string variable

subscript numeric expression, rounded to an integer

beginning position numeric expression, rounded to an integer

ending position numeric expression, rounded to an integer

substring length numeric expression, rounded to an integer

Example Statements
LET NUlTlbe r=33
Array(I+l)=Array(I)/2
Str i ng$="Hello Scott"
A$ (7) [1 ; 2] = CHR$ (27) &:" Z"

Range
Restrictions

any valid name

any valid name

- 32767 thru + 32 767
(see "array" in Glossary)

1 thru 32767
(see "substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

LET 209

Semantics
The assigment is done to the variable which is to the left of the equals sign. Only one assign­
ment may be performed in a LET statement; any other equal signs are considered relational
operators, and must be enclosed in a parenthetical expression (i.e. A=A+ (B= 1) +5). A vari­
able can occur on both sides of the assignment operator (i.e. I = 1+1 or
Sou r c e $ = Sou r c e $ &: T e ITl P $).

A real expression will be rounded when assigned to an INTEGER variable, if it is within the
INTEGER range. Out-of-range assignments to an INTEGER give an error.

The length of the string expression must be less than or equal to the dimensioned length of the
string it is being assigned to. Assignments may be made into substrings, using the normal rules
for substring definition. The string expression will be truncated or blank-filled on the right (if
necessary) to fit the destination substring when the substring has an explicitly stated length. If
only the beginning position of the substring is specified, the substring will be replaced by the
string expression and the length of the recipient string variable will be adjusted accordingly;
however, error 18 is reported if the expression overflows the recipient string variable.

If the name of the variable to the left of the equal sign begins with AND, DIV, EXOR, MOD or OR (the
name of an operator) and the keyword LET is omitted, the prefix must have at least one uppercase
letter and one lowercase letter in it. Otherwise, a live keyboard execution is attempted and fails , even
though the line number is present.

LET 209

Semantics
The assigment is done to the variable which is to the left of the equals sign. Only one assign­
ment may be performed in a LET statement; any other equal signs are considered relational
operators, and must be enclosed in a parenthetical expression (i.e. A=A+ (B= 1) +5). A vari­
able can occur on both sides of the assignment operator (i.e. I = 1+1 or
Sou r c e $ = Sou r c e $ &: T e ITl P $).

A real expression will be rounded when assigned to an INTEGER variable, if it is within the
INTEGER range. Out-of-range assignments to an INTEGER give an error.

The length of the string expression must be less than or equal to the dimensioned length of the
string it is being assigned to. Assignments may be made into substrings, using the normal rules
for substring definition. The string expression will be truncated or blank-filled on the right (if
necessary) to fit the destination substring when the substring has an explicitly stated length. If
only the beginning position of the substring is specified, the substring will be replaced by the
string expression and the length of the recipient string variable will be adjusted accordingly;
however, error 18 is reported if the expression overflows the recipient string variable.

If the name of the variable to the left of the equal sign begins with AND, DIV, EXOR, MOD or OR (the
name of an operator) and the keyword LET is omitted, the prefix must have at least one uppercase
letter and one lowercase letter in it. Otherwise, a live keyboard execution is attempted and fails , even
though the line number is present.

210

LEXICAL ORDER IS
Option Required LEX
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN.. . Yes

This statement defines the collating sequence for all string relational operators and operations.

LEXICAL ORDER IS

Item

array name

Examples

t--r--..-{ ST ANDARD t----,.---~

FRENCH

Description/Default

the name of a one-dimensional INTEGER array,
with at least 257 elements

LEXICAL ORDER IS FRENCH
LEXICAL ORDER IS Lex_table(*)

Semantics

Range
Restrictions

any valid name

The STANDARD lexical order is determined by the internal keyboard jumper preset to match the
language on the keyboard. For example, with an English language or Katakana keyboard, the
STANDARD lexical order is the same as the ASCII lexical order.

The default lexical order is STANDARD. This is also true after a SCRATCH A. The most recent
LEXICAL ORDER IS statement overrides any previous definition and affects all contexts.

Lexical order allows languages to be properly collated. This includes such treatments as ignoring
characters, dealing with accents, and character replacements. See BASIC Programming Techni­
ques manual for the details of pre-defined and user-defined lexical order tables.

210

LEXICAL ORDER IS
Option Required LEX
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN.. . Yes

This statement defines the collating sequence for all string relational operators and operations.

LEXICAL ORDER IS

Item

array name

Examples

t--r--..-{ ST ANDARD t----,.---~

FRENCH

Description/Default

the name of a one-dimensional INTEGER array,
with at least 257 elements

LEXICAL ORDER IS FRENCH
LEXICAL ORDER IS Lex_table(*)

Semantics

Range
Restrictions

any valid name

The STANDARD lexical order is determined by the internal keyboard jumper preset to match the
language on the keyboard. For example, with an English language or Katakana keyboard, the
STANDARD lexical order is the same as the ASCII lexical order.

The default lexical order is STANDARD. This is also true after a SCRATCH A. The most recent
LEXICAL ORDER IS statement overrides any previous definition and affects all contexts.

Lexical order allows languages to be properly collated. This includes such treatments as ignoring
characters, dealing with accents, and character replacements. See BASIC Programming Techni­
ques manual for the details of pre-defined and user-defined lexical order tables.

Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

This function returns the logarithm (base 10) of its argument.

Item Description/ Default

argument numeric expression

Example Statements
Decibel= 2 0* LGT (Volts)
PRINT "Los of" ;)-(;"=" ;LGT()-()

Range
Restrictions

greater than 0

211

LGT
Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

This function returns the logarithm (base 10) of its argument.

Item Description/ Default

argument numeric expression

Example Statements
Decibel= 2 0* LGT (Volts)
PRINT "Los of" ;)-(;"=" ;LGT()-()

Range
Restrictions

greater than 0

211

LGT

212

LINE TYPE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement selects a line type and repeat length for lines, labels, frames, axes and grids.

LINE TYPE

Item

type selector

repeat length

Description/Default

numeric expression , rounded to an integer;
Default = 1

numeric expression , rounded to an integer;
Default = 5

Example Statements
LINE TYPE 1
LINE TYPE Select ,20

Semantics

Range
Restrictions

1 thru 10

- 32768 thru
+32 767

Recommended
Range

greater
than 0

At power-up the default line type is a solid line (type 1) , and the default repeat length is 5 GDUs.

The repeat length establishes the number of GDUs required to contain an arbitrary seqment of
the line pattern. When the plotter is the internal CRT, the repeat length is evaluated and taken as
the next lower multiple of 5 , with a minimum value of 5.

When the plotter is an external plotter, the line produced by the line identifier is device
dependent. Refer to your plotter' s documentation for further information.

212

LINE TYPE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPH
Yes
Yes
Yes

This statement selects a line type and repeat length for lines, labels, frames, axes and grids.

LINE TYPE

Item

type selector

repeat length

Description/Default

numeric expression , rounded to an integer;
Default = 1

numeric expression , rounded to an integer;
Default = 5

Example Statements
LINE TYPE 1
LINE TYPE Select ,20

Semantics

Range
Restrictions

1 thru 10

- 32768 thru
+32 767

Recommended
Range

greater
than 0

At power-up the default line type is a solid line (type 1) , and the default repeat length is 5 GDUs.

The repeat length establishes the number of GDUs required to contain an arbitrary seqment of
the line pattern. When the plotter is the internal CRT, the repeat length is evaluated and taken as
the next lower multiple of 5 , with a minimum value of 5.

When the plotter is an external plotter, the line produced by the line identifier is device
dependent. Refer to your plotter' s documentation for further information.

LINE TYPE 213

The available CRT line types are shown here .

LH'·jE T"f"PE 1 E1

LIt'.jE T"f"F'E ~3

-------,
-- - - - . LH'·jE T\," PE 8

-------,
1 _____ -

LIt·'·jE T"f" PE ?
--------,

~---- LIt"~E T'/F'E G
- --,

- - LINE T"f" PE c-._,
---- ------ -----.

1. -- ___ --- - --- -- LIt'" jE T","PE 4
- - -

- - LIt"·jE T"{ PE :3

LINE T'y"PE '-, c-

LINE T"f" F'E

LINE TYPE 213

The available CRT line types are shown here .

LH'·jE T"f"PE 1 E1

LIt'.jE T"f"F'E ~3

-------,
-- - - - . LH'·jE T\," PE 8

-------,
1 _____ -

LIt·'·jE T"f" PE ?
--------,

~---- LIt"~E T'/F'E G
- --,

- - LINE T"f" PE c-._,
---- ------ -----.

1. -- ___ --- - --- -- LIt'" jE T","PE 4
- - -

- - LIt"·jE T"{ PE :3

LINE T'y"PE '-, c-

LINE T"f" F'E

214

LINPUT
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
Yes

This statement accepts alphanumeric input from the keyboard for assignment to a string variable .
The L1NPUT statement allows commas or quotation marks to be included in the value of the
string, and leading or trailing blanks are not deleted.

LINPUT

$~--------~---------.r-r-----------~---------.~
'--'-'-=....J ,."

Item

prompt

string name

subscript

beginning position

ending position

substring length

beg i nn i ng I--.-_~~
pos it io n

Description/Default

a literal composed of characters from the
keyboard, including those generated using
the ANY CHAR key;
Default = question mark

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range
Restrictions

any valid name

-32767thru +32767
(see "array" in Glossary)

1 thru 32767
(see "substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

214

LINPUT
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
Yes

This statement accepts alphanumeric input from the keyboard for assignment to a string variable .
The L1NPUT statement allows commas or quotation marks to be included in the value of the
string, and leading or trailing blanks are not deleted.

LINPUT

$~--------~---------.r-r-----------~---------.~
'--'-'-=....J ,."

Item

prompt

string name

subscript

beginning position

ending position

substring length

beg i nn i ng I--.-_~~
pos it io n

Description/Default

a literal composed of characters from the
keyboard, including those generated using
the ANY CHAR key;
Default = question mark

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range
Restrictions

any valid name

-32767thru +32767
(see "array" in Glossary)

1 thru 32767
(see "substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

Example Statements
LINPUT "Next COfrlirland?" tResponse$
LINPUT Array$(I)[3J

Semantics

LINPUT 215

A prompt, which remains until the LINPUT item is satisfied, appears on the CRT display line. If
the last DISP statement suppressed its CR/LF, the prompt is appended onto the current display
line contents. If the last DISP did not suppress the CR/LF, the prompt replaces the current display
line contents. Not specifying a prompt results in the question mark being used as the prompt.
Specifying the null string (" ") for the prompt suppresses the question mark.

(CONTINUE), (ENTER), (EXECUTE) , (RETURN), or (]Jill must be pressed to indicate that the entry is
complete. If no value is provided from the keyboard, the null string is used. If (CONTINUE), (ENTER) ,
(EXECUTE) , or (RETURN) is pressed to end the data input, program execution continues at the next
program line. If CillD is pressed, the program execution continues at the next program line in
single step mode. (If the LINPUT was stepped into , it is stepped out of, even if (CONTINUE) , (ENTER) ,
(EXECUTE), or (RETURN) is pressed.)

live keyboard operations are not allowed while a LINPUT is waiting for data entry. (PAUSE) (or
(STOP) on an HP 46020A keyboard) can be pressed so live keyboard operations can be performed.
The LINPUT statement is re-executed from the beginning when (CONTINUE) or (]Jill is pressed.

ON KBD, ON KEY and ON KNOB events are deactivated during an LINPUT statement. Errors
do not cause an ON ERROR branch. If an input response results in an error, the LINPUT
statement is re-executed.

Example Statements
LINPUT "Next COfrlirland?" tResponse$
LINPUT Array$(I)[3J

Semantics

LINPUT 215

A prompt, which remains until the LINPUT item is satisfied, appears on the CRT display line. If
the last DISP statement suppressed its CR/LF, the prompt is appended onto the current display
line contents. If the last DISP did not suppress the CR/LF, the prompt replaces the current display
line contents. Not specifying a prompt results in the question mark being used as the prompt.
Specifying the null string (" ") for the prompt suppresses the question mark.

(CONTINUE), (ENTER), (EXECUTE) , (RETURN), or (]Jill must be pressed to indicate that the entry is
complete. If no value is provided from the keyboard, the null string is used. If (CONTINUE), (ENTER) ,
(EXECUTE) , or (RETURN) is pressed to end the data input, program execution continues at the next
program line. If CillD is pressed, the program execution continues at the next program line in
single step mode. (If the LINPUT was stepped into , it is stepped out of, even if (CONTINUE) , (ENTER) ,
(EXECUTE), or (RETURN) is pressed.)

live keyboard operations are not allowed while a LINPUT is waiting for data entry. (PAUSE) (or
(STOP) on an HP 46020A keyboard) can be pressed so live keyboard operations can be performed.
The LINPUT statement is re-executed from the beginning when (CONTINUE) or (]Jill is pressed.

ON KBD, ON KEY and ON KNOB events are deactivated during an LINPUT statement. Errors
do not cause an ON ERROR branch. If an input response results in an error, the LINPUT
statement is re-executed.

216

LIST Option Required
Keyboard Executable
Programmable
In an IF... THEN ...

None
Yes
Yes
Yes

This statement allows you to list the program or the key definitions currently in memory.

KBD

ending
line number

beginning
line label

Item

device selector

beginning line number

beginning line label

ending line number

ending line label

ending
line label

Description/ Default

numeric expression; is rounded to an integer.
Default is PRINTER IS device.

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

Example Statements
LIST
LIST # 7 01
LIST 100 ,Label1
LIST KEY

Range
Restrictions

(see Glossary)

1 thru 32766

any valid name

1 thru 32 766

any valid name

216

LIST Option Required
Keyboard Executable
Programmable
In an IF... THEN ...

None
Yes
Yes
Yes

This statement allows you to list the program or the key definitions currently in memory.

KBD

ending
line number

beginning
line label

Item

device selector

beginning line number

beginning line label

ending line number

ending line label

ending
line label

Description/ Default

numeric expression; is rounded to an integer.
Default is PRINTER IS device.

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

Example Statements
LIST
LIST # 7 01
LIST 100 ,Label1
LIST KEY

Range
Restrictions

(see Glossary)

1 thru 32766

any valid name

1 thru 32 766

any valid name

Semantics
LIST

LIST 217

When a label is used as a line identifier, the lowest-numbered line in memory having that label is
used . When a number is used as a line identifier, the lowest-numbered line in memory having a
number equal to or greater than the specified line is used. An error occurs if the ending line
identifier occurs before the beginning line identifier or if a specified line label does not exist in the
program.

Executing a LIST from the keyboard while a program is running causes the program to pause at
the end of the current line. The listing is sent to the selected device, and program execution
resumes.

After the listing is finished, the amount of available memory, in bytes, is displayed on the CRT.

LIST KEY (Requires KBD)
The LIST KEY statement lists the current typing-aid key definitions (not the labels of ON KEY
definitions) to the specified device. If a key does not currently have a definition , it will not be
listed.

LIST BIN

The LIST BIN statement lists the BINs currently loaded in memory. The name, version and brief
description of the BIN is listed. For example:

NAME VERSION DESCRIPTION

GRAPH 4.0 Graphics
MAT 4.0 Matrix Statements

LISTEN
See the SEND statement.

Semantics
LIST

LIST 217

When a label is used as a line identifier, the lowest-numbered line in memory having that label is
used . When a number is used as a line identifier, the lowest-numbered line in memory having a
number equal to or greater than the specified line is used. An error occurs if the ending line
identifier occurs before the beginning line identifier or if a specified line label does not exist in the
program.

Executing a LIST from the keyboard while a program is running causes the program to pause at
the end of the current line. The listing is sent to the selected device, and program execution
resumes.

After the listing is finished, the amount of available memory, in bytes, is displayed on the CRT.

LIST KEY (Requires KBD)
The LIST KEY statement lists the current typing-aid key definitions (not the labels of ON KEY
definitions) to the specified device. If a key does not currently have a definition , it will not be
listed.

LIST BIN

The LIST BIN statement lists the BINs currently loaded in memory. The name, version and brief
description of the BIN is listed. For example:

NAME VERSION DESCRIPTION

GRAPH 4.0 Graphics
MAT 4.0 Matrix Statements

LISTEN
See the SEND statement.

218

LOAD
Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
Yes
Yes
Yes

This statement allows you to load programs, BIN files or typing-aid key definitions into the
computer. (If using LOAD with SRM, also refer to the "SRM" section of this manual.)

file
specifier

file
specifier

KBD

literal form of file specifier:

Item

file specifier

file name

protect code

msus

run line number

run line label

Description/ Default

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

integer constant identifying program line

name of a program line

Example Statements
LOAD Filename$&Msus$
LOAD "UTIL" 1120
LOAD BIN "t1AT"
LOAD KEY "KEYS:INTERNAL ILi l l"

Range
Restrictions

(see drawing)

any valid file name

"> " not allowed

(see MASS
STORAGE IS)

1 thru 32765

any valid name

218

LOAD
Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
Yes
Yes
Yes

This statement allows you to load programs, BIN files or typing-aid key definitions into the
computer. (If using LOAD with SRM, also refer to the "SRM" section of this manual.)

file
specifier

file
specifier

KBD

literal form of file specifier:

Item

file specifier

file name

protect code

msus

run line number

run line label

Description/ Default

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

integer constant identifying program line

name of a program line

Example Statements
LOAD Filename$&Msus$
LOAD "UTIL" 1120
LOAD BIN "t1AT"
LOAD KEY "KEYS:INTERNAL ILi l l"

Range
Restrictions

(see drawing)

any valid file name

"> " not allowed

(see MASS
STORAGE IS)

1 thru 32765

any valid name

Semantics
LOAD

LOAD 219

The BASIC program and all variables not in COM are lost when a LOAD is executed. Every COM
block in the newly-loaded program is compared with the COM blocks of the program in memory.
If a COM area of the newly-loaded program does not match an existent COM area, the values in
the old COM area are lost. Thus, some COM areas may be retained while others are lost. If a
PROG file contains a binary program that is compatible with BASIC 4.0, the binary is skipped and
the program is loaded.

LOAD is allowed from the keyboard if a program is not running. If no run line is specified, (]Q[)
must be pressed to initiate program execution, and execution wi ll begin on the first line in the
program. If a run line is specified, prerun initialization (see RUN) is performed, and program
execution begins at the line specified. The line on which execution begins must exist in the main
program context of the newly-loaded program. If you specify a line number and it doesn't exist,
execution begins with the next higher-numbered line , provided that line is in the main program
context.

Executing LOAD from a program causes the new program file to be loaded, prerun, and program
execution to resume. Execution begins at the line specified, or the lowest-numbered program line
if a run line is not specified.

BASIC automatically loads and runs a file called AUTOST if the file exists on the same mass
storage device as the system. If the system is loaded from SRM, the autostart file is /SYSTEMS/
AUTOSTnn, where nn is the node number. If this file does not exist on the SRM, BASIC looks at
the root directory for a file called AUTOST.

LOAD BIN
LOAD BIN is used to load system BIN files such as MAT. Executing a LOAD BIN does not affect
the currently loaded BASIC program or any variables.

A BIN file contains either language extensions (such as MAT or GRAPH) or drivers (such as
DISC) . A BIN file may contain more than one of the extensions or drivers; if so, when loaded,
only the entensions or drivers not already present in memory are loaded.

BIN files can be loaded from an external device (or SRM) even though the BIN to access that
device is absent.

LOAD KEY (Requires KBD)
LOAD KEY sets the typing-aid definitions of the softkeys according to the contents of the
specified BOAT file. If the file is not in the proper format , an error occurs . The file containing the
key definitions may be created by a user program. See the STORE KEY statement for file format.

All existing key definitions are cleared before the file ' s key definitions are loaded.

If LOAD KEY is executed without a file specifier. the keys are reset to their power-on values.

ON KEY definitions are not affected by LOAD KEY.

Semantics
LOAD

LOAD 219

The BASIC program and all variables not in COM are lost when a LOAD is executed. Every COM
block in the newly-loaded program is compared with the COM blocks of the program in memory.
If a COM area of the newly-loaded program does not match an existent COM area, the values in
the old COM area are lost. Thus, some COM areas may be retained while others are lost. If a
PROG file contains a binary program that is compatible with BASIC 4.0, the binary is skipped and
the program is loaded.

LOAD is allowed from the keyboard if a program is not running. If no run line is specified, (]Q[)
must be pressed to initiate program execution, and execution wi ll begin on the first line in the
program. If a run line is specified, prerun initialization (see RUN) is performed, and program
execution begins at the line specified. The line on which execution begins must exist in the main
program context of the newly-loaded program. If you specify a line number and it doesn't exist,
execution begins with the next higher-numbered line , provided that line is in the main program
context.

Executing LOAD from a program causes the new program file to be loaded, prerun, and program
execution to resume. Execution begins at the line specified, or the lowest-numbered program line
if a run line is not specified.

BASIC automatically loads and runs a file called AUTOST if the file exists on the same mass
storage device as the system. If the system is loaded from SRM, the autostart file is /SYSTEMS/
AUTOSTnn, where nn is the node number. If this file does not exist on the SRM, BASIC looks at
the root directory for a file called AUTOST.

LOAD BIN
LOAD BIN is used to load system BIN files such as MAT. Executing a LOAD BIN does not affect
the currently loaded BASIC program or any variables.

A BIN file contains either language extensions (such as MAT or GRAPH) or drivers (such as
DISC) . A BIN file may contain more than one of the extensions or drivers; if so, when loaded,
only the entensions or drivers not already present in memory are loaded.

BIN files can be loaded from an external device (or SRM) even though the BIN to access that
device is absent.

LOAD KEY (Requires KBD)
LOAD KEY sets the typing-aid definitions of the softkeys according to the contents of the
specified BOAT file. If the file is not in the proper format , an error occurs . The file containing the
key definitions may be created by a user program. See the STORE KEY statement for file format.

All existing key definitions are cleared before the file ' s key definitions are loaded.

If LOAD KEY is executed without a file specifier. the keys are reset to their power-on values.

ON KEY definitions are not affected by LOAD KEY.

220

LOADSUB
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes

Yes (See Semantics)
Yes (See Semantics)

This statement allows you to load subprograms from a PROG file into the computer. (If using
LOADSUB with SRM, also refer to the "SRM" section of this manual.)

PDEV

literal form of file specifier:

file
name

Item

subprogram name

function name

file specifier

file name

protect code

msus

Description/Default

name of a SUB or CSUB subprogram

name of a user-defined function

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Range
Restrictions

any valid name

any valid name

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

220

LOADSUB
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes

Yes (See Semantics)
Yes (See Semantics)

This statement allows you to load subprograms from a PROG file into the computer. (If using
LOADSUB with SRM, also refer to the "SRM" section of this manual.)

PDEV

literal form of file specifier:

file
name

Item

subprogram name

function name

file specifier

file name

protect code

msus

Description/Default

name of a SUB or CSUB subprogram

name of a user-defined function

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Range
Restrictions

any valid name

any valid name

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

Example Statements
LOADSUB FROM "A PSUBS"
LO ADSUB FNReplace$ FRDr'1 "SUBFILE"
LOADSUB ALL FROM SubfileS

Semantics
LOADSUB FROM (Requires PDEV)

(Not Programmable)
(Programmable)
(Programmable)

LOADSUB 221

The command LOADSUB FROM (without a subprogram name) is not programmable; itis used
before a program is run. It looks through the program and notices all the subprogram references
which are unsatisfied. Unsatisfied references are statements which reference subprograms that
don ' t yet exist in memory. It then accesses the specified file (which must be a PROG file), and
loads all the needed subprograms, appending them to the end of the current program, renumber­
ing as necessary. It also looks through the subprograms it just loaded to see if they call anything
which is not yet in memory. If so , those references will be satisfied. This process repeats for each
set of subprograms loaded until all the routines that are referenced are loaded or until it is
determined they are not on the specified file. At the end of the LOADSUB FROM command, if
there are still unsatisfied references, an error message and a list of the subprograms names still
needed is displayed .

LOADSUB ALL FROM
LOADSUB < subprogram name> FROM
LOADSUB, when a subprogram name or ALL is included, loads the specified subprogram(s)
from the specified fi le. This form is programmable. If either the file name or the subprogram
name specified is not found , or the file name is not a PROG file , an error will occur. As the
subprogram is loaded, it will be renumbered to fit at the end of the program. LOADSUB does not
cause the program or any data currently in memory to be lost.

Example Statements
LOADSUB FROM "A PSUBS"
LO ADSUB FNReplace$ FRDr'1 "SUBFILE"
LOADSUB ALL FROM SubfileS

Semantics
LOADSUB FROM (Requires PDEV)

(Not Programmable)
(Programmable)
(Programmable)

LOADSUB 221

The command LOADSUB FROM (without a subprogram name) is not programmable; itis used
before a program is run. It looks through the program and notices all the subprogram references
which are unsatisfied. Unsatisfied references are statements which reference subprograms that
don ' t yet exist in memory. It then accesses the specified file (which must be a PROG file), and
loads all the needed subprograms, appending them to the end of the current program, renumber­
ing as necessary. It also looks through the subprograms it just loaded to see if they call anything
which is not yet in memory. If so , those references will be satisfied. This process repeats for each
set of subprograms loaded until all the routines that are referenced are loaded or until it is
determined they are not on the specified file. At the end of the LOADSUB FROM command, if
there are still unsatisfied references, an error message and a list of the subprograms names still
needed is displayed .

LOADSUB ALL FROM
LOADSUB < subprogram name> FROM
LOADSUB, when a subprogram name or ALL is included, loads the specified subprogram(s)
from the specified fi le. This form is programmable. If either the file name or the subprogram
name specified is not found , or the file name is not a PROG file , an error will occur. As the
subprogram is loaded, it will be renumbered to fit at the end of the program. LOADSUB does not
cause the program or any data currently in memory to be lost.

222

LOCAL

This statement returns all specified devices to their local state.

I / O path I---y--'~
name

Item Description/Default

I/O path name name assigned to a device or devices

device selector numeric expression , rounded to an integer

Example Statements
LOCAL @DI.1ITI

LOCAL 7

Semantics

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

Range
Restrictions

any valid name
(see ASSIGN)

(see Glossary)

10
Yes
Yes
Yes

If only an interface select code is specified by the I/O path name or device selector, all devices
on the bus are returned to their local state by setting REN false. Any existing LOCAL LOCK­
OUT is cancelled.

If a primary address is included, the GTL message (Go To Local) is sent to all listeners. LOCAL
LOCKOUT is not cancelled.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
- MTA

ATN
MTA Active REN

UNL UNL Controller ATN
LAG

GTL
LAG

GTL GTL

Not Active
REN Error Error Controller

222

LOCAL

This statement returns all specified devices to their local state.

I / O path I---y--'~
name

Item Description/Default

I/O path name name assigned to a device or devices

device selector numeric expression , rounded to an integer

Example Statements
LOCAL @DI.1ITI

LOCAL 7

Semantics

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

Range
Restrictions

any valid name
(see ASSIGN)

(see Glossary)

10
Yes
Yes
Yes

If only an interface select code is specified by the I/O path name or device selector, all devices
on the bus are returned to their local state by setting REN false. Any existing LOCAL LOCK­
OUT is cancelled.

If a primary address is included, the GTL message (Go To Local) is sent to all listeners. LOCAL
LOCKOUT is not cancelled.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
- MTA

ATN
MTA Active REN

UNL UNL Controller ATN
LAG

GTL
LAG

GTL GTL

Not Active
REN Error Error Controller

Option Required
Keyboard Executable
Programmable
In an IF..THEN ...

10
Yes
Yes
Yes

LOCAL LOCKOUT

This HP-IB statement sends the LLO (local lockout) message, preventing an operator from
returning the specified device to local (front panel) control.

LOCAL LOCKOUT

Item Description/Default

I/O path name name assigned to an interface select code

interface select code numeric expression , rounded to an integer

Example Statements
LOCAL LOCKOUT 7
LOCAL LOCKOUT @Hpib

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

7 thru 31

The computer must be the active controller to execute LOCAL LOCKOUT.

If a device is in the LOCAL state when this message is sent, it does not take effect on that device
until the device receives a REMOTE message and becomes addressed to listen.

LOCAL LOCKOUT does not cause bus reconfiguration, but issues a universal bus command
received by all devices on the interface whether addressed or not. The command sequence is
ATN and LLO.

Summary of Bus Actions
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

Active ATN
Error

ATN
Error

Controller LLO LLO

Not Active
Error

Controller

223

Option Required
Keyboard Executable
Programmable
In an IF..THEN ...

10
Yes
Yes
Yes

LOCAL LOCKOUT

This HP-IB statement sends the LLO (local lockout) message, preventing an operator from
returning the specified device to local (front panel) control.

LOCAL LOCKOUT

Item Description/Default

I/O path name name assigned to an interface select code

interface select code numeric expression , rounded to an integer

Example Statements
LOCAL LOCKOUT 7
LOCAL LOCKOUT @Hpib

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

7 thru 31

The computer must be the active controller to execute LOCAL LOCKOUT.

If a device is in the LOCAL state when this message is sent, it does not take effect on that device
until the device receives a REMOTE message and becomes addressed to listen.

LOCAL LOCKOUT does not cause bus reconfiguration, but issues a universal bus command
received by all devices on the interface whether addressed or not. The command sequence is
ATN and LLO.

Summary of Bus Actions
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

Active ATN
Error

ATN
Error

Controller LLO LLO

Not Active
Error

Controller

223

224

LOG
Option Required
Keyboard Executable
Programmable
In an IF... THEN ...

This function returns the natural logarithm (base e) of the argument.

Item Description/Default

argument numeric expression

Example Statements
Time =-l*Rc*LOG(Volts/Emf)
PRINT "Natural 109' of";Y;"=";LOG(Y)

LOCATOR
See the READ LOCATOR and SET LOCATOR statements.

Range
Restrictions

greater than 0

None
Yes
Yes
Yes

224

LOG
Option Required
Keyboard Executable
Programmable
In an IF... THEN ...

This function returns the natural logarithm (base e) of the argument.

Item Description/Default

argument numeric expression

Example Statements
Time =-l*Rc*LOG(Volts/Emf)
PRINT "Natural 109' of";Y;"=";LOG(Y)

LOCATOR
See the READ LOCATOR and SET LOCATOR statements.

Range
Restrictions

greater than 0

None
Yes
Yes
Yes

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

LOOP

This construct defines a loop which is repeated until the boolean expression in an EXIT IF
statement evaluates to be logically true (evaluates to a non-zero value) .

(EXIT IF)-j boolean
e xpr ession

(END LOOP)-I

Item DescriptionlDefault

boolean
expression

numeric expression; evaluated as true if non­
zero and false if 0

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct(s).

Example Program Segments
4GO
470
480
490
500
510

120 0
1210
1220
1230

LOOP
EXIT IF LEN(AS)(2

P = PO S (AS, Del i III S)
DDT IF NOT P

AS=As[1,P-1JB:As[P+2J
END LOOP

LOOP Until an EOF branch
ENTER @FileiTextS
PRINT Te xt S

END LOOP

Range
Restrictions

225

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

LOOP

This construct defines a loop which is repeated until the boolean expression in an EXIT IF
statement evaluates to be logically true (evaluates to a non-zero value) .

(EXIT IF)-j boolean
e xpr ession

(END LOOP)-I

Item DescriptionlDefault

boolean
expression

numeric expression; evaluated as true if non­
zero and false if 0

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct(s).

Example Program Segments
4GO
470
480
490
500
510

120 0
1210
1220
1230

LOOP
EXIT IF LEN(AS)(2

P = PO S (AS, Del i III S)
DDT IF NOT P

AS=As[1,P-1JB:As[P+2J
END LOOP

LOOP Until an EOF branch
ENTER @FileiTextS
PRINT Te xt S

END LOOP

Range
Restrictions

225

226 LOOP

Semantics
The LOOP ... END LOOP construct allows continuous looping with conditional exits which
depend on the outcome of relational tests placed within the program segments. The program
segments to be repeated start with the LOOP statement and end with END LOOP. Reaching
the END LOOP statement will result in a branch to the first program line after the LOOP
statement.

Any number of EXIT IF statements may be placed within the construct to escape from the loop.
The only restriction upon the placement of the EXIT IF statements is that they must not be part
of any other construct which is nested within the LOOP ... END LOOP construct.

If the specified conditional test is true, a branch to the first program line following the END
LOOP statement is performed. If the test is false, execution continues with the next program
line within the construct.

Branching into a LOOP ... END LOOP construct (via a GOTO) results in normal execution from
the point of entry. Any EXIT IF statement encountered will be executed. If execution reaches
END LOOP, a branch is made back to the LOOP statement, and execution continues as if the
construct had been entered normally.

Nesting Constructs Properly

LOOP ... END LOOP may be placed within other constructs, provided it begins and ends before
the outer construct can end.

226 LOOP

Semantics
The LOOP ... END LOOP construct allows continuous looping with conditional exits which
depend on the outcome of relational tests placed within the program segments. The program
segments to be repeated start with the LOOP statement and end with END LOOP. Reaching
the END LOOP statement will result in a branch to the first program line after the LOOP
statement.

Any number of EXIT IF statements may be placed within the construct to escape from the loop.
The only restriction upon the placement of the EXIT IF statements is that they must not be part
of any other construct which is nested within the LOOP ... END LOOP construct.

If the specified conditional test is true, a branch to the first program line following the END
LOOP statement is performed. If the test is false, execution continues with the next program
line within the construct.

Branching into a LOOP ... END LOOP construct (via a GOTO) results in normal execution from
the point of entry. Any EXIT IF statement encountered will be executed. If execution reaches
END LOOP, a branch is made back to the LOOP statement, and execution continues as if the
construct had been entered normally.

Nesting Constructs Properly

LOOP ... END LOOP may be placed within other constructs, provided it begins and ends before
the outer construct can end.

(

Option Required
Keyboard Executable
Programmable
In an IF.. . THEN .. .

GRAPH
Yes
Yes
Yes

LORG

This statement specifies the relative origin of a label or symbol with respect to the current pen
position.

§---...j label . origin ~
posItIon

Item Description/Default

label origin position numeric expression, rounded to an integer;
Default = 1

Example Statements
LORG Ll
IF Y)LiMit THEN LORG 3

Semantics

Range
Restrictions

1 thru 9

The following drawings show the relationship between a label and the logical pen position. The
pen position before the label is drawn is represented by a cross marked with the appropriate
LORG number.

3 6 9

+ + +
2 5 8

+
1 4 7

+ + +
Label Origins for Labels with an Even Number of Characters

227

(

Option Required
Keyboard Executable
Programmable
In an IF.. . THEN .. .

GRAPH
Yes
Yes
Yes

LORG

This statement specifies the relative origin of a label or symbol with respect to the current pen
position.

§---...j label . origin ~
posItIon

Item Description/Default

label origin position numeric expression, rounded to an integer;
Default = 1

Example Statements
LORG Ll
IF Y)LiMit THEN LORG 3

Semantics

Range
Restrictions

1 thru 9

The following drawings show the relationship between a label and the logical pen position. The
pen position before the label is drawn is represented by a cross marked with the appropriate
LORG number.

3 6 9

+ + +
2 5 8

+
1 4 7

+ + +
Label Origins for Labels with an Even Number of Characters

227

228 LORG

3 6 9

+ + +
5 8

+ +
1 4 7

+ + +
Label Origins for Labels with an Odd Number of Characters

228 LORG

3 6 9

+ + +
5 8

+ +
1 4 7

+ + +
Label Origins for Labels with an Odd Number of Characters

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
Yes
Yes
Yes

LWC$

This function replaces any uppercase characters with their corresponding lowercase characters.

string
e x pression

Example Statements
LOIAle r$=LWC$("UPPER")

IF LWC$(Yes$)="}'" THEN True_test

Semantics
The LWC$ function converts only uppercase alphabetic characters to their corresponding
lowercase characters and will not alter numerals or special characters.

The corresponding characters for the Roman Extension alphabetic characters are determined by
the current lexical order. When the lexical order is a user-defined table, the correspondence is
determined by the STANDARD lexical order.

229

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
Yes
Yes
Yes

LWC$

This function replaces any uppercase characters with their corresponding lowercase characters.

string
e x pression

Example Statements
LOIAle r$=LWC$("UPPER")

IF LWC$(Yes$)="}'" THEN True_test

Semantics
The LWC$ function converts only uppercase alphabetic characters to their corresponding
lowercase characters and will not alter numerals or special characters.

The corresponding characters for the Roman Extension alphabetic characters are determined by
the current lexical order. When the lexical order is a user-defined table, the correspondence is
determined by the STANDARD lexical order.

229

230

MASS STORAGE IS
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
Yes
Yes

This statement specifies the system mass storage device. (If using MASS STORAGE IS with SRM,
also refer to the "SRM" section of this manual.)

media
MASS STORAGE IS J--.-" spec i f ier

literal f orm of media specifier:

msus:

-.....-~ INTERNAL I----r-------------------,,..-----------y---

Item Description/Default
Range

Restrictions

media specifier string expression

msus literal (see drawing)

device selector integer constant (see Glossary)

device type literal (see Sematics)

unit number integer constant; o thru 255
Default = 0 (device dependent)

volume number integer constant; (device dependent)
Default = 0

230

MASS STORAGE IS
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
Yes
Yes

This statement specifies the system mass storage device. (If using MASS STORAGE IS with SRM,
also refer to the "SRM" section of this manual.)

media
MASS STORAGE IS J--.-" spec i f ier

literal f orm of media specifier:

msus:

-.....-~ INTERNAL I----r-------------------,,..-----------y---

Item Description/Default
Range

Restrictions

media specifier string expression

msus literal (see drawing)

device selector integer constant (see Glossary)

device type literal (see Sematics)

unit number integer constant; o thru 255
Default = 0 (device dependent)

volume number integer constant; (device dependent)
Default = 0

Example Statements
MASS STORAGE IS " : INTERNAL tLlt1"
MASS STORAGE IS " :)< t 12"
MASS STORAGE IS Msus$

Sematics

MASS STORAGE IS 231

All mass storage operations which do not specify a source or destination by either an I/O path
name or msus in the file specifier use the current system mass storage device.

MASS STORAGE IS can be abbreviated as MSI when entering a program line , but a program
listing always shows the unabbreviated keywords.

Device Type
The following table shows the valid device types. Most device types require an option BIN for the
statement to execute.

BIN Required

none

DISC &
HPIB or FHPIB

Device Type

INTERNAL
MEMORY

HP 9895
HP 9121
HP 9133
HP 9134
HP 9135 (5 V4 inch uses HPIB not FHPIB)
HP 913X

DISC & HPIB HP 82901
HP 82902
HP 8290X

CS80 & CS80 (7908, 7911 , 7912, 7914, 9122 ...)
HPIB or FHPIB

HP9885 & GPIO HP 9885

SRM & DCOMM REMOTE

BUBBLE BUBBLE

EPROM EPROM
Note the 98625 Card (which requires the FHPIB BIN) cannot be used with external
5 1/4 inch discs.

If the device type specified is not valid, the system tests the device to determine its type. There are
two exceptions to this.

1. If the device selector is 0 and the device type is invalid, the device type is assummed to be
MEMORY

2. If the device type is valid and the driver BIN for the device is not loaded, the system
considers the device an invalid device type.

If a valid device type is specified and the system finds a different device at the device selector,
error 72 occurs .

Example Statements
MASS STORAGE IS " : INTERNAL tLlt1"
MASS STORAGE IS " :)< t 12"
MASS STORAGE IS Msus$

Sematics

MASS STORAGE IS 231

All mass storage operations which do not specify a source or destination by either an I/O path
name or msus in the file specifier use the current system mass storage device.

MASS STORAGE IS can be abbreviated as MSI when entering a program line , but a program
listing always shows the unabbreviated keywords.

Device Type
The following table shows the valid device types. Most device types require an option BIN for the
statement to execute.

BIN Required

none

DISC &
HPIB or FHPIB

Device Type

INTERNAL
MEMORY

HP 9895
HP 9121
HP 9133
HP 9134
HP 9135 (5 V4 inch uses HPIB not FHPIB)
HP 913X

DISC & HPIB HP 82901
HP 82902
HP 8290X

CS80 & CS80 (7908, 7911 , 7912, 7914, 9122 ...)
HPIB or FHPIB

HP9885 & GPIO HP 9885

SRM & DCOMM REMOTE

BUBBLE BUBBLE

EPROM EPROM
Note the 98625 Card (which requires the FHPIB BIN) cannot be used with external
5 1/4 inch discs.

If the device type specified is not valid, the system tests the device to determine its type. There are
two exceptions to this.

1. If the device selector is 0 and the device type is invalid, the device type is assummed to be
MEMORY

2. If the device type is valid and the driver BIN for the device is not loaded, the system
considers the device an invalid device type.

If a valid device type is specified and the system finds a different device at the device selector,
error 72 occurs .

232 MASS STORAGE IS

Non-Disc Mass Storage
Memory volumes are created by the INITIALIZE statement. They are removed by SCRATCH A
or by turning off the power. The unit number for a MEMORY volume may be 0 thru 31.

A bubble memory card may have an select code of 8 thru 31. (Use of this card requires the
BUBBLE BIN.) A bubble memory card is always unit number O. It is recommended that these
cards be given a high hardware-interrupt level to avoid error 314 in overlapped applications.

When writing data into EPROM (requires the EPROM BIN) , specify the select code of the
EPROM Programmer card that is connected to the desired EPROM memory card. When reading
data from EPROM, specify a select code of 0 or use the select code of the currently-connected
EPROM Programmer card. If the programmer card at the specified select code is not connected to
the specified EPROM memory card, an error is reported. If the select code of 0 is used , you must
specify " EPROM" in the mass storage unit specifier; otherwise , the system assumes MEMORY.

The unit numbers are given to the EPROM memory cards at power-up according to relative
memory addresses. The card with the lowest address is given unit number 0, the card with the next
greater address is given unit number 1, and so forth.

232 MASS STORAGE IS

Non-Disc Mass Storage
Memory volumes are created by the INITIALIZE statement. They are removed by SCRATCH A
or by turning off the power. The unit number for a MEMORY volume may be 0 thru 31.

A bubble memory card may have an select code of 8 thru 31. (Use of this card requires the
BUBBLE BIN.) A bubble memory card is always unit number O. It is recommended that these
cards be given a high hardware-interrupt level to avoid error 314 in overlapped applications.

When writing data into EPROM (requires the EPROM BIN) , specify the select code of the
EPROM Programmer card that is connected to the desired EPROM memory card. When reading
data from EPROM, specify a select code of 0 or use the select code of the currently-connected
EPROM Programmer card. If the programmer card at the specified select code is not connected to
the specified EPROM memory card, an error is reported. If the select code of 0 is used , you must
specify " EPROM" in the mass storage unit specifier; otherwise , the system assumes MEMORY.

The unit numbers are given to the EPROM memory cards at power-up according to relative
memory addresses. The card with the lowest address is given unit number 0, the card with the next
greater address is given unit number 1, and so forth.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

MAT
Yes
Yes
Yes

MAT

MAT can be used to initialize string and numeric arrays to constant values and copy string and
numeric arrays. It can also be used to perform arithmetic operations on numeric arrays and,
through the use of secondary keywords, can be used to perform special functions on numeric
arrays.

Item

string array name

array name

operator

vector name

matrix name

string
expression

numeric
expression

Description/Default

name of a string array

name of a numeric array

Any of the follOWing:
+ - / < {= = () \= ; *
name of a one-dimensional numeric array

name of a two dimensional numeric array

Range
Restrictions

any valid name

any valid name

• can only appear
between two arrays

any valid name

any valid name

233

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

MAT
Yes
Yes
Yes

MAT

MAT can be used to initialize string and numeric arrays to constant values and copy string and
numeric arrays. It can also be used to perform arithmetic operations on numeric arrays and,
through the use of secondary keywords, can be used to perform special functions on numeric
arrays.

Item

string array name

array name

operator

vector name

matrix name

string
expression

numeric
expression

Description/Default

name of a string array

name of a numeric array

Any of the follOWing:
+ - / < {= = () \= ; *
name of a one-dimensional numeric array

name of a two dimensional numeric array

Range
Restrictions

any valid name

any valid name

• can only appear
between two arrays

any valid name

any valid name

233

234 MAT

Example Statements
MAT A= A*(Ref+1/3)
MAT A= A+B
MAT A= B< (1)
MAT A= B<>C
MAT 1.'= CSUM(A)
MAT 1= IDN
MAT B= I NI.' (A)

Semantics
The MAT statement allows you to:

• Copy a string expression into a string array or copy the contents of one string array into
another string array.

• Copy a numeric expression into an array or the contents of one array into another array.

• Add an array and a numeric expression, or two arrays.

• Subtract a numeric expression from an array, an array from a numeric expression, or an
array from an array.

• MUltiply an array by a numeric expression or another array.

• Divide a numeric expression by an array, an array by a numeric expression, or an array by an
array.

• Compare an array to a numeric expression or to another array.

• Calculate the Identity, Inverse, Transpose, Sum of rows and Sum of columns of a matrix.

Note
If an error occurs during the calculations involved in a MAT assign­
ment the result array will contain only a partial result. Since you will
have no idea which entries are valid, the contents of the array should
be considered invalid.

Numeric Operations
In the case of operators, the specified operation is generally performed on every array element,
and the results are placed in corresponding locations of the result array (the exception is the *
operator, which is discussed under Matrix Multiplication, below.) This means that the result array
must have the same size and shape (though not necessarily the same subscript ranges) as the
operand array(s). If necessary, the system will redimension the result array to make it the proper
size. The redimensioning can only take place, however, if the dimensioned size of the result array
has at least as many elements as the current size of the operand array(s) .

When two arrays are operated on, they must be exactly the same size and shape. If not, the
computer returns an error. The specified operation is performed on corresponding elements in
each operand array and the result is placed in the corresponding location of the result array .
Multiplication of the elements of two arrays is performed with a period rather than an asterisk.
The asterisk is reserved for matrix multiplication described below.

234 MAT

Example Statements
MAT A= A*(Ref+1/3)
MAT A= A+B
MAT A= B< (1)
MAT A= B<>C
MAT 1.'= CSUM(A)
MAT 1= IDN
MAT B= I NI.' (A)

Semantics
The MAT statement allows you to:

• Copy a string expression into a string array or copy the contents of one string array into
another string array.

• Copy a numeric expression into an array or the contents of one array into another array.

• Add an array and a numeric expression, or two arrays.

• Subtract a numeric expression from an array, an array from a numeric expression, or an
array from an array.

• MUltiply an array by a numeric expression or another array.

• Divide a numeric expression by an array, an array by a numeric expression, or an array by an
array.

• Compare an array to a numeric expression or to another array.

• Calculate the Identity, Inverse, Transpose, Sum of rows and Sum of columns of a matrix.

Note
If an error occurs during the calculations involved in a MAT assign­
ment the result array will contain only a partial result. Since you will
have no idea which entries are valid, the contents of the array should
be considered invalid.

Numeric Operations
In the case of operators, the specified operation is generally performed on every array element,
and the results are placed in corresponding locations of the result array (the exception is the *
operator, which is discussed under Matrix Multiplication, below.) This means that the result array
must have the same size and shape (though not necessarily the same subscript ranges) as the
operand array(s). If necessary, the system will redimension the result array to make it the proper
size. The redimensioning can only take place, however, if the dimensioned size of the result array
has at least as many elements as the current size of the operand array(s) .

When two arrays are operated on, they must be exactly the same size and shape. If not, the
computer returns an error. The specified operation is performed on corresponding elements in
each operand array and the result is placed in the corresponding location of the result array .
Multiplication of the elements of two arrays is performed with a period rather than an asterisk.
The asterisk is reserved for matrix multiplication described below.

MAT 235

Relational Operators
Relational operations are performed on each element of the operand array(s) . If the relation is
TRUE, a 1 is placed in the corresponding location of the result array. If the relation is FALSE, a 0 is
recorded. The result array, therefore, consists of all O's and l ' s.

Matrix Multiplication
The asterisk is used for two operations. If it is between an array and a numeric expression, each
element in the array is multiplied by the numeric expression. If it is between two matrixes, it
results in matrix multiplication. If A and B are the two operand matrices, and C is the result matrix,
the matrix multiplication is defined by:

where n is the number of elements in a column in the matrix A. (This formula assumes that the
array subscripts run from 1 through N; in actuality, the computer only requires that the two arrays
be the correct size and shape, the actual values of the subscripts are unimportant.)

Note that the subscript values of the result array correspond to the rows of the first operand matrix
and the columns of the second operand matrix. Note also that the column subscript of the first
operand array is equal to the row subscript of the second operand array . We can summarize these
observations in two general rules:

• The result matrix will have the same number of rows as the first operand matrix and the same
number of columns as the second operand matrix.

• Matrix multiplication is legal if, and only if, the column size of the first operand matrix is equal
to the row size of the second operand matrix.

A third rule of matrix multiplication is:

• The result matrix cannot be the same as either operand matrix.

The calculation is done in REAL math unless both operands are INTEGER, in which case the
computation is also INTEGER. If the result matrix and the operand matrixes are different types
(Le. , one is REAL and the others are INTEGER) , the computer makes the conversion necessary
for the assignment. However, the conversion is made after the multiplication is calculated, so
even if the matrix receiving the result is REAL, the multiplication can generate an INTEGER
overflow when the operands are INTEGER matrixes.

The computer allows you to do matrix multiplication on vectors by treating the vectors as if they
were matrices. If the first operand is a vector, it is treated as a 1-by-N matrix. If the second
operand is a vector, it is treated as an N-by-l matrix

MAT 235

Relational Operators
Relational operations are performed on each element of the operand array(s) . If the relation is
TRUE, a 1 is placed in the corresponding location of the result array. If the relation is FALSE, a 0 is
recorded. The result array, therefore, consists of all O's and l ' s.

Matrix Multiplication
The asterisk is used for two operations. If it is between an array and a numeric expression, each
element in the array is multiplied by the numeric expression. If it is between two matrixes, it
results in matrix multiplication. If A and B are the two operand matrices, and C is the result matrix,
the matrix multiplication is defined by:

where n is the number of elements in a column in the matrix A. (This formula assumes that the
array subscripts run from 1 through N; in actuality, the computer only requires that the two arrays
be the correct size and shape, the actual values of the subscripts are unimportant.)

Note that the subscript values of the result array correspond to the rows of the first operand matrix
and the columns of the second operand matrix. Note also that the column subscript of the first
operand array is equal to the row subscript of the second operand array . We can summarize these
observations in two general rules:

• The result matrix will have the same number of rows as the first operand matrix and the same
number of columns as the second operand matrix.

• Matrix multiplication is legal if, and only if, the column size of the first operand matrix is equal
to the row size of the second operand matrix.

A third rule of matrix multiplication is:

• The result matrix cannot be the same as either operand matrix.

The calculation is done in REAL math unless both operands are INTEGER, in which case the
computation is also INTEGER. If the result matrix and the operand matrixes are different types
(Le. , one is REAL and the others are INTEGER) , the computer makes the conversion necessary
for the assignment. However, the conversion is made after the multiplication is calculated, so
even if the matrix receiving the result is REAL, the multiplication can generate an INTEGER
overflow when the operands are INTEGER matrixes.

The computer allows you to do matrix multiplication on vectors by treating the vectors as if they
were matrices. If the first operand is a vector, it is treated as a 1-by-N matrix. If the second
operand is a vector, it is treated as an N-by-l matrix

236 MAT

CSUM
This secondary keyword computes the sum of each column in a matrix and places the results in a
vector. The result vector must have at least as many elements as the matrix has columns. If the
vector is too large or its current size is too small (and there are enough elements in its original
declaration to allow redimensioning) , the computer redimensions it. If the result vector and the
argument array are different types (i. e. , one is REAL and the other is INTEGER) , the computer
makes the necessary conversion. However, the conversion is made after the column sums are
calculated, so even if the vector receiving the result is REAL, CSUM can generate an INTEGER
overflow when the argument is an INTEGER array.

IDN
This secondary keyword turns a square matrix into an identity matrix. An identity matrix has l' s
along the main diagonal and O's everywhere else . The matrix must be square.

INV
This secondary keyword finds the inverse of a square matrix. A matrix multiplied by its inverse
produces an identity matrix. The inverse is found by using the pivot-point method. If the value of
the determinant (see DET) is 0 after an INV, then the matrix has no inverse - whatever inverse
the computer came up with is invalid. If the value of the determinant is very small compared with
the elements in the argument matrix, then the inverse may be invalid and should be checked.

If the result matrix is not the same size and shape as the argument matrix, the computer will
attempt to redimension it. If it is too large, or its current size is too small (and there are enough
elements in its original declaration to allow redimensioning) the computer redimensions it. An
error is returned if the computer cannot redimension the result array.

RSUM
This secondary keyword computes the sum of each row in a matrix and places the values in a
vector. The result vector must be large enough to hold the sums of each row. If it is too large, or its
current size is too small (and there are enough elements in its original declaration to allow
redimensioning) the computer redimensions it. If the result vector and the argument array are
different types (i. e. , one is REAL and the other is INTEGER) , the computer makes the necessary
conversion. However, the conversion is made after the row sums are calculated, so even if the
vector receiving the result is REAL, RSUM can generate an INTEGER overflow when the
argument is an INTEGER array.

TRN
This secondary keyword produces the transpose of a matrix. The transpose is produced by
exchanging rows for columns and columns for rows. The result matrix must be dimensioned to be
at least as large as the current size of the argument matrix. If it's the wrong shape, the computer
redimensions it. The result and argument matrices cannot be the same.

The transpose of an N-by-M matrix is an M-by-N matrix, and each element is defined by switching
the subscripts. That is, A(m,n) in the argument matrix equals B(n,m) in the result matrix. (This
description assumes that the array subscripts run from 1 through M and 1 through N; in actuality,
the computer only requires that the array be the correct size and shape, the actual values of the
subscripts are unimportant.)

236 MAT

CSUM
This secondary keyword computes the sum of each column in a matrix and places the results in a
vector. The result vector must have at least as many elements as the matrix has columns. If the
vector is too large or its current size is too small (and there are enough elements in its original
declaration to allow redimensioning) , the computer redimensions it. If the result vector and the
argument array are different types (i. e. , one is REAL and the other is INTEGER) , the computer
makes the necessary conversion. However, the conversion is made after the column sums are
calculated, so even if the vector receiving the result is REAL, CSUM can generate an INTEGER
overflow when the argument is an INTEGER array.

IDN
This secondary keyword turns a square matrix into an identity matrix. An identity matrix has l' s
along the main diagonal and O's everywhere else . The matrix must be square.

INV
This secondary keyword finds the inverse of a square matrix. A matrix multiplied by its inverse
produces an identity matrix. The inverse is found by using the pivot-point method. If the value of
the determinant (see DET) is 0 after an INV, then the matrix has no inverse - whatever inverse
the computer came up with is invalid. If the value of the determinant is very small compared with
the elements in the argument matrix, then the inverse may be invalid and should be checked.

If the result matrix is not the same size and shape as the argument matrix, the computer will
attempt to redimension it. If it is too large, or its current size is too small (and there are enough
elements in its original declaration to allow redimensioning) the computer redimensions it. An
error is returned if the computer cannot redimension the result array.

RSUM
This secondary keyword computes the sum of each row in a matrix and places the values in a
vector. The result vector must be large enough to hold the sums of each row. If it is too large, or its
current size is too small (and there are enough elements in its original declaration to allow
redimensioning) the computer redimensions it. If the result vector and the argument array are
different types (i. e. , one is REAL and the other is INTEGER) , the computer makes the necessary
conversion. However, the conversion is made after the row sums are calculated, so even if the
vector receiving the result is REAL, RSUM can generate an INTEGER overflow when the
argument is an INTEGER array.

TRN
This secondary keyword produces the transpose of a matrix. The transpose is produced by
exchanging rows for columns and columns for rows. The result matrix must be dimensioned to be
at least as large as the current size of the argument matrix. If it's the wrong shape, the computer
redimensions it. The result and argument matrices cannot be the same.

The transpose of an N-by-M matrix is an M-by-N matrix, and each element is defined by switching
the subscripts. That is, A(m,n) in the argument matrix equals B(n,m) in the result matrix. (This
description assumes that the array subscripts run from 1 through M and 1 through N; in actuality,
the computer only requires that the array be the correct size and shape, the actual values of the
subscripts are unimportant.)

(
MAT REORDER

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement reorders elements in an array according to the subscript list in a vector.

MAT REORDER

Item

array name

vector name

dimension

Description/Default

name of an array

name of a one-dimensional numeric array

numeric expression, rounded to an integer;
Default = 1

Example Statements
MAT REORDER A BY B
MAT REORDER A BY Bt2

Semantics

Range
Restrictions

any valid name

any valid name

1 thru 6;
:;::; the RANK of the array

The dimension parameter is used to specify which dimension in a multidimensional array is to be
reordered. If no dimension is specified, the computer defaults to dimension 1. The vector must be
the same size as the specified dimension and it should contain integers corresponding to the
subscript range of that dimension (no duplicate numbers, or numbers out of range) .

Vectors generated by a MAT SORT TO statement are of the proper form for reordering (see MAT
SORT).

237

(
MAT REORDER

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement reorders elements in an array according to the subscript list in a vector.

MAT REORDER

Item

array name

vector name

dimension

Description/Default

name of an array

name of a one-dimensional numeric array

numeric expression, rounded to an integer;
Default = 1

Example Statements
MAT REORDER A BY B
MAT REORDER A BY Bt2

Semantics

Range
Restrictions

any valid name

any valid name

1 thru 6;
:;::; the RANK of the array

The dimension parameter is used to specify which dimension in a multidimensional array is to be
reordered. If no dimension is specified, the computer defaults to dimension 1. The vector must be
the same size as the specified dimension and it should contain integers corresponding to the
subscript range of that dimension (no duplicate numbers, or numbers out of range) .

Vectors generated by a MAT SORT TO statement are of the proper form for reordering (see MAT
SORT).

237

238

MAT SORT
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

MAT
Yes
Yes
Yes

This statement sorts an array along one dimension according to lexical or numeric order. In a
string array, the current LEXICAL ORDER IS table is used for the sorting comparisons.

numeric
array name

string
array name

numeric key specifier:

you must include one ,
and only one, aster i sk

string key specifier:

you must include one,
and only one , asterisk

238

MAT SORT
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

MAT
Yes
Yes
Yes

This statement sorts an array along one dimension according to lexical or numeric order. In a
string array, the current LEXICAL ORDER IS table is used for the sorting comparisons.

numeric
array name

string
array name

numeric key specifier:

you must include one ,
and only one, aster i sk

string key specifier:

you must include one,
and only one , asterisk

(

Item

numeric array name

string array name

vector name

subscript

beginning position

ending position

substring length

Description/Default

name of a numeric array

name of a string array

name of a one-dimensional numeric array

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
MAT SORT A(1,*13)

MAT SORT A(11* ,3) '(2,* 15) DES
MAT SORT B (*) TO I,J

MAT SORT A$(3,*)[1;2J TO I,J

MAT SORT A$ (* 12) DESd*13)[LI,7J

Semantics

MAT SORT 239

Range
Restrictions

any valid name

any valid name

any valid name

- 32 768 thru + 32 767
(see "array" in glossary)

1 thru 32 767 (see
"substring" in Glossary)

o thru 32 767 (see
"substring" in Glossary)

o thru 32 767 (see
"substring" in Glossary)

The elements to be compared are defined by a key specifier. The dimension to be sorted is
marked with an asterisk, and the subscript values in the key specifier define which elements in
that dimension should be used as the sorting values. Once (*) or (*) DES appears in the list
following the array name, no other items can be added.

In the case of ties , the computer leaves the elements in their current order. However, you can
define additional key specifiers to be used for ties. Whenever the computer encounters a tie , it will
look to the next (moving from left to right) key specifier to break the tie. It will look at as many key
specifiers as necessary to resolve the tie. In theory, there is no limit to the number of key specifiers
you can have in one MAT SORT statement. In practice, it is limited by the length of a stored line
on the computer you are dealing with . Each key must have an asterisk marking the same
dimension.

Normally, the system sorts in ascending order. You can sort in descending order by using the
secondary keyword DES. DES applies only to the key specifier which it follows . All others use the
default ascending order.

(

Item

numeric array name

string array name

vector name

subscript

beginning position

ending position

substring length

Description/Default

name of a numeric array

name of a string array

name of a one-dimensional numeric array

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
MAT SORT A(1,*13)

MAT SORT A(11* ,3) '(2,* 15) DES
MAT SORT B (*) TO I,J

MAT SORT A$(3,*)[1;2J TO I,J

MAT SORT A$ (* 12) DESd*13)[LI,7J

Semantics

MAT SORT 239

Range
Restrictions

any valid name

any valid name

any valid name

- 32 768 thru + 32 767
(see "array" in glossary)

1 thru 32 767 (see
"substring" in Glossary)

o thru 32 767 (see
"substring" in Glossary)

o thru 32 767 (see
"substring" in Glossary)

The elements to be compared are defined by a key specifier. The dimension to be sorted is
marked with an asterisk, and the subscript values in the key specifier define which elements in
that dimension should be used as the sorting values. Once (*) or (*) DES appears in the list
following the array name, no other items can be added.

In the case of ties , the computer leaves the elements in their current order. However, you can
define additional key specifiers to be used for ties. Whenever the computer encounters a tie , it will
look to the next (moving from left to right) key specifier to break the tie. It will look at as many key
specifiers as necessary to resolve the tie. In theory, there is no limit to the number of key specifiers
you can have in one MAT SORT statement. In practice, it is limited by the length of a stored line
on the computer you are dealing with . Each key must have an asterisk marking the same
dimension.

Normally, the system sorts in ascending order. You can sort in descending order by using the
secondary keyword DES. DES applies only to the key specifier which it follows . All others use the
default ascending order.

240 MAT SORT

MAT SORT of string arrays allows you not only to define the elements to be sorted, but also to
define substrings within each element. Substring specifiers refer only to the key specifier that
immediately precedes them. Substrings may lie anywhere within the dimensioned size of the
string. If a substring lies outside the current string length, the null string is used as the sorting key.

In addition to actually sorting an array, you can use MAT SORT. .. TO to store the new order in a
vector and leave the original array intact. If the vector is too large, or its current size is too small
(and there are enough elements in its original declaration to allow redimensioning) the computer
redimensions it. After a MAT SORT TO statement, the array will be unchanged. The vector will
contain the subscript values of the sorted dimension in their new order. You can then order the
array or other parallel arrays using the REORDER statement. You can also use the contents of the
vector to access the original array indirectly.

240 MAT SORT

MAT SORT of string arrays allows you not only to define the elements to be sorted, but also to
define substrings within each element. Substring specifiers refer only to the key specifier that
immediately precedes them. Substrings may lie anywhere within the dimensioned size of the
string. If a substring lies outside the current string length, the null string is used as the sorting key.

In addition to actually sorting an array, you can use MAT SORT. .. TO to store the new order in a
vector and leave the original array intact. If the vector is too large, or its current size is too small
(and there are enough elements in its original declaration to allow redimensioning) the computer
redimensions it. After a MAT SORT TO statement, the array will be unchanged. The vector will
contain the subscript values of the sorted dimension in their new order. You can then order the
array or other parallel arrays using the REORDER statement. You can also use the contents of the
vector to access the original array indirectly.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

MAT
Yes
Yes
Yes

MAX

This function returns a value equal to the largest value in the list of arguments provided. If an
array is specified as part of the list of arguments, it is equivalent to listing all the values in the array.
An INTEGER is returned if and only if all arguments in the list are INTEGER.

Item Description/ Default

array name name of a numeric array

Range
Restrictions

any valid name

Example Statements
>(=MA>«(A(*))
>(=MA)< (A ,3 ,5)

>(= M A){ (Floor, MIN (C e iIi n g ,A r g U fll e n t))

Note
It is possible for the space needed for MAX to exceed the temporary
storage allocated for expression evaluation. If the machine is close to
overflowing memory this can be a fatal error and can crash the machine.
It is recommended that statements including MAX not contain more than
20 variables and constants. An array is counted as one variable.

241

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

MAT
Yes
Yes
Yes

MAX

This function returns a value equal to the largest value in the list of arguments provided. If an
array is specified as part of the list of arguments, it is equivalent to listing all the values in the array.
An INTEGER is returned if and only if all arguments in the list are INTEGER.

Item Description/ Default

array name name of a numeric array

Range
Restrictions

any valid name

Example Statements
>(=MA>«(A(*))
>(=MA)< (A ,3 ,5)

>(= M A){ (Floor, MIN (C e iIi n g ,A r g U fll e n t))

Note
It is possible for the space needed for MAX to exceed the temporary
storage allocated for expression evaluation. If the machine is close to
overflowing memory this can be a fatal error and can crash the machine.
It is recommended that statements including MAX not contain more than
20 variables and constants. An array is counted as one variable.

241

242

MAXREAL
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN... Yes

This function returns the largest positive REAL number available in the range of the machine.

Example Statements
A=MA>(REAL
IF A*B<MAXREAL THEN GOTO 100

Semantics
The value of MAXREAL is approximately 1. 797 693 13486232 E + 308.

242

MAXREAL
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN... Yes

This function returns the largest positive REAL number available in the range of the machine.

Example Statements
A=MA>(REAL
IF A*B<MAXREAL THEN GOTO 100

Semantics
The value of MAXREAL is approximately 1. 797 693 13486232 E + 308.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

MAT
Yes
Yes
Yes

MIN

This function returns a value equal to the smallest value in the list of arguments provided. If an
array is specified as part of the list of arguments, it is equivalent to listing all the values in the array.
An INTEGER is returned if and only if all arguments in the list are INTEGER.

Item Description/Default

array name name of a numeric array

Range
Restrictions

any valid name

Example Statements
)(=MIN(A(*))
Y=MIN(A,3,B)
)-(= MIN (C e iIi 1"1 9 ,M A){ (Floor ,A r 9 U ITl HI t))

Note

It is possible for the space needed for MIN to exceed the temporary
storage allocated for expression evaluation. If the machine is close to
overflowing memory this can be a fatal error and can crash the machine.
It is recommended that statements including MIN not contain more than
20 variables and constants. An array is counted as one variable.

243

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

MAT
Yes
Yes
Yes

MIN

This function returns a value equal to the smallest value in the list of arguments provided. If an
array is specified as part of the list of arguments, it is equivalent to listing all the values in the array.
An INTEGER is returned if and only if all arguments in the list are INTEGER.

Item Description/Default

array name name of a numeric array

Range
Restrictions

any valid name

Example Statements
)(=MIN(A(*))
Y=MIN(A,3,B)
)-(= MIN (C e iIi 1"1 9 ,M A){ (Floor ,A r 9 U ITl HI t))

Note

It is possible for the space needed for MIN to exceed the temporary
storage allocated for expression evaluation. If the machine is close to
overflowing memory this can be a fatal error and can crash the machine.
It is recommended that statements including MIN not contain more than
20 variables and constants. An array is counted as one variable.

243

244

MINREAL
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN... Yes

This function returns the smallest positive REAL number available in the range of the computer.

-.c MINREAL)---

Example Statements
A=MINREAL
IF A-B>MINREAL THEN GoTo 100

Semantics
The value of MINREAL is approximately 2.225 073 858 507 2 4E - 308

MLA
See the SEND statement.

244

MINREAL
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN... Yes

This function returns the smallest positive REAL number available in the range of the computer.

-.c MINREAL)---

Example Statements
A=MINREAL
IF A-B>MINREAL THEN GoTo 100

Semantics
The value of MINREAL is approximately 2.225 073 858 507 2 4E - 308

MLA
See the SEND statement.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This operator returns the remainder of a division.

---.J dividend ~ divisor ~

Item Description/Default

dividend numeric expression

divisor numeric expression

Example Statements
Remainder=Dividend MOD Divisor
PRINT "Seconds =" jTifTle MOD GO

Semantics

Range
Restrictions

MOD

not equal to 0

MOD returns an INTEGER value if both arguments are INTEGER. Otherwise the returned
value is REAL.

For INTEGERs, MOD is equivalent to X - Y x (X DIV Y).This may return a different result
from the modulus function on other computers when negative numbers are involved.

245

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This operator returns the remainder of a division.

---.J dividend ~ divisor ~

Item Description/Default

dividend numeric expression

divisor numeric expression

Example Statements
Remainder=Dividend MOD Divisor
PRINT "Seconds =" jTifTle MOD GO

Semantics

Range
Restrictions

MOD

not equal to 0

MOD returns an INTEGER value if both arguments are INTEGER. Otherwise the returned
value is REAL.

For INTEGERs, MOD is equivalent to X - Y x (X DIV Y).This may return a different result
from the modulus function on other computers when negative numbers are involved.

245

246

MODULO
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This operator returns the integer remainder resulting from a division.

4 divide nd K MODULO)-1 modulus ~

dividend

modulus

Item Description/Default

numeric expression

numeric expression

Example Statements
Remainder=Diuidend MODULO Modulus
A=B MODULO C

Semantics
X MODULO Y is equivalent to X - Y x INT(XIY).

The result satisfies:

o < = (X MODULO Y) < Y if Y>O
Y < (X MODULO Y) < = 0 if Y <0

Range
Restrictions

range of REAL

range of REAL, i= 0

The type of the result is the higher of the types of the two operands. If the modulus is zero error 31
occurs.

MODULO returns the remainder of a division.

246

MODULO
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This operator returns the integer remainder resulting from a division.

4 divide nd K MODULO)-1 modulus ~

dividend

modulus

Item Description/Default

numeric expression

numeric expression

Example Statements
Remainder=Diuidend MODULO Modulus
A=B MODULO C

Semantics
X MODULO Y is equivalent to X - Y x INT(XIY).

The result satisfies:

o < = (X MODULO Y) < Y if Y>O
Y < (X MODULO Y) < = 0 if Y <0

Range
Restrictions

range of REAL

range of REAL, i= 0

The type of the result is the higher of the types of the two operands. If the modulus is zero error 31
occurs.

MODULO returns the remainder of a division.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

MOVE

This statement moves both the logical and physical pens from the current pen position to the
specified X and Y coordinates.

~ x coordinate ~ y coordinate ~

Item

x coordinate

y coordinate

Description/ Default

numeric expression in current units

numeric expression in current units

Example Statements
Mol,lE lOt 75

Mol,lE Ne x t_x tNext_y

Semantics

Range
Restrictions

The X and Y coordinates are interpreted according to the current unit-of-measure. MOVE is
affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside current clip limits, no
physical pen movement is made; however, the logical pen position is moved to the specified
coordinates.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LOlA.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by POIA.

X

LDIR PDIR

Note 4

X
X

Note 2

247

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

MOVE

This statement moves both the logical and physical pens from the current pen position to the
specified X and Y coordinates.

~ x coordinate ~ y coordinate ~

Item

x coordinate

y coordinate

Description/ Default

numeric expression in current units

numeric expression in current units

Example Statements
Mol,lE lOt 75

Mol,lE Ne x t_x tNext_y

Semantics

Range
Restrictions

The X and Y coordinates are interpreted according to the current unit-of-measure. MOVE is
affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside current clip limits, no
physical pen movement is made; however, the logical pen position is moved to the specified
coordinates.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LOlA.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by POIA.

X

LDIR PDIR

Note 4

X
X

Note 2

247

248

MOVELINES
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

PDEV
Yes
No
No

This command allows you to move one or more program lines to another place while editing a
program.

MOVELINES

beginning
line number

beginning
line label

Item

beginning line number

beginning line label

ending line number

ending line label

target line number

target line label

ending
line number

ending
line label

Description/Default

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

Example Statements
MOVELINES 1200 TO 2350
MOVELINES 100,230 TO Labell
MOVELINES Util_start,Util_end TO 18340

target
line number

target
li n e label

Range
Restrictions

1 to 32766

any valid name

1 to 32766

any valid name

1 to 32766

any valid name

248

MOVELINES
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

PDEV
Yes
No
No

This command allows you to move one or more program lines to another place while editing a
program.

MOVELINES

beginning
line number

beginning
line label

Item

beginning line number

beginning line label

ending line number

ending line label

target line number

target line label

ending
line number

ending
line label

Description/Default

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

integer constant identifying program line

name of a program line

Example Statements
MOVELINES 1200 TO 2350
MOVELINES 100,230 TO Labell
MOVELINES Util_start,Util_end TO 18340

target
line number

target
li n e label

Range
Restrictions

1 to 32766

any valid name

1 to 32766

any valid name

1 to 32766

any valid name

MOVE LINES 249

Semantics
If the ending line identifier is not specified, only one line is moved.

The target line identifier will be the line number of the first line of the moved program segment.
Moved lines are renumbered if necessary. The code (if any) which is "pushed down" to make
room for the moved code is renumbered if necessary.

Line number references to the moved code are updated as they would be by a REN command
(except external references to non-existent lines are renumbered).

If there are any DEF FN or SUB statements in the moved code, the target line number must be
greater than any existing line number.

If you try to move a program segment to a line number contained in the segment, an error will
result and no moving will occur.

If the starting line number does not exist, the next line is used. If the ending line number does not
exist, the previous line is used. If a line label doesn't exist, an error occurs and no moving takes
place.

If an error occurs during a MOVE LINES (for example, a memory overflow), the move is
terminated and the program is left partially modified.

MSI
See the MASS STORAGE IS statement.

MTA
See the SEND statement.

NEXT
See the FOR .. NEXT construct.

MOVE LINES 249

Semantics
If the ending line identifier is not specified, only one line is moved.

The target line identifier will be the line number of the first line of the moved program segment.
Moved lines are renumbered if necessary. The code (if any) which is "pushed down" to make
room for the moved code is renumbered if necessary.

Line number references to the moved code are updated as they would be by a REN command
(except external references to non-existent lines are renumbered).

If there are any DEF FN or SUB statements in the moved code, the target line number must be
greater than any existing line number.

If you try to move a program segment to a line number contained in the segment, an error will
result and no moving will occur.

If the starting line number does not exist, the next line is used. If the ending line number does not
exist, the previous line is used. If a line label doesn't exist, an error occurs and no moving takes
place.

If an error occurs during a MOVE LINES (for example, a memory overflow), the move is
terminated and the program is left partially modified.

MSI
See the MASS STORAGE IS statement.

MTA
See the SEND statement.

NEXT
See the FOR .. NEXT construct.

250

NOT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This operator returns 1 if its argument equals O. Otherwise, 0 is returned.

~ numeric ~ NOT exp r ession

Example Statements
Invert_flaS=NOT Std_device
IF NOT Pointer THEN Next_op

Semantics

None
Yes
Yes
Yes

When evaluating the argument, a non-zero value (positive or negative) is treated as a logical 1;
only zero is treated as a logical O.

The logical complement is shown below:

A NOTA

o 1
1 0

250

NOT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This operator returns 1 if its argument equals O. Otherwise, 0 is returned.

~ numeric ~ NOT exp r ession

Example Statements
Invert_flaS=NOT Std_device
IF NOT Pointer THEN Next_op

Semantics

None
Yes
Yes
Yes

When evaluating the argument, a non-zero value (positive or negative) is treated as a logical 1;
only zero is treated as a logical O.

The logical complement is shown below:

A NOTA

o 1
1 0

NPAR
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This function returns the number of parameters passed to the current subprogram. If execution
is currently in the main program, NPAR returns O.

Example Statements
IF NPAR)3 THEN Extra
Factors=NPAR-2

251

NPAR
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This function returns the number of parameters passed to the current subprogram. If execution
is currently in the main program, NPAR returns O.

Example Statements
IF NPAR)3 THEN Extra
Factors=NPAR-2

251

252

NUM
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the decimal value of the ASCII code of the first character in the argument.
The range of returned values is 0 thru 255.

Item Description/Default

argument string expression

Example Statements
Letter=NUM(Strinr$)
A$[IilJ=CHR$(NUM(A$[IJ)+32)

Range
Restrictions

not a null string

252

NUM
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the decimal value of the ASCII code of the first character in the argument.
The range of returned values is 0 thru 255.

Item Description/Default

argument string expression

Example Statements
Letter=NUM(Strinr$)
A$[IilJ=CHR$(NUM(A$[IJ)+32)

Range
Restrictions

not a null string

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

CLOCK
No

Yes
Yes

OFF CYCLE

This statement cancels event-initiated branches previously defined and enabled by an ON
CYCLE statement.

~F CYCLE}-l

Example Statements
OFF CYCLE
IF Kick_ sta nd THEN OFF CYCLE

Semantics
OFF CYCLE destroys the log of any CYCLE event which has already occurred but which has not
been serviced.

If OFF CYCLE is executed in a subprogram such that it cancels an ON CYCLE in the calling
context, the ON CYCLE definition is restored upon returning to the calling context.

253

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

CLOCK
No

Yes
Yes

OFF CYCLE

This statement cancels event-initiated branches previously defined and enabled by an ON
CYCLE statement.

~F CYCLE}-l

Example Statements
OFF CYCLE
IF Kick_ sta nd THEN OFF CYCLE

Semantics
OFF CYCLE destroys the log of any CYCLE event which has already occurred but which has not
been serviced.

If OFF CYCLE is executed in a subprogram such that it cancels an ON CYCLE in the calling
context, the ON CYCLE definition is restored upon returning to the calling context.

253

254

OFF DELAY
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
No

Yes
Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
DELAY statement.

(OFF DELAY ~

Example Statements
OFF DELAY
IF Ready THEN OFF DELAY

Semantics
OFF DELAY destroys the log of any DELAY event which has already occurred but which has not
been serviced.

If OFF DELAY is executed in a subprogram such that it cancels an ON DELAY in the calling
context, the ON DELAY definition is restored upon returning to the calling context.

254

OFF DELAY
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
No

Yes
Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
DELAY statement.

(OFF DELAY ~

Example Statements
OFF DELAY
IF Ready THEN OFF DELAY

Semantics
OFF DELAY destroys the log of any DELAY event which has already occurred but which has not
been serviced.

If OFF DELAY is executed in a subprogram such that it cancels an ON DELAY in the calling
context, the ON DELAY definition is restored upon returning to the calling context.

(

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
Yes

OFF END

This statement cancels event-initiated branches previously enabled and defined by an ON END
statement.

Item Description/Default

I/O path name name assigned to a mass storage file

Example Statements
OFF END @File
IF Special THEN OFF END @Source

Semantics

Range
Restrictions

any valid name (see ASSIGN)

If OFF END is executed in a subprogram and cancels an ON END in the context which called
the subprogram, the ON END definitions are restored when the calling context is restored.

If there is no ON END definition in a context, end-of-file and end-of-record are reported as errors.

255

(

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
Yes

OFF END

This statement cancels event-initiated branches previously enabled and defined by an ON END
statement.

Item Description/Default

I/O path name name assigned to a mass storage file

Example Statements
OFF END @File
IF Special THEN OFF END @Source

Semantics

Range
Restrictions

any valid name (see ASSIGN)

If OFF END is executed in a subprogram and cancels an ON END in the context which called
the subprogram, the ON END definitions are restored when the calling context is restored.

If there is no ON END definition in a context, end-of-file and end-of-record are reported as errors.

255

256

OFF EOR
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

TRANS
No

Yes
Yes

This statement cancels event-initiated branches previously defined and enabled by an ON EOR
statement.

Item Description/Default

110 path name name assigned to a device, a group of devices, or
a mass storage file

Example Statements
OFF EOR @File
OFF EOR @Device_selector

Semantics

Range
Restrictions

any valid name

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file;
however, if the I/O path is assigned to a BUFFER, an error is reported when the OFF EOR
statement is executed.

OFF EOR destroys the log of any EOR event which has already occurred but which has not been
serviced.

If OFF EOR is executed in a subprogram such that it cancels an ON EOR in the calling context, the
ON EOR definition is restored upon returning to the calling context.

256

OFF EOR
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

TRANS
No

Yes
Yes

This statement cancels event-initiated branches previously defined and enabled by an ON EOR
statement.

Item Description/Default

110 path name name assigned to a device, a group of devices, or
a mass storage file

Example Statements
OFF EOR @File
OFF EOR @Device_selector

Semantics

Range
Restrictions

any valid name

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file;
however, if the I/O path is assigned to a BUFFER, an error is reported when the OFF EOR
statement is executed.

OFF EOR destroys the log of any EOR event which has already occurred but which has not been
serviced.

If OFF EOR is executed in a subprogram such that it cancels an ON EOR in the calling context, the
ON EOR definition is restored upon returning to the calling context.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
No

Yes
Yes

OFF EOT

This statement cancels event-initiated branches previously defined and enabled by an ON EOT
statement.

Item

I/O path name

Description/ Default

name assigned to a device, a group of devices, or
a mass storage file

Example Statements
OFF EDT @File
IF Done_fla~ THEN OFF EDT @Info

Semantics

Range
Restrictions

any valid name

The 110 path may be assigned either to a device, a group of devices, or to a mass storage file;
however, if the 110 path is assigned to a BUFFER, an error is reported when the OFF EOT
statement is executed.

OFF EOT destroys the log of any EOT event which has already occurred but which has not been
serviced.

If OFF EOT is executed in a subprogram such that it cancels an ON EOT in the calling context, the
ON EOT definition is restored upon returning to the calling context.

257

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
No

Yes
Yes

OFF EOT

This statement cancels event-initiated branches previously defined and enabled by an ON EOT
statement.

Item

I/O path name

Description/ Default

name assigned to a device, a group of devices, or
a mass storage file

Example Statements
OFF EDT @File
IF Done_fla~ THEN OFF EDT @Info

Semantics

Range
Restrictions

any valid name

The 110 path may be assigned either to a device, a group of devices, or to a mass storage file;
however, if the 110 path is assigned to a BUFFER, an error is reported when the OFF EOT
statement is executed.

OFF EOT destroys the log of any EOT event which has already occurred but which has not been
serviced.

If OFF EOT is executed in a subprogram such that it cancels an ON EOT in the calling context, the
ON EOT definition is restored upon returning to the calling context.

257

258

OFF ERROR
Option Required None
Keyboard Executable No
Programmable Yes
In an IF." THEN." Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
ERROR statement. Further errors are reported to the user in the usual fashion.

(OFF ERROR ~

258

OFF ERROR
Option Required None
Keyboard Executable No
Programmable Yes
In an IF." THEN." Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
ERROR statement. Further errors are reported to the user in the usual fashion.

(OFF ERROR ~

OFFINTR
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF. .. THEN... Yes

This statement cancels event-initiated branches previously defined by an ON INTR statement.

OFF INTR

interface
select code

Item Description/ Default

interface select code numeric expression , rounded to an integer;
Default = all interfaces

Example Statements
OFF I NTR
OFF INTR Hpib

Semantics

Range
Restrictions

5, and 7 thru 31

Not specifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code causes the OFF INTR to apply to the event-initiated log
entry for the specified interface only.

Any pending ON INTR branches for the effected interfaces are lost and further interrupts are
ignored.

259

OFFINTR
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF. .. THEN... Yes

This statement cancels event-initiated branches previously defined by an ON INTR statement.

OFF INTR

interface
select code

Item Description/ Default

interface select code numeric expression , rounded to an integer;
Default = all interfaces

Example Statements
OFF I NTR
OFF INTR Hpib

Semantics

Range
Restrictions

5, and 7 thru 31

Not specifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code causes the OFF INTR to apply to the event-initiated log
entry for the specified interface only.

Any pending ON INTR branches for the effected interfaces are lost and further interrupts are
ignored.

259

260

OFF KBD
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
Yes

This statement cancels the event-initiated branch previously defined by an ON KBD statement.

(OFF KBD)--l

Example Statements
OFF KBO
IF NOT Process_Keys THEN OFF KBO

Semantics
When this statement is executed, any pending ON KBD branch is cancelled, and the keyboard
buffer is cleared.

If OFF KBD is executed in a subprogram such that it cancels an ON KBD in the calling context,
the cancelled ON KBD definition is restored when the calling context is restored. However, the
keyboard buffer's contents are not restored with the calling context, because the buffer was
cleared with the OFF KBD.

260

OFF KBD
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
Yes

This statement cancels the event-initiated branch previously defined by an ON KBD statement.

(OFF KBD)--l

Example Statements
OFF KBO
IF NOT Process_Keys THEN OFF KBO

Semantics
When this statement is executed, any pending ON KBD branch is cancelled, and the keyboard
buffer is cleared.

If OFF KBD is executed in a subprogram such that it cancels an ON KBD in the calling context,
the cancelled ON KBD definition is restored when the calling context is restored. However, the
keyboard buffer's contents are not restored with the calling context, because the buffer was
cleared with the OFF KBD.

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
Yes

OFF KEY

This statement cancels event-initiated branches previously defined and enabled by an ON KEY
statement.

Item

key selector

Description/Default

numeric expression, rounded to an integer;
Default = all keys

Example Statements
OFF KEY
OFF KEY LI

Semantics

Range
Restrictions

o thru 19

Not specifying a softkey number disables the event-initiated branches for all softkeys. Specify­
ing a softkey number causes the OFF KEY to apply to the specified softkey only. If OFF KEY is
executed in a subprogram and cancels an ON KEY in the context which called the subprogram,
the ON KEY definitions are restored when the calling context is restored.

Any pending ON KEY branches for the effected softkeys are lost. Pressing an undefined softkey
generates a beep.

261

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
Yes

OFF KEY

This statement cancels event-initiated branches previously defined and enabled by an ON KEY
statement.

Item

key selector

Description/Default

numeric expression, rounded to an integer;
Default = all keys

Example Statements
OFF KEY
OFF KEY LI

Semantics

Range
Restrictions

o thru 19

Not specifying a softkey number disables the event-initiated branches for all softkeys. Specify­
ing a softkey number causes the OFF KEY to apply to the specified softkey only. If OFF KEY is
executed in a subprogram and cancels an ON KEY in the context which called the subprogram,
the ON KEY definitions are restored when the calling context is restored.

Any pending ON KEY branches for the effected softkeys are lost. Pressing an undefined softkey
generates a beep.

261

262

OFF KNOB
Option Required None
Keyboard Executable No
Programmable Yes
In an IF ... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by the ON
KNOB statement. Any pending ON KNOB branches are lost. Further use of the knob will result
in normal scrolling or cursor movement.

(OFF KNoe}-l

262

OFF KNOB
Option Required None
Keyboard Executable No
Programmable Yes
In an IF ... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by the ON
KNOB statement. Any pending ON KNOB branches are lost. Further use of the knob will result
in normal scrolling or cursor movement.

(OFF KNoe}-l

(

OFF SIGNAL
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF. .. THEN... Yes

OFF SIGNAL cancels the ON SIGNAL definition with the same signal selector. If no signal
selector is provided, all ON SIGNAL definitions are cancelled. OFF SIGNAL only applies to the
current context.

OFF SIGNAL

Item Description/Default

signal selector numeric expression, rounded to an integer

Example Statements
OFF SIGNAL
OFF SIGNAL 15

Range
Restrictions

o thru 15

263

(

OFF SIGNAL
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF. .. THEN... Yes

OFF SIGNAL cancels the ON SIGNAL definition with the same signal selector. If no signal
selector is provided, all ON SIGNAL definitions are cancelled. OFF SIGNAL only applies to the
current context.

OFF SIGNAL

Item Description/Default

signal selector numeric expression, rounded to an integer

Example Statements
OFF SIGNAL
OFF SIGNAL 15

Range
Restrictions

o thru 15

263

264

OFF TIME
Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an IF ... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON TIME
statement.

(OFF TIME)-l

Example Statements
OFF TIME
IF Attended THEN OFF TIME

Semantics
OFF TIME destroys the log of any TIME event which has already occurred but which has not been
serviced.

If OFF TIME is executed in a subprogram such that it cancels an ON TIME in the calling context,
the ON TIME definition is restored upon returning to the calling context.

264

OFF TIME
Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an IF ... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON TIME
statement.

(OFF TIME)-l

Example Statements
OFF TIME
IF Attended THEN OFF TIME

Semantics
OFF TIME destroys the log of any TIME event which has already occurred but which has not been
serviced.

If OFF TIME is executed in a subprogram such that it cancels an ON TIME in the calling context,
the ON TIME definition is restored upon returning to the calling context.

(

Option Required
Keyboard Executable
Programmable
In an IF... THEN ...

None
No

Yes
Yes

OFF TIMEOUT

This statement cancels event-initiated branches previously defined and enabled by an ON
TIMEOUT statement.

OFF TIMEOUT r--.-------"""T""-+l

interface
select code

Item Description/Default

interface select code numeric expression, rounded to an integer;
Default = all interfaces

Example Statements
OFF TIMEOUT
OFF TIMEOUT Isc

Semantics

Range
Restrictions

7thru31

Not specifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code causes the ON TIMEOUT to apply to the event-initiated
branches for the specified interface only. When OFF TIMEOUT is executed, no more timeouts
can occur on the effected interfaces.

265

(

Option Required
Keyboard Executable
Programmable
In an IF... THEN ...

None
No

Yes
Yes

OFF TIMEOUT

This statement cancels event-initiated branches previously defined and enabled by an ON
TIMEOUT statement.

OFF TIMEOUT r--.-------"""T""-+l

interface
select code

Item Description/Default

interface select code numeric expression, rounded to an integer;
Default = all interfaces

Example Statements
OFF TIMEOUT
OFF TIMEOUT Isc

Semantics

Range
Restrictions

7thru31

Not specifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code causes the ON TIMEOUT to apply to the event-initiated
branches for the specified interface only. When OFF TIMEOUT is executed, no more timeouts
can occur on the effected interfaces.

265

266

ON
Option Required
Keyboard Executable
Programmabel
In an IF ... THEN ...

None
No

Yes
Yes

This statement transfers program execution to one of several destinations selected by the value
of the pointer.

Item Description/Default

pointer numeric expression, rounded to an integer

line number integer constant identifying a program line

line label name of a program line

Example Statements
ON Xl GO TO 10 0 ,150,170

Range
Restrictions

1 thru 74

1 thru 32766

any valid name

IF Point THEN ON Point GOSUB Fi rst ,Second ,Thi rd ,Last

Semantics
If the pOinter is 1, the first line number or label is used. If the pointer is 2, the second line
identifier is used, and so on. If GOSUB is used, the RETURN is to the line following the
ON ... GOSUB statement.

If the pointer is less than 1 or greater than the number of line labels or numbers, error 19 is
generated. The specified line numbers or line labels must be in the same context as the ON
statement.

266

ON
Option Required
Keyboard Executable
Programmabel
In an IF ... THEN ...

None
No

Yes
Yes

This statement transfers program execution to one of several destinations selected by the value
of the pointer.

Item Description/Default

pointer numeric expression, rounded to an integer

line number integer constant identifying a program line

line label name of a program line

Example Statements
ON Xl GO TO 10 0 ,150,170

Range
Restrictions

1 thru 74

1 thru 32766

any valid name

IF Point THEN ON Point GOSUB Fi rst ,Second ,Thi rd ,Last

Semantics
If the pOinter is 1, the first line number or label is used. If the pointer is 2, the second line
identifier is used, and so on. If GOSUB is used, the RETURN is to the line following the
ON ... GOSUB statement.

If the pointer is less than 1 or greater than the number of line labels or numbers, error 19 is
generated. The specified line numbers or line labels must be in the same context as the ON
statement.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

CLOCK
No

Yes
Yes

ON CYCLE

This statement defines and enables an event-initiated branch to be taken each time the specified
number of seconds has elapsed.

seconds

Item

seconds

priority

line label

line number

subprogram name

Description/ Default

numeric expression, rounded to the nearest 0.01
second

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON CYCLE 1 GO SUB One_second
ON CYCLE 3600,12 CALL Chime

line label

line number

subpro g ram
name

Range
Restrictions

0.01 thru 167 772.16

1 thru 15

any valid name

1 thru 32766

any valid name

267

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

CLOCK
No

Yes
Yes

ON CYCLE

This statement defines and enables an event-initiated branch to be taken each time the specified
number of seconds has elapsed.

seconds

Item

seconds

priority

line label

line number

subprogram name

Description/ Default

numeric expression, rounded to the nearest 0.01
second

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON CYCLE 1 GO SUB One_second
ON CYCLE 3600,12 CALL Chime

line label

line number

subpro g ram
name

Range
Restrictions

0.01 thru 167 772.16

1 thru 15

any valid name

1 thru 32766

any valid name

267

268 ON CYCLE

Semantics
The most recent ON CYCLE (or OFF CYCLE) definition overrides any previous ON CYCLE
definition. If the overriding ON CYCLE definition occurs in a context different from the one in
which the overridden ON CYCLE occurs, the overridden ON CYCLE is restored when the calling
context is restored, but the time value of the more recent ON CYCLE remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON CYCLE can interrupt service routines of other event­
initiated branches with user-definable priorities, if the ON CYCLE priority is higher than the
priority of the service routine (the current system priority). CALL and GOSUB service routines
get the priority specified in the ON ... statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON CYCLE statement.
CALL and GOSUB will return to the next line that would have been executed if the CYCLE event
had not been serviced, and the system priority is restored to that which existed before the ON
CYCLE branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON CYCLE statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON CYCLE is disabled by DISABLE and deactivated by OFF CYCLE. If the cycle value is short
enough that the computer cannot service it, the interrupt will be lost.

268 ON CYCLE

Semantics
The most recent ON CYCLE (or OFF CYCLE) definition overrides any previous ON CYCLE
definition. If the overriding ON CYCLE definition occurs in a context different from the one in
which the overridden ON CYCLE occurs, the overridden ON CYCLE is restored when the calling
context is restored, but the time value of the more recent ON CYCLE remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON CYCLE can interrupt service routines of other event­
initiated branches with user-definable priorities, if the ON CYCLE priority is higher than the
priority of the service routine (the current system priority). CALL and GOSUB service routines
get the priority specified in the ON ... statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON CYCLE statement.
CALL and GOSUB will return to the next line that would have been executed if the CYCLE event
had not been serviced, and the system priority is restored to that which existed before the ON
CYCLE branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON CYCLE statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON CYCLE is disabled by DISABLE and deactivated by OFF CYCLE. If the cycle value is short
enough that the computer cannot service it, the interrupt will be lost.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
No

Yes
Yes

ON DELAY

This statement defines and enables an event-initiated branch to be taken after the specified
number of seconds has elapsed.

seconds

Item

seconds

priority

line label

line number

subprogram name

Examples

Description/Default

numeric expression, rounded to the nearest 0.01
second

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

ON DELAY 10 GoTo Default
ON DELAY 3,2 GOSUS Low_level

line label

line number

subprogram
name

Range
Restrictions

0.01 thru 167 772.16

1 thru 15

any valid name

1 thru 32 766

any valid name

269

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
No

Yes
Yes

ON DELAY

This statement defines and enables an event-initiated branch to be taken after the specified
number of seconds has elapsed.

seconds

Item

seconds

priority

line label

line number

subprogram name

Examples

Description/Default

numeric expression, rounded to the nearest 0.01
second

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

ON DELAY 10 GoTo Default
ON DELAY 3,2 GOSUS Low_level

line label

line number

subprogram
name

Range
Restrictions

0.01 thru 167 772.16

1 thru 15

any valid name

1 thru 32 766

any valid name

269

270 ON DELAY

Semantics
The most recent ON DELAY (or OFF DELAY) definition overrides any previous ON DELAY
definition . If the overriding ON DELAY definition occurs in a context different from the one in
which the overridden ON DELAY occurs, the overridden ON DELAY is restored when the calling
context is restored , but the time value of the more recent ON DELAY remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON DELAY can interrupt service routines of other event­
initiated branches with user-definable priorities, if the ON DELAY priority is higher than the
priority of the service routine (the current system priority). CALL and GOSUB service routines
get the priority specified in the ON ... statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON DELAY statement.
CALL and GOSUB will return to the next line that would have been executed if the DELAY event
had not been serviced, and the system priority is restored to that which existed before the ON
DELAY branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON DELAY statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON DELAY is disabled by DISABLE and deactivated by OFF DELAY.

270 ON DELAY

Semantics
The most recent ON DELAY (or OFF DELAY) definition overrides any previous ON DELAY
definition . If the overriding ON DELAY definition occurs in a context different from the one in
which the overridden ON DELAY occurs, the overridden ON DELAY is restored when the calling
context is restored , but the time value of the more recent ON DELAY remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON DELAY can interrupt service routines of other event­
initiated branches with user-definable priorities, if the ON DELAY priority is higher than the
priority of the service routine (the current system priority). CALL and GOSUB service routines
get the priority specified in the ON ... statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON DELAY statement.
CALL and GOSUB will return to the next line that would have been executed if the DELAY event
had not been serviced, and the system priority is restored to that which existed before the ON
DELAY branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON DELAY statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON DELAY is disabled by DISABLE and deactivated by OFF DELAY.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

ON END

This statement defines and enables an event-initiated branch to be taken when end-of-file is
reached on the mass storage file associated with the specified I/O path.

I / O path I--...,....~
name

Item

I/O path name

line label

line number

subprogram name

line
number

subprogram
name

Description/Default

name assigned to a mass storage file

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON END @Source GoTo Next_file
ON END @Dest CALL Expand

Range
Restrictions

any valid name (see
ASSIGN)

any valid name

1 thru 32766

any valid name

271

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

ON END

This statement defines and enables an event-initiated branch to be taken when end-of-file is
reached on the mass storage file associated with the specified I/O path.

I / O path I--...,....~
name

Item

I/O path name

line label

line number

subprogram name

line
number

subprogram
name

Description/Default

name assigned to a mass storage file

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON END @Source GoTo Next_file
ON END @Dest CALL Expand

Range
Restrictions

any valid name (see
ASSIGN)

any valid name

1 thru 32766

any valid name

271

272 ON END

Semantics
The ON END branch is triggered by any of the following events:

• When the physical end-of-file is encountered.

• When an ENTER statement reads the byte at EOF or beyond.

• When a random access OUTPUT requires more than one defined record.

• When a random access OUTPUT is attempted beyond the next available record. (If EOF is
the first byte of a record, then that record is the next available record. If EOF is not at the first
byte of a record, the following record is the next available record.)

The priority associated with ON END is higher than priority IS. ON TIMEOUT and ON ERROR
have the same priority as ON END, and can interrupt an ON END service routine.

Any specified line label or line number must be in the same context as the ON END statement.
CALL and GOSUB will return to the line immediately following the one during which the
end-of-file occurred, and the system priority is restored to that which existed before the ON END
branch was taken. RECOVER forces the program to go directly to the specified line in the context
containing that ON END statement. When RECOVER forces a change of context, the system
priority is restored to that which existed in the original (defining) context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, if the I/O path
name is known in the new context. CALL and RECOVER do not remain active if the context
changes as a result of a keyboard-originated call. GOSUB and GOTO do not remain active when
the context changes to a subprogram.

The end-of-record error (error 60) or the end-of-file error (error 59) can be trapped by ON
ERROR if ON END is not active. ON END is deactivated by OFF END. DISABLE does not affect
ON END.

272 ON END

Semantics
The ON END branch is triggered by any of the following events:

• When the physical end-of-file is encountered.

• When an ENTER statement reads the byte at EOF or beyond.

• When a random access OUTPUT requires more than one defined record.

• When a random access OUTPUT is attempted beyond the next available record. (If EOF is
the first byte of a record, then that record is the next available record. If EOF is not at the first
byte of a record, the following record is the next available record.)

The priority associated with ON END is higher than priority IS. ON TIMEOUT and ON ERROR
have the same priority as ON END, and can interrupt an ON END service routine.

Any specified line label or line number must be in the same context as the ON END statement.
CALL and GOSUB will return to the line immediately following the one during which the
end-of-file occurred, and the system priority is restored to that which existed before the ON END
branch was taken. RECOVER forces the program to go directly to the specified line in the context
containing that ON END statement. When RECOVER forces a change of context, the system
priority is restored to that which existed in the original (defining) context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, if the I/O path
name is known in the new context. CALL and RECOVER do not remain active if the context
changes as a result of a keyboard-originated call. GOSUB and GOTO do not remain active when
the context changes to a subprogram.

The end-of-record error (error 60) or the end-of-file error (error 59) can be trapped by ON
ERROR if ON END is not active. ON END is deactivated by OFF END. DISABLE does not affect
ON END.

Option Required
Keyboard Executable
Programmable
In an IF... THEN ...

TRANS
No

Yes
Yes

ONEOR

This statement defines and enables an event-initiated branch to be taken when an end-of-record
is encountered during a TRANSFER.

I/O pat h t--...,..-----------,..--..,..,~ name

Item

I/O path name

priority

line label

line number

subprogram name

Description/Default

name assigned to a device, a group of devices, or
a mass storage file

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON EOR @Gpio GOSUB Gpio_eor
ON EOR @Hpib ,8 CALL Eor_sensed

Semantics

line label

line number

subprogram
name

Range
Restrictions

any valid name

1 thru 15

any valid name

1 thru 32766

any valid name

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file . If the
I/O path is assigned to a BUFFER, an error is reported when the ON EOR statement is executed.

If a TRANSFER statement uses an I/O path name which is local to a subprogram and the
TRANSFER has not completed by the time the context is exited, returning to the original context
will be deferred until the end of the TRANSFER; at that time the ON EOR event cannot be
serviced. To ensure that the event will be serviced, a statement that cannot be executed in
overlap with the TRANSFER must be executed before the context is exited. A WAIT FOR EOR
@Non_buf statement is used for this purpose.

273

Option Required
Keyboard Executable
Programmable
In an IF... THEN ...

TRANS
No

Yes
Yes

ONEOR

This statement defines and enables an event-initiated branch to be taken when an end-of-record
is encountered during a TRANSFER.

I/O pat h t--...,..-----------,..--..,..,~ name

Item

I/O path name

priority

line label

line number

subprogram name

Description/Default

name assigned to a device, a group of devices, or
a mass storage file

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON EOR @Gpio GOSUB Gpio_eor
ON EOR @Hpib ,8 CALL Eor_sensed

Semantics

line label

line number

subprogram
name

Range
Restrictions

any valid name

1 thru 15

any valid name

1 thru 32766

any valid name

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file . If the
I/O path is assigned to a BUFFER, an error is reported when the ON EOR statement is executed.

If a TRANSFER statement uses an I/O path name which is local to a subprogram and the
TRANSFER has not completed by the time the context is exited, returning to the original context
will be deferred until the end of the TRANSFER; at that time the ON EOR event cannot be
serviced. To ensure that the event will be serviced, a statement that cannot be executed in
overlap with the TRANSFER must be executed before the context is exited. A WAIT FOR EOR
@Non_buf statement is used for this purpose.

273

274 ON EOR

End-of-record delimiters are defined by the EOR parameters of the TRANSFER statement (Le.,
DELIM, COUNT, or END). An EOR event occurs when any of the specified end-of-record
delimiters is encountered during a TRANSFER. The event's occurrence is logged, and the
specified branch is taken when system priority permits.

The most recent ON EOR (or OFF EOR) definition for a given I/O path name overrides any
previous ON EOR definition. If the overriding ON EOR definition occurs in a context different
from the one in which the overridden ON EOR occurs, the overridden ON EOR is restored when
the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON EOR can interrupt service routines of other event-initiated
branches with user-definable priorities, if the ON EOR priority is higher than the priority of the
service routine (the current system priority) . CALL and GOSUB service routines get the priority
specified in the ON ... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken .

Any specified line label or line number must be in the same context as the ON EOR statement.
CALL and GOSUB will return to the next line that would have been executed if the EOR event
had not been serviced, and the system priority is restored to that which existed before the ON
EOR branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON EOR statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON EOR is disabled by DISABLE and deactivated by OFF EOR.

274 ON EOR

End-of-record delimiters are defined by the EOR parameters of the TRANSFER statement (Le.,
DELIM, COUNT, or END). An EOR event occurs when any of the specified end-of-record
delimiters is encountered during a TRANSFER. The event's occurrence is logged, and the
specified branch is taken when system priority permits.

The most recent ON EOR (or OFF EOR) definition for a given I/O path name overrides any
previous ON EOR definition. If the overriding ON EOR definition occurs in a context different
from the one in which the overridden ON EOR occurs, the overridden ON EOR is restored when
the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON EOR can interrupt service routines of other event-initiated
branches with user-definable priorities, if the ON EOR priority is higher than the priority of the
service routine (the current system priority) . CALL and GOSUB service routines get the priority
specified in the ON ... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken .

Any specified line label or line number must be in the same context as the ON EOR statement.
CALL and GOSUB will return to the next line that would have been executed if the EOR event
had not been serviced, and the system priority is restored to that which existed before the ON
EOR branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON EOR statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON EOR is disabled by DISABLE and deactivated by OFF EOR.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
No

Yes
Yes

ONEOT

This statement defines and enables an event-initiated branch to be taken when the last byte is
transferred by a TRANSFER statement.

Item

110 path name

priority

line label

line number

subprogram name

Description/Default

name assigned to a device, a group of devices, or
a mass storage file

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON EDT @File GoTo Finished
ON EDT @Hpib,5 CALL More

line label

line number

subprogram
name

Range
Restrictions

any valid name

1 thru 15

any valid name

1 thru 32 766

any valid name

275

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
No

Yes
Yes

ONEOT

This statement defines and enables an event-initiated branch to be taken when the last byte is
transferred by a TRANSFER statement.

Item

110 path name

priority

line label

line number

subprogram name

Description/Default

name assigned to a device, a group of devices, or
a mass storage file

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON EDT @File GoTo Finished
ON EDT @Hpib,5 CALL More

line label

line number

subprogram
name

Range
Restrictions

any valid name

1 thru 15

any valid name

1 thru 32 766

any valid name

275

276 ON EOT

Semantics
The I/O path may be assigned either to a device, a group of devices, or to a mass storage file . If the
I/O path is assigned to a BUFFER, an error is reported when the ON EOT statement is executed.

If a TRANSFER statement uses an I/O path name which is local to a subprogram and the
TRANSFER has not completed by the time the context is exited, returning to the original context
will be deferred until the end of the TRANSFER; at that time the ON EOT event cannot be
serviced. To ensure that the event will be serviced, a statement that cannot be executed in
overlap with the TRANSFER must be executed before leaving the context. A WAIT FOR EOT
@Non_buf statement is used for this purpose.

The most recent ON EOT (or OFF EOT) definition for a given path name overrides any previous
ON EOT definition . If the overriding ON EOT definition occurs in a context different from the one
in which the overridden ON EOT occurs, the overridden ON EOT is restored when the calling
context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable) . ON EOT can interrupt service routines of other event-initiated
branches with user-definable priorities, if the ON EOT priority is higher than the priority of the
service routine (the current system priority) . CALL and GOSUB service routines get the priority
specified in the ON ... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EOT statement.
CALL and GOSUB will return to the next line that would have been executed if the EOT event
had not been serviced, and the system priority is restored to that which existed before the ON
EOT branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON EOT statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON EOT is disabled by DISABLE and deactivated by OFF EOT.

276 ON EOT

Semantics
The I/O path may be assigned either to a device, a group of devices, or to a mass storage file . If the
I/O path is assigned to a BUFFER, an error is reported when the ON EOT statement is executed.

If a TRANSFER statement uses an I/O path name which is local to a subprogram and the
TRANSFER has not completed by the time the context is exited, returning to the original context
will be deferred until the end of the TRANSFER; at that time the ON EOT event cannot be
serviced. To ensure that the event will be serviced, a statement that cannot be executed in
overlap with the TRANSFER must be executed before leaving the context. A WAIT FOR EOT
@Non_buf statement is used for this purpose.

The most recent ON EOT (or OFF EOT) definition for a given path name overrides any previous
ON EOT definition . If the overriding ON EOT definition occurs in a context different from the one
in which the overridden ON EOT occurs, the overridden ON EOT is restored when the calling
context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable) . ON EOT can interrupt service routines of other event-initiated
branches with user-definable priorities, if the ON EOT priority is higher than the priority of the
service routine (the current system priority) . CALL and GOSUB service routines get the priority
specified in the ON ... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EOT statement.
CALL and GOSUB will return to the next line that would have been executed if the EOT event
had not been serviced, and the system priority is restored to that which existed before the ON
EOT branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON EOT statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON EOT is disabled by DISABLE and deactivated by OFF EOT.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

ON ERROR

This statement defines and enables an event-initiated branch which results from a trappable
error. This allows you to write your own error handling routines.

Item

subprogram
name

Description/ Default

line label name of a program line

line number integer constant identifying a program line

subprogram name name of a SUB or CSUB subprogram

Example Statements
ON ERROR GOTO 1200
ON ERROR CALL Report

Range
Restrictions

any valid name

1 thru 32766

any valid name

277

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

ON ERROR

This statement defines and enables an event-initiated branch which results from a trappable
error. This allows you to write your own error handling routines.

Item

subprogram
name

Description/ Default

line label name of a program line

line number integer constant identifying a program line

subprogram name name of a SUB or CSUB subprogram

Example Statements
ON ERROR GOTO 1200
ON ERROR CALL Report

Range
Restrictions

any valid name

1 thru 32766

any valid name

277

278 ON ERROR

Semantics
The ON ERROR statement has the highest priority of any event-initiated branch. ON ERROR
can interrupt any event-initiated service routine.

Any specified line label or line number must be in the same context as the ON ERROR statement.
RECOVER forces the program to go directly to the specified line in the context containing the ON
ERROR statement.

Returns from ON ERROR GOSUB or ON ERROR CALL routines are different from regular
GOSUB or CALL returns. When ON ERROR is in effect, the program resumes at the beginning
of the line where the error occurred. If the ON ERROR routine did not correct the cause of the
error, the error is repeated. This causes an infinite loop between the line in error and the error
handling routine . When execution returns from the ON ERROR routine, system priority is
restored to that which existed before the ON ERROR branch was taken.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. In this case, the error is reported to
the user, as if ON ERROR had not been executed.

GOSUB and GOTO do not remain active when the context changes to a subprogram. If an
error occurs, the error is reported to the user, as if ON ERROR had not been executed.

If an execution error occurs while servicing an ON ERROR CALL or ON ERROR GOSUB,
program execution stops. If an execution error occurs while servicing an ON ERROR GOTO or
ON ERROR RECOVER routine, an infinite loop can occur between the line in error and the
GOTO or RECOVER routine.

If an ON ERROR routine cannot be serviced because inadequate memory is available for the
computer, the original error is reported and program execution pauses at that point.

ON ERROR is deactivated by OFF ERROR. DISABLE does not affect ON ERROR.

278 ON ERROR

Semantics
The ON ERROR statement has the highest priority of any event-initiated branch. ON ERROR
can interrupt any event-initiated service routine.

Any specified line label or line number must be in the same context as the ON ERROR statement.
RECOVER forces the program to go directly to the specified line in the context containing the ON
ERROR statement.

Returns from ON ERROR GOSUB or ON ERROR CALL routines are different from regular
GOSUB or CALL returns. When ON ERROR is in effect, the program resumes at the beginning
of the line where the error occurred. If the ON ERROR routine did not correct the cause of the
error, the error is repeated. This causes an infinite loop between the line in error and the error
handling routine . When execution returns from the ON ERROR routine, system priority is
restored to that which existed before the ON ERROR branch was taken.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. In this case, the error is reported to
the user, as if ON ERROR had not been executed.

GOSUB and GOTO do not remain active when the context changes to a subprogram. If an
error occurs, the error is reported to the user, as if ON ERROR had not been executed.

If an execution error occurs while servicing an ON ERROR CALL or ON ERROR GOSUB,
program execution stops. If an execution error occurs while servicing an ON ERROR GOTO or
ON ERROR RECOVER routine, an infinite loop can occur between the line in error and the
GOTO or RECOVER routine.

If an ON ERROR routine cannot be serviced because inadequate memory is available for the
computer, the original error is reported and program execution pauses at that point.

ON ERROR is deactivated by OFF ERROR. DISABLE does not affect ON ERROR.

ONINTR
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF ... THEN. .. Yes

This statement defines an event-initiated branch to be taken when an interface card generates an
interrupt. The interrupts must be explicitly enabled with an ENABLE INTR statement.

Item

interface select code

priority

line label

line number

subprogram name

Description/ Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON INTR 7 GOSUB 500
ON INTR Isc,Lj CALL Serl}ice

Range
Restrictions

5, 7 thru 31

1 thru 15

any valid name

1 thru 32766

any valid name

279

ONINTR
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF ... THEN. .. Yes

This statement defines an event-initiated branch to be taken when an interface card generates an
interrupt. The interrupts must be explicitly enabled with an ENABLE INTR statement.

Item

interface select code

priority

line label

line number

subprogram name

Description/ Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON INTR 7 GOSUB 500
ON INTR Isc,Lj CALL Serl}ice

Range
Restrictions

5, 7 thru 31

1 thru 15

any valid name

1 thru 32766

any valid name

279

280 ON INTR

Semantics
The occurrence of an interrupt performs an implicit DISABLE INTR for the interface. An
ENABLE INTR must be performed to re-enable the interface fo r subsequent event-initiated
branches. Another ON INTR is not required, nor must the mask for ENABLE INTR be redefi ned.

The priority can be specified, with highest priority represented by 15 . The highest priority is less
than the priority for ON ERROR, ON END, and ON TIMEOUT. ON INTR can interrupt service
routines of other event-initiated branches which have user-definable priorities, if the ON INTR
priority is higher than the priority of the service routine (the current system priority). CALL and
GOSUB service routines get the priority specified in the ON ... statement which set up the branch
that invoked them. The system priority is not changed when a GOTO branch is taken .

Any specified line label or line number must be in the same context as the ON INTR statement.
CALL and GOSUB will return to the next line that would have been executed if the INTR event
had not been serviced, and the system priority is restored to that which existed before the ON
INTR branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON INTR statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON INTR is disabled by DISABLE INTR or DISABLE and deactivated by OFF INTR.

ON INTR and OFF INTR statements may be executed fo r any I/O card in the machine . It is not
necessary to have a driver for the card.

280 ON INTR

Semantics
The occurrence of an interrupt performs an implicit DISABLE INTR for the interface. An
ENABLE INTR must be performed to re-enable the interface fo r subsequent event-initiated
branches. Another ON INTR is not required, nor must the mask for ENABLE INTR be redefi ned.

The priority can be specified, with highest priority represented by 15 . The highest priority is less
than the priority for ON ERROR, ON END, and ON TIMEOUT. ON INTR can interrupt service
routines of other event-initiated branches which have user-definable priorities, if the ON INTR
priority is higher than the priority of the service routine (the current system priority). CALL and
GOSUB service routines get the priority specified in the ON ... statement which set up the branch
that invoked them. The system priority is not changed when a GOTO branch is taken .

Any specified line label or line number must be in the same context as the ON INTR statement.
CALL and GOSUB will return to the next line that would have been executed if the INTR event
had not been serviced, and the system priority is restored to that which existed before the ON
INTR branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON INTR statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON INTR is disabled by DISABLE INTR or DISABLE and deactivated by OFF INTR.

ON INTR and OFF INTR statements may be executed fo r any I/O card in the machine . It is not
necessary to have a driver for the card.

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
No

Yes
Yes

ONKBD

This statement defines and enables an event-initiated branch to be taken when a key is pressed.

Item

priority

line label

line number

subprogram name

Description/Default

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON KBD GOSUB 770
ON KBD,8 CALL Get_Key

Semantics

subprogram
name

Range
Restrictions

1 thru 15

any valid name

1 thru 32766

any valid name

Specifying the secondary keyword ALL causes all keys except (RESET) , (SHIFT) , and UIBD to be
trapped. When ALL is omitted, the untrapped keys are those just mentioned, the softkeys,
(PAUSE), (STOP), (elR 1/0) , (BREAK) , (System) , ~.~, and (SHIFT)~. When not trapped , these
keys perform their normal functions . When the softkeys are trapped, ON KBD branching overrides
any ON KEY branching.

A keystroke triggers a keyboard interrupt and initiates a branch to the specified routine when
priority allows . If keystrokes occur while branching is held off by priority, the keystrokes are
stored in a special buffer. When keystrokes are in the buffer, branching will occur when priority
allows. This buffer is read and cleared by the KBD$ function (see the KBD$ entry).

281

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
No

Yes
Yes

ONKBD

This statement defines and enables an event-initiated branch to be taken when a key is pressed.

Item

priority

line label

line number

subprogram name

Description/Default

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON KBD GOSUB 770
ON KBD,8 CALL Get_Key

Semantics

subprogram
name

Range
Restrictions

1 thru 15

any valid name

1 thru 32766

any valid name

Specifying the secondary keyword ALL causes all keys except (RESET) , (SHIFT) , and UIBD to be
trapped. When ALL is omitted, the untrapped keys are those just mentioned, the softkeys,
(PAUSE), (STOP), (elR 1/0) , (BREAK) , (System) , ~.~, and (SHIFT)~. When not trapped , these
keys perform their normal functions . When the softkeys are trapped, ON KBD branching overrides
any ON KEY branching.

A keystroke triggers a keyboard interrupt and initiates a branch to the specified routine when
priority allows . If keystrokes occur while branching is held off by priority, the keystrokes are
stored in a special buffer. When keystrokes are in the buffer, branching will occur when priority
allows. This buffer is read and cleared by the KBD$ function (see the KBD$ entry).

281

282 ON KBD

Knob rotation will generate ON KBD interrupts unless an ON KNOB statement has been executed.
Clockwise rotation of the knob produces right-arrow keystrokes; counterclockwise rotation produces
left -arrow keystokes. If the (SHIFT) key is pressed while turning the knob then clockwise rotation of the
knob produces up-arrow keystrokes; counterclockwise rotation produces down-arrow key strokes.
Since one rotation of the knob is equivalent to 20 keystrokes, keyboard buffer overflow may occur if
the BASIC service routine does not process the keys rapidly.

Live keyboard, editing, and display control functions are suspended during ON KBD. To restore
a key's normal function the keystroke may be OUTPUT to select code 2.

The most recent ON KBD (or OFF KBD) definition overrides any previous ON KBD definition. If
the overriding ON KBD definition occurs in a context different from the one in which the
overridden ON KBD occurs , the overridden ON KBD is restored when the calling context is
restored.

The priority can be specified, with the highest priority represented by 15. The highest user-defined
priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose priorities
are not user-definable). ON KBD can interrupt sevice routines of other event-initiated branches
with user-definable priorities, if the ON KBD priority is higher than the priority of the service
routine (the current system priority). CALL and GOSUB service routines get the priority specified
in the ON ... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KBD statement.
CALL and GOSUB will return to the next line that would have been executed if the KBD event
had not been serviced, and the system priority is restored to that which existed before the ON
KBD branch was taken . RECOVER forces the program to go directly to the specified line in the
context containing that ON KBD statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KBD is disabled by DISABLE, deactivated by OFF KBD, and temporarily deactivated when
the program is executing LINPUT, INPUT, or ENTER 2.

You can use a relative pointing device , such as the HP 46060A on an HP 46020A keyboard, if the
KBD BIN is present.

282 ON KBD

Knob rotation will generate ON KBD interrupts unless an ON KNOB statement has been executed.
Clockwise rotation of the knob produces right-arrow keystrokes; counterclockwise rotation produces
left -arrow keystokes. If the (SHIFT) key is pressed while turning the knob then clockwise rotation of the
knob produces up-arrow keystrokes; counterclockwise rotation produces down-arrow key strokes.
Since one rotation of the knob is equivalent to 20 keystrokes, keyboard buffer overflow may occur if
the BASIC service routine does not process the keys rapidly.

Live keyboard, editing, and display control functions are suspended during ON KBD. To restore
a key's normal function the keystroke may be OUTPUT to select code 2.

The most recent ON KBD (or OFF KBD) definition overrides any previous ON KBD definition. If
the overriding ON KBD definition occurs in a context different from the one in which the
overridden ON KBD occurs , the overridden ON KBD is restored when the calling context is
restored.

The priority can be specified, with the highest priority represented by 15. The highest user-defined
priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose priorities
are not user-definable). ON KBD can interrupt sevice routines of other event-initiated branches
with user-definable priorities, if the ON KBD priority is higher than the priority of the service
routine (the current system priority). CALL and GOSUB service routines get the priority specified
in the ON ... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KBD statement.
CALL and GOSUB will return to the next line that would have been executed if the KBD event
had not been serviced, and the system priority is restored to that which existed before the ON
KBD branch was taken . RECOVER forces the program to go directly to the specified line in the
context containing that ON KBD statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KBD is disabled by DISABLE, deactivated by OFF KBD, and temporarily deactivated when
the program is executing LINPUT, INPUT, or ENTER 2.

You can use a relative pointing device , such as the HP 46060A on an HP 46020A keyboard, if the
KBD BIN is present.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

ON KEY

This statement defines and enables an event-initiated branch to be taken when a softkey is
pressed.

Item

key selector

prompt

priority

line label

line number

subprogram name

Description/ Default

numeric expression, rounded to an integer

string expression;
Default = no label

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON KEY 0 GO l D 150

ON KEY 5 LABEL "Print",3 GOSUB Report

line
label

subprogram
name

Range
Restrictions

o thru 23

1 thru 15

any valid name

1 thru 32766

any valid name

283

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

ON KEY

This statement defines and enables an event-initiated branch to be taken when a softkey is
pressed.

Item

key selector

prompt

priority

line label

line number

subprogram name

Description/ Default

numeric expression, rounded to an integer

string expression;
Default = no label

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON KEY 0 GO l D 150

ON KEY 5 LABEL "Print",3 GOSUB Report

line
label

subprogram
name

Range
Restrictions

o thru 23

1 thru 15

any valid name

1 thru 32766

any valid name

283

284 ON KEY

Semantics
The most recently executed ON KEY (or OFF KEY) definition for a particular softkey overrides
any previous key definition . If the overriding ON KEY definition occurs in a context different from
the one in which the overridden ON KEY occurs , the overridden ON KEY is restored when the
calling context is restored .

Labels appear in the two bottom lines of the CRT. The label of any key is bound to the current ON
KEY definition. Therefore , when a definition is changed or restored, the label changes according­
ly. If no label is specified, that label field is blank. Refer to the BASIC Programming Techniques
manual for a discussion of these labels.

The priority can be specified, with the highest priority represented by 15. The highest user-defined
priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose priorities
are not user-definable). On KEY can interrupt service routines of other event-initiated branches
with user-definable priorities, if the ON KEY priority is higher than the priority of the service
routine (the current system priority). CALL and GOSUB service routines get the priority specified
in the ON ... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KEY statement.
CALL and GOSUB will return to the next line that would have been executed if the KEY event
had not been serviced, and the system priority is restored to that which existed before the ON
KEY branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON KEY statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KEY is disabled by DISABLE, deactivated by OFF KEY, and temporarily deactivated when
the program is paused or executing LINPUT, INPUT, or ENTER 2.

284 ON KEY

Semantics
The most recently executed ON KEY (or OFF KEY) definition for a particular softkey overrides
any previous key definition . If the overriding ON KEY definition occurs in a context different from
the one in which the overridden ON KEY occurs , the overridden ON KEY is restored when the
calling context is restored .

Labels appear in the two bottom lines of the CRT. The label of any key is bound to the current ON
KEY definition. Therefore , when a definition is changed or restored, the label changes according­
ly. If no label is specified, that label field is blank. Refer to the BASIC Programming Techniques
manual for a discussion of these labels.

The priority can be specified, with the highest priority represented by 15. The highest user-defined
priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose priorities
are not user-definable). On KEY can interrupt service routines of other event-initiated branches
with user-definable priorities, if the ON KEY priority is higher than the priority of the service
routine (the current system priority). CALL and GOSUB service routines get the priority specified
in the ON ... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KEY statement.
CALL and GOSUB will return to the next line that would have been executed if the KEY event
had not been serviced, and the system priority is restored to that which existed before the ON
KEY branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON KEY statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KEY is disabled by DISABLE, deactivated by OFF KEY, and temporarily deactivated when
the program is paused or executing LINPUT, INPUT, or ENTER 2.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
Yes

ON KNOB

This statement defines and enables an event-initiated branch to be taken when the knob is
turned.

Item

seconds

priority

line label

line number

subprogram name

Description/Default

numeric expression, rounded to the nearest 0.01
second

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON KNOB .1 GOSUB 250
ON KNOB .333,Prior ity CALL Pulses

Range
Restrictions

0.01 thru 2.55

1 thru 15

any valid name

1 thru 32766

any valid name

285

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
Yes

ON KNOB

This statement defines and enables an event-initiated branch to be taken when the knob is
turned.

Item

seconds

priority

line label

line number

subprogram name

Description/Default

numeric expression, rounded to the nearest 0.01
second

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON KNOB .1 GOSUB 250
ON KNOB .333,Prior ity CALL Pulses

Range
Restrictions

0.01 thru 2.55

1 thru 15

any valid name

1 thru 32766

any valid name

285

286 ON KNOB

Semantics
Turning the knob (cursor wheel) generates pulses. After ON KNOB is activated (or re-activated),
the first pulse received starts a sampling interval. The' 'seconds" parameter establishes the length
of that sampling interval. At the end of the sampling interval, the ON KNOB branch is taken if the
net number of pulses received during the interval is not zero and priority permits. The KNOBX
and KNOBY functions can be used to determine the number of pulses received during the
interval. If the ON KNOB branch is held off for any reason, the KNOBX and KNOBY functions
accumulate the pulses (see KNOBX and KNOBY).

The most recent ON KNOB (or OFF KNOB) definition overrides any previous ON KNOB
definition . If the overriding ON KNOB definition occurs in a context different from the one in
which the overridden ON KNOB occurs, the overridden ON KNOB is restored when the calling
context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user-defined
priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose priorities
are not user-definable). ON KNOB can interrupt service routines of other event-initiated bran­
ches with user-definable priorities, if the ON KNOB priority is higher than the priority of the
service routine (the current system priority). CALL and GOSUB service routines get the priority
specified in the ON ... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KNOB statement.
CALL and GOSUB will return to the next line that would have been executed if the KNOB event
had not been serviced, and the system priority is restored to that which existed before the ON
KNOB branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON KNOB statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KNOB is disabled by DISABLE and deactivated by OFF KNOB.

You can use a relative pointing device , such as the HP 46060A, on an HP 46020A keyboard, if
the KBD option is loaded.

286 ON KNOB

Semantics
Turning the knob (cursor wheel) generates pulses. After ON KNOB is activated (or re-activated),
the first pulse received starts a sampling interval. The' 'seconds" parameter establishes the length
of that sampling interval. At the end of the sampling interval, the ON KNOB branch is taken if the
net number of pulses received during the interval is not zero and priority permits. The KNOBX
and KNOBY functions can be used to determine the number of pulses received during the
interval. If the ON KNOB branch is held off for any reason, the KNOBX and KNOBY functions
accumulate the pulses (see KNOBX and KNOBY).

The most recent ON KNOB (or OFF KNOB) definition overrides any previous ON KNOB
definition . If the overriding ON KNOB definition occurs in a context different from the one in
which the overridden ON KNOB occurs, the overridden ON KNOB is restored when the calling
context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user-defined
priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose priorities
are not user-definable). ON KNOB can interrupt service routines of other event-initiated bran­
ches with user-definable priorities, if the ON KNOB priority is higher than the priority of the
service routine (the current system priority). CALL and GOSUB service routines get the priority
specified in the ON ... statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KNOB statement.
CALL and GOSUB will return to the next line that would have been executed if the KNOB event
had not been serviced, and the system priority is restored to that which existed before the ON
KNOB branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON KNOB statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KNOB is disabled by DISABLE and deactivated by OFF KNOB.

You can use a relative pointing device , such as the HP 46060A, on an HP 46020A keyboard, if
the KBD option is loaded.

ON SIGNAL
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF. .. THEN... Yes

This statement defines and enables an event-initiated branch to be taken when a SIGNAL
statement with the same signal selector is executed.

ON SIGNAL

Item

signal selector

priority

line label

line number

suprogram name

Description/ Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON SIGNAL 5 GOSUB 550
ON SIGNAL Bailout ,15 RECOVER Bail_here

Semantics

Range
Restrictions

o thru 15

1 thru 15

any valid name

1 thru 32766

any valid name

The most recent ON SIGNAL (or OFF SIGNAL) definition for a given signal selector overrides
any previous ON SIGNAL definition. If the overriding ON SIGNAL definition occurs in a context
different from the one in which the overridden ON SIGNAL occurs, the overridden ON SIGNAL
is restored when the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority forON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON SIGNAL can interrupt service routines of other event­
initiated branches with user-definable priorities, if the ON SIGNAL priority is higher than the
priority of the service routine (the current system priority). CALL and GOSUB service routines
get the priority specified in the ON ... statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

287

ON SIGNAL
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF. .. THEN... Yes

This statement defines and enables an event-initiated branch to be taken when a SIGNAL
statement with the same signal selector is executed.

ON SIGNAL

Item

signal selector

priority

line label

line number

suprogram name

Description/ Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON SIGNAL 5 GOSUB 550
ON SIGNAL Bailout ,15 RECOVER Bail_here

Semantics

Range
Restrictions

o thru 15

1 thru 15

any valid name

1 thru 32766

any valid name

The most recent ON SIGNAL (or OFF SIGNAL) definition for a given signal selector overrides
any previous ON SIGNAL definition. If the overriding ON SIGNAL definition occurs in a context
different from the one in which the overridden ON SIGNAL occurs, the overridden ON SIGNAL
is restored when the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority forON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON SIGNAL can interrupt service routines of other event­
initiated branches with user-definable priorities, if the ON SIGNAL priority is higher than the
priority of the service routine (the current system priority). CALL and GOSUB service routines
get the priority specified in the ON ... statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

287

288 ON SIGNAL

Any specified line label or line number must be in the same context as the ON SIGNAL statement.
CALL and GOSUB will return to the next line that would have been executed if the SIGNAL
event had not been serviced, and the system priority is restored to that which existed before the
ON SIGNAL branch was taken. RECOVER forces the program to go directly to the specified line
in the context containing that ON SIGNAL statement. When RECOVER forces a change of
context, the system priority is restored to that which existed in the original (defining) context at
the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON SIGNAL is disabled by DISABLE and deactivated by OFF SIGNAL.

288 ON SIGNAL

Any specified line label or line number must be in the same context as the ON SIGNAL statement.
CALL and GOSUB will return to the next line that would have been executed if the SIGNAL
event had not been serviced, and the system priority is restored to that which existed before the
ON SIGNAL branch was taken. RECOVER forces the program to go directly to the specified line
in the context containing that ON SIGNAL statement. When RECOVER forces a change of
context, the system priority is restored to that which existed in the original (defining) context at
the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON SIGNAL is disabled by DISABLE and deactivated by OFF SIGNAL.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
No

Yes
Yes

ON TIME

This statement defines and enables an event-initiated branch to be taken when the real-time
clock reaches a specified time.

Item

seconds

priority

line label

line number

suprogram name

Description/ Default

numeric expression, rounded to the nearest 0.01
second

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON TIME 3800*8 GOTO WorK
ON TIME (TIMEDATE+3800) MOD 88400 CALL One_hour

li n e lab el

li ne number

subp r o gr am
na me

Range
Restrictions

o thru 86 399.99

1 thru 15

any valid name

1 thru 32 766

any valid name

289

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
No

Yes
Yes

ON TIME

This statement defines and enables an event-initiated branch to be taken when the real-time
clock reaches a specified time.

Item

seconds

priority

line label

line number

suprogram name

Description/ Default

numeric expression, rounded to the nearest 0.01
second

numeric expression, rounded to an integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON TIME 3800*8 GOTO WorK
ON TIME (TIMEDATE+3800) MOD 88400 CALL One_hour

li n e lab el

li ne number

subp r o gr am
na me

Range
Restrictions

o thru 86 399.99

1 thru 15

any valid name

1 thru 32 766

any valid name

289

290 ON TIME

Semantics
The most recent ON TIME (or OFF TIME) definition overrides any previous ON TIME definition .
If the overriding ON TIME definition occurs in a context different from the one in which the
overridden ON TIME occurs, the overridden ON TIME is restored when the calling context is
restored, but the time value of the more recent ON TIME remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON TIME can interrupt service routines of other event-initiated
branches with user-definable priorities, if the ON TIME priority is higher than the priority of the
service routine (the current system priority) . CALL and GOSUB service routines get the priority
specified in the ON .. . statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

CALL and GOSUB will return to the next line that would have been executed if the TIME event
had not been serviced, and the system priority is restored to that which existed before the ON
TIME branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON TIME statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

Any specified line label or line number must be in the same context as the ON TIME statement.
CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

Unlike ON CYCLE, an ON TIME statement requires an exact match between the clock and the
time specified in the defining statement. If the event was missed and not logged, re-executing the
ON TIME statement will not result in a branch being taken.

ON TIME is disabled by DISABLE and deactivated by OFF TIME.

290 ON TIME

Semantics
The most recent ON TIME (or OFF TIME) definition overrides any previous ON TIME definition .
If the overriding ON TIME definition occurs in a context different from the one in which the
overridden ON TIME occurs, the overridden ON TIME is restored when the calling context is
restored, but the time value of the more recent ON TIME remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest user­
defined priority (15) is less than the priority for ON ERROR, ON END, and ON TIMEOUT (whose
priorities are not user-definable). ON TIME can interrupt service routines of other event-initiated
branches with user-definable priorities, if the ON TIME priority is higher than the priority of the
service routine (the current system priority) . CALL and GOSUB service routines get the priority
specified in the ON .. . statement which set up the branch that invoked them. The system priority is
not changed when a GOTO branch is taken.

CALL and GOSUB will return to the next line that would have been executed if the TIME event
had not been serviced, and the system priority is restored to that which existed before the ON
TIME branch was taken. RECOVER forces the program to go directly to the specified line in the
context containing that ON TIME statement. When RECOVER forces a change of context, the
system priority is restored to that which existed in the original (defining) context at the time that
context was exited.

Any specified line label or line number must be in the same context as the ON TIME statement.
CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

Unlike ON CYCLE, an ON TIME statement requires an exact match between the clock and the
time specified in the defining statement. If the event was missed and not logged, re-executing the
ON TIME statement will not result in a branch being taken.

ON TIME is disabled by DISABLE and deactivated by OFF TIME.

Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
No

Yes
Yes

ON TIMEOUT

This statement defines and enables an event-initiated branch to be taken when an 110 timeout
occurs on the specified interface. (If using ON TIMEOUT with SRM, also refer to the "SRM"
section of this manual.)

ON TIMEOUT interface
select code seconds

subprogram
name

Item

interface select code

seconds

line label

line number

subprogram name

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to the nearest
0.001 second

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON TIMEOUT 7 COTO 770
ON TIMEOUT Printer,Time COSUB Message

Semantics

Range
Restrictions

7 thru 31

0.001 thru 32.767

any valid name

1 thru 32766

any valid name

There is no default system timeout. If ON TIMEOUT is not in effect for an interface, a device can
cause the program to wait forever.

The specified branch occurs if an input or output is active on the interface and the interface has
not responded within the number of seconds specified. The computer waits at least the specified
time before generating an interrupt; however, it may wait up to an additional 25 % of the specified
time.

291

Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
No

Yes
Yes

ON TIMEOUT

This statement defines and enables an event-initiated branch to be taken when an 110 timeout
occurs on the specified interface. (If using ON TIMEOUT with SRM, also refer to the "SRM"
section of this manual.)

ON TIMEOUT interface
select code seconds

subprogram
name

Item

interface select code

seconds

line label

line number

subprogram name

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to the nearest
0.001 second

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements
ON TIMEOUT 7 COTO 770
ON TIMEOUT Printer,Time COSUB Message

Semantics

Range
Restrictions

7 thru 31

0.001 thru 32.767

any valid name

1 thru 32766

any valid name

There is no default system timeout. If ON TIMEOUT is not in effect for an interface, a device can
cause the program to wait forever.

The specified branch occurs if an input or output is active on the interface and the interface has
not responded within the number of seconds specified. The computer waits at least the specified
time before generating an interrupt; however, it may wait up to an additional 25 % of the specified
time.

291

292 ON TIMEOUT

Timeouts apply to ENTER and OUTPUT statements, and operations involving the PRINTER IS,
PRINTALL IS, and PLOTTER IS devices when they are external. Timeouts do not apply to
CONTROL, STATUS, READIO, WRITEIO, CRT alpha or graphics I/O, real time clock I/O,
keyboard I/O, or mass storage operations.

The priority associated with ON TIMEOUT is higher than priority 15. ON END and ON ERROR
have the same priority as ON TIMEOUT, and can interrupt an ON TIMEOUT service routine .

Any specified line label or line number must be in the same context as the ON TIMEOUT
statement. CALL and GOSUB will return to the line immediately following the one during which
the timeout occurred, and the system priority is restored to that which existed before the ON
TIMEOUT branch was taken. RECOVER forces the program to go directly to the specified line in
the context containing that ON TIMEOUT statement. When RECOVER forces a change of
context, the system priority is restored to that which existed in the original (defining) context at
the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard originated call. GOSUB and GOTO do not remain
active when the context changes to a subprogram.

ON TIMEOUT is deactivated by OFF TIMEOUT. DISABLE does not affect ON TIMEOUT.

292 ON TIMEOUT

Timeouts apply to ENTER and OUTPUT statements, and operations involving the PRINTER IS,
PRINTALL IS, and PLOTTER IS devices when they are external. Timeouts do not apply to
CONTROL, STATUS, READIO, WRITEIO, CRT alpha or graphics I/O, real time clock I/O,
keyboard I/O, or mass storage operations.

The priority associated with ON TIMEOUT is higher than priority 15. ON END and ON ERROR
have the same priority as ON TIMEOUT, and can interrupt an ON TIMEOUT service routine .

Any specified line label or line number must be in the same context as the ON TIMEOUT
statement. CALL and GOSUB will return to the line immediately following the one during which
the timeout occurred, and the system priority is restored to that which existed before the ON
TIMEOUT branch was taken. RECOVER forces the program to go directly to the specified line in
the context containing that ON TIMEOUT statement. When RECOVER forces a change of
context, the system priority is restored to that which existed in the original (defining) context at
the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard originated call. GOSUB and GOTO do not remain
active when the context changes to a subprogram.

ON TIMEOUT is deactivated by OFF TIMEOUT. DISABLE does not affect ON TIMEOUT.

Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN... No

This statement specifies the default lower bound of arrays.

OPTION BASE r---r-i~

Example Statements
OP TION BAS E 0
OPTION BASE

Semantics

OPTION BASE

This statement can occur only once in each context. If used, OPTION BASE must precede any
explicit variable declarations in a context. Since arrays are passed to subprograms by reference,
they maintain their orginallower bound, even if the new context has a different OPTION BASE.
Any context that does not contain an OPTION BASE statement assumes default lower bounds
of zero.

The OPTION BASE value is determined at prerun, and is used with all arrays declared without
explicit lower bounds in COM, DIM, INTEGER, and REAL statements as well as with all
implicitly dimensioned arrays. OPTION BASE is also used at runtime for any arrays declared
without lower bounds in ALLOCATE.

OPTIONAL
See the DEF FN and SUB statements.

293

Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN... No

This statement specifies the default lower bound of arrays.

OPTION BASE r---r-i~

Example Statements
OP TION BAS E 0
OPTION BASE

Semantics

OPTION BASE

This statement can occur only once in each context. If used, OPTION BASE must precede any
explicit variable declarations in a context. Since arrays are passed to subprograms by reference,
they maintain their orginallower bound, even if the new context has a different OPTION BASE.
Any context that does not contain an OPTION BASE statement assumes default lower bounds
of zero.

The OPTION BASE value is determined at prerun, and is used with all arrays declared without
explicit lower bounds in COM, DIM, INTEGER, and REAL statements as well as with all
implicitly dimensioned arrays. OPTION BASE is also used at runtime for any arrays declared
without lower bounds in ALLOCATE.

OPTIONAL
See the DEF FN and SUB statements.

293

294

OR
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

This operator returns a 1 or a 0 based on the logical inclusive-or of the arguments.

nume ric
e xpress ion

Example Statements
){ ='(OR Z

numeric
e x pr es sion

IF F i l e_ typ e OR De v i ce THEN P roc es s

Semantics

None
Yes
Yes
Yes

An expression which evaluates to a non-zero value is treated as a logical 1. An expression must
evaluate to zero to be treated as a logical O.

The truth table is:

A B
o 0
o 1
1 0
1 1

AORB

o
1
1
1

294

OR
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

This operator returns a 1 or a 0 based on the logical inclusive-or of the arguments.

nume ric
e xpress ion

Example Statements
){ ='(OR Z

numeric
e x pr es sion

IF F i l e_ typ e OR De v i ce THEN P roc es s

Semantics

None
Yes
Yes
Yes

An expression which evaluates to a non-zero value is treated as a logical 1. An expression must
evaluate to zero to be treated as a logical O.

The truth table is:

A B
o 0
o 1
1 0
1 1

AORB

o
1
1
1

Ul
E
Q) ...,

'M

...,
:J
Cl ...,
:J
o

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

OUTPUT

This statement outputs items to the specified destination. (If using OUTPUT with SRM, also refer
to the "SRM" section of this manual.)

destination r--.----------~------------._----------------_r~

Expanded diagram:
destination r---_____________________ A~ ______________________ __

s~~~~~~r r-----------------------------------~~

destination $
string name ~----------------------------~~

L...;;;..;;';""':';';"::""':'==..I'-"

string
expression

string
arra y name

numeric
expression

numeric
arr ,ay name

trailing punctuation
not allowed with USING

image items
r--------A~------__

295

Ul
E
Q) ...,

'M

...,
:J
Cl ...,
:J
o

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

OUTPUT

This statement outputs items to the specified destination. (If using OUTPUT with SRM, also refer
to the "SRM" section of this manual.)

destination r--.----------~------------._----------------_r~

Expanded diagram:
destination r---_____________________ A~ ______________________ __

s~~~~~~r r-----------------------------------~~

destination $
string name ~----------------------------~~

L...;;;..;;';""':';';"::""':'==..I'-"

string
expression

string
arra y name

numeric
expression

numeric
arr ,ay name

trailing punctuation
not allowed with USING

image items
r--------A~------__

295

296 OUTPUT

literal form of file specifier:

image
specifier list

Item

I/O path name

record number

device selector

destination string name

subscript

image line number

image line label

image specifier

string array name

numeric array name

image specifier list

repeat factor

literal

image
specifier list

Description/Default

name assigned to a device, devices, mass storage
file, or buffer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of a string variable

numeric expression, rounded to an integer

Range
Restrictions

any valid name

1 thru 231 - 1

(see Glossary)

any valid name

- 32 767 thru + 32 767
(see "array" in Glossary)

integer constant identifying an IMAGE statement 1 thru 32 766

name identifying an IMAGE statement any valid name

string expression (see drawing)

name of a string array any valid name

name of a numeric array any valid name

literal (see next drawing)

integer constant 1 thru 32 767

string constant composed of characters from the quote mark not allowed
keyboard, including those generated using the
ANY CHAR key

296 OUTPUT

literal form of file specifier:

image
specifier list

Item

I/O path name

record number

device selector

destination string name

subscript

image line number

image line label

image specifier

string array name

numeric array name

image specifier list

repeat factor

literal

image
specifier list

Description/Default

name assigned to a device, devices, mass storage
file, or buffer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of a string variable

numeric expression, rounded to an integer

Range
Restrictions

any valid name

1 thru 231 - 1

(see Glossary)

any valid name

- 32 767 thru + 32 767
(see "array" in Glossary)

integer constant identifying an IMAGE statement 1 thru 32 766

name identifying an IMAGE statement any valid name

string expression (see drawing)

name of a string array any valid name

name of a numeric array any valid name

literal (see next drawing)

integer constant 1 thru 32 767

string constant composed of characters from the quote mark not allowed
keyboard, including those generated using the
ANY CHAR key

OUTPUT 297

image specifier list

%

K

- K

B

W

+

r-------------------------------~H ~----------------------------~

r-------------------------------------~ y r---------------------------------~~

Shaded items
require 1 0

Radix specifier cannot
be used without a
digit specifier.

OUTPUT 297

image specifier list

%

K

- K

B

W

+

r-------------------------------~H ~----------------------------~

r-------------------------------------~ y r---------------------------------~~

Shaded items
require 1 0

Radix specifier cannot
be used without a
digit specifier.

298 OUTPUT

Example Statements
OUTPUT 701 ; Number,Strins$;
OUTPUT @File;Arrai(*) , END
OUTPUT @Rand,5 USING Fmt1 ; Item(5)
OUTPUT 12 USING "# ,BA" ;5$[2 ;B]
OUTPUT @Printer;RanK l Id;Name$

Semantics
Standard Numeric Format
The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to IE - 4 and less than IE + 6, it is rounded
to 12 digits and displayed in floating point notation. If it is not within these limits, it is displayed in
scientific notation. The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

Arrays
Entire arrays may be output by using the asterisk specifier. Each element in an array is treated as
an item by the OUTPUT statement, as if the items were listed separately, separated by the
punctuation following the array specifier. If no punctuation follows the array specifier, a comma is
assumed. The array is output in row major order (rightmost subscript varies fastest.)

Files as Destination
If an I/O path has been assigned to a file , the file may be written to with OUTPUT statements. The
file must be an ASCII or BOAT file . The attributes specified in the ASSIGN statement are used if
the file is a BOAT file .

Serial access is available for both ASCII and BOAT files . Random access is available for BOAT
files. The end-of-file marker (EOF) and the file pointer are important to both serial and random
access. The file pointer is set to the beginning of the file when the file is opened by an ASSIGN.
The file pointer always points to the next byte to be written by serial OUTPUT operations. The
EOF pointer is read from the media when the file is opened by an ASSIGN. On a newly-created
file, EOF is set to the beginning of the file . After each OUTPUT operation, the EOF is updated
internally to the maximum of the file pointer or the previous EOF value . The EOF pointer is
updated on the media at the following times:

• When the current end-of-file changes.

• When ENO is specified in an OUTPUT statement directed to the file.

• When a CONTROL statement directed to the lIO path name changes the position of the
EOF.

Random access uses the record number parameter to write items to a specific location in a file .
The OUTPUT begins at the start of the specified record and must fit into one record. The record
specified cannot be beyond the record containing the EOF, if EOF is at the first byte of a record.
The record specified can be one record beyond the record containing the EOF, if EOF is not at the
first byte of a record. Random access is always allowed to records preceding the EOF record. If
you wish to write randomly to a newly created file , either use a CONTROL statement to position
the EOF in the last record, or write some "dummy" data into every record.

298 OUTPUT

Example Statements
OUTPUT 701 ; Number,Strins$;
OUTPUT @File;Arrai(*) , END
OUTPUT @Rand,5 USING Fmt1 ; Item(5)
OUTPUT 12 USING "# ,BA" ;5$[2 ;B]
OUTPUT @Printer;RanK l Id;Name$

Semantics
Standard Numeric Format
The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to IE - 4 and less than IE + 6, it is rounded
to 12 digits and displayed in floating point notation. If it is not within these limits, it is displayed in
scientific notation. The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

Arrays
Entire arrays may be output by using the asterisk specifier. Each element in an array is treated as
an item by the OUTPUT statement, as if the items were listed separately, separated by the
punctuation following the array specifier. If no punctuation follows the array specifier, a comma is
assumed. The array is output in row major order (rightmost subscript varies fastest.)

Files as Destination
If an I/O path has been assigned to a file , the file may be written to with OUTPUT statements. The
file must be an ASCII or BOAT file . The attributes specified in the ASSIGN statement are used if
the file is a BOAT file .

Serial access is available for both ASCII and BOAT files . Random access is available for BOAT
files. The end-of-file marker (EOF) and the file pointer are important to both serial and random
access. The file pointer is set to the beginning of the file when the file is opened by an ASSIGN.
The file pointer always points to the next byte to be written by serial OUTPUT operations. The
EOF pointer is read from the media when the file is opened by an ASSIGN. On a newly-created
file, EOF is set to the beginning of the file . After each OUTPUT operation, the EOF is updated
internally to the maximum of the file pointer or the previous EOF value . The EOF pointer is
updated on the media at the following times:

• When the current end-of-file changes.

• When ENO is specified in an OUTPUT statement directed to the file.

• When a CONTROL statement directed to the lIO path name changes the position of the
EOF.

Random access uses the record number parameter to write items to a specific location in a file .
The OUTPUT begins at the start of the specified record and must fit into one record. The record
specified cannot be beyond the record containing the EOF, if EOF is at the first byte of a record.
The record specified can be one record beyond the record containing the EOF, if EOF is not at the
first byte of a record. Random access is always allowed to records preceding the EOF record. If
you wish to write randomly to a newly created file , either use a CONTROL statement to position
the EOF in the last record, or write some "dummy" data into every record.

OUTPUT 299

When data is written to an ASCII file, each item is sent as an ASCII representation with a 2-byte
length header. Data sent to a BDAT file is sent in internal format if FORMAT is OFF, and is sent as
ASCII characters if FORMAT is ON. (See "Devices as Destination" for a description of these
formats .)

Devices as Destination
An 110 path or a device selector may be used to direct OUTPUT to a device. If a device selector is
used, the default system attributes are used (see ASSIGN) . If an 110 path is used, the ASSIGN
statement used to associate the 110 path with the device also determines the attributes used. If
multiple listeners were specified in the ASSIGN, the OUTPUT is directed to all of them. If
FORMAT ON is the current attribute, the items are sent in ASCII. Items followed by a semicolon
are sent with nothing following them. Numeric items followed by a comma are sent with a comma
following them. String items followed by a comma are sent with a CR/lF following them. If the
last item in the OUTPUT statement has no punctuation following it, the current end-of-line (EOl)
sequence is sent after it. Trailing punctuation eliminates the automatic EOL.

If FORMAT OFF is the current attribute, items are sent to the device in the computer's internal
format. Punctuation following items has no effect on the OUTPUT. Two bytes are sent for each
INTEGER, eight bytes for each REAL. Each string output consists of a four byte header
containing the length of the string, followed by the actual string characters. If the number of
characters is odd, an additional byte containing a blank is sent after the last character.

CRT as Destination
If the device selector is 1, the OUTPUT is directed to the CRT. OUTPUT 1 and PRINT differ in
their treatment of separators and print fields. The OUTPUT format is described under' 'Devices
as Destination". See the PRINT keyword for a discussion of that format. OUTPUT 1 USING and
PRINT USING to the CRT produce similar actions.

Keyboard as Destination
Outputs to device selector 2 may be used to simulate keystrokes. ASCII characters can be sent
directly (Le. "hello") . Non-ASCII keys (such as (EXECUTE)) are simulated by a two-byte sequ­
ence. The first byte is CHR$(255) , and the second byte can be found in the "Second Byte of
Non-ASCII Key Sequences" table in the back of this book.

When Simulating keystrokes, unwanted characters (such as the EOl sequence) can be avoided
with an image specifier (such as "#,B" or "#,K"). See "OUTPUT with USING".

Strings as Destination
If a string is used for the destination , the string is treated similarly to a file. However, there is no file
pointer; each OUTPUT begins at the beginning of the string, and writes serially within the string.

Buffers as Destination (Requires TRANS)
When the destination is an I/O path name assigned to a buffer, data is placed in the buffer
beginning at the location indicated by the buffer's fill pointer. As data is sent, the current
number-of-bytes register and fill pointer are adjusted accordingly. Encountering the empty
pointer (buffer full) produces an error unless a continuous outbound TRANSFER is emptying the
buffer. In this case, the OUTPUT will wait until there is more room in the buffer for data.

OUTPUT 299

When data is written to an ASCII file, each item is sent as an ASCII representation with a 2-byte
length header. Data sent to a BDAT file is sent in internal format if FORMAT is OFF, and is sent as
ASCII characters if FORMAT is ON. (See "Devices as Destination" for a description of these
formats .)

Devices as Destination
An 110 path or a device selector may be used to direct OUTPUT to a device. If a device selector is
used, the default system attributes are used (see ASSIGN) . If an 110 path is used, the ASSIGN
statement used to associate the 110 path with the device also determines the attributes used. If
multiple listeners were specified in the ASSIGN, the OUTPUT is directed to all of them. If
FORMAT ON is the current attribute, the items are sent in ASCII. Items followed by a semicolon
are sent with nothing following them. Numeric items followed by a comma are sent with a comma
following them. String items followed by a comma are sent with a CR/lF following them. If the
last item in the OUTPUT statement has no punctuation following it, the current end-of-line (EOl)
sequence is sent after it. Trailing punctuation eliminates the automatic EOL.

If FORMAT OFF is the current attribute, items are sent to the device in the computer's internal
format. Punctuation following items has no effect on the OUTPUT. Two bytes are sent for each
INTEGER, eight bytes for each REAL. Each string output consists of a four byte header
containing the length of the string, followed by the actual string characters. If the number of
characters is odd, an additional byte containing a blank is sent after the last character.

CRT as Destination
If the device selector is 1, the OUTPUT is directed to the CRT. OUTPUT 1 and PRINT differ in
their treatment of separators and print fields. The OUTPUT format is described under' 'Devices
as Destination". See the PRINT keyword for a discussion of that format. OUTPUT 1 USING and
PRINT USING to the CRT produce similar actions.

Keyboard as Destination
Outputs to device selector 2 may be used to simulate keystrokes. ASCII characters can be sent
directly (Le. "hello") . Non-ASCII keys (such as (EXECUTE)) are simulated by a two-byte sequ­
ence. The first byte is CHR$(255) , and the second byte can be found in the "Second Byte of
Non-ASCII Key Sequences" table in the back of this book.

When Simulating keystrokes, unwanted characters (such as the EOl sequence) can be avoided
with an image specifier (such as "#,B" or "#,K"). See "OUTPUT with USING".

Strings as Destination
If a string is used for the destination , the string is treated similarly to a file. However, there is no file
pointer; each OUTPUT begins at the beginning of the string, and writes serially within the string.

Buffers as Destination (Requires TRANS)
When the destination is an I/O path name assigned to a buffer, data is placed in the buffer
beginning at the location indicated by the buffer's fill pointer. As data is sent, the current
number-of-bytes register and fill pointer are adjusted accordingly. Encountering the empty
pointer (buffer full) produces an error unless a continuous outbound TRANSFER is emptying the
buffer. In this case, the OUTPUT will wait until there is more room in the buffer for data.

300 OUTPUT

If an I/O path is currently being used in an inbound TRANSFER, and an OUTPUT statement uses
it as a destination, execution of the OUTPUT is deferred until the completion of the TRANSFER.
An OUTPUT can be concurrent with an outbound TRANSFER only if the destination is the I/O
path assigned to the buffer.

An OUTPUT to a string variable that is also a buffer will not update the buffer's pointers and will
probably corrupt the data in the buffer.

Using END with Devices
The secondary keyword END may be specified following the last item in an OUTPUT statement.
The result, when USING is not specified, is to suppress the EOL (End-of-Line) sequence that
would otherwise be output after the last byte of the last item. If a comma is used to separate the
last item from the END keyword, the corresponding item terminator is output (CR/LF for string
items or comma for numeric items).

With HP-1B interfaces, END specifies an EOI signal to be sent with the last data byte of the last
item. However, if no data is sent from the last output item, EOI is not sent. With Data Com­
munications interfaces, END specifies an end -of-data indication to be sent with the last byte of the
last output item.

OUTPUT With USING
When the computer executes an OUTPUT USING statement, it reads the image specifier, acting
on each field specifier (field specifiers are separated from each other by commas) as it is
encountered. If nothing is required from the output items, the field specifier is acted upon without
accessing the output list. When the field specifier requires characters, it accesses the next item in
the output list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
output item. If the image specifiers are exhausted before the output items, they are reused,
starting at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifier, trailing blanks are used to fill out the field.

Effects of the image specifiers on the OUTPUT statement are shown in the following table:

300 OUTPUT

If an I/O path is currently being used in an inbound TRANSFER, and an OUTPUT statement uses
it as a destination, execution of the OUTPUT is deferred until the completion of the TRANSFER.
An OUTPUT can be concurrent with an outbound TRANSFER only if the destination is the I/O
path assigned to the buffer.

An OUTPUT to a string variable that is also a buffer will not update the buffer's pointers and will
probably corrupt the data in the buffer.

Using END with Devices
The secondary keyword END may be specified following the last item in an OUTPUT statement.
The result, when USING is not specified, is to suppress the EOL (End-of-Line) sequence that
would otherwise be output after the last byte of the last item. If a comma is used to separate the
last item from the END keyword, the corresponding item terminator is output (CR/LF for string
items or comma for numeric items).

With HP-1B interfaces, END specifies an EOI signal to be sent with the last data byte of the last
item. However, if no data is sent from the last output item, EOI is not sent. With Data Com­
munications interfaces, END specifies an end -of-data indication to be sent with the last byte of the
last output item.

OUTPUT With USING
When the computer executes an OUTPUT USING statement, it reads the image specifier, acting
on each field specifier (field specifiers are separated from each other by commas) as it is
encountered. If nothing is required from the output items, the field specifier is acted upon without
accessing the output list. When the field specifier requires characters, it accesses the next item in
the output list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
output item. If the image specifiers are exhausted before the output items, they are reused,
starting at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifier, trailing blanks are used to fill out the field.

Effects of the image specifiers on the OUTPUT statement are shown in the following table:

OUTPUT 301

Image
Specifier Meaning

K Compact field. Outputs a number or string in standard form with no leading or trailing
blanks.

- K Same as K.

H Similar to K, except the number is output using the European number format (comma
radix) . (Requires [0)

- H Same as H. (Requires [0)

S Outputs the number's sign (+ or -).

M Outputs the number's sign if negative, a blank if positive.

o Outputs one digit character. A leading zero is replaced by a blank. If the number is negative
and no sign image is specified, the minus sign will occupy a leading digit position. If a sign is
output, it will "float" to the left of the left-most digit.

Z Same as 0 , except that leading zeros are output.

* Like 0 , except that asterisks are output instead of leading zeros. (Requires 10)

Outputs a decimal-point radix indicator.

R Outputs a comma radix indicator (European radix). (Requires [0)

E Outputs an E, a sign, and a two-digit exponent.

ESZ Outputs an E, a sign , and a one-digit exponent.

ESZZ Same as E.

ESZZZ Outputs an E, a sign. and a three-digit exponent.

A Outputs a string character. Trailing blanks are output if the number of characters speci­
fied is greater than the number available in the corresponding string. If the image
specifier is exhausted before the corresponding string, the remaining characters are
ignored.

X Outputs a blank.

literal Outputs the characters contained in the literal.

B Outputs the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an [NTEGER and the least-Significant byte is sent. If

I
the number is greater than 32 767 , then 255 is used: if the number is less than
- 32 768 , then 0 is used.

OUTPUT 301

Image
Specifier Meaning

K Compact field. Outputs a number or string in standard form with no leading or trailing
blanks.

- K Same as K.

H Similar to K, except the number is output using the European number format (comma
radix) . (Requires [0)

- H Same as H. (Requires [0)

S Outputs the number's sign (+ or -).

M Outputs the number's sign if negative, a blank if positive.

o Outputs one digit character. A leading zero is replaced by a blank. If the number is negative
and no sign image is specified, the minus sign will occupy a leading digit position. If a sign is
output, it will "float" to the left of the left-most digit.

Z Same as 0 , except that leading zeros are output.

* Like 0 , except that asterisks are output instead of leading zeros. (Requires 10)

Outputs a decimal-point radix indicator.

R Outputs a comma radix indicator (European radix). (Requires [0)

E Outputs an E, a sign, and a two-digit exponent.

ESZ Outputs an E, a sign , and a one-digit exponent.

ESZZ Same as E.

ESZZZ Outputs an E, a sign. and a three-digit exponent.

A Outputs a string character. Trailing blanks are output if the number of characters speci­
fied is greater than the number available in the corresponding string. If the image
specifier is exhausted before the corresponding string, the remaining characters are
ignored.

X Outputs a blank.

literal Outputs the characters contained in the literal.

B Outputs the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an [NTEGER and the least-Significant byte is sent. If

I
the number is greater than 32 767 , then 255 is used: if the number is less than
- 32 768 , then 0 is used.

302 OUTPUT

Image
Specifier Meaning

W Outputs a 16-bit word as a two's-complement integer. The corresponding numeric item is
rounded to an INTEGER. If it is greater than 32 767, then 32 767 is sent; if it is less than
- 32 768, then - 32 768 is sent. If either an 110 path name with the BYTE attribute or a
device selector is used to access an 8-bit interface, two bytes will be output; the most­
significant byte is sent first. If an 110 path name with the BYTE attribute is used to access a
16-bit interface, the BYTE attribute is overridden, and one word is output in a single
operation. If an 110 path name with the WORD attribute is used to access a 16-bit interface,
a null pad byte is output whenever necessary to achieve alignment on a word boundary. If
the destination is a BDAT file , string variable , or buffer, the BYTE or WORD attribute is
ignored and all data are sent as bytes; however, pad byte(s) will be output when necessary
to achieve alignment on a word boundary. The pad character may be changed by using the
CONVERT attribute: see the ASSIGN statement for further information.

Y Like W, except that no pad bytes are output to achieve word alignment. If an 110 path with
the BYTE attribute is used to access a 16-bit interface, the BYTE attribute is not overridden
(as with the W specifier above). (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the last
output item.

% Ignored in OUTPUT images.

+ Changes the automatic EOL sequence that normally follows the last output item to a single
carriage-return. (Requires 10)

Changes the automatic EOL sequence that normally follows the last output item to a single
line-feed. (Requires 10)

/ Outputs a carriage-return and a line-feed.

L Outputs the current end-of-line (EOLl sequence. The default EOL characters are CR and
LF; see ASSIGN for information on re-defining the EOL sequence. If the destination is an
I/O path name with the WORD attribute, a pad byte may be sent after the EOL characters to
achieve word alignment.

@ Outputs a form-feed.

END with OUTPUT ... USING
Using the optional secondary keyword END in an OUTPUT. .. USING statement produces re­
sults which differ from those in an OUTPUT statement without USING. Instead of always
suppressing the EOL sequence, the END keyword only suppresses the EOL sequence when no
data is output from the last output item. Thus, the # image specifier generally controls the
suppression of the otherwise automatic EOL sequence.

With HP-IB interfaces, END specifies an EOI signal to be sent with the last byte output. However,
no EOI is sent if no data is sent from the last output item or the EOL sequence is suppressed. With
Data Communications interfaces, END specifies an end-of-data indication to be sent at the same
times an EOr would be sent on HP-IB interfaces.

302 OUTPUT

Image
Specifier Meaning

W Outputs a 16-bit word as a two's-complement integer. The corresponding numeric item is
rounded to an INTEGER. If it is greater than 32 767, then 32 767 is sent; if it is less than
- 32 768, then - 32 768 is sent. If either an 110 path name with the BYTE attribute or a
device selector is used to access an 8-bit interface, two bytes will be output; the most­
significant byte is sent first. If an 110 path name with the BYTE attribute is used to access a
16-bit interface, the BYTE attribute is overridden, and one word is output in a single
operation. If an 110 path name with the WORD attribute is used to access a 16-bit interface,
a null pad byte is output whenever necessary to achieve alignment on a word boundary. If
the destination is a BDAT file , string variable , or buffer, the BYTE or WORD attribute is
ignored and all data are sent as bytes; however, pad byte(s) will be output when necessary
to achieve alignment on a word boundary. The pad character may be changed by using the
CONVERT attribute: see the ASSIGN statement for further information.

Y Like W, except that no pad bytes are output to achieve word alignment. If an 110 path with
the BYTE attribute is used to access a 16-bit interface, the BYTE attribute is not overridden
(as with the W specifier above). (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the last
output item.

% Ignored in OUTPUT images.

+ Changes the automatic EOL sequence that normally follows the last output item to a single
carriage-return. (Requires 10)

Changes the automatic EOL sequence that normally follows the last output item to a single
line-feed. (Requires 10)

/ Outputs a carriage-return and a line-feed.

L Outputs the current end-of-line (EOLl sequence. The default EOL characters are CR and
LF; see ASSIGN for information on re-defining the EOL sequence. If the destination is an
I/O path name with the WORD attribute, a pad byte may be sent after the EOL characters to
achieve word alignment.

@ Outputs a form-feed.

END with OUTPUT ... USING
Using the optional secondary keyword END in an OUTPUT. .. USING statement produces re­
sults which differ from those in an OUTPUT statement without USING. Instead of always
suppressing the EOL sequence, the END keyword only suppresses the EOL sequence when no
data is output from the last output item. Thus, the # image specifier generally controls the
suppression of the otherwise automatic EOL sequence.

With HP-IB interfaces, END specifies an EOI signal to be sent with the last byte output. However,
no EOI is sent if no data is sent from the last output item or the EOL sequence is suppressed. With
Data Communications interfaces, END specifies an end-of-data indication to be sent at the same
times an EOr would be sent on HP-IB interfaces.

303

PARITY
See the ASSIGN statement.

303

PARITY
See the ASSIGN statement.

304

PASS CONTROL
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN.. . Yes

This statement is used to pass the capability of Active Controller to a specified HP-IB device.

PASS CONTROL t-....,...-l~

Item Description/Default Range
Restrictions

I/O path name

device selector

name assigned to an HP-IB device

numeric expression, rounded to an integer

any valid name

must contain primary
address

Example Statements
PASS CONT ROL 719
PASS CONTROL @Cantraller_19

Semantics

(see Glossary)

Executing this statement first addresses the specified device to talk and then sends the Take
Control message (TCT) , after which Attention is placed in the False state. The computer then
assumes the role of a bus device (a non-active controller) .

The computer must currently be the active controller to execute this statement, and primary
addressing (but not multiple listeners) must be specified.

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

/\TN ATN
Active Error TAD Error TAD

Controller TCT TCT
ATN ATN

Nat Active Error
Controller

304

PASS CONTROL
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN.. . Yes

This statement is used to pass the capability of Active Controller to a specified HP-IB device.

PASS CONTROL t-....,...-l~

Item Description/Default Range
Restrictions

I/O path name

device selector

name assigned to an HP-IB device

numeric expression, rounded to an integer

any valid name

must contain primary
address

Example Statements
PASS CONT ROL 719
PASS CONTROL @Cantraller_19

Semantics

(see Glossary)

Executing this statement first addresses the specified device to talk and then sends the Take
Control message (TCT) , after which Attention is placed in the False state. The computer then
assumes the role of a bus device (a non-active controller) .

The computer must currently be the active controller to execute this statement, and primary
addressing (but not multiple listeners) must be specified.

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

/\TN ATN
Active Error TAD Error TAD

Controller TCT TCT
ATN ATN

Nat Active Error
Controller

Option Required
Keyboard Executable
Programmable
In an IF ... THEN

None
Yes
Yes
Yes

This statement suspends program execution. (Also see TRACE PAUSE.)

Semantics

PAUSE

PAUSE suspends program execution before the next line is executed, until the (CONTINUE) key is
pressed or CONT is executed. If the program is modified while paused, RUN must be used to
restart program execution.

When program execution resumes, the computer attempts to service any ON INTR events that
occurred while the program was paused. ON END, ON ERROR, or ON TIMEOUT events
generate errors if they occur while the program is paused. ON KEY and ON KNOB events are
ignored while the program is paused.

Pressing the (PAUSE) (or ~ on HP 46020A keyboard) key, or typing PAUSE and pressing
(EXECUTE) (ENTER) or (RETURN) will suspend program execution at the end of the line currently being
executed.

305

Option Required
Keyboard Executable
Programmable
In an IF ... THEN

None
Yes
Yes
Yes

This statement suspends program execution. (Also see TRACE PAUSE.)

Semantics

PAUSE

PAUSE suspends program execution before the next line is executed, until the (CONTINUE) key is
pressed or CONT is executed. If the program is modified while paused, RUN must be used to
restart program execution.

When program execution resumes, the computer attempts to service any ON INTR events that
occurred while the program was paused. ON END, ON ERROR, or ON TIMEOUT events
generate errors if they occur while the program is paused. ON KEY and ON KNOB events are
ignored while the program is paused.

Pressing the (PAUSE) (or ~ on HP 46020A keyboard) key, or typing PAUSE and pressing
(EXECUTE) (ENTER) or (RETURN) will suspend program execution at the end of the line currently being
executed.

305

306

PDIR
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN... Yes

This statement specifies the angle with which IPLOT, RPLOT, POLYGON, POLYLINE, and
RECTANGLE output are rotated .

Item

angle

Description/Default

numeric expression in current units of angle; De­
fault = O.

Example Statements
PDIR 20
PDIR ACS(Side)

Semantics

Range
Restrictions

The rotation is about the local origin of the RPLOT, POLYGON, POLYLINE or RECTANGLE.

The angle is interpreted as counter-clockwise rotation from the X-axis.

306

PDIR
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN... Yes

This statement specifies the angle with which IPLOT, RPLOT, POLYGON, POLYLINE, and
RECTANGLE output are rotated .

Item

angle

Description/Default

numeric expression in current units of angle; De­
fault = O.

Example Statements
PDIR 20
PDIR ACS(Side)

Semantics

Range
Restrictions

The rotation is about the local origin of the RPLOT, POLYGON, POLYLINE or RECTANGLE.

The angle is interpreted as counter-clockwise rotation from the X-axis.

PEN
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN Yes

This statement selects a pen value to be used for all subsequent lines. (For information about PEN
as a secondary keyword , see the AREA statement.)

Item Description/Default

pen selector numeric expression, rounded to an integer

Example Statements
PEN 4
PEN Select
PEN Pen_1HI ITl be r< I , J)

Semantics

Range
Restrictions

- 32 768 thru + 32 767
(device dependent)

For devices which support more than one line color (color CRT) , or physical pen (external hard
copy plotters) , this statement specifies the line color or physical pen to be used for all subsequent
lines until the execution of another PEN statement or until the execution of a PLOT, IPLOT,
RPLOT, or SYMBOL statement with an array argument which changes the pen color (see
Operation Selector 3 of these statements) . The sign of the pen selectors affects the drawing
mode.

In color map mode, specifying PEN 14 actually means "write a 14 into the frame buffer. " The
value of the frame buffer specifies the entry in the color map to be used, which in turn describes
the actual color to be used.

The PEN statement can also be used to specify that the current drawing mode is to erase lines on
all devices which support such an operation. This is specified with a negative pen number. An
alternate mode of operation which allows non-dominant and complementing drawing may be
accessed through the GESCAPE function .

307

PEN
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN Yes

This statement selects a pen value to be used for all subsequent lines. (For information about PEN
as a secondary keyword , see the AREA statement.)

Item Description/Default

pen selector numeric expression, rounded to an integer

Example Statements
PEN 4
PEN Select
PEN Pen_1HI ITl be r< I , J)

Semantics

Range
Restrictions

- 32 768 thru + 32 767
(device dependent)

For devices which support more than one line color (color CRT) , or physical pen (external hard
copy plotters) , this statement specifies the line color or physical pen to be used for all subsequent
lines until the execution of another PEN statement or until the execution of a PLOT, IPLOT,
RPLOT, or SYMBOL statement with an array argument which changes the pen color (see
Operation Selector 3 of these statements) . The sign of the pen selectors affects the drawing
mode.

In color map mode, specifying PEN 14 actually means "write a 14 into the frame buffer. " The
value of the frame buffer specifies the entry in the color map to be used, which in turn describes
the actual color to be used.

The PEN statement can also be used to specify that the current drawing mode is to erase lines on
all devices which support such an operation. This is specified with a negative pen number. An
alternate mode of operation which allows non-dominant and complementing drawing may be
accessed through the GESCAPE function .

307

308 PEN

When the PEN statement is executed, the pen used is mapped into the appropriate range,
retaining the sign. For example, if you specify pen + 8 on a device whose pens range from - 7
through 7, it would actually use pen + 1. The formulae used are as follows:

For monochromatic displays:
If pen selector>O then use PEN 1
If pen selector = 0 then use PEN 0
If pen selector<O then use PEN - 1

(draw lines)
(complement! lines)
(erase lines)

For the four-plane color displays not in COLOR MAP mode, and the HP 98627 A:
If pen selector>O then use PEN (pen selector-I) MOD 7 + 1
If pen selector = 0 then use PEN 0 (complement)
If pen selector<O then use PEN - ((ABS(pen selector) -1) MOD 7 + 1)

For the four-plane color displays in COLOR MAP mode:
If pen selector>O then use PEN (pen selector - 1) MOD MaxPen + 1
If pen selector = 0 then use PEN 0
If pen selector<O then use PEN - ((ABS(pen selector) - 1) MOD MaxPen + 1)

where MaxPen is the highest pen number (the lowest is 0). Four planes: MaxPen = 15; eight
planes: MaxPen = 255.

For an HPGL plotter:
use PEN pen selector

On an HPGL plotter, no checking is done to determine if the requested pen actually exists. Pen
zero puts away any pen if the plotter supports such an operation.

Non-Color Map Mode
The value written into the frame buffer depends not only on what pen is being used, but
whether or not the computer is in color map mode. The colors for the default (non-color map)
mode are given because the color map cannot be changed in this mode.

The meanings of the different pen values are shown in the tables below. The pen value can cause
either a 1 (draw), a 0 (erase), no change, or invert the value in each location in the frame buffer.

Non-Color Map Mode

Plane 1 Plane 2 Plane 3
Pen Color (Red) (Green) (Blue)

1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 Blue 0 0 1
7 Ma enta g 1 0 1

1 " Complement" means to change the state of pixels; that is, to draw lines where there are none , and to erase where lines already exist.

308 PEN

When the PEN statement is executed, the pen used is mapped into the appropriate range,
retaining the sign. For example, if you specify pen + 8 on a device whose pens range from - 7
through 7, it would actually use pen + 1. The formulae used are as follows:

For monochromatic displays:
If pen selector>O then use PEN 1
If pen selector = 0 then use PEN 0
If pen selector<O then use PEN - 1

(draw lines)
(complement! lines)
(erase lines)

For the four-plane color displays not in COLOR MAP mode, and the HP 98627 A:
If pen selector>O then use PEN (pen selector-I) MOD 7 + 1
If pen selector = 0 then use PEN 0 (complement)
If pen selector<O then use PEN - ((ABS(pen selector) -1) MOD 7 + 1)

For the four-plane color displays in COLOR MAP mode:
If pen selector>O then use PEN (pen selector - 1) MOD MaxPen + 1
If pen selector = 0 then use PEN 0
If pen selector<O then use PEN - ((ABS(pen selector) - 1) MOD MaxPen + 1)

where MaxPen is the highest pen number (the lowest is 0). Four planes: MaxPen = 15; eight
planes: MaxPen = 255.

For an HPGL plotter:
use PEN pen selector

On an HPGL plotter, no checking is done to determine if the requested pen actually exists. Pen
zero puts away any pen if the plotter supports such an operation.

Non-Color Map Mode
The value written into the frame buffer depends not only on what pen is being used, but
whether or not the computer is in color map mode. The colors for the default (non-color map)
mode are given because the color map cannot be changed in this mode.

The meanings of the different pen values are shown in the tables below. The pen value can cause
either a 1 (draw), a 0 (erase), no change, or invert the value in each location in the frame buffer.

Non-Color Map Mode

Plane 1 Plane 2 Plane 3
Pen Color (Red) (Green) (Blue)

1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 Blue 0 0 1
7 Ma enta g 1 0 1

1 " Complement" means to change the state of pixels; that is, to draw lines where there are none , and to erase where lines already exist.

PEN 309

Drawing with the pen numbers indicated in the above table results in the memory planes being
set to the indicated values . Drawing with the negatives of the pen numbers while in normal pen
mode causes the bits to be cleared where there are Is in the table. Drawing with the negatives of
the pen numbers while in alternate pen mode causes the bits to be inverted where there are Is in
the table. In either case, no change will take place where there are Os in the table. Although
complementing lines can be drawn, complementing area fills cannot be executed.

Positive pen numbers in alternate drawing mode allows non-dominant drawing. (Non-dominant
drawing causes the values in the frame buffer to be inclusively OR ed with the value of the pen .)
Pen 0 in normal mode complements. Pen 0 in alternate mode draws in the background color.
Since the table represents the computer in non-color map mode, the fourth memory plane is
always cleared.

Color Map Mode
When operating the color display in color map mode, pen colors can be redefined at will. For this
reason, no colors are mentioned in the following table . Unlike non-color-map mode, the fourth
bit in the frame buffer is used when in color map mode. Also, memory planes 1, 2 , and 3 are not
associated with red, green, and blue.

Drawing with a pen merely puts the pen number into that pixel' s location . The computer looks
into the corresponding entry in the color map to determine what the actual color the pixel is to
exhibit.

Color Map Mode

Pen Action Plane 1 Plane 2 Plane 3 Plane 4

0 Background 0 0 0 0
1 Draw Pen 1 1 0 0 0
2 Draw Pen 2 0 1 0 0
3 Draw Pen 3 1 1 0 0
4 Draw Pen 4 0 0 1 0
5 Draw Pen 5 1 0 1 0
6 Draw Pen 6 0 1 1 0
7 Draw Pen 7 1 1 1 0
8 Draw Pen 8 0 0 0 1
9 Draw Pen 9 1 0 0 1
10 Draw Pen 10 0 1 0 1
11 Draw Pen 11 1 1 0 1
12 Draw Pen 12 0 0 1 1
13 Draw Pen 13 1 0 1 1
14 Draw Pen 14 0 1 1 1
15 Draw Pen 15 1 1 1 1

Drawing with the negatives of the pen numbers while in normal pen mode causes the bits to be
cleared where there are Is in the table. Drawing with the negatives of the pen numbers while in
alternate pen mode causes the bits to be inverted where there are Is in the table. In either case , no
change will take place where there are Os in the table.

Pen 0 merely draws in the background color. Although complementing lines can be drawn,
complementing area fills cannot be executed.

PEN 309

Drawing with the pen numbers indicated in the above table results in the memory planes being
set to the indicated values . Drawing with the negatives of the pen numbers while in normal pen
mode causes the bits to be cleared where there are Is in the table. Drawing with the negatives of
the pen numbers while in alternate pen mode causes the bits to be inverted where there are Is in
the table. In either case, no change will take place where there are Os in the table. Although
complementing lines can be drawn, complementing area fills cannot be executed.

Positive pen numbers in alternate drawing mode allows non-dominant drawing. (Non-dominant
drawing causes the values in the frame buffer to be inclusively OR ed with the value of the pen .)
Pen 0 in normal mode complements. Pen 0 in alternate mode draws in the background color.
Since the table represents the computer in non-color map mode, the fourth memory plane is
always cleared.

Color Map Mode
When operating the color display in color map mode, pen colors can be redefined at will. For this
reason, no colors are mentioned in the following table . Unlike non-color-map mode, the fourth
bit in the frame buffer is used when in color map mode. Also, memory planes 1, 2 , and 3 are not
associated with red, green, and blue.

Drawing with a pen merely puts the pen number into that pixel' s location . The computer looks
into the corresponding entry in the color map to determine what the actual color the pixel is to
exhibit.

Color Map Mode

Pen Action Plane 1 Plane 2 Plane 3 Plane 4

0 Background 0 0 0 0
1 Draw Pen 1 1 0 0 0
2 Draw Pen 2 0 1 0 0
3 Draw Pen 3 1 1 0 0
4 Draw Pen 4 0 0 1 0
5 Draw Pen 5 1 0 1 0
6 Draw Pen 6 0 1 1 0
7 Draw Pen 7 1 1 1 0
8 Draw Pen 8 0 0 0 1
9 Draw Pen 9 1 0 0 1
10 Draw Pen 10 0 1 0 1
11 Draw Pen 11 1 1 0 1
12 Draw Pen 12 0 0 1 1
13 Draw Pen 13 1 0 1 1
14 Draw Pen 14 0 1 1 1
15 Draw Pen 15 1 1 1 1

Drawing with the negatives of the pen numbers while in normal pen mode causes the bits to be
cleared where there are Is in the table. Drawing with the negatives of the pen numbers while in
alternate pen mode causes the bits to be inverted where there are Is in the table. In either case , no
change will take place where there are Os in the table.

Pen 0 merely draws in the background color. Although complementing lines can be drawn,
complementing area fills cannot be executed.

310 PEN

Default Colors
The RGB and HSL values for the default pen colors while in color map mode are shown below.
These can be changed by the SET PEN statement. First, the RGB (red/green/blue) values:

Color Map Default Color Definitions (RGB)

Pen Color Red Green Blue

0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 Blue 0 0 1
7 Magenta 1 0 1
8 Black 0 0 0
9 Olive Green .80 .73 .20
10 Aqua .20 .67 .47
11 Royal Blue .53 .40 .67
12 Maroon .80 .27 .40
13 Brick Red 1.00 .40 .20
14 Orange 1.00 .47 0.00
15 Brown .87 .53 .27

The same default color map colors are represented below in their HSL (hue/saturation/luminos­
ity) representations:

Color Map Default Color Definitions (HSL)

Pen Color

0 Black
1 White
2 Red
3 Yellow
4 Green
5 Cyan
6 Blue
7 Magenta
8 Black
9 Olive Green
10 Aqua
11 Royal Blue
12 Maroon
13 Brick Red
14 I Orange
15 Brown

Hue

0
0
0

.17

.33

.50

.67

.83
0

.15

.44

.75

.95

.04

.08

.08

Sat.

0
0
1
1
1
1
1
1
0

.75

.75

.36

.65

.80
1.00

.70

Lum.

0
1
1
1
1
1
1
1
0

.80

.68

.64

.78
1.00
1.00

.85

310 PEN

Default Colors
The RGB and HSL values for the default pen colors while in color map mode are shown below.
These can be changed by the SET PEN statement. First, the RGB (red/green/blue) values:

Color Map Default Color Definitions (RGB)

Pen Color Red Green Blue

0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 Blue 0 0 1
7 Magenta 1 0 1
8 Black 0 0 0
9 Olive Green .80 .73 .20
10 Aqua .20 .67 .47
11 Royal Blue .53 .40 .67
12 Maroon .80 .27 .40
13 Brick Red 1.00 .40 .20
14 Orange 1.00 .47 0.00
15 Brown .87 .53 .27

The same default color map colors are represented below in their HSL (hue/saturation/luminos­
ity) representations:

Color Map Default Color Definitions (HSL)

Pen Color

0 Black
1 White
2 Red
3 Yellow
4 Green
5 Cyan
6 Blue
7 Magenta
8 Black
9 Olive Green
10 Aqua
11 Royal Blue
12 Maroon
13 Brick Red
14 I Orange
15 Brown

Hue

0
0
0

.17

.33

.50

.67

.83
0

.15

.44

.75

.95

.04

.08

.08

Sat.

0
0
1
1
1
1
1
1
0

.75

.75

.36

.65

.80
1.00

.70

Lum.

0
1
1
1
1
1
1
1
0

.80

.68

.64

.78
1.00
1.00

.85

311

PENUP
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement lifts the pen on the current plotting device.

311

PENUP
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement lifts the pen on the current plotting device.

312

PI
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN.. . Yes

This function returns 3.141 592 653 589 79, which is an approximate value for 'IT.

Example Statements
Area=PI*Radius"2
PRINT)(,)-(*2*PI

312

PI
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN.. . Yes

This function returns 3.141 592 653 589 79, which is an approximate value for 'IT.

Example Statements
Area=PI*Radius"2
PRINT)(,)-(*2*PI

(

Option Required GRAPH PIVOT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement specifies a rotation of coordinates which is applied to all subsequently drawn lines.

8--1an91eH

Item Description/ Default

angle numeric expression in current units of angle

Example Statements
PI t,JOT 30
IF Special THEN PIVOT Radians

Semantics

Range
Restrictions

(same as COS)

The specified angle is interpreted according to the current angle mode (RAD or DEG).

The specified angular rotation is performed about the logical pen's position at the time the PIVOT
is executed. This rotation is applied only to lines drawn subsequent to the PIVOT; logical pen
movement is not affected by PIVOT. Consequently, PIVOT generally causes the logical and
physical pens to be left at different positions. Other operations which cause similar effects are
attempts to draw outside clip limits and direct HPGL output to plotters.

313

(

Option Required GRAPH PIVOT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement specifies a rotation of coordinates which is applied to all subsequently drawn lines.

8--1an91eH

Item Description/ Default

angle numeric expression in current units of angle

Example Statements
PI t,JOT 30
IF Special THEN PIVOT Radians

Semantics

Range
Restrictions

(same as COS)

The specified angle is interpreted according to the current angle mode (RAD or DEG).

The specified angular rotation is performed about the logical pen's position at the time the PIVOT
is executed. This rotation is applied only to lines drawn subsequent to the PIVOT; logical pen
movement is not affected by PIVOT. Consequently, PIVOT generally causes the logical and
physical pens to be left at different positions. Other operations which cause similar effects are
attempts to draw outside clip limits and direct HPGL output to plotters.

313

314

PLOT
Option Required
Keyboard Executable
Programmable
In an IF... THEN .. .

GRAPH
Yes
Yes
Yes

This statement moves the pen from the current pen position to the specified X and Y coordinates.
It can be used to move without drawing, or to draw a line , depending on the pen control value.

x
coo r dinate

GRAP HX

Item

x coordinate

y
coordinate

Description/ Default

numeric expression, in current units

numeric expression , in current units

Range
Restrictions

y coordinate

pen control numeric expression, rounded to an integer; - 32 768 thru + 32 767
Default = 1 (down after move).

array name name of two-dimensional, two-column or three- any valid name
column numeric array. (Requires GRAPHX)

Example Statements
PLOT){,Y,-1

PLOT -5112
PLOT Shape(*> ,FILL,EDGE

Semantics
Non-Array Parameters
The specified X and Y position information is interpreted according to the current unit-of­
measure. Lines are drawn using the current pen color and line type.

PLOT is affected by the PIVOT transformation .

The line is clipped at the current clipping boundary. If none of the line is inside the current clip
limits, the pen is not moved, but the logical pen position is updated.

314

PLOT
Option Required
Keyboard Executable
Programmable
In an IF... THEN .. .

GRAPH
Yes
Yes
Yes

This statement moves the pen from the current pen position to the specified X and Y coordinates.
It can be used to move without drawing, or to draw a line , depending on the pen control value.

x
coo r dinate

GRAP HX

Item

x coordinate

y
coordinate

Description/ Default

numeric expression, in current units

numeric expression , in current units

Range
Restrictions

y coordinate

pen control numeric expression, rounded to an integer; - 32 768 thru + 32 767
Default = 1 (down after move).

array name name of two-dimensional, two-column or three- any valid name
column numeric array. (Requires GRAPHX)

Example Statements
PLOT){,Y,-1

PLOT -5112
PLOT Shape(*> ,FILL,EDGE

Semantics
Non-Array Parameters
The specified X and Y position information is interpreted according to the current unit-of­
measure. Lines are drawn using the current pen color and line type.

PLOT is affected by the PIVOT transformation .

The line is clipped at the current clipping boundary. If none of the line is inside the current clip
limits, the pen is not moved, but the logical pen position is updated.

(
Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

PLOT 315

LDIR PDIR

Note 4

X
X

Note 2

The optional pen control parameter specifies the following plotting actions; the default value is
+ 1 (down after move).

Pen Control Parameter

Pen Control

-Even
-Odd
+ Even
+ Odd

Resultant Action

Pen up before move
Pen down before move
Pen up after move
Pen down after move

The above table is summed up by: even is up , odd is down, positive is after pen motion,
negative is before pen motion.

Array Parameters
When using the PLOT statement with an array, either a two-column or a three-column array
may be used. If a two-column array is used, the third parameter is assumed to be + 1: pen
down after move.

FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the
array is reached, or when the value in the third column is an even number less than three, or
in the ranges 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the PLOT statement itself, it causes the polygons de­
fined within it to be filled with the current fill color and/or edged with the current pen color. If
polygon mode is entered from within the array, and the FILL/EDGE directive for that series of
polygons differs from the FILL/EDGE directive on the PLOT statement itself, the directive in
the array replaces the directive on the statement. In other words, if a "start polygon mode"
operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether
specified by a keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the PLOT statement, FILL occurs first. If neither one
is specified, simple line drawing mode is assumed; that is, polygon closure does not take
place.

(
Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

PLOT 315

LDIR PDIR

Note 4

X
X

Note 2

The optional pen control parameter specifies the following plotting actions; the default value is
+ 1 (down after move).

Pen Control Parameter

Pen Control

-Even
-Odd
+ Even
+ Odd

Resultant Action

Pen up before move
Pen down before move
Pen up after move
Pen down after move

The above table is summed up by: even is up , odd is down, positive is after pen motion,
negative is before pen motion.

Array Parameters
When using the PLOT statement with an array, either a two-column or a three-column array
may be used. If a two-column array is used, the third parameter is assumed to be + 1: pen
down after move.

FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the
array is reached, or when the value in the third column is an even number less than three, or
in the ranges 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the PLOT statement itself, it causes the polygons de­
fined within it to be filled with the current fill color and/or edged with the current pen color. If
polygon mode is entered from within the array, and the FILL/EDGE directive for that series of
polygons differs from the FILL/EDGE directive on the PLOT statement itself, the directive in
the array replaces the directive on the statement. In other words, if a "start polygon mode"
operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether
specified by a keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the PLOT statement, FILL occurs first. If neither one
is specified, simple line drawing mode is assumed; that is, polygon closure does not take
place.

316 PLOT

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will be
edged, regardless of the directives on the statement.

When using a PLOT statement with an array, the following table of operation selectors ap­
plies. An operation selector is the value in the third column of a row of the array to be plotted.
The array must be a two-dimensional, two-column or three-column array. If the third column
exists, it will contain operation selectors which instruct the computer to carry out certain op­
erations. Polygons may be defined, edged (using the current pen) , filled (using the current fill
color) , pen and line type may be selected, and so forth. See the list below.

Operation
Column 1 Column 2 Selector Meaning

X y - 2 Pen up before moving
X y - 1 Pen down before moving
X y 0 Pen up after moving (Same as + 2)
X Y 1 Pen down after moving
X y 2 Pen up after moving

pen number ignored 3 Select pen
line type repeat value 4 Select line type

color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value

ignored ignored > 15 Ignored

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array PLOT statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number desired.
The value in column two is ignored.

Selecting Line Types
An operation selector of 4 selects a line type. The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is evalu­
ated and rounded down to the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

316 PLOT

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will be
edged, regardless of the directives on the statement.

When using a PLOT statement with an array, the following table of operation selectors ap­
plies. An operation selector is the value in the third column of a row of the array to be plotted.
The array must be a two-dimensional, two-column or three-column array. If the third column
exists, it will contain operation selectors which instruct the computer to carry out certain op­
erations. Polygons may be defined, edged (using the current pen) , filled (using the current fill
color) , pen and line type may be selected, and so forth. See the list below.

Operation
Column 1 Column 2 Selector Meaning

X y - 2 Pen up before moving
X y - 1 Pen down before moving
X y 0 Pen up after moving (Same as + 2)
X Y 1 Pen down after moving
X y 2 Pen up after moving

pen number ignored 3 Select pen
line type repeat value 4 Select line type

color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value

ignored ignored > 15 Ignored

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array PLOT statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number desired.
The value in column two is ignored.

Selecting Line Types
An operation selector of 4 selects a line type. The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is evalu­
ated and rounded down to the next multiple of 5, with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

PLOT 317

Defining a Fill Color
Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessarily immediately), is a row whose operation selector in col­
umn three has the value of 15. The first column in that row contains the blue value. These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word, that is, the most significant bit in
the word is ignored. Each group of five bits contains a number which determines the intensity
of the corresponding color component, which ranges from zero to sixteen. The value in each
field will be sixteen minus the intensity of the color component. For example, if the value in
the first column of the array is zero , all three five-bit values would thus be zero. Sixteen minus
zero in all three cases would turn on all three color components to full intensity, and the
resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red, green, and
blue in the variables R, G, and B, respectively, the value for the first column in the array could
be defined thus:

If there is a pen color in the color map similar to that which you request here, that non­
dithered color will be used. If there is not a similar color, you will get a dithered pattern.

Polygons
A six, ten, or eleven in the third column of the array begins a " polygon mode" . If the opera­
tion selector is 6, the polygon will be filled with the current fill color. If the operation selector is
10, the polygon will be edged with the current pen number and line type. If the operation
selector is 11 , the polygon will be both filled and edged. Many individual polygons can be
filled without terminating the mode with an operation selector 7. This can be done by specify­
ing several series of draws separated by moves. The first and second columns are ignored and
should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation selec­
tors 6 , 10, or 11). The values in the first and second columns are ignored and the X and Y
values of the last data point should not be in them. Edging and/or filling of the most recent
polygon will begin immediately upon encountering this operation selector.

PLOT 317

Defining a Fill Color
Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessarily immediately), is a row whose operation selector in col­
umn three has the value of 15. The first column in that row contains the blue value. These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word, that is, the most significant bit in
the word is ignored. Each group of five bits contains a number which determines the intensity
of the corresponding color component, which ranges from zero to sixteen. The value in each
field will be sixteen minus the intensity of the color component. For example, if the value in
the first column of the array is zero , all three five-bit values would thus be zero. Sixteen minus
zero in all three cases would turn on all three color components to full intensity, and the
resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red, green, and
blue in the variables R, G, and B, respectively, the value for the first column in the array could
be defined thus:

If there is a pen color in the color map similar to that which you request here, that non­
dithered color will be used. If there is not a similar color, you will get a dithered pattern.

Polygons
A six, ten, or eleven in the third column of the array begins a " polygon mode" . If the opera­
tion selector is 6, the polygon will be filled with the current fill color. If the operation selector is
10, the polygon will be edged with the current pen number and line type. If the operation
selector is 11 , the polygon will be both filled and edged. Many individual polygons can be
filled without terminating the mode with an operation selector 7. This can be done by specify­
ing several series of draws separated by moves. The first and second columns are ignored and
should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation selec­
tors 6 , 10, or 11). The values in the first and second columns are ignored and the X and Y
values of the last data point should not be in them. Edging and/or filling of the most recent
polygon will begin immediately upon encountering this operation selector.

318 PLOT

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot
be changed from within the PLOT statement, so one probably would not have more than one
operation selector 12 in an array to PLOT, since the last FRAME will overwrite all the pre­
vious ones.

Premature Termination
Operation selector 8 causes the PLOT statement to be terminated. The PLOT statement will
successfully terminate if the actual end of the array has been reached, so use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than - 2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

318 PLOT

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot
be changed from within the PLOT statement, so one probably would not have more than one
operation selector 12 in an array to PLOT, since the last FRAME will overwrite all the pre­
vious ones.

Premature Termination
Operation selector 8 causes the PLOT statement to be terminated. The PLOT statement will
successfully terminate if the actual end of the array has been reached, so use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than - 2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

(

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

PLOTTER IS

This statement selects a plotting device. (If using PLOTTER IS with SRM, also refer to the ' 'SRM"
section of this manual.)

PLOTTER IS 1----.--+1 d i sp I ay /p lot t er I-___________ -y_~
specifier

color map
display specifier

literal form of display /plotter specifier:

J---.-+i INTERNAL }--------------------.--.{

HI RES

literal form of file specifier :

Item

device selector

display/plotter specifier

color map display
specifier

file specifier

file name

protect code

Description/ Default

numeric expression. rounded to an integer

string expression

string expression

string expression

literal

literal: first two non-blank characters are signifi­
cant

COLOR MAP

Range
Restrictions

(see Glossary)

(see drawing)

INTERNAL

(see drawing)

any valid file name

">" not allowed

319

(

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPH
Yes
Yes
Yes

PLOTTER IS

This statement selects a plotting device. (If using PLOTTER IS with SRM, also refer to the ' 'SRM"
section of this manual.)

PLOTTER IS 1----.--+1 d i sp I ay /p lot t er I-___________ -y_~
specifier

color map
display specifier

literal form of display /plotter specifier:

J---.-+i INTERNAL }--------------------.--.{

HI RES

literal form of file specifier :

Item

device selector

display/plotter specifier

color map display
specifier

file specifier

file name

protect code

Description/ Default

numeric expression. rounded to an integer

string expression

string expression

string expression

literal

literal: first two non-blank characters are signifi­
cant

COLOR MAP

Range
Restrictions

(see Glossary)

(see drawing)

INTERNAL

(see drawing)

any valid file name

">" not allowed

319

320 PLOTIER IS

Item

msus

xmin

xmax

ymin

ymax

Description/Default

literal

numeric expression;
Default = - 392. 75mm

numeric expression;
Default = 392.75mm

numeric expression;
Default = - 251.5mm

numeric expression;
Default = 251.5mm

Example Statements
PLOTTER IS
PLOTTER IS
PLOTTER IS
PLOTTER IS

3 tI$
CRT,"INTERNAL"jCOLOR MAP
Dsg,IHPGL"
I NelAlfile" ,"HPGL"

Range
Restrictions

(see MASS STORAGE
IS)

device dependent

device dependent

device dependent

device dependent

PLOTTER IS "Plotfi Ie :REMOTE" ,"HPGL" ,6.25,256.25,6.975,186.975

Semantics
Files

The file must be a BOAT file . This statement causes all subsequent plotter output to go to the
specified file .

Xmin,xmax,ymin ,ymax are the hard clip limits of the plotter in millimetres.

This assumes .025mm per plotter unit. The default size is for an HP 7580 or HP 7585 O-size
drawing. See the plotter manual for more information on plotter limits.

The PLOTTER IS statement positions the file pointer to the beginning of the file .

The file is closed when another PLOTTER IS statement is executed or SCRATCH A, GINIT or
Reset is executed.

An end of file error occurs when the end of file is reached.

Plotters

The hard clip limits of the plotter are read in when this statement is executed. Therefore, the
specified device must be capable of responding to this interrogation.

320 PLOTIER IS

Item

msus

xmin

xmax

ymin

ymax

Description/Default

literal

numeric expression;
Default = - 392. 75mm

numeric expression;
Default = 392.75mm

numeric expression;
Default = - 251.5mm

numeric expression;
Default = 251.5mm

Example Statements
PLOTTER IS
PLOTTER IS
PLOTTER IS
PLOTTER IS

3 tI$
CRT,"INTERNAL"jCOLOR MAP
Dsg,IHPGL"
I NelAlfile" ,"HPGL"

Range
Restrictions

(see MASS STORAGE
IS)

device dependent

device dependent

device dependent

device dependent

PLOTTER IS "Plotfi Ie :REMOTE" ,"HPGL" ,6.25,256.25,6.975,186.975

Semantics
Files

The file must be a BOAT file . This statement causes all subsequent plotter output to go to the
specified file .

Xmin,xmax,ymin ,ymax are the hard clip limits of the plotter in millimetres.

This assumes .025mm per plotter unit. The default size is for an HP 7580 or HP 7585 O-size
drawing. See the plotter manual for more information on plotter limits.

The PLOTTER IS statement positions the file pointer to the beginning of the file .

The file is closed when another PLOTTER IS statement is executed or SCRATCH A, GINIT or
Reset is executed.

An end of file error occurs when the end of file is reached.

Plotters

The hard clip limits of the plotter are read in when this statement is executed. Therefore, the
specified device must be capable of responding to this interrogation.

PLOTTER IS 321

Displays
The statement PLOTTER I S CRT, 11 INTERNAL 11 is executed whenever a graphics statement is
executed which needs a plotter (see GINIT) and no plotter is active. The plotter activated is the first
device encountered in the following order:

1. The alpha display, if it has graphics capabilities,

2. Internal 98542A, 98543A, 98544A, 98545A, or 98700 at select code 6,

3. Non-bit-mapped alpha display with graphics capabilities at select code 3,

4. External 98700 at select code> 7,

5. 98627 A at select code> 7.

If the COLOR MAP option is not included and the plotting device is the Model 236 color display,
the 4th memory plane is cleared.

If the COLOR MAP option is specified and the plotting device has a color map, the capability of
changing the color map will be enabled (see SET PEN). Also, the values written into the frame
buffer are different than they would be if color map mode was not enabled.

HP 98627 A Emulation
To emulate the HP 98627 A non-calor-mapped device on a color display, execute a PLOTTER IS
statement withoutthe COLOR MAP keyword. This causes the color map to be defined as follows ,
where 0 is zero intensity and 1 is full intensity.

HP 98627 A Non-Color Map Emulation

Pen Color Red Green Blue

0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 Blue 0 0 1
7 Magenta 1 0 1
8 Black 0 0 0

9-15 White 1 1 1

The complementing cursor will be white on top of all colors except white, in which case it will be
black. In this detail, the cursor implementation is not an emulation of the 98627 A.

PLOTTER IS 321

Displays
The statement PLOTTER I S CRT, 11 INTERNAL 11 is executed whenever a graphics statement is
executed which needs a plotter (see GINIT) and no plotter is active. The plotter activated is the first
device encountered in the following order:

1. The alpha display, if it has graphics capabilities,

2. Internal 98542A, 98543A, 98544A, 98545A, or 98700 at select code 6,

3. Non-bit-mapped alpha display with graphics capabilities at select code 3,

4. External 98700 at select code> 7,

5. 98627 A at select code> 7.

If the COLOR MAP option is not included and the plotting device is the Model 236 color display,
the 4th memory plane is cleared.

If the COLOR MAP option is specified and the plotting device has a color map, the capability of
changing the color map will be enabled (see SET PEN). Also, the values written into the frame
buffer are different than they would be if color map mode was not enabled.

HP 98627 A Emulation
To emulate the HP 98627 A non-calor-mapped device on a color display, execute a PLOTTER IS
statement withoutthe COLOR MAP keyword. This causes the color map to be defined as follows ,
where 0 is zero intensity and 1 is full intensity.

HP 98627 A Non-Color Map Emulation

Pen Color Red Green Blue

0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 Blue 0 0 1
7 Magenta 1 0 1
8 Black 0 0 0

9-15 White 1 1 1

The complementing cursor will be white on top of all colors except white, in which case it will be
black. In this detail, the cursor implementation is not an emulation of the 98627 A.

322 PLOTTER IS

COLOR MAP
In the COLOR MAP mode, the color map is initialized so that the first eight colors are the same as
they were in the default mode, and the second eight colors simulate HP's designer colors of
plotter pen ink.

Although the pen numbers select the same color in color map mode as in non-color map mode
(for the first eight pens), the actual values written to the frame buffer are different. This results
from the different interpretation of the values in the frame buffer: in non-color map mode, the
values are RGB values; in color-map mode, the values are indices into the color map. This means
that a picture drawn in non-color map mode will change colors if a PLOTTER IS with the COLOR
MAP option is executed. The reverse is also true.

When the PLOTTER 18 statement is executed, the color map is initialized to a default state. If the
graphics write-enable mask is left in the default mode, the entire color map will be initialized as
before. Otherwise, the following algorithm is used: all color map entries whose binary representa­
tion has 1s only in graphics planes are initialized; color map entries whose binary representation
has 1s in non-graphics planes will remain unchanged. This is done to insure that only pens
dedicated to graphics are initialized. For example, with a graphics write mask of 7 (binary
0000 0111), only pens 0 through 7 are initialized. Higher numbered pens would remain un­
changed since their binary representation would have Is in non-graphics planes.

Display Specifiers
There are several values which can be used when specifying the display on which graphics
operations are done:

PLOTTER 18 CRT t" INTERNAL" or This is the safest of the possibilities. "CRT" is a built-
PLOTTER 18 1 t " INTERNAL" in function which returns the value 1, and the value

1 is interpreted by the graphics system as "the de­
fault display." The default display may be an exter­
nal display if no internal display exists.

PLOTTER 18 3 t " INTERNAL" This specifies a non-bit-mapped display if there is
one; otherwise, the action is equivalent to
"PLOTTER 18 1 t" INTERNAL"". Specifying a value of
3 makes sense for all Series 200 displays except the
Model 237.

PLOTTER 18 G t " INTERNAL" Always specifies a bit-mapped display. If one is not
found, an error results.

P LOT T E R 18 (device selector) t " 98 G 2 7 A" 1 This specifies a color graphics display connected
through the 98627 A interface card. This may have
anyone of several options specifying television for­
mat, etc.

PLOTTER 18 (device selector) t" INTERNAL" With the 98700 display, it is possible to configure
the display card so that it is at an external select
code. For example, if you set the select code to 25,
you would say:

PLOTTER 18 25t"INTERNAL"

1 PLOTTER I S (device selector) , " INTERNAL" is also accepted, and acts the same as "98G27A" .

322 PLOTTER IS

COLOR MAP
In the COLOR MAP mode, the color map is initialized so that the first eight colors are the same as
they were in the default mode, and the second eight colors simulate HP's designer colors of
plotter pen ink.

Although the pen numbers select the same color in color map mode as in non-color map mode
(for the first eight pens), the actual values written to the frame buffer are different. This results
from the different interpretation of the values in the frame buffer: in non-color map mode, the
values are RGB values; in color-map mode, the values are indices into the color map. This means
that a picture drawn in non-color map mode will change colors if a PLOTTER IS with the COLOR
MAP option is executed. The reverse is also true.

When the PLOTTER 18 statement is executed, the color map is initialized to a default state. If the
graphics write-enable mask is left in the default mode, the entire color map will be initialized as
before. Otherwise, the following algorithm is used: all color map entries whose binary representa­
tion has 1s only in graphics planes are initialized; color map entries whose binary representation
has 1s in non-graphics planes will remain unchanged. This is done to insure that only pens
dedicated to graphics are initialized. For example, with a graphics write mask of 7 (binary
0000 0111), only pens 0 through 7 are initialized. Higher numbered pens would remain un­
changed since their binary representation would have Is in non-graphics planes.

Display Specifiers
There are several values which can be used when specifying the display on which graphics
operations are done:

PLOTTER 18 CRT t" INTERNAL" or This is the safest of the possibilities. "CRT" is a built-
PLOTTER 18 1 t " INTERNAL" in function which returns the value 1, and the value

1 is interpreted by the graphics system as "the de­
fault display." The default display may be an exter­
nal display if no internal display exists.

PLOTTER 18 3 t " INTERNAL" This specifies a non-bit-mapped display if there is
one; otherwise, the action is equivalent to
"PLOTTER 18 1 t" INTERNAL"". Specifying a value of
3 makes sense for all Series 200 displays except the
Model 237.

PLOTTER 18 G t " INTERNAL" Always specifies a bit-mapped display. If one is not
found, an error results.

P LOT T E R 18 (device selector) t " 98 G 2 7 A" 1 This specifies a color graphics display connected
through the 98627 A interface card. This may have
anyone of several options specifying television for­
mat, etc.

PLOTTER 18 (device selector) t" INTERNAL" With the 98700 display, it is possible to configure
the display card so that it is at an external select
code. For example, if you set the select code to 25,
you would say:

PLOTTER 18 25t"INTERNAL"

1 PLOTTER I S (device selector) , " INTERNAL" is also accepted, and acts the same as "98G27A" .

PLOTTER IS 323

Default Pen Colors
The PLOTTER IS statement defines the color map to default values. Thes value are different
depending on whether or not the COLOR MAP option was selected. Below are two color plates
showing the eight default colors available with non-color map mode, and the sixteen default
colors in color map mode.

PLOTTER IS 323

Default Pen Colors
The PLOTTER IS statement defines the color map to default values. Thes value are different
depending on whether or not the COLOR MAP option was selected. Below are two color plates
showing the eight default colors available with non-color map mode, and the sixteen default
colors in color map mode.

324 PLOTTER IS

The values, both in RGB and HSL, of the sixteen default pen colors are given below:

Color Map Default Color Definitions (RGB)

Pen Color Red Green Blue

0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 Blue 0 0 1
7 Magenta 1 0 1
8 Black 0 0 0
9 Olive Green .80 .73 .20
10 Aqua .20 .67 .47
11 Royal Blue .53 .40 .67
12 Maroon .80 .27 .40
13 Brick Red l.00 .40 .20
14 Orange l.00 .47 0.00
15 Brown .87 .53 .27

The same default color map colors are represented below in their HSL (hue/saturation/luminos­
ity) representations:

Color Map Default Color Definitions (HSL)

Pen Color Hue Sat. Lum.

0 Black 0 0 0
1 White 0 0 1
2 Red 0 1 1
3 Yellow .17 1 1
4 Green .33 1 1
5 Cyan .50 1 1
6 Blue .67 1 1
7 Magenta .83 1 1
8 Black 0 0 0
9 Olive Green .15 .75 .80
10 Aqua .44 .75 .68
11 Royal Blue .75 .36 .64
12 Maroon .95 .65 .78
13 Brick Red .04 .80 l.00
14 Orange .08 l.00 l.00
15 Brown .08 .70 .85

Eight-plane machines have 256-entry color maps. In these machines, pens 16 through 255 are
defined to a variety of shades. For exact values, interrogate the color map with GESCAPE.

324 PLOTTER IS

The values, both in RGB and HSL, of the sixteen default pen colors are given below:

Color Map Default Color Definitions (RGB)

Pen Color Red Green Blue

0 Black 0 0 0
1 White 1 1 1
2 Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 Blue 0 0 1
7 Magenta 1 0 1
8 Black 0 0 0
9 Olive Green .80 .73 .20
10 Aqua .20 .67 .47
11 Royal Blue .53 .40 .67
12 Maroon .80 .27 .40
13 Brick Red l.00 .40 .20
14 Orange l.00 .47 0.00
15 Brown .87 .53 .27

The same default color map colors are represented below in their HSL (hue/saturation/luminos­
ity) representations:

Color Map Default Color Definitions (HSL)

Pen Color Hue Sat. Lum.

0 Black 0 0 0
1 White 0 0 1
2 Red 0 1 1
3 Yellow .17 1 1
4 Green .33 1 1
5 Cyan .50 1 1
6 Blue .67 1 1
7 Magenta .83 1 1
8 Black 0 0 0
9 Olive Green .15 .75 .80
10 Aqua .44 .75 .68
11 Royal Blue .75 .36 .64
12 Maroon .95 .65 .78
13 Brick Red .04 .80 l.00
14 Orange .08 l.00 l.00
15 Brown .08 .70 .85

Eight-plane machines have 256-entry color maps. In these machines, pens 16 through 255 are
defined to a variety of shades. For exact values, interrogate the color map with GESCAPE.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPHX
Yes
Yes
Yes

POLYGON

This statement draws all or part of a closed regular polygon. The polygon can be filled and/or
edged.

Item

radius

total sides

sides to draw

Description/Default

numeric expression, in current units

numeric expression , rounded to an integer.
Default = 60

numeric expression , rounded to an integer.
Default = all sides.

Example Statements
POLYGON 1.5,5,Q,FILL,EDGE
POLYGON Q

Semantics

Range
Restrictions

3 thru 32767

1 thru 32767

The radius is the distance that the vertices of the polygon will be from the logical pen position . The
first vertex will be at a distance specified by " radius" in the direction of the positive X-axis.
Specifying a negative radius results in the figure being rotated 180°. POLYGON is affected by the
PIVOT and the POIR transformations.

The total sides and the number of sides drawn need not be the same. Thus

POLYGON 1.5,8,5

will start to draw an octagon whose vertices are 1.5 units from the current pen position, but will
only draw five sides of it before closing the polygon to the first point. If the number of sides to draw
is greater than the specified total sides, sides to draw is treated as if it were equal to total sides.

POLYGON forces polygon closure, that is, the first vertex is connected to the last vertex, so there
is always an inside and an outside area . This is true even for the degenerate case of drawing only
one side of a polygon, in which case a single line results. This is actually two lines, from the first
point to the last point, and back to the first point.

325

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

GRAPHX
Yes
Yes
Yes

POLYGON

This statement draws all or part of a closed regular polygon. The polygon can be filled and/or
edged.

Item

radius

total sides

sides to draw

Description/Default

numeric expression, in current units

numeric expression , rounded to an integer.
Default = 60

numeric expression , rounded to an integer.
Default = all sides.

Example Statements
POLYGON 1.5,5,Q,FILL,EDGE
POLYGON Q

Semantics

Range
Restrictions

3 thru 32767

1 thru 32767

The radius is the distance that the vertices of the polygon will be from the logical pen position . The
first vertex will be at a distance specified by " radius" in the direction of the positive X-axis.
Specifying a negative radius results in the figure being rotated 180°. POLYGON is affected by the
PIVOT and the POIR transformations.

The total sides and the number of sides drawn need not be the same. Thus

POLYGON 1.5,8,5

will start to draw an octagon whose vertices are 1.5 units from the current pen position, but will
only draw five sides of it before closing the polygon to the first point. If the number of sides to draw
is greater than the specified total sides, sides to draw is treated as if it were equal to total sides.

POLYGON forces polygon closure, that is, the first vertex is connected to the last vertex, so there
is always an inside and an outside area . This is true even for the degenerate case of drawing only
one side of a polygon, in which case a single line results. This is actually two lines, from the first
point to the last point, and back to the first point.

325

326 POLYGON

Polygon Shape
The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anisotropic scaling causes the polygon to be distorted; stretched or
compressed along the axes. If a rotation transformation is in effect, the polygon will be rotated
first, then stretched or compressed along the unrotated axes.

The pen status also affects the final shape of a polygon if sides to draw is less than total sides. If the
pen is up at the time POLYGON is speCified, the first vertex specified is connected to the last
vertex specified, not including the center of the polygon, which is the current pen position. If the
pen is down, however, the center of the polygon is also included in it. If sides to draw is less than
total sides, piece-of-pie shaped polygon segments are created.

FILL and EDGE
FILL causes the interior of the polygon or polygon segment to be filled with the current fill color as
defined by AREA PEN, AREA COLOR, or AREA INTENSITY. EDGE causes the edges of the
polygon to be drawn using the current pen and line type. If both FILL and EDGE are specified,
the interior will be filled, then the edge will be drawn. If neither FILL nor EDGE is specified, EDGE
is assumed.

Polygons sent to an HPGL plotter are edged but not filled regardless of any FILL or EDGE
directives on the statement.

After POLYGON has executed, the pen is in the same position it was before the statement was
executed, and the pen is up. The polygon is clipped at the current clip limits.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines .(generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1. The starting point for labels drawn after lines or axes is affected by scaling .
Note 2: The starting point for labels drawn after other labels is affected by LDIR .
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

326 POLYGON

Polygon Shape
The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anisotropic scaling causes the polygon to be distorted; stretched or
compressed along the axes. If a rotation transformation is in effect, the polygon will be rotated
first, then stretched or compressed along the unrotated axes.

The pen status also affects the final shape of a polygon if sides to draw is less than total sides. If the
pen is up at the time POLYGON is speCified, the first vertex specified is connected to the last
vertex specified, not including the center of the polygon, which is the current pen position. If the
pen is down, however, the center of the polygon is also included in it. If sides to draw is less than
total sides, piece-of-pie shaped polygon segments are created.

FILL and EDGE
FILL causes the interior of the polygon or polygon segment to be filled with the current fill color as
defined by AREA PEN, AREA COLOR, or AREA INTENSITY. EDGE causes the edges of the
polygon to be drawn using the current pen and line type. If both FILL and EDGE are specified,
the interior will be filled, then the edge will be drawn. If neither FILL nor EDGE is specified, EDGE
is assumed.

Polygons sent to an HPGL plotter are edged but not filled regardless of any FILL or EDGE
directives on the statement.

After POLYGON has executed, the pen is in the same position it was before the statement was
executed, and the pen is up. The polygon is clipped at the current clip limits.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines .(generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1. The starting point for labels drawn after lines or axes is affected by scaling .
Note 2: The starting point for labels drawn after other labels is affected by LDIR .
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

GRAPHX
Yes
Yes
Yes

This statement draws all or part of an open regular polygon.

Item

radius

total sides

sides to draw

Description/Default

numeric expression, in current units.

numeric expression, rounded to an integer.
Default = 60

numeric expression, rounded to an integer.
Default = all sides

Example Statements
POLYLINE Radius ,Side s ,Sides_to_d ra l..J

POLYLINE 12,5

Semantics

POLYLINE

Range
Restrictions

3 thru 32767

1 thru 32767

The radius is the distance that the vertices of the polygon will be from the current pen position.
The first vertex will be at a distance specified by " radius" in the direction of the positive X-axis.
Specifying a negative radius results in the figure being rotated 180°. POLYLINE is affected by the
PIVOT and PDIR transformation .

The total sides specified need not be the same as the sides to draw. Thus

POL YLINE 1.5,8,5

will start to draw an octagon whose vertices are 1.5 units from the current pen position, but will
only draw five sides of it. If the number of sides to draw is greater than the total sides specified, it is
treated as if it were equal to the total sides.

327

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

GRAPHX
Yes
Yes
Yes

This statement draws all or part of an open regular polygon.

Item

radius

total sides

sides to draw

Description/Default

numeric expression, in current units.

numeric expression, rounded to an integer.
Default = 60

numeric expression, rounded to an integer.
Default = all sides

Example Statements
POLYLINE Radius ,Side s ,Sides_to_d ra l..J

POLYLINE 12,5

Semantics

POLYLINE

Range
Restrictions

3 thru 32767

1 thru 32767

The radius is the distance that the vertices of the polygon will be from the current pen position.
The first vertex will be at a distance specified by " radius" in the direction of the positive X-axis.
Specifying a negative radius results in the figure being rotated 180°. POLYLINE is affected by the
PIVOT and PDIR transformation .

The total sides specified need not be the same as the sides to draw. Thus

POL YLINE 1.5,8,5

will start to draw an octagon whose vertices are 1.5 units from the current pen position, but will
only draw five sides of it. If the number of sides to draw is greater than the total sides specified, it is
treated as if it were equal to the total sides.

327

328 POLYLINE

Shape of Perimeter
POLYLINE does not force polygon closure, that is, if sides to draw is less than total sides, the first
vertex is not connected to the last vertex, so there is no "inside" or "outside" area.

The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore , anistropic scaling causes the perimeter to be distorted; stretched or
compressed along the axes. If a rotation transformation is in effect, the polygon will be rotated
first , then stretched or compressed along the unrotated axes.

The pen status affects the way a POLYLINE statement works. If the pen is up at the time
POLYLINE is specified, the first vertex is on the perimeter. If the pen is down, the first point is the
current pen position, which is connected to the first point on the perimeter.

After POLYLINE has executed, the current pen position is in the same position it was before the
statement was executed, and the pen is up. The polygon is clipped at the current clip limits.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Label s Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LOl A.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by POIR.

X

LDIR PDIR

Note 4

X
X

Note 2

328 POLYLINE

Shape of Perimeter
POLYLINE does not force polygon closure, that is, if sides to draw is less than total sides, the first
vertex is not connected to the last vertex, so there is no "inside" or "outside" area.

The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore , anistropic scaling causes the perimeter to be distorted; stretched or
compressed along the axes. If a rotation transformation is in effect, the polygon will be rotated
first , then stretched or compressed along the unrotated axes.

The pen status affects the way a POLYLINE statement works. If the pen is up at the time
POLYLINE is specified, the first vertex is on the perimeter. If the pen is down, the first point is the
current pen position, which is connected to the first point on the perimeter.

After POLYLINE has executed, the current pen position is in the same position it was before the
statement was executed, and the pen is up. The polygon is clipped at the current clip limits.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Label s Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LOl A.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by POIR.

X

LDIR PDIR

Note 4

X
X

Note 2

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the first position of a substring within a string.

Item

string searched

string searched for

string
searched for

Description/Default

string expression

string expression

Example Statements
Point=POS(Bi!'l$,Little$)
IF POS(A$,CHR$(10» THEN Line_end

Semantics

pas

Range
Restrictions

If the value returned is greater than 0, it represents the position of the first character of the string
being searched for in the string being searched. If the value returned is 0 , the string being
searched for does not exist in the string being searched (or the string searched for is the null
string).

Note that the position returned is the relative position within the string expression used as the first
argument. Thus, when a substring is searched, the position value refers to that substring, not to
the parent string from which the substring was taken.

329

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns the first position of a substring within a string.

Item

string searched

string searched for

string
searched for

Description/Default

string expression

string expression

Example Statements
Point=POS(Bi!'l$,Little$)
IF POS(A$,CHR$(10» THEN Line_end

Semantics

pas

Range
Restrictions

If the value returned is greater than 0, it represents the position of the first character of the string
being searched for in the string being searched. If the value returned is 0 , the string being
searched for does not exist in the string being searched (or the string searched for is the null
string).

Note that the position returned is the relative position within the string expression used as the first
argument. Thus, when a substring is searched, the position value refers to that substring, not to
the parent string from which the substring was taken.

329

330

PPOLL
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This function returns a value representing eight status-bit messages of devices on the HP-IB.

interf a ce
se le c t c od e

Item Description/Default

I/O path name name assigned to an interface select code

interface select code numeric expression , rounded to an integer

Example Statements
Stat=PPOLL(7)
IF BIT(PPOLL(@Hpib) t3) THEN Respo n d

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

7 thru 31

The computer must be the active controller to execute this function .

Summary of Bus Actions
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN & EOI ATN & EOI
(duration ;;.25 fLs) (duration ;;'25 fLs)

Active Read byte
Error

Read byte
Error

Controller EOI EOI
Restore ATN to Restore ATN to
previous state previous state

Not Active
Error

Controller

330

PPOLL
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This function returns a value representing eight status-bit messages of devices on the HP-IB.

interf a ce
se le c t c od e

Item Description/Default

I/O path name name assigned to an interface select code

interface select code numeric expression , rounded to an integer

Example Statements
Stat=PPOLL(7)
IF BIT(PPOLL(@Hpib) t3) THEN Respo n d

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

7 thru 31

The computer must be the active controller to execute this function .

Summary of Bus Actions
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN & EOI ATN & EOI
(duration ;;.25 fLs) (duration ;;'25 fLs)

Active Read byte
Error

Read byte
Error

Controller EOI EOI
Restore ATN to Restore ATN to
previous state previous state

Not Active
Error

Controller

PPOll CONFIGURE
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This statement programs the logical sense and data bus line on which a specified device
responds to a parallel poll.

PPOLL CONFIGURE I---r-t~

Item Description/Default
Range Recommended

Restrictions Range

I/O path name name assigned to a device or devices any valid name

device selector numeric expression, rounded to an integer must contain a
primary address
(see Glossary)

configure byte numeric expression, rounded to an integer - 32768 thru o thru 15
+32767

331

PPOll CONFIGURE
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This statement programs the logical sense and data bus line on which a specified device
responds to a parallel poll.

PPOLL CONFIGURE I---r-t~

Item Description/Default
Range Recommended

Restrictions Range

I/O path name name assigned to a device or devices any valid name

device selector numeric expression, rounded to an integer must contain a
primary address
(see Glossary)

configure byte numeric expression, rounded to an integer - 32768 thru o thru 15
+32767

331

332 PPOll CONFIGURE

Example Statements
PPOLL CONFIGURE 7 11;2
PPOLL CONFIGURE @OvM;Response

Semantics
This statement assumes that the device's response is bus-programmable. The computer must
be the active controller to execute this statement.

The configure byte is coded. The three least significant bits determine the data bus line for the
response. The fourth bit determines the logical sense of the response.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
MTA MTA

Active
Error

UNL
Error

UNL
Controller LAG LAG

PPC PPC
PPE PPE

Not Active Error
Controller

332 PPOll CONFIGURE

Example Statements
PPOLL CONFIGURE 7 11;2
PPOLL CONFIGURE @OvM;Response

Semantics
This statement assumes that the device's response is bus-programmable. The computer must
be the active controller to execute this statement.

The configure byte is coded. The three least significant bits determine the data bus line for the
response. The fourth bit determines the logical sense of the response.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
MTA MTA

Active
Error

UNL
Error

UNL
Controller LAG LAG

PPC PPC
PPE PPE

Not Active Error
Controller

PPOLL RESPONSE
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This statement defines a response to be sent when an Active Controller performs a Parallel Poll
on an HP-IB Interface. The response indicates whether this computer does or does not need
service.

Item

I/O path name

interface select
code

I do/don't
need service

Examples

interface
s e lect code

I do/don't
need se r vice

Description/ Default

name assigned to an interface select code

numeric expression, rounded to an integer

numeric expression, rounded to an integer

PPOLL RESPONSE @Hp_ib ; I _need_ser u ice
PPOLL RESPONSE Interface ; O

Semantics

Range Recommended
Restrictions Range

any valid name

7 thru 31

o thru 32767 o or 1

This statement defines the computer's response to a Parallel Poll (A TN & EO!) performed by the
current Active Controller on the specified HP-IB Interface. This statement only sets up a potential
response ; no actual response is generated when the statement is executed.

If the value of the " I do/don't need service" parameter is 0, the computer is directed to place a
logical false on the bit on which it has been defined to respond; this response will tell the Active
Controller that this (non-active) controller does not need service. Any non-zero, positive value of
this parameter (within the stated range) directs the computer to set up a true response, which will
tell a polling Active Controller that the computer requires service.

The bit on which the computer is to place its Parallel Poll response is determined by the value of
the last "configure byte" written to CONTROL Register 5 of the corresponsing HP-IB Interface.
In general, this configure byte can be read from HP-IB STATUS Register 7 by the service routine
that responds to Parallel-Poll-Configuration-Change interrupts (Bit 14 of the Interrupt Enable
Register) . This configure byte may then be written into HP-IB CONTROL Register 5 , and the
response desired by the Active Controller will be sent when a Parallel Poll is conducted.

This statement may be executed by either an Active Controller or a non-active controller.

333

PPOLL RESPONSE
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This statement defines a response to be sent when an Active Controller performs a Parallel Poll
on an HP-IB Interface. The response indicates whether this computer does or does not need
service.

Item

I/O path name

interface select
code

I do/don't
need service

Examples

interface
s e lect code

I do/don't
need se r vice

Description/ Default

name assigned to an interface select code

numeric expression, rounded to an integer

numeric expression, rounded to an integer

PPOLL RESPONSE @Hp_ib ; I _need_ser u ice
PPOLL RESPONSE Interface ; O

Semantics

Range Recommended
Restrictions Range

any valid name

7 thru 31

o thru 32767 o or 1

This statement defines the computer's response to a Parallel Poll (A TN & EO!) performed by the
current Active Controller on the specified HP-IB Interface. This statement only sets up a potential
response ; no actual response is generated when the statement is executed.

If the value of the " I do/don't need service" parameter is 0, the computer is directed to place a
logical false on the bit on which it has been defined to respond; this response will tell the Active
Controller that this (non-active) controller does not need service. Any non-zero, positive value of
this parameter (within the stated range) directs the computer to set up a true response, which will
tell a polling Active Controller that the computer requires service.

The bit on which the computer is to place its Parallel Poll response is determined by the value of
the last "configure byte" written to CONTROL Register 5 of the corresponsing HP-IB Interface.
In general, this configure byte can be read from HP-IB STATUS Register 7 by the service routine
that responds to Parallel-Poll-Configuration-Change interrupts (Bit 14 of the Interrupt Enable
Register) . This configure byte may then be written into HP-IB CONTROL Register 5 , and the
response desired by the Active Controller will be sent when a Parallel Poll is conducted.

This statement may be executed by either an Active Controller or a non-active controller.

333

334

PPOLL UNCONFIGURE
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement disables the parallel poll response of a specified device or devices.

PPOLL UNCONFIGURE r---...,.-4~ @ I/O path I--,.......~ name

Item Description/Default

1/0 path name name assigned to a device or devices

device selector numeric expression, rounded to an integer

Example Statements
PPOll UNCONFIGURE 7
PPOll UNCONFIGURE @Plotter

Semantics

Range
Restrictions

any valid name

(see Glossary)

The computer must be the active controller to execute PPOll UNCONFIGURE.

If multiple devices are specified by an I/O path name, all specified devices are deactivated from
parallel poll response. If the device selector or I/O path name refers only to an interface select
code, all devices on that interface are deactivated from parallel poll response.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
MTA MTA

Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG

PPC PPC
PPD PPD

Not Active Error
Controller

334

PPOLL UNCONFIGURE
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement disables the parallel poll response of a specified device or devices.

PPOLL UNCONFIGURE r---...,.-4~ @ I/O path I--,.......~ name

Item Description/Default

1/0 path name name assigned to a device or devices

device selector numeric expression, rounded to an integer

Example Statements
PPOll UNCONFIGURE 7
PPOll UNCONFIGURE @Plotter

Semantics

Range
Restrictions

any valid name

(see Glossary)

The computer must be the active controller to execute PPOll UNCONFIGURE.

If multiple devices are specified by an I/O path name, all specified devices are deactivated from
parallel poll response. If the device selector or I/O path name refers only to an interface select
code, all devices on that interface are deactivated from parallel poll response.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
MTA MTA

Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG

PPC PPC
PPD PPD

Not Active Error
Controller

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement sends items to the PRINTER IS device.

Expanded diagram:

image
items

print
items

string
expression

string
array name

numeric
expression

numeric
array name

image line
number

image line
label

tab functions not allowed with USING

literal form of image specifier :

image
specifier list

image
specifier list

trailing punctuation
not allowed with USING

PRINT

335

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement sends items to the PRINTER IS device.

Expanded diagram:

image
items

print
items

string
expression

string
array name

numeric
expression

numeric
array name

image line
number

image line
label

tab functions not allowed with USING

literal form of image specifier :

image
specifier list

image
specifier list

trailing punctuation
not allowed with USING

PRINT

335

336 PRINT

image specif i e r list

%

K

- K

B

W

+

~------------------------------~ H ~----------------------------~

~------------------------------------~ y ~--------------------------------~~

S haded ite ms
requir e I O

Radix specifier cannot
be used without a
digit specifier.

336 PRINT

image specif i e r list

%

K

- K

B

W

+

~------------------------------~ H ~----------------------------~

~------------------------------------~ y ~--------------------------------~~

S haded ite ms
requir e I O

Radix specifier cannot
be used without a
digit specifier.

Item Description/Default

image line number integer constant identifying an IMAGE
statement

image line label name identifying an IMAGE statement

image specifier string expression

string array name name of a string array

numeric array name of a numeric array
name

column

CRT column

CRT row

image specifier list

repeat factor

literal

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

literal

integer constant

string constant composed of characters
from the keyboard, including those gener­
ated using the ANY CHAR key

Example Statements
PRINT "LINE" jNufTlbe r
PRINT Arra }'(*);

Range
Restrictions

1 thru 32766

any valid name

(see drawing)

any valid name

any valid name

-32768 thru
+32767

o thru 32767

o thru 32767

(see next
drawing)

1 thru 32767

quote mark not
allowed

PRINT TAB)-(Y (l ti) tHeader$ t TAB)-(Y (Col t 3) tMessage$
PRINT USING "5Z.DD" j Mone}'
PRINT USING Fmt3;Id tI t em$tKilograms /2.2

Semantics
Standard Numeric Format

PRINT 337

Recommended
Range

device
dependent

1 thru screen
width

1 thru 18

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to IE - 4 and less than IE + 6, it is rounded
to 12 digits and displayed in floating point notation. If it is not within these limits, it is displayed in
scientific notation. The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

Automatic End-Of-Line Sequence
After the print list is exhausted, an End-Of-Line (EOl) sequence is sent to the PRINTER IS
device , unless it is suppressed by trailing punctuation or a pound-sign (#) image specifier. The
printer width for EOl sequences generation is set to the screen width (50, 80 or 128 characters)
for eRTs and to 80 for external devices unless the WIDTH attribute of the PRINTER IS statement
was specified. WIDTH is off for files . This " printer width exceeded" EOl is not suppressed by
trailing punctuation, but can be suppressed by the use of an image specifier.

Item Description/Default

image line number integer constant identifying an IMAGE
statement

image line label name identifying an IMAGE statement

image specifier string expression

string array name name of a string array

numeric array name of a numeric array
name

column

CRT column

CRT row

image specifier list

repeat factor

literal

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

literal

integer constant

string constant composed of characters
from the keyboard, including those gener­
ated using the ANY CHAR key

Example Statements
PRINT "LINE" jNufTlbe r
PRINT Arra }'(*);

Range
Restrictions

1 thru 32766

any valid name

(see drawing)

any valid name

any valid name

-32768 thru
+32767

o thru 32767

o thru 32767

(see next
drawing)

1 thru 32767

quote mark not
allowed

PRINT TAB)-(Y (l ti) tHeader$ t TAB)-(Y (Col t 3) tMessage$
PRINT USING "5Z.DD" j Mone}'
PRINT USING Fmt3;Id tI t em$tKilograms /2.2

Semantics
Standard Numeric Format

PRINT 337

Recommended
Range

device
dependent

1 thru screen
width

1 thru 18

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to IE - 4 and less than IE + 6, it is rounded
to 12 digits and displayed in floating point notation. If it is not within these limits, it is displayed in
scientific notation. The standard numeric format is used unless USING is selected, and may be
specified by using K in an image specifier.

Automatic End-Of-Line Sequence
After the print list is exhausted, an End-Of-Line (EOl) sequence is sent to the PRINTER IS
device , unless it is suppressed by trailing punctuation or a pound-sign (#) image specifier. The
printer width for EOl sequences generation is set to the screen width (50, 80 or 128 characters)
for eRTs and to 80 for external devices unless the WIDTH attribute of the PRINTER IS statement
was specified. WIDTH is off for files . This " printer width exceeded" EOl is not suppressed by
trailing punctuation, but can be suppressed by the use of an image specifier.

338 PRINT

Control Codes
Some ASCII control codes have a special effect in PRINT statements if the PRINTER IS device is
the CRT (device selector = 1):

Character Keystroke

CHR$(7) CTRL-G

CHR$(8) CTRL-H

CHR$(10) CTRL-J

CHR$(12) CTRL-L

CHR$(13) CTRL-M

Name

bell

backspace

line-feed

form -feed

carriage-return

Action

Sounds the beeper

Moves the print position back one character.

Moves the print position down one line.

Prints two line-feeds, then advances the
CRT buffer enough lines to place the next
item at the top of the CRT.

Moves the print position to column 1.

The effect of ASCII control codes on a printer is device dependent. See your printer manual to
find which control codes are recognized by your printer and their effects.

CRT Enhancements
There are several character enhancements (such as inverse video and underlining) available on
some CRT's. They are accessed through characters with decimal values above 127. For a list of
the characters and their effects, see the "Display Enhancement Characters" table in "Useful
Tables" at the back of this book.

Arrays
Entire arrays may be printed using the asterisk specifier. Each element in an array is treated as a
separate item, as if the elements were all listed and separated by the punctuation following the
array specifier. If no punctuation follows the array specifier, a comma is assumed. The array is
printed in row-major order (right-most subscript varies fastest).

PRINT Fields
If PRINT is used without USING, the punctuation following an item determines the width of the
item's print field; a semicolon selects the compact field , and a comma selects the default print
field. Any trailing punctation will suppress the automatic EOL sequence, in addition to selecting
the print field to be used for the print item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are printed with
one trailing blank. String items are printed with no leading or trailing blanks.

The default print field prints items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is printed with one leading blank if the number is positive, or with a minus sign if the
number is negative, whether in compact or default field.

338 PRINT

Control Codes
Some ASCII control codes have a special effect in PRINT statements if the PRINTER IS device is
the CRT (device selector = 1):

Character Keystroke

CHR$(7) CTRL-G

CHR$(8) CTRL-H

CHR$(10) CTRL-J

CHR$(12) CTRL-L

CHR$(13) CTRL-M

Name

bell

backspace

line-feed

form -feed

carriage-return

Action

Sounds the beeper

Moves the print position back one character.

Moves the print position down one line.

Prints two line-feeds, then advances the
CRT buffer enough lines to place the next
item at the top of the CRT.

Moves the print position to column 1.

The effect of ASCII control codes on a printer is device dependent. See your printer manual to
find which control codes are recognized by your printer and their effects.

CRT Enhancements
There are several character enhancements (such as inverse video and underlining) available on
some CRT's. They are accessed through characters with decimal values above 127. For a list of
the characters and their effects, see the "Display Enhancement Characters" table in "Useful
Tables" at the back of this book.

Arrays
Entire arrays may be printed using the asterisk specifier. Each element in an array is treated as a
separate item, as if the elements were all listed and separated by the punctuation following the
array specifier. If no punctuation follows the array specifier, a comma is assumed. The array is
printed in row-major order (right-most subscript varies fastest).

PRINT Fields
If PRINT is used without USING, the punctuation following an item determines the width of the
item's print field; a semicolon selects the compact field , and a comma selects the default print
field. Any trailing punctation will suppress the automatic EOL sequence, in addition to selecting
the print field to be used for the print item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are printed with
one trailing blank. String items are printed with no leading or trailing blanks.

The default print field prints items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is printed with one leading blank if the number is positive, or with a minus sign if the
number is negative, whether in compact or default field.

PRINT 339

TAB
The TAB function is used to position the next character to be printed on a line. In the TAB
function, a column parameter less than one is treated as one. A column parameter greater than
zero is subjected to the following formula: TAB position = ((column - 1) MOD width) + 1;
where "width" is 50 for the Model 226 CRT, 128 for Model 237 and 80 for all other devices. If
the TAB position evaluates to a column number less than or equal to the number of characters
printed since the last EOL sequence, then an EOL sequence is printed, followed by (TAB
position - 1) blanks. If the TAB position evaluates to a column number greater than the
number of characters printed since the last EOL, sufficient blanks are printed to move to the
TAB position.

TABXY
The TABXY function provides X-V character positioning on the CRT. It is ignored if a device
other than the CRT is the PRINTER IS device. TABXY(l,1) specifies the upper left-hand corner
of the CRT. If a negative value is provided for CRT row or CRT column, it is an error. Any
number greater than the screen width for CRT column is treated as the screen width . Any
number greater than 18 for CRT row is treated as 18. (On a Model 237 this is extended to 41
rows). If 0 is provided for either parameter, the current value of that parameter remains
unchanged.

PRINT With Using
When the computer executes a PRINT USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun­
tered. If nothing is required from the print items, the field specifier is acted upon without accessing
the print list. When the field specifer requires characters, it accesses the next item in the print list,
using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
print item. If the image specifiers are exhausted before the print items, they are reused, starting at
the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than are specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on the PRINT statement are shown in the following table:

Image
Specifier Meaning

K Compact field . Prints a number or string in standard form with no leading or trailing blanks.

- K Same as K.

H Similar to K. except the number is printed using the European number format (comma
radix). (Requires 10)

- H Same as H. (Requires 10)

PRINT 339

TAB
The TAB function is used to position the next character to be printed on a line. In the TAB
function, a column parameter less than one is treated as one. A column parameter greater than
zero is subjected to the following formula: TAB position = ((column - 1) MOD width) + 1;
where "width" is 50 for the Model 226 CRT, 128 for Model 237 and 80 for all other devices. If
the TAB position evaluates to a column number less than or equal to the number of characters
printed since the last EOL sequence, then an EOL sequence is printed, followed by (TAB
position - 1) blanks. If the TAB position evaluates to a column number greater than the
number of characters printed since the last EOL, sufficient blanks are printed to move to the
TAB position.

TABXY
The TABXY function provides X-V character positioning on the CRT. It is ignored if a device
other than the CRT is the PRINTER IS device. TABXY(l,1) specifies the upper left-hand corner
of the CRT. If a negative value is provided for CRT row or CRT column, it is an error. Any
number greater than the screen width for CRT column is treated as the screen width . Any
number greater than 18 for CRT row is treated as 18. (On a Model 237 this is extended to 41
rows). If 0 is provided for either parameter, the current value of that parameter remains
unchanged.

PRINT With Using
When the computer executes a PRINT USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun­
tered. If nothing is required from the print items, the field specifier is acted upon without accessing
the print list. When the field specifer requires characters, it accesses the next item in the print list,
using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
print item. If the image specifiers are exhausted before the print items, they are reused, starting at
the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than are specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If it
is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on the PRINT statement are shown in the following table:

Image
Specifier Meaning

K Compact field . Prints a number or string in standard form with no leading or trailing blanks.

- K Same as K.

H Similar to K. except the number is printed using the European number format (comma
radix). (Requires 10)

- H Same as H. (Requires 10)

340 PRINT

Image
Specifier Meaning

S Prints the number's sign (+ or -).

M Prints the number's sign if negative, a blank if positive.

D Prints one digit character. A leading zero is replaced by a blank. If the number is negative
and no sign image is specified, the minus sign will occupy a leading digit position. If a sign is
printed, it will "float" to the left of the left-most digit.

Z Same as D, except that leading zeros are printed.

* like Z, except that asterisks are printed instead of leading zeros. (Requires 10)

Prints a decimal-point radix indicator.

R

E

ESZ

ESZZ

ESZZZ

A

x
literal

B

W

y

Prints a comma radix indicator (European radix). (Requires 10)

Prints an E, a sign , and a two-digit exponent.

Prints an E, a sign, and a one-digit exponent.

Same as E.

Prints an E, a sign, and a three-digit exponent.

Prints a string character. Trailing blanks are output if the number of characters specified
is greater than the number available in the corresponding string. If the image specifier is
exhausted before the corresponding string, the remaining characters are ignored.

Prints a blank.

Prints the characters contained in the literal.

Prints the character represented by one byte of data. This is similar to the CHR$ function.
The number is rounded to an INTEGER and the least-significant byte is sent. If the number
is greater than 32 767, then 255 is used; if the number is less than - 32 768, then 0 is used.

Prints two characters represented by the two bytes in a 16-bit, two's-complement integer
word. The corresponding numeric item is rounded to an INTEGER. If it is greater than
32 767, then 32 767 is used; if it is less than - 32 768, then - 32 768 is used. On an 8-bit
interface, the most-significant byte is sent first. On a 16-bit interface, the two bytes are sent
as one word in a single operation.

Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-line) sequence following the last print
item.

% Ignored in PRINT images.

+ Changes the automatic EOL sequence that normally follows the last print item to a single
carriage-return. (Requires 10)

Changes .the automatic EOL sequence that normally follows the last print item to a single
line-feed. (Requires 10)

Sends a carriage-return and a line-feed to the PRINTER IS device.

L Sends the current EOL sequence to the PRINTER IS device. The default EOL characters
are CR and LF; see PRINTER IS for information on re-defining the EOL sequence. If the
destination is an 110 path name with the WORD attribute, a pad byte may be sent after the
EOL characters to achieve word alignment.

@ Sends a form-feed to the PRINTER IS device.

340 PRINT

Image
Specifier Meaning

S Prints the number's sign (+ or -).

M Prints the number's sign if negative, a blank if positive.

D Prints one digit character. A leading zero is replaced by a blank. If the number is negative
and no sign image is specified, the minus sign will occupy a leading digit position. If a sign is
printed, it will "float" to the left of the left-most digit.

Z Same as D, except that leading zeros are printed.

* like Z, except that asterisks are printed instead of leading zeros. (Requires 10)

Prints a decimal-point radix indicator.

R

E

ESZ

ESZZ

ESZZZ

A

x
literal

B

W

y

Prints a comma radix indicator (European radix). (Requires 10)

Prints an E, a sign , and a two-digit exponent.

Prints an E, a sign, and a one-digit exponent.

Same as E.

Prints an E, a sign, and a three-digit exponent.

Prints a string character. Trailing blanks are output if the number of characters specified
is greater than the number available in the corresponding string. If the image specifier is
exhausted before the corresponding string, the remaining characters are ignored.

Prints a blank.

Prints the characters contained in the literal.

Prints the character represented by one byte of data. This is similar to the CHR$ function.
The number is rounded to an INTEGER and the least-significant byte is sent. If the number
is greater than 32 767, then 255 is used; if the number is less than - 32 768, then 0 is used.

Prints two characters represented by the two bytes in a 16-bit, two's-complement integer
word. The corresponding numeric item is rounded to an INTEGER. If it is greater than
32 767, then 32 767 is used; if it is less than - 32 768, then - 32 768 is used. On an 8-bit
interface, the most-significant byte is sent first. On a 16-bit interface, the two bytes are sent
as one word in a single operation.

Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-line) sequence following the last print
item.

% Ignored in PRINT images.

+ Changes the automatic EOL sequence that normally follows the last print item to a single
carriage-return. (Requires 10)

Changes .the automatic EOL sequence that normally follows the last print item to a single
line-feed. (Requires 10)

Sends a carriage-return and a line-feed to the PRINTER IS device.

L Sends the current EOL sequence to the PRINTER IS device. The default EOL characters
are CR and LF; see PRINTER IS for information on re-defining the EOL sequence. If the
destination is an 110 path name with the WORD attribute, a pad byte may be sent after the
EOL characters to achieve word alignment.

@ Sends a form-feed to the PRINTER IS device.

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

PRINTALL IS

This statement assigns a logging device for recording operator interaction and troubleshooting
messages.

PRINTALL IS

Item

device selector

end-of-line characters

seconds

line width

Description/Default

numeric expression, rounded to an integer

string expression;
Default = CRILF

numeric expression , rounded to the nearest
0.001 seconds;
Default = 0

numeric expression, rounded to an integer;
Default = infinity (see text)

Example Statements
PRINTALL IS 701
PRINTALL IS Gpio
PRINTALL IS 701 iEOL CHR$(13) END ,WIDTH 65

Range
Restrictions

(see Glossary)

o thru 8 characters

0.001 thru 32.767

1 thru 32767

341

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

PRINTALL IS

This statement assigns a logging device for recording operator interaction and troubleshooting
messages.

PRINTALL IS

Item

device selector

end-of-line characters

seconds

line width

Description/Default

numeric expression, rounded to an integer

string expression;
Default = CRILF

numeric expression , rounded to the nearest
0.001 seconds;
Default = 0

numeric expression, rounded to an integer;
Default = infinity (see text)

Example Statements
PRINTALL IS 701
PRINTALL IS Gpio
PRINTALL IS 701 iEOL CHR$(13) END ,WIDTH 65

Range
Restrictions

(see Glossary)

o thru 8 characters

0.001 thru 32.767

1 thru 32767

341

342 PRINTALL IS

Semantics
The printall device must be enabled by the (PRT ALL) key on the computer. The (PRT ALL) key is a
toggle action device, enabling and disabling the printall operation. When the printall mode is
enabled, all items generated by DISP, all operator input followed by the (RETURN), (ENTER) ,
(CONTINUE), or (EXECUTE) key , and all error messages from the computer are logged on the printall
device. All TRACE activity is logged on the printall device if tracing is enabled.

An asterisk (*) is displayed on the PRINTALL softkey label of models with HP 46020A
keyboards, if print all mode is enabled.

At power-on and SCRATCH A, the printall device is the CRT (device selector = 1).

The EOL Attribute (Requires 10)
The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the following
times: after the number of characters specified by line width and after each line of text. Up to
eight characters may be specified as the EOL characters; an error is reported if the string contains
more than eight characters . If END is included in the EOL attribute , an interface-dependent END
indication is sent with the last character of the EOL sequence. If DELAY is included, the computer
delays the specified number of seconds (after sending the last character) before continuing. The
default EOL sequence consists of a carriage-return and a line-feed character with no END
indication and no delay period.

The WIDTH Attribute (Requires 10)

The WIDTH attribute specifies the maximum number of characters which will be sent to the
printing device before an EOL sequence is automatically sent. The EOL characters are not
counted as part of the line width . The default width for the Model 226 CRT is 50, Model 237 with
HP 98781A CRT is 128, and the default for all other devices is 80. Specifying WroTH OFF sets
the width to infinity. If the default is desired, it must be restored explicitly. If the USING clause is
included in the PRINT statement, the WroTH attribute is ignored.

342 PRINTALL IS

Semantics
The printall device must be enabled by the (PRT ALL) key on the computer. The (PRT ALL) key is a
toggle action device, enabling and disabling the printall operation. When the printall mode is
enabled, all items generated by DISP, all operator input followed by the (RETURN), (ENTER) ,
(CONTINUE), or (EXECUTE) key , and all error messages from the computer are logged on the printall
device. All TRACE activity is logged on the printall device if tracing is enabled.

An asterisk (*) is displayed on the PRINTALL softkey label of models with HP 46020A
keyboards, if print all mode is enabled.

At power-on and SCRATCH A, the printall device is the CRT (device selector = 1).

The EOL Attribute (Requires 10)
The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the following
times: after the number of characters specified by line width and after each line of text. Up to
eight characters may be specified as the EOL characters; an error is reported if the string contains
more than eight characters . If END is included in the EOL attribute , an interface-dependent END
indication is sent with the last character of the EOL sequence. If DELAY is included, the computer
delays the specified number of seconds (after sending the last character) before continuing. The
default EOL sequence consists of a carriage-return and a line-feed character with no END
indication and no delay period.

The WIDTH Attribute (Requires 10)

The WIDTH attribute specifies the maximum number of characters which will be sent to the
printing device before an EOL sequence is automatically sent. The EOL characters are not
counted as part of the line width . The default width for the Model 226 CRT is 50, Model 237 with
HP 98781A CRT is 128, and the default for all other devices is 80. Specifying WroTH OFF sets
the width to infinity. If the default is desired, it must be restored explicitly. If the USING clause is
included in the PRINT statement, the WroTH attribute is ignored.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

PRINTER IS

This statement specifies the system printing device or file. (If using PRINTER IS with SRM, also
refer to the "SRM" section of this manual.)

PRINTER IS

litera l form of file specifier :

Item

device selector

end-of -line characters

seconds

line width

file specifier

file name

protect code

msus

Description/Default

numeric expression, rounded to an integer

string expression:
Default = CR/LF

numeric expression, rounded to the nearest
0.001 seconds:
Default = 0

numeric expression, rounded to an integer:
Default = (see text)

string expression

literal

literal: first two non-blank
characters are significant

literal

10

Range
Restrictions

(see Glossary)

o thru 8 characters

0.001 thru 32.767

1 thru 32767

(see drawing)

any valid file name

">" not allowed

(see MASS STORAGE
IS)

343

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

PRINTER IS

This statement specifies the system printing device or file. (If using PRINTER IS with SRM, also
refer to the "SRM" section of this manual.)

PRINTER IS

litera l form of file specifier :

Item

device selector

end-of -line characters

seconds

line width

file specifier

file name

protect code

msus

Description/Default

numeric expression, rounded to an integer

string expression:
Default = CR/LF

numeric expression, rounded to the nearest
0.001 seconds:
Default = 0

numeric expression, rounded to an integer:
Default = (see text)

string expression

literal

literal: first two non-blank
characters are significant

literal

10

Range
Restrictions

(see Glossary)

o thru 8 characters

0.001 thru 32.767

1 thru 32767

(see drawing)

any valid file name

">" not allowed

(see MASS STORAGE
IS)

343

344 PRINTER IS

Example Statements
PRINTER IS 70 1
PRINTER IS Gpio
PRINTE R IS 701;EOL CHR$ (13) EN D l ~nDTH 65
PRINTER IS "M i' fil e " ;W IDTH 80
PRINTER IS " Spo oler : REMO TE"

Semantics
The system printing device or file receives all data sent by the PRINT statement and all data sent
by CAT and LIST statements in which the destination is not explicitly specified.

The default printing device is the CRT (select code 1) at power-on and after executing SCRATCH
A.

The EOL Attribute (Requires 10)
The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the following
times: after the number of characters specified by line width , after each line of text, and when an
" L" specifier is used in a PRINT USING statement. Up to eight characters may be specified as the
EOL characters; an error is reported if the string contains more than eight characters. If END is
included in the EOL attribute, an interface-dependent END indication is sent with the last
character of the EOL sequence. If DELAY is included, the computer delays the specified number
of seconds (after sending the last character) before continuing. The default EOL sequence
consists of a carriage-return and a line-feed character with no END indication and no delay
period. END and DELAY are ignored for files .

The WIDTH Attribute (Requires 10)
The WIDTH attribute specifies the maximum number of characters which will be sent to the
printing device before an EOL sequence is automatically sent. The EOL characters are not
counted as part of the line width. The default width for the Model 226 CRT is 50, Model 237 with
HP 98781A CRT is 128, and the default for all other devices is 80. Specifying WIDTH OFF sets
the width to infinity. If the default is desired, it must be restored explicitly. If the USING clause is
included the PRINT statement, the WIDTH attribute is ignored. Default WIDTH for files is OFF.

PRINTER IS file
The file must be a BOAT file.

The PRINTER IS file statement positions the file pointer to the beginning of the file .

The file is closed when another PRINTER IS statement is executed and at SCRATCH A.

An end of file error occurs when the end of the file is reached.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON.

344 PRINTER IS

Example Statements
PRINTER IS 70 1
PRINTER IS Gpio
PRINTE R IS 701;EOL CHR$ (13) EN D l ~nDTH 65
PRINTER IS "M i' fil e " ;W IDTH 80
PRINTER IS " Spo oler : REMO TE"

Semantics
The system printing device or file receives all data sent by the PRINT statement and all data sent
by CAT and LIST statements in which the destination is not explicitly specified.

The default printing device is the CRT (select code 1) at power-on and after executing SCRATCH
A.

The EOL Attribute (Requires 10)
The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the following
times: after the number of characters specified by line width , after each line of text, and when an
" L" specifier is used in a PRINT USING statement. Up to eight characters may be specified as the
EOL characters; an error is reported if the string contains more than eight characters. If END is
included in the EOL attribute, an interface-dependent END indication is sent with the last
character of the EOL sequence. If DELAY is included, the computer delays the specified number
of seconds (after sending the last character) before continuing. The default EOL sequence
consists of a carriage-return and a line-feed character with no END indication and no delay
period. END and DELAY are ignored for files .

The WIDTH Attribute (Requires 10)
The WIDTH attribute specifies the maximum number of characters which will be sent to the
printing device before an EOL sequence is automatically sent. The EOL characters are not
counted as part of the line width. The default width for the Model 226 CRT is 50, Model 237 with
HP 98781A CRT is 128, and the default for all other devices is 80. Specifying WIDTH OFF sets
the width to infinity. If the default is desired, it must be restored explicitly. If the USING clause is
included the PRINT statement, the WIDTH attribute is ignored. Default WIDTH for files is OFF.

PRINTER IS file
The file must be a BOAT file.

The PRINTER IS file statement positions the file pointer to the beginning of the file .

The file is closed when another PRINTER IS statement is executed and at SCRATCH A.

An end of file error occurs when the end of the file is reached.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON.

Option Required MS
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement gives a name to a mass storage volume.

PRINT LABEL

Item

volume label

media specifier

Description/Default

Name to be given to the volume

string expression:
Default = the default mass storage unit

Example Statements
PRINT LABEL Il.Jers3" TO ":INTERNAL"
PRINT LABEL VolumeS TO MsusS

Semantics
The new name overrides any previous name for the volume.

PRINT LABEL

Range
Restrictions

(see MASS STORAGE
IS)

The volume label can be zero to six characters in length consisting of letters and numbers. For
maximum interchange, the characters should be limited to uppercase letters (A-Z) and digits
(0-9) with the first character being a letter.

PRIORITY
See the SYSTEM PRIORITY statement.

345

Option Required MS
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement gives a name to a mass storage volume.

PRINT LABEL

Item

volume label

media specifier

Description/Default

Name to be given to the volume

string expression:
Default = the default mass storage unit

Example Statements
PRINT LABEL Il.Jers3" TO ":INTERNAL"
PRINT LABEL VolumeS TO MsusS

Semantics
The new name overrides any previous name for the volume.

PRINT LABEL

Range
Restrictions

(see MASS STORAGE
IS)

The volume label can be zero to six characters in length consisting of letters and numbers. For
maximum interchange, the characters should be limited to uppercase letters (A-Z) and digits
(0-9) with the first character being a letter.

PRIORITY
See the SYSTEM PRIORITY statement.

345

346

PROTECT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement specifies the protect code used on PROG, BOAT, and BIN files. (If using
PROTECT with SRM, also refer to the "SRM" section of this manual.)

new protect
code

literal form of file specifier:

Item

file specifier

new protect code

file name

old protect code

msus

Description/Default

string expression

string expression; first two non-blank characters
are significant

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
PROTECT NameS,PcS

PROTECT "Geor!:le <x ,'>:INTERNAL" ,"NEW"

Semantics

Range
Restrictions

(see drawing)

">" not allowed

any valid file name

">" not allowed

(see MASS
STORAGE IS)

A protect code guards against accidental changes to an individual file. Once a file is protected, the
protect code must be included in its file specifier for all operations except LOAD and LOAOSUB.

Protect codes are trimmed before they are used. Therefore, leading and trailing blanks are
insignificant. Removing a protect code from a file is accomplished by assigning a protect code that
is the null string or contains all blanks.

346

PROTECT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement specifies the protect code used on PROG, BOAT, and BIN files. (If using
PROTECT with SRM, also refer to the "SRM" section of this manual.)

new protect
code

literal form of file specifier:

Item

file specifier

new protect code

file name

old protect code

msus

Description/Default

string expression

string expression; first two non-blank characters
are significant

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
PROTECT NameS,PcS

PROTECT "Geor!:le <x ,'>:INTERNAL" ,"NEW"

Semantics

Range
Restrictions

(see drawing)

">" not allowed

any valid file name

">" not allowed

(see MASS
STORAGE IS)

A protect code guards against accidental changes to an individual file. Once a file is protected, the
protect code must be included in its file specifier for all operations except LOAD and LOAOSUB.

Protect codes are trimmed before they are used. Therefore, leading and trailing blanks are
insignificant. Removing a protect code from a file is accomplished by assigning a protect code that
is the null string or contains all blanks.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

PROUND

This function returns the value of the argument rounded to the specified power-of-ten.

Item

argument

power of ten

Description/Default

numeric expression

numeric expression, rounded to an integer

Example Statements
Money=PROUNO(Result ,-2)
PRINT PROUNO(Quantit y ,Oecimal_place)

Range
Restrictions

347

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

PROUND

This function returns the value of the argument rounded to the specified power-of-ten.

Item

argument

power of ten

Description/Default

numeric expression

numeric expression, rounded to an integer

Example Statements
Money=PROUNO(Result ,-2)
PRINT PROUNO(Quantit y ,Oecimal_place)

Range
Restrictions

347

348

PRT
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This INTEGER function returns 701, the default (factory set) device selector for an external
printer.

Example Statements
PRINTER IS PRT
OUTPUT PRT;A$

348

PRT
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This INTEGER function returns 701, the default (factory set) device selector for an external
printer.

Example Statements
PRINTER IS PRT
OUTPUT PRT;A$

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

PURGE

This statement deletes a file entry from the directory of the mass storage media (If using PURGE
with SRM, also refer to the "SRM" section of this manual.).

s---l file ~ PURGE spec i f ier

l i t eral form o f fi l e spec i f ier:

Item

file specifier

file name

protect code

msus

Description/ Default

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
PURGE Narlle$
PURGE "George <PC>"

Semantics

Range
Restrictions

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

Once a file is purged, you cannot access the information which was in the file . The records of a
purged file are returned to " available space." An open file must be closed before it can be
purged. Any file can be closed bv ASSIGN TO * (see ASSIGN).

349

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

PURGE

This statement deletes a file entry from the directory of the mass storage media (If using PURGE
with SRM, also refer to the "SRM" section of this manual.).

s---l file ~ PURGE spec i f ier

l i t eral form o f fi l e spec i f ier:

Item

file specifier

file name

protect code

msus

Description/ Default

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
PURGE Narlle$
PURGE "George <PC>"

Semantics

Range
Restrictions

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

Once a file is purged, you cannot access the information which was in the file . The records of a
purged file are returned to " available space." An open file must be closed before it can be
purged. Any file can be closed bv ASSIGN TO * (see ASSIGN).

349

350

RAD
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

This statement selects radians as the unit of measure for expressing angles.

Semantics

None
Yes
Yes
Yes

All functions which return an angle will return an angle in radians. All operations with param­
eters representing angles will interpret the angle in radians. If no angle mode is specified in a
program, the default is radians (also see DEG) .

A subprogram "inherits" the angle mode of the calling context. If the angle mode is changed in
a subprogram, the mode of the calling context is restored when execution returns to the calling
context.

350

RAD
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

This statement selects radians as the unit of measure for expressing angles.

Semantics

None
Yes
Yes
Yes

All functions which return an angle will return an angle in radians. All operations with param­
eters representing angles will interpret the angle in radians. If no angle mode is specified in a
program, the default is radians (also see DEG) .

A subprogram "inherits" the angle mode of the calling context. If the angle mode is changed in
a subprogram, the mode of the calling context is restored when execution returns to the calling
context.

RANDOMIZE
Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

This statement selects a seed for the RND function .

(RANDOMIZE)f-r-~-"":e-e-d -~---'~~ I

Item Description/ Default

seed numeric expression , rounded to an integer;
Default = pseudorandom

Example Statements
RANDOMIZE
RANDOMIZE Old _seed*PI

Semantics

Range
Restrictions

Recommended
Range

1 thru
231 _2

The seed actually used by the random number generator depends on the absolute value of the
seed speCified in the RANDOMIZE statement.

Absolute Value of Seed

less than 1
1 thru 231 _2

greater than 231 - 2

Value Used

1
INT(ABS(seed))

231_ 2

The seed is reset to 37480660 by power-up, SCRATCH A, SCRATCH, and program prerun.

351

RANDOMIZE
Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

This statement selects a seed for the RND function .

(RANDOMIZE)f-r-~-"":e-e-d -~---'~~ I

Item Description/ Default

seed numeric expression , rounded to an integer;
Default = pseudorandom

Example Statements
RANDOMIZE
RANDOMIZE Old _seed*PI

Semantics

Range
Restrictions

Recommended
Range

1 thru
231 _2

The seed actually used by the random number generator depends on the absolute value of the
seed speCified in the RANDOMIZE statement.

Absolute Value of Seed

less than 1
1 thru 231 _2

greater than 231 - 2

Value Used

1
INT(ABS(seed))

231_ 2

The seed is reset to 37480660 by power-up, SCRATCH A, SCRATCH, and program prerun.

351

352

RANK
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This function returns the number of dimensions in an array. The value returned is an INTEGER.

Item Description/Default

array name name of an array

Example Statement
IF RANK(A)=2 THEN PRINT "A is a fTlatrix"
R=RANK(Arral')

Range
Restrictions

any valid name

352

RANK
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This function returns the number of dimensions in an array. The value returned is an INTEGER.

Item Description/Default

array name name of an array

Example Statement
IF RANK(A)=2 THEN PRINT "A is a fTlatrix"
R=RANK(Arral')

Range
Restrictions

any valid name

RATIO
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns the ratio of the X hard clip limits to the Y hard clip limits for the current
PLOTTER IS device.

Example Statements
WINDOW 0 dO*RATIO 1-10 dO
Turn=l/RATIO

353

RATIO
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns the ratio of the X hard clip limits to the Y hard clip limits for the current
PLOTTER IS device.

Example Statements
WINDOW 0 dO*RATIO 1-10 dO
Turn=l/RATIO

353

354

READ
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement reads values from DATA statements and assigns them to variables.

Item

numeric name

string name

subscript

nume ri c
na me

beginning position

ending position

substring length

Description/Default

name of a numeric variable

name of a string variable

numeric expression, rounded to an integer

numeric expression , rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range
Restrictions

any valid name

any valid name

- 32 767 thru + 32 767
(see " array" in Glossary)

1 thru 32767
(see " substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

o thru 32767
(see " substring" in Glossary)

354

READ
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement reads values from DATA statements and assigns them to variables.

Item

numeric name

string name

subscript

nume ri c
na me

beginning position

ending position

substring length

Description/Default

name of a numeric variable

name of a string variable

numeric expression, rounded to an integer

numeric expression , rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range
Restrictions

any valid name

any valid name

- 32 767 thru + 32 767
(see " array" in Glossary)

1 thru 32767
(see " substring" in Glossary)

o thru 32767
(see "substring" in Glossary)

o thru 32767
(see " substring" in Glossary)

Example Statements
READ NumbertString$
READ Array(*)
READ Iter,)(1 t1) tItefT)(Z t1) tIter,)(3 t1)

Semantics

READ 355

The numeric items stored in DATA statements are considered strings by the computer, and are
processed with a VAL function to be read into numeric variables in a READ statement. If they
are not of the correct form, error 32 may result. Real DATA items will be rounded into an
INTEGER variable if they are within the INTEGER range (- 32 768 thru 32 767) . A string
variable may read numeric items, as long as it is dimensioned large enough to contain the
characters.

The first READ statement in a context accesses the first item in the first DATA statement in the
context unless RESTORE has been used to specify a different DATA statement as the starting
point. Successive READ operations access folloWing items, progressing through DATA state­
ments as necessary. Trying to READ past the end of the last DATA statement results in error 36.
The order of accessing DATA statements may be altered by using the RESTORE statement.

An entire array can be specified by replacing the subscript list with an asterisk. The array entries
are made in row major order (right most subscript varies most rapidly) .

Example Statements
READ NumbertString$
READ Array(*)
READ Iter,)(1 t1) tItefT)(Z t1) tIter,)(3 t1)

Semantics

READ 355

The numeric items stored in DATA statements are considered strings by the computer, and are
processed with a VAL function to be read into numeric variables in a READ statement. If they
are not of the correct form, error 32 may result. Real DATA items will be rounded into an
INTEGER variable if they are within the INTEGER range (- 32 768 thru 32 767) . A string
variable may read numeric items, as long as it is dimensioned large enough to contain the
characters.

The first READ statement in a context accesses the first item in the first DATA statement in the
context unless RESTORE has been used to specify a different DATA statement as the starting
point. Successive READ operations access folloWing items, progressing through DATA state­
ments as necessary. Trying to READ past the end of the last DATA statement results in error 36.
The order of accessing DATA statements may be altered by using the RESTORE statement.

An entire array can be specified by replacing the subscript list with an asterisk. The array entries
are made in row major order (right most subscript varies most rapidly) .

356

READIO
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This function reads the contents of the specified hardware register on the specified interface.

Note
Unexpected results may occur with select codes outside the given
range.

interface
se l ect code

Item Description/Default

interface select code numeric expression, rounded to an integer

register number numeric expression , rounded to an integer

Example Statements
Upper_bYte=READID(Gpio ,4)
PRINT IRe9ister l ;I;I=";READID(7,I)

Range
Restrictions

1 thru 31

interface dependent

356

READIO
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This function reads the contents of the specified hardware register on the specified interface.

Note
Unexpected results may occur with select codes outside the given
range.

interface
se l ect code

Item Description/Default

interface select code numeric expression, rounded to an integer

register number numeric expression , rounded to an integer

Example Statements
Upper_bYte=READID(Gpio ,4)
PRINT IRe9ister l ;I;I=";READID(7,I)

Range
Restrictions

1 thru 31

interface dependent

Option Required MS
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement reads a volume label into a string variable.

READ LABEL

Item

string variable

media specifier

Description/Default

string variable which returns the volume name

string expression;
Default = the default mass storage unit

Example Statements
READ LABEL I,JollJfTle_nafTle$ FROt1 II:INTERNAL II

READ LABEL

Range
Restrictions

(see MASS STORAGE
IS)

IF Inserted$=IIYes li THEN READ LABEL I,JollJfTle$ FROt'1 fflSIJS$

Semantics
A LIF volume label consists of a maximum of 6 characters, letters, and digits. Other volumes can
return labels up to 16 characters.

357

Option Required MS
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement reads a volume label into a string variable.

READ LABEL

Item

string variable

media specifier

Description/Default

string variable which returns the volume name

string expression;
Default = the default mass storage unit

Example Statements
READ LABEL I,JollJfTle_nafTle$ FROt1 II:INTERNAL II

READ LABEL

Range
Restrictions

(see MASS STORAGE
IS)

IF Inserted$=IIYes li THEN READ LABEL I,JollJfTle$ FROt'1 fflSIJS$

Semantics
A LIF volume label consists of a maximum of 6 characters, letters, and digits. Other volumes can
return labels up to 16 characters.

357

358

READ LOCATOR
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPHX
Yes
Yes
Yes

This statement samples the locator device , without waiting for a digitizing operation.

READ LOCATOR x c oor d i n ate
na me yeo ~~~~ n a t e r---r------t----.----+-i

Item

x coordinate name

y coordinate name

string name

Description/Default

name of a numeric variable

name of a numeric variable

name of a string variable

Example Statements
READ LOCATOR X_pas tY_pas
READ LOCATOR XtYtStatus$

Semantics

Range
Restrictions

any valid name

any valid name

any valid name

Executing this statement issues a request to the current locator device to return a set of coordin­
ates. The coordinates are sampled immediately, without waiting for a digitizing action on the part
of the user. GRAPHICS INPUT IS is used to establish the current locator device. The returned
coordinates are in the unit-of-measure currently defined for the PLOTTER IS and GRAPHICS
INPUT IS devices. The unit-of-measure may be default units or those defined by either the
WINDOW or SHOW statement. If an INTEGER numeric variable is specified, and the value
returned is out of range, Error 20 is reported.

358

READ LOCATOR
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPHX
Yes
Yes
Yes

This statement samples the locator device , without waiting for a digitizing operation.

READ LOCATOR x c oor d i n ate
na me yeo ~~~~ n a t e r---r------t----.----+-i

Item

x coordinate name

y coordinate name

string name

Description/Default

name of a numeric variable

name of a numeric variable

name of a string variable

Example Statements
READ LOCATOR X_pas tY_pas
READ LOCATOR XtYtStatus$

Semantics

Range
Restrictions

any valid name

any valid name

any valid name

Executing this statement issues a request to the current locator device to return a set of coordin­
ates. The coordinates are sampled immediately, without waiting for a digitizing action on the part
of the user. GRAPHICS INPUT IS is used to establish the current locator device. The returned
coordinates are in the unit-of-measure currently defined for the PLOTTER IS and GRAPHICS
INPUT IS devices. The unit-of-measure may be default units or those defined by either the
WINDOW or SHOW statement. If an INTEGER numeric variable is specified, and the value
returned is out of range, Error 20 is reported.

READ LOCATOR 359

The optional string variable is used to input the device status of the GRAPHICS INPUT IS device.
This status string contains eight bytes, defined as follows .

Byte

Meaning

2 3 4 5 6 7 8

Byte 1: Button status; This value represents the status of the digitizing button on the locator.
A "0" means the button is not depressed, and a " 1" means the button is depressed. This is
an unprocessed value, and a " 1" does not necessarily represent successful digitization. If the
numeric value represented by this byte is used as the pen control value for a PLOT statement,
continuous digitizing will be copied to the display device.

Bytes 2, 4 , and 6: commas; used as delimiters.

Bytes 3: Significance of digitized point; "0" indicates that the point is outside the P1 , P2
limits ; " 1" indicates that the point is outside the viewport, but inside the P1, P2 limits; "2"
indicates that the point is inside the current viewport limits.

Byte 5: Tracking status; "0" indicates off, " 1" indicates on.

Byte 7 and 8: The number of the buttons which are currently down. To interpret the ASCII number
returned, change the number to its binary form and look at each bit. If the bit is "1", the corres­
ponding button is down. If the bit is "0" , the corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of proximity, a "button 7" is indicated in
the " button number" bytes. The number will be exactly "64", regardless of whether any
actual buttons are being held down at the time. The HP 9111A always returns "00" in bytes
7 and 8.

READ LOCATOR 359

The optional string variable is used to input the device status of the GRAPHICS INPUT IS device.
This status string contains eight bytes, defined as follows .

Byte

Meaning

2 3 4 5 6 7 8

Byte 1: Button status; This value represents the status of the digitizing button on the locator.
A "0" means the button is not depressed, and a " 1" means the button is depressed. This is
an unprocessed value, and a " 1" does not necessarily represent successful digitization. If the
numeric value represented by this byte is used as the pen control value for a PLOT statement,
continuous digitizing will be copied to the display device.

Bytes 2, 4 , and 6: commas; used as delimiters.

Bytes 3: Significance of digitized point; "0" indicates that the point is outside the P1 , P2
limits ; " 1" indicates that the point is outside the viewport, but inside the P1, P2 limits; "2"
indicates that the point is inside the current viewport limits.

Byte 5: Tracking status; "0" indicates off, " 1" indicates on.

Byte 7 and 8: The number of the buttons which are currently down. To interpret the ASCII number
returned, change the number to its binary form and look at each bit. If the bit is "1", the corres­
ponding button is down. If the bit is "0" , the corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of proximity, a "button 7" is indicated in
the " button number" bytes. The number will be exactly "64", regardless of whether any
actual buttons are being held down at the time. The HP 9111A always returns "00" in bytes
7 and 8.

360

REAL
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
No

Yes
No

This statement reserves storage for floating point variables and arrays. (For information about
REAL as a secondary keyword, see the ALLOCATE, COM, DEF FN, or SUB statements.)

Item Description/Default

numeric name name of a numeric variable

lower bound integer constant;
Default = OPTION BASE value (0 orl)

upper bound integer constant

Example Statements
REAL)-(, y ,Z

REAL Array(- 128:127t15)
REAL A(512) BUFFER

Semantics

Range
Restrictions

any valid name

- 32 767 thru + 32767
(see " array" in Glossary)

- 32 767 thru + 32767
(see "array" in Glossary)

Each REAL variable or array element requires eight bytes of number storage. The maximum
number of subscripts in an array is six, and no dimension may have more than 32 767 ele­
ments. The total number of elements in an array is limited by memory.

Declaring Buffers
To declare REAL variables to be buffers, each variable's name must be followed by the keyword
BUFFER; the designation BUFFER applies only to the variable which it follows.

360

REAL
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
No

Yes
No

This statement reserves storage for floating point variables and arrays. (For information about
REAL as a secondary keyword, see the ALLOCATE, COM, DEF FN, or SUB statements.)

Item Description/Default

numeric name name of a numeric variable

lower bound integer constant;
Default = OPTION BASE value (0 orl)

upper bound integer constant

Example Statements
REAL)-(, y ,Z

REAL Array(- 128:127t15)
REAL A(512) BUFFER

Semantics

Range
Restrictions

any valid name

- 32 767 thru + 32767
(see " array" in Glossary)

- 32 767 thru + 32767
(see "array" in Glossary)

Each REAL variable or array element requires eight bytes of number storage. The maximum
number of subscripts in an array is six, and no dimension may have more than 32 767 ele­
ments. The total number of elements in an array is limited by memory.

Declaring Buffers
To declare REAL variables to be buffers, each variable's name must be followed by the keyword
BUFFER; the designation BUFFER applies only to the variable which it follows.

361

RECORDS
See the TRANSFER statement.

RECOVER
See the ON .. . statements.

361

RECORDS
See the TRANSFER statement.

RECOVER
See the ON .. . statements.

362

RECTANGLE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This statement draws a rectangle. It can be filled, edged, or both.

(RECTANGLE~~ ~-I
~l '--_____ ----1___. EDGE

GRAPHX
Yes
Yes
Yes

Item Description/Default
Range

Restrictions

width

height

numeric expression

numeric expression

Example Statements
RECTANGLE LltB
RECTANGLE 3t-2tFILLtEDGE

362

RECTANGLE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This statement draws a rectangle. It can be filled, edged, or both.

(RECTANGLE~~ ~-I
~l '--_____ ----1___. EDGE

GRAPHX
Yes
Yes
Yes

Item Description/Default
Range

Restrictions

width

height

numeric expression

numeric expression

Example Statements
RECTANGLE LltB
RECTANGLE 3t-2tFILLtEDGE

RECTANGLE 363

Semantics
The rectangle is drawn with dimensions specified as displacements from the current pen position.
Thus, both the width and the height may be negative.

Which corner of the rectangle is at the pen position at the end of the statement depends upon the
signs of the parameters:

Sign Sign Corner of Rectangle
of X ofY at Pen Position

+ + Lower left

+ Upper left
+ Lower right

Upper right

Shape of Rectangle
A rectangle's shape is affected by the current viewing transformation. If isotropic units are in
effect, the rectangle will be the expected shape, but if anisotropic units are in effect the rectangle
will be distorted; stretched or compressed along the axes.

RECTANGLE is affected by the PIVOT and PDIR transformations. If a rotation transformation
and anisotropic units are in effect, the rectangle is rotated first , then stretched or compressed
along the unrotated axes.

FILL and EDGE
FILL causes the rectangle to be filled with the current fill color, and EDGE causes the perimeter to
be drawn with the current pen color and line type. If both FILL and EDGE are specified, the
interior will be filled, then the edge will be drawn. If neither FILL nor EDGE is specified, EDGE is
assumed.

Polygons sent to an HPGL plotter are edged but not filled regardless of any FILL or EDGE
directives on the statement.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Label s Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2 The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn afte r lines or axes is affected by PIVOT ..
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

RECTANGLE 363

Semantics
The rectangle is drawn with dimensions specified as displacements from the current pen position.
Thus, both the width and the height may be negative.

Which corner of the rectangle is at the pen position at the end of the statement depends upon the
signs of the parameters:

Sign Sign Corner of Rectangle
of X ofY at Pen Position

+ + Lower left

+ Upper left
+ Lower right

Upper right

Shape of Rectangle
A rectangle's shape is affected by the current viewing transformation. If isotropic units are in
effect, the rectangle will be the expected shape, but if anisotropic units are in effect the rectangle
will be distorted; stretched or compressed along the axes.

RECTANGLE is affected by the PIVOT and PDIR transformations. If a rotation transformation
and anisotropic units are in effect, the rectangle is rotated first , then stretched or compressed
along the unrotated axes.

FILL and EDGE
FILL causes the rectangle to be filled with the current fill color, and EDGE causes the perimeter to
be drawn with the current pen color and line type. If both FILL and EDGE are specified, the
interior will be filled, then the edge will be drawn. If neither FILL nor EDGE is specified, EDGE is
assumed.

Polygons sent to an HPGL plotter are edged but not filled regardless of any FILL or EDGE
directives on the statement.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Label s Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2 The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn afte r lines or axes is affected by PIVOT ..
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

364

REDIM
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN. .. Yes

This statement changes the subscript range of previously dimensioned arrays.

Item

array name

lower bound

upper bound

Description/Default

name of an array

numeric expression, rounded to an integer;
Default = OPTION BASE value (0 or 1)

numeric expression, rounded to an integer

Example Statements
REDIM Arra ,'(5)
REDIM 5(3:5,6, - 2:2)
REDIM Constant s $ (X,y,Z)

Semantics
The following rules must be followed when redimensioning an array:

Range
Restrictions

any valid name

- 32 768 thru + 32 767
(see "array" in glossary)

- 32 768 thru + 32 767
(see "array" in glossary)

• The array to be redimensioned must have a currently dimensioned size known to the context
(Le., it must have been implicitly or explicitly dimensioned, or be currently allocated, or it
must have been passed into the context.)

• You must retain the same number of dimensions as specified in the original dimension
statement.

• The redimensioned array cannot have more elements than the array was originally dimen­
sioned to hold.

• You cannot change the maximum string length of string arrays.

REDIM does not change any values in the array, although their locations will probably be
different. The REDIM is performed left-to-right and if an error occurs, arrays to the left of the array
the error occurs in will be redimensioned while those to the right will not be. If an array appears
more than once in the REDIM, the rightmost dimensions will be in effect after the REDIM.

364

REDIM
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF .. . THEN. .. Yes

This statement changes the subscript range of previously dimensioned arrays.

Item

array name

lower bound

upper bound

Description/Default

name of an array

numeric expression, rounded to an integer;
Default = OPTION BASE value (0 or 1)

numeric expression, rounded to an integer

Example Statements
REDIM Arra ,'(5)
REDIM 5(3:5,6, - 2:2)
REDIM Constant s $ (X,y,Z)

Semantics
The following rules must be followed when redimensioning an array:

Range
Restrictions

any valid name

- 32 768 thru + 32 767
(see "array" in glossary)

- 32 768 thru + 32 767
(see "array" in glossary)

• The array to be redimensioned must have a currently dimensioned size known to the context
(Le., it must have been implicitly or explicitly dimensioned, or be currently allocated, or it
must have been passed into the context.)

• You must retain the same number of dimensions as specified in the original dimension
statement.

• The redimensioned array cannot have more elements than the array was originally dimen­
sioned to hold.

• You cannot change the maximum string length of string arrays.

REDIM does not change any values in the array, although their locations will probably be
different. The REDIM is performed left-to-right and if an error occurs, arrays to the left of the array
the error occurs in will be redimensioned while those to the right will not be. If an array appears
more than once in the REDIM, the rightmost dimensions will be in effect after the REDIM.

Option Required
Keyboard Executable
Programmable

None
No

Yes
No In an IF ... THEN ...

This statement allows comments in a program.

Item

literal

Description/Default

string constant composed of characters from
the keyboard, including those generated
with the ANY CHAR key

Example Program Lines
100 REM
190

Pro9'rafTl Title

Range
Restrictions

200 IF BIT(Info ,2) THEN Branch Test overran9'e bit

Semantics

REM

REM must be the first keyword on a program line. If you want to add comments to a statement,
an exclamation point must be used to mark the beginning of the comment. If the first character
in a program line is an exclamation point, the line is treated like a REM statement and is not
checked for syntax.

365

Option Required
Keyboard Executable
Programmable

None
No

Yes
No In an IF ... THEN ...

This statement allows comments in a program.

Item

literal

Description/Default

string constant composed of characters from
the keyboard, including those generated
with the ANY CHAR key

Example Program Lines
100 REM
190

Pro9'rafTl Title

Range
Restrictions

200 IF BIT(Info ,2) THEN Branch Test overran9'e bit

Semantics

REM

REM must be the first keyword on a program line. If you want to add comments to a statement,
an exclamation point must be used to mark the beginning of the comment. If the first character
in a program line is an exclamation point, the line is treated like a REM statement and is not
checked for syntax.

365

366

REMOTE
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement places HP-IB devices having remote/local capabilities into the remote state.

Item Description/Default

I/O path name name assigned to a device or devices

device selector numeric expression, rounded to an integer

Example Statements
REMOTE 712
REMOTE @Hpib

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

(see Glossary)

If individual devices are not specified, the remote state for all devices on the bus having
remote/local capabilities is enabled. The bus configuration is unchanged, and the devices
switch to remote if and when they are addressed to listen. If primary addressing is used, only the
specified devices are put into the remote state.

When the computer is the system controller and is switched on, reset, or ABORT is executed,
bus devices are automatically enabled for the remote state and switch to remote when they are
addressed to listen.

The computer must be the system controller to execute this statement, and it must be the active
controller to place individual devices in the remote state.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select I Primary Addressing
Code Only Specified Code Only Specified

REN

Active
ATN

REN MTA Error
Controller

ATN UNL
LAG

Not Active
REN Error Error

Controller

366

REMOTE
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement places HP-IB devices having remote/local capabilities into the remote state.

Item Description/Default

I/O path name name assigned to a device or devices

device selector numeric expression, rounded to an integer

Example Statements
REMOTE 712
REMOTE @Hpib

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

(see Glossary)

If individual devices are not specified, the remote state for all devices on the bus having
remote/local capabilities is enabled. The bus configuration is unchanged, and the devices
switch to remote if and when they are addressed to listen. If primary addressing is used, only the
specified devices are put into the remote state.

When the computer is the system controller and is switched on, reset, or ABORT is executed,
bus devices are automatically enabled for the remote state and switch to remote when they are
addressed to listen.

The computer must be the system controller to execute this statement, and it must be the active
controller to place individual devices in the remote state.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select I Primary Addressing
Code Only Specified Code Only Specified

REN

Active
ATN

REN MTA Error
Controller

ATN UNL
LAG

Not Active
REN Error Error

Controller

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
Yes
No
No

REN

This command allows you to renumber all or a portion of the program currently in memory.

Item

starting value

increment

beginning line number

beginning line label

ending line number

ending line label

beginn ing
line number

beginning
line label

Description/ Default

integer constant identifying a program line;
Default = 10

integer constant; Default = 10

integer constant identifying program line

name of a program line

integer constant identifying program line;
Default = last program line

name of a program line

ending
line label

Range
Restrictions

1 thru 32766

1 thru 32767

1 thru 32766

any valid name

1 thru 32766

any valid name

367

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
Yes
No
No

REN

This command allows you to renumber all or a portion of the program currently in memory.

Item

starting value

increment

beginning line number

beginning line label

ending line number

ending line label

beginn ing
line number

beginning
line label

Description/ Default

integer constant identifying a program line;
Default = 10

integer constant; Default = 10

integer constant identifying program line

name of a program line

integer constant identifying program line;
Default = last program line

name of a program line

ending
line label

Range
Restrictions

1 thru 32766

1 thru 32767

1 thru 32766

any valid name

1 thru 32766

any valid name

367

368 REN

Example Statements
REN
REN 1000t5
REN 270tl IN 260tLabeil

Semantics
The program segment to be renumbered is delimited by the beginning line number or label (or
the first line in the program) and the ending line number or label (or the last line in the program).
The first line in the renumbered segment is given the specified starting value, and subsequent line
numbers are separated by the increment. If a renumbered line is referenced by a statement (such
as GOTO or GOSUB), those references will be updated to reflect the new line numbers.
Renumbering a paused program causes it to move to the stopped state.

REN cannot be used to move lines. If renumbering would cause lines to overlap preceding or
following lines, an error occurs and no renumbering takes place.

If the highest line number resulting from the REN command exceeds 32 766, an error message is
displayed and no renumbering takes place. An error occurs if the beginning line is after the ending
line, or if one of line labels specified doesn't exist.

368 REN

Example Statements
REN
REN 1000t5
REN 270tl IN 260tLabeil

Semantics
The program segment to be renumbered is delimited by the beginning line number or label (or
the first line in the program) and the ending line number or label (or the last line in the program).
The first line in the renumbered segment is given the specified starting value, and subsequent line
numbers are separated by the increment. If a renumbered line is referenced by a statement (such
as GOTO or GOSUB), those references will be updated to reflect the new line numbers.
Renumbering a paused program causes it to move to the stopped state.

REN cannot be used to move lines. If renumbering would cause lines to overlap preceding or
following lines, an error occurs and no renumbering takes place.

If the highest line number resulting from the REN command exceeds 32 766, an error message is
displayed and no renumbering takes place. An error occurs if the beginning line is after the ending
line, or if one of line labels specified doesn't exist.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
Yes
Yes

RENAME

This statement changes a file's name in the mass storage media 's directory. (If using RENAME
with SRM, also refer to the " SRM" section of this manual.)

l iter a l form of file spe cifie r :

Item

old file specifier

new file specifier

file name

protect code

msus

Description/ Default

string expression

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
RENAME "TEMP<pc>" TO "FINAL"
RENAME NaMe$&Msus$ TO TeMP$

Semantics

Range
Restrictions

(see drawing)

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

The new file name must not duplicate the name of any other file in the directory. A protected file
retains its old protect code, which must be included in the old file specifier. Because you cannot
move a file from one mass storage device to another with RENAME, the msus of the new file
specifier is ignored.

REORDER
See the MAT REORDER statement.

369

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
Yes
Yes
Yes

RENAME

This statement changes a file's name in the mass storage media 's directory. (If using RENAME
with SRM, also refer to the " SRM" section of this manual.)

l iter a l form of file spe cifie r :

Item

old file specifier

new file specifier

file name

protect code

msus

Description/ Default

string expression

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
RENAME "TEMP<pc>" TO "FINAL"
RENAME NaMe$&Msus$ TO TeMP$

Semantics

Range
Restrictions

(see drawing)

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

The new file name must not duplicate the name of any other file in the directory. A protected file
retains its old protect code, which must be included in the old file specifier. Because you cannot
move a file from one mass storage device to another with RENAME, the msus of the new file
specifier is ignored.

REORDER
See the MAT REORDER statement.

369

370

REPEAT ... UNTIL
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

This construct defines a loop which is repeated until the boolean expression in the UNTIL
statement evaluates to be logically true (evaluates to non-zero).

(REPEAT)-!

b o o l ean
expression

Item DescriptionlDefault

boolean expression numeric expression; evaluated as true if non­
zero and false if zero

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct(s).

Example Program Segments
530 REPEAT
5aO PRINT Factor
550 Factor =Factor*l.l
580 UNTIL Factor >10

880 REPEAT
880 INPUT "Enter a positil)e nUITlber" ,NUITlber
700 UNTIL Number>=O

Range
Restrictions

370

REPEAT ... UNTIL
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

This construct defines a loop which is repeated until the boolean expression in the UNTIL
statement evaluates to be logically true (evaluates to non-zero).

(REPEAT)-!

b o o l ean
expression

Item DescriptionlDefault

boolean expression numeric expression; evaluated as true if non­
zero and false if zero

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct(s).

Example Program Segments
530 REPEAT
5aO PRINT Factor
550 Factor =Factor*l.l
580 UNTIL Factor >10

880 REPEAT
880 INPUT "Enter a positil)e nUITlber" ,NUITlber
700 UNTIL Number>=O

Range
Restrictions

REPEAL .UNTIL 371

Semantics
The REPEAT ... UNTIL construct allows program execution dependent on the outcome of a
relational test performed at the end of the loop. Execution starts with the first program line
following the REPEAT statement, and continues to the UNTIL statement where a relational test
is performed. If the test is false a branch is made to the first program line following the REPEAT
statement.

When the relational test is true , program execution continues with the first program line following
the UNTIL statement.

Branching into a REPEAT .. . UNTIL construct (via a GOTO) results in normal execution up to
the UNTIL statement, where the test is made. Execution will continue as if the construct had
been entered normally.

Nesting Constructs Property

REPEAT ... UNTIL constructs may be nested within other constructs provided the inner con­
struct begins and ends before the outer construct can end.

REPEAL .UNTIL 371

Semantics
The REPEAT ... UNTIL construct allows program execution dependent on the outcome of a
relational test performed at the end of the loop. Execution starts with the first program line
following the REPEAT statement, and continues to the UNTIL statement where a relational test
is performed. If the test is false a branch is made to the first program line following the REPEAT
statement.

When the relational test is true , program execution continues with the first program line following
the UNTIL statement.

Branching into a REPEAT .. . UNTIL construct (via a GOTO) results in normal execution up to
the UNTIL statement, where the test is made. Execution will continue as if the construct had
been entered normally.

Nesting Constructs Property

REPEAT ... UNTIL constructs may be nested within other constructs provided the inner con­
struct begins and ends before the outer construct can end.

372

REQUEST
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement is used by a non-active controller to send a Service Request (SRQ) on an HP-IB
interface.

Item

interface
select code

serial poll
r esponse byte

Description/Default

110 path name

interface select code

serial poll response byte

name assigned to an HP-IB interface

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
REQUEST @Hp_ib ; 5it_G+5it _O
REQUEST Isc ; Re spo nse

Semantics

Range
Restrictions

any valid name

7 thru 31

o thru 255

To request service, the value of the serial poll response must have bit 6 set; this bit asserts the SRQ
line. SRQ will remain set until either the Active Controller performs a Serial Poll or until the
computer executes another REQUEST with bit 6 clear.

Only the interface select code may be specified to receive the Request; if a device selector that
contains address information, or an I/O path assigned to a device selector with address informa­
tion is specified, an error results. An error will also results if the computer is currently the Active
Controller.

372

REQUEST
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement is used by a non-active controller to send a Service Request (SRQ) on an HP-IB
interface.

Item

interface
select code

serial poll
r esponse byte

Description/Default

110 path name

interface select code

serial poll response byte

name assigned to an HP-IB interface

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
REQUEST @Hp_ib ; 5it_G+5it _O
REQUEST Isc ; Re spo nse

Semantics

Range
Restrictions

any valid name

7 thru 31

o thru 255

To request service, the value of the serial poll response must have bit 6 set; this bit asserts the SRQ
line. SRQ will remain set until either the Active Controller performs a Serial Poll or until the
computer executes another REQUEST with bit 6 clear.

Only the interface select code may be specified to receive the Request; if a device selector that
contains address information, or an I/O path assigned to a device selector with address informa­
tion is specified, an error results. An error will also results if the computer is currently the Active
Controller.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
No
No

RES

This function returns the result of the last numeric computation which was executed from the
keyboard.

Example Statements
RES
3.S*RES+A

373

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
No
No

RES

This function returns the result of the last numeric computation which was executed from the
keyboard.

Example Statements
RES
3.S*RES+A

373

374

RE-SAVE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement creates an ASCII file and copies program lines as strings into that file. (If using
RE-SAVE with SRM, also refer to the "SRM" section of this manual.)

beginning
line number

beginning
line label

literal form of file specifier:

file
name f------r---------y-~ 0-
~

Item

file specifier

beginning line number

beginning line label

ending line number

ending line label

file name

msus

Description/Default

string expression

integer constant identifying program line:
Default = first program line

name of a program line

integer constant identifying a program line:
Default = last program line

name of a program line

literal

literal

ending
line number

ending
line label

Range
Restrictions

(see drawing)

1 thru 32766

any valid name

1 thru 32 766

any valid name

any valid file name

(see MASS
STORAGE IS)

374

RE-SAVE
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
Yes
Yes

This statement creates an ASCII file and copies program lines as strings into that file. (If using
RE-SAVE with SRM, also refer to the "SRM" section of this manual.)

beginning
line number

beginning
line label

literal form of file specifier:

file
name f------r---------y-~ 0-
~

Item

file specifier

beginning line number

beginning line label

ending line number

ending line label

file name

msus

Description/Default

string expression

integer constant identifying program line:
Default = first program line

name of a program line

integer constant identifying a program line:
Default = last program line

name of a program line

literal

literal

ending
line number

ending
line label

Range
Restrictions

(see drawing)

1 thru 32766

any valid name

1 thru 32 766

any valid name

any valid file name

(see MASS
STORAGE IS)

(

Example Statements
RE-SA')E "Nailfile"

RE-SAI.JE Nafrle$, 1 ,So rt

Semantics

RE-SAVE 375

An entire program can be saved, or the portion delimited by beginning and (if needed) ending
line labels or line numbers. If the file name already exists, the old file entry is removed from the
directory after the new file is succesfully saved on the mass storage media. Pressing (RESET) during
a RE-SAVE operation results in the old file being retained. Attempting to RE-SAVE any file that is not
an ASCII file results in an error.

If a specified line label does not exist, error 3 occurs. If a specifed line number does not exist, the
program lines with numbers inside the range specified are saved. If the ending line number is less than
the beginning line number, error 41 occurs.

(

Example Statements
RE-SA')E "Nailfile"

RE-SAI.JE Nafrle$, 1 ,So rt

Semantics

RE-SAVE 375

An entire program can be saved, or the portion delimited by beginning and (if needed) ending
line labels or line numbers. If the file name already exists, the old file entry is removed from the
directory after the new file is succesfully saved on the mass storage media. Pressing (RESET) during
a RE-SAVE operation results in the old file being retained. Attempting to RE-SAVE any file that is not
an ASCII file results in an error.

If a specified line label does not exist, error 3 occurs. If a specifed line number does not exist, the
program lines with numbers inside the range specified are saved. If the ending line number is less than
the beginning line number, error 41 occurs.

376

RESET
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement resets an interface or the pointers of either a mass storage file or buffer. (For
information about RESET as a Secondary keyword, see the SUSPEND INTERACTIVE state­
ment. If using RESET with SRM, also refer to the "SRM" section of this manual.)

interface
select code

Item

1/0 path name

interface select code

Description/Default

name assigned to an interface, mass storage file,
or buffer

numeric expression, rounded to an integer

Example Statements
RESET Hpib
RESET 20
RESET @Buffer_x

Semantics

Range
Restrictions

any valid name

7 thru 31

A RESET directed to an interface initiates an interface-dependent action; see the "Interface
Registers" section for further details. A RESET directed to a mass storage file resets the file
pointer to the beginning of the file. A RESET directed to a buffer resets all registers to their initial
values: the empty and fill pointers are set to 1, and the current-number-of-bytes and all other
registers are reset to zero.

If a TRANSFER is currently being made to or from the specified resource, the computer waits
until the TRANSFER is complete before executing the RESET. If the TRANSFER is not to be
completed, an ABORTIO may be executed to halt the TRANSFER before executing the RESET.
If a busy buffer is specified in a RESET statement, error 612 results.

376

RESET
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement resets an interface or the pointers of either a mass storage file or buffer. (For
information about RESET as a Secondary keyword, see the SUSPEND INTERACTIVE state­
ment. If using RESET with SRM, also refer to the "SRM" section of this manual.)

interface
select code

Item

1/0 path name

interface select code

Description/Default

name assigned to an interface, mass storage file,
or buffer

numeric expression, rounded to an integer

Example Statements
RESET Hpib
RESET 20
RESET @Buffer_x

Semantics

Range
Restrictions

any valid name

7 thru 31

A RESET directed to an interface initiates an interface-dependent action; see the "Interface
Registers" section for further details. A RESET directed to a mass storage file resets the file
pointer to the beginning of the file. A RESET directed to a buffer resets all registers to their initial
values: the empty and fill pointers are set to 1, and the current-number-of-bytes and all other
registers are reset to zero.

If a TRANSFER is currently being made to or from the specified resource, the computer waits
until the TRANSFER is complete before executing the RESET. If the TRANSFER is not to be
completed, an ABORTIO may be executed to halt the TRANSFER before executing the RESET.
If a busy buffer is specified in a RESET statement, error 612 results.

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

RESTORE

RESTORE specifies which DATA statement will be used by the next READ operation.

Item

line label

line number

o escri pti 0 n/ Defa ult

name of a program line

integer constant identifying a program line;
Default = first DATA statement in context

Example Statements
RESTORE
RESTORE Third_array

Semantics

Range
Restrictions

any valid name

1 thru 32766

If a line is specified which does not contain a DATA statement, the computer uses the first
DATA statement after the specified line. RESTORE can only refer to lines within the current
context. An error results if the specified line does not exist.

377

(

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
No

Yes
Yes

RESTORE

RESTORE specifies which DATA statement will be used by the next READ operation.

Item

line label

line number

o escri pti 0 n/ Defa ult

name of a program line

integer constant identifying a program line;
Default = first DATA statement in context

Example Statements
RESTORE
RESTORE Third_array

Semantics

Range
Restrictions

any valid name

1 thru 32766

If a line is specified which does not contain a DATA statement, the computer uses the first
DATA statement after the specified line. RESTORE can only refer to lines within the current
context. An error results if the specified line does not exist.

377

378

RE-STORE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement creates a file and stores the program or typing-aid key definitions into it. (If using
RE-STORE with SRM, also refer to the "SRM" section of this manual.)

literal for m of file specifier :

378

RE-STORE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement creates a file and stores the program or typing-aid key definitions into it. (If using
RE-STORE with SRM, also refer to the "SRM" section of this manual.)

literal for m of file specifier :

(
Item

file specifier

file name

protect code

msus

Description/ Default

string expression

literal

literal: first two non-blank characters are signifi­
cant

literal

Example Statements
RE-STORE File na me$ &Msus$
RE-STORE f::E Y "KEYS"

Semantics

RE-STORE 379

Range
Restrictions

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

If the file already exists , the old file is removed from the directory after the new file is successfully
saved on the mass storage media. If an old file does not exist, a new one is created as if this were
the STORE statement. Pressing (RESET) during a RE-STORE operation causes the old file to be
retained. If the old file had a protect code, the same protect code must be used in the RE-STORE
operation. Attempting to RE-STORE a file which is the wrong type results in an error. (RE­
STORE creates a PROG file , and RE-STORE KEY creates a BOAT file.)

(
Item

file specifier

file name

protect code

msus

Description/ Default

string expression

literal

literal: first two non-blank characters are signifi­
cant

literal

Example Statements
RE-STORE File na me$ &Msus$
RE-STORE f::E Y "KEYS"

Semantics

RE-STORE 379

Range
Restrictions

(see drawing)

any valid file name

">" not allowed

(see MASS
STORAGE IS)

If the file already exists , the old file is removed from the directory after the new file is successfully
saved on the mass storage media. If an old file does not exist, a new one is created as if this were
the STORE statement. Pressing (RESET) during a RE-STORE operation causes the old file to be
retained. If the old file had a protect code, the same protect code must be used in the RE-STORE
operation. Attempting to RE-STORE a file which is the wrong type results in an error. (RE­
STORE creates a PROG file , and RE-STORE KEY creates a BOAT file.)

380

RESUME INTERACTIVE
Option Required None
Keyboard Executable Yes l

Programmable Yes
In an IF.. .THEN... Yes

This statement enables the (EXECUTE), (ENTER 1, (RETURN), (PAUSE) , (STOP), (STEP), (CLR 110), (BREAK)
and (RESET) keys after a SUSPEND INTERACTIVE statement.

(RESUME INTERACTIVE~

Example Statements
RESUME INTERACTIVE
IF Kbd_flag THEN RESUME INTERACTIVE

1 This statement is executable from the keyboard. but onlywhile SUSPEND INTERACTIVE is not in effect.

380

RESUME INTERACTIVE
Option Required None
Keyboard Executable Yes l

Programmable Yes
In an IF.. .THEN... Yes

This statement enables the (EXECUTE), (ENTER 1, (RETURN), (PAUSE) , (STOP), (STEP), (CLR 110), (BREAK)
and (RESET) keys after a SUSPEND INTERACTIVE statement.

(RESUME INTERACTIVE~

Example Statements
RESUME INTERACTIVE
IF Kbd_flag THEN RESUME INTERACTIVE

1 This statement is executable from the keyboard. but onlywhile SUSPEND INTERACTIVE is not in effect.

RETURN
Option Required None
Keyboard Executable No
Programmable Yes
In an IF ... THEN.. . Yes

This statement returns program execution to the line following the invoking GOSUB. The
keyword RETURN is also used in user-defined functions (see DEF FN).

(RETURN)--l

381

RETURN
Option Required None
Keyboard Executable No
Programmable Yes
In an IF ... THEN.. . Yes

This statement returns program execution to the line following the invoking GOSUB. The
keyword RETURN is also used in user-defined functions (see DEF FN).

(RETURN)--l

381

382

REV$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns a string formed by reversing the sequence of characters in the specified
string.

string
expression

Example Statements
R e l} e r s e $ = REt.) $ (" pal i 1"1 d r a ITI e ")

Las t _ b 1 a 1"1 f, = LEN (S e 1"1 t e 1"1 c e $) - PO S (REt.) $ (S e 1"1 t e 1"1 c e $) ," ")

Semantics
The REV$ function is useful when searching for the last occurrence of an item within a string.

382

REV$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns a string formed by reversing the sequence of characters in the specified
string.

string
expression

Example Statements
R e l} e r s e $ = REt.) $ (" pal i 1"1 d r a ITI e ")

Las t _ b 1 a 1"1 f, = LEN (S e 1"1 t e 1"1 c e $) - PO S (REt.) $ (S e 1"1 t e 1"1 c e $) ," ")

Semantics
The REV$ function is useful when searching for the last occurrence of an item within a string.

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns a pseudo-random number greater than 0 and less than 1.

Example Statements
Percent=RND*100
IF RND{.5 THEN Case1

Semantics

RND

The random number returned is based on a seed set to 37 480 660 at power-on, SCRATCH,
SCRATCH A, or program prerun. Each succeeding use of RND returns a random number
which uses the previous random number as a seed. The seed can be modified with the
RANDOMIZE statement.

383

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns a pseudo-random number greater than 0 and less than 1.

Example Statements
Percent=RND*100
IF RND{.5 THEN Case1

Semantics

RND

The random number returned is based on a seed set to 37 480 660 at power-on, SCRATCH,
SCRATCH A, or program prerun. Each succeeding use of RND returns a random number
which uses the previous random number as a seed. The seed can be modified with the
RANDOMIZE statement.

383

384

ROTATE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of bit positions specified. The shift is performed
with wraparound.

Item

argument

bit position
displacement

bit position
displacement

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
NeIAI_IAIO rd =ROTATE (01 d_IAIO rd ,2)
Q=ROTATE(Q,Places)

Semantics

Range
Restrictions

-32768 thru
+32767

-32768 thru
+32767

Recommended
Range

-15 thru
+ 15

The argument is converted into a 16-bit, two's-complement form. If the bit position displace­
ment is positive, the rotation is towards the least-significant bit. If the bit position displacement
is negative, the rotation is towards the most-significant bit. The rotation is performed without
changing the value of any variable in the argument.

384

ROTATE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of bit positions specified. The shift is performed
with wraparound.

Item

argument

bit position
displacement

bit position
displacement

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
NeIAI_IAIO rd =ROTATE (01 d_IAIO rd ,2)
Q=ROTATE(Q,Places)

Semantics

Range
Restrictions

-32768 thru
+32767

-32768 thru
+32767

Recommended
Range

-15 thru
+ 15

The argument is converted into a 16-bit, two's-complement form. If the bit position displace­
ment is positive, the rotation is towards the least-significant bit. If the bit position displacement
is negative, the rotation is towards the most-significant bit. The rotation is performed without
changing the value of any variable in the argument.

RPLOT
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement moves the pen from the current pen position to the point specified by adding the x
and y displacements to the local origin. It can be used to move with or without drawing a line
depending on the pen control parameter.

x
displacement

Item

y
displacement

Description/ Default

numeric expression in current units

numeric expression in current units

Range
Restrictions

x displacement

y displacement

pen control numeric expression, rounded to an integer; - 32768 thru +32767
Default = 1

array name name of two-dimensional, two-column or three- any valid name
column numeric array. Requires GRAPHX

Example Statements
RPLOT Rel_x ,Rel_}' ,Pen_action

RPLOT 5,12

RPLOT Shape(*l ,FILL,EDGE

Semantics
This statement moves the pen to the specified X and Y coordinates relative to the local coordinate
origin. Both moves and draws may be generated, depending on the pen control parameter. Lines
are drawn using the current pen color and line type.

The local coordinate origin is the logical pen position at the completion of one of the following
statements. The local coordinate origin is not changed by the RPLOT statement.

AXES
[PLOT
SYMBOL

DRAW
LABEL

FRAME
MOVE

GINIT
PLOT

GRID
POLYGON

[DRAW
POLYLINE

[MOVE
RECTANGLE

385

RPLOT
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement moves the pen from the current pen position to the point specified by adding the x
and y displacements to the local origin. It can be used to move with or without drawing a line
depending on the pen control parameter.

x
displacement

Item

y
displacement

Description/ Default

numeric expression in current units

numeric expression in current units

Range
Restrictions

x displacement

y displacement

pen control numeric expression, rounded to an integer; - 32768 thru +32767
Default = 1

array name name of two-dimensional, two-column or three- any valid name
column numeric array. Requires GRAPHX

Example Statements
RPLOT Rel_x ,Rel_}' ,Pen_action

RPLOT 5,12

RPLOT Shape(*l ,FILL,EDGE

Semantics
This statement moves the pen to the specified X and Y coordinates relative to the local coordinate
origin. Both moves and draws may be generated, depending on the pen control parameter. Lines
are drawn using the current pen color and line type.

The local coordinate origin is the logical pen position at the completion of one of the following
statements. The local coordinate origin is not changed by the RPLOT statement.

AXES
[PLOT
SYMBOL

DRAW
LABEL

FRAME
MOVE

GINIT
PLOT

GRID
POLYGON

[DRAW
POLYLINE

[MOVE
RECTANGLE

385

386 RPLOT

The line is clipped at the current clipping boundary. RPLOT is affected by the PIVOT and PDIR
transformations. If none of the line is inside the current clip limits, the pen is not moved, but the
logical pen position is updated.

Non-Array Parameters
The specified X and Y displacements information is interpreted according to the current unit-of­
measure. Lines are drawn using the current pen color and line type .

If none of the line is inside the current clip limits , the pen is not moved, but the logical pen position
is updated.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling .
Note 2 The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

The optional pen control parameter specifies the following plotting actions; the default value is
+ 1 (down after move) .

Pen Control Parameter

Pen Control

-Even
-Odd
+ Even
+ Odd

Resultant Action

Pen up before move
Pen down before move
Pen up after move
Pen down after move

The above table is summed up by: even is up, odd is down, positive is after pen motion,
negative is before pen motion.

Array Parameters
When using the RPLOT statement with an array, either a two-column or a three-column array
may be used. If a two-column array is used, the third parameter is assumed to be + 1: pen down
after move.

386 RPLOT

The line is clipped at the current clipping boundary. RPLOT is affected by the PIVOT and PDIR
transformations. If none of the line is inside the current clip limits, the pen is not moved, but the
logical pen position is updated.

Non-Array Parameters
The specified X and Y displacements information is interpreted according to the current unit-of­
measure. Lines are drawn using the current pen color and line type .

If none of the line is inside the current clip limits , the pen is not moved, but the logical pen position
is updated.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling .
Note 2 The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by PDIR.

X

LDIR PDIR

Note 4

X
X

Note 2

The optional pen control parameter specifies the following plotting actions; the default value is
+ 1 (down after move) .

Pen Control Parameter

Pen Control

-Even
-Odd
+ Even
+ Odd

Resultant Action

Pen up before move
Pen down before move
Pen up after move
Pen down after move

The above table is summed up by: even is up, odd is down, positive is after pen motion,
negative is before pen motion.

Array Parameters
When using the RPLOT statement with an array, either a two-column or a three-column array
may be used. If a two-column array is used, the third parameter is assumed to be + 1: pen down
after move.

(

RPLOT 387

FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the
array is reached, or when the value in the third column is an even number less than three , or
in the ranges 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the RPLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current pen color.
If polygon mode is entered from within the array, and the FILL/EDGE directive for that series
of polygons differs from the FILL/EDGE directive on the RPLOT statement itself, the directive
in the array replaces the directive on the statement. In other words, if a "start polygon mode"
operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether
specified by a keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the RPLOT statement, FILL occurs first. If neither
one is specified, simple line drawing mode is assumed; that is, polygon closure does not take
place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled , but will be
edged, regardless of the directives on the statement.

When using an RPLOT statement with an array, the following list of operation selectors ap­
plies. An operation selector is the value in the third column of a row of the array to be plotted.
The array must be a two-dimensional, two-column or three-column array. If the third column
exists, it will contain operation selectors which instruct the computer to carry out certain op­
erations. Polygons may be defined, edged (using the current pen) , filled (using the current fill
color), pen and line type may be selected, and so forth.

Operation
Column 1 Column 2 Selector Meaning

X y - 2 Pen up before moving
X y - 1 Pen down before moving
X y 0 Pen up after moving (Same as + 2)
X Y 1 Pen down after moving
X y 2 Pen up after moving

pen number ignored 3 Select pen
line type repeat value 4 Select line type

color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value

ignored ignored > 15 Ignored

(

RPLOT 387

FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the
array is reached, or when the value in the third column is an even number less than three , or
in the ranges 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the RPLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current pen color.
If polygon mode is entered from within the array, and the FILL/EDGE directive for that series
of polygons differs from the FILL/EDGE directive on the RPLOT statement itself, the directive
in the array replaces the directive on the statement. In other words, if a "start polygon mode"
operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether
specified by a keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the RPLOT statement, FILL occurs first. If neither
one is specified, simple line drawing mode is assumed; that is, polygon closure does not take
place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled , but will be
edged, regardless of the directives on the statement.

When using an RPLOT statement with an array, the following list of operation selectors ap­
plies. An operation selector is the value in the third column of a row of the array to be plotted.
The array must be a two-dimensional, two-column or three-column array. If the third column
exists, it will contain operation selectors which instruct the computer to carry out certain op­
erations. Polygons may be defined, edged (using the current pen) , filled (using the current fill
color), pen and line type may be selected, and so forth.

Operation
Column 1 Column 2 Selector Meaning

X y - 2 Pen up before moving
X y - 1 Pen down before moving
X y 0 Pen up after moving (Same as + 2)
X Y 1 Pen down after moving
X y 2 Pen up after moving

pen number ignored 3 Select pen
line type repeat value 4 Select line type

color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value

ignored ignored > 15 Ignored

388 RPLOT

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array RPLOT statement. Even is up, odd is down,
positive is after pen motion , negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number desired.
The value in column two is ignored.

Selecting Line Types
An operation selector of 4 selects a line type . The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is evalu­
ated and rounded down to the next multiple of 5 , with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color
Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessariy immediately) , is a row whose operation selector in col­
umn three has the value of 15. The first column in that row contains the blue value. These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word, that is, the most significant bit in
the word is ignored. Each group of five bits contains a number which determines the intensity
of the corresponding color component, which ranges from zero to sixteen. The value in each
field will be sixteen minus the intenSity of the color component. For example, if the value in
the first column of the array is zero, all three five-bit values would thus be zero. Sixteen minus
zero in all three cases would turn on all three color components to full intenSity, and the
resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red, green, and
blue in the variables R, G, and B, respectively, the value for the first column in the array could
be defined thus:

A r r a }' (R 0 IAI , 1) = S H I F T (1 G * (1 - B) ,- 1 0) + S H I F T (1 G * (1 - G) ,- 5) + 1 G * (1 - R)

If there is a pen color in the color map similar to that which you request here, that non­
dithered color will be used. If there is not a similar color, you will get a dithered pattern.

388 RPLOT

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array RPLOT statement. Even is up, odd is down,
positive is after pen motion , negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number desired.
The value in column two is ignored.

Selecting Line Types
An operation selector of 4 selects a line type . The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is evalu­
ated and rounded down to the next multiple of 5 , with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color
Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessariy immediately) , is a row whose operation selector in col­
umn three has the value of 15. The first column in that row contains the blue value. These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word, that is, the most significant bit in
the word is ignored. Each group of five bits contains a number which determines the intensity
of the corresponding color component, which ranges from zero to sixteen. The value in each
field will be sixteen minus the intenSity of the color component. For example, if the value in
the first column of the array is zero, all three five-bit values would thus be zero. Sixteen minus
zero in all three cases would turn on all three color components to full intenSity, and the
resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red, green, and
blue in the variables R, G, and B, respectively, the value for the first column in the array could
be defined thus:

A r r a }' (R 0 IAI , 1) = S H I F T (1 G * (1 - B) ,- 1 0) + S H I F T (1 G * (1 - G) ,- 5) + 1 G * (1 - R)

If there is a pen color in the color map similar to that which you request here, that non­
dithered color will be used. If there is not a similar color, you will get a dithered pattern.

RPLOT 389

Polygons
A six, ten , or eleven in the third column of the array begins a " polygon mode" . If the opera­
tion selector is 6, the polygon will be filled with the current fill color. If the operation selector is
10, the polygon will be edged with the current pen number and line type . If the operation
selector is 11 , the polygon will be both filled and edged. Many individual polygons can be
filled without terminating the mode with an operation selector 7. This can be done by specify­
ing several series of draws separated by moves. The first and second columns are ignored and
should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation selec­
tors 6, 10, or 11). The values in the first and second columns are ignored and the X and Y
values of the last data point should not be in them. Edging and/or filling of the most recent
polygon will begin immediately upon encountering this operation selector.

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot
be changed from within the RPLOT statement, so one probably would not have more than
one operation selector 12 in an array to RPLOT, since the last FRAME will overwrite all the
previous ones.

Premature Termination
Operation selector 8 causes the RPLOT statement to be terminated. The RPLOT statement
will successfully terminate if the actual end of the array has been reached, so use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than - 2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

RPLOT 389

Polygons
A six, ten , or eleven in the third column of the array begins a " polygon mode" . If the opera­
tion selector is 6, the polygon will be filled with the current fill color. If the operation selector is
10, the polygon will be edged with the current pen number and line type . If the operation
selector is 11 , the polygon will be both filled and edged. Many individual polygons can be
filled without terminating the mode with an operation selector 7. This can be done by specify­
ing several series of draws separated by moves. The first and second columns are ignored and
should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation selec­
tors 6, 10, or 11). The values in the first and second columns are ignored and the X and Y
values of the last data point should not be in them. Edging and/or filling of the most recent
polygon will begin immediately upon encountering this operation selector.

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot
be changed from within the RPLOT statement, so one probably would not have more than
one operation selector 12 in an array to RPLOT, since the last FRAME will overwrite all the
previous ones.

Premature Termination
Operation selector 8 causes the RPLOT statement to be terminated. The RPLOT statement
will successfully terminate if the actual end of the array has been reached, so use of operation
selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than - 2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

390

RPT$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This function returns the string repeated a given number of times.

Item

argument

repeat factor

Description/Default

string expression

numeric expression, rounded to an integer

Example Statements
PRINT RPT$("*",BO)

Center$=RPT$(" II ,(Ri!:lht-Left-Len!:lth) / Z)

Semantics

Range
Restrictions

o thru 32767

None
Yes
Yes
Yes

The value of the numeric expression is rounded to an integer. If the numeric expression evaluates
to a zero, a null string is returned.

An error will result if the numeric expression evaluates to a negative number or if the string
created by RPT$ contains more than 32 767 characters.

RSUM
See the MAT statement.

390

RPT$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

This function returns the string repeated a given number of times.

Item

argument

repeat factor

Description/Default

string expression

numeric expression, rounded to an integer

Example Statements
PRINT RPT$("*",BO)

Center$=RPT$(" II ,(Ri!:lht-Left-Len!:lth) / Z)

Semantics

Range
Restrictions

o thru 32767

None
Yes
Yes
Yes

The value of the numeric expression is rounded to an integer. If the numeric expression evaluates
to a zero, a null string is returned.

An error will result if the numeric expression evaluates to a negative number or if the string
created by RPT$ contains more than 32 767 characters.

RSUM
See the MAT statement.

(

Option Required
Keyboard Executable
Programmable
In an IF. .THEN ...

None
Yes
No
No

This command starts program execution at a specified line.

Item

line number

line label

Description/ Default

integer constant identifying a program line;
Default = first program line

name of a program line

Example Statements
RUN 10
RUN Part2

Semantics

Range
Restrictions

1 thru 32766

RUN

any valid name

Pressing the (]Q[) key is the same as executing RUN with no label or line number. RUN is
executed in two phases: prerun initialization and program execution.

The prerun phase consists of:

• Reserving memory space for variables specified in COM statements (both labeled and
blank). See COM for a description of when COM areas are initialized.

• Reserving memory space for variables specified by DIM, REAL, INTEGER, or implied in the
main program segment. This does not include variables used with ALLOCATE, which is
done at run-time. Numeric variables are initialized to 0; string variables are initialized to the
null string.

• Checking for syntax errors which require more than one program line to detect. Included
in this are errors such as incorrect array references, and mismatched parameter or COM
lists.

If an error is detected during prerun phase, prerun halts and an error message is displayed on
the CRT.

After successful completion of prerun initialization, program execution begins with either the
lowest numbered program line or the line specified in the RUN command. If the line number
specified does not exist in the main program, execution begins at the next higher-numbered
line. An error results if there is no higher-numbered line available within the main program, or if
the specified line label cannot be found in the main program.

391

(

Option Required
Keyboard Executable
Programmable
In an IF. .THEN ...

None
Yes
No
No

This command starts program execution at a specified line.

Item

line number

line label

Description/ Default

integer constant identifying a program line;
Default = first program line

name of a program line

Example Statements
RUN 10
RUN Part2

Semantics

Range
Restrictions

1 thru 32766

RUN

any valid name

Pressing the (]Q[) key is the same as executing RUN with no label or line number. RUN is
executed in two phases: prerun initialization and program execution.

The prerun phase consists of:

• Reserving memory space for variables specified in COM statements (both labeled and
blank). See COM for a description of when COM areas are initialized.

• Reserving memory space for variables specified by DIM, REAL, INTEGER, or implied in the
main program segment. This does not include variables used with ALLOCATE, which is
done at run-time. Numeric variables are initialized to 0; string variables are initialized to the
null string.

• Checking for syntax errors which require more than one program line to detect. Included
in this are errors such as incorrect array references, and mismatched parameter or COM
lists.

If an error is detected during prerun phase, prerun halts and an error message is displayed on
the CRT.

After successful completion of prerun initialization, program execution begins with either the
lowest numbered program line or the line specified in the RUN command. If the line number
specified does not exist in the main program, execution begins at the next higher-numbered
line. An error results if there is no higher-numbered line available within the main program, or if
the specified line label cannot be found in the main program.

391

392

SAVE Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

This statement creates an ASCII file and copies program lines as strings into that file. (If using
SAVE with SRM, also refer to the "SRM" section of this manual.)

literal form of file specifier:

beginning
line label

ending
line number

ending
line label

392

SAVE Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

None
Yes
Yes
Yes

This statement creates an ASCII file and copies program lines as strings into that file. (If using
SAVE with SRM, also refer to the "SRM" section of this manual.)

literal form of file specifier:

beginning
line label

ending
line number

ending
line label

Item

file specifier

beginning line number

beginning line label

ending line number

ending line label

file name

msus

Description/Default

string expression

integer constant identifying a program line;
Default = first program line

name of a program line

integer constant identifying a program line;
Default = last program line

name of a program line

literal

literal

Example Statements
SAljE "WHALES"
SAljE "TEMP",1 ,Sort

Semantics

Range
Restrictions

(see drawing)

1 thru 32766

any ualid name

1. thru 32 766

SAVE 393

any valid name

any valid file name

(see MASS
STORAGE IS)

An entire program can be saved, or any portion delimited by the beginning and (if needed)
ending line numbers or labels. This statement is for creating new files . Attempting to SAVE a file
name that already exists causes error 54. If you need to replace an old file, see RE-SAVE.

If a specified line label does not exist, error 3 occurs. If a specified line number does not exist,
the program lines with numbers inside the range specified are saved. If the ending line number
is less than the beginning line number, error 41 occurs. If no program lines are in the specified
range, error 46 occurs.

Item

file specifier

beginning line number

beginning line label

ending line number

ending line label

file name

msus

Description/Default

string expression

integer constant identifying a program line;
Default = first program line

name of a program line

integer constant identifying a program line;
Default = last program line

name of a program line

literal

literal

Example Statements
SAljE "WHALES"
SAljE "TEMP",1 ,Sort

Semantics

Range
Restrictions

(see drawing)

1 thru 32766

any ualid name

1. thru 32 766

SAVE 393

any valid name

any valid file name

(see MASS
STORAGE IS)

An entire program can be saved, or any portion delimited by the beginning and (if needed)
ending line numbers or labels. This statement is for creating new files . Attempting to SAVE a file
name that already exists causes error 54. If you need to replace an old file, see RE-SAVE.

If a specified line label does not exist, error 3 occurs. If a specified line number does not exist,
the program lines with numbers inside the range specified are saved. If the ending line number
is less than the beginning line number, error 41 occurs. If no program lines are in the specified
range, error 46 occurs.

394

sc
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

This function returns the interface select code associated with an 110 path name.

Item Description/Default

110 path name name of a currently assigned 110 path

Example Statements
Isc=SC(@Device)
Drive_isc=SC(@File)

Semantics

Range
Restrictions

any valid name

None
Yes
Yes
Yes

If the 110 path name is assigned to a device selector (or selectors) with primary and/or secondary
addressing, only the interface select code is returned. If the specified 110 path name is assigned to
a mass storage file , the interface select code of the drive is returned. If the specified 110 path name
is assigned to a buffer, a zero is returned.

If the 110 path name is not currently assigned to a resource, an error is reported.

394

sc
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

This function returns the interface select code associated with an 110 path name.

Item Description/Default

110 path name name of a currently assigned 110 path

Example Statements
Isc=SC(@Device)
Drive_isc=SC(@File)

Semantics

Range
Restrictions

any valid name

None
Yes
Yes
Yes

If the 110 path name is assigned to a device selector (or selectors) with primary and/or secondary
addressing, only the interface select code is returned. If the specified 110 path name is assigned to
a mass storage file , the interface select code of the drive is returned. If the specified 110 path name
is assigned to a buffer, a zero is returned.

If the 110 path name is not currently assigned to a resource, an error is reported.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
No
No

This command erases all or selected portions of memory.

SCRATCH)--....,.-------------..,---_+�

Item Description/Default

key number integer constant

Example Statements
SCRATCH
SCRATCH A
SCRATCH KEY
SCRATCH KEY 14

Semantics

SCRATCH

Range
Restrictions

o thru 23

SCRATCH clears the BASIC program and all variables not in COM. Key definitions are left intact.

SCRATCH C clears all variables, including those in COM. The program and keys are left intact.

To scratch a key, type SCRATCH KEY , followed by the key number, and press (EXECUTE), (ENTER)
or (RETURN). Also, pressing a softkey after typing S C RAT C H will cause S C RAT C H KEY, followed by
the key number, to be displayed. When a key is specified, the definition for that key only is
cleared. When an individual key is not specified, all key definitions are cleared. In either case, the
program and all variables are left intact.

SCRATCH A clears the BASIC program memory, all the key definitions, and all variables
(including those in COM) . Most internal parameters in the computer are reset by this command.
The clock is not reset and the recall buffer is not cleared. See the Master Reset Table in the
"Useful Tables" section in the back of this manual for details.

395

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
Yes
No
No

This command erases all or selected portions of memory.

SCRATCH)--....,.-------------..,---_+�

Item Description/Default

key number integer constant

Example Statements
SCRATCH
SCRATCH A
SCRATCH KEY
SCRATCH KEY 14

Semantics

SCRATCH

Range
Restrictions

o thru 23

SCRATCH clears the BASIC program and all variables not in COM. Key definitions are left intact.

SCRATCH C clears all variables, including those in COM. The program and keys are left intact.

To scratch a key, type SCRATCH KEY , followed by the key number, and press (EXECUTE), (ENTER)
or (RETURN). Also, pressing a softkey after typing S C RAT C H will cause S C RAT C H KEY, followed by
the key number, to be displayed. When a key is specified, the definition for that key only is
cleared. When an individual key is not specified, all key definitions are cleared. In either case, the
program and all variables are left intact.

SCRATCH A clears the BASIC program memory, all the key definitions, and all variables
(including those in COM) . Most internal parameters in the computer are reset by this command.
The clock is not reset and the recall buffer is not cleared. See the Master Reset Table in the
"Useful Tables" section in the back of this manual for details.

395

396 SCRATCH

SCRATCH BIN
SCRATCH BIN causes an extended SCRATCH A. It resets the computer to its power up state. All
programs, variables, and BINs are deleted from memory. The BIN which contains the CRT driver
for the current CRT is not deleted. Note that SCRATCH BIN will not remove any binaries that
reside in ROM.

SEC

See the SEND statement.

396 SCRATCH

SCRATCH BIN
SCRATCH BIN causes an extended SCRATCH A. It resets the computer to its power up state. All
programs, variables, and BINs are deleted from memory. The BIN which contains the CRT driver
for the current CRT is not deleted. Note that SCRATCH BIN will not remove any binaries that
reside in ROM.

SEC

See the SEND statement.

Option Required
Keyboard Executable
Programmable
In an IF .. THEN ..

PDEV
Yes
No
No

This command protects program lines so that they cannot be listed.

SECURE

1 ~~~ i ~~~~~r f---..--------------i

Item

beginning line number

ending line number

ending
line nu mber

Description/Default

integer constant;
Default = first line in program

integer constant;
Default = beginning line number if specified, or
last line in program

Example Statements
SECURE
SECURE 45
SECURE 1 t 100

Semantics

SECURE

Range
Restrictions

If no lines are specified, the entire program is secured. If one line number is specified, only that
line is secured. If two lines are specified, all lines between and including those lines are secured.

Program lines which are secure are listed as an *. Only the line number is listed.

397

Option Required
Keyboard Executable
Programmable
In an IF .. THEN ..

PDEV
Yes
No
No

This command protects program lines so that they cannot be listed.

SECURE

1 ~~~ i ~~~~~r f---..--------------i

Item

beginning line number

ending line number

ending
line nu mber

Description/Default

integer constant;
Default = first line in program

integer constant;
Default = beginning line number if specified, or
last line in program

Example Statements
SECURE
SECURE 45
SECURE 1 t 100

Semantics

SECURE

Range
Restrictions

If no lines are specified, the entire program is secured. If one line number is specified, only that
line is secured. If two lines are specified, all lines between and including those lines are secured.

Program lines which are secure are listed as an *. Only the line number is listed.

397

398

SELECT ... CASE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

This construct provides conditional execution of one of several program segments.

(SELECT)--.J e xp re ssio n f--i

b egi n ni ng
matc h i te m

I------l~ < r_------~

t------l~>r_------~

(CASE ELSE ~

(END SELECT ~

Item

expression

match item

program segment

DescriptionlDefault

a numeric or string expression

a numeric or string expression; must be
same type as the SELECT expression.

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct(s) .

Range
Restrictions

None
No

Yes
No

398

SELECT ... CASE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

This construct provides conditional execution of one of several program segments.

(SELECT)--.J e xp re ssio n f--i

b egi n ni ng
matc h i te m

I------l~ < r_------~

t------l~>r_------~

(CASE ELSE ~

(END SELECT ~

Item

expression

match item

program segment

DescriptionlDefault

a numeric or string expression

a numeric or string expression; must be
same type as the SELECT expression.

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct(s) .

Range
Restrictions

None
No

Yes
No

SELECT.. . CASE 399

Example Program Segments
G50 SELECT Expression
GGO CASE <0
G70 PRINT "Negative nurTlber"
G80 CASE ELSE
G80 PRINT "Non-negative nurTlber"
700 END SELECT

750 SELECT Expression$
7GO CASE "A" TD "Z"
770 PRINT "Uppercase alphabetic"
780 CASE ":" t" ; " t" t" t" • "

780 PRINT "Punctuation"
800 END SELECT

Semantics
SELECT .. END SELECT is similar to the IF ... THEN ... ELSE ... END IF construct, but allows
several conditional program segments to be defined; however, only one segment will be
executed each time the construct is entered. Each segment starts after a CASE or CASE ELSE
statement and ends when the next program line is a CASE, CASE ELSE, or END SELECT
statement.

The SELECT statement specifies an expression, whose value is compared to the list of values
found in each CASE statement. When a match is found, the corresponding program segment is
executed. The remaining segments are skipped and execution continues with the first program
line following the END SELECT statement.

All CASE expressions must be of the same type, (either string or numeric) and must agree in
type with the corresponding SELECT statement expression.

The optional CASE ELSE statement defines a program segment to be executed when the
selected expression's value fails to match any CASE statement's list.

Branching into a SELECT .. END SELECT construct (via GOTO) results in normal execution
until a CASE or CASE ELSE statement is encountered. Execution then branches to the first
program line following the END SELECT statement.

Errors encountered in evaluating CASE statements will be reported as having occurred in the
corresponding SELECT statement.

Nesting Constructs Properly

SELECT .. END SELECT constructs may be nested, provided inner construct begins and ends
before the outer construct can end.

SELECT.. . CASE 399

Example Program Segments
G50 SELECT Expression
GGO CASE <0
G70 PRINT "Negative nurTlber"
G80 CASE ELSE
G80 PRINT "Non-negative nurTlber"
700 END SELECT

750 SELECT Expression$
7GO CASE "A" TD "Z"
770 PRINT "Uppercase alphabetic"
780 CASE ":" t" ; " t" t" t" • "

780 PRINT "Punctuation"
800 END SELECT

Semantics
SELECT .. END SELECT is similar to the IF ... THEN ... ELSE ... END IF construct, but allows
several conditional program segments to be defined; however, only one segment will be
executed each time the construct is entered. Each segment starts after a CASE or CASE ELSE
statement and ends when the next program line is a CASE, CASE ELSE, or END SELECT
statement.

The SELECT statement specifies an expression, whose value is compared to the list of values
found in each CASE statement. When a match is found, the corresponding program segment is
executed. The remaining segments are skipped and execution continues with the first program
line following the END SELECT statement.

All CASE expressions must be of the same type, (either string or numeric) and must agree in
type with the corresponding SELECT statement expression.

The optional CASE ELSE statement defines a program segment to be executed when the
selected expression's value fails to match any CASE statement's list.

Branching into a SELECT .. END SELECT construct (via GOTO) results in normal execution
until a CASE or CASE ELSE statement is encountered. Execution then branches to the first
program line following the END SELECT statement.

Errors encountered in evaluating CASE statements will be reported as having occurred in the
corresponding SELECT statement.

Nesting Constructs Properly

SELECT .. END SELECT constructs may be nested, provided inner construct begins and ends
before the outer construct can end.

400

SEND

This statement sends messages to an HP-IB.

interfac e
sel e ct code

LISTEN

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

ASCII space
(space bar)

numeric
expression

string
expression

numeric
expression

string
expression

primary
address

400

SEND

This statement sends messages to an HP-IB.

interfac e
sel e ct code

LISTEN

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

ASCII space
(space bar)

numeric
expression

string
expression

numeric
expression

string
expression

primary
address

(-

Item Description/Default

interface select code numeric expression , rounded to an integer

I/O path name name assigned to an interface select code

primary address numeric expression, rounded to an integer

secondary address numeric expression, rounded to an integer

Example Statem ents
SEND 7 ;UNL MTA LISTEN 1 DATA "HELLO" END
SE ND @Hp i b ; UNL MLA TALK Device CMD 2a+128

Sem antics
CMD

Range
Restrictions

7 thru 31

any valid name
(see ASSIGN)

o thru 31

o thru 31

SEND 401

The expressions following a CMD are sent with A TN true. The ASCII characters representing
the evaluated string expression are sent to the HP-IB. Numeric expressions are rounded to an
integer MOD 256. The resulting byte is sent to the HP-IB. CMD with no items sets ATN true.

DATA
The expressions following DATA are sent with ATN false . The ASCII characters representing
the evaluated string expression are sent. Numeric expressions are rounded to an integer MOD
256. The resulting byte is sent to the HP-IB. If END is added to the data list, EOI is set true
before sending the last byte. DATA with no items sets A TN false without waiting to be addres­
sed as a talker.

If the computer is active controller, and addressed as a talker, the data is sent immediately. If
the computer is not active controller, it waits until it is addressed to talk before sending the data.

TALK
TALK sets A TN true and sends the specified talk address. Only one primary address is allowed
fo r a single talker. An extended talker may be addressed by using SEC secondary address after
TALK. A TALK address of 31 is equivalent to UNT (untalk).

UNT
UNT sets A TN true and sends the untalk command. (There is no automatic untalk.) A TALK
address of 31 is equivalent to UNT.

LISTEN
LISTEN sets A TN true, sends one or more primary addresses, and addresses those devices to
listen. A LISTEN address of 31 is equivalent to UNL (unlisten) .

UNL
UNL set ATN true and sends the unlisten command. (There is no automatic unlisten.) A
LISTEN address of 31 is equivalent to UNL.

(-

Item Description/Default

interface select code numeric expression , rounded to an integer

I/O path name name assigned to an interface select code

primary address numeric expression, rounded to an integer

secondary address numeric expression, rounded to an integer

Example Statem ents
SEND 7 ;UNL MTA LISTEN 1 DATA "HELLO" END
SE ND @Hp i b ; UNL MLA TALK Device CMD 2a+128

Sem antics
CMD

Range
Restrictions

7 thru 31

any valid name
(see ASSIGN)

o thru 31

o thru 31

SEND 401

The expressions following a CMD are sent with A TN true. The ASCII characters representing
the evaluated string expression are sent to the HP-IB. Numeric expressions are rounded to an
integer MOD 256. The resulting byte is sent to the HP-IB. CMD with no items sets ATN true.

DATA
The expressions following DATA are sent with ATN false . The ASCII characters representing
the evaluated string expression are sent. Numeric expressions are rounded to an integer MOD
256. The resulting byte is sent to the HP-IB. If END is added to the data list, EOI is set true
before sending the last byte. DATA with no items sets A TN false without waiting to be addres­
sed as a talker.

If the computer is active controller, and addressed as a talker, the data is sent immediately. If
the computer is not active controller, it waits until it is addressed to talk before sending the data.

TALK
TALK sets A TN true and sends the specified talk address. Only one primary address is allowed
fo r a single talker. An extended talker may be addressed by using SEC secondary address after
TALK. A TALK address of 31 is equivalent to UNT (untalk).

UNT
UNT sets A TN true and sends the untalk command. (There is no automatic untalk.) A TALK
address of 31 is equivalent to UNT.

LISTEN
LISTEN sets A TN true, sends one or more primary addresses, and addresses those devices to
listen. A LISTEN address of 31 is equivalent to UNL (unlisten) .

UNL
UNL set ATN true and sends the unlisten command. (There is no automatic unlisten.) A
LISTEN address of 31 is equivalent to UNL.

402 SEND

SEC
SEC sets ATN true and sends one or more secondary addresses (commands) .

MTA
MTA sets ATN true and sends the interface's talk address. It is equivalent to performing a status
sequence on the interface and then using the returned talk address with a SEND .. TALK se­
quence.

MLA
MLA sets ATN true and sends the interface's listen address. It is equivalent to performing a
status sequence on the interface and then using the returned listen address with a SEND .. LIS­
TEN sequence.

S ummary
The computer must be the active controller to execute SEND with CMD, TALK, UNT, LISTEN,
UNL, SEC, MTA and MLA.

The computer does not have to be the active controller to send DATA. DATA is sent when the
computer is addressed to talk.

The following table lists the HP-IB message mnemonics, descriptions of the messages, and the
secondary keywords required to send the messages. Any numeric values are decimal.

402 SEND

SEC
SEC sets ATN true and sends one or more secondary addresses (commands) .

MTA
MTA sets ATN true and sends the interface's talk address. It is equivalent to performing a status
sequence on the interface and then using the returned talk address with a SEND .. TALK se­
quence.

MLA
MLA sets ATN true and sends the interface's listen address. It is equivalent to performing a
status sequence on the interface and then using the returned listen address with a SEND .. LIS­
TEN sequence.

S ummary
The computer must be the active controller to execute SEND with CMD, TALK, UNT, LISTEN,
UNL, SEC, MTA and MLA.

The computer does not have to be the active controller to send DATA. DATA is sent when the
computer is addressed to talk.

The following table lists the HP-IB message mnemonics, descriptions of the messages, and the
secondary keywords required to send the messages. Any numeric values are decimal.

(-
Mnemonic

DAB

DCl

EOI

GET

GTl

IFC

lAG

llO

MlA
MTA

PPC

PPD

PPE

PPU

PPOll

REN

SOC

SPD

SPE

TAD

TCT

UNl

UNT

Description

Data Byte

Device Clear

End or Identify

Group Execute Trigger

Go To local

Interface Clear

Listen Address Group

local lockout

My Listen Address
My Talk Address

Parallel Poll Configure

Parallel Poll Disable

Parallel Poll Enable

Parallel Poll Unconfigure

Parallel Poll

Remote Enable

Selected Device Clear

Serial Poll Disable

Serial Poll Enable

Talk Address

Take Control

Unlisten

Untalk

Secondary Keyword and Value

DATA 0 thru DATA 255

CMD 20 or CMD 148

DATA (data) END (sends EOI with ATN false ,
which is the END message: EOI with ATN true is
the Identify message. sent automatically with the
PPOll function)

CMD 8 or CMD 136

CMD 1 or CMD 129

Not possible with SEND. An ABORT statement
must be used.

LISTEN 0 thru LISTEN 31 or CMD 32 thru CMD
63

CMD 17

MlA
MTA

CMD 5 or CMD l33

PPC (CMD 5 or CMD 133). followed by CMD
112. or CMD 240. or SEC 16.

PPC (CMD 5 or CMD l33) , followed by CMD 96
thru CMD 111. or CMD 224 thru CMD 239 , or
SEC 0 thru SEC 15. SEC 0 allows a mask to be
specified by a numeric value.

CMD 21 or CMD 149

Not possible with SEND. PPOll function must
be used.

Not possible with SEND. REMOTE statement
must be used.

CMD 4 or CMD 132

CMD 25 or CMD 153

CMD 24 or CMD 152

TALK 0 thru TALK 31. or CMD 64 thru CMD 95 ,
or CMD 192 thru CMD 223.

CMD 9 or CMD 137

UNL. or LISTEN 31. or CMD 63. or CMD 191.

UNT. or TALK 31. or CMD 95 . or CMD 223.

SEND 403

(-
Mnemonic

DAB

DCl

EOI

GET

GTl

IFC

lAG

llO

MlA
MTA

PPC

PPD

PPE

PPU

PPOll

REN

SOC

SPD

SPE

TAD

TCT

UNl

UNT

Description

Data Byte

Device Clear

End or Identify

Group Execute Trigger

Go To local

Interface Clear

Listen Address Group

local lockout

My Listen Address
My Talk Address

Parallel Poll Configure

Parallel Poll Disable

Parallel Poll Enable

Parallel Poll Unconfigure

Parallel Poll

Remote Enable

Selected Device Clear

Serial Poll Disable

Serial Poll Enable

Talk Address

Take Control

Unlisten

Untalk

Secondary Keyword and Value

DATA 0 thru DATA 255

CMD 20 or CMD 148

DATA (data) END (sends EOI with ATN false ,
which is the END message: EOI with ATN true is
the Identify message. sent automatically with the
PPOll function)

CMD 8 or CMD 136

CMD 1 or CMD 129

Not possible with SEND. An ABORT statement
must be used.

LISTEN 0 thru LISTEN 31 or CMD 32 thru CMD
63

CMD 17

MlA
MTA

CMD 5 or CMD l33

PPC (CMD 5 or CMD 133). followed by CMD
112. or CMD 240. or SEC 16.

PPC (CMD 5 or CMD l33) , followed by CMD 96
thru CMD 111. or CMD 224 thru CMD 239 , or
SEC 0 thru SEC 15. SEC 0 allows a mask to be
specified by a numeric value.

CMD 21 or CMD 149

Not possible with SEND. PPOll function must
be used.

Not possible with SEND. REMOTE statement
must be used.

CMD 4 or CMD 132

CMD 25 or CMD 153

CMD 24 or CMD 152

TALK 0 thru TALK 31. or CMD 64 thru CMD 95 ,
or CMD 192 thru CMD 223.

CMD 9 or CMD 137

UNL. or LISTEN 31. or CMD 63. or CMD 191.

UNT. or TALK 31. or CMD 95 . or CMD 223.

SEND 403

404

SET ECHO
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This statement sets an echo to the specified location on the current PLOTTER IS device.

(SET ECHOn x coordinate ~ y coordi n ate ~

Item Description/ Default

x coordinate

y coordinate

numeric expression in current units

numeric expression in current units

Example Statements
SET ECHO Yin , Yin
SET ECHO 1000 ,1 0000

Semantics

Range
Restrictions

If the current PLOTTER IS device is a CRT, a 9-by-9-dot cross-hair is displayed at the specified
coordinates if they are within the hard clip limits: the soft clip limits are ignored. No echo is
displayed if the coordinates are outside the hard clip limits.

If the current PLOTTER IS device is an HPGL plotter, the pen is raised and moved to the
specified coordinates if they are within the current clip limits. If the pen is inside the clip limits and
the new echo position is not, it moves towards the new echo position but stops at the clip
boundary. If the pen is outside the clip limits and the new echo position is outside the clip limits,
the pen moves along the nearest clip boundary.

SET ECHO is frequently used with the READ LOCATOR statement.

404

SET ECHO
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This statement sets an echo to the specified location on the current PLOTTER IS device.

(SET ECHOn x coordinate ~ y coordi n ate ~

Item Description/ Default

x coordinate

y coordinate

numeric expression in current units

numeric expression in current units

Example Statements
SET ECHO Yin , Yin
SET ECHO 1000 ,1 0000

Semantics

Range
Restrictions

If the current PLOTTER IS device is a CRT, a 9-by-9-dot cross-hair is displayed at the specified
coordinates if they are within the hard clip limits: the soft clip limits are ignored. No echo is
displayed if the coordinates are outside the hard clip limits.

If the current PLOTTER IS device is an HPGL plotter, the pen is raised and moved to the
specified coordinates if they are within the current clip limits. If the pen is inside the clip limits and
the new echo position is not, it moves towards the new echo position but stops at the clip
boundary. If the pen is outside the clip limits and the new echo position is outside the clip limits,
the pen moves along the nearest clip boundary.

SET ECHO is frequently used with the READ LOCATOR statement.

SET LOCATOR
Option Required
Keyboard Executable
Programmable
In an IF. . THEN ...

GRAPHX
Yes
Yes
Yes

This statement specifies a new position for the locator of the current graphics input device.

SET LOCATOR

Item

x coordinate

y coordinate

x coor d i nat e y c o o r di n ate

Description/Default

numeric expression specifying the x coordinate of
the locator's new position in current units

numeric expression specifying the y coordinate of
the locator's new position in current units

Example Statements
SET LOCATOR 12,85
SET LOCATOR X_co r,Y _co r

Semantics

Range
Restrictions

range of REAL

range of REAL

If any of the coordinates are outside the device 's limits, they are truncated to the nearest
boundary.

In order to change the X and Y coordinates of the locator, the graphics input device must have a
programmable locator position, (e.g. graphics input is from the keyboard and other relative
locators).

405

SET LOCATOR
Option Required
Keyboard Executable
Programmable
In an IF. . THEN ...

GRAPHX
Yes
Yes
Yes

This statement specifies a new position for the locator of the current graphics input device.

SET LOCATOR

Item

x coordinate

y coordinate

x coor d i nat e y c o o r di n ate

Description/Default

numeric expression specifying the x coordinate of
the locator's new position in current units

numeric expression specifying the y coordinate of
the locator's new position in current units

Example Statements
SET LOCATOR 12,85
SET LOCATOR X_co r,Y _co r

Semantics

Range
Restrictions

range of REAL

range of REAL

If any of the coordinates are outside the device 's limits, they are truncated to the nearest
boundary.

In order to change the X and Y coordinates of the locator, the graphics input device must have a
programmable locator position, (e.g. graphics input is from the keyboard and other relative
locators).

405

406

SET PEN
Option Required
Keyboard Executable
Programmable

GRAPHX
Yes
Yes
Yes In an IF ... THEN

This statement defines the color for one or more entries in the color map.

Item

pen selector

hue

saturation

luminosity

HSL array name

red

green

blue

RGB array name

Description/Default

numeric expression, rounded to an integer

numeric expression

numeric expression

numeric expression

name of a two-dimensional, three-column REAL
array

numeric expression

numeric expression

numeric expression

name of a two-dimensional, three-column REAL
array

Example Statements
SET PEN 3 COLOR Hue ,Saturation , Lufllinosit,'
SET PEN Pen_nuMber INTENSITY Color_Map_arra y (*)
SET PEN 0 INTENSITY a/15,a/15,a / 15

Semantics

luminosity

blue

Range
Restrictions

o thru 32767

o thru 1

o thru 1

o thru 1

any valid name

o thru 1

o thru 1

o thru 1

any valid name

This statement defines the color for one or more entries in the color map. Either the HSL
(hue/saturation/luminosity) color model or the RGB (red/green/blue) color model may be used.
This statement is ignored for non-color mapped devices and color mapped devices in non-color
map mode.

406

SET PEN
Option Required
Keyboard Executable
Programmable

GRAPHX
Yes
Yes
Yes In an IF ... THEN

This statement defines the color for one or more entries in the color map.

Item

pen selector

hue

saturation

luminosity

HSL array name

red

green

blue

RGB array name

Description/Default

numeric expression, rounded to an integer

numeric expression

numeric expression

numeric expression

name of a two-dimensional, three-column REAL
array

numeric expression

numeric expression

numeric expression

name of a two-dimensional, three-column REAL
array

Example Statements
SET PEN 3 COLOR Hue ,Saturation , Lufllinosit,'
SET PEN Pen_nuMber INTENSITY Color_Map_arra y (*)
SET PEN 0 INTENSITY a/15,a/15,a / 15

Semantics

luminosity

blue

Range
Restrictions

o thru 32767

o thru 1

o thru 1

o thru 1

any valid name

o thru 1

o thru 1

o thru 1

any valid name

This statement defines the color for one or more entries in the color map. Either the HSL
(hue/saturation/luminosity) color model or the RGB (red/green/blue) color model may be used.
This statement is ignored for non-color mapped devices and color mapped devices in non-color
map mode.

L

SET PEN 407

For both SET PEN COLOR and SET PEN INTENSITY, the pen selector specifies the first color
map entry to be defined. If individual RGB or HSL values are given, that entry in the color map is
the only one defined. If an array is specified, the color map is redefined, starting at the specified
pen, and continuing until either the highest-numbered entry in the color map is redefined or the
source array is exhausted.

Specifying color with the SET PEN and AREA PEN statements (resulting in non-dithered color)
results in a much more accurate representation of the desired color than specifying the color with
an AREA statement. Compare the five color plates shown in this entry with the corresponding
plates in the AREA statement.

Note
The following color plates do not exactly represent what your eye
would see on the CRT. The reason for this is that photographic film
cannot capture all the colors a CRT can produce, and the printing
process cannot reproduce all the colors that film can capture.

The five following color plates are multiple exposures.

SET PEN COLOR
The hue value specifies the color. The hue ranges from zero to one, in a circular manner, with a
value of zero resulting in the same hue as a value of one. The hue, as it goes from zero to one,
proceeds through red, orange, yellow, green, cyan, blue, magenta, and back to red.

The saturation value, classically defined, is the inverse of the amount of white added to a hue.
What this means is that saturation specifies the amount of hue to be mixed with white. As
saturation goes from zero to one, there is 0% to 100% of pure hue added to white. Thus, a
saturation of zero results in a gray, dependent only upon the luminosity; hue makes no differ­
ence.

The luminosity value specifies the brightness per unit area of the color. A luminosity of zero
results in black, regardless of hue or saturation; if there is no color, it makes no difference which
color it is that is not there.

L

SET PEN 407

For both SET PEN COLOR and SET PEN INTENSITY, the pen selector specifies the first color
map entry to be defined. If individual RGB or HSL values are given, that entry in the color map is
the only one defined. If an array is specified, the color map is redefined, starting at the specified
pen, and continuing until either the highest-numbered entry in the color map is redefined or the
source array is exhausted.

Specifying color with the SET PEN and AREA PEN statements (resulting in non-dithered color)
results in a much more accurate representation of the desired color than specifying the color with
an AREA statement. Compare the five color plates shown in this entry with the corresponding
plates in the AREA statement.

Note
The following color plates do not exactly represent what your eye
would see on the CRT. The reason for this is that photographic film
cannot capture all the colors a CRT can produce, and the printing
process cannot reproduce all the colors that film can capture.

The five following color plates are multiple exposures.

SET PEN COLOR
The hue value specifies the color. The hue ranges from zero to one, in a circular manner, with a
value of zero resulting in the same hue as a value of one. The hue, as it goes from zero to one,
proceeds through red, orange, yellow, green, cyan, blue, magenta, and back to red.

The saturation value, classically defined, is the inverse of the amount of white added to a hue.
What this means is that saturation specifies the amount of hue to be mixed with white. As
saturation goes from zero to one, there is 0% to 100% of pure hue added to white. Thus, a
saturation of zero results in a gray, dependent only upon the luminosity; hue makes no differ­
ence.

The luminosity value specifies the brightness per unit area of the color. A luminosity of zero
results in black, regardless of hue or saturation; if there is no color, it makes no difference which
color it is that is not there.

408 SET PEN

The following color plate shows the changes brought about by varying one of HSL parameters at
a time. The bottom bar shows that when saturation (the amount of color) is zero, hue makes no
difference, and varying luminosity results in a gray scale.

The following color wheel represents the fully saturated, fully luminous colors selected as the hue
value goes from 0 through 1. Any value between zero and one, inclusive, can be chosen to select
color, but the resolution (the amount the value can change before the color on the screen
changes) depends on the value of hue, as well as the other two parameters.

HSL Color Wheel

408 SET PEN

The following color plate shows the changes brought about by varying one of HSL parameters at
a time. The bottom bar shows that when saturation (the amount of color) is zero, hue makes no
difference, and varying luminosity results in a gray scale.

The following color wheel represents the fully saturated, fully luminous colors selected as the hue
value goes from 0 through 1. Any value between zero and one, inclusive, can be chosen to select
color, but the resolution (the amount the value can change before the color on the screen
changes) depends on the value of hue, as well as the other two parameters.

HSL Color Wheel

c_
SET PEN 409

The next color plate shows the effect that varying saturation and luminosity have on hue. Each of
the small color wheels is a miniature version of the large one above, except it has fewer colors.

Effects of Saturation and Luminosity on Color

Lum 0.35 0.50 0 .7 5 1.00

Sa t

0.:n 0 0 l't

0.57 ' . ~ ':

~ • . ~ ~ ...

~ ' . 1.00

:. .' ~~ -.
SET PEN INTENSITY
The red, green, and blue values specify the intensities of the red, green, and blue colors displayed
on the screen.

The following color plate demonstrate the effect of varying the intenSity of one color component
while the other two remain the constant.

RGB Addition: One Color at a Time

c_
SET PEN 409

The next color plate shows the effect that varying saturation and luminosity have on hue. Each of
the small color wheels is a miniature version of the large one above, except it has fewer colors.

Effects of Saturation and Luminosity on Color

Lum 0.35 0.50 0 .7 5 1.00

Sa t

0.:n 0 0 l't

0.57 ' . ~ ':

~ • . ~ ~ ...

~ ' . 1.00

:. .' ~~ -.
SET PEN INTENSITY
The red, green, and blue values specify the intensities of the red, green, and blue colors displayed
on the screen.

The following color plate demonstrate the effect of varying the intenSity of one color component
while the other two remain the constant.

RGB Addition: One Color at a Time

410 SET PEN

The next plate shows combinations of red, green and blue. The values are represented in
fifteenths: 0 fifteenths , 5 fifteenths, 10 fifteenths, and 15 fifteenths - every fifth value. Fifteenths
are the units. Thus, zero fifteenths through fifteen fifteenths made a total of sixteen levels. The
values for each color component are represented in that color.

410 SET PEN

The next plate shows combinations of red, green and blue. The values are represented in
fifteenths: 0 fifteenths , 5 fifteenths, 10 fifteenths, and 15 fifteenths - every fifth value. Fifteenths
are the units. Thus, zero fifteenths through fifteen fifteenths made a total of sixteen levels. The
values for each color component are represented in that color.

(

Option Required
Keyboard Executable
Programmable
In an [F ... THEN ...

None
Yes
Yes
Yes

This statement resets the time-of-day given by the real-time clock.

(SET TIME)-1 seconds ~

Item Description/Default

seconds numeric expression, rounded to the nearest
hundredth

Example Statements
SET TIME 0
SET TIME Hours*3GOO+Minutes*GO

Semantics

SET TIME

Range
Restrictions

o thru 86 399.99

SET TIME changes only the time within the current day, not the date. The new clock setting is
equivalent to (TIMEDATE DIV 86 400) x 86 400 plus the specified setting.

411

(

Option Required
Keyboard Executable
Programmable
In an [F ... THEN ...

None
Yes
Yes
Yes

This statement resets the time-of-day given by the real-time clock.

(SET TIME)-1 seconds ~

Item Description/Default

seconds numeric expression, rounded to the nearest
hundredth

Example Statements
SET TIME 0
SET TIME Hours*3GOO+Minutes*GO

Semantics

SET TIME

Range
Restrictions

o thru 86 399.99

SET TIME changes only the time within the current day, not the date. The new clock setting is
equivalent to (TIMEDATE DIV 86 400) x 86 400 plus the specified setting.

411

412

SET TIMEDATE
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement resets the absolute seconds (time and day) given by the real-time clock.

(SET TIMEDATY--l seconds ~

Item

seconds

Description/Default

numeric expression, rounded to the nearest
hundredth

Example Statements
SET TIMEDATE TIMEDATE+8G400
SET TIMEDATE Stranfe_number

Semantics

Range
Restrictions

2.086629 12 E + 11 thru
2.1432522239999 E + 11

The volatile clock is set to 2.086629 12 E + 11 (midnight March 1, 1900) at power-on. If there is
a battery-backed (non-volatile) clock, then the volatile clock is synchronized with it at power-up.
If the computer is on an SRM system (and has no battery-backed clock) , then the volatile clock is
synchronized with the SRM clock when the SRM and DCOMM binaries are loaded. The clock
values represent Julian time, expressed in seconds.

412

SET TIMEDATE
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement resets the absolute seconds (time and day) given by the real-time clock.

(SET TIMEDATY--l seconds ~

Item

seconds

Description/Default

numeric expression, rounded to the nearest
hundredth

Example Statements
SET TIMEDATE TIMEDATE+8G400
SET TIMEDATE Stranfe_number

Semantics

Range
Restrictions

2.086629 12 E + 11 thru
2.1432522239999 E + 11

The volatile clock is set to 2.086629 12 E + 11 (midnight March 1, 1900) at power-on. If there is
a battery-backed (non-volatile) clock, then the volatile clock is synchronized with it at power-up.
If the computer is on an SRM system (and has no battery-backed clock) , then the volatile clock is
synchronized with the SRM clock when the SRM and DCOMM binaries are loaded. The clock
values represent Julian time, expressed in seconds.

(

Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

None
Yes
Yes
Yes

SGN

This function returns 1 if the argument is positive, 0 if it equals zero, and - 1 if it is negative.

numeric
expression

Example Statements
Root=SGN(X)*SQR(ABS(X))
Z=2*PI*SGN(Y)

413

(

Option Required
Keyboard Executable
Programmable
In an IF . .. THEN ...

None
Yes
Yes
Yes

SGN

This function returns 1 if the argument is positive, 0 if it equals zero, and - 1 if it is negative.

numeric
expression

Example Statements
Root=SGN(X)*SQR(ABS(X))
Z=2*PI*SGN(Y)

413

414

SHIFT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of bit positions specified, without wraparound.

Item

argument

bit position
displacement

bit posit i o n
d isplace men t

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
N e tAI _IAI 0 r d = S H 1FT (Old _IAI 0 r d t - 2)
Mas~(=SHIFT(l tPos i tion)

Semantics

Range
Restrictions

-32768 thru
+ 32767

- 32 768 thru
+ 32767

Recommended
Range

- 15 thru
+ 15

If the bit position displacement is positive, the shift is towards the least-significant bit. If the bit
position displacement is negative, the shift is towards the most-significant bit. Bits shifted out
are lost. Bits shifted in are zeros. The SHIFT operation is performed without changing the value
of any variable in the argument.

414

SHIFT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of bit positions specified, without wraparound.

Item

argument

bit position
displacement

bit posit i o n
d isplace men t

Description/Default

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Example Statements
N e tAI _IAI 0 r d = S H 1FT (Old _IAI 0 r d t - 2)
Mas~(=SHIFT(l tPos i tion)

Semantics

Range
Restrictions

-32768 thru
+ 32767

- 32 768 thru
+ 32767

Recommended
Range

- 15 thru
+ 15

If the bit position displacement is positive, the shift is towards the least-significant bit. If the bit
position displacement is negative, the shift is towards the most-significant bit. Bits shifted out
are lost. Bits shifted in are zeros. The SHIFT operation is performed without changing the value
of any variable in the argument.

(
SHOW

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN.. . Yes

This statement is used to define an isotropic current unit-of-measure for graphics operations.

Item Description/ Default

left numeric expression

right numeric expression

bottom numeric expression

top numeric expression

Example Statements
SHOW -5,5,0,100
SHOW Left ,Ri 9'ht ,Bottorll ,Top

Semantics

Range
Restrictions

=1= left

=1= bottom

SHOW defines the values which must be displayed within the hard clip boundaries, or the
boundaries defined by the VIEWPORT statement. SHOW creates isotropic units (units the
same in X and Y). The direction of an axis may be reversed by specifying the left greater than
the right or the bottom greater than the top. (Also see WINDOW.)

415

(
SHOW

Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN.. . Yes

This statement is used to define an isotropic current unit-of-measure for graphics operations.

Item Description/ Default

left numeric expression

right numeric expression

bottom numeric expression

top numeric expression

Example Statements
SHOW -5,5,0,100
SHOW Left ,Ri 9'ht ,Bottorll ,Top

Semantics

Range
Restrictions

=1= left

=1= bottom

SHOW defines the values which must be displayed within the hard clip boundaries, or the
boundaries defined by the VIEWPORT statement. SHOW creates isotropic units (units the
same in X and Y). The direction of an axis may be reversed by specifying the left greater than
the right or the bottom greater than the top. (Also see WINDOW.)

415

416

SIGNAL

This statement generates a software interrupt.

Item Description/Default

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN.. . Yes

Range
Restrictions

signal selector numeric expression, rounded to an integer o thru 15

Example Statements
SIGNAL 3
SIGNAL Bailout

Semantics
If an ON SIGNAL statement for the specified signal selector exists, and all the other conditions for
an event-initiated branch are fulfilled, the branch defined in the ON SIGNAL statement is taken.
If no ON SIGNAL exists for the specified signal selector, the SIGNAL statement causes no action.

416

SIGNAL

This statement generates a software interrupt.

Item Description/Default

Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN.. . Yes

Range
Restrictions

signal selector numeric expression, rounded to an integer o thru 15

Example Statements
SIGNAL 3
SIGNAL Bailout

Semantics
If an ON SIGNAL statement for the specified signal selector exists, and all the other conditions for
an event-initiated branch are fulfilled, the branch defined in the ON SIGNAL statement is taken.
If no ON SIGNAL exists for the specified signal selector, the SIGNAL statement causes no action.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

SIN

This function returns the sine of the angle represented by the argument.

Item Description/Default

argument numeric expression in current units of angle

Example Statements
Sine=SIN(An91e)
PRINT "Sine of" ;Thetai"=" iSIN(Theta)

Range
Restrictions

absolute value less than :
l. 708312781 2 E + 10 deg.

or
2.981 56826 E + 8 rad.

417

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

SIN

This function returns the sine of the angle represented by the argument.

Item Description/Default

argument numeric expression in current units of angle

Example Statements
Sine=SIN(An91e)
PRINT "Sine of" ;Thetai"=" iSIN(Theta)

Range
Restrictions

absolute value less than :
l. 708312781 2 E + 10 deg.

or
2.981 56826 E + 8 rad.

417

418

SIZE
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This function returns the size (number of elements) of a dimension of an array. This INTEGER
value represents the difference between the upper bound and the lower bound, plus 1.

Item

array name

dimension

Description/Default

name of an array

numeric expression, rounded to an integer

Example Statements
Upperbound(2)=BASE(A,2)+SIZE(A,2)-1

N u ITl b e r _IAI 0 r d 5 = S I Z E (W 0 r d 5 $, 1)

SORT

See the MAT SORT statement.

SPANISH

See the LEXICAL ORDER IS statement.

Range
Restrictions

any valid name

1 thru 6;
:0::; the RANK of the array

418

SIZE
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN... Yes

This function returns the size (number of elements) of a dimension of an array. This INTEGER
value represents the difference between the upper bound and the lower bound, plus 1.

Item

array name

dimension

Description/Default

name of an array

numeric expression, rounded to an integer

Example Statements
Upperbound(2)=BASE(A,2)+SIZE(A,2)-1

N u ITl b e r _IAI 0 r d 5 = S I Z E (W 0 r d 5 $, 1)

SORT

See the MAT SORT statement.

SPANISH

See the LEXICAL ORDER IS statement.

Range
Restrictions

any valid name

1 thru 6;
:0::; the RANK of the array

SPOLL
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF..THEN... Yes

This function returns an integer containing the serial poll response from the addressed device.

Item Description/Default

I/O path name name assigned to a device

device selector numeric expression, rounded to an integer

Example Statements
Stat=SPOLL(707)
IF SPOLL(@Device) THEN Respond

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

must include a primary
address (see Glossary)

The computer must be the active controller to execute this function. Multiple listeners are not
allowed. One secondary address may be specified to get status from an extended talker. Refer
to the documentation provided with the device being polled for information concerning the
device's status byte.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
UNL UNL
MLA MLA
TAD TAD

Active
Error

SPE
Error

SPE
Controller

-
ATN ATN

Read data Read data
ATN ATN
SPO SPO
UNT UNT

Not Active
Error

Controller

419

SPOLL
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF..THEN... Yes

This function returns an integer containing the serial poll response from the addressed device.

Item Description/Default

I/O path name name assigned to a device

device selector numeric expression, rounded to an integer

Example Statements
Stat=SPOLL(707)
IF SPOLL(@Device) THEN Respond

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

must include a primary
address (see Glossary)

The computer must be the active controller to execute this function. Multiple listeners are not
allowed. One secondary address may be specified to get status from an extended talker. Refer
to the documentation provided with the device being polled for information concerning the
device's status byte.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
UNL UNL
MLA MLA
TAD TAD

Active
Error

SPE
Error

SPE
Controller

-
ATN ATN

Read data Read data
ATN ATN
SPO SPO
UNT UNT

Not Active
Error

Controller

419

420

SQR

This function returns the square root of the argument.

Item Description/Default

argument numeric expression

Example Statements
AMPs=SQR(Watts/OhMs)
PRINT "S9uare root of" ;)-(;"=" ;SQR(}-()

STANDARD

See the LEXICAL ORDER IS statement.

Option Required
Keyboard Executable
Programmable
In an IF. .THEN ...

Range
Restrictions

~ o

None
Yes
Yes
Yes

420

SQR

This function returns the square root of the argument.

Item Description/Default

argument numeric expression

Example Statements
AMPs=SQR(Watts/OhMs)
PRINT "S9uare root of" ;)-(;"=" ;SQR(}-()

STANDARD

See the LEXICAL ORDER IS statement.

Option Required
Keyboard Executable
Programmable
In an IF. .THEN ...

Range
Restrictions

~ o

None
Yes
Yes
Yes

(

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN .. .

None
Yes
Yes
Yes

STATUS

This statement returns the contents of interface or I/O path name status registers. (If using
STA TUS with SRM, also refer to the "SRM" section of this manual.)

STATUS }--,...-l~ @ I I ~a~:th I-.---r----------.-.-(
'---_'/

i nterface
select code

Item

I/O path name

interface select code

register number

numeric name

Description/Default

name assigned to a device, devices, mass storage
file , or buffer

numeric expression, rounded to an integer

numeric expression, rounded to an integer;
Default = 0

name of a numeric variable

Example Statements
STATUS 1 j){pos tYpos
STATUS @Filet5;Record

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

1 thru 40

interface dependent

any valid name

The value of the beginning register number is copied into the first variable, the next register
value into the second variable, and so on. The information is read until the variables in the list
are exhausted; there is no wraparound to the first register. An attempt to read a nonexistent
register generates an error.

The register meanings depend on the specified interface or on the resource to which the I/O path
name is currently assigned. Register 0 of I/O path names can be interrogated with STATUS even
if the I/O path name is currently invalid (Le. , unassigned to a resource). Note that the Status
registers of an I/O path are different from the Status registers of an interface. All Status and
Control registers are summarized in the "Interface Registers" section at the back of the book.

421

(

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN .. .

None
Yes
Yes
Yes

STATUS

This statement returns the contents of interface or I/O path name status registers. (If using
STA TUS with SRM, also refer to the "SRM" section of this manual.)

STATUS }--,...-l~ @ I I ~a~:th I-.---r----------.-.-(
'---_'/

i nterface
select code

Item

I/O path name

interface select code

register number

numeric name

Description/Default

name assigned to a device, devices, mass storage
file , or buffer

numeric expression, rounded to an integer

numeric expression, rounded to an integer;
Default = 0

name of a numeric variable

Example Statements
STATUS 1 j){pos tYpos
STATUS @Filet5;Record

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

1 thru 40

interface dependent

any valid name

The value of the beginning register number is copied into the first variable, the next register
value into the second variable, and so on. The information is read until the variables in the list
are exhausted; there is no wraparound to the first register. An attempt to read a nonexistent
register generates an error.

The register meanings depend on the specified interface or on the resource to which the I/O path
name is currently assigned. Register 0 of I/O path names can be interrogated with STATUS even
if the I/O path name is currently invalid (Le. , unassigned to a resource). Note that the Status
registers of an I/O path are different from the Status registers of an interface. All Status and
Control registers are summarized in the "Interface Registers" section at the back of the book.

421

422

STEP

See the FOR. .. NEXT construct.

422

STEP

See the FOR. .. NEXT construct.

STOP
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF..THEN.. . Yes

This statement terminates execution of the program.

Semantics
Once a program is stopped, it cannot be resumed by CONTINUE. RUN must be executed to
restart the program. PAUSE should be used if you intend to continue execution of the program.

A program can have multiple STOP statements. Encountering an END statement or pressing the
(STOP) ((SHIFT) (STOP) on the HP 46020A keyboards) key has the same effect as executing STOP.
After a STOP, variables that existed in the main context are available from the keyboard.

423

STOP
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF..THEN.. . Yes

This statement terminates execution of the program.

Semantics
Once a program is stopped, it cannot be resumed by CONTINUE. RUN must be executed to
restart the program. PAUSE should be used if you intend to continue execution of the program.

A program can have multiple STOP statements. Encountering an END statement or pressing the
(STOP) ((SHIFT) (STOP) on the HP 46020A keyboards) key has the same effect as executing STOP.
After a STOP, variables that existed in the main context are available from the keyboard.

423

424

STORE
Option Required
Keyboard Executable
Programmable
In an IF..THEN ...

None
Yes
Yes
Yes

This statement creates a file and stores the program or typing-aid key definitions into it. (If using
STORE with SRM, also refer to the "SRM" section of this manual.)

file
specifier

KBD

literal for m of f ile specifier:

~~.----------------------,.-.---------------~~~
~ L0=1L..._pr",::,Co.=..;otd=-=eec_t_~ ~,-_ms_u_s--,~ ~

Item

file specifier

file name

protect code

msus

Description/Default

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
STORE Filename$&Msus$
STORE KEY "KEYS"

Range
Restrictions

(see drawing)

any valid file name

" > " not allowed

(see MASS
STORAGE IS)

424

STORE
Option Required
Keyboard Executable
Programmable
In an IF..THEN ...

None
Yes
Yes
Yes

This statement creates a file and stores the program or typing-aid key definitions into it. (If using
STORE with SRM, also refer to the "SRM" section of this manual.)

file
specifier

KBD

literal for m of f ile specifier:

~~.----------------------,.-.---------------~~~
~ L0=1L..._pr",::,Co.=..;otd=-=eec_t_~ ~,-_ms_u_s--,~ ~

Item

file specifier

file name

protect code

msus

Description/Default

string expression

literal

literal; first two non-blank characters are signifi­
cant

literal

Example Statements
STORE Filename$&Msus$
STORE KEY "KEYS"

Range
Restrictions

(see drawing)

any valid file name

" > " not allowed

(see MASS
STORAGE IS)

STORE 425

Semantics
In all STORE statements, an error will occur if the storage media cannot be found , the media or
directory is full , or the file specified already exists. Also , if a protect code is specified, it will be
applied to the new file . To update a file which already exists , see RE-STORE.

STORE
The STORE statement creates a PROG file and stores an internal form of the program into that
file .

STORE KEY
STORE KEY creates a file of type BOAT, and stores the current typing-aid key definitions (not
ON KEY definitions) into it. These definitions may subsequently be reloaded into the computer
with the LOAD KEY statement.

For each defined key, an integer and a string are sent to the file . The integer is the key number,
and the string is the key definition. The string consists of a four-byte length followed by the key
definition, padded to an even length . The data is written with FORMAT OFF (see the OUTPUT
statement). Keys with no definition are not written to the file.

STORE 425

Semantics
In all STORE statements, an error will occur if the storage media cannot be found , the media or
directory is full , or the file specified already exists. Also , if a protect code is specified, it will be
applied to the new file . To update a file which already exists , see RE-STORE.

STORE
The STORE statement creates a PROG file and stores an internal form of the program into that
file .

STORE KEY
STORE KEY creates a file of type BOAT, and stores the current typing-aid key definitions (not
ON KEY definitions) into it. These definitions may subsequently be reloaded into the computer
with the LOAD KEY statement.

For each defined key, an integer and a string are sent to the file . The integer is the key number,
and the string is the key definition. The string consists of a four-byte length followed by the key
definition, padded to an even length . The data is written with FORMAT OFF (see the OUTPUT
statement). Keys with no definition are not written to the file.

426 STORE 426 STORE

(

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
Yes
No
No

STORE SYSTEM

The command stores the entire BASIC operating system currently in memory including any BINs
that are loaded. (If using STORE SYSTEM with SRM, also refer to the "SRM" section of this
manual.)

literal fo rm of f i le speci f ier:

Item

file specifier

file name

msus

Description/ Default

string expression

literal

literal

Example Statements
STORE SYSTE M "SY STEt'LB 1 : INTERNAL"

STORE SYSTEt1 "BACKUP1"

Semantics
If the file name already exists, an error occurs.

Range
Restrictions

(see drawing)

any valid file name

(see MASS
STORAGE IS)

The BASIC system and any BINs in memory are stored in the file . If the file name begins with
SYSTEM_, the Boot ROM can load it at power up or SYSBOOT.

Note that if you did a SCRATCH BIN to remove the CRT driver you did not need, and then stored
the system, when you reboot, the CRT driver for the other display is not available . If the CRT
needs the other driver, you cannot use the display. Execute a LOAD BIN command to load the
needed driver.

STORE SYSTEM cannot be used with ROM BASIC systems.

427

(

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

None
Yes
No
No

STORE SYSTEM

The command stores the entire BASIC operating system currently in memory including any BINs
that are loaded. (If using STORE SYSTEM with SRM, also refer to the "SRM" section of this
manual.)

literal fo rm of f i le speci f ier:

Item

file specifier

file name

msus

Description/ Default

string expression

literal

literal

Example Statements
STORE SYSTE M "SY STEt'LB 1 : INTERNAL"

STORE SYSTEt1 "BACKUP1"

Semantics
If the file name already exists, an error occurs.

Range
Restrictions

(see drawing)

any valid file name

(see MASS
STORAGE IS)

The BASIC system and any BINs in memory are stored in the file . If the file name begins with
SYSTEM_, the Boot ROM can load it at power up or SYSBOOT.

Note that if you did a SCRATCH BIN to remove the CRT driver you did not need, and then stored
the system, when you reboot, the CRT driver for the other display is not available . If the CRT
needs the other driver, you cannot use the display. Execute a LOAD BIN command to load the
needed driver.

STORE SYSTEM cannot be used with ROM BASIC systems.

427

428

SUB
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

This is the first statement in a SUB subprogram and can specify the subprogram's formal
parameters.

(SUB END)-l

parameter 1 ist:

optional

numeric
name

428

SUB
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
No

This is the first statement in a SUB subprogram and can specify the subprogram's formal
parameters.

(SUB END)-l

parameter 1 ist:

optional

numeric
name

(

Item

subprogram name

numeric name

string name

I/O path name

program segment

Description/ Default

name of the SUB subprogram

name of a numeric variable

name of a string variable

name assigned to a device, devices, or mass
storage file

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram

Example Statements
SUB Parse(StringS)

Range
Restrictions

any valid name

any valid name

any valid name

any valid name
(see ASSIGN)

SUB 429

SUB Transform(@PrintertINTEGER Array(*) tOPTIONAL TextS)

Semantics
SUB subprograms must appear after the main program. The first line of the subprogram must
be a SUB statement. The last line must be a SUBEND statement. Comments after the SUBEND
are considered to be part of the subprogram.

Parameters to the left of the keyword OPTIONAL are required and must be supplied whenever
the subprogram is invoked (see CALL) . Parameters to the right of OPTIONAL are optional, and
only need to be supplied if they are needed for a specific operation. Optional parameters are
associated from left to right with any remaining pass parameters until the pass parameter list is
exhausted. An error is generated if the subprogram tries to use an optional parameter which did
not have a value passed to it. The function NPAR can be used to determine the number of
parameters supplied by the CALL statement invoking the subprogram.

Variables in a subprogram's formal parameter list may not be duplicated in COM or other
declaratory statements within the subprogram. A subprogram may not contain any SUB state­
ments, or DEF FN statements. Subprograms can be called recursively and may contain local
variables. A unique labeled COM must be used if the local variables are to preserve their values
between invocations of the subprogram.

SUBEXIT may be used to leave the subprogram at some point other than the SUBEND.
Multiple SUBEXITs are allowed, and SUBEXIT may appear in an IF .. . THEN statement.
SUBEND is prohibited in IF .. . THEN statements, and may only occur once in a subprogram.

If you want to use a formal parameter as a BUFFER, it must be declared as a BUFFER in both the
formal parameter list and the calling context.

SUBEND
See the SUB statement.

(

Item

subprogram name

numeric name

string name

I/O path name

program segment

Description/ Default

name of the SUB subprogram

name of a numeric variable

name of a string variable

name assigned to a device, devices, or mass
storage file

any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram

Example Statements
SUB Parse(StringS)

Range
Restrictions

any valid name

any valid name

any valid name

any valid name
(see ASSIGN)

SUB 429

SUB Transform(@PrintertINTEGER Array(*) tOPTIONAL TextS)

Semantics
SUB subprograms must appear after the main program. The first line of the subprogram must
be a SUB statement. The last line must be a SUBEND statement. Comments after the SUBEND
are considered to be part of the subprogram.

Parameters to the left of the keyword OPTIONAL are required and must be supplied whenever
the subprogram is invoked (see CALL) . Parameters to the right of OPTIONAL are optional, and
only need to be supplied if they are needed for a specific operation. Optional parameters are
associated from left to right with any remaining pass parameters until the pass parameter list is
exhausted. An error is generated if the subprogram tries to use an optional parameter which did
not have a value passed to it. The function NPAR can be used to determine the number of
parameters supplied by the CALL statement invoking the subprogram.

Variables in a subprogram's formal parameter list may not be duplicated in COM or other
declaratory statements within the subprogram. A subprogram may not contain any SUB state­
ments, or DEF FN statements. Subprograms can be called recursively and may contain local
variables. A unique labeled COM must be used if the local variables are to preserve their values
between invocations of the subprogram.

SUBEXIT may be used to leave the subprogram at some point other than the SUBEND.
Multiple SUBEXITs are allowed, and SUBEXIT may appear in an IF .. . THEN statement.
SUBEND is prohibited in IF .. . THEN statements, and may only occur once in a subprogram.

If you want to use a formal parameter as a BUFFER, it must be declared as a BUFFER in both the
formal parameter list and the calling context.

SUBEND
See the SUB statement.

430

SUBEXIT
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
Yes

This statement may be used to return from a SUB subprogram at some point other than the
SUBEND statement. It allows multiple exits from a subprogram.

(SUBEXIT)-l

430

SUBEXIT
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

None
No

Yes
Yes

This statement may be used to return from a SUB subprogram at some point other than the
SUBEND statement. It allows multiple exits from a subprogram.

(SUBEXIT)-l

(
SUM

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns the sum of all elements of a numeric array. The value returned is of the same
type as the array.

Item Description/ Default

array name name of a numeric array

Example Statements
A r r a }' _ 5 Ulll = SUM (A)

SUM_s9uares=SUM(S9uares)

Range
Restrictions

any valid name

431

(
SUM

Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This function returns the sum of all elements of a numeric array. The value returned is of the same
type as the array.

Item Description/ Default

array name name of a numeric array

Example Statements
A r r a }' _ 5 Ulll = SUM (A)

SUM_s9uares=SUM(S9uares)

Range
Restrictions

any valid name

431

432

SUSPEND INTERACTIVE
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement disables the (EXECUTE), (ENTER), (RETURN), (PAUSE) , (STOP), (ClR 1/0), (BREAK), and
(optionally) (RESET) key functions during a running program.

SUSPEND INTERACTIVE

Example Statements
SUSPEND INTERACTIVE,RESET
IF NOT Kbd_flas THEN SUSPEND INTERACTIVE

Semantics
Execution of a PAUSE statement, a TRACE PAUSE statement, or a fatal execution error
temporarily restores the suspended key functions. CONTINUE after a PAUSE will again disable
the keys.

SUSPEND INTERACTIVE is cancelled by RESUME INTERACTIVE, STOP, END, RUN,
SCRATCH, GET, LOAD, or (RESET). Although LOAD cancels SUSPEND INTERACTIVE, LOAD­
SUB does not. SUSPEND INTERACTIVE has no effect unless a program is running.

Note
Suspending the (RESET) key will prevent you from stopping a program
before it ends.

(EXECUTE) (ENTER) and (RETURN) can still be used to respond to an ENTER or INPUT statement, but
cannot be used for live keyboard execution.

SWEDISH

See the LEXICAL ORDER IS statement.

432

SUSPEND INTERACTIVE
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN... Yes

This statement disables the (EXECUTE), (ENTER), (RETURN), (PAUSE) , (STOP), (ClR 1/0), (BREAK), and
(optionally) (RESET) key functions during a running program.

SUSPEND INTERACTIVE

Example Statements
SUSPEND INTERACTIVE,RESET
IF NOT Kbd_flas THEN SUSPEND INTERACTIVE

Semantics
Execution of a PAUSE statement, a TRACE PAUSE statement, or a fatal execution error
temporarily restores the suspended key functions. CONTINUE after a PAUSE will again disable
the keys.

SUSPEND INTERACTIVE is cancelled by RESUME INTERACTIVE, STOP, END, RUN,
SCRATCH, GET, LOAD, or (RESET). Although LOAD cancels SUSPEND INTERACTIVE, LOAD­
SUB does not. SUSPEND INTERACTIVE has no effect unless a program is running.

Note
Suspending the (RESET) key will prevent you from stopping a program
before it ends.

(EXECUTE) (ENTER) and (RETURN) can still be used to respond to an ENTER or INPUT statement, but
cannot be used for live keyboard execution.

SWEDISH

See the LEXICAL ORDER IS statement.

(

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement allows labelling with user-defined symbols.

(SY"OL }oj ';:.': f---Gi) EO3$? :0ii3 -I
, FILL I

, EDGE

Item Description/Default

array name name of a two-dimensional , two-column or
three-column REAL array

Example Statements
SYMBOL My_char(*'
SYMBOL Logo(*' ,FILL,EDGE

Semantics

SYMBOL

Range
Restrictions

any valid name

The user-defined symbol is created with moves and draws defined in a symbol coordinate
system. The symbol coordinate system is a rectangular area nine units wide and fifteen units high,
that is, a character cell. A symbol can extend outside the limits of the 9 x 15 symbol coordinate
system rectangle. A symbol defined in the symbol coordinate system is affected by the label
transformations CSIZE, LDIR, and LORG. The symbol is drawn using the current pen and line
type, and it will be clipped at the current clip boundary.

When defining a symbol in the symbol coordinate system, coordinates may be outside the 9 x 15
character cell; thus, characters can be made which are several character cells wide and several
character cells high . For this reason, the current pen position is not updated to the next
character's reference point, but it remains at the last X,Y coordinate specified in the array. A
move is made to the first point regardless of the value in the third column of that row of the array.

The symbol may have polygons defined in its data, and the polygons may be filled and/or edged.
The fill color and pen number/line type used are those defined at the time the polygon is closed.

FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the array
is reached, or when the value in the third column is an even number less than three, or in the
ranges 5 to 8 or 10 to 15.

433

(

Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN. .. Yes

This statement allows labelling with user-defined symbols.

(SY"OL }oj ';:.': f---Gi) EO3$? :0ii3 -I
, FILL I

, EDGE

Item Description/Default

array name name of a two-dimensional , two-column or
three-column REAL array

Example Statements
SYMBOL My_char(*'
SYMBOL Logo(*' ,FILL,EDGE

Semantics

SYMBOL

Range
Restrictions

any valid name

The user-defined symbol is created with moves and draws defined in a symbol coordinate
system. The symbol coordinate system is a rectangular area nine units wide and fifteen units high,
that is, a character cell. A symbol can extend outside the limits of the 9 x 15 symbol coordinate
system rectangle. A symbol defined in the symbol coordinate system is affected by the label
transformations CSIZE, LDIR, and LORG. The symbol is drawn using the current pen and line
type, and it will be clipped at the current clip boundary.

When defining a symbol in the symbol coordinate system, coordinates may be outside the 9 x 15
character cell; thus, characters can be made which are several character cells wide and several
character cells high . For this reason, the current pen position is not updated to the next
character's reference point, but it remains at the last X,Y coordinate specified in the array. A
move is made to the first point regardless of the value in the third column of that row of the array.

The symbol may have polygons defined in its data, and the polygons may be filled and/or edged.
The fill color and pen number/line type used are those defined at the time the polygon is closed.

FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon. The
polygon begins at the first point on the sequence, includes each successive point, and the final
point is connected or closed back to the first point. A polygon is closed when the end of the array
is reached, or when the value in the third column is an even number less than three, or in the
ranges 5 to 8 or 10 to 15.

433

434 SYMBOL

If FILL and/or EDGE are specified on the SYMBOL statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current pen color. If
polygon mode is entered from within the array, and the FILL/EDGE directive for that series of
polygons differs from the FILL/EDGE directive on the SYMBOL statement itself, the directive in
the array replaces the directive on the statement. In other words, if a "start polygon mode"
operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether
specified by a keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the SYMBOL statement, FILL occurs first. If neither one
is specified, simple line drawing mode is assumed; that is, polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled , but will be edged,
regardless of the directives on the statement.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and d raws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after li nes or axes is affected by scal ing.
Note 2 The starting point for labels drawn after other labels is affected by LDIR .
Note 3 The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LOIR POIR

Note 4

X
X

Note 2

434 SYMBOL

If FILL and/or EDGE are specified on the SYMBOL statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current pen color. If
polygon mode is entered from within the array, and the FILL/EDGE directive for that series of
polygons differs from the FILL/EDGE directive on the SYMBOL statement itself, the directive in
the array replaces the directive on the statement. In other words, if a "start polygon mode"
operation selector (a 6, 10, or 11) is encountered, any current FILL/EDGE directive (whether
specified by a keyword or an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the SYMBOL statement, FILL occurs first. If neither one
is specified, simple line drawing mode is assumed; that is, polygon closure does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled , but will be edged,
regardless of the directives on the statement.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and d raws) X X
Polygons and rectangles X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after li nes or axes is affected by scal ing.
Note 2 The starting point for labels drawn after other labels is affected by LDIR .
Note 3 The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

X

LOIR POIR

Note 4

X
X

Note 2

(

SYMBOL 435

When using an SYMBOL statement, the following table of operation selectors applies. An
operation selector is the value in the third column of a row of the array to be plotted. The
array must be a two-dimensional, two-column or three-column array. If the third column
exists, it will contain operation selectors which instruct the computer to carry out certain op­
erations. Polygons may be defined, edged (using the current pen) , filled (using the current fill
color), pen and line type may be selected, and so forth . See the list below.

Operation
Column 1 Column 2 Selector Meaning

X Y - 2 Pen up before moving
X Y - 1 Pen down before moving
X Y 0 Pen up after moving (Same as + 2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving

pen number ignored 3 Select pen
line type repeat value 4 Select line type

color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value

ignored ignored > 15 Ignored

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array SYMBOL statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number desired.
The value in column two is ignored.

Selecting Line Types
An operation selector of 4 selects a line type. The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is evalu­
ated and rounded down to the next multiple of 5 , with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

(

SYMBOL 435

When using an SYMBOL statement, the following table of operation selectors applies. An
operation selector is the value in the third column of a row of the array to be plotted. The
array must be a two-dimensional, two-column or three-column array. If the third column
exists, it will contain operation selectors which instruct the computer to carry out certain op­
erations. Polygons may be defined, edged (using the current pen) , filled (using the current fill
color), pen and line type may be selected, and so forth . See the list below.

Operation
Column 1 Column 2 Selector Meaning

X Y - 2 Pen up before moving
X Y - 1 Pen down before moving
X Y 0 Pen up after moving (Same as + 2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving

pen number ignored 3 Select pen
line type repeat value 4 Select line type

color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value

ignored ignored > 15 Ignored

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array SYMBOL statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number desired.
The value in column two is ignored.

Selecting Line Types
An operation selector of 4 selects a line type. The line type (column one) selects the pattern,
and the repeat value (column two) is the length in GDUs that the line extends before a single
occurrence of the pattern is finished and it starts over. On the CRT, the repeat value is evalu­
ated and rounded down to the next multiple of 5 , with 5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This works
identically to the AREA PEN statement. Column one contains the pen number.

436 SYMBOL

Defining a Fill Color
Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessariy immediately) , is a row whose operation selector in col­
umn three has the value of 15. The first column in that row contains the blue value. These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word, that is, the most significant bit in
the word is ignored. Each group of five bits contains a number which determines the intensity
of the corresponding color component, which ranges from zero to sixteen. The value in each
field will be sixteen minus the intensity of the color component. For example, if the value in
the first column of the array is zero, all three five-bit values would thus be zero. Sixteen minus
zero in all three cases would turn on all three color components to full intensity, and the
resultant color would be a bright white.

Assuming you have the desired intensities(which range from 0 thru 1) for red, green, and blue
in the variables R, G, and B, respectively, the value for the first column in the array could be
defined thus:

A r r a)' (R 0 1,1 I 1) = S H 1FT (1 G * (1 - B) I - 1 0) + S H 1FT (1 G * (1 - G) I - 5) + 1 G * (1 - R)

If there is a pen color in the color map similar to that which you request here, that non­
dithered color will be used. If there is not a similar color, you will get a dithered pattern.

Polygons
A six, ten , or eleven in the third column of the array begins a " polygon mode". If the opera­
tion selector is 6, the polygon will be filled with the current fill color. If the operation selector is
10, the polygon will be edged with the current pen number and line type. If the operation
selector is 11, the polygon will be both filled and edged. Many individual polygons can be
filled without terminating the mode with an operation selector 7. This can be done by specify­
ing several series of draws separated by moves. The first and second columns are ignored and
should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation selec­
tors 6 , 10, or 11) . The values in the first and second columns are ignored and the X and Y
values of the last data point should not be in them. Edging and/or filling of the most recent
polygon will begin immediately upon encountering this operation selector.

436 SYMBOL

Defining a Fill Color
Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green are
specified in columns one and two, respectively, and column three has the value 14. Following
this row in the array (not necessariy immediately) , is a row whose operation selector in col­
umn three has the value of 15. The first column in that row contains the blue value. These
numbers range from 0 to 32 767, where 0 is no color and 32 767 is full intensity. Operation
selectors 14 and 15 together comprise the equivalent of an AREA INTENSITY statement,
which means it can be used on both a monochromatic and a color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through a
Red-Green-Blue (RGB) color model. The first column is encoded in the following manner.
There are three groups of five bits right-justified in the word, that is, the most significant bit in
the word is ignored. Each group of five bits contains a number which determines the intensity
of the corresponding color component, which ranges from zero to sixteen. The value in each
field will be sixteen minus the intensity of the color component. For example, if the value in
the first column of the array is zero, all three five-bit values would thus be zero. Sixteen minus
zero in all three cases would turn on all three color components to full intensity, and the
resultant color would be a bright white.

Assuming you have the desired intensities(which range from 0 thru 1) for red, green, and blue
in the variables R, G, and B, respectively, the value for the first column in the array could be
defined thus:

A r r a)' (R 0 1,1 I 1) = S H 1FT (1 G * (1 - B) I - 1 0) + S H 1FT (1 G * (1 - G) I - 5) + 1 G * (1 - R)

If there is a pen color in the color map similar to that which you request here, that non­
dithered color will be used. If there is not a similar color, you will get a dithered pattern.

Polygons
A six, ten , or eleven in the third column of the array begins a " polygon mode". If the opera­
tion selector is 6, the polygon will be filled with the current fill color. If the operation selector is
10, the polygon will be edged with the current pen number and line type. If the operation
selector is 11, the polygon will be both filled and edged. Many individual polygons can be
filled without terminating the mode with an operation selector 7. This can be done by specify­
ing several series of draws separated by moves. The first and second columns are ignored and
should not contain the X and Y values of the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a polygon
to be edged and/or filled and also terminates the polygon mode (entered by operation selec­
tors 6 , 10, or 11) . The values in the first and second columns are ignored and the X and Y
values of the last data point should not be in them. Edging and/or filling of the most recent
polygon will begin immediately upon encountering this operation selector.

(

SYMBOL 437

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot
be changed from within the SYMBOL statement, so one probably would not have more than
one operation selector 12 in an array to SYMBOL, since the last FRAME will overwrite all the
previous ones.

Premature Termination
Operation selector 8 causes the SYMBOL statement to be terminated. The SYMBOL state­
ment will successfully terminate if the actual end of the array has been reached, so use of
operation selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than - 2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled , but will be
edged, regardless of the directives on the statement.

(

SYMBOL 437

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits cannot
be changed from within the SYMBOL statement, so one probably would not have more than
one operation selector 12 in an array to SYMBOL, since the last FRAME will overwrite all the
previous ones.

Premature Termination
Operation selector 8 causes the SYMBOL statement to be terminated. The SYMBOL state­
ment will successfully terminate if the actual end of the array has been reached, so use of
operation selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation selector
greater that fifteen is also ignored, but operation selector 9 is retained for compatibility
reasons. Operation selectors less than - 2 are not ignored. If the value in the third column is
less than zero, only evenness/oddness is considered.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled , but will be
edged, regardless of the directives on the statement.

438

SYSBOOT
Option Required None
Keyboard Executable Yes
Programmable No
In an IF..THEN .. No

This command returns control to the BOOT ROM to restart the system configuration and
selection process.

(SYSBOOT)--l

Example Statements
SYSBOOT

438

SYSBOOT
Option Required None
Keyboard Executable Yes
Programmable No
In an IF..THEN .. No

This command returns control to the BOOT ROM to restart the system configuration and
selection process.

(SYSBOOT)--l

Example Statements
SYSBOOT

l
l

SYSTEM PRIORITY
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement sets system priority to a specified value.

(SYSTEM PRIORITY)--..j ne w pr i o r i t Y ~

Item Description/Default

new priority numeric expression, rounded to an integer

Example Statements
SYSTEM PRIORITY Old
IF Critical_code THEN SYSTEM PRIORITY 15

Semantics

Range
Restrictions

o thru 15

Zero is the lowest user-specifiable priority and 15 is the highest. The END, ERROR, and
TIMEOUT events have an effective priority higher than the highest user-specifiable priority. If no
SYSTEM PRIORITY has been executed, minimum system priority is O.

This statement establishes the minimum for system priority. Once the minimum system priority is
raised with this statement, any events of equal or lower priority will be logged but not serviced. In
order to allow service of lower-priority events, minimum system priority must be explicitly
lowered.

If SYSTEM PRIORITY is used to change the minimum system priority in a subprogram context,
the former value is restored when the context is exited.

Error 427 results if SYSTEM PRIORITY is executed in a service routine for an ON ERROR
GOSUB or ON ERROR CALL statement.

439

l
l

SYSTEM PRIORITY
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This statement sets system priority to a specified value.

(SYSTEM PRIORITY)--..j ne w pr i o r i t Y ~

Item Description/Default

new priority numeric expression, rounded to an integer

Example Statements
SYSTEM PRIORITY Old
IF Critical_code THEN SYSTEM PRIORITY 15

Semantics

Range
Restrictions

o thru 15

Zero is the lowest user-specifiable priority and 15 is the highest. The END, ERROR, and
TIMEOUT events have an effective priority higher than the highest user-specifiable priority. If no
SYSTEM PRIORITY has been executed, minimum system priority is O.

This statement establishes the minimum for system priority. Once the minimum system priority is
raised with this statement, any events of equal or lower priority will be logged but not serviced. In
order to allow service of lower-priority events, minimum system priority must be explicitly
lowered.

If SYSTEM PRIORITY is used to change the minimum system priority in a subprogram context,
the former value is restored when the context is exited.

Error 427 results if SYSTEM PRIORITY is executed in a service routine for an ON ERROR
GOSUB or ON ERROR CALL statement.

439

440

SYSTEM$
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
Yes
Yes
Yes

This function returns a string containing system status and configuration information. (If using
SYSTEM$ with SRM, also refer to the "SRM" section of this manual.)

l i t era l f orm o f typ e of i n fo r mation:

AVAILABLE MEMORY

CRT ID

DUMP DEVICE IS

GRAPH t------<~

LEX LEXICAL ORDER IS

t-----I~ MASS MEMORY r-----<~

MASS STORAGE IS

PRINTER IS

SERIAL NUMBER

440

SYSTEM$
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

None
Yes
Yes
Yes

This function returns a string containing system status and configuration information. (If using
SYSTEM$ with SRM, also refer to the "SRM" section of this manual.)

l i t era l f orm o f typ e of i n fo r mation:

AVAILABLE MEMORY

CRT ID

DUMP DEVICE IS

GRAPH t------<~

LEX LEXICAL ORDER IS

t-----I~ MASS MEMORY r-----<~

MASS STORAGE IS

PRINTER IS

SERIAL NUMBER

Item

type of information

option name

Description/ Default

string expression

literal specifying an option or BIN

Example Statements

SYSTEM$ 441

Range
Restrictions

BASIC, KBD, CLOCK,
10, MS, GRAPH,

GRAPHX, LEX, MAT,
PDEV, XREF, SRM,
TRANS, ERR, DISC,

CS80, HP9885,
BUBBLE, EPROM,

HPIB, FHPIB, GPIO,
DCOMM, SERIAL,
BCD, CRTA, CRTB

IF TPIt'1·$(SYSTEM$("SYSTEt"1 IDI))=1883GA" THEN CALL NelLIIlachine

S Y S t e IIi _ P rio r· = 1,.1 A L (S Y S T E t'1"$ (II S Y S T E t'1 P ri' lOP I T Y II))

Semantics
The topic specifier is used to specify what system configuration information the system will return.
The following table lists the valid topic specifiers and the type of information returned by the
system for each of the topic specifiers.

Item

type of information

option name

Description/ Default

string expression

literal specifying an option or BIN

Example Statements

SYSTEM$ 441

Range
Restrictions

BASIC, KBD, CLOCK,
10, MS, GRAPH,

GRAPHX, LEX, MAT,
PDEV, XREF, SRM,
TRANS, ERR, DISC,

CS80, HP9885,
BUBBLE, EPROM,

HPIB, FHPIB, GPIO,
DCOMM, SERIAL,
BCD, CRTA, CRTB

IF TPIt'1·$(SYSTEM$("SYSTEt"1 IDI))=1883GA" THEN CALL NelLIIlachine

S Y S t e IIi _ P rio r· = 1,.1 A L (S Y S T E t'1"$ (II S Y S T E t'1 P ri' lOP I T Y II))

Semantics
The topic specifier is used to specify what system configuration information the system will return.
The following table lists the valid topic specifiers and the type of information returned by the
system for each of the topic specifiers.

442 SYSTEM$

Topic Specifier

AVAILABLE MEMORY

CRT ID

DUMP DEVICE IS

GRAPHICS INPUT IS

KBD LINE

KEYBOARD LANGUAGE

LEXICAL ORDER IS

MASS MEMORY

MASS STORAGE IS
MSI

PLOTTER IS

PRINTALL IS

PRINTER IS

SERIAL NUMBER

Information Returned

Bytes of available memory

G: BOHCGB
1--'
1 I I
I .I 1
1 1
I 1
I 1
I 1
I 1
I I
I 1

1

: 1----B=Bit Map Display
I Space = Not Bit Map Display
1

1_ - _ G = Graphics Available
Space = No Graphics

L - -C = Color Available
1 1
1 1 Space = No Color
1 I

: L - H = CRT Highlights Available
1 Space = No Highlights
I

: - - CRT Width in Characters
L - - -- Distinguishes this format from Series 500 BASIC responses.

A string containing numerals which specify the device selector for the currently
assigned DUMP DEVICE IS device.

A string containing numerals which specify the device selector for the currently
assigned GRAPHICS INPUT IS device. Zero is returned if no device is current­
ly selected. (Requires GRAPH)

A string containing the current contents of the keyboard input line(s}. Note that
this operation does not change the contents of the line(s}.

ASCII, BELGIAN, CANADIAN ENGLISH, CANADIAN FRENCH, DANISH,
DUTCH, FINNISH, FRENCH, GERMAN, ITALIAN, KATAKANA, LATIN,
NORWEGIAN, SPANISH, SWEDISH, SWISS FRENCH, SWISS GERMAN,
SWISS FRENCH*, SWISS GERMAN*, or UNITED KINGDOM (Requires
LEX)

ASCII, GERMAN, FRENCH, SPANISH, SWEDISH or USER DEFINED (Re­
quires LEX)

XOOOYZOOOOOOOOOO X = Number of internal disc drives
Y = Number of initialized EPROM cards
Z = Number of bubble memory cards
If Y or Z exceed 9, an asterisk appears.

The mass storage unit specifier of the current MASS STORAGE IS device, as it
appears in a CAT heading.

A string containing numerals which specify the device selector of the current
PLOTTER IS device or the path name of the current PLOTTER IS file.
(Requires GRAPH)

A string containing numerals which specify the device selector of the current
PRINT ALL IS device.

A string containing numerals which specify the device selector of the current
PRINTER IS device or the path name of the current PRINTER IS file.

If an ID PROM is present, this string contains bytes 4-14 of that PROM.
Otherwise, a null string is returned.

442 SYSTEM$

Topic Specifier

AVAILABLE MEMORY

CRT ID

DUMP DEVICE IS

GRAPHICS INPUT IS

KBD LINE

KEYBOARD LANGUAGE

LEXICAL ORDER IS

MASS MEMORY

MASS STORAGE IS
MSI

PLOTTER IS

PRINTALL IS

PRINTER IS

SERIAL NUMBER

Information Returned

Bytes of available memory

G: BOHCGB
1--'
1 I I
I .I 1
1 1
I 1
I 1
I 1
I 1
I I
I 1

1

: 1----B=Bit Map Display
I Space = Not Bit Map Display
1

1_ - _ G = Graphics Available
Space = No Graphics

L - -C = Color Available
1 1
1 1 Space = No Color
1 I

: L - H = CRT Highlights Available
1 Space = No Highlights
I

: - - CRT Width in Characters
L - - -- Distinguishes this format from Series 500 BASIC responses.

A string containing numerals which specify the device selector for the currently
assigned DUMP DEVICE IS device.

A string containing numerals which specify the device selector for the currently
assigned GRAPHICS INPUT IS device. Zero is returned if no device is current­
ly selected. (Requires GRAPH)

A string containing the current contents of the keyboard input line(s}. Note that
this operation does not change the contents of the line(s}.

ASCII, BELGIAN, CANADIAN ENGLISH, CANADIAN FRENCH, DANISH,
DUTCH, FINNISH, FRENCH, GERMAN, ITALIAN, KATAKANA, LATIN,
NORWEGIAN, SPANISH, SWEDISH, SWISS FRENCH, SWISS GERMAN,
SWISS FRENCH*, SWISS GERMAN*, or UNITED KINGDOM (Requires
LEX)

ASCII, GERMAN, FRENCH, SPANISH, SWEDISH or USER DEFINED (Re­
quires LEX)

XOOOYZOOOOOOOOOO X = Number of internal disc drives
Y = Number of initialized EPROM cards
Z = Number of bubble memory cards
If Y or Z exceed 9, an asterisk appears.

The mass storage unit specifier of the current MASS STORAGE IS device, as it
appears in a CAT heading.

A string containing numerals which specify the device selector of the current
PLOTTER IS device or the path name of the current PLOTTER IS file.
(Requires GRAPH)

A string containing numerals which specify the device selector of the current
PRINT ALL IS device.

A string containing numerals which specify the device selector of the current
PRINTER IS device or the path name of the current PRINTER IS file.

If an ID PROM is present, this string contains bytes 4-14 of that PROM.
Otherwise, a null string is returned.

Topic Specifier

SYSTEM ID

SYSTEM PRIORITY

TRIG MODE

VERSION: option name

SYSTEM$ 443

Information Returned

S300:20 on Series 300 computers with an MC68020 processor; or
S300: 10 on Series 300 computers with an MC68010 processor; or
bytes 15 thru 21 of the ID PROM in a Series 200 computer (if present) ; or
9816, 9826A, or 9836A padded with trailing spaces to make a seven character
string.

A string containing numerals which specify the current system priority.

DEG or HAD

A string containing numerals which specify the revision number displayed at
power up and displayed after LOAD BIN or LIST BIN.

TAB

See the PRINT and DISP statements.

TABXY

See the PRINT statement.

TALK

See the SEND statement.

Topic Specifier

SYSTEM ID

SYSTEM PRIORITY

TRIG MODE

VERSION: option name

SYSTEM$ 443

Information Returned

S300:20 on Series 300 computers with an MC68020 processor; or
S300: 10 on Series 300 computers with an MC68010 processor; or
bytes 15 thru 21 of the ID PROM in a Series 200 computer (if present) ; or
9816, 9826A, or 9836A padded with trailing spaces to make a seven character
string.

A string containing numerals which specify the current system priority.

DEG or HAD

A string containing numerals which specify the revision number displayed at
power up and displayed after LOAD BIN or LIST BIN.

TAB

See the PRINT and DISP statements.

TABXY

See the PRINT statement.

TALK

See the SEND statement.

444

TAN
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF.. .THEN. .. Yes

This function returns the tangent of the angle represented by the argument. Error 31 occurs
when trying to compute the TAN of an odd multiple of 90 degrees.

Item Description/Default

argument numeric expression in current units of angle

Example Statements
Tanrent=TAN(Anrle)
PRINT "Tanrent of l ;Z;I=";TAN(Z)

Range
Restrictions

absolute value less than:
8 .541 563906 E + 9 deg.

or
1.490 784 13 E + 8 rad.

444

TAN
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF.. .THEN. .. Yes

This function returns the tangent of the angle represented by the argument. Error 31 occurs
when trying to compute the TAN of an odd multiple of 90 degrees.

Item Description/Default

argument numeric expression in current units of angle

Example Statements
Tanrent=TAN(Anrle)
PRINT "Tanrent of l ;Z;I=";TAN(Z)

Range
Restrictions

absolute value less than:
8 .541 563906 E + 9 deg.

or
1.490 784 13 E + 8 rad.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

CLOCK
Yes
Yes
Yes

TIME

This function converts the formatted time of day (HH:MM:SS), into the number of seconds past
midnight. (Also see the OFF TIME, ON TIME, and SET TIME statements.)

time of day

l ite ral fo rm of time of day:

Item Description/Default

time of day string expression representing the time in 24-
hour format

hours literal

minutes literal

seconds literal; default = 0

delimiter literal; single character

Example Statements
Seconds=TIME (T$)
SET TIME TIME(18:37:30")
ON TIME TIME(112:12") GOSUB FooLfood

Semantics

Range
Restrictions

(see drawing)

o thru 23

o thru 59

o thru 59.99

(see text)

TIME returns a REAL whole number, in the range 0 thru 86 399, equivalent to the number of
seconds past midnight.

While any number of non-numeric characters may be used as a delimiter, a single colon is
recommended. Leading blanks and non-numeric characters are ignored.

445

Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

CLOCK
Yes
Yes
Yes

TIME

This function converts the formatted time of day (HH:MM:SS), into the number of seconds past
midnight. (Also see the OFF TIME, ON TIME, and SET TIME statements.)

time of day

l ite ral fo rm of time of day:

Item Description/Default

time of day string expression representing the time in 24-
hour format

hours literal

minutes literal

seconds literal; default = 0

delimiter literal; single character

Example Statements
Seconds=TIME (T$)
SET TIME TIME(18:37:30")
ON TIME TIME(112:12") GOSUB FooLfood

Semantics

Range
Restrictions

(see drawing)

o thru 23

o thru 59

o thru 59.99

(see text)

TIME returns a REAL whole number, in the range 0 thru 86 399, equivalent to the number of
seconds past midnight.

While any number of non-numeric characters may be used as a delimiter, a single colon is
recommended. Leading blanks and non-numeric characters are ignored.

445

446

TIME$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
Yes
Yes
Yes

This function converts the number of seconds past midnight into a string representing the time of
day (HH:MM:SS) .

Item

seconds

Description/Default

numeric expression , truncated to the
nearest second; seconds past midnight

Example Statements

Range Recommended
Restrictions Range

- 4.623 683 256 E + 13 0 thru 86 399
thru

+4.6534263350399 E+ 13

DISP "The tiftle is : "HIME$(TIMEDATE)
PRINT TIME$(4528G)

Semantics
TIME$ takes time (in seconds) and returns the time of day in the form HH:MM:SS, where HH
represents hours, MM represents minutes, and SS represents seconds. A modulo 86 400 is
performed on the parameter before it is formatted as a time of day.

446

TIME$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

CLOCK
Yes
Yes
Yes

This function converts the number of seconds past midnight into a string representing the time of
day (HH:MM:SS) .

Item

seconds

Description/Default

numeric expression , truncated to the
nearest second; seconds past midnight

Example Statements

Range Recommended
Restrictions Range

- 4.623 683 256 E + 13 0 thru 86 399
thru

+4.6534263350399 E+ 13

DISP "The tiftle is : "HIME$(TIMEDATE)
PRINT TIME$(4528G)

Semantics
TIME$ takes time (in seconds) and returns the time of day in the form HH:MM:SS, where HH
represents hours, MM represents minutes, and SS represents seconds. A modulo 86 400 is
performed on the parameter before it is formatted as a time of day.

(

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
Yes
Yes
Yes

TIMEDATE

This function returns the current value of the real-time clock. (Also see the SET TIMEDATE
statement.)

~TIMEDATE~

Example Statements
Elspsed=TIMEDATE-TO
DISP TIMEDATE MOD 86400

Semantics
The value returned by TIMEDATE represents the sum of the last time setting and the number of
seconds that have elapsed since that setting was made. The clock value set at power-on is
2.08662912 E+ 11, which represents midnight March 1, 1900. The time value accumulates
from that setting unless it is changed by SET TIME or SET TIMEDATE.

The resolution of the TIMEDATE function is .01 seconds. If the clock is properly set, TIME­
DATE MOD 86400 gives the number of seconds since midnight.

TIMEOUT

See the OFF TIMEOUT and ON TIMEOUT statements.

447

(

Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
Yes
Yes
Yes

TIMEDATE

This function returns the current value of the real-time clock. (Also see the SET TIMEDATE
statement.)

~TIMEDATE~

Example Statements
Elspsed=TIMEDATE-TO
DISP TIMEDATE MOD 86400

Semantics
The value returned by TIMEDATE represents the sum of the last time setting and the number of
seconds that have elapsed since that setting was made. The clock value set at power-on is
2.08662912 E+ 11, which represents midnight March 1, 1900. The time value accumulates
from that setting unless it is changed by SET TIME or SET TIMEDATE.

The resolution of the TIMEDATE function is .01 seconds. If the clock is properly set, TIME­
DATE MOD 86400 gives the number of seconds since midnight.

TIMEOUT

See the OFF TIMEOUT and ON TIMEOUT statements.

447

448

TRACE ALL
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
Yes
Yes

This statement allows tracing program flow and variable assignments during program execu­
tion.

TRACE ALL

Item

beginning line
number

beginning line label

ending line number

ending line label

begi nning
line number

beginning
line label

ending
line number

endi ng
line label

Description/Default

integer constant identifying a program line;
Default = first program line

name of a program line

integer constant identifying a program line;
Default = last program line

name of a program line

Example Statements
TRACE ALL Sort
TRACE ALL 1500,2450

Semantics

Range
Restrictions

1 thru 32766

any valid name

1 thru 32766

any valid name

The entire program, or any part delimited by beginning and (if needed) ending line numbers or
labels, may be traced.

The ending line is not included in the trace output. The trace output stops immediately before
the ending line is executed. When the program is traced, execution of the lines within the
tracing range causes the line number and any variable which receives a new value to be output
to the system message line of the CRT. Any type of variable (string, numeric or array) can be
displayed. For simple string and numeric variables, the name and the new value are displayed.
For arrays, a message is displayed stating that the array has a new value rather than outputting
the entire array contents.

TRACE ALL output can also be printed on the PRINTALL printer, if PRINTALL is ON. TRACE
ALL is disabled by TRACE OFF. The line numbers specified for TRACE ALL are not affected
by REN.

448

TRACE ALL
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
Yes
Yes

This statement allows tracing program flow and variable assignments during program execu­
tion.

TRACE ALL

Item

beginning line
number

beginning line label

ending line number

ending line label

begi nning
line number

beginning
line label

ending
line number

endi ng
line label

Description/Default

integer constant identifying a program line;
Default = first program line

name of a program line

integer constant identifying a program line;
Default = last program line

name of a program line

Example Statements
TRACE ALL Sort
TRACE ALL 1500,2450

Semantics

Range
Restrictions

1 thru 32766

any valid name

1 thru 32766

any valid name

The entire program, or any part delimited by beginning and (if needed) ending line numbers or
labels, may be traced.

The ending line is not included in the trace output. The trace output stops immediately before
the ending line is executed. When the program is traced, execution of the lines within the
tracing range causes the line number and any variable which receives a new value to be output
to the system message line of the CRT. Any type of variable (string, numeric or array) can be
displayed. For simple string and numeric variables, the name and the new value are displayed.
For arrays, a message is displayed stating that the array has a new value rather than outputting
the entire array contents.

TRACE ALL output can also be printed on the PRINTALL printer, if PRINTALL is ON. TRACE
ALL is disabled by TRACE OFF. The line numbers specified for TRACE ALL are not affected
by REN.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
Yes
Yes

This statement turns off all tracing activity.

(TRACE OFF ~

449

TRACE OFF
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
Yes
Yes

This statement turns off all tracing activity.

(TRACE OFF ~

449

TRACE OFF

450

TRACE PAUSE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
Yes
Yes

This statement causes program execution to pause before executing the specified line, and
displays the next line to be executed on the CRT.

TRACE PAUSE }-,----------y--+l

paused
line number

paused
line label

Item Description/Default

paused line number integer constant identifying a program line;
Default = next program line

paused line label name of a program line

Example Statements
TRACE PAUSE
TRACE PAUSE Loop_end

Semantics

Range
Restrictions

1 thru 32766

any valid name

Not specifying a line for TRACE PAUSE results in the pause occurring before the next line is
executed. Only one TRACE PAUSE can be active at a time. TRACE PAUSE is cancelled by
TRACE OFF.

450

TRACE PAUSE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

PDEV
Yes
Yes
Yes

This statement causes program execution to pause before executing the specified line, and
displays the next line to be executed on the CRT.

TRACE PAUSE }-,----------y--+l

paused
line number

paused
line label

Item Description/Default

paused line number integer constant identifying a program line;
Default = next program line

paused line label name of a program line

Example Statements
TRACE PAUSE
TRACE PAUSE Loop_end

Semantics

Range
Restrictions

1 thru 32766

any valid name

Not specifying a line for TRACE PAUSE results in the pause occurring before the next line is
executed. Only one TRACE PAUSE can be active at a time. TRACE PAUSE is cancelled by
TRACE OFF.

TRACK
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This statement enables and disables tracking of the current locator position on the current display
device.

display device
selector

Item Description/Default

display device selector numeric expression, rounded to an integer

Example Statements
TRACK 7 08 I S ON
TRAC K Plot IS OFF

Semantics

Range
Restrictions

(see Glossary)

The current locator is defined by a GRAPHICS INPUT IS statement, and the current display
device is defined by a PLOTTER IS statement. If TRACK. .. IS ON is executed, an echo on the
current display device tracks the locator position during DIGITIZE statements. On a CRT, the
echo is a 9-by-9-dot crosshair. On a plotter, the pen position tracks the locator. When a point is
digitized, the echo is left at the location of the digitized point and tracking ceases.

The display device selector must match that used in the most recently executed PLOTTER IS
statement, or error 708 results.

Executing TRACK. .. IS OFF disables tracking.

451

TRACK
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This statement enables and disables tracking of the current locator position on the current display
device.

display device
selector

Item Description/Default

display device selector numeric expression, rounded to an integer

Example Statements
TRACK 7 08 I S ON
TRAC K Plot IS OFF

Semantics

Range
Restrictions

(see Glossary)

The current locator is defined by a GRAPHICS INPUT IS statement, and the current display
device is defined by a PLOTTER IS statement. If TRACK. .. IS ON is executed, an echo on the
current display device tracks the locator position during DIGITIZE statements. On a CRT, the
echo is a 9-by-9-dot crosshair. On a plotter, the pen position tracks the locator. When a point is
digitized, the echo is left at the location of the digitized point and tracking ceases.

The display device selector must match that used in the most recently executed PLOTTER IS
statement, or error 708 results.

Executing TRACK. .. IS OFF disables tracking.

451

452

TRANSFER
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
Yes
Yes
Yes

This statement initiates unformatted 110 transfers. (If using TRANSFER with SRM, also refer to
the "SRM" section of this manual.)

452

TRANSFER
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
Yes
Yes
Yes

This statement initiates unformatted 110 transfers. (If using TRANSFER with SRM, also refer to
the "SRM" section of this manual.)

Item Description/Default

source name I/O path name assigned to a device, a group of
devices, a mass storage file , or a buffer

destination name I/O path name assigned to a device, a group of
devices, a mass storage file, or a buffer

number of bytes numeric expression, rounded to an integer

character string expression with a length of zero or one

number of records numeric expression, rounded to an integer

Example Statements
TRANSFER @Device TO @5uff
TRANSFER @5uff TO @File;CONT
TRANSFER @Path TO @Destination;COUNT 258
TRANSFER @Source TO @5uffer;DELIM "/"
TRANSFER @Path TO @5uffer;RECOROS 12,EOR(COUNT 8)

Semantics

TRANSFER 453

Range
Restrictions

any valid name

any valid name

1 thru 231-1

1 thru 231-1

The TRANSFER statement allows unformatted data transfers between the computer and devices
(mass storage drives are considered devices for this operation). Whenever possible, a TRANS­
FER takes place concurrently with continued program execution. Since no formatting is per­
formed and the TRANSFER statement executes concurrently (overlapped) with regular program
execution, the highest possible data transfer rate is achieved.

Before a data transfer can take place, a buffer must be declared. Every TRANSFER will need a
buffer as either its source or its destination. An outbound TRANSFER empties the buffer (source)
while an inbound TRANSFER fills the buffer (destination) . Device to device transfers and buffer
to buffer transfers are not allowed.

Two types of buffers are available; named and unnamed. A named buffer is a REAL array,
INTEGER array, or a string scalar declared with the keyword BUFFER. See ASSIGN, COM, DIM,
INTEGER, and REAL. Unnamed buffers are created in the ASSIGN statement by specifying the
keyword BUFFER and the number of bytes to be reserved for the buffer. See ASSIGN.

Every buffer has two pointers associated with it. The fill pointer indicates the next available
location in the buffer for data. The empty pointer indicates the next item to be removed from the
buffer. This allows an inbound TRANSFER and an outbound TRANSFER to access the same
buffer Simultaneously.

BOAT is the only file type allowed in a TRANSFER. An end-of-file error will prematurely
terminate a TRANSFER, thus triggering an end-of-transfer condition. If an end-of-record condi­
tion was satisfied when the end-of-file was reached, the EaR event will also be true.

Item Description/Default

source name I/O path name assigned to a device, a group of
devices, a mass storage file , or a buffer

destination name I/O path name assigned to a device, a group of
devices, a mass storage file, or a buffer

number of bytes numeric expression, rounded to an integer

character string expression with a length of zero or one

number of records numeric expression, rounded to an integer

Example Statements
TRANSFER @Device TO @5uff
TRANSFER @5uff TO @File;CONT
TRANSFER @Path TO @Destination;COUNT 258
TRANSFER @Source TO @5uffer;DELIM "/"
TRANSFER @Path TO @5uffer;RECOROS 12,EOR(COUNT 8)

Semantics

TRANSFER 453

Range
Restrictions

any valid name

any valid name

1 thru 231-1

1 thru 231-1

The TRANSFER statement allows unformatted data transfers between the computer and devices
(mass storage drives are considered devices for this operation). Whenever possible, a TRANS­
FER takes place concurrently with continued program execution. Since no formatting is per­
formed and the TRANSFER statement executes concurrently (overlapped) with regular program
execution, the highest possible data transfer rate is achieved.

Before a data transfer can take place, a buffer must be declared. Every TRANSFER will need a
buffer as either its source or its destination. An outbound TRANSFER empties the buffer (source)
while an inbound TRANSFER fills the buffer (destination) . Device to device transfers and buffer
to buffer transfers are not allowed.

Two types of buffers are available; named and unnamed. A named buffer is a REAL array,
INTEGER array, or a string scalar declared with the keyword BUFFER. See ASSIGN, COM, DIM,
INTEGER, and REAL. Unnamed buffers are created in the ASSIGN statement by specifying the
keyword BUFFER and the number of bytes to be reserved for the buffer. See ASSIGN.

Every buffer has two pointers associated with it. The fill pointer indicates the next available
location in the buffer for data. The empty pointer indicates the next item to be removed from the
buffer. This allows an inbound TRANSFER and an outbound TRANSFER to access the same
buffer Simultaneously.

BOAT is the only file type allowed in a TRANSFER. An end-of-file error will prematurely
terminate a TRANSFER, thus triggering an end-of-transfer condition. If an end-of-record condi­
tion was satisfied when the end-of-file was reached, the EaR event will also be true.

454 TRANSFER

110 path names should be used to access the contents of the buffer. This ensures the automatic
updating of the fill and empty pointers during a transfer. For named buffers, the contents of the
buffer can also be accessed by the buffer's variable name. However, accessing the contents of
the buffer by the variable name does not update the fill and empty pointers and is likely to
corrupt the data in the buffer.

Transfer Parameters
When no parameters are specified for a TRANSFER, an inbound TRANSFER will fill the buffer
with data and then terminate. An outbound transfer will empty the buffer and then terminate.
Both inbound and outbound transfers execute in overlapped mode when possible.

The CONT parameter specifies that the TRANSFER is to continue indefinitely. Instead of
terminating on buffer full or buffer empty conditions, the TRANSFER will be temporarily
suspended until there is space available in the buffer (for inbound transfers) or until there is data
available in the buffer (for outbound transfers).

The WAIT parameter specifies that the TRANSFER is to take place serially (non-overlapped).
Program execution will not leave the TRANSFER statement until the data transfer is completed.

A TRANSFER can be specified to terminate when a device dependent signal is received (END),
after a specified number of bytes has been transferred (COUNT), or after a specific character is
detected (DELIM). The DELIM parameter can only be used with inbound transfers.

If END is included on a TRANSFER to a file, the end-of-file pointer is updated when the
TRANSFER terminates; including EOR (END) causes the end-of-file pointer to be updated at the
end of each record.

When the RECORD parameter is specified, the. end-of-record parameter must also be specified
(EOR). The end-of-record condition can be either COUNT, DELIM, END or any combination of
conditions.

Overlapped execution of the TRANSFER statement can be deferred until a record has been
transferred or until the entire TRANSFER has completed. See WAIT FOR EOR and WAIT FOR
EOT.

Supported Devices
The TRANSFER statement supports data transfers to and from the following devices.

HP-IB
GPIO
Serial
Datacomm
HP-IL

(HP 98624)
(HP 98622)
(HP 98626)
(HP 98628)
(HP 98634)

TRANSFER can also be used with BOAT files on any of the mass storage devices supported by
BASIC 4.0 except the 9144A and the 9122 formatted for 512-byte sectors (format option 2).

454 TRANSFER

110 path names should be used to access the contents of the buffer. This ensures the automatic
updating of the fill and empty pointers during a transfer. For named buffers, the contents of the
buffer can also be accessed by the buffer's variable name. However, accessing the contents of
the buffer by the variable name does not update the fill and empty pointers and is likely to
corrupt the data in the buffer.

Transfer Parameters
When no parameters are specified for a TRANSFER, an inbound TRANSFER will fill the buffer
with data and then terminate. An outbound transfer will empty the buffer and then terminate.
Both inbound and outbound transfers execute in overlapped mode when possible.

The CONT parameter specifies that the TRANSFER is to continue indefinitely. Instead of
terminating on buffer full or buffer empty conditions, the TRANSFER will be temporarily
suspended until there is space available in the buffer (for inbound transfers) or until there is data
available in the buffer (for outbound transfers).

The WAIT parameter specifies that the TRANSFER is to take place serially (non-overlapped).
Program execution will not leave the TRANSFER statement until the data transfer is completed.

A TRANSFER can be specified to terminate when a device dependent signal is received (END),
after a specified number of bytes has been transferred (COUNT), or after a specific character is
detected (DELIM). The DELIM parameter can only be used with inbound transfers.

If END is included on a TRANSFER to a file, the end-of-file pointer is updated when the
TRANSFER terminates; including EOR (END) causes the end-of-file pointer to be updated at the
end of each record.

When the RECORD parameter is specified, the. end-of-record parameter must also be specified
(EOR). The end-of-record condition can be either COUNT, DELIM, END or any combination of
conditions.

Overlapped execution of the TRANSFER statement can be deferred until a record has been
transferred or until the entire TRANSFER has completed. See WAIT FOR EOR and WAIT FOR
EOT.

Supported Devices
The TRANSFER statement supports data transfers to and from the following devices.

HP-IB
GPIO
Serial
Datacomm
HP-IL

(HP 98624)
(HP 98622)
(HP 98626)
(HP 98628)
(HP 98634)

TRANSFER can also be used with BOAT files on any of the mass storage devices supported by
BASIC 4.0 except the 9144A and the 9122 formatted for 512-byte sectors (format option 2).

TRANSFER 455

Transfer Method
The transfer method is device dependent and chosen by the computer. The three possible
transfer modes are:

INT interrupt mode
FHS fast handshake
DMA direct memory access

The DMA mode will be used whenever possible. If the DMA mode cannot be used (DMA card is
not installed, both channels are busy, DELIM is specified, or the interface does not support DMA)
then the INT mode will be used. FHS is used with the HP-IB or GPIO interfaces only when DMA
cannot be used and the WAIT parameter is specified.

Interactions
When the computer tries to move into the stopped state, it will wait for any transfer to complete.
Therefore , operations which would cause a stopped state will make the computer unresponsive
(or " hung") if a TRANSFER is in progress . Operations in this category include a programmed
GET, modifying a paused program, and STOP. Also, the computer will not exit a context until
any TRANSFER in that context is complete. This will cause the program to wait at a SUBEXIT,
SUBEND, or RETURN < expression > statement while a TRANSFER is in progress .

To terminate a transfer before it has finished (and free the computer) , execute an ABORT 10 (or,
as a last resort, press (RESET)).

See also: ASSIGN, WAIT FOR EOT, WAIT FOR EOR, ABORTIO, RESET and the "Transfer"
chapter of the BASIC Interfacing Techniques manual.

TRANSFER 455

Transfer Method
The transfer method is device dependent and chosen by the computer. The three possible
transfer modes are:

INT interrupt mode
FHS fast handshake
DMA direct memory access

The DMA mode will be used whenever possible. If the DMA mode cannot be used (DMA card is
not installed, both channels are busy, DELIM is specified, or the interface does not support DMA)
then the INT mode will be used. FHS is used with the HP-IB or GPIO interfaces only when DMA
cannot be used and the WAIT parameter is specified.

Interactions
When the computer tries to move into the stopped state, it will wait for any transfer to complete.
Therefore , operations which would cause a stopped state will make the computer unresponsive
(or " hung") if a TRANSFER is in progress . Operations in this category include a programmed
GET, modifying a paused program, and STOP. Also, the computer will not exit a context until
any TRANSFER in that context is complete. This will cause the program to wait at a SUBEXIT,
SUBEND, or RETURN < expression > statement while a TRANSFER is in progress .

To terminate a transfer before it has finished (and free the computer) , execute an ABORT 10 (or,
as a last resort, press (RESET)).

See also: ASSIGN, WAIT FOR EOT, WAIT FOR EOR, ABORTIO, RESET and the "Transfer"
chapter of the BASIC Interfacing Techniques manual.

456

TRIGGER
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This statement sends a trigger message to a selected device, or all devices addressed to listen,
on the HP-IB.

TRIGGER t-,..-I~

Item Description/Default

I/O path name name assigned to a device or devices

device selector numeric expression, rounded to an integer

Example Statements
TRIGGER 712
TRIGGER @Hpib

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

(see Glossary)

The computer must be the active controller to execute this statement.

If only the interface select code is specified, all devices on that interface which are addressed to
listen are triggered. If a primary address is given, the bus is reconfigured and only the addressed
device is triggered.

Summary of Bus Actions
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
Active ATN UNL ATN UNL

Controller GET LAG GET LAG
GET GET

Not Active
Error

Controller

456

TRIGGER
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This statement sends a trigger message to a selected device, or all devices addressed to listen,
on the HP-IB.

TRIGGER t-,..-I~

Item Description/Default

I/O path name name assigned to a device or devices

device selector numeric expression, rounded to an integer

Example Statements
TRIGGER 712
TRIGGER @Hpib

Semantics

Range
Restrictions

any valid name
(see ASSIGN)

(see Glossary)

The computer must be the active controller to execute this statement.

If only the interface select code is specified, all devices on that interface which are addressed to
listen are triggered. If a primary address is given, the bus is reconfigured and only the addressed
device is triggered.

Summary of Bus Actions
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
Active ATN UNL ATN UNL

Controller GET LAG GET LAG
GET GET

Not Active
Error

Controller

(

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This function returns the string stripped of all leading and trailing ASCII spaces.

string
e xpression

Example Statements
UnJustify$=TRIM$(" center ")
Clean$=TRIM$(Input$)

Semantics

TRIM$

Only leading and trailing ASCII spaces are removed. Embedded spaces are not effected.

TRN

See the MAT statement.

UNL

See the SEND statement.

UNT

See the SEND statement.

UNTIL

See the REPEAT. .. UNTIL construct.

457

(

Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN.. . Yes

This function returns the string stripped of all leading and trailing ASCII spaces.

string
e xpression

Example Statements
UnJustify$=TRIM$(" center ")
Clean$=TRIM$(Input$)

Semantics

TRIM$

Only leading and trailing ASCII spaces are removed. Embedded spaces are not effected.

TRN

See the MAT statement.

UNL

See the SEND statement.

UNT

See the SEND statement.

UNTIL

See the REPEAT. .. UNTIL construct.

457

458

UPC$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function replaces any lowercase characters with their corresponding uppercase characters.

string
expression

Example Statements
Cap ita 1 $ = U PC $ (" 1 0 IAI e r")

IF UPC$(NafTle$) =" TOM " THEN E9ual_tofTl

Semantics
The corresponding characters for the Roman Extension alphabetic characters are determined by
the current lexical order. When the lexical order is a user-defined table, the correspondence is
determined by the STANDARD lexical order.

USING
See the DISP, ENTER, LABEL, OUTPUT, and PRINT statements.

458

UPC$
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function replaces any lowercase characters with their corresponding uppercase characters.

string
expression

Example Statements
Cap ita 1 $ = U PC $ (" 1 0 IAI e r")

IF UPC$(NafTle$) =" TOM " THEN E9ual_tofTl

Semantics
The corresponding characters for the Roman Extension alphabetic characters are determined by
the current lexical order. When the lexical order is a user-defined table, the correspondence is
determined by the STANDARD lexical order.

USING
See the DISP, ENTER, LABEL, OUTPUT, and PRINT statements.

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function converts a string expression into a numeric value.

Item Description/ Default

string argument string expression

Example Statements
Day=I.)AL(Date$)
IF VAL (Response$) (O THEN Negative

Semantics

Range
Restrictions

VAL

numerals, decimal point, sign
and exponent notation

The first non-blank character in the string must be a digit, a plus or minus sign, or a decimal
point. The remaining characters may be digits , a decimal point, or an E, and must form a valid
numeric constant. If an E is present, characters to the left of it must form a valid mantissa, and
characters to the right must form a valid exponent. The string expression is evaluated when a
non-numeric character is encountered or the characters are exhausted.

459

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

None
Yes
Yes
Yes

This function converts a string expression into a numeric value.

Item Description/ Default

string argument string expression

Example Statements
Day=I.)AL(Date$)
IF VAL (Response$) (O THEN Negative

Semantics

Range
Restrictions

VAL

numerals, decimal point, sign
and exponent notation

The first non-blank character in the string must be a digit, a plus or minus sign, or a decimal
point. The remaining characters may be digits , a decimal point, or an E, and must form a valid
numeric constant. If an E is present, characters to the left of it must form a valid mantissa, and
characters to the right must form a valid exponent. The string expression is evaluated when a
non-numeric character is encountered or the characters are exhausted.

459

460

VAL$
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN .. .

None
Yes
Yes
Yes

This function returns a string representation of the value of the argument. The returned string is
in the default print format, except that the first character is not a blank for positive numbers. No
trailing blanks are generated.

Item Description/Default

numeric argument numeric expression

Example Statements '
PRINT Esc$;VAL$ (Cursor-l)
Special$=Text$&VAL$(Number)

Range
Restrictions

460

VAL$
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN .. .

None
Yes
Yes
Yes

This function returns a string representation of the value of the argument. The returned string is
in the default print format, except that the first character is not a blank for positive numbers. No
trailing blanks are generated.

Item Description/Default

numeric argument numeric expression

Example Statements '
PRINT Esc$;VAL$ (Cursor-l)
Special$=Text$&VAL$(Number)

Range
Restrictions

VIEWPORT
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF.. .THEN... Yes

This statement defines an area onto which WINDOW and SHOW statements are mapped. It
also sets the soft clip limits to the boundaries it defines.

Item

left edge

right edge

bottom edge

top edge

Description/ Default

numeric expression

numeric expression

numeric expression

numeric expression

Example Statements
VIEWPORT 0,35,50,80
l.JIEWPORT Left ,Ri ght ,BOttOfrl,Top

Semantics

Range
Restrictions

> left edge

> bottom edge

The parameters for VIEWPORT are in Graphic Display Units (GDUs). Graphic Display Units are
1/100 of the shorter axis of a plotting device. The units are isotropic (the same length in X and Y) .
The soft clip limits are set to the area specified, and the units defined by the last WINDOW or
SHOW are mapped into the area.

For the plotter specifier "INTERNAL" (the CRT) , the shorter axis is Y. The longer axis is X, which
is 100 x RATIO GDUs long. For the plotter specifier "HPGL" (which deals with devices other
than the CRT), the RATIO function may be used to determine the ratio of the length of the X axis
to the length of the Y axis. If the ratio is greater than one, the Y axis is 100 GDUs long, and the
length of the X axis is 100 x RATIO. If the ratio is less than one, then the length of the X axis is 100
GDUs and the length of the Y axis is 100 x RATIO.

A value of less than zero for the left edge or bottom is treated as zero. A value greater than the
hard clip limit is treated as the hard clip limit for the right edge and the top. The left edge must
be less than the right edge, and the bottom must be less than the top, or error 704 results.

461

VIEWPORT
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF.. .THEN... Yes

This statement defines an area onto which WINDOW and SHOW statements are mapped. It
also sets the soft clip limits to the boundaries it defines.

Item

left edge

right edge

bottom edge

top edge

Description/ Default

numeric expression

numeric expression

numeric expression

numeric expression

Example Statements
VIEWPORT 0,35,50,80
l.JIEWPORT Left ,Ri ght ,BOttOfrl,Top

Semantics

Range
Restrictions

> left edge

> bottom edge

The parameters for VIEWPORT are in Graphic Display Units (GDUs). Graphic Display Units are
1/100 of the shorter axis of a plotting device. The units are isotropic (the same length in X and Y) .
The soft clip limits are set to the area specified, and the units defined by the last WINDOW or
SHOW are mapped into the area.

For the plotter specifier "INTERNAL" (the CRT) , the shorter axis is Y. The longer axis is X, which
is 100 x RATIO GDUs long. For the plotter specifier "HPGL" (which deals with devices other
than the CRT), the RATIO function may be used to determine the ratio of the length of the X axis
to the length of the Y axis. If the ratio is greater than one, the Y axis is 100 GDUs long, and the
length of the X axis is 100 x RATIO. If the ratio is less than one, then the length of the X axis is 100
GDUs and the length of the Y axis is 100 x RATIO.

A value of less than zero for the left edge or bottom is treated as zero. A value greater than the
hard clip limit is treated as the hard clip limit for the right edge and the top. The left edge must
be less than the right edge, and the bottom must be less than the top, or error 704 results.

461

462

WAIT
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

TRANS
Yes
Yes
Yes

This statement will cause the computer to wait approximately the number of seconds specified
before executing the next statement. Numbers less than 0.001 do not generate a WAIT interval.

@--..J seconds ~

Item Description/Default

seconds numeric expression, rounded to the nearest
thousandth

Example Statements
WAIT 3
WAIT Old_tirTle/2

Range
Restrictions

less than 2147483.648

462

WAIT
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN .. .

TRANS
Yes
Yes
Yes

This statement will cause the computer to wait approximately the number of seconds specified
before executing the next statement. Numbers less than 0.001 do not generate a WAIT interval.

@--..J seconds ~

Item Description/Default

seconds numeric expression, rounded to the nearest
thousandth

Example Statements
WAIT 3
WAIT Old_tirTle/2

Range
Restrictions

less than 2147483.648

(
WAIT FOR EOR

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
Yes
Yes
Yes

This statement waits until an end-of-record event occurs in the TRANSFER on the specified I/O
path.

(WAIT FOR EOR~ I/~a~:th ~

Item Description/ Default

I/O path name name assigned to a device, a group of devices, or
a mass storage file

Example Statements
WAIT FOR EOR @File
WAIT FOR EOR @Device

Semantics

Range
Restrictions

any valid name

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file . If the
I/O path is assigned to a BUFFER, an error is reported when the WAIT FOR EOR statement is
executed.

The WAIT FOR EOR statement prevents further program execution until an end-of-record event
occurs in the TRANSFER whose I/O path name was specified. This allows ON EOR events, which
might otherwise be missed, to be serviced. If the system priority prevents the servicing of an ON
EOR event, the event will be logged.

The I/O path specified must be involved in an active TRANSFER for the statement to have any
effect.

463

(
WAIT FOR EOR

Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
Yes
Yes
Yes

This statement waits until an end-of-record event occurs in the TRANSFER on the specified I/O
path.

(WAIT FOR EOR~ I/~a~:th ~

Item Description/ Default

I/O path name name assigned to a device, a group of devices, or
a mass storage file

Example Statements
WAIT FOR EOR @File
WAIT FOR EOR @Device

Semantics

Range
Restrictions

any valid name

The I/O path may be assigned either to a device, a group of devices, or to a mass storage file . If the
I/O path is assigned to a BUFFER, an error is reported when the WAIT FOR EOR statement is
executed.

The WAIT FOR EOR statement prevents further program execution until an end-of-record event
occurs in the TRANSFER whose I/O path name was specified. This allows ON EOR events, which
might otherwise be missed, to be serviced. If the system priority prevents the servicing of an ON
EOR event, the event will be logged.

The I/O path specified must be involved in an active TRANSFER for the statement to have any
effect.

463

464

WAIT FOR EOT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
Yes
Yes
Yes

This statement waits until the TRANSFER on the specified 110 path is completed.

(WAIT FOR EOT~ I/~a~~th ~

Item Description/Default

1/0 path name name assigned to a device, a group of devices, or
a mass storage file

Example Statements
WAIT FOR EDT @File
WAIT FOR EDT @Deuice

Semantics

Range
Restrictions

any valid name

The 110 path may be assigned either to a device, a group of devices, or to a mass storage file. If the
110 path is assigned to a BUFFER, an error is reported when the WAIT FOR EOT statement is
executed.

The WAIT FOR EOT statement prevents further program execution until the specified TRANS­
FER is completed. This allows ON EOT events, which might otherwise be missed, to be serviced.
If the system priority prevents the servicing of an ON EOT event, the event will be logged.

The 110 path specified must be involved in an active TRANSFER for the statement to have any
effect.

464

WAIT FOR EOT
Option Required
Keyboard Executable
Programmable
In an IF ... THEN ...

TRANS
Yes
Yes
Yes

This statement waits until the TRANSFER on the specified 110 path is completed.

(WAIT FOR EOT~ I/~a~~th ~

Item Description/Default

1/0 path name name assigned to a device, a group of devices, or
a mass storage file

Example Statements
WAIT FOR EDT @File
WAIT FOR EDT @Deuice

Semantics

Range
Restrictions

any valid name

The 110 path may be assigned either to a device, a group of devices, or to a mass storage file. If the
110 path is assigned to a BUFFER, an error is reported when the WAIT FOR EOT statement is
executed.

The WAIT FOR EOT statement prevents further program execution until the specified TRANS­
FER is completed. This allows ON EOT events, which might otherwise be missed, to be serviced.
If the system priority prevents the servicing of an ON EOT event, the event will be logged.

The 110 path specified must be involved in an active TRANSFER for the statement to have any
effect.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPHX
Yes
Yes
Yes

WHERE

This statement returns the current logical position of the pen and, optionally, pen status informa­
tion.

x v ariable
name

Item

x variable name

y variable name

status variable name

y variable
name

Description/ Default

name of a numeric variable

name of a numeric variable

status variable
name

name of a string variable whose dimensioned
length is at least 3

Example Statements
WHERE \I \I

1\ t I

WHERE)< _position ,'(_positio n ,Status$

Semantics
The characters in the status string may be interpreted as follows:

Byte Value

1 "0"
"1"

2 comma
3 ('0"

"I"

"2"

Byte 1 Byte 2 Byte 3

Meaning

Pen is up
Pen is down
(delimiter)
Current position is outside hard clip

limits.
Current position is inside hard clip

limits but outside viewport boundary.
Current position is inside viewport

boundary and hard clip limits.

Range
Restrictions

any valid name

any valid name

any valid name

465

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

GRAPHX
Yes
Yes
Yes

WHERE

This statement returns the current logical position of the pen and, optionally, pen status informa­
tion.

x v ariable
name

Item

x variable name

y variable name

status variable name

y variable
name

Description/ Default

name of a numeric variable

name of a numeric variable

status variable
name

name of a string variable whose dimensioned
length is at least 3

Example Statements
WHERE \I \I

1\ t I

WHERE)< _position ,'(_positio n ,Status$

Semantics
The characters in the status string may be interpreted as follows:

Byte Value

1 "0"
"1"

2 comma
3 ('0"

"I"

"2"

Byte 1 Byte 2 Byte 3

Meaning

Pen is up
Pen is down
(delimiter)
Current position is outside hard clip

limits.
Current position is inside hard clip

limits but outside viewport boundary.
Current position is inside viewport

boundary and hard clip limits.

Range
Restrictions

any valid name

any valid name

any valid name

465

466

WHILE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
No

This construct defines a loop which is executed as long as the boolean expression in the WHILE
statement evaluates to true (evaluates to a non-zero value) .

bo o lean
expre s sion

(END WHILE ~

Item Description/Default

boolean expression numeric expression; evaluated as true if non­
zero and false if zero.

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct(s) .

Example Program Segments

8ao
850
860
870

1220
1230
12aO
1250
1260
1270

WHILE Value (Min OR Value>Max
BEEP
INPU T " Out of range; RE-ENTER" ,l)alue

END WHILE

WHILE P(=LEN(A$)
IF NUM(A$[PJ) (32 THEN

A$[PJ=A$[P+1J
ELSE

P=P+1
END IF

Remove control codes

Go to next character

1280 END WHILE

Range
Restrictions

466

WHILE
Option Required
Keyboard Executable
Programmable
In an IF ... THEN .. .

None
No

Yes
No

This construct defines a loop which is executed as long as the boolean expression in the WHILE
statement evaluates to true (evaluates to a non-zero value) .

bo o lean
expre s sion

(END WHILE ~

Item Description/Default

boolean expression numeric expression; evaluated as true if non­
zero and false if zero.

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct(s) .

Example Program Segments

8ao
850
860
870

1220
1230
12aO
1250
1260
1270

WHILE Value (Min OR Value>Max
BEEP
INPU T " Out of range; RE-ENTER" ,l)alue

END WHILE

WHILE P(=LEN(A$)
IF NUM(A$[PJ) (32 THEN

A$[PJ=A$[P+1J
ELSE

P=P+1
END IF

Remove control codes

Go to next character

1280 END WHILE

Range
Restrictions

WHILE 467

Semantics
The WHILE ... END WHILE construct allows program execution dependent on the outcome of a
relational test performed at the start of the loop. If the condition is true, the program segment
between the WHILE and END WHILE statements is executed and a branch is made back to the
WHILE statement. The program segment will be repeated until the test is false. When the
relational test is false, the program segment is skipped and execution continues with the first
program line after the END WHILE statement.

Branching into a WHILE ... END WHILE construct (via a GOTO) results in normal execution up
to the END WHILE statement, a branch back to the WHILE statement, and then execution as if
the construct had been entered normally.

Nesting Constructs Properly

WHILE ... END WHILE constructs may be nested within other constructs, provided the inner
construct begins and ends before the outer construct can end.

WIDTH
See the PRINTALL IS and PRINTER IS statements.

WHILE 467

Semantics
The WHILE ... END WHILE construct allows program execution dependent on the outcome of a
relational test performed at the start of the loop. If the condition is true, the program segment
between the WHILE and END WHILE statements is executed and a branch is made back to the
WHILE statement. The program segment will be repeated until the test is false. When the
relational test is false, the program segment is skipped and execution continues with the first
program line after the END WHILE statement.

Branching into a WHILE ... END WHILE construct (via a GOTO) results in normal execution up
to the END WHILE statement, a branch back to the WHILE statement, and then execution as if
the construct had been entered normally.

Nesting Constructs Properly

WHILE ... END WHILE constructs may be nested within other constructs, provided the inner
construct begins and ends before the outer construct can end.

WIDTH
See the PRINTALL IS and PRINTER IS statements.

468

WINDOW
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

This statement is used to define the current-unit-of-measure for graphics operations.

Item Description/Default

left edge numeric expression

right edge numeric expression

bottom edge numeric expression

top edge numeric expression

Example Statements
WINDOW -5,5,0,100
WINDOW Left ,Ri 9'ht ,Bottorll ,Top

Semantics

Range
Restrictions

=1= left edge

=1= bottom edge

GRAPH
Yes
Yes
Yes

WINDOW defines the values represented at the hard clip boundaries, or the boundaries de­
fined by the VIEWPORT statement. WINDOW may be used to create non-isotropic (not equal
in X and Y) units. The direction of an axis may be reversed by specifying the left edge greater
than the right edge, or the bottom edge greater than the top edge. (Also see SHOW.)

WORD
See the ASSIGN statement.

468

WINDOW
Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

This statement is used to define the current-unit-of-measure for graphics operations.

Item Description/Default

left edge numeric expression

right edge numeric expression

bottom edge numeric expression

top edge numeric expression

Example Statements
WINDOW -5,5,0,100
WINDOW Left ,Ri 9'ht ,Bottorll ,Top

Semantics

Range
Restrictions

=1= left edge

=1= bottom edge

GRAPH
Yes
Yes
Yes

WINDOW defines the values represented at the hard clip boundaries, or the boundaries de­
fined by the VIEWPORT statement. WINDOW may be used to create non-isotropic (not equal
in X and Y) units. The direction of an axis may be reversed by specifying the left edge greater
than the right edge, or the bottom edge greater than the top edge. (Also see SHOW.)

WORD
See the ASSIGN statement.

WRITEIO
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
Yes
Yes
Yes

This statement writes an integer representation of the register-data to the specified hardware
register on the specified interface. The actual action resulting from this operation depends on
the interface and register selected.

interface
select code

Item Description/ Default

interface select numeric expression, rounded to an integer
code

register number numeric expression, rounded to an integer

register data numeric expression , rounded to an integer

Note

Range
Restrictions

1 thru 31

- 23 1 thru
+ 231 _1

- 23 1 thru
+ 23 1 _1

Unexpected and possibly undesirable results may occur with select
codes outside the given range.

Example Statements
WRITEIO 12,O;Set_pctl
WRITEIO Hpib,23i12

Recommended
Range

interface
dependent

- 32 768 thru
+32767

469

WRITEIO
Option Required
Keyboard Executable
Programmable
In an IF .. . THEN ...

None
Yes
Yes
Yes

This statement writes an integer representation of the register-data to the specified hardware
register on the specified interface. The actual action resulting from this operation depends on
the interface and register selected.

interface
select code

Item Description/ Default

interface select numeric expression, rounded to an integer
code

register number numeric expression, rounded to an integer

register data numeric expression , rounded to an integer

Note

Range
Restrictions

1 thru 31

- 23 1 thru
+ 231 _1

- 23 1 thru
+ 23 1 _1

Unexpected and possibly undesirable results may occur with select
codes outside the given range.

Example Statements
WRITEIO 12,O;Set_pctl
WRITEIO Hpib,23i12

Recommended
Range

interface
dependent

- 32 768 thru
+32767

469

470

XREF
Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

XREF
Yes
No
No

This command allows you to obtain a cross-reference listing of the identifiers in a program or
subprogram.

Item

device selector

subprogram name

function name

de vi ce
s e l e c tor

Description/Default

numeric expression; rounded to an integer
Default = PRINTER IS device

name of a SUB subprogram or MAIN currently in
memory

name of a user-defined function currently in
memory

Example Statements
YREF
YREF #705 ; FNUser$
>(REF Print
>:REF : Nt,!

Range
Restrictions

(see Glossary)

any valid name

any valid name

470

XREF
Option Required
Keyboard Executable
Programmable
In an IF...THEN ...

XREF
Yes
No
No

This command allows you to obtain a cross-reference listing of the identifiers in a program or
subprogram.

Item

device selector

subprogram name

function name

de vi ce
s e l e c tor

Description/Default

numeric expression; rounded to an integer
Default = PRINTER IS device

name of a SUB subprogram or MAIN currently in
memory

name of a user-defined function currently in
memory

Example Statements
YREF
YREF #705 ; FNUser$
>(REF Print
>:REF : Nt,!

Range
Restrictions

(see Glossary)

any valid name

any valid name

XREF 471

Semantics
The cross-reference listing is printed one context at a time, in the order that they occur in the
program. The main program is listed first , followed by the subprograms.

The cross-reference listing starts with this line:

»» C r oss Reference « «

Before each subsequent program segment, this line is printed:

followed by the line number of the first line in that context and the name of the context. If the
subprogram is a user-defined function , an FN will precede the name, and if it is a string function , a
$ will follow its name.

Within each context, identifiers are listed by type. They occur in the following order:

• NV-Numeric Variables

• SV-String Variables

• IO-I/O Path Names

• LL-Line Labels

• LN-Line Numbers

• NF-Numeric Functions

• SF-String Functions

• SB-SUB Subprograms

• CM-Common Block Names

• UN-Unused Entries

If a type is specified in the command, only that type is printed. If there are no identifiers of a
particular type in the context being cross-referenced, that heading is not printed.

Within each group (which is composed of a header telling what kind of entity follows , then the list
of those entities) , names are alphabetized according to the ASCII collating sequence, and line
numbers are in numerical order. If a reference is a formal parameter in a SUB or DEF FN
statement, declared in a COM, DIM, REAL, or INTEGER statement, or is a line label, the
characters < - DE F will be printed immediately to the right of the line number containing the
defining declaration. Note that variables declared by ALLOCATE are not given this marker. If
unlabelled (blank) COM is used , it will have no name associated with it.

XREF 471

Semantics
The cross-reference listing is printed one context at a time, in the order that they occur in the
program. The main program is listed first , followed by the subprograms.

The cross-reference listing starts with this line:

»» C r oss Reference « «

Before each subsequent program segment, this line is printed:

followed by the line number of the first line in that context and the name of the context. If the
subprogram is a user-defined function , an FN will precede the name, and if it is a string function , a
$ will follow its name.

Within each context, identifiers are listed by type. They occur in the following order:

• NV-Numeric Variables

• SV-String Variables

• IO-I/O Path Names

• LL-Line Labels

• LN-Line Numbers

• NF-Numeric Functions

• SF-String Functions

• SB-SUB Subprograms

• CM-Common Block Names

• UN-Unused Entries

If a type is specified in the command, only that type is printed. If there are no identifiers of a
particular type in the context being cross-referenced, that heading is not printed.

Within each group (which is composed of a header telling what kind of entity follows , then the list
of those entities) , names are alphabetized according to the ASCII collating sequence, and line
numbers are in numerical order. If a reference is a formal parameter in a SUB or DEF FN
statement, declared in a COM, DIM, REAL, or INTEGER statement, or is a line label, the
characters < - DE F will be printed immediately to the right of the line number containing the
defining declaration. Note that variables declared by ALLOCATE are not given this marker. If
unlabelled (blank) COM is used , it will have no name associated with it.

..... . .

472 XREF
. ~ .

At the end of each context, a line is printed that begins with :

Unused entri es =

This is a count of the symbol table entries which have been marked by a prerun as "unused. "
Unreferenced symbol table locations which have not yet been marked " unused" by the prerun
processing will show up in the lists of identifiers with empty reference lists . Note that a subpro­
gram that is not directly recursive will show up in its own cross-reference listing with an empty
reference list.

If a subprogram name or MAIN is specified in the XREF command, the above rules are followed ,
but only the specified subprogram or the MAIN program is cross-referenced. If there are two or
more subprograms of the same name in the computer, they will all be cross-referenced.

An XREF can be aborted by pressing (RESET L (CLR I/O) or (Break) .

..... . .

472 XREF
. ~ .

At the end of each context, a line is printed that begins with :

Unused entri es =

This is a count of the symbol table entries which have been marked by a prerun as "unused. "
Unreferenced symbol table locations which have not yet been marked " unused" by the prerun
processing will show up in the lists of identifiers with empty reference lists . Note that a subpro­
gram that is not directly recursive will show up in its own cross-reference listing with an empty
reference list.

If a subprogram name or MAIN is specified in the XREF command, the above rules are followed ,
but only the specified subprogram or the MAIN program is cross-referenced. If there are two or
more subprograms of the same name in the computer, they will all be cross-referenced.

An XREF can be aborted by pressing (RESET L (CLR I/O) or (Break) .

BASIC Language Reference
for HP Series 200/300 SRM Workstation

This section lists all BASIC keywords either used exclusively with SRM or whose use with SRM
differs from that described in the BASIC Language Reference manual.

Most keyword entries in this section describe only differences between the keyword's normal
use and its use on SRM. The body of this manual provides full details of their use. SRM-specific
keywords (CREATE DIR, LOCK, and UNLOCK) are listed in this section.

The primary difference in keyword syntax for SRM use is in file specification. Use of supported
keywords on SRM requires you to supply a remote file specifier rather than the file specifier
described for non-SRM uses of BASIC. Some keywords also involve a directory specifier,
which is unique to SRM. Remote file specifiers and directory specifiers are described at the
beginning ofthis section.

In addition, you must be aware of the access capabilities required on files and directories
involved in the keyword's use. Access capability requirements are summarized in a table in­
cluded in this section.

473

BASIC Language Reference
for HP Series 200/300 SRM Workstation

This section lists all BASIC keywords either used exclusively with SRM or whose use with SRM
differs from that described in the BASIC Language Reference manual.

Most keyword entries in this section describe only differences between the keyword's normal
use and its use on SRM. The body of this manual provides full details of their use. SRM-specific
keywords (CREATE DIR, LOCK, and UNLOCK) are listed in this section.

The primary difference in keyword syntax for SRM use is in file specification. Use of supported
keywords on SRM requires you to supply a remote file specifier rather than the file specifier
described for non-SRM uses of BASIC. Some keywords also involve a directory specifier,
which is unique to SRM. Remote file specifiers and directory specifiers are described at the
beginning ofthis section.

In addition, you must be aware of the access capabilities required on files and directories
involved in the keyword's use. Access capability requirements are summarized in a table in­
cluded in this section.

473

474

Syntax for Remote File
and Directory Specification

The following syntax applies to remote file specification for BASIC keyword use on SRM. The
semantics discussion applies to all remote file specification unless otherwise noted with a specific
keyword's description.

Remote File Specifier

Item

directory path

remote file name

password

remote msus

Semantics

remote
file name

Description/Default Range Restrictions

literal (see diagram)

literal any valid remote file
name (see Semantics)

literal, first 16 non-blank characters are signifi- any valid password (see
cant Semantics)

literal (see diagram)

A valid remote file name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits 0 through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)). Spaces are ignored.

A valid password consists of one to 16 characters, which may include any ASCII character except
" > ". Spaces are ignored. Passwords are assigned by the PROTECT keyword.

If no directory path is included, the system assumes the file is in the current working directory (the
directory specified in the latest MASS STORAGE IS statement). To specify a file in a directory other
than the current working directory, specify the directory path to the desired file. (Refer to the syntax
for directory path later in this section.) The directory path may begin at the current working
directory or at the root.

The READ access capability for each directory included in the directory path must be public or the
password that currently protects the READ capability must be included in the remote file specifier. A
maximum of six identifiers can be included in a specifier -- five directories in the path and the target
file. If the target file is more than five directories away from the current working directory, move
closer by changing the working directory (with MSI).

474

Syntax for Remote File
and Directory Specification

The following syntax applies to remote file specification for BASIC keyword use on SRM. The
semantics discussion applies to all remote file specification unless otherwise noted with a specific
keyword's description.

Remote File Specifier

Item

directory path

remote file name

password

remote msus

Semantics

remote
file name

Description/Default Range Restrictions

literal (see diagram)

literal any valid remote file
name (see Semantics)

literal, first 16 non-blank characters are signifi- any valid password (see
cant Semantics)

literal (see diagram)

A valid remote file name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits 0 through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)). Spaces are ignored.

A valid password consists of one to 16 characters, which may include any ASCII character except
" > ". Spaces are ignored. Passwords are assigned by the PROTECT keyword.

If no directory path is included, the system assumes the file is in the current working directory (the
directory specified in the latest MASS STORAGE IS statement). To specify a file in a directory other
than the current working directory, specify the directory path to the desired file. (Refer to the syntax
for directory path later in this section.) The directory path may begin at the current working
directory or at the root.

The READ access capability for each directory included in the directory path must be public or the
password that currently protects the READ capability must be included in the remote file specifier. A
maximum of six identifiers can be included in a specifier -- five directories in the path and the target
file. If the target file is more than five directories away from the current working directory, move
closer by changing the working directory (with MSI).

File and Directory Syntax 475

Examples

" PROJECTS / WR ITE RS / s alrl P 1 e s< IAI LP ass :>: REMOTE 21,1; LABEL I,lO L_ TWO < Irl a 5 t e r :>"

illustrates the full remote file specifier syntax. For explanations of the directory path and remote
msus portions of this illustration, see the examples with those components.

"thisfile "

specifies a file that is in the current working directory. This form assumes that the SRM (remote
mass storage) has previously been "entered" via some form of the MS I " : REMOTE" statement.

Directory Path

Item

directory name

password

Semantics

Description/Default

literal

literal, first 16 non-blank characters are signifi­
cant

Range Restrictions

any valid directory name
(see Semantics)

any valid password (see
Semantics)

A valid directory name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits 0 through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)) . Spaces are ignored.

A valid password consists of one to 16 characters, which may include any ASCII character except
" > " . Spaces are ignored. Passwords are assigned by the PROTECT.

A leading slash (/) in the directory path specifies that the path begins at the root. If you have not
previously established the remote mass storage (using, for example, MS I ": REMOTE"), you must
include some form of the remote msus with the file specifier. Including the remote msus also
specifies that the directory path begins at the root. Remote msus is explained later in this section.

Subsequent slashes delimit individual names in the path.

Using " .. " in place of a directory name specifies the directory immediately superior to the current
directory position. (Note that the root's superior directory is the root.) Using " . " in place of a
directory name specifies the current directory position. To specify a file or directory subordinate to
the current working directory, you do not include the current working directory in the directory
path.

File and Directory Syntax 475

Examples

" PROJECTS / WR ITE RS / s alrl P 1 e s< IAI LP ass :>: REMOTE 21,1; LABEL I,lO L_ TWO < Irl a 5 t e r :>"

illustrates the full remote file specifier syntax. For explanations of the directory path and remote
msus portions of this illustration, see the examples with those components.

"thisfile "

specifies a file that is in the current working directory. This form assumes that the SRM (remote
mass storage) has previously been "entered" via some form of the MS I " : REMOTE" statement.

Directory Path

Item

directory name

password

Semantics

Description/Default

literal

literal, first 16 non-blank characters are signifi­
cant

Range Restrictions

any valid directory name
(see Semantics)

any valid password (see
Semantics)

A valid directory name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits 0 through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)) . Spaces are ignored.

A valid password consists of one to 16 characters, which may include any ASCII character except
" > " . Spaces are ignored. Passwords are assigned by the PROTECT.

A leading slash (/) in the directory path specifies that the path begins at the root. If you have not
previously established the remote mass storage (using, for example, MS I ": REMOTE"), you must
include some form of the remote msus with the file specifier. Including the remote msus also
specifies that the directory path begins at the root. Remote msus is explained later in this section.

Subsequent slashes delimit individual names in the path.

Using " .. " in place of a directory name specifies the directory immediately superior to the current
directory position. (Note that the root's superior directory is the root.) Using " . " in place of a
directory name specifies the current directory position. To specify a file or directory subordinate to
the current working directory, you do not include the current working directory in the directory
path.

476 File and Directory Syntax

Examples

The directory path:

IUSERS/BO/MANUAL_PLAN(mine*alone)

begins at the root.

The directory path:

.. /file1

begins at the directory immediately superior to the current working directory,

The directory path:

PROJECTS/WRITERS(writers_only)/samples:REMO TE

begins at the root.

The directory path:

begins in the current working directory, In this example, d i r _ 5 Ij b is immediately subordinate to the
current working directory,

Remote msus

REMOTE

Item

SRM interface select
code

SRM controller's node
address

volume name

volume password

DescriptionlDefault

integer constant

integer constant

literal

literal

SRM controller's
node address

Range Restrictions

8 through 31

o through 63

any valid volume name
(see Semantics)

any valid password (see
Semantics)

476 File and Directory Syntax

Examples

The directory path:

IUSERS/BO/MANUAL_PLAN(mine*alone)

begins at the root.

The directory path:

.. /file1

begins at the directory immediately superior to the current working directory,

The directory path:

PROJECTS/WRITERS(writers_only)/samples:REMO TE

begins at the root.

The directory path:

begins in the current working directory, In this example, d i r _ 5 Ij b is immediately subordinate to the
current working directory,

Remote msus

REMOTE

Item

SRM interface select
code

SRM controller's node
address

volume name

volume password

DescriptionlDefault

integer constant

integer constant

literal

literal

SRM controller's
node address

Range Restrictions

8 through 31

o through 63

any valid volume name
(see Semantics)

any valid password (see
Semantics)

File and Directory Syntax 477

Semantics

The volume name, which is assigned at the volume's initialization, is used to identify a mass storage
volume. Volume names consist of one to 16 characters, which may include uppercase and lower­
case letters, digits 0 through 9, the underbar (_) character, the period (.) character, and national
language characters (CHR$(161) through CHR$(254)) .

A valid volume password consists of one to 16 characters, which may include any ASCII character
except " > " .

The volume password allows complete access to all files on a mass storage volume, and is assigned
when the volume is initialized. The volume password supercedes all access restrictions placed on
files and directories by the PROTECT statement.

You need supply the SRM interface select code only if you wish to specify an SRM interface in
your Series 2001300 workstation other than that identified by the default select code. If your
workstation boots from the SRM, the default is the select code of the interface through which
the boot ROM activates your workstation. If your workstation boots from a source other than
SRM, the default select code is the lowest available SRM interface select code in the worksta­
tion. (The factory-set default value for the HP 98629A interface's select code is 21.)

The SRM controller's node address is necessary only if the node address of the controller is other
than the default controller's node address.

To determine the defaults for your workstation use the following command sequence:

MSI ":REMOTE" (EXECUTE) or (Return)
CAT (EXECUTE) or (Return)

The header of the resulting catalog listing shows the default values for your workstation's SRM
interface select code and SRM controller's node address, and the name of the default SRM system
volume.

If you include the controller's node address, you must also include the SRM interface select code.

The LABEL secondary keyword identifies a volume, and is used mainly when more than one
shared volume is on the SRM system. You need supply the volume label only if you are identifying
a volume other than the default SRM system volume (in an SRM system having more than one
shared disc) or if your application requires that you specify the volume password.

The Generic Remote msus
The generic msus syntax (not indicated in the syntax diagram above) bypasses the need for all
information required by the remote msus syntax except the workstation's SRM interface select
code. An example of this msus syntax is:

: t Z 1

File and Directory Syntax 477

Semantics

The volume name, which is assigned at the volume's initialization, is used to identify a mass storage
volume. Volume names consist of one to 16 characters, which may include uppercase and lower­
case letters, digits 0 through 9, the underbar (_) character, the period (.) character, and national
language characters (CHR$(161) through CHR$(254)) .

A valid volume password consists of one to 16 characters, which may include any ASCII character
except " > " .

The volume password allows complete access to all files on a mass storage volume, and is assigned
when the volume is initialized. The volume password supercedes all access restrictions placed on
files and directories by the PROTECT statement.

You need supply the SRM interface select code only if you wish to specify an SRM interface in
your Series 2001300 workstation other than that identified by the default select code. If your
workstation boots from the SRM, the default is the select code of the interface through which
the boot ROM activates your workstation. If your workstation boots from a source other than
SRM, the default select code is the lowest available SRM interface select code in the worksta­
tion. (The factory-set default value for the HP 98629A interface's select code is 21.)

The SRM controller's node address is necessary only if the node address of the controller is other
than the default controller's node address.

To determine the defaults for your workstation use the following command sequence:

MSI ":REMOTE" (EXECUTE) or (Return)
CAT (EXECUTE) or (Return)

The header of the resulting catalog listing shows the default values for your workstation's SRM
interface select code and SRM controller's node address, and the name of the default SRM system
volume.

If you include the controller's node address, you must also include the SRM interface select code.

The LABEL secondary keyword identifies a volume, and is used mainly when more than one
shared volume is on the SRM system. You need supply the volume label only if you are identifying
a volume other than the default SRM system volume (in an SRM system having more than one
shared disc) or if your application requires that you specify the volume password.

The Generic Remote msus
The generic msus syntax (not indicated in the syntax diagram above) bypasses the need for all
information required by the remote msus syntax except the workstation's SRM interface select
code. An example of this msus syntax is:

: t Z 1

478 File and Directory Syntax

Examples

The remote msus:

:REMOTE

specifies the default SRM system volume.

The remote msus:

:REMOTE 21 ,1;LABEL VOL_TWO<secondpass>

specifies an SRM system volume. The LABEL syntax allows inclusion of the volume password in
the remote msus. Note that, because the controller's node address is not the default and must be
specified, the SRM interface select code must also be specified, even if that select code is the
default.

Directory Specifier

Item

directory path

directory name

remote msus

Semantics

literal

literal

literal

Description/Default Range Restrictions

(see diagram)

any valid directory name
(see Semantics)

(see diagram)

A valid directory name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits 0 through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)). Spaces are ignored.

If no directory path is included, the current working directory (the directory specified in the latest
MASS STORAGE IS statement) is assumed for the keyword's use. To specify a directory other than
the current working directory, specify the directory path to the desired directory. (Refer to the
syntax for directory path.) The directory path may begin at the current working directory or at the
root.

The READ access capability for each directory included in the directory path must be public or the
password that currently protects the READ capability must be included in the remote file specifier. A
maximum of six directories may be included in the directory specifier. If the target directory is more
than five directories away from the current working directory, move closer by changing the working
directory (with MSI) .

478 File and Directory Syntax

Examples

The remote msus:

:REMOTE

specifies the default SRM system volume.

The remote msus:

:REMOTE 21 ,1;LABEL VOL_TWO<secondpass>

specifies an SRM system volume. The LABEL syntax allows inclusion of the volume password in
the remote msus. Note that, because the controller's node address is not the default and must be
specified, the SRM interface select code must also be specified, even if that select code is the
default.

Directory Specifier

Item

directory path

directory name

remote msus

Semantics

literal

literal

literal

Description/Default Range Restrictions

(see diagram)

any valid directory name
(see Semantics)

(see diagram)

A valid directory name consists of one to 16 characters, which may include uppercase and
lowercase letters, digits 0 through 9, the underbar (_) character, the period (.) character, and
national language characters (CHR$(161) through CHR$(254)). Spaces are ignored.

If no directory path is included, the current working directory (the directory specified in the latest
MASS STORAGE IS statement) is assumed for the keyword's use. To specify a directory other than
the current working directory, specify the directory path to the desired directory. (Refer to the
syntax for directory path.) The directory path may begin at the current working directory or at the
root.

The READ access capability for each directory included in the directory path must be public or the
password that currently protects the READ capability must be included in the remote file specifier. A
maximum of six directories may be included in the directory specifier. If the target directory is more
than five directories away from the current working directory, move closer by changing the working
directory (with MSI) .

File and Directory Syntax 479

Examples
II / II

specifies the root. This form assumes that the SRM (remote mass storage) has previously been
"entered" via some form of the MS I " : REMOTE" statement. (See directory path description.)

II t • / f • / • til

specifies the directory three levels superior to the current working directory. (See directory path
description.)

". <MGR_PClss >"

specifies the current working directory, with a password granting an access capability different from
that currently in effect.

Access Capability Requirements
Because SRM allows password protection of files and directories, either certain access capabilities
must be public or you must supply the password protecting those capabilities when you specify the
file or directory in the keyword syntax. For more information on password protection and access
capabilities, refer to the section on "Shared Access to Remote Directories and Files" earlier in this
chapter and the PROTECT keyword entry in this reference.

The following chart lists BASIC keywords discussed in this section, indicating for each:

• whether the keyword is used with remote files, directories, or can be used with either;

• the access capabilities required on the directories superior to the specified directory or file;

• the access capabilities required on the specified directory or file itself.

Access requirements do not apply to the following keywords:

CHECKREAD
CONTROL
INITIALIZE
ON TIMEOUT
RESET
SCRATCH A
STATUS
UNLOCK
SYSTEM$

Note
For all keywords listed in the table, the READ capability must be public
on all directories in the path to the target remote file or directory.
Otherwise, you must supply the password protecting the READ capabil­
ity on any such directory.

File and Directory Syntax 479

Examples
II / II

specifies the root. This form assumes that the SRM (remote mass storage) has previously been
"entered" via some form of the MS I " : REMOTE" statement. (See directory path description.)

II t • / f • / • til

specifies the directory three levels superior to the current working directory. (See directory path
description.)

". <MGR_PClss >"

specifies the current working directory, with a password granting an access capability different from
that currently in effect.

Access Capability Requirements
Because SRM allows password protection of files and directories, either certain access capabilities
must be public or you must supply the password protecting those capabilities when you specify the
file or directory in the keyword syntax. For more information on password protection and access
capabilities, refer to the section on "Shared Access to Remote Directories and Files" earlier in this
chapter and the PROTECT keyword entry in this reference.

The following chart lists BASIC keywords discussed in this section, indicating for each:

• whether the keyword is used with remote files, directories, or can be used with either;

• the access capabilities required on the directories superior to the specified directory or file;

• the access capabilities required on the specified directory or file itself.

Access requirements do not apply to the following keywords:

CHECKREAD
CONTROL
INITIALIZE
ON TIMEOUT
RESET
SCRATCH A
STATUS
UNLOCK
SYSTEM$

Note
For all keywords listed in the table, the READ capability must be public
on all directories in the path to the target remote file or directory.
Otherwise, you must supply the password protecting the READ capabil­
ity on any such directory.

480 Access Capabilities

The entries in the following table indicate the access capabilities needed for use of the designated
keyword. That is, the access capability listed must either be public (not protected with a password)
or you must supply the password protecting the capability in the file or directory specifier included
with the keyword.

For example, in an OUTPUT statement, if the WRITE capability on the file to which the data is to be
written is not public, you must supply the password entitling you to write data to that file. (You
would include the password as part of the remote file specifier in the statement assigning the I/O
path name for the file to which the data is directed.) If the READ capability on the directory
containing the remote file specified in the OUTPUT statement is not public, you must supply the
appropriate password with the directory name in the directory path to the remote file.

Access Capabilities Required for Keyword Use

Access Capabilities Required
Keyword Applies to Directory/ Superior

File Directory

ASSIGN file at least 1 READ
CAT either READ READ
COPY

source file READ READ
destination file READ & WRITE

CREATE ASCII file READ & WRITE
CREATE BDAT file READ & WRITE
CREATE DIR directory READ & WRITE
ENTER file READ READ
GET file READ READ
LOAD file READ READ
LOADSUB file READ READ
LOCK file at least 1 READ
MASS STORAGE IS directory READ
OUTPUT file WRITE READ
PLOTTER IS file at least 11 READ
PRINTER IS file at least 11 READ
PROTECT either MANAGER READ
PURGE either MANAGER READ & WRITE
RENAME either MANAGER READ & WRITE
RE-SAVE file READ & WRITE READ & WRITE
RE-STORE file READ & WRITE READ & WRITE
RE-STORE KEY file READ & WRITE READ & WRITE
SAVE file READ & WRITE
STORE file READ & WRITE
STORE KEY file READ & WRITE
STORE SYSTEM file READ & WRITE
TRANSFER

inbound file READ READ
outbound file WRITE READ

Dash (-) means "does not appJy. "

1 The statement, however, is not useful without WRITE access to the fil e.

480 Access Capabilities

The entries in the following table indicate the access capabilities needed for use of the designated
keyword. That is, the access capability listed must either be public (not protected with a password)
or you must supply the password protecting the capability in the file or directory specifier included
with the keyword.

For example, in an OUTPUT statement, if the WRITE capability on the file to which the data is to be
written is not public, you must supply the password entitling you to write data to that file. (You
would include the password as part of the remote file specifier in the statement assigning the I/O
path name for the file to which the data is directed.) If the READ capability on the directory
containing the remote file specified in the OUTPUT statement is not public, you must supply the
appropriate password with the directory name in the directory path to the remote file.

Access Capabilities Required for Keyword Use

Access Capabilities Required
Keyword Applies to Directory/ Superior

File Directory

ASSIGN file at least 1 READ
CAT either READ READ
COPY

source file READ READ
destination file READ & WRITE

CREATE ASCII file READ & WRITE
CREATE BDAT file READ & WRITE
CREATE DIR directory READ & WRITE
ENTER file READ READ
GET file READ READ
LOAD file READ READ
LOADSUB file READ READ
LOCK file at least 1 READ
MASS STORAGE IS directory READ
OUTPUT file WRITE READ
PLOTTER IS file at least 11 READ
PRINTER IS file at least 11 READ
PROTECT either MANAGER READ
PURGE either MANAGER READ & WRITE
RENAME either MANAGER READ & WRITE
RE-SAVE file READ & WRITE READ & WRITE
RE-STORE file READ & WRITE READ & WRITE
RE-STORE KEY file READ & WRITE READ & WRITE
SAVE file READ & WRITE
STORE file READ & WRITE
STORE KEY file READ & WRITE
STORE SYSTEM file READ & WRITE
TRANSFER

inbound file READ READ
outbound file WRITE READ

Dash (-) means "does not appJy. "

1 The statement, however, is not useful without WRITE access to the fil e.

Access Capabilities 481

Using Protected Files Created on a Pascal Workstation
The password protection assigned with the Pascal Filer's Access command imposes some restric­
tions on the use of BASIC keywords with a file protected with that command.

If a Pascal file's SEARCH capability alone is protected, the BASIC catalog listing will show the file 's
READ capability as public. The protection assigned for SEARCH, however, limits the types of
BASIC read operations that can be performed on that file without the assigned password. For
example, you can catalog a directory whose READ access capability is public and whose SEARCH
access capability is not, but you cannot access any of the files or directories within that directory.

Similarly, the MANAGER access capability in BASIC encompasses the Pascal MANAGER,
CREATELINK and PURGELINK capabilities.

BASIC vs. Pascal Protections

BASIC
Access Capability

MANAGER
READ
WRITE

Equivalent Pascal Access Capability

MANAGER, CREATELINK, PURGELINK
READ, SEARCH
WRITE

Access Capabilities 481

Using Protected Files Created on a Pascal Workstation
The password protection assigned with the Pascal Filer's Access command imposes some restric­
tions on the use of BASIC keywords with a file protected with that command.

If a Pascal file's SEARCH capability alone is protected, the BASIC catalog listing will show the file 's
READ capability as public. The protection assigned for SEARCH, however, limits the types of
BASIC read operations that can be performed on that file without the assigned password. For
example, you can catalog a directory whose READ access capability is public and whose SEARCH
access capability is not, but you cannot access any of the files or directories within that directory.

Similarly, the MANAGER access capability in BASIC encompasses the Pascal MANAGER,
CREATELINK and PURGELINK capabilities.

BASIC vs. Pascal Protections

BASIC
Access Capability

MANAGER
READ
WRITE

Equivalent Pascal Access Capability

MANAGER, CREATELINK, PURGELINK
READ, SEARCH
WRITE

482

Summary of BASIC Keyword Use on SRM
This section lists, in alphabetical order, the BASIC keywords that can be used with SRM and
those that are unique to SRM (CREATE DIR, LOCK, the CAT PROTECT option, UNLOCK).
Each keyword description in this section discusses only uses or features of the keyword that
apply to its use on SRM.

Syntax diagrams appear only with those keywords requiring a different syntax for use with
SRM. Where syntax diagrams are not included, you may follow the syntax described in the
body of this manual, substituting remote file specifier syntax (described in the previous sec­
tion) wherever "file specifier" is indicated in the keyword's syntax.

For access capability requirements, refer to the chart in the previous section.

482

Summary of BASIC Keyword Use on SRM
This section lists, in alphabetical order, the BASIC keywords that can be used with SRM and
those that are unique to SRM (CREATE DIR, LOCK, the CAT PROTECT option, UNLOCK).
Each keyword description in this section discusses only uses or features of the keyword that
apply to its use on SRM.

Syntax diagrams appear only with those keywords requiring a different syntax for use with
SRM. Where syntax diagrams are not included, you may follow the syntax described in the
body of this manual, substituting remote file specifier syntax (described in the previous sec­
tion) wherever "file specifier" is indicated in the keyword's syntax.

For access capability requirements, refer to the chart in the previous section.

ASSIGN

With SRM, I/O path names can be assigned to remote files, attributes can be assigned to the 110
path, and I/O paths can be closed. The following syntax and discussion describes only the use
of ASSIGN with remote files . See the body of this manual for details of other uses of ASSIGN
and the description of attributes associated with ASSIGN.

Example Statements

remote fi le
specifier

'---------+{*}--------~

ASSIGN @Remote_file TO "OIR_JOHN / dir_proJ / filel"
ASSIGN @File TO "Pl/FredsOata(pass):REMOTE"

Semantics
Assigning an I/O path name to a remote file associates the I/O path with the file at the specified or
default mass storage location.

ASSIGN opens any existing ASCII or BOAT file, regardless of protection on the file except when all
access capabilities (MANAGER, READ and WRITE) are taken from the public. Attempts to use
ASSIGN with a file whose capabilities are fully protected (without supplying the necessary pass­
words) result in Error 62.

In all other instances, a file 's access capabilities are not checked at ASSIGN time. The specified
operation on the file associated with the I/O path name is not executed, however, unless the file has
the necessary access capability for that operation. For example, you may ASSIGN an 1/0 path
name to a file that has only the READ capability public, but attempting to perform an OUTPUT
operation without the password protecting the WRITE access capability generates Error 62.

ASSIGN does not create a file.

ASSIGN and Locked Files
Existing ASCII or BOAT files opened via ASSIGN are opened in shared mode, which means that
several users can open a file at the same time. If you lock a file (refer to LOCK) and subsequently
open that file via ASSIGN using the same @<name> (for example, to reset the file pointer), the
ASSIGN automatically unlocks the file (refer to UNLOCK). To maintain sole access to the file , you
must LOCK it again.

Closing an I/O path via ASSIGN (ASSIGN @ ... TO *) unlocks as well as closes the file (regardless of
the number of LOCKs in effect for the file at the time) .

483

ASSIGN

With SRM, I/O path names can be assigned to remote files, attributes can be assigned to the 110
path, and I/O paths can be closed. The following syntax and discussion describes only the use
of ASSIGN with remote files . See the body of this manual for details of other uses of ASSIGN
and the description of attributes associated with ASSIGN.

Example Statements

remote fi le
specifier

'---------+{*}--------~

ASSIGN @Remote_file TO "OIR_JOHN / dir_proJ / filel"
ASSIGN @File TO "Pl/FredsOata(pass):REMOTE"

Semantics
Assigning an I/O path name to a remote file associates the I/O path with the file at the specified or
default mass storage location.

ASSIGN opens any existing ASCII or BOAT file, regardless of protection on the file except when all
access capabilities (MANAGER, READ and WRITE) are taken from the public. Attempts to use
ASSIGN with a file whose capabilities are fully protected (without supplying the necessary pass­
words) result in Error 62.

In all other instances, a file 's access capabilities are not checked at ASSIGN time. The specified
operation on the file associated with the I/O path name is not executed, however, unless the file has
the necessary access capability for that operation. For example, you may ASSIGN an 1/0 path
name to a file that has only the READ capability public, but attempting to perform an OUTPUT
operation without the password protecting the WRITE access capability generates Error 62.

ASSIGN does not create a file.

ASSIGN and Locked Files
Existing ASCII or BOAT files opened via ASSIGN are opened in shared mode, which means that
several users can open a file at the same time. If you lock a file (refer to LOCK) and subsequently
open that file via ASSIGN using the same @<name> (for example, to reset the file pointer), the
ASSIGN automatically unlocks the file (refer to UNLOCK). To maintain sole access to the file , you
must LOCK it again.

Closing an I/O path via ASSIGN (ASSIGN @ ... TO *) unlocks as well as closes the file (regardless of
the number of LOCKs in effect for the file at the time) .

483

484

CAT

With SRM, CAT lists all or specified portions of the contents of a directory or information
regarding a specified PROG file. SRM adds the PROTECT option to the CAT statement. For a
full description of the CAT statement syntax and CAT options, refer to the body of this manual.

remote file
spec l f l er

strlng
arra y n ame

SRM PROTECT J----------------------------~ and MS

ch~~~~~~~n1s) r---------------------~~

o~u~~~~s r_----------------------~

return
var 1 ab I ,e namet---------------------~~

NO HEADER

Example Statements
CAT
CAT TO #701
CAT ":REMOTE"
CAT " •• 1 •• 1 •• "
CAT "DIR1/DIR2"
CAT "A/B/C:REMOTE"
CAT "M)'Jile"jPROTECT
CAT ":REMOTEj LABEL Mastervol"
CATjSELECT "0"1 SKIP Ten_files
CAT TO Di rectof)'$(*)j NO HEADER

MS

484

CAT

With SRM, CAT lists all or specified portions of the contents of a directory or information
regarding a specified PROG file. SRM adds the PROTECT option to the CAT statement. For a
full description of the CAT statement syntax and CAT options, refer to the body of this manual.

remote file
spec l f l er

strlng
arra y n ame

SRM PROTECT J----------------------------~ and MS

ch~~~~~~~n1s) r---------------------~~

o~u~~~~s r_----------------------~

return
var 1 ab I ,e namet---------------------~~

NO HEADER

Example Statements
CAT
CAT TO #701
CAT ":REMOTE"
CAT " •• 1 •• 1 •• "
CAT "DIR1/DIR2"
CAT "A/B/C:REMOTE"
CAT "M)'Jile"jPROTECT
CAT ":REMOTEj LABEL Mastervol"
CATjSELECT "0"1 SKIP Ten_files
CAT TO Di rectof)'$(*)j NO HEADER

MS

CAT 485

Semantics
To catalog remote directories, either you must include a remote msus in the CAT statement or the
latest MASS STORAGE IS statement must have specified the desired remote msus. A catalog entry
is listed for each file in the working or explicitly specified directory.

CAT to a Device
The catalog listing format used by the SRM system depends upon the line-width capacity of the
device used for display.

When cataloging a remote directory on a 50-column display, the SRM system uses the following
catalog format:

header
USERS/STEVE/PRoJECTS / oIR1:REMoTE 21 to line 1
LABEL: Disci line 2
FORMAT: SoF line 3
AVAILABLE SPACE: 5Ll096 line 4

PUB FILE NUMBER RECORD OPEN line 5
FILE NAME ACC TYPE RECORDS LENGTH STAT line 6
================ ======= ------

Corlllllon_d ata MRW ASC I I LlS 256 OPEN
Personal_data BOAT 33 256 LOCK
Prograrll_alpha RW PRoG LlLl 256
HP9SLl5_oATA R DATA? ryry 256 ..:...~

HP9SLl5_SToRE MRW PRoG? 9 256
PascaLfile.TEln MRW TE)<T 37 256
Pro 9 rarL500 MRW PRoG? 12 256

When cataloging a remote directory on an 80-column display, the SRM system uses the following
catalog format:

header
USERS/STEVE/PRoJECTS/DIR1:REMoTE 21 to line 1
LABEL: Disci line 2
FORMAT: SDF line 3
A 1.1 A I LABLE SPACE: 5Ll096 line 4

SYS FILE NUMBER RECORD MODIFIED PUB OPEN line 5
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT line 6
================ - - - -- -- ======== ======== ================
COlJllllon_data ASC I I LlS 256 2-Dec-S3 13:20 MRW OPEN
Personal_data 9S)(6 BDAT 33 256 2-Dec-S3 13:20 LOCK
Pro graiL alp h a 9S)(6 PRoG LlLl 256 3- Dec-S3 15 : 6 RW
HP9SLl5_DATA 9SLl5 DATA 22 256 10-oct-S3 S:Ll5 R
HP9SLl5_SToRE 9SLl5 PRoG 9 256 10-oct-S3 8:Ll7 MRW
PascaLfile.TD(T PSCL TE)<T 37 256 ll-No\.J-83 12:25 MRW
Pro 9 rarL500 9000 PRoG 12 256 13-Dec-83 9:5Ll MRW

The header gives you the following information:

line 1 Directory name and remote msus. The full path to the specified directory is
displayed. Passwords used in the path are not displayed.

If the directory path specifier contains more characters than the display width,
the last 49 or 79 characters (depending on catalog format) in the path specifier
are shown. An asterisk (*) as the leftmost character in the path specifier
indicates that leading characters were truncated for the display.

CAT 485

Semantics
To catalog remote directories, either you must include a remote msus in the CAT statement or the
latest MASS STORAGE IS statement must have specified the desired remote msus. A catalog entry
is listed for each file in the working or explicitly specified directory.

CAT to a Device
The catalog listing format used by the SRM system depends upon the line-width capacity of the
device used for display.

When cataloging a remote directory on a 50-column display, the SRM system uses the following
catalog format:

header
USERS/STEVE/PRoJECTS / oIR1:REMoTE 21 to line 1
LABEL: Disci line 2
FORMAT: SoF line 3
AVAILABLE SPACE: 5Ll096 line 4

PUB FILE NUMBER RECORD OPEN line 5
FILE NAME ACC TYPE RECORDS LENGTH STAT line 6
================ ======= ------

Corlllllon_d ata MRW ASC I I LlS 256 OPEN
Personal_data BOAT 33 256 LOCK
Prograrll_alpha RW PRoG LlLl 256
HP9SLl5_oATA R DATA? ryry 256 ..:...~

HP9SLl5_SToRE MRW PRoG? 9 256
PascaLfile.TEln MRW TE)<T 37 256
Pro 9 rarL500 MRW PRoG? 12 256

When cataloging a remote directory on an 80-column display, the SRM system uses the following
catalog format:

header
USERS/STEVE/PRoJECTS/DIR1:REMoTE 21 to line 1
LABEL: Disci line 2
FORMAT: SDF line 3
A 1.1 A I LABLE SPACE: 5Ll096 line 4

SYS FILE NUMBER RECORD MODIFIED PUB OPEN line 5
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT line 6
================ - - - -- -- ======== ======== ================
COlJllllon_data ASC I I LlS 256 2-Dec-S3 13:20 MRW OPEN
Personal_data 9S)(6 BDAT 33 256 2-Dec-S3 13:20 LOCK
Pro graiL alp h a 9S)(6 PRoG LlLl 256 3- Dec-S3 15 : 6 RW
HP9SLl5_DATA 9SLl5 DATA 22 256 10-oct-S3 S:Ll5 R
HP9SLl5_SToRE 9SLl5 PRoG 9 256 10-oct-S3 8:Ll7 MRW
PascaLfile.TD(T PSCL TE)<T 37 256 ll-No\.J-83 12:25 MRW
Pro 9 rarL500 9000 PRoG 12 256 13-Dec-83 9:5Ll MRW

The header gives you the following information:

line 1 Directory name and remote msus. The full path to the specified directory is
displayed. Passwords used in the path are not displayed.

If the directory path specifier contains more characters than the display width,
the last 49 or 79 characters (depending on catalog format) in the path specifier
are shown. An asterisk (*) as the leftmost character in the path specifier
indicates that leading characters were truncated for the display.

486 CAT

line 2

line 3

line 4

lines 5 and 6

The system remembers a maximum of 160 characters for any directory path
specifier at a single time. If a path specifier contains more than 160 characters,
the excess characters are removed from the beginning of the specifier and are
not retained. This restriction does not affect movement within the directory
structure.

Volume label of the volume containing the directory.

Directory format, such as SDF (Structured Directory Format). See your disc's
operating manual for details.

Number of bytes available on the volume (given in increments of 256 bytes).

Labels for columns of information given for each file. The information pro­
vided is summarized below.

The FILE NAME column lists the names of the remote files and directories in the directory.

The LEt,! column (80-column format only) shows the level of the file relative to the current
working directory or specified directory. The level is always shown as 1 in directory listings for
Series 200/300 workstations.

The PUB ACC column lists the access capabilities available to all SRM system users. The three
capabilities are READ, (R) WRITE (1,..1) and MANAGER (M).

• Public MANAGER capability on a file or directory allows any user on the SRM system to
PURGE that file or directory and to modify or add to its passwords (with PROTECT). Pass­
word-protected MANAGER capability gives users who supply the required password both
READ and WRITE capabilities as well as MANAGER capability.

• READ capability on a directory allows you to access any file or directory in the directory. The
READ capability on a file allows you to read the contents of the file.

• WRITE capability on a directory allows you to create or delete a file or directory in that
directory. The WRITE capability on a file allows you to write information into that file.

The SYS TYPE column (80-column format only) shows the type of system used to create the
file. The system type is not shown for ASCII files and directories. 88){ G denotes a Series
200/300 computer. If the SRM system does not recognize the system type, a coded identifier,
obtained from the system being identified, appears in this column.

The F I LET Y P E column indicates the file's type . Directories are indicated as type D I R. In the
50-column format, a question mark is appended to the file type if the file was not created on a
Series 200/300 computer and was a type other than ASCII or DIR.

File types recognized by the BASIC system on SRM are: ASCII, BOAT, BIN, DIR, PROG, and
SYSTM, as '1ell as Series 200/300 Pascal and Series 500 file types.

If the system does not recognize a file's type, a coded file type identifier, obtained from the system
originating the file, appears in the FILE TYPE column.

486 CAT

line 2

line 3

line 4

lines 5 and 6

The system remembers a maximum of 160 characters for any directory path
specifier at a single time. If a path specifier contains more than 160 characters,
the excess characters are removed from the beginning of the specifier and are
not retained. This restriction does not affect movement within the directory
structure.

Volume label of the volume containing the directory.

Directory format, such as SDF (Structured Directory Format). See your disc's
operating manual for details.

Number of bytes available on the volume (given in increments of 256 bytes).

Labels for columns of information given for each file. The information pro­
vided is summarized below.

The FILE NAME column lists the names of the remote files and directories in the directory.

The LEt,! column (80-column format only) shows the level of the file relative to the current
working directory or specified directory. The level is always shown as 1 in directory listings for
Series 200/300 workstations.

The PUB ACC column lists the access capabilities available to all SRM system users. The three
capabilities are READ, (R) WRITE (1,..1) and MANAGER (M).

• Public MANAGER capability on a file or directory allows any user on the SRM system to
PURGE that file or directory and to modify or add to its passwords (with PROTECT). Pass­
word-protected MANAGER capability gives users who supply the required password both
READ and WRITE capabilities as well as MANAGER capability.

• READ capability on a directory allows you to access any file or directory in the directory. The
READ capability on a file allows you to read the contents of the file.

• WRITE capability on a directory allows you to create or delete a file or directory in that
directory. The WRITE capability on a file allows you to write information into that file.

The SYS TYPE column (80-column format only) shows the type of system used to create the
file. The system type is not shown for ASCII files and directories. 88){ G denotes a Series
200/300 computer. If the SRM system does not recognize the system type, a coded identifier,
obtained from the system being identified, appears in this column.

The F I LET Y P E column indicates the file's type . Directories are indicated as type D I R. In the
50-column format, a question mark is appended to the file type if the file was not created on a
Series 200/300 computer and was a type other than ASCII or DIR.

File types recognized by the BASIC system on SRM are: ASCII, BOAT, BIN, DIR, PROG, and
SYSTM, as '1ell as Series 200/300 Pascal and Series 500 file types.

If the system does not recognize a file's type, a coded file type identifier, obtained from the system
originating the file, appears in the FILE TYPE column.

CAT 487

The NUMBER OF RECORDS column indicates the number of records in the file and the RECDRD LENGTH
column indicates the number of bytes constituting each of the file's records.

The MODI F lED columns (SO-column format only) show the date and time the file's contents were last
changed.

The OPEN STAT column shows whether the file is currently open (DPEN) , locked (LOCK) or corrupt
(CORR). OPEN indicates that the file has been opened, via ASSIGN, by a user. An open file is available
for access from other workstations. LOCK means the file is accessible only from the workstation at
which the file was locked. CORR indicates that the disc lost power while accessing the file, possibly
altering the file's contents. If the entry is blank, the file is closed and available to any user.

Note
If a file 's status is shown as corrupt (CORR), you should run the DSCK
Utility program to check the directory structure and its integrity on the
SRM system disc. Refer to the SRM Operating System Manual for
details.

CAT to a String Array
Regardless of the workstation's display width, a CAT to a string array always produces the
SO-column format.

The PROTECT Option
PROTECT is a CAT option provided by the SRM BIN file and available only on SRM. This option
also requires the MS BIN file. The PROTECT option displays the password(s) and associated access
capabilities for the specified file or directory.

For example, the statement:

CAT "Test_file(MPASS):REMOTE";PRDTECT

might produce the display:

PASSWORD CAPABILITY
================ ==================
MPASS MANAGER,READ,WRITE
WPASS WRITE
RPASS READ
PASSWORD MANAGER

Use of this option requires MANAGER access capability on the file or directory. If the MANAGER
capability is public, the PROTECT option may be used by any SRM user.

PROTECT must be specified separately from other CAT options, and is allowed only with SRM files
and directories . Using PROTECT with media other than SRM results in
ERRDR 1 Can fi g l.tr at i on e r ro r.

CAT 487

The NUMBER OF RECORDS column indicates the number of records in the file and the RECDRD LENGTH
column indicates the number of bytes constituting each of the file's records.

The MODI F lED columns (SO-column format only) show the date and time the file's contents were last
changed.

The OPEN STAT column shows whether the file is currently open (DPEN) , locked (LOCK) or corrupt
(CORR). OPEN indicates that the file has been opened, via ASSIGN, by a user. An open file is available
for access from other workstations. LOCK means the file is accessible only from the workstation at
which the file was locked. CORR indicates that the disc lost power while accessing the file, possibly
altering the file's contents. If the entry is blank, the file is closed and available to any user.

Note
If a file 's status is shown as corrupt (CORR), you should run the DSCK
Utility program to check the directory structure and its integrity on the
SRM system disc. Refer to the SRM Operating System Manual for
details.

CAT to a String Array
Regardless of the workstation's display width, a CAT to a string array always produces the
SO-column format.

The PROTECT Option
PROTECT is a CAT option provided by the SRM BIN file and available only on SRM. This option
also requires the MS BIN file. The PROTECT option displays the password(s) and associated access
capabilities for the specified file or directory.

For example, the statement:

CAT "Test_file(MPASS):REMOTE";PRDTECT

might produce the display:

PASSWORD CAPABILITY
================ ==================
MPASS MANAGER,READ,WRITE
WPASS WRITE
RPASS READ
PASSWORD MANAGER

Use of this option requires MANAGER access capability on the file or directory. If the MANAGER
capability is public, the PROTECT option may be used by any SRM user.

PROTECT must be specified separately from other CAT options, and is allowed only with SRM files
and directories . Using PROTECT with media other than SRM results in
ERRDR 1 Can fi g l.tr at i on e r ro r.

488

CHECKREAD

For SRM, CHECKREAD is implemented as a no-op, because the CHECKREAD function is already
performed for every read and write statement on the SRM. Further checking places overhead on
the system and doing so would not be accurate. With SRM, CHECKREAD mayor may not cause
a true write to the disc, while its read would probably only access the buffers in the SRM system.
SRM's internal read and write checking and the automatic checking on the link make using
CHECKREAD unnecessary.

488

CHECKREAD

For SRM, CHECKREAD is implemented as a no-op, because the CHECKREAD function is already
performed for every read and write statement on the SRM. Further checking places overhead on
the system and doing so would not be accurate. With SRM, CHECKREAD mayor may not cause
a true write to the disc, while its read would probably only access the buffers in the SRM system.
SRM's internal read and write checking and the automatic checking on the link make using
CHECKREAD unnecessary.

CONTROL

With SRM, CONTROL sends control information to the internal table associated with an I/O
path name assigned to an ASCII or BOAT file (see ASSIGN). Refer to the CONTROL keyword
entry in the body of this manual for a full explanation of CONTROL syntax.

Control registers are listed in the " I/O Path Status and Control Registers" table in the Interface
Registers section of this manual.

Example Statement

489

CONTROL

With SRM, CONTROL sends control information to the internal table associated with an I/O
path name assigned to an ASCII or BOAT file (see ASSIGN). Refer to the CONTROL keyword
entry in the body of this manual for a full explanation of CONTROL syntax.

Control registers are listed in the " I/O Path Status and Control Registers" table in the Interface
Registers section of this manual.

Example Statement

489

490

COpy

With SRM, COPY allows copying of individual remote files. Remote directories and volumes
cannot be copied.

old remote
file specifier

Example Statements

new remote
file specifier

COPY "/Dir_l/File_l" TO "Dir_3/File_l"
COPY "File:INTERNAL" TO "File:REMOTE 2110"
COPY Dir_path$&File$&Msus& TO "File:INTERNAL"

Semantics
The contents of the old remote file are copied to the new remote file and an entry is placed in the
destination directory. The old and new remote files may be in the same directory, but the new
remote file's name must be unique.

Although you may include a password in the new remote file specifier, the system ignores the
password. If you wish to protect access to the new file, you must assign the password with
PROTECT.

490

COpy

With SRM, COPY allows copying of individual remote files. Remote directories and volumes
cannot be copied.

old remote
file specifier

Example Statements

new remote
file specifier

COPY "/Dir_l/File_l" TO "Dir_3/File_l"
COPY "File:INTERNAL" TO "File:REMOTE 2110"
COPY Dir_path$&File$&Msus& TO "File:INTERNAL"

Semantics
The contents of the old remote file are copied to the new remote file and an entry is placed in the
destination directory. The old and new remote files may be in the same directory, but the new
remote file's name must be unique.

Although you may include a password in the new remote file specifier, the system ignores the
password. If you wish to protect access to the new file, you must assign the password with
PROTECT.

CREATE ASCII

With SRM, CREATE ASCII creates a new remote ASCII file , placing a corresponding directory
entry in the current working directory or specified remote directory.

Example Statements
CREATE ASCI I "Te xt!)3", 100
CREATE ASCII " / Oirl / 0ir2 / ASCIIFILE",25

Semantics
The name of the newly-created ASCII file must be unique within its containing directory.

CREATE ASCII does not open the file. Files are opened with the ASSIGN statement. If an error
occurs during execution of CREATE ASCII, no directory entry is made and the file is not created.

The specified number of records determines the number of physical records for a remote ASCII
file's initial space allocation. The physical records of an ASCII file have a fixed length of 256 bytes.
(Logical records have variable lengths, determined automatically when an OUTPUT, SAVE or
RE-SAVE statement is used.)

Storage space for subsequent saving of remote files is allocated only when needed. When data is
added to a remote file such that saving the modified file would overflow the file's current space
allocation, the SRM system adds another extent. An extent is a space allocation whose size is
determined by multiplying the specified number of records by the record size.

When the remote file is created, all access capabilities are public. Including a password in the
CREATE ASCII statement's remote file specifier does not protect the file. You must use PROTECT
to assign passwords. You will not receive an error message for including a password, but passwords
in the CREATE ASCII statement are ignored.

491

CREATE ASCII

With SRM, CREATE ASCII creates a new remote ASCII file , placing a corresponding directory
entry in the current working directory or specified remote directory.

Example Statements
CREATE ASCI I "Te xt!)3", 100
CREATE ASCII " / Oirl / 0ir2 / ASCIIFILE",25

Semantics
The name of the newly-created ASCII file must be unique within its containing directory.

CREATE ASCII does not open the file. Files are opened with the ASSIGN statement. If an error
occurs during execution of CREATE ASCII, no directory entry is made and the file is not created.

The specified number of records determines the number of physical records for a remote ASCII
file's initial space allocation. The physical records of an ASCII file have a fixed length of 256 bytes.
(Logical records have variable lengths, determined automatically when an OUTPUT, SAVE or
RE-SAVE statement is used.)

Storage space for subsequent saving of remote files is allocated only when needed. When data is
added to a remote file such that saving the modified file would overflow the file's current space
allocation, the SRM system adds another extent. An extent is a space allocation whose size is
determined by multiplying the specified number of records by the record size.

When the remote file is created, all access capabilities are public. Including a password in the
CREATE ASCII statement's remote file specifier does not protect the file. You must use PROTECT
to assign passwords. You will not receive an error message for including a password, but passwords
in the CREATE ASCII statement are ignored.

491

492

CREATEBDAT

With SRM, CREATE BOAT creates a new remote BOAT file , placing a corresponding directory
entry in the current working directory or specified remote directory.

Example Statements
CREATE BDAT "File" tRecords tRec_size
CREATE BDAT "/Di rl IDi r2/BDATFILE" t25 tl2B
CREATE BDAT "Dir/File:REMOTE"tlO

Semantics
The name of the newly-created BOAT file must be unique within its containing directory.

CREATE BOAT does not open the file. Files are opened with the ASSIGN statement. If an error
occurs during execution of CREATE BOAT, no directory entry is made and the file is not created.

The specified number of records determines the number of physical records for a remote BOAT
file's initial space allocation. The length of a BOAT file's physical records is either specified by the
record size parameter or set to 256 bytes if no record size is specified.

Storage space for subsequent saving of remote files is allocated only when needed. When data is
added to a remote file such that saving the modified file would overflow the file's current space
allocation, the SRM system adds another extent. An extent is a space allocation whose size is
determined by multiplying the specified number of records by the record size. On SRM, CREATE
BOAT does not allocate a sector for system use, as it does with local files.

When the remote file is created, all access capabilities are public. Including a password in the
CREATE BOAT statement's remote file specifier does not protect the file. You must use PROTECT
to assign passwords. You will not receive an error message for including a password, but passwords
in the CREATE BOAT statement are ignored.

The data in remote BOAT files can be accessed both serially and randomly.

492

CREATEBDAT

With SRM, CREATE BOAT creates a new remote BOAT file , placing a corresponding directory
entry in the current working directory or specified remote directory.

Example Statements
CREATE BDAT "File" tRecords tRec_size
CREATE BDAT "/Di rl IDi r2/BDATFILE" t25 tl2B
CREATE BDAT "Dir/File:REMOTE"tlO

Semantics
The name of the newly-created BOAT file must be unique within its containing directory.

CREATE BOAT does not open the file. Files are opened with the ASSIGN statement. If an error
occurs during execution of CREATE BOAT, no directory entry is made and the file is not created.

The specified number of records determines the number of physical records for a remote BOAT
file's initial space allocation. The length of a BOAT file's physical records is either specified by the
record size parameter or set to 256 bytes if no record size is specified.

Storage space for subsequent saving of remote files is allocated only when needed. When data is
added to a remote file such that saving the modified file would overflow the file's current space
allocation, the SRM system adds another extent. An extent is a space allocation whose size is
determined by multiplying the specified number of records by the record size. On SRM, CREATE
BOAT does not allocate a sector for system use, as it does with local files.

When the remote file is created, all access capabilities are public. Including a password in the
CREATE BOAT statement's remote file specifier does not protect the file. You must use PROTECT
to assign passwords. You will not receive an error message for including a password, but passwords
in the CREATE BOAT statement are ignored.

The data in remote BOAT files can be accessed both serially and randomly.

(

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

SRM,DCOMM
Yes
Yes
Yes

CREATEDIR

This statement creates a directory in either the current working directory or in the specified remote
directory of an SRM mass storage device.

(CREATE orR)-----j dir e ctor y f-l s p ec I fIer

Example Statements
CREATE orR "Under_wor K_d i r"
CREATE orR "Levell/Leve12 / New_dir : REMOTE 2113"
CREATE orR " /L evell / Leve12 / Ne w_dir "
CREATE orR "Level l< RWpass word }/ New_dir "

Semantics
This statement creates a special 24-byte file of type DIR and a corresponding directory entry in the
current working directory or specified remote directory. The DIR file , or directory, keeps informa­
tion on files and directories immediately subordinate to itself.

The name of the newly-created directory must be unique within its containing directory.

like remote data files , OIR files are extensible. Extents are added in 24-byte increments. As each
directory or data file is created within a directory, a 24-byte record identifying the addition is added
to the DIR file.

If no directory path is included in the directory specifier, the directory is created within the current
working directory (the directory specified in the latest MASS STORAGE IS statement) . To specify a
target directory other than the current working directory, specify the directory path to the desired
directory.

You cannot assign passwords to a directory when you create it. Passwords are assigned only via
PROTECT. If an error occurs during execution of CREATE OIR, the directory entry in the superior
directory is not made, and the directory is not created.

DIR files are opened with the MASS STOR6,GE IS (MSI) statement.

Refer to the section on "Syntax for Remote File and Directory Specification" earlier in this
section for details on the semantics of directory specifiers.

493

(

Option Required
Keyboard Executable
Programmable
In an IF.. .THEN ...

SRM,DCOMM
Yes
Yes
Yes

CREATEDIR

This statement creates a directory in either the current working directory or in the specified remote
directory of an SRM mass storage device.

(CREATE orR)-----j dir e ctor y f-l s p ec I fIer

Example Statements
CREATE orR "Under_wor K_d i r"
CREATE orR "Levell/Leve12 / New_dir : REMOTE 2113"
CREATE orR " /L evell / Leve12 / Ne w_dir "
CREATE orR "Level l< RWpass word }/ New_dir "

Semantics
This statement creates a special 24-byte file of type DIR and a corresponding directory entry in the
current working directory or specified remote directory. The DIR file , or directory, keeps informa­
tion on files and directories immediately subordinate to itself.

The name of the newly-created directory must be unique within its containing directory.

like remote data files , OIR files are extensible. Extents are added in 24-byte increments. As each
directory or data file is created within a directory, a 24-byte record identifying the addition is added
to the DIR file.

If no directory path is included in the directory specifier, the directory is created within the current
working directory (the directory specified in the latest MASS STORAGE IS statement) . To specify a
target directory other than the current working directory, specify the directory path to the desired
directory.

You cannot assign passwords to a directory when you create it. Passwords are assigned only via
PROTECT. If an error occurs during execution of CREATE OIR, the directory entry in the superior
directory is not made, and the directory is not created.

DIR files are opened with the MASS STOR6,GE IS (MSI) statement.

Refer to the section on "Syntax for Remote File and Directory Specification" earlier in this
section for details on the semantics of directory specifiers.

493

494

ENTER

With SRM, ENTER is used to read data from a remote data file identified by an 110 path name and
to assign the value(s) to variable(s). (See also ASSIGN.)

The capabilities available for using ENTER with remote files are the same as those for using
ENTER with local files. Refer to the ENTER keyword entry in the body of this manual for a full
explanation of ENTER syntax.

Example Statements
ENTER @ReMote_file,REC;Alpha$,Beta~,GaMMa$

ENTER @NaMe_of;A,B

Semantics
Entering data from remote files requires the READ access capability on the superior directory and
on the file from which the data are to be read. If this capability is not public or if a password
protecting this capability was not used at the time the file was ASSIGNed, an error is reported.

494

ENTER

With SRM, ENTER is used to read data from a remote data file identified by an 110 path name and
to assign the value(s) to variable(s). (See also ASSIGN.)

The capabilities available for using ENTER with remote files are the same as those for using
ENTER with local files. Refer to the ENTER keyword entry in the body of this manual for a full
explanation of ENTER syntax.

Example Statements
ENTER @ReMote_file,REC;Alpha$,Beta~,GaMMa$

ENTER @NaMe_of;A,B

Semantics
Entering data from remote files requires the READ access capability on the superior directory and
on the file from which the data are to be read. If this capability is not public or if a password
protecting this capability was not used at the time the file was ASSIGNed, an error is reported.

GET

With SRM, GET reads the specified remote ASCII file and attempts to store the data in memory as
program lines.

Example Statements
GET "Filename:REMOTE"
GET "/ D i r 1/ D i r 2 / D i r 3/ f i 1 en a 11\ e <: RE AD pas s :> "

Semantics
You may use GET with any ASCII file whose data is in the format of a BASIC program (that is,
having numbered lines) . Although you may also use GET with ASCII files created on non­
Series 200/300 SRM workstations (HP 9835, HP 9845 or Model 520), any line that is not valid
BASIC syntax for Series 200/300 computers is stored as a commented (!) program line.

When used on SRM, GET is executed in shared mode, which means that several users can get one
file at the same time. Attempts to get a locked file (see LOCK) result in Error 453. Additionally, you
cannot get a file while it is being saved. The SAVE and RE-SAVE operations open the file in
exclusive mode (shown as LOCK in a CAT listing) and enforce that status until the SAVE or
RE-SAVE is complete. While in exclusive mode, the file is accessible only to the SRM workstation
executing the SAVE or RE-SAVE.

495

GET

With SRM, GET reads the specified remote ASCII file and attempts to store the data in memory as
program lines.

Example Statements
GET "Filename:REMOTE"
GET "/ D i r 1/ D i r 2 / D i r 3/ f i 1 en a 11\ e <: RE AD pas s :> "

Semantics
You may use GET with any ASCII file whose data is in the format of a BASIC program (that is,
having numbered lines) . Although you may also use GET with ASCII files created on non­
Series 200/300 SRM workstations (HP 9835, HP 9845 or Model 520), any line that is not valid
BASIC syntax for Series 200/300 computers is stored as a commented (!) program line.

When used on SRM, GET is executed in shared mode, which means that several users can get one
file at the same time. Attempts to get a locked file (see LOCK) result in Error 453. Additionally, you
cannot get a file while it is being saved. The SAVE and RE-SAVE operations open the file in
exclusive mode (shown as LOCK in a CAT listing) and enforce that status until the SAVE or
RE-SAVE is complete. While in exclusive mode, the file is accessible only to the SRM workstation
executing the SAVE or RE-SAVE.

495

496

INITIALIZE

INITIALIZE can be used to initialize local mass storage media only. An error will result if you try to
initialize a shared system volume.

496

INITIALIZE

INITIALIZE can be used to initialize local mass storage media only. An error will result if you try to
initialize a shared system volume.

LOAD

With SRM, LOAD loads the contents of remote PROG or BIN files into memory, or sets the
typing-aid definitions of the softkeys according to the contents of a remote BOAT file.

Example Statements
LOAD " PrOgraITI_z"
LOAD " / DirllDir 2/ Prog2" ,500
LOAD "Di r3 / ProLl : REMoTE "

LOAD BIN oir$&File$&Msus$
LOAD BIN "dirl / dir2 / bin_file <Readpass >:REMoTE 21 ,5jLABEL Di s c"

LOAD KEY "KE YS:REMDTE "
LOAD KE Y " / DirllDir2 / Ke>'file "

Semantics
LOAD
LOAD can be used with remote PROG files (created with the STORE statement) . LOAD is
executed in shared mode, which means that several users can load a file at the same time. Files
being stored with the STORE or RE-STORE statements are locked during that operation and
cannot be accessed for loading.

LOAD BIN
LOAD BIN can be used with remote BIN files. LOAD BIN is executed in shared mode, which
means that several users can load a BIN file at the same time.

BIN files can be loaded into a workstation from the SRM without the SRM BIN file present in the
workstation. Refer to the "Booting From the SRM" section of the SRM chapter in BASIC
Programming Techniques for more details.

LOAD KEY
LOAD KEY can be used with remote BOAT files (created with the STORE KEY statement) . LOAD
KEY is executed in shared mode, which means that several users can perform a LOAD KEY from a
BOAT file at the same time. Files being stored with the STORE KEY or RE-STORE KEY statements
are locked during that operation and cannot be accessed for loading.

497

LOAD

With SRM, LOAD loads the contents of remote PROG or BIN files into memory, or sets the
typing-aid definitions of the softkeys according to the contents of a remote BOAT file.

Example Statements
LOAD " PrOgraITI_z"
LOAD " / DirllDir 2/ Prog2" ,500
LOAD "Di r3 / ProLl : REMoTE "

LOAD BIN oir$&File$&Msus$
LOAD BIN "dirl / dir2 / bin_file <Readpass >:REMoTE 21 ,5jLABEL Di s c"

LOAD KEY "KE YS:REMDTE "
LOAD KE Y " / DirllDir2 / Ke>'file "

Semantics
LOAD
LOAD can be used with remote PROG files (created with the STORE statement) . LOAD is
executed in shared mode, which means that several users can load a file at the same time. Files
being stored with the STORE or RE-STORE statements are locked during that operation and
cannot be accessed for loading.

LOAD BIN
LOAD BIN can be used with remote BIN files. LOAD BIN is executed in shared mode, which
means that several users can load a BIN file at the same time.

BIN files can be loaded into a workstation from the SRM without the SRM BIN file present in the
workstation. Refer to the "Booting From the SRM" section of the SRM chapter in BASIC
Programming Techniques for more details.

LOAD KEY
LOAD KEY can be used with remote BOAT files (created with the STORE KEY statement) . LOAD
KEY is executed in shared mode, which means that several users can perform a LOAD KEY from a
BOAT file at the same time. Files being stored with the STORE KEY or RE-STORE KEY statements
are locked during that operation and cannot be accessed for loading.

497

498

LOADSUB

With SRM, LOADSUB allows you to load subprograms from a remote PROG file into your
workstation.

Example Statements
LOADSUB FROM "APSUBS"
LOADSUB FNReplace$ FROM "SUBFILE"
LOADSUB ALL FROM Subfile$
LOADSUB ALL FROM IDir3/Pragfile(Readpass)"
LOADSUB AL L FROM 1/0irl / 0irZ/PragZ3"

Semantics
With SRM, LOADSUB is executed in shared mode, which means that several workstations can
perform a LOADSUB of a file at the same time. PROG files being stored with the STORE or
RE-STORE statement are locked during that operation and cannot be accessed for loading.

498

LOADSUB

With SRM, LOADSUB allows you to load subprograms from a remote PROG file into your
workstation.

Example Statements
LOADSUB FROM "APSUBS"
LOADSUB FNReplace$ FROM "SUBFILE"
LOADSUB ALL FROM Subfile$
LOADSUB ALL FROM IDir3/Pragfile(Readpass)"
LOADSUB AL L FROM 1/0irl / 0irZ/PragZ3"

Semantics
With SRM, LOADSUB is executed in shared mode, which means that several workstations can
perform a LOADSUB of a file at the same time. PROG files being stored with the STORE or
RE-STORE statement are locked during that operation and cannot be accessed for loading.

Option Required
Keyboard Executable
Programmable
In an IF..THEN ...

LOCK

SRM,DCOMM
Yes
Yes
Yes

This statement prevents other SRM workstations from accessing the remote file to which the I/O
path name is currently assigned (see ASSIGN).

CONDITIONAL

Item Description/Default

I/O path name name identifying an I/O path

return variable name of a numeric variable

Example Statements
LOCK @File;CONDITIONAL Result
LOCK @As cii_l;CO NDITIONAL Err or_nu mber

Semantics

Range Restrictions

any valid name (See
Glossary.)

any valid name (See
Glossary.)

This statement establishes sole access to a file that has been opened with an ASSIGN statement.
This exclusive access remains assigned to the workstation executing the LOCK statement until an
UNLOCK statement is executed by that workstation. The UNLOCK function is also a result of
SCRATCH A, (RESET) and ASSIGN .. . TO * (explicitly closing an I/O path).

A file may be locked several times. The system counts the number of LOCKs on a file , and an equal
number of UNLOCKs must be executed to unlock the file . When an I/O path name is closed (for
example, by ASSIGN ... TO *), all LOCKs of that I/O path name are cleared.

If the LOCK is successful, the value of the return variable will be zero. Otherwise, the return
variable's value will be the error number corresponding to the cause of the LOCK's failure.

499

Option Required
Keyboard Executable
Programmable
In an IF..THEN ...

LOCK

SRM,DCOMM
Yes
Yes
Yes

This statement prevents other SRM workstations from accessing the remote file to which the I/O
path name is currently assigned (see ASSIGN).

CONDITIONAL

Item Description/Default

I/O path name name identifying an I/O path

return variable name of a numeric variable

Example Statements
LOCK @File;CONDITIONAL Result
LOCK @As cii_l;CO NDITIONAL Err or_nu mber

Semantics

Range Restrictions

any valid name (See
Glossary.)

any valid name (See
Glossary.)

This statement establishes sole access to a file that has been opened with an ASSIGN statement.
This exclusive access remains assigned to the workstation executing the LOCK statement until an
UNLOCK statement is executed by that workstation. The UNLOCK function is also a result of
SCRATCH A, (RESET) and ASSIGN .. . TO * (explicitly closing an I/O path).

A file may be locked several times. The system counts the number of LOCKs on a file , and an equal
number of UNLOCKs must be executed to unlock the file . When an I/O path name is closed (for
example, by ASSIGN ... TO *), all LOCKs of that I/O path name are cleared.

If the LOCK is successful, the value of the return variable will be zero. Otherwise, the return
variable's value will be the error number corresponding to the cause of the LOCK's failure.

499

500

MASS STORAGE IS

With SRM, MASS STORAGE IS specifies the SRM working directory.

Example Statements
MSI "Di rl/Di rZ/Proje c Ldi r"
MS I ",,"
MASS STORAGE IS ", (password) "
MS I ": REMOTE"

Semantics
SRM allows directories or volumes to be assigned as system mass storage. If you specify the volume
password in an MSI statement, that password is automatically applied to all accesses that use the
default msus (that is, no remote msus is specified in the remote file specifier) until a remote msus is
included in a subsequent MSI.

500

MASS STORAGE IS

With SRM, MASS STORAGE IS specifies the SRM working directory.

Example Statements
MSI "Di rl/Di rZ/Proje c Ldi r"
MS I ",,"
MASS STORAGE IS ", (password) "
MS I ": REMOTE"

Semantics
SRM allows directories or volumes to be assigned as system mass storage. If you specify the volume
password in an MSI statement, that password is automatically applied to all accesses that use the
default msus (that is, no remote msus is specified in the remote file specifier) until a remote msus is
included in a subsequent MSI.

ON TIMEOUT

With SRM, ON TIMEOUT defines and enables a branch resulting from an I/O timeout on the
specified SRM interface. Although ON TIMEOUT is supported on SRM, its use should be avoided
because the asynchronous nature of the SRM system does not allow predictable results.

A TIMEOUT occurring during statements such as RE-SAVE and RE-STORE may leave a tempor­
ary file on the mass storage device. The file's name is a lO-character identifier (the first character is
an alpha character, the rest are digits) derived from the value of the workstation's real-time clock
when the TIMEOUT occurred. You may wish to check the contents of any such file before purging.

501

ON TIMEOUT

With SRM, ON TIMEOUT defines and enables a branch resulting from an I/O timeout on the
specified SRM interface. Although ON TIMEOUT is supported on SRM, its use should be avoided
because the asynchronous nature of the SRM system does not allow predictable results.

A TIMEOUT occurring during statements such as RE-SAVE and RE-STORE may leave a tempor­
ary file on the mass storage device. The file's name is a lO-character identifier (the first character is
an alpha character, the rest are digits) derived from the value of the workstation's real-time clock
when the TIMEOUT occurred. You may wish to check the contents of any such file before purging.

501

502

OUTPUT

With SRM, OUTPUT writes item(s) to the remote file to which the specified I/O path name is
assigned (see ASSIGN). Refer to the OUTPUT keyword entry in the body of this manual for a
full explanation of OUTPUT syntax.

Example Statement
OUTPUT @FileiArra)'(*) ,END

Semantics
You must have WRITE access capability on the remote file to output data to the file. If this capability
is not public or if a password protecting this capability was not used at the time the file was
ASSIGNed, Error 62 is reported.

If the data output to the file with this statement would overflow the file's space allocation, the
system allocates the additional space needed to save the file (provided the disc contains enough
unused storage space). Refer to the "System Concepts" section of the SRM chapter in BASIC
Programming Techniques for more details on the extensible nature of remote files.

502

OUTPUT

With SRM, OUTPUT writes item(s) to the remote file to which the specified I/O path name is
assigned (see ASSIGN). Refer to the OUTPUT keyword entry in the body of this manual for a
full explanation of OUTPUT syntax.

Example Statement
OUTPUT @FileiArra)'(*) ,END

Semantics
You must have WRITE access capability on the remote file to output data to the file. If this capability
is not public or if a password protecting this capability was not used at the time the file was
ASSIGNed, Error 62 is reported.

If the data output to the file with this statement would overflow the file's space allocation, the
system allocates the additional space needed to save the file (provided the disc contains enough
unused storage space). Refer to the "System Concepts" section of the SRM chapter in BASIC
Programming Techniques for more details on the extensible nature of remote files.

(

PLOTTER IS

With SRM, PLOTTER IS causes all subsequent plotter output to go to the specified remote
BOAT file. Refer to the PLOTTER IS keyword entry in the body of this manual for a full
explanation of PLOTTER IS syntax.

PLOTTER IS remote file
specifier

Example Statements
PLOTTER IS "/P L/P lot fi le "
PLOTTER IS "Plotfile : REMOTE" ,"HPGL" ,G.25,25G.25,G.975118G.975

Semantics
If the specified remote file is in the SRM plotter spooler directory and the file contains data , when
the file is closed the SRM system sends the data to the plotting device and then purges the file . You
may close the file by executing another PLOTTER IS statement, SCRATCH A or SCRATCH BIN,
or by pressing (RESET).

No end-of-file error occurs on SRM. If the data output to the file with this statement would
overflow the file 's space allocation, the system allocates the additional space needed to save the
file (provided the disc contains enough unused storage space). Refer to the "System Concepts"
section of the SRM chapter in BASIC Programming Techniques for more details on the extensi­
ble nature of remote files.

503

(

PLOTTER IS

With SRM, PLOTTER IS causes all subsequent plotter output to go to the specified remote
BOAT file. Refer to the PLOTTER IS keyword entry in the body of this manual for a full
explanation of PLOTTER IS syntax.

PLOTTER IS remote file
specifier

Example Statements
PLOTTER IS "/P L/P lot fi le "
PLOTTER IS "Plotfile : REMOTE" ,"HPGL" ,G.25,25G.25,G.975118G.975

Semantics
If the specified remote file is in the SRM plotter spooler directory and the file contains data , when
the file is closed the SRM system sends the data to the plotting device and then purges the file . You
may close the file by executing another PLOTTER IS statement, SCRATCH A or SCRATCH BIN,
or by pressing (RESET).

No end-of-file error occurs on SRM. If the data output to the file with this statement would
overflow the file 's space allocation, the system allocates the additional space needed to save the
file (provided the disc contains enough unused storage space). Refer to the "System Concepts"
section of the SRM chapter in BASIC Programming Techniques for more details on the extensi­
ble nature of remote files.

503

504

PRINTER IS

With SRM, PRINTER IS specifies a remote BOAT file as the system printing file. Refer to the
PRINTER IS keyword entry in the body of this manual for a full explanation of PRINTER IS
syntax.

PRINTER IS remote fi le t---r-----------------------r-+-l specifier

Example Statements
PRINTER IS "Spooler:REMOTE"
PRINTER IS "MY_di rlTefT1P_print" jWIDTH 80

Semantics

110

The system printing file receives all data sent by the PRINT statement, all data sent by CAT and
LIST statements in which the destination is not explicitly specified, and other output generated by
the BASIC system.

If the specified remote file is in the SRM printer spooler directory and the file contains data, when
the file is closed, the SRM system sends the data to the printer and then purges the file. You may
close the file by executing another PRINTER IS statement, or a SCRATCH A or SCRATCH BIN
command.

No end-of-file error occurs on SRM. If the data output to the file with this statement would
overflow the file's space allocation, the system allocates the additional space needed to save the
file (provided the media contains enough unused storage space). Refer to the System Con­
cepts" section of the SRM chapter in BASIC Programming Techniques for more details on the
extensible nature of remote files.

504

PRINTER IS

With SRM, PRINTER IS specifies a remote BOAT file as the system printing file. Refer to the
PRINTER IS keyword entry in the body of this manual for a full explanation of PRINTER IS
syntax.

PRINTER IS remote fi le t---r-----------------------r-+-l specifier

Example Statements
PRINTER IS "Spooler:REMOTE"
PRINTER IS "MY_di rlTefT1P_print" jWIDTH 80

Semantics

110

The system printing file receives all data sent by the PRINT statement, all data sent by CAT and
LIST statements in which the destination is not explicitly specified, and other output generated by
the BASIC system.

If the specified remote file is in the SRM printer spooler directory and the file contains data, when
the file is closed, the SRM system sends the data to the printer and then purges the file. You may
close the file by executing another PRINTER IS statement, or a SCRATCH A or SCRATCH BIN
command.

No end-of-file error occurs on SRM. If the data output to the file with this statement would
overflow the file's space allocation, the system allocates the additional space needed to save the
file (provided the media contains enough unused storage space). Refer to the System Con­
cepts" section of the SRM chapter in BASIC Programming Techniques for more details on the
extensible nature of remote files.

PROTECT

With SRM, this statement protects access capabilities by assigning passwords to remote files and
directories. The use of PROTECT with SRM is distinct from its use with local files (described in
the body of this manual) .

remote file I-T--'--t~
specifier

Example Statements
PROTECT "d i r: REMOTE" t ("ITI 9 r" : MANAGER) t (" rl~" : READ t WR I TE)
PR 0 T E C T "F i 1 e < riAl:>" t (" flA' " : DELETE)

Semantics
PROTECT allows you to control access to remote files and directories by protecting access capabili­
ties with password(s). Access capabilities are either public (available to all SRM users) or password­
protected (available only to users supplying the correct password with the file or directory specifier).

The three access capabilities - MANAGER, READ and WRITE - are public unless the PROTECT
statement associates a password with one or more of those capabilities.

Once the capability on a given file or directory is password-protected, the capability can be exer­
cised on the file or directory only if the correct password is included in the file or directory specifier.
For instance, if a file's READ capabilities are protected, any user wishing to execute a command or
statement that reads the file must supply a password protecting the file's READ capability.

MANAGER
Public MANAGER capability allows any SRM user to PRPTECT, PURGE or RENAME a file or
directory. Password-protected MANAGER capability provides READ and WRITE, as well as MAN­
AGER, access capabilities to users who know the password.

You must have MANAGER capabilities on a file or directory to PROTECT the access capabilities on
that file or directory. This includes adding, deleting and changing passwords.

READ
READ capability on a file allows use of commands and statements that read the contents of a file
(for example: ENTER, LOAD, GET). READ capability on a directory allows you to read the files in
the directory (CAT) , or to "pass through" a directory by including the directory name (and
password, if assigned) in a directory path.

505

PROTECT

With SRM, this statement protects access capabilities by assigning passwords to remote files and
directories. The use of PROTECT with SRM is distinct from its use with local files (described in
the body of this manual) .

remote file I-T--'--t~
specifier

Example Statements
PROTECT "d i r: REMOTE" t ("ITI 9 r" : MANAGER) t (" rl~" : READ t WR I TE)
PR 0 T E C T "F i 1 e < riAl:>" t (" flA' " : DELETE)

Semantics
PROTECT allows you to control access to remote files and directories by protecting access capabili­
ties with password(s). Access capabilities are either public (available to all SRM users) or password­
protected (available only to users supplying the correct password with the file or directory specifier).

The three access capabilities - MANAGER, READ and WRITE - are public unless the PROTECT
statement associates a password with one or more of those capabilities.

Once the capability on a given file or directory is password-protected, the capability can be exer­
cised on the file or directory only if the correct password is included in the file or directory specifier.
For instance, if a file's READ capabilities are protected, any user wishing to execute a command or
statement that reads the file must supply a password protecting the file's READ capability.

MANAGER
Public MANAGER capability allows any SRM user to PRPTECT, PURGE or RENAME a file or
directory. Password-protected MANAGER capability provides READ and WRITE, as well as MAN­
AGER, access capabilities to users who know the password.

You must have MANAGER capabilities on a file or directory to PROTECT the access capabilities on
that file or directory. This includes adding, deleting and changing passwords.

READ
READ capability on a file allows use of commands and statements that read the contents of a file
(for example: ENTER, LOAD, GET). READ capability on a directory allows you to read the files in
the directory (CAT) , or to "pass through" a directory by including the directory name (and
password, if assigned) in a directory path.

505

506 PROTECT

WRITE
WRITE capability on a file allows use of commands and statements that write to the file (for
example: OUTPUT, RE-SAVE, RE-STORE). WRITE capability on a directory allows use of com­
mands that add or delete file names in the directory (for example: SAVE, STORE, PURGE,
CREATE, RENAME).

Use of PROTECT
Each PROTECT statement allows up to six password/capability combinations per statement. The
number of PROTECT statements that can be executed for each file or directory is unlimited,
however, as long as each password is unique.

Successive associations of capabilities with the same password are not cumulative. To retain
previous capability assignments for a file or directory, you must include those assignments in
subsequent PROTECT statements designating the same password for that file or directory.

For example, say you protected the READ access capability on a file with the password passme
then wanted to change that assignment so that passme would protect both the READ and WRITE
access capabilities for that file . If you executed a second PROTECT statement associating passme
with the WRITE capability only, passme would no longer protect the READ capability. Instead, you
should specify the password and both the READ and WRITE capabilities in the second PROTECT
statement.

To modify the access capabilities protected by a password, execute the PROTECT with the existing
password and the new password/capability pair(s).

The secondary keyword DELETE is used to delete existing password assignments for a file or
directory. To be effective, DELETE must be the only secondary keyword used with a password/
capability pair in the PROTECT statement. Otherwise, DELETE is ignored. MANAGER capability is
required to perform the DELETE. A DELETE executed without MANAGER capability results in a
protect code violation error.

506 PROTECT

WRITE
WRITE capability on a file allows use of commands and statements that write to the file (for
example: OUTPUT, RE-SAVE, RE-STORE). WRITE capability on a directory allows use of com­
mands that add or delete file names in the directory (for example: SAVE, STORE, PURGE,
CREATE, RENAME).

Use of PROTECT
Each PROTECT statement allows up to six password/capability combinations per statement. The
number of PROTECT statements that can be executed for each file or directory is unlimited,
however, as long as each password is unique.

Successive associations of capabilities with the same password are not cumulative. To retain
previous capability assignments for a file or directory, you must include those assignments in
subsequent PROTECT statements designating the same password for that file or directory.

For example, say you protected the READ access capability on a file with the password passme
then wanted to change that assignment so that passme would protect both the READ and WRITE
access capabilities for that file . If you executed a second PROTECT statement associating passme
with the WRITE capability only, passme would no longer protect the READ capability. Instead, you
should specify the password and both the READ and WRITE capabilities in the second PROTECT
statement.

To modify the access capabilities protected by a password, execute the PROTECT with the existing
password and the new password/capability pair(s).

The secondary keyword DELETE is used to delete existing password assignments for a file or
directory. To be effective, DELETE must be the only secondary keyword used with a password/
capability pair in the PROTECT statement. Otherwise, DELETE is ignored. MANAGER capability is
required to perform the DELETE. A DELETE executed without MANAGER capability results in a
protect code violation error.

PURGE

With SRM, PURGE deletes a file entry from a directory or an empty remote directory from its
superior directory.

I---r-~ r e ma t e f i 1 e r--y----.j
specifier

Example Statements
PURGE "File"
PURGE "Dir_a(RWpass)/F i le(MGRpass)"
PURGE "Dirl / DirZ / Di r3"

Semantics
Only remote files and directories that are closed can be purged. Remote files are closed by
ASSIGN ... TO * (explicitly closes an I/O path). SCRATCH A closes both directories and remote
files. All remote files except those opened with the PRINTER IS statement are also closed by
(RESEr). The current working directory is closed by an MSI to a different directory.

Once a file or directory is purged, its contents cannot be recovered.

To be purged, directories must be empty (must not contain any subordinate files or directories) as
well as closed.

507

PURGE

With SRM, PURGE deletes a file entry from a directory or an empty remote directory from its
superior directory.

I---r-~ r e ma t e f i 1 e r--y----.j
specifier

Example Statements
PURGE "File"
PURGE "Dir_a(RWpass)/F i le(MGRpass)"
PURGE "Dirl / DirZ / Di r3"

Semantics
Only remote files and directories that are closed can be purged. Remote files are closed by
ASSIGN ... TO * (explicitly closes an I/O path). SCRATCH A closes both directories and remote
files. All remote files except those opened with the PRINTER IS statement are also closed by
(RESEr). The current working directory is closed by an MSI to a different directory.

Once a file or directory is purged, its contents cannot be recovered.

To be purged, directories must be empty (must not contain any subordinate files or directories) as
well as closed.

507

508

RENAME

With SRM, RENAME changes a remote file's name in a remote directory and performs limited file
relocation.

RENAME r-..,...,~Old re mote filef--....... -4
'__ __ -' specifier

old directory
specifier

Example Statements
RENAME "Old_narrle" TO "NeIAI_narrle"

r-..,...,~ new remote file f--,...---.I
specifier

new directory
specifier

RENAME "Dirl<RWpass)/F1<MGRpass)" TO "DirZ<RWpass)/F1"
RENAME "THIS:REMOTE" TO "THAT"

Semantics
RENAME can be used to change the name of remote files and directories or to move files within the
directory structure. Directories cannot be moved with RENAME. Moving of files must occur within a
single volume. If you move a file with RENAME, the original file ("old remote file specifier") is
purged.

A maximum of nine names (file or directory) are allowed in the combined file/directory specifiers in
the RENAME statement. No more than six names are allowed in either specifier individually. (The
number of names in the old file/directory specifier plus the number of names in the new file/
directory specifier must not exceed nine.)

Files and directories must be closed before being renamed. Remote files are closed by
ASSIGN ... TO * (explicitly closes an 110 path). SCRATCH A closes both directories and remote
files. All remote files except those opened with the PRINTER IS statement are also closed by
(RESET). The current working directory is closed by an MSI to a different directory.

Existing passwords are retained by the renamed file or directory. The new file name must not
duplicate the name of any existing file in the destination directory.

508

RENAME

With SRM, RENAME changes a remote file's name in a remote directory and performs limited file
relocation.

RENAME r-..,...,~Old re mote filef--....... -4
'__ __ -' specifier

old directory
specifier

Example Statements
RENAME "Old_narrle" TO "NeIAI_narrle"

r-..,...,~ new remote file f--,...---.I
specifier

new directory
specifier

RENAME "Dirl<RWpass)/F1<MGRpass)" TO "DirZ<RWpass)/F1"
RENAME "THIS:REMOTE" TO "THAT"

Semantics
RENAME can be used to change the name of remote files and directories or to move files within the
directory structure. Directories cannot be moved with RENAME. Moving of files must occur within a
single volume. If you move a file with RENAME, the original file ("old remote file specifier") is
purged.

A maximum of nine names (file or directory) are allowed in the combined file/directory specifiers in
the RENAME statement. No more than six names are allowed in either specifier individually. (The
number of names in the old file/directory specifier plus the number of names in the new file/
directory specifier must not exceed nine.)

Files and directories must be closed before being renamed. Remote files are closed by
ASSIGN ... TO * (explicitly closes an 110 path). SCRATCH A closes both directories and remote
files. All remote files except those opened with the PRINTER IS statement are also closed by
(RESET). The current working directory is closed by an MSI to a different directory.

Existing passwords are retained by the renamed file or directory. The new file name must not
duplicate the name of any existing file in the destination directory.

RE-SAVE

With SRM, RE-SAVE creates a remote ASCII file and copies program lines as strings into that file.

Example Statements
RE-SAI,IE "Fi 1 e"
RE - SA 1,1 E "D i r <: RiAl pas s > / F i 1 e <: RiAl pas s > "

Semantics
RE-SAVE opens the remote file in exclusive mode (denoted as LDCK in a CAT listing) and enforces
that status on the file until the RE-SAVE is complete. While in exclusive mode, the file is inaccessible
to all SRM workstations other than the one executing the RE-SAVE.

If the file does not already exist, RE-SAVE performs the same action as SAVE. Including a pass­
word in the RE-SAVE statement's remote file specifier does not protect the file. Passwords are
assigned only with PROTECT. You do not receive an error for including a password with the
specifier of a remote file that does not already exist, but the system ignores the password.

Passwords assigned to an existing file are retained when a RE-SAVE is performed on the file . If you
specify the wrong password on a protected file , the system returns an error message.

Use of RE-SAVE on SRM may leave temporary files on the mass storage media if (CLR I/O) or (RESET)
is pressed or a TIMEOUT occurs during the RE-SAVE. The file name of the temporary file is a
lO-character name (the first is an alpha character, others are digits) derived from the value of the
workstation's real-time clock when the interruption occurred. You may wish to check the contents
of any such file before purging.

509

RE-SAVE

With SRM, RE-SAVE creates a remote ASCII file and copies program lines as strings into that file.

Example Statements
RE-SAI,IE "Fi 1 e"
RE - SA 1,1 E "D i r <: RiAl pas s > / F i 1 e <: RiAl pas s > "

Semantics
RE-SAVE opens the remote file in exclusive mode (denoted as LDCK in a CAT listing) and enforces
that status on the file until the RE-SAVE is complete. While in exclusive mode, the file is inaccessible
to all SRM workstations other than the one executing the RE-SAVE.

If the file does not already exist, RE-SAVE performs the same action as SAVE. Including a pass­
word in the RE-SAVE statement's remote file specifier does not protect the file. Passwords are
assigned only with PROTECT. You do not receive an error for including a password with the
specifier of a remote file that does not already exist, but the system ignores the password.

Passwords assigned to an existing file are retained when a RE-SAVE is performed on the file . If you
specify the wrong password on a protected file , the system returns an error message.

Use of RE-SAVE on SRM may leave temporary files on the mass storage media if (CLR I/O) or (RESET)
is pressed or a TIMEOUT occurs during the RE-SAVE. The file name of the temporary file is a
lO-character name (the first is an alpha character, others are digits) derived from the value of the
workstation's real-time clock when the interruption occurred. You may wish to check the contents
of any such file before purging.

509

510

RESET

With SRM, this statement resets the pointers of a remote file identified by an I/O path name (see
ASSIGN).

Example Statement
RESET @ReMote_file

510

RESET

With SRM, this statement resets the pointers of a remote file identified by an I/O path name (see
ASSIGN).

Example Statement
RESET @ReMote_file

RE-STORE

With SRM, RE-STORE creates a remote file and stores the BASIC program or typing-aid key
definitions in that file.

Example Statements
RE-STORE "Pro~_a"

RE-STORE "Dir<RWpass>/Pro~_z:RWpass>"

RE-STORE KEY "KEYS:REMOTE"
RE-STORE KEY "TYPING"

Semantics
RE-STORE creates a remote PROG file , and RE-STORE KEY creates a remote BOAT file .

RE-STORE opens the remote file in exclusive mode (denoted as LOCK in a CAT listing) and enforces
that status on the file until the RE-STORE is complete. While in exclusive mode, the file is inaccessi­
ble to all SRM workstations other than the one executing the RE-STORE.

If the file does not already exist, RE-STORE performs the same action as STORE. Including a
password in the RE-STORE statement's remote file specifier does not protect the file. Passwords
are assigned only with PROTECT. You do not receive an error for including a password with the
specifier of a remote file that does not already exist, but the system ignores the password.

Passwords assigned to an existing file are retained when a RE-STORE is performed on the file. If
you specify the wrong password on a protected file, the system returns an error message.

Use of RE-STORE on SRM may leave temporary files on the mass storage media if (CLR 1/0) or
(RESET) is pressed or a TIMEOUT occurs during the RE-STORE. The file name of the temporary file
is a lO-character name (the first is an alpha character, others are digits) derived from the value of
the workstation's real-time clock when the interruption occurred. You may wish to check the
contents of any such file before purging.

511

RE-STORE

With SRM, RE-STORE creates a remote file and stores the BASIC program or typing-aid key
definitions in that file.

Example Statements
RE-STORE "Pro~_a"

RE-STORE "Dir<RWpass>/Pro~_z:RWpass>"

RE-STORE KEY "KEYS:REMOTE"
RE-STORE KEY "TYPING"

Semantics
RE-STORE creates a remote PROG file , and RE-STORE KEY creates a remote BOAT file .

RE-STORE opens the remote file in exclusive mode (denoted as LOCK in a CAT listing) and enforces
that status on the file until the RE-STORE is complete. While in exclusive mode, the file is inaccessi­
ble to all SRM workstations other than the one executing the RE-STORE.

If the file does not already exist, RE-STORE performs the same action as STORE. Including a
password in the RE-STORE statement's remote file specifier does not protect the file. Passwords
are assigned only with PROTECT. You do not receive an error for including a password with the
specifier of a remote file that does not already exist, but the system ignores the password.

Passwords assigned to an existing file are retained when a RE-STORE is performed on the file. If
you specify the wrong password on a protected file, the system returns an error message.

Use of RE-STORE on SRM may leave temporary files on the mass storage media if (CLR 1/0) or
(RESET) is pressed or a TIMEOUT occurs during the RE-STORE. The file name of the temporary file
is a lO-character name (the first is an alpha character, others are digits) derived from the value of
the workstation's real-time clock when the interruption occurred. You may wish to check the
contents of any such file before purging.

511

512

SAVE

With SRM, SAVE creates a remote ASCII file and copies program lines as strings into the file.

Example Statements
SAVE "THE_WHALES"
SAVE "Dir(RWPiss)/File"
SAt,lE "Ascii_file:REMOTE"

Semantics
SAVE opens the remote file in exclusive mode (denoted as LOCK in a CAT listing) and enforces that
status on the file until the SAVE is complete. While in exclusive mode, the file is inaccessible to all
SRM workstations other than the one executing the SAVE.

Including a password in the SAVE statement's remote file specifier does not protect the file.
Passwords are assigned only with PROTECT. You do not receive an error for including a password
with the remote file specifier, but the system ignores the password.

512

SAVE

With SRM, SAVE creates a remote ASCII file and copies program lines as strings into the file.

Example Statements
SAVE "THE_WHALES"
SAVE "Dir(RWPiss)/File"
SAt,lE "Ascii_file:REMOTE"

Semantics
SAVE opens the remote file in exclusive mode (denoted as LOCK in a CAT listing) and enforces that
status on the file until the SAVE is complete. While in exclusive mode, the file is inaccessible to all
SRM workstations other than the one executing the SAVE.

Including a password in the SAVE statement's remote file specifier does not protect the file.
Passwords are assigned only with PROTECT. You do not receive an error for including a password
with the remote file specifier, but the system ignores the password.

SCRATCH A

With SRM, SCRATCH A releases the system resources allocated to the workstation executing the
SCRATCH A, making those resources available to other SRM workstations. SCRATCH A closes all
files and directories, and resets the workstation's working directory to the default msus (the mass
storage unit from which the workstation booted).

If the workstation has Boot ROM version 3.0 or later, and booted from the SRM, SCRATCH A
resets the working directory to the root of the default system volume. If the workstation has an
earlier version boot ROM or Boot ROM 3. OL, SCRATCH A resets the working directory to the
device from which the workstation booted (for example, :INTERNAL if the workstation booted
from a built-in drive).

513

SCRATCH A

With SRM, SCRATCH A releases the system resources allocated to the workstation executing the
SCRATCH A, making those resources available to other SRM workstations. SCRATCH A closes all
files and directories, and resets the workstation's working directory to the default msus (the mass
storage unit from which the workstation booted).

If the workstation has Boot ROM version 3.0 or later, and booted from the SRM, SCRATCH A
resets the working directory to the root of the default system volume. If the workstation has an
earlier version boot ROM or Boot ROM 3. OL, SCRATCH A resets the working directory to the
device from which the workstation booted (for example, :INTERNAL if the workstation booted
from a built-in drive).

513

514

STATUS

With SRM, STATUS returns the contents of I/O path name status registers (see ASSIGN). Refer
to the STATUS keyword entry in the body of this manual for a full explanation of STATUS
syntax. Status registers are listed in the "I/O Path Status and Control Registers" table in the
Interface Registers section of this manual.

Example Statement
STATUS @File,5jRecord

nume ri c
name

514

STATUS

With SRM, STATUS returns the contents of I/O path name status registers (see ASSIGN). Refer
to the STATUS keyword entry in the body of this manual for a full explanation of STATUS
syntax. Status registers are listed in the "I/O Path Status and Control Registers" table in the
Interface Registers section of this manual.

Example Statement
STATUS @File,5jRecord

nume ri c
name

STORE

With SRM, STORE creates a remote file and stores a program or typing-aid key definitions into it.

Example Statements
STORE IProg32"
STORE "0i r<RWpass >/ Prograllj"
STORE KE Y "KEYS:REMOTE"
STORE KE Y I / USERS / KRIS / TYPING "

Semantics
STORE creates a remote PROG file, and STORE KEY creates a remote BOAT file .

STORE opens the remote file in exclusive mode (denoted as LOC K in a CAT listing) and enforces
that status on the file until the STORE is complete. While in exclusive mode, the file is inaccessible
to all SRM workstations other than the one executing the STORE.

Including a password in the STORE statement's remote file specifier does not protect the file.
Passwords are assigned only with PROTECT. You do not receive an error for including a password
with the remote file specifier, but the system ignores the password.

515

STORE

With SRM, STORE creates a remote file and stores a program or typing-aid key definitions into it.

Example Statements
STORE IProg32"
STORE "0i r<RWpass >/ Prograllj"
STORE KE Y "KEYS:REMOTE"
STORE KE Y I / USERS / KRIS / TYPING "

Semantics
STORE creates a remote PROG file, and STORE KEY creates a remote BOAT file .

STORE opens the remote file in exclusive mode (denoted as LOC K in a CAT listing) and enforces
that status on the file until the STORE is complete. While in exclusive mode, the file is inaccessible
to all SRM workstations other than the one executing the STORE.

Including a password in the STORE statement's remote file specifier does not protect the file.
Passwords are assigned only with PROTECT. You do not receive an error for including a password
with the remote file specifier, but the system ignores the password.

515

516

STORE SYSTEM

With SRM, STORE SYSTEM stores the entire BASIC operating system currently in memory
(including any BIN files) into the specified remote file.

Example Statements
STORE SYSTEM "SYSTEM_Bl:REMOTE"
STORE, SYSTEM "/SYSTEMS/SYSTEM_NEW"

Semantics
Including a password in the STORE SYSTEM statement's remote file specifier does not protect the
file. Passwords are assigned only with PROTECT. You do not receive an error for including a
password with the remote file specifier, but the system ignores the password.

The READ access capability on the system file created with STORE SYSTEM must be public to
allow use of the file for booting.

516

STORE SYSTEM

With SRM, STORE SYSTEM stores the entire BASIC operating system currently in memory
(including any BIN files) into the specified remote file.

Example Statements
STORE SYSTEM "SYSTEM_Bl:REMOTE"
STORE, SYSTEM "/SYSTEMS/SYSTEM_NEW"

Semantics
Including a password in the STORE SYSTEM statement's remote file specifier does not protect the
file. Passwords are assigned only with PROTECT. You do not receive an error for including a
password with the remote file specifier, but the system ignores the password.

The READ access capability on the system file created with STORE SYSTEM must be public to
allow use of the file for booting.

(
SYSTEM$

With SRM, this function returns a string containing system status and configuration information.

li t er a l fo rm o f type of i n fo rmati on:

J--"T""""'-.{ MASS STORAGE IS J--"T""""'-.{

PLOTTER IS

PRINTER IS

Example Statement
SYSTEM$("MSI")
SYSTEM$("PRINTER IS")
SYSTEM$("PLOTTER IS")

Semantics

GRAPH

The system configuration information returned when SYSTEM$ is executed on SRM includes the
full remote file specifier describing the file or directory about which the information is requested.
Passwords in the specifier are not included.

The system remembers a maximum of 160 characters for anyone specifier. If a specifier contains
more than 160 characters, the excess characters are removed from the beginning of the specifier
and are not retained. An asterisk (*) as the leftmost character in the specifier indicates that leading
characters were truncated for the function .

517

(
SYSTEM$

With SRM, this function returns a string containing system status and configuration information.

li t er a l fo rm o f type of i n fo rmati on:

J--"T""""'-.{ MASS STORAGE IS J--"T""""'-.{

PLOTTER IS

PRINTER IS

Example Statement
SYSTEM$("MSI")
SYSTEM$("PRINTER IS")
SYSTEM$("PLOTTER IS")

Semantics

GRAPH

The system configuration information returned when SYSTEM$ is executed on SRM includes the
full remote file specifier describing the file or directory about which the information is requested.
Passwords in the specifier are not included.

The system remembers a maximum of 160 characters for anyone specifier. If a specifier contains
more than 160 characters, the excess characters are removed from the beginning of the specifier
and are not retained. An asterisk (*) as the leftmost character in the specifier indicates that leading
characters were truncated for the function .

517

518

TRANSFER

With SRM, this statement initiates unformatted data transfers between the workstation and
remote mass storage devices. Either the source or destination of the transfer is specified as an
I/O path name assigned to a remote BOAT file (see ASSIGN). Refer to the TRANSFER
keyword entry in the body of this manual for a full explanation of TRANSFER syntax.

Example Statements
TRANSFER @5uffer TO @File;CONT
TRANSFER @Dir_Path TO @Destination;COUNT 256
TRANSFER @Source TO @5uffer;DELIM "I "
TRANSFER @Path TO @5uffer;RECORDS 12,EORICOUNT 8)

Semantics
TRANSFER behaves the same on SRM as with local mass storage, except that inbound and
outbound transfer execution is not overlapped. Whereas the discs on the SRM may be cabable of
overlapped operation, the SRM system performs TRANSFERs serially. This difference only matters
in applications, such as data logging, where you may want a program to be able to execute other
statements before the transfer has completed. For further details, refer to the "Transfer Perform­
ance" section in the "Advanced Transfer Techniques" chapter of the BASIC Interfacing Techni­
ques manual.

518

TRANSFER

With SRM, this statement initiates unformatted data transfers between the workstation and
remote mass storage devices. Either the source or destination of the transfer is specified as an
I/O path name assigned to a remote BOAT file (see ASSIGN). Refer to the TRANSFER
keyword entry in the body of this manual for a full explanation of TRANSFER syntax.

Example Statements
TRANSFER @5uffer TO @File;CONT
TRANSFER @Dir_Path TO @Destination;COUNT 256
TRANSFER @Source TO @5uffer;DELIM "I "
TRANSFER @Path TO @5uffer;RECORDS 12,EORICOUNT 8)

Semantics
TRANSFER behaves the same on SRM as with local mass storage, except that inbound and
outbound transfer execution is not overlapped. Whereas the discs on the SRM may be cabable of
overlapped operation, the SRM system performs TRANSFERs serially. This difference only matters
in applications, such as data logging, where you may want a program to be able to execute other
statements before the transfer has completed. For further details, refer to the "Transfer Perform­
ance" section in the "Advanced Transfer Techniques" chapter of the BASIC Interfacing Techni­
ques manual.

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

UNLOCK

SRM,DCOMM
Yes
Yes
Yes

This statement is used to remove exclusive access (placed by the LOCK statement) to a remote file
identified by an I/O path name (see ASSIGN).

Item Description/Default

VO path name name identifying an 110 path to a remote file

Example Statements
UNLOCK @File
IF Done THEN UNLOCK @File

Semantics

Range Restrictions

any valid name (See
Glossary.)

This statement unlocks a file previously locked with the LOCK statement. While a file is locked,
other SRM workstations cannot access the file . After UNLOCK, other users may access the file
provided they possess the proper access capability (or capabilities).

If multiple LOCKs were executed on the file, the same number of UNLOCKs must be executed to
unlock the file.

UNLOCK is performed automatically by SCRATCH A, (RESET) and ASSIGN ... TO * (explicit closing
of an I/O path) .

519

Option Required
Keyboard Executable
Programmable
In an IF. .. THEN ...

UNLOCK

SRM,DCOMM
Yes
Yes
Yes

This statement is used to remove exclusive access (placed by the LOCK statement) to a remote file
identified by an I/O path name (see ASSIGN).

Item Description/Default

VO path name name identifying an 110 path to a remote file

Example Statements
UNLOCK @File
IF Done THEN UNLOCK @File

Semantics

Range Restrictions

any valid name (See
Glossary.)

This statement unlocks a file previously locked with the LOCK statement. While a file is locked,
other SRM workstations cannot access the file . After UNLOCK, other users may access the file
provided they possess the proper access capability (or capabilities).

If multiple LOCKs were executed on the file, the same number of UNLOCKs must be executed to
unlock the file.

UNLOCK is performed automatically by SCRATCH A, (RESET) and ASSIGN ... TO * (explicit closing
of an I/O path) .

519

520

SRM BASIC Error Codes
for HP Series 200/300 Computers

450 Volume not found

451 Volume labels do not match

453 File is use

454 Directory formats do not match

455 Possibly corrupt file

456 Unsupported directory operation

457 Passwords not supported

458 Unsupported directory format

459 Specified file is not a directory

460 Directory not empty

461 Duplicate passwords not allowed

462 Invalid password

465 Invalid rename across volumes

466 Duplicate volume entries

481 File locked or open exclusively

482 Cannot move a directory via a RENAME

483 System down

484 Password not found

485 Invalid volume copy

520

SRM BASIC Error Codes
for HP Series 200/300 Computers

450 Volume not found

451 Volume labels do not match

453 File is use

454 Directory formats do not match

455 Possibly corrupt file

456 Unsupported directory operation

457 Passwords not supported

458 Unsupported directory format

459 Specified file is not a directory

460 Directory not empty

461 Duplicate passwords not allowed

462 Invalid password

465 Invalid rename across volumes

466 Duplicate volume entries

481 File locked or open exclusively

482 Cannot move a directory via a RENAME

483 System down

484 Password not found

485 Invalid volume copy

Glossary

angle mode The current units used for expressing angles. Either degrees or radians may be
specified, using the DEG or RAD statements, respectively. The default at power-on and
SCRATCH A is radians.

A subprogram "inherits" the angle mode of the calling context. If the angle mode is
changed in a subprogram, the mode of the calling context is restored when execution
returns to the calling context.

array A structured data type that can be of type REAL, INTEGER, or string. Arrays are
created with the DIM, REAL, INTEGER, ALLOCATE, or COM statements. Arrays have 1 to
6 dimensions; each dimension is allowed 32767 elements. The lower and upper bounds for
each dimension must fall in the range - 32 767 (- 32768 for ALLOCATE) thru + 32 767,
and the lower bound must not exceed the upper bound. The default lower bound is the
OPTION BASE value; the OPTION BASE statement can be used to specify 0 or 1 as the
default lower bound. The default OPTION BASE in every environment is zero.

Each element in a string array is a string whose maximum length is specified in the declaring
statement. The declared length of a string must be in the range 1 thru 32 767.

To specify an entire array, the characters (*) are placed after the array name. To specify a
single element of an array , subscripts are placed in parentheses after the array name. Each
subscript must not be less than the current lower bound or greater than the current upper
bound of the corresponding dimension.

If an array is not explicitly dimensioned, it is implicitly given the number of dimensions used
in its first occurrence, with an upper bound of 10. Undeclared strings have a default length
of 18.

ASCII This is the acronym for "American Standard Code for Information Interchange" . It is a
commonly used code for representing letters, numerals, punctuation, special characters,
and control characters. A table of the characters in the ASCII set and their code values can
be found in the back of this manual.

521

Glossary

angle mode The current units used for expressing angles. Either degrees or radians may be
specified, using the DEG or RAD statements, respectively. The default at power-on and
SCRATCH A is radians.

A subprogram "inherits" the angle mode of the calling context. If the angle mode is
changed in a subprogram, the mode of the calling context is restored when execution
returns to the calling context.

array A structured data type that can be of type REAL, INTEGER, or string. Arrays are
created with the DIM, REAL, INTEGER, ALLOCATE, or COM statements. Arrays have 1 to
6 dimensions; each dimension is allowed 32767 elements. The lower and upper bounds for
each dimension must fall in the range - 32 767 (- 32768 for ALLOCATE) thru + 32 767,
and the lower bound must not exceed the upper bound. The default lower bound is the
OPTION BASE value; the OPTION BASE statement can be used to specify 0 or 1 as the
default lower bound. The default OPTION BASE in every environment is zero.

Each element in a string array is a string whose maximum length is specified in the declaring
statement. The declared length of a string must be in the range 1 thru 32 767.

To specify an entire array, the characters (*) are placed after the array name. To specify a
single element of an array , subscripts are placed in parentheses after the array name. Each
subscript must not be less than the current lower bound or greater than the current upper
bound of the corresponding dimension.

If an array is not explicitly dimensioned, it is implicitly given the number of dimensions used
in its first occurrence, with an upper bound of 10. Undeclared strings have a default length
of 18.

ASCII This is the acronym for "American Standard Code for Information Interchange" . It is a
commonly used code for representing letters, numerals, punctuation, special characters,
and control characters. A table of the characters in the ASCII set and their code values can
be found in the back of this manual.

521

522 Glossary

bit This term comes from the words " binary digit" . A bit is a single digit in base 2 that must be
either a 1 or a O.

byte A group of eight bits processed as a unit.

command A statement that can be typed on the input line and executed (see "statement").

context An instance of an environment. A context consists of a specific instance of all data
types and system parameters that may be accessed by a program at a specific point in its
execution. Context changes occur when subprograms are invoked or exited.

device selector A numeric expression used to specify the source or destination of an I/O
operation. A device selector can be either an interface select code or a combination of an
interface select code and a primary address. To construct a device selector with a primary
address, multiply the interface select code by 100 and add the primary address.

Secondary addresses may be appended after a primary address by multiplying the device
selector by 100 and adding the address. This may be repeated up to 6 times, adding a new
secondary address each time. A device selector, once rounded, may contain a maximum of
15 digits.

When a device selector contains an odd number of digits, the leftmost digit is the interface
select code. For an even number of digits, the leftmost two digits are the interface select
code. For example, 70502 selects interface 7, primary address 05, and secondary address
02. Device selector 1516 selects interface 15 and primary address 16.

directory name A directory name (Shared Resource Management) is the same as a remote
file name because a directory is a type of remote file . Directory names consist of from one to
16 characters, including uppercase and lowercase letters, the digits 0 through 9 , the under­
bar (_) character, the period (.) character, and ASCII characters decimal 161 through 254.

522 Glossary

bit This term comes from the words " binary digit" . A bit is a single digit in base 2 that must be
either a 1 or a O.

byte A group of eight bits processed as a unit.

command A statement that can be typed on the input line and executed (see "statement").

context An instance of an environment. A context consists of a specific instance of all data
types and system parameters that may be accessed by a program at a specific point in its
execution. Context changes occur when subprograms are invoked or exited.

device selector A numeric expression used to specify the source or destination of an I/O
operation. A device selector can be either an interface select code or a combination of an
interface select code and a primary address. To construct a device selector with a primary
address, multiply the interface select code by 100 and add the primary address.

Secondary addresses may be appended after a primary address by multiplying the device
selector by 100 and adding the address. This may be repeated up to 6 times, adding a new
secondary address each time. A device selector, once rounded, may contain a maximum of
15 digits.

When a device selector contains an odd number of digits, the leftmost digit is the interface
select code. For an even number of digits, the leftmost two digits are the interface select
code. For example, 70502 selects interface 7, primary address 05, and secondary address
02. Device selector 1516 selects interface 15 and primary address 16.

directory name A directory name (Shared Resource Management) is the same as a remote
file name because a directory is a type of remote file . Directory names consist of from one to
16 characters, including uppercase and lowercase letters, the digits 0 through 9 , the under­
bar (_) character, the period (.) character, and ASCII characters decimal 161 through 254.

Glossary 523

dyadic operator An operator that performs its operation with two expressions. It is placed
between the two expressions. The following dyadic operators are available:

Operator

+

*
/

~:

DIlj
MOD

MODULO
=
< >
<
:>

<=
>=

AND
OR

D(oR

Operation

REAL or INTEGER addition
REAL or INTEGER subtraction
REAL or INTEGER multiplication
REAL division
Exponentiation
String concatenation
Gives the integer quotient of a division
Gives the remainder of a division
Gives the modulo of a division

Comparison for equality
Comparison for inequality
Comparison for less than
Comparison for greater than
Comparison for less than or equal to
Comparison for greater than or equal to

Logical AND (Boolean »
Logical inclusive OR (Boolean <)
Logical exclusive OR (Boolean <)

file name A file name consists of one to ten characters. Series 200/300 file names can contain
uppercase letters, lowercase letters, numerals, the underbar (_), and CHR$(161) thru
CHR$(254). LIF-compatible file names can contain only uppercase letters and numerals.
The first character in a LIF-compatible file name must be a letter. (See "remote file name"
for SRM.)

function A procedural call that returns a value. The call can be to a user-defined-function
subprogram (such as FNInvert) or a machine-resident function (such as COS or EXP). The
value returned by the function is used in place of the function call when evaluating the
expression containing the function call.

graphic display unit This is 111 00 of the shortest axis on the plotting device. Graphic display
units are the same size on both the X and Y axes. Abbreviated " GDU" .

hard clip limits These are the physical limits of the plotting device.

Glossary 523

dyadic operator An operator that performs its operation with two expressions. It is placed
between the two expressions. The following dyadic operators are available:

Operator

+

*
/

~:

DIlj
MOD

MODULO
=
< >
<
:>

<=
>=

AND
OR

D(oR

Operation

REAL or INTEGER addition
REAL or INTEGER subtraction
REAL or INTEGER multiplication
REAL division
Exponentiation
String concatenation
Gives the integer quotient of a division
Gives the remainder of a division
Gives the modulo of a division

Comparison for equality
Comparison for inequality
Comparison for less than
Comparison for greater than
Comparison for less than or equal to
Comparison for greater than or equal to

Logical AND (Boolean »
Logical inclusive OR (Boolean <)
Logical exclusive OR (Boolean <)

file name A file name consists of one to ten characters. Series 200/300 file names can contain
uppercase letters, lowercase letters, numerals, the underbar (_), and CHR$(161) thru
CHR$(254). LIF-compatible file names can contain only uppercase letters and numerals.
The first character in a LIF-compatible file name must be a letter. (See "remote file name"
for SRM.)

function A procedural call that returns a value. The call can be to a user-defined-function
subprogram (such as FNInvert) or a machine-resident function (such as COS or EXP). The
value returned by the function is used in place of the function call when evaluating the
expression containing the function call.

graphic display unit This is 111 00 of the shortest axis on the plotting device. Graphic display
units are the same size on both the X and Y axes. Abbreviated " GDU" .

hard clip limits These are the physical limits of the plotting device.

524 Glossary

hierarchy When a numeric or string expression contains more than one operation, the order
of operations is determined by a precedence system. Operations with the highest prece­
dence are performed first. Multiple operations with the same precedence are performed left
to right. The following tables show the hierarchy for numeric and string operations.

Math Hierarchy

Precedence Operator

Highest Parentheses: (may be used to force any order of operations)

Functions: user-defined and machine-resident

Exponentiation: ...

Multiplication and division : * I r'10 D D I I) r'1ODUL O

Addition , subtraction , monadic plus and minus: +

Relational operators: = <: :> <: :> <: = :> =

NOT

AND

Lowest OR D(oR

String Hierarchy

Precedence Operator

Highest Parentheses

Functions (user-defined and machine-resident) and substring operations

Lowest Concatenation: ~:

liD path A combination of firmware and hardware that can be used during the transfer of
data to and from a BASIC program. Associated with an I/O path is a unique data type that
describes the I/O path. This association table uses about 200 bytes and is referenced when
an I/O path name is used. For further details, see the ASSIGN statement.

INTEGER A numeric data type stored internally in two bytes. Two's-complement representa­
tion is used, giving a range of - 32 768 thru + 32 767. If a numeric variable is not explicitly
declared as an INTEGER, it is a REAL.

integer A number with no fractional part; a whole number.

524 Glossary

hierarchy When a numeric or string expression contains more than one operation, the order
of operations is determined by a precedence system. Operations with the highest prece­
dence are performed first. Multiple operations with the same precedence are performed left
to right. The following tables show the hierarchy for numeric and string operations.

Math Hierarchy

Precedence Operator

Highest Parentheses: (may be used to force any order of operations)

Functions: user-defined and machine-resident

Exponentiation: ...

Multiplication and division : * I r'10 D D I I) r'1ODUL O

Addition , subtraction , monadic plus and minus: +

Relational operators: = <: :> <: :> <: = :> =

NOT

AND

Lowest OR D(oR

String Hierarchy

Precedence Operator

Highest Parentheses

Functions (user-defined and machine-resident) and substring operations

Lowest Concatenation: ~:

liD path A combination of firmware and hardware that can be used during the transfer of
data to and from a BASIC program. Associated with an I/O path is a unique data type that
describes the I/O path. This association table uses about 200 bytes and is referenced when
an I/O path name is used. For further details, see the ASSIGN statement.

INTEGER A numeric data type stored internally in two bytes. Two's-complement representa­
tion is used, giving a range of - 32 768 thru + 32 767. If a numeric variable is not explicitly
declared as an INTEGER, it is a REAL.

integer A number with no fractional part; a whole number.

Glossary 525

interface select code A numeric expression that selects an interface for an I/O operation.
Interface select codes 1 thru 7 are reserved for internal interfaces. Interface select codes 8
thru 31 are used for external interfaces. The internal HP-IB interface with select code 7 can
be specified in statements that are restricted to external devices. (Also see "device
selector" .)

keyword A group of uppercase ASCII letters that has a predefined meaning to the computer.
Keywords may be typed using all lowercase or all uppercase letters.

LIF This is the acronym for "Logical Interchange Format". This HP standard defines the
format of mass storage files and directories. It allows the interchange of data between
different machines. Series 200/300 files of type ASCII are LIF compatable. See "file name"
for file name restrictions.

literal This is a string constant. When quote marks are used to delimit a literal, those quote
marks are not part of the literal. To include a quote mark in a literal, type two consecutive
quote marks (except in response to a LINPUT statement) . The drawings showing literal
forms of specifiers (such as file specifiers) show the quote marks required to delimit the
literal.

logical pen See "pen".

monadic operator An operator that performs its operation with one expression. It is placed in
front of the expression. The following monadic operators are available:

Operator

+
NOT

Operation

Reverses the sign of an expression
Identity operator
Logical complement (Boolean over-bar)

msus This is the acronym for " mass storage unit specifier". It is a string expression that
specifies a device to be used for mass storage operations.

name A name consists of one to fifteen characters. The first character must be an uppercase
ASCII letter or one of the characters from CHR$ (161) thru CHR$ (254) . The remaining
characters, if any, can be lowercase ASCII letters, numerals, the underbar (_), or
CHR$(161) thru CHR$(254). Names may be typed using any combination of uppercase
and lowercase letters, unless the name uses the same letters as a keyword. Conflicts with
keywords are resolved by mixing the letter case in the name. (Also see "file name" .)

node address An integer from 0 through 63 that identifies an SRM device (such as a worksta­
tion or controller).

Glossary 525

interface select code A numeric expression that selects an interface for an I/O operation.
Interface select codes 1 thru 7 are reserved for internal interfaces. Interface select codes 8
thru 31 are used for external interfaces. The internal HP-IB interface with select code 7 can
be specified in statements that are restricted to external devices. (Also see "device
selector" .)

keyword A group of uppercase ASCII letters that has a predefined meaning to the computer.
Keywords may be typed using all lowercase or all uppercase letters.

LIF This is the acronym for "Logical Interchange Format". This HP standard defines the
format of mass storage files and directories. It allows the interchange of data between
different machines. Series 200/300 files of type ASCII are LIF compatable. See "file name"
for file name restrictions.

literal This is a string constant. When quote marks are used to delimit a literal, those quote
marks are not part of the literal. To include a quote mark in a literal, type two consecutive
quote marks (except in response to a LINPUT statement) . The drawings showing literal
forms of specifiers (such as file specifiers) show the quote marks required to delimit the
literal.

logical pen See "pen".

monadic operator An operator that performs its operation with one expression. It is placed in
front of the expression. The following monadic operators are available:

Operator

+
NOT

Operation

Reverses the sign of an expression
Identity operator
Logical complement (Boolean over-bar)

msus This is the acronym for " mass storage unit specifier". It is a string expression that
specifies a device to be used for mass storage operations.

name A name consists of one to fifteen characters. The first character must be an uppercase
ASCII letter or one of the characters from CHR$ (161) thru CHR$ (254) . The remaining
characters, if any, can be lowercase ASCII letters, numerals, the underbar (_), or
CHR$(161) thru CHR$(254). Names may be typed using any combination of uppercase
and lowercase letters, unless the name uses the same letters as a keyword. Conflicts with
keywords are resolved by mixing the letter case in the name. (Also see "file name" .)

node address An integer from 0 through 63 that identifies an SRM device (such as a worksta­
tion or controller).

526 Glossary

numeric expression

numeric
expression

numeric
name

numeric
expression

numeric function ~ __ r-__ -r ________ -'~
keyword

1---.1....--+1 par a me t e r ~--JL-~

fun~~~~~i~ameJ---r---------------------~--------------------~----~"1

string
expression

}-__ L.. __ ~ par a me t e r t--''-~

co mparison
operator

nu meric
expression

string
expressio n

526 Glossary

numeric expression

numeric
expression

numeric
name

numeric
expression

numeric function ~ __ r-__ -r ________ -'~
keyword

1---.1....--+1 par a me t e r ~--JL-~

fun~~~~~i~ameJ---r---------------------~--------------------~----~"1

string
expression

}-__ L.. __ ~ par a me t e r t--''-~

co mparison
operator

nu meric
expression

string
expressio n

Item

monadic operator

dyadic operator

numeric constant

numeric name

subscript

numeric function keyword

numeric function name

parameter

comparison operator

Glossary 527

Description

An operator that performs its operation on the expression im­
mediately to its right: + - NOT

An operator that performs its operation on the two expressions it is
between: * / r"1 [I D D I~) + - = <: '> <. = '> =
AND OR EXOR MODU LO

A numeric quantity whose value is expressed using numerals,
decimal point, and exponent notation

The name of a numeric variable or the name of a numeric array
from which an element is extracted using subscripts

A numeric expression used to select an element of an array (see
" array")

A keyword that invokes a machine-resident function that returns
a numeric value

The name of a user-defined function that returns a numeric value

A numeric expression, string expression, or I/O path name that is
passed to a function

An operator which returns a 1 (true) or a 0 (false) based on the
the result of a relational test of the operands it separates:
> <= = = <>

password Passwords are used to protect access to remote (SRM) files and directories. Pass­
words consist of one to 16 characters. All ASCII characters except ">" are allowed. Pass­
words are assigned by the PROTECT statement in BASIC or the Pascal Filer's Access
command.

pen All graphical objects are "drawn" using mathematical representations in the computer's
memory. This is done with the "logical pen". The logical pen creates five classes of objects:
lines, polygons, labels, axes, and label locations (label locations are actually the position of
an object, rather than an object).

Before these objects can be viewed, they are acted upon by various transformation mat­
rixes, such as scaling and pivoting. No single transformation affects all the objects, and no
object is effected by all the transformations.

The output of the transformations is used to control the "physical pen". The physical pen
creates the image that you actually see on the plotter or CRT. Since the graphics statements
used to create objects act directly upon the logical pen, and you can see only the output of
the physical pen, the location of the logical pen may not always be readily discern able from
what you see.

Item

monadic operator

dyadic operator

numeric constant

numeric name

subscript

numeric function keyword

numeric function name

parameter

comparison operator

Glossary 527

Description

An operator that performs its operation on the expression im­
mediately to its right: + - NOT

An operator that performs its operation on the two expressions it is
between: * / r"1 [I D D I~) + - = <: '> <. = '> =
AND OR EXOR MODU LO

A numeric quantity whose value is expressed using numerals,
decimal point, and exponent notation

The name of a numeric variable or the name of a numeric array
from which an element is extracted using subscripts

A numeric expression used to select an element of an array (see
" array")

A keyword that invokes a machine-resident function that returns
a numeric value

The name of a user-defined function that returns a numeric value

A numeric expression, string expression, or I/O path name that is
passed to a function

An operator which returns a 1 (true) or a 0 (false) based on the
the result of a relational test of the operands it separates:
> <= = = <>

password Passwords are used to protect access to remote (SRM) files and directories. Pass­
words consist of one to 16 characters. All ASCII characters except ">" are allowed. Pass­
words are assigned by the PROTECT statement in BASIC or the Pascal Filer's Access
command.

pen All graphical objects are "drawn" using mathematical representations in the computer's
memory. This is done with the "logical pen". The logical pen creates five classes of objects:
lines, polygons, labels, axes, and label locations (label locations are actually the position of
an object, rather than an object).

Before these objects can be viewed, they are acted upon by various transformation mat­
rixes, such as scaling and pivoting. No single transformation affects all the objects, and no
object is effected by all the transformations.

The output of the transformations is used to control the "physical pen". The physical pen
creates the image that you actually see on the plotter or CRT. Since the graphics statements
used to create objects act directly upon the logical pen, and you can see only the output of
the physical pen, the location of the logical pen may not always be readily discern able from
what you see.

528 Glossary

The following table shows which transformations act upon which objects.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectang les X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point fo r label s drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The start ing point fo r labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by PDI R.

X

LDIR PDIR

Note 4

X
X

Note 2

primary address A numeric expession in the range of 0 thru 31 that specifies an individual
device on an interface which is capable of servicing more than one device. The HP-IB
interface can service multiple devices. (Also see "device selector" .)

program line A statement that is preceded by a line number (and an optional line label) and
stored with the (ENTER) key into a program (see "statement").

protect code This is a non-listable, two-character code kept with a file description in the
directory of a mass storage media. It guards against accidental changes to an individual file.
When protect codes are specified, they may contain any number of characters. Blanks are
trimmed from protect codes. When the result contains more than two characters, the first
two are used as the actual protect code. A protect code that is the null string (or all blanks) is
interpreted as no protect code. The character :> is not allowed in a protect code.

REAL A numeric data type that is stored internally in eight bytes using sign-and-magnitude
binary representation. One bit is used for the number's sign , 11 bits for a biased exponent
(bias = 1023) , and 52 bits for a mantissa . On all values except 0, there is an implied " 1. "
preceding the mantissa (this can be thought of as the 53rd bit) . The range of REAL numbers
is approximately:

- 1. 797 693 134 862 32 E + 308 thru - 2 .225 073 858 507 2 E - 308 , 0 , and
+ 2 .225073858507 2 E - 308 thru + 1. 797693 13486232 E + 308.

If a numeric variable is not explicitly declared as an INTEGER, it is a REAL.

record The records referred to in this manual are defined records. Defined records are the
smallest unit of storage directly accessible on the mass storage media. The length of a record
is determined when a BOAT file is created by a CREATE BOAT statement. All records in a
file are the same size.

There is another type of record called a "physical record" which is the unit of storage
handled by the mass storage device and the operating system. PhYSical records contain 256
bytes and are not accessible to the user via standard BASIC statements.

recursive See' 'recursive" .

528 Glossary

The following table shows which transformations act upon which objects.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X
Polygons and rectang les X X
Characters (generated by LABEL)
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3

Note 1: The starting point fo r label s drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The start ing point fo r labels drawn after lines or axes is affected by PIVOT.
Note 4 RPLOT and IPLOT are affected by PDI R.

X

LDIR PDIR

Note 4

X
X

Note 2

primary address A numeric expession in the range of 0 thru 31 that specifies an individual
device on an interface which is capable of servicing more than one device. The HP-IB
interface can service multiple devices. (Also see "device selector" .)

program line A statement that is preceded by a line number (and an optional line label) and
stored with the (ENTER) key into a program (see "statement").

protect code This is a non-listable, two-character code kept with a file description in the
directory of a mass storage media. It guards against accidental changes to an individual file.
When protect codes are specified, they may contain any number of characters. Blanks are
trimmed from protect codes. When the result contains more than two characters, the first
two are used as the actual protect code. A protect code that is the null string (or all blanks) is
interpreted as no protect code. The character :> is not allowed in a protect code.

REAL A numeric data type that is stored internally in eight bytes using sign-and-magnitude
binary representation. One bit is used for the number's sign , 11 bits for a biased exponent
(bias = 1023) , and 52 bits for a mantissa . On all values except 0, there is an implied " 1. "
preceding the mantissa (this can be thought of as the 53rd bit) . The range of REAL numbers
is approximately:

- 1. 797 693 134 862 32 E + 308 thru - 2 .225 073 858 507 2 E - 308 , 0 , and
+ 2 .225073858507 2 E - 308 thru + 1. 797693 13486232 E + 308.

If a numeric variable is not explicitly declared as an INTEGER, it is a REAL.

record The records referred to in this manual are defined records. Defined records are the
smallest unit of storage directly accessible on the mass storage media. The length of a record
is determined when a BOAT file is created by a CREATE BOAT statement. All records in a
file are the same size.

There is another type of record called a "physical record" which is the unit of storage
handled by the mass storage device and the operating system. PhYSical records contain 256
bytes and are not accessible to the user via standard BASIC statements.

recursive See' 'recursive" .

Glossary 529

remote file name A remote (SRM) file name consists of one to 16 characters. HP Series
200/300 remote file names can contain uppercase and lowercase letters, the digits 0
through 9, the underbar (_) character, the period (.) character, and ASCII characters
decimal 161 through 254.

secondary address A device-dependent command sent on HP-IB. It can be interpreted as a
secondary address for the extended talker/listener functions or as part of a command
sequence. (Also see "device selector" .)

selector A numeric quantity used to identify or choose something from a number of possibili­
ties. A selector is ususlly a numeric expression. For example: device selector is used to
identify a device involved in a I/O operation, and pen selector is used to select a pen on a
plotter.

soft clip limits These are plotter clipping limits that are defined by the programmer. Lines
drawn on a plotting device are drawn only inside the clipping limits.

specifier A string used to identify a method for handling an I/O operation. A specifier is
usually a string expression. For example: mass storage unit specifier selects the proper
drivers for a mass storage unit, and plotter specifier chooses the protocol of a plotting
device.

SRM The acronym for Shared Resource Management.

SRM controller The HP Series 200/300 computer that controls access to the shared re­
sources of the Shared Resource Management system.

SRM controller's node address An integer in the range 0 through 63 that identifies the SRM
controller.

SRM interface The term used to describe the HP 98629A Resource Management Interface
resident in an SRM workstation computer (not the interface in the SRM controller).

statement A keyword combined with any additional items that are allowed or required with
that keyword. If a statement is placed after a line number and stored, it becomes a program
line. If a statement is typed without a line number and executed, it is called a command.

Glossary 529

remote file name A remote (SRM) file name consists of one to 16 characters. HP Series
200/300 remote file names can contain uppercase and lowercase letters, the digits 0
through 9, the underbar (_) character, the period (.) character, and ASCII characters
decimal 161 through 254.

secondary address A device-dependent command sent on HP-IB. It can be interpreted as a
secondary address for the extended talker/listener functions or as part of a command
sequence. (Also see "device selector" .)

selector A numeric quantity used to identify or choose something from a number of possibili­
ties. A selector is ususlly a numeric expression. For example: device selector is used to
identify a device involved in a I/O operation, and pen selector is used to select a pen on a
plotter.

soft clip limits These are plotter clipping limits that are defined by the programmer. Lines
drawn on a plotting device are drawn only inside the clipping limits.

specifier A string used to identify a method for handling an I/O operation. A specifier is
usually a string expression. For example: mass storage unit specifier selects the proper
drivers for a mass storage unit, and plotter specifier chooses the protocol of a plotting
device.

SRM The acronym for Shared Resource Management.

SRM controller The HP Series 200/300 computer that controls access to the shared re­
sources of the Shared Resource Management system.

SRM controller's node address An integer in the range 0 through 63 that identifies the SRM
controller.

SRM interface The term used to describe the HP 98629A Resource Management Interface
resident in an SRM workstation computer (not the interface in the SRM controller).

statement A keyword combined with any additional items that are allowed or required with
that keyword. If a statement is placed after a line number and stored, it becomes a program
line. If a statement is typed without a line number and executed, it is called a command.

530 Glossary

string A data type comprised of a contiguous series of characters. Strings require one byte of
memory for each character of declared length, plus a two-byte length header. Characters
are stored using an extended ASCII character set. The first character in a string is in position
1. The maximum length of a string is 32 767 characters. The current length of a string can
never exceed the dimensioned length.

If a string is not explicitly dimensioned, it is implicitly dimensioned to 18 characters. Each
element in an implicitly dimensioned string array is dimensioned to 18 characters.

When a string is empty, it has a current length of zero and is called a "null string" . All strings
are null strings when they are declared. A null string can be represented as an empty literal
(for example: A$ = 1\ 1\) or as one of three special cases of substring. The substrings that
represent the null string are:

1. Beginning position one greater than current length

2. Ending position one less than beginning position

3. Maximum substring length of zero

string expression

s tring
express i o n

str ing
ex pressi on

str ing f u nct io n I-...------__ ----------r--------------+-I
key word

I--...L.....o~ pa rame ter I--...I....-j~

s tr i n gnaf~enct i o n $ 1---.-------_--------.----------+1

s tr ing
ex pr ess i on

530 Glossary

string A data type comprised of a contiguous series of characters. Strings require one byte of
memory for each character of declared length, plus a two-byte length header. Characters
are stored using an extended ASCII character set. The first character in a string is in position
1. The maximum length of a string is 32 767 characters. The current length of a string can
never exceed the dimensioned length.

If a string is not explicitly dimensioned, it is implicitly dimensioned to 18 characters. Each
element in an implicitly dimensioned string array is dimensioned to 18 characters.

When a string is empty, it has a current length of zero and is called a "null string" . All strings
are null strings when they are declared. A null string can be represented as an empty literal
(for example: A$ = 1\ 1\) or as one of three special cases of substring. The substrings that
represent the null string are:

1. Beginning position one greater than current length

2. Ending position one less than beginning position

3. Maximum substring length of zero

string expression

s tring
express i o n

str ing
ex pressi on

str ing f u nct io n I-...------__ ----------r--------------+-I
key word

I--...L.....o~ pa rame ter I--...I....-j~

s tr i n gnaf~enct i o n $ 1---.-------_--------.----------+1

s tr ing
ex pr ess i on

(
Item

literal

string name

subscript

beginning position

ending position

substring length

string function keyword

string function name

parameter

Glossary 531

Description

A string constant composed of any characters available on the
keyboard, including those generated with the ANY CHAR key.

The name of a string variable or the name of a string array from
which a string is extracted using subscripts

A numeric expression used to select an element of an array (see
"array")

A numeric expression specifying the position of the first character in
a substring (see "substring")

A numeric expression specifying the position of the last character in a
substring (see "substring")

A numeric expression specifying the maximum number of characters
to be included in a substring (see "substring")

A keyword that invokes a machine-resident function which returns a
string value. String function keywords always end with a dollar sign.

The name of a user-defined function that returns a string value

A numeric expression, string expression , or I/O path name that is
passed to a function

subprogram Can be a CSUB, a SUB subprogram or a user-defined-function subprogram
(DEF FN). The first line in a SUB subprogram is a SUB statement. The last line in a SUB
subprogram (except for comments) is a SUBEND statement. The first line in a function
subprogram is a DEF FN statement. The last line in a function (except for comments) is an
FNEND statement. Subprograms must follow the END statement of the main program.

SUB and CSUB subprograms are invoked by CALL. Function subprograms are invoked by
an FN function occurring in an expression. A function subprogram returns a value that
replaces the occurrence of the FN function when the expression is evaluated. Subprograms
may alter the values of parameters passed by reference or variables in COM. It is recom­
mended that you do not let function subprograms alter values in that way.

Invoking a subprogram establishes a new context. The new context remains in existence
until the subprogram is properly exited or program execution is stopped. Subprograms can
be recursive.

subroutine A program segment accessed by a GOSUB statement and ended with a RETURN
statement.

(
Item

literal

string name

subscript

beginning position

ending position

substring length

string function keyword

string function name

parameter

Glossary 531

Description

A string constant composed of any characters available on the
keyboard, including those generated with the ANY CHAR key.

The name of a string variable or the name of a string array from
which a string is extracted using subscripts

A numeric expression used to select an element of an array (see
"array")

A numeric expression specifying the position of the first character in
a substring (see "substring")

A numeric expression specifying the position of the last character in a
substring (see "substring")

A numeric expression specifying the maximum number of characters
to be included in a substring (see "substring")

A keyword that invokes a machine-resident function which returns a
string value. String function keywords always end with a dollar sign.

The name of a user-defined function that returns a string value

A numeric expression, string expression , or I/O path name that is
passed to a function

subprogram Can be a CSUB, a SUB subprogram or a user-defined-function subprogram
(DEF FN). The first line in a SUB subprogram is a SUB statement. The last line in a SUB
subprogram (except for comments) is a SUBEND statement. The first line in a function
subprogram is a DEF FN statement. The last line in a function (except for comments) is an
FNEND statement. Subprograms must follow the END statement of the main program.

SUB and CSUB subprograms are invoked by CALL. Function subprograms are invoked by
an FN function occurring in an expression. A function subprogram returns a value that
replaces the occurrence of the FN function when the expression is evaluated. Subprograms
may alter the values of parameters passed by reference or variables in COM. It is recom­
mended that you do not let function subprograms alter values in that way.

Invoking a subprogram establishes a new context. The new context remains in existence
until the subprogram is properly exited or program execution is stopped. Subprograms can
be recursive.

subroutine A program segment accessed by a GOSUB statement and ended with a RETURN
statement.

532 Glossary

substring

$r.----------~--------_,~ beg inn ing I-~--Y--+{
position

A substring is a contiguous series of characters that comprises all or part of a string. Sub­
strings may be accessed by specifying a beginning position, or a beginning position and an
ending position, or a beginning position and a maximum substring length.

The beginning position must be at least one and no greater than the current length plus one.
When only the beginning position is specified, the substring includes all characters from that
position to the current end of the string.

The ending position must be no less than the beginning position minus one and no greater
than the dimensioned length of the string. When both beginning and ending positions are
specified, the substring includes all characters from the beginning position to the ending
position or current end of the string, whichever is less.

The maximum substring length must be at least zero and no greater than one plus the
dimensioned length of the string minus the beginning position. When a beginning position
and substring length are specified, the substring starts at the beginning position and includes
the number of characters specified by the substring length. If there are not enough charac­
ters available, the substring includes only the characters from the beginning position to the
current end of the string.

volume A named portion of mass storage media, which may contain several files. Disc drives
supported by HP Series 2001300 mass storage operations contain only one volume per disc.

volume name A name used to identify a mass storage volume. The volume name is assigned
to the volume at initialization. Volume names consist of one to 16 characters including
uppercase and lowercase letters, the digits 0 through 9, the underbar (_) character, the
period (.) character, and ASCII characters decimal 161 through 254.

volume password A "master" password, assigned at initialization, that allows complete ac­
cess to all files on a mass storage volume. Volume passwords consist of one to 16 charac­
ters. All ASCII characters except ">" are allowed. The volume password supercedes all
access restrictions placed on files by the PROTECT statement in BASIC or the Pascal Filer's
Access command.

532 Glossary

substring

$r.----------~--------_,~ beg inn ing I-~--Y--+{
position

A substring is a contiguous series of characters that comprises all or part of a string. Sub­
strings may be accessed by specifying a beginning position, or a beginning position and an
ending position, or a beginning position and a maximum substring length.

The beginning position must be at least one and no greater than the current length plus one.
When only the beginning position is specified, the substring includes all characters from that
position to the current end of the string.

The ending position must be no less than the beginning position minus one and no greater
than the dimensioned length of the string. When both beginning and ending positions are
specified, the substring includes all characters from the beginning position to the ending
position or current end of the string, whichever is less.

The maximum substring length must be at least zero and no greater than one plus the
dimensioned length of the string minus the beginning position. When a beginning position
and substring length are specified, the substring starts at the beginning position and includes
the number of characters specified by the substring length. If there are not enough charac­
ters available, the substring includes only the characters from the beginning position to the
current end of the string.

volume A named portion of mass storage media, which may contain several files. Disc drives
supported by HP Series 2001300 mass storage operations contain only one volume per disc.

volume name A name used to identify a mass storage volume. The volume name is assigned
to the volume at initialization. Volume names consist of one to 16 characters including
uppercase and lowercase letters, the digits 0 through 9, the underbar (_) character, the
period (.) character, and ASCII characters decimal 161 through 254.

volume password A "master" password, assigned at initialization, that allows complete ac­
cess to all files on a mass storage volume. Volume passwords consist of one to 16 charac­
ters. All ASCII characters except ">" are allowed. The volume password supercedes all
access restrictions placed on files by the PROTECT statement in BASIC or the Pascal Filer's
Access command.

Interface Registers

I/O Path Status and Control Registers
For All 110 Path Names:

Returned
Value Meaning

Status Register 0 0 Invalid I/O path name
1
2
3

I/O path name assigned to a device
I/O path name assigned to a data file
I/O path name assigned to a buffer

I/O Path Names Assigned to a Device:

Status Register 1
Status Register 2
Status Register 3

Interface select code
Number of devices
1st device selector

If assigned to more than one device , the other device selectors are available starting in Status
Register 4.

110 Path Names Assigned to an ASCII File:

Status Register 1
Status Register 2
Status Register 3
Status Register 4
Status Register 5
Status Register 6

File type = 3
Device selector of mass storage device
Number of records
Bytes per record = 256
Current record
Current byte within record

110 Path Names Assigned to a BOAT File:

Status Register 1

Status Register 2

Status Register 3

Status Register 4

Status Register 5
Control Register 5

Status Register 6
Control Register 6

Status Register 7
Control Register 7

Status Register 8
Control Register 8

File type = 2

Device selector of mass storage device

Number of defined records

Defined record length (in bytes)

Current record
Set current record

Current byte within record
Set current byte within record

EOF record
Set EOF record

Byte within EOF record
Set byte within EOF record

533

Interface Registers

I/O Path Status and Control Registers
For All 110 Path Names:

Returned
Value Meaning

Status Register 0 0 Invalid I/O path name
1
2
3

I/O path name assigned to a device
I/O path name assigned to a data file
I/O path name assigned to a buffer

I/O Path Names Assigned to a Device:

Status Register 1
Status Register 2
Status Register 3

Interface select code
Number of devices
1st device selector

If assigned to more than one device , the other device selectors are available starting in Status
Register 4.

110 Path Names Assigned to an ASCII File:

Status Register 1
Status Register 2
Status Register 3
Status Register 4
Status Register 5
Status Register 6

File type = 3
Device selector of mass storage device
Number of records
Bytes per record = 256
Current record
Current byte within record

110 Path Names Assigned to a BOAT File:

Status Register 1

Status Register 2

Status Register 3

Status Register 4

Status Register 5
Control Register 5

Status Register 6
Control Register 6

Status Register 7
Control Register 7

Status Register 8
Control Register 8

File type = 2

Device selector of mass storage device

Number of defined records

Defined record length (in bytes)

Current record
Set current record

Current byte within record
Set current byte within record

EOF record
Set EOF record

Byte within EOF record
Set byte within EOF record

533

534 Interface Registers

110 Path Names Assigned to a Buffer:

Status Register 1 Buffer type (1 = named, 2 = unnamed)

Status Register 2

Status Register 3
Control Register 3

Status Register 4
Control Register 4

Status Register 5
Control Register 5

Status Register 6

Status Register 7

Status Register 8
Control Register 8

Status Register 9
Control Register 9

Status Register 10

Most Significant Bit

Bit 7 Bit 6

0
TRANSFER

Active

Value = 0 Value = 64

Status Register 11

Most Significant Bit

Bit 7 Bit 6

0
TRANSFER

Active

Value = 0 Value = 64

Status Register 12

Status Register 13

Buffer size in bytes

Current fill pointer
Set fill pointer

Current number of bytes in buffer
Set number of bytes

Current empty pointer
Set empty pOinter

Interface select code of inbound TRANSFER

Interface select code of outbound TRANSFER

If non-zero, inbound TRANSFER is continuous
Cancel continuous mode inbound TRANSFER if zero

If non-zero, outbound TRANSFER is continuous
Cancel continuous mode outbound TRANSFER if zero

Termination status for inbound TRANSFER

Least Signi ficant Bit

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANSFER TRANSFER Device Byte Record Match
Aborted Error Termination Count Count Character

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Termination status for outbound TRANSFER

Least Significant Bit

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANSFER TRANSFER Device Byte Record
0

Aborted Error Termination Count Count

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 0

Total number of bytes transferred by last inbound TRANSFER

Total number of bytes transferred by last outbound TRANSFER

534 Interface Registers

110 Path Names Assigned to a Buffer:

Status Register 1 Buffer type (1 = named, 2 = unnamed)

Status Register 2

Status Register 3
Control Register 3

Status Register 4
Control Register 4

Status Register 5
Control Register 5

Status Register 6

Status Register 7

Status Register 8
Control Register 8

Status Register 9
Control Register 9

Status Register 10

Most Significant Bit

Bit 7 Bit 6

0
TRANSFER

Active

Value = 0 Value = 64

Status Register 11

Most Significant Bit

Bit 7 Bit 6

0
TRANSFER

Active

Value = 0 Value = 64

Status Register 12

Status Register 13

Buffer size in bytes

Current fill pointer
Set fill pointer

Current number of bytes in buffer
Set number of bytes

Current empty pointer
Set empty pOinter

Interface select code of inbound TRANSFER

Interface select code of outbound TRANSFER

If non-zero, inbound TRANSFER is continuous
Cancel continuous mode inbound TRANSFER if zero

If non-zero, outbound TRANSFER is continuous
Cancel continuous mode outbound TRANSFER if zero

Termination status for inbound TRANSFER

Least Signi ficant Bit

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANSFER TRANSFER Device Byte Record Match
Aborted Error Termination Count Count Character

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Termination status for outbound TRANSFER

Least Significant Bit

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANSFER TRANSFER Device Byte Record
0

Aborted Error Termination Count Count

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 0

Total number of bytes transferred by last inbound TRANSFER

Total number of bytes transferred by last outbound TRANSFER

Status Register 0
Control Register 0

Status Register 1
Control Register 1

Status Register 2
Control Register 2

Status Register 3
Control Register 3

Status Register 4
Control Register 4

Status Register 5

Control Register 5

Status Register 6
Control Register 6

Status Register 7
Control Register 7

CRT Status and Control Registers
Current print position (column)
Set print position (column)

Current print position (line)
Set print position (line)

Insert-character mode
Set insert character mode if non-O

Number of lines "above screen"
Undefined

Display functions mode
Set display functions mode if non-O

Interface Registers 535

Returns the CRT alpha color value set (or default). This does not
reflect changes due to printing CHR$(X), where 136::sx::s143.

Set default alpha color:
For Alpha Displays:

Value Result

< 128 Error
128-135 Ignored

136 White
137 Red
138 Yellow
139 Green
140 Cyan
141 Blue
142 Magenta
143 Black

144-159 Ignored
> 159 Error

For Bit-Mapped Displays:
Values 0 thru 255 which correspond to the graphics pens.

For multi-plane bit-mapped displays, the graphics pen to be used for
alpha.

CONTROL CRT t5 in sets the values of the CRT registers 15, 16, and 17,
but the converse is not true. That is, STATUS CRT t5 may not accurately
reflect the CRT state if CONTROL 15, 16, and/or 17 have been executed.

ALPHA ON flag
Undefined

GRAPHICS ON flag
Undefined

Status Register 0
Control Register 0

Status Register 1
Control Register 1

Status Register 2
Control Register 2

Status Register 3
Control Register 3

Status Register 4
Control Register 4

Status Register 5

Control Register 5

Status Register 6
Control Register 6

Status Register 7
Control Register 7

CRT Status and Control Registers
Current print position (column)
Set print position (column)

Current print position (line)
Set print position (line)

Insert-character mode
Set insert character mode if non-O

Number of lines "above screen"
Undefined

Display functions mode
Set display functions mode if non-O

Interface Registers 535

Returns the CRT alpha color value set (or default). This does not
reflect changes due to printing CHR$(X), where 136::sx::s143.

Set default alpha color:
For Alpha Displays:

Value Result

< 128 Error
128-135 Ignored

136 White
137 Red
138 Yellow
139 Green
140 Cyan
141 Blue
142 Magenta
143 Black

144-159 Ignored
> 159 Error

For Bit-Mapped Displays:
Values 0 thru 255 which correspond to the graphics pens.

For multi-plane bit-mapped displays, the graphics pen to be used for
alpha.

CONTROL CRT t5 in sets the values of the CRT registers 15, 16, and 17,
but the converse is not true. That is, STATUS CRT t5 may not accurately
reflect the CRT state if CONTROL 15, 16, and/or 17 have been executed.

ALPHA ON flag
Undefined

GRAPHICS ON flag
Undefined

536 Interface Registers

CRT Status and Control Registers (cant.)

Status Register 8
Control Register 8

Status Register 9
Control Register 9

Status Register 10
Control Register 10

Status Register 11
Control Register 11

Status Register 12
Control Register 12

Status Register 13
Control Register 13

Status Register 14
Control Register 14

Display line position (column)
Set display line position (column)

Screenwidth (number of characters)
Undefined

Cursor-enable flag
Cursor-enable: 0 = cursor invisible

non-O = cursor visible

CRT character mapping flag
Disable CRT character mapping if non-O

Key labels display mode
Set key labels display mode: 0 = typing-aid key labels displayed un­

less program is in the RUN state
1 = key labels always off
2 = key labels displayed at all times

CRT height
CRT height; number of lines in Alpha display must be greater than 8 .

Display replacement
Display replacement
0-0
I-source AND old
2-source AND NOT old
3-source;default
4-NOT source AND old
5-old
6-source EXOR old
7-source OR old
8-source NOR old
9-source EXNOR old

10-NOT old
II-source OR NOT old
12-NOT source
13-NOT source OR old
14-source NAND old
15-1

536 Interface Registers

CRT Status and Control Registers (cant.)

Status Register 8
Control Register 8

Status Register 9
Control Register 9

Status Register 10
Control Register 10

Status Register 11
Control Register 11

Status Register 12
Control Register 12

Status Register 13
Control Register 13

Status Register 14
Control Register 14

Display line position (column)
Set display line position (column)

Screenwidth (number of characters)
Undefined

Cursor-enable flag
Cursor-enable: 0 = cursor invisible

non-O = cursor visible

CRT character mapping flag
Disable CRT character mapping if non-O

Key labels display mode
Set key labels display mode: 0 = typing-aid key labels displayed un­

less program is in the RUN state
1 = key labels always off
2 = key labels displayed at all times

CRT height
CRT height; number of lines in Alpha display must be greater than 8 .

Display replacement
Display replacement
0-0
I-source AND old
2-source AND NOT old
3-source;default
4-NOT source AND old
5-old
6-source EXOR old
7-source OR old
8-source NOR old
9-source EXNOR old

10-NOT old
II-source OR NOT old
12-NOT source
13-NOT source OR old
14-source NAND old
15-1

Interface Registers 537

CRT Status and Control Registers (cant.)

Status Register 15

Control Register 15

Status Register 16

Control Register 16

Status Register 17

Control Register 17

Status Register 18
Control Register 18
Status Register 19
Control Register 19

Status Register 20
Control Register 20

Status Register 21

Control Register 21

Return the value set (or the default) for the color in the P R I NT / 0 I S P

area. This does not reflect changes due to printing CHR$ (x), where
136~x~143 .

Set PR I NT / 0 I S P color. Similar to CRT control register 5 but specific to
CRT PR I NT / 0 I S P areas; that is, it does not affect the areas covered by
CRT registers 16 and 17.

Return the value set (or the default) for the softkey label color.

Set key labels color. Similar to CRT control register 5 but only affects
the softkey labels. Does not affect the areas covered by CRT registers
15 and 17.

Return the value set (or the default) for the color of the "non­
enhance" area. This includes the keyboard entry line , runlight, system
message line, annunciators, and edit screen.

Set "non-enhance" color. This includes the keyboard entry line, run­
light, system message line, annunciators, and edit screen. Similar to
CRT control register 5 but does not affect the areas covered by CRT
control registers 15 and 16.

Read the alpha write-enable mask.
Set alpha write-enable mask to a bit pattern.
Return number of planes in alpha CRT.
Undefined.

Read the alpha display-enable mask.
Set alpha display-enable mask to a bit pattern.

Return compatibility mode (0 or 1) .

Switch between the CRT compatibility mode (value =1= 0) and the na­
tive bit-mapped mode (value = 0) . That is, switch both alpha and
graphics to non-bit-mapped display (if value =1= 0) or bit-mapped dis­
play (if value = 0) . It effectively initializes the alpha display and ex­
ecutes a GIN IT and a PLOTTER I S CRT," INTERNAL".

Interface Registers 537

CRT Status and Control Registers (cant.)

Status Register 15

Control Register 15

Status Register 16

Control Register 16

Status Register 17

Control Register 17

Status Register 18
Control Register 18
Status Register 19
Control Register 19

Status Register 20
Control Register 20

Status Register 21

Control Register 21

Return the value set (or the default) for the color in the P R I NT / 0 I S P

area. This does not reflect changes due to printing CHR$ (x), where
136~x~143 .

Set PR I NT / 0 I S P color. Similar to CRT control register 5 but specific to
CRT PR I NT / 0 I S P areas; that is, it does not affect the areas covered by
CRT registers 16 and 17.

Return the value set (or the default) for the softkey label color.

Set key labels color. Similar to CRT control register 5 but only affects
the softkey labels. Does not affect the areas covered by CRT registers
15 and 17.

Return the value set (or the default) for the color of the "non­
enhance" area. This includes the keyboard entry line , runlight, system
message line, annunciators, and edit screen.

Set "non-enhance" color. This includes the keyboard entry line, run­
light, system message line, annunciators, and edit screen. Similar to
CRT control register 5 but does not affect the areas covered by CRT
control registers 15 and 16.

Read the alpha write-enable mask.
Set alpha write-enable mask to a bit pattern.
Return number of planes in alpha CRT.
Undefined.

Read the alpha display-enable mask.
Set alpha display-enable mask to a bit pattern.

Return compatibility mode (0 or 1) .

Switch between the CRT compatibility mode (value =1= 0) and the na­
tive bit-mapped mode (value = 0) . That is, switch both alpha and
graphics to non-bit-mapped display (if value =1= 0) or bit-mapped dis­
play (if value = 0) . It effectively initializes the alpha display and ex­
ecutes a GIN IT and a PLOTTER I S CRT," INTERNAL".

538 Interface Registers

Keyboard Status and Control Registers
Status Register 0
Control Register 0

Status Register 1
Control Register 1

Status Register 2
Control Register 2

Status Register 3

Control Register 3

Status Register 4

Control Register 4

Status Register 5

Control Register 5

Status Register 6

Control Register 6

Status Register 7
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

CAPS LOCK flag
Set CAPS LOCK if non-O

PRINT ALL flag
Set PRINTALL if non-O

Function key menu.
Function key menu. o = System menu

1-3 = User menu 1 thru 3

Undefined

Set auto-repeat interval. If 1 thru 255, repeat rate in milliseconds is 10
times this value. 256 = turn off auto-repeat. (Default at power-on or
SCRATCH A is 80 ms.)

Undefined

Set delay before auto-repeat. If 1 thru 256, delay in milliseconds is 10
times this value. (Default at power-on or SCRATCH A is 700 ms.)

KBD$ buffer overflow register. 1 = overflow.
Register is reset when read.
Undefined

Typing aid expansion overflow register.
1 = overflow. Register is reset when read.

Undefined

Bit 5 Bit 4 Bit 3 Bit 2

INITIALIZE
Reserved Reserved

0
Timeout

For Future For Future
Interrupt

Use Use
Disabled

Value = 32 Value = 16 Value = 8 Value = 4

Interrupt Status
Least Significant Bit

Bit 1 Bit 0

RESET Keyboard
Key and Knob

Interrupt Interrupt
Disabled Disabled

Value = 2 Value = 1

Control Register 7 (Set bit to disable)
Most Significant Bit

Interrupt Disable Mask
Least Significant Bit

Bit 7
\

Bit 6
\

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INITIALIZE
Reserved Reserved

RESET Keyboard
Not Used For Future For Future

Timeout
Use Use

Key and Knob

Value = 128\ Value = 64\ Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

538 Interface Registers

Keyboard Status and Control Registers
Status Register 0
Control Register 0

Status Register 1
Control Register 1

Status Register 2
Control Register 2

Status Register 3

Control Register 3

Status Register 4

Control Register 4

Status Register 5

Control Register 5

Status Register 6

Control Register 6

Status Register 7
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

CAPS LOCK flag
Set CAPS LOCK if non-O

PRINT ALL flag
Set PRINTALL if non-O

Function key menu.
Function key menu. o = System menu

1-3 = User menu 1 thru 3

Undefined

Set auto-repeat interval. If 1 thru 255, repeat rate in milliseconds is 10
times this value. 256 = turn off auto-repeat. (Default at power-on or
SCRATCH A is 80 ms.)

Undefined

Set delay before auto-repeat. If 1 thru 256, delay in milliseconds is 10
times this value. (Default at power-on or SCRATCH A is 700 ms.)

KBD$ buffer overflow register. 1 = overflow.
Register is reset when read.
Undefined

Typing aid expansion overflow register.
1 = overflow. Register is reset when read.

Undefined

Bit 5 Bit 4 Bit 3 Bit 2

INITIALIZE
Reserved Reserved

0
Timeout

For Future For Future
Interrupt

Use Use
Disabled

Value = 32 Value = 16 Value = 8 Value = 4

Interrupt Status
Least Significant Bit

Bit 1 Bit 0

RESET Keyboard
Key and Knob

Interrupt Interrupt
Disabled Disabled

Value = 2 Value = 1

Control Register 7 (Set bit to disable)
Most Significant Bit

Interrupt Disable Mask
Least Significant Bit

Bit 7
\

Bit 6
\

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INITIALIZE
Reserved Reserved

RESET Keyboard
Not Used For Future For Future

Timeout
Use Use

Key and Knob

Value = 128\ Value = 64\ Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Interface Registers 539

Keyboard Status and Control Registers (cont.)
Status Register 8

Control Register 8

Status Register 9
Most Significant Bit

Bit 7 Bi t 6

Internal Internal
Use Use

Value = 128 Value = 64

Control Register 9

Status Register 10
Most Significant Bit

Bit 7 Bit 6

0 (1)

Value = 128 Value = 64

Keyboard language jumper

o - US ASCII 7 - United Kingdom 13 - Swiss German
14 - Latin(Spanish)
15 - Danish

1 - French 8 - Canadian French
2 - German 9 - Swiss French
3 - Swedish 10 - Italian
4 - Spanish 11 - Belgian
5 - Katakana 12 - Dutch
6 - Canadian English

Undefined

Bit 5 Bit 4 Bit 3 Bit 2

1 = HP46020A 1 =No 1 = n-Key
Keyboard Keyboard Rollover 0

O= Other O= Keyboard 0= 2 or less
Keyboard Present Key Rollover

Va lue = 32 Value = 16 Value = 8 Value = 4

Undefined

16 - Finnish
17 - Norwegian
18 - Swiss French *
19 - Swiss German *

Least Significant Bit

Bit 1 Bit III

1 = HP98203A

0
Keyboard

O= Other
Keyboard

Value = 2 Value = 1

State at Last Knob Interrupt
Least Signifi can t Bit

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit III

CTRL SHIFT
(1) (1) (1) (1) Key Key

Pressed Pressed

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Interface Registers 539

Keyboard Status and Control Registers (cont.)
Status Register 8

Control Register 8

Status Register 9
Most Significant Bit

Bit 7 Bi t 6

Internal Internal
Use Use

Value = 128 Value = 64

Control Register 9

Status Register 10
Most Significant Bit

Bit 7 Bit 6

0 (1)

Value = 128 Value = 64

Keyboard language jumper

o - US ASCII 7 - United Kingdom 13 - Swiss German
14 - Latin(Spanish)
15 - Danish

1 - French 8 - Canadian French
2 - German 9 - Swiss French
3 - Swedish 10 - Italian
4 - Spanish 11 - Belgian
5 - Katakana 12 - Dutch
6 - Canadian English

Undefined

Bit 5 Bit 4 Bit 3 Bit 2

1 = HP46020A 1 =No 1 = n-Key
Keyboard Keyboard Rollover 0

O= Other O= Keyboard 0= 2 or less
Keyboard Present Key Rollover

Va lue = 32 Value = 16 Value = 8 Value = 4

Undefined

16 - Finnish
17 - Norwegian
18 - Swiss French *
19 - Swiss German *

Least Significant Bit

Bit 1 Bit III

1 = HP98203A

0
Keyboard

O= Other
Keyboard

Value = 2 Value = 1

State at Last Knob Interrupt
Least Signifi can t Bit

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit III

CTRL SHIFT
(1) (1) (1) (1) Key Key

Pressed Pressed

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

540 Interface Registers

Keyboard Status and Control Registers (cont.)

Control Register 10

Status Register 11

Control Register 11

Status Register 12
Control Register 12

Status Register 13
Control Register 13

Status Register 14
Control Register 14

Status Register 15

Control Register 15

Undefined

0= horizontal-pulse mode; 1 = all-pulse mode

(default is 0 without KNB2_0 loaded, 1 with KNB2_0 loaded). Refer
to the Knob section in Chapter 15 of the BASIC Programming Tech­
niques manual for more information.

"Pseudo-EO! forCTRL-E" flag
Enable pseudo-EO! for CTRL-E if non-O

Katakana flag
Set Katakana if non-O

F.unction keys on HP 46020A software key numbers shifted.
Function keys on HP 46020A software key numbers shifted.
o = CJIJ is Key 1; default
1 = CJIJ is Key 0

Return keyboard compatibility mode (~off, l~on).

Turns Model 236 keyboard compatibility mode on (=I=- 0) and off (= 0).
(See the chapter "Porting to Series 300" in the Programming Techni­
ques manual.)

540 Interface Registers

Keyboard Status and Control Registers (cont.)

Control Register 10

Status Register 11

Control Register 11

Status Register 12
Control Register 12

Status Register 13
Control Register 13

Status Register 14
Control Register 14

Status Register 15

Control Register 15

Undefined

0= horizontal-pulse mode; 1 = all-pulse mode

(default is 0 without KNB2_0 loaded, 1 with KNB2_0 loaded). Refer
to the Knob section in Chapter 15 of the BASIC Programming Tech­
niques manual for more information.

"Pseudo-EO! forCTRL-E" flag
Enable pseudo-EO! for CTRL-E if non-O

Katakana flag
Set Katakana if non-O

F.unction keys on HP 46020A software key numbers shifted.
Function keys on HP 46020A software key numbers shifted.
o = CJIJ is Key 1; default
1 = CJIJ is Key 0

Return keyboard compatibility mode (~off, l~on).

Turns Model 236 keyboard compatibility mode on (=I=- 0) and off (= 0).
(See the chapter "Porting to Series 300" in the Programming Techni­
ques manual.)

Interface Registers 541

HP-IB Status and Control Registers

Status Register 0

Control Register 0

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrrupts Interrupt
Enabled Requested

Value = 128 Value = 64

Control Register 1
Most Significant Bit

Bit 7 Bit 6

Device SRQ
Dependent 1 = I did it

Status o = I didn 't

Value = 128 Value = 64

Status Register 2
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Control Register 2
Most Significant Bit

Bit 7 Bit 6

0108 0107
1 = True 1 = True

Value = 128 Value = 64

Card identification = 1

Reset interface if non-zero

Bit 5
I

Bit 4 Bit 3

Hardware Interrupt 0
Level Switches

Value = 321 Value = 16 Value = 8

Bit 5
1

Bit 4
1

Bit 3
1

Interrupt and DMA Status
Least Significant Bit

Bit 2 Bit 1 Bit 0

OMA OMA
0 Channel 1 Channel 0

Enabled Enabled

Value = 4 Value = 2 Value = 1

Serial Poll Response Byte
Least Significant Bit

Bit 2
1

Bit 1
1

Bit 0

Device Dependent Status

Value = 321 Value = 16l Value = 8 I Value = 4 1 Value = 2 J Value = 1

Bit 5 Bit 4 Bit 3

Reserved
0 0 For Future

Use

Value = 32 Value = 16 Value = 8

Bit 5 Bit 4 Bit 3

0106 0105 0104
1 = True 1 = True 1 = True

Value = 32 Value = 16 Value = 8

Bit 2

Handshake
In

Progress

Value = 4

Busy Bits
Least Significant Bit

Bit 1 Bit 0

Interrupts
TRANSFER

In
Enabled

Progress

Value = 2 Value = 1

Parallel Poll Response Byte
Least Signi ficant Bi t

Bit 2 Bit 1 Bit 0

0103 0102 0101
1 = True 1 = True 1 = True

Value = 4 Value = 2 Value = 1

Interface Registers 541

HP-IB Status and Control Registers

Status Register 0

Control Register 0

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrrupts Interrupt
Enabled Requested

Value = 128 Value = 64

Control Register 1
Most Significant Bit

Bit 7 Bit 6

Device SRQ
Dependent 1 = I did it

Status o = I didn 't

Value = 128 Value = 64

Status Register 2
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Control Register 2
Most Significant Bit

Bit 7 Bit 6

0108 0107
1 = True 1 = True

Value = 128 Value = 64

Card identification = 1

Reset interface if non-zero

Bit 5
I

Bit 4 Bit 3

Hardware Interrupt 0
Level Switches

Value = 321 Value = 16 Value = 8

Bit 5
1

Bit 4
1

Bit 3
1

Interrupt and DMA Status
Least Significant Bit

Bit 2 Bit 1 Bit 0

OMA OMA
0 Channel 1 Channel 0

Enabled Enabled

Value = 4 Value = 2 Value = 1

Serial Poll Response Byte
Least Significant Bit

Bit 2
1

Bit 1
1

Bit 0

Device Dependent Status

Value = 321 Value = 16l Value = 8 I Value = 4 1 Value = 2 J Value = 1

Bit 5 Bit 4 Bit 3

Reserved
0 0 For Future

Use

Value = 32 Value = 16 Value = 8

Bit 5 Bit 4 Bit 3

0106 0105 0104
1 = True 1 = True 1 = True

Value = 32 Value = 16 Value = 8

Bit 2

Handshake
In

Progress

Value = 4

Busy Bits
Least Significant Bit

Bit 1 Bit 0

Interrupts
TRANSFER

In
Enabled

Progress

Value = 2 Value = 1

Parallel Poll Response Byte
Least Signi ficant Bi t

Bit 2 Bit 1 Bit 0

0103 0102 0101
1 = True 1 = True 1 = True

Value = 4 Value = 2 Value = 1

542 Interface Registers

HP-IB Status and Control Registers (cont.)

Status Register 3
Most Significant Bit

Bit 7 Bit 6

System Active
Controller Controller

Value = 128 Value = 64

Control Register 3
Most Significant Bit

Bit 7
I

Bit 6

Not Used

Bit 5

0

Value = 32

I
Bit 5

Bit 4
I

Bit 3
I

Controller Status and Address
Least Signi ficant Bit

Bit 2
I

Bit 1
I

Bit 0

Primary Address of Interface

Value = 16 1 Value = 8 1 Value = 4 1 Value = 2 1 Value = 1

Bit 4
I

Bit 3
I

Bit 2
I

Primary Address

Set My Addrress
Least Significant Bit

Bit 1
I

Bit 0

Value = 1281 Value = 641 Value = 32 Value = 161 Value = 8 1 Value = 4 1 Value = 2 I Value = 1

Status Register 4
Most Significant Bit

Bit 15 Bit 14

Parallel
Active Poll

Controller Configuration
Change

Value = Value =
- 32768 16384

Bit 7 Bit 6

Trigger Handshake
Received Error

Value = 128 Value = 64

Control Register 4

Interrupt Status

Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

My Talk My Listen Remote/
Talker/

EOI Listener
Address Address

Received
SPAS Local

Address
Received Received Change

Change

Value = Value = Value = Value = Value = Value =
8192 4096 2048 1 024 512 256

Least Significant Bit

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unrecognized
Secondary

Unrecognized
Un iversal

Command Clear
Addressed

SRQ IFC

Command
Whi le Received

Command
Received Received

Addressed

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Writing anything to this register releases NDAC holdoff. If non-zero,
accept last secondary address as valid. If zero, don' t accept last secon­
daryaddress (stay in LPAS or TPAS state) .

542 Interface Registers

HP-IB Status and Control Registers (cont.)

Status Register 3
Most Significant Bit

Bit 7 Bit 6

System Active
Controller Controller

Value = 128 Value = 64

Control Register 3
Most Significant Bit

Bit 7
I

Bit 6

Not Used

Bit 5

0

Value = 32

I
Bit 5

Bit 4
I

Bit 3
I

Controller Status and Address
Least Signi ficant Bit

Bit 2
I

Bit 1
I

Bit 0

Primary Address of Interface

Value = 16 1 Value = 8 1 Value = 4 1 Value = 2 1 Value = 1

Bit 4
I

Bit 3
I

Bit 2
I

Primary Address

Set My Addrress
Least Significant Bit

Bit 1
I

Bit 0

Value = 1281 Value = 641 Value = 32 Value = 161 Value = 8 1 Value = 4 1 Value = 2 I Value = 1

Status Register 4
Most Significant Bit

Bit 15 Bit 14

Parallel
Active Poll

Controller Configuration
Change

Value = Value =
- 32768 16384

Bit 7 Bit 6

Trigger Handshake
Received Error

Value = 128 Value = 64

Control Register 4

Interrupt Status

Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

My Talk My Listen Remote/
Talker/

EOI Listener
Address Address

Received
SPAS Local

Address
Received Received Change

Change

Value = Value = Value = Value = Value = Value =
8192 4096 2048 1 024 512 256

Least Significant Bit

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unrecognized
Secondary

Unrecognized
Un iversal

Command Clear
Addressed

SRQ IFC

Command
Whi le Received

Command
Received Received

Addressed

Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Writing anything to this register releases NDAC holdoff. If non-zero,
accept last secondary address as valid. If zero, don' t accept last secon­
daryaddress (stay in LPAS or TPAS state) .

(

Interface Registers 543

HP-IB Status and Control Registers (cont.)

Status Register 5
Most Significant Bit

Bit 15 Bit 14

Parallel
Active Poll

Controller Configuration
Change

Value = Value =
-32768 16384

Bit 7 Bit 6

Trigger Handshake
Received Error

Value = 128 Value = 64

Control Register 5
Most Significant Bit

Bit 7
I

Bit 6

Not
Used

Bit 13

My Talk
Address
Received

Value =
8192

Bit 5

Unrecognized
Universal
Command

Value = 32

I
Bit 5

Value = 1281 Value = 641 Value = 32

Bit 12

My Listen
Address
Received

Value =
4096

Bit 4

Secondary
Command

While
Addressed

Value = 16

Bit 4

Uncon-
figure

Value = 16

Bit 11

EOI
Received

Value =
2048

Bit 3

Clear
Received

Value = 8

Bit 3

Logic
Sense

Value = 8

Interrupt Enable Mask

Bit 10 Bit 9 Bit 8

Remote/
Talker/
Listener

SPAS Local
Address

Change
Change

Value = Value = Value =
1 024 512 256

Least Significant Bit

Bit 2 Bit 1 Bit 0

Unrecognized
Addressed

SRQ IFC

Command
Received Received

Value = 4 Value = 2 Value = 1

Parallel Poll Response Mask
Least Sign if icant Bit

Bit 2
I

Bit 1
I

Bit 0

Data Bit Used
For Response

Value = 4 1 Value = 2 I Value = 1

(

Interface Registers 543

HP-IB Status and Control Registers (cont.)

Status Register 5
Most Significant Bit

Bit 15 Bit 14

Parallel
Active Poll

Controller Configuration
Change

Value = Value =
-32768 16384

Bit 7 Bit 6

Trigger Handshake
Received Error

Value = 128 Value = 64

Control Register 5
Most Significant Bit

Bit 7
I

Bit 6

Not
Used

Bit 13

My Talk
Address
Received

Value =
8192

Bit 5

Unrecognized
Universal
Command

Value = 32

I
Bit 5

Value = 1281 Value = 641 Value = 32

Bit 12

My Listen
Address
Received

Value =
4096

Bit 4

Secondary
Command

While
Addressed

Value = 16

Bit 4

Uncon-
figure

Value = 16

Bit 11

EOI
Received

Value =
2048

Bit 3

Clear
Received

Value = 8

Bit 3

Logic
Sense

Value = 8

Interrupt Enable Mask

Bit 10 Bit 9 Bit 8

Remote/
Talker/
Listener

SPAS Local
Address

Change
Change

Value = Value = Value =
1 024 512 256

Least Significant Bit

Bit 2 Bit 1 Bit 0

Unrecognized
Addressed

SRQ IFC

Command
Received Received

Value = 4 Value = 2 Value = 1

Parallel Poll Response Mask
Least Sign if icant Bit

Bit 2
I

Bit 1
I

Bit 0

Data Bit Used
For Response

Value = 4 1 Value = 2 I Value = 1

544 Interface Registers

HP-IB Status and Control Registers (cont.)

Status Register 6
Most Significant Bit

Bit 15 Bit 14

REM LLO

Value = Value =
-32768 16384

Bit 7 Bit 6

System Active
Controller Controller

Bit 13 Bit 12

ATN LPAS
True

Value = Value =
8192 4096

Bit 5 Bit 4
1

(I)

Interface Status

Bit 11 Bit 1(1) Bit 9 Bit 8

TPAS LADS TAOS *

Value = Value = Value = Value =
2048 1 024 512 256

Least Significant Bit

Bit 3
1

Bit 2
1

Bit 1
1

Bit (I)

Primary Address of Interface

Value = 128 Value = 64 Value = 32 Value = 16 1 Value = 8 1 Value = 4 I Value = 2 I Value = 1

* Least-significant bit of last address recognized

Status Register 7
Most Significant Bit

Bit 15 Bit 14

ATN OAV
True True

Value = Value =
-32768 16384

Bit 7 Bit 6

0108 0107

Value = 128 Value = 64

Bit 13 Bit 12

NOAC* NRFO*
True True

Value = Value =
8192 4096

Bit 5 Bit 4

0106 0105

Value = 32 Value = 16

* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.

Bus Control and Data Lines

Bit 11 Bit 1 (I) Bit 9 Bit 8

EOI SRQ** IFC REN
True True True True

Value = Value = Value = Value =
2048 1 024 512 256

Leas t Significant Bit

Bit 3 Bit 2 Bit 1 Bit (I)

0104 0103 0102 0101

Value = 8 Value = 4 Value = 2 Value = 1

544 Interface Registers

HP-IB Status and Control Registers (cont.)

Status Register 6
Most Significant Bit

Bit 15 Bit 14

REM LLO

Value = Value =
-32768 16384

Bit 7 Bit 6

System Active
Controller Controller

Bit 13 Bit 12

ATN LPAS
True

Value = Value =
8192 4096

Bit 5 Bit 4
1

(I)

Interface Status

Bit 11 Bit 1(1) Bit 9 Bit 8

TPAS LADS TAOS *

Value = Value = Value = Value =
2048 1 024 512 256

Least Significant Bit

Bit 3
1

Bit 2
1

Bit 1
1

Bit (I)

Primary Address of Interface

Value = 128 Value = 64 Value = 32 Value = 16 1 Value = 8 1 Value = 4 I Value = 2 I Value = 1

* Least-significant bit of last address recognized

Status Register 7
Most Significant Bit

Bit 15 Bit 14

ATN OAV
True True

Value = Value =
-32768 16384

Bit 7 Bit 6

0108 0107

Value = 128 Value = 64

Bit 13 Bit 12

NOAC* NRFO*
True True

Value = Value =
8192 4096

Bit 5 Bit 4

0106 0105

Value = 32 Value = 16

* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.

Bus Control and Data Lines

Bit 11 Bit 1 (I) Bit 9 Bit 8

EOI SRQ** IFC REN
True True True True

Value = Value = Value = Value =
2048 1 024 512 256

Leas t Significant Bit

Bit 3 Bit 2 Bit 1 Bit (I)

0104 0103 0102 0101

Value = 8 Value = 4 Value = 2 Value = 1

Interface Registers 545

HP-IB Status and Control Registers (cant.)

Interrupt Enable Register (ENABLE INTR)
Most Significant Bit

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Parallel
My Talk My Listen Remote/

Talker/
Active Poll EOI Listener

Controller Configuration
Address Address

Received
SPAS Local

Address
Change

Received Received Change
Change

Value = Value = Value = Value = Value = Value = Value = Value =
- 32768 16384 8192 4096 2048 1 024 512 256

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unrecognized
Secondary

Unrecognized
Trigger Handshake

Universal
Command Clear

Addressed
SRQ IFC

Received Error
Command

While Received
Command

Received Received
Addressed

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

\

Interface Registers 545

HP-IB Status and Control Registers (cant.)

Interrupt Enable Register (ENABLE INTR)
Most Significant Bit

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Parallel
My Talk My Listen Remote/

Talker/
Active Poll EOI Listener

Controller Configuration
Address Address

Received
SPAS Local

Address
Change

Received Received Change
Change

Value = Value = Value = Value = Value = Value = Value = Value =
- 32768 16384 8192 4096 2048 1 024 512 256

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unrecognized
Secondary

Unrecognized
Trigger Handshake

Universal
Command Clear

Addressed
SRQ IFC

Received Error
Command

While Received
Command

Received Received
Addressed

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

\

546 Interface Registers

RS-232 Status and Control Registers
Status Register 0
Most Significant Bit

Bit 7 Bit 6

1 = Future
Use Jumper Ii)

Installed

Value = 128 Value = 64

Control Register 0

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrupts Interrupt
Enabled Requested

Value = 128 Value = 64

Control Register 1

Status Register 2
Most Significant Bit

Bit 7 Bit 6

Ii) Ii)

Value = 128 Value = 64

Control Register 2

Status Register 3

Control Register 3

Bit 5 Bit 4 Bit 3

Ii) Ii) Ii)

Value = 32 Value = 16 Value = 8

Reset interface if non-zero

Bit 5
I

Bit 4 Bit 3

Hardware Interrupt Ii)
Level Switches

Value = 321 Value = 16 Value = 8

Send break if non-zero

Bit 5 Bit 4

Ii) Ii)

Value = 32 Value = 16

Undefined

Baud Rate

Set Baud Rate

Bit 3

Ii)

Value = 8

Bit 2

Ii)

Value = 4

Bit 2

Ii)

Value = 4

Bit 2

Handshake
In

Progress

Value = 4

Card Identification
Least Significant Bit

Bit 1 Bit Ii)

1 Ii)

Value = 2 Value = 1

Interrupt Status
Least Significant Bit

Bit 1 Bit Ii)

Ii) Ii)

Value = 2 Value = 1

Least Sign ificant Bit

Bit 1 Bit Ii)

Interrupts
TRANSFER

In
Enabled

Progress

Value = 2 Value = 1

546 Interface Registers

RS-232 Status and Control Registers
Status Register 0
Most Significant Bit

Bit 7 Bit 6

1 = Future
Use Jumper Ii)

Installed

Value = 128 Value = 64

Control Register 0

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrupts Interrupt
Enabled Requested

Value = 128 Value = 64

Control Register 1

Status Register 2
Most Significant Bit

Bit 7 Bit 6

Ii) Ii)

Value = 128 Value = 64

Control Register 2

Status Register 3

Control Register 3

Bit 5 Bit 4 Bit 3

Ii) Ii) Ii)

Value = 32 Value = 16 Value = 8

Reset interface if non-zero

Bit 5
I

Bit 4 Bit 3

Hardware Interrupt Ii)
Level Switches

Value = 321 Value = 16 Value = 8

Send break if non-zero

Bit 5 Bit 4

Ii) Ii)

Value = 32 Value = 16

Undefined

Baud Rate

Set Baud Rate

Bit 3

Ii)

Value = 8

Bit 2

Ii)

Value = 4

Bit 2

Ii)

Value = 4

Bit 2

Handshake
In

Progress

Value = 4

Card Identification
Least Significant Bit

Bit 1 Bit Ii)

1 Ii)

Value = 2 Value = 1

Interrupt Status
Least Significant Bit

Bit 1 Bit Ii)

Ii) Ii)

Value = 2 Value = 1

Least Sign ificant Bit

Bit 1 Bit Ii)

Interrupts
TRANSFER

In
Enabled

Progress

Value = 2 Value = 1

Interface Registers 547

RS-232 Status and Control Registers (cont.)

Status Register 4
Most Significant Bit

Bit 7
I Bit 6

Reserved for
Future Use

Value = 128[Value = 64

Bit 5 I Bit 4

00 = Odd Parity
01 = Even Parity
10 = Parity Bit " 1"
11 = Parity Bit "0"

Value = 321 Value = 16

*1.5 stop bit if character length is 5.

Control Register 4
Most Sign ificant Bit

Bit 7
1

Bit 6

Not Used

Value = 1281 Value = 64

Bit 5
1

Bit 4

00 = Odd parity
(1)1 = Even Parity
1(1) = Parity Bit "1"
11 = Parity Bit "(I)"

Value = 321 Value = 16

*1.5 stop bits if character length is 5.

Status Register 5
Most Significant Bit

Bit 7 Bit 6

(I) (I)

Value = 128 Value = 64

Control Register 5
Most Significant Bit

Bit 7
1

Bit 6

Not Used

Bit 5

(I)

Value = 32

1
Bit 5

Value = 1281 Value = 641 Value = 32

Bit 4

Loop
Back
Mode

Value=16

Bit 4

1 = Set
Loopback

Mode

Value = 16

* 0 = Set only during an OUTPUT statement.

Bit 3

Parity
Enabled

Value = 8

Bit 3

1 = Enable
parity

Value = 8

Bit 3

Secondary
Request
To Send

Value = 8

Bit 3

1 = Set
Secondary

Request
To Send

Value = 8

** 0 = Set only during an OUTPUT or ENTER statement.

Bit 2

o = One
Stop Bit
1 = Two

Stop Bits*

Value = 4

Bit 2

0= One
Stop Bit
1 = Two

Stop Bits*

Value = 4

Bit 2

Data
Rate

Select

Value = 4

Bit 2

1 = Set
Data Rate

Select

Value = 4

Character Control
Least Significant Bit

Bit 1 I Bit 0

Character Length
(add this value to 5)

Value = 2 1 Value = 1

Character Control
Least Significant Bit

Bit 1
1

Bit 0

Character Length
(add this value to 5)

Value = 2 1 Value = 1

Modem Control
Least Significant Bit

Bit 1 Bit 0

Request Data
To Terminal

Send Ready

Value = 2 Value = 1

Modem Control
Least Signif icant Bit

Bit 1 Bit 0

RTS* DTR**
1 = Set 1 = Set

(I) = (I) =
Handshake Handshake

Value = 2 Value = 1

Interface Registers 547

RS-232 Status and Control Registers (cont.)

Status Register 4
Most Significant Bit

Bit 7
I Bit 6

Reserved for
Future Use

Value = 128[Value = 64

Bit 5 I Bit 4

00 = Odd Parity
01 = Even Parity
10 = Parity Bit " 1"
11 = Parity Bit "0"

Value = 321 Value = 16

*1.5 stop bit if character length is 5.

Control Register 4
Most Sign ificant Bit

Bit 7
1

Bit 6

Not Used

Value = 1281 Value = 64

Bit 5
1

Bit 4

00 = Odd parity
(1)1 = Even Parity
1(1) = Parity Bit "1"
11 = Parity Bit "(I)"

Value = 321 Value = 16

*1.5 stop bits if character length is 5.

Status Register 5
Most Significant Bit

Bit 7 Bit 6

(I) (I)

Value = 128 Value = 64

Control Register 5
Most Significant Bit

Bit 7
1

Bit 6

Not Used

Bit 5

(I)

Value = 32

1
Bit 5

Value = 1281 Value = 641 Value = 32

Bit 4

Loop
Back
Mode

Value=16

Bit 4

1 = Set
Loopback

Mode

Value = 16

* 0 = Set only during an OUTPUT statement.

Bit 3

Parity
Enabled

Value = 8

Bit 3

1 = Enable
parity

Value = 8

Bit 3

Secondary
Request
To Send

Value = 8

Bit 3

1 = Set
Secondary

Request
To Send

Value = 8

** 0 = Set only during an OUTPUT or ENTER statement.

Bit 2

o = One
Stop Bit
1 = Two

Stop Bits*

Value = 4

Bit 2

0= One
Stop Bit
1 = Two

Stop Bits*

Value = 4

Bit 2

Data
Rate

Select

Value = 4

Bit 2

1 = Set
Data Rate

Select

Value = 4

Character Control
Least Significant Bit

Bit 1 I Bit 0

Character Length
(add this value to 5)

Value = 2 1 Value = 1

Character Control
Least Significant Bit

Bit 1
1

Bit 0

Character Length
(add this value to 5)

Value = 2 1 Value = 1

Modem Control
Least Significant Bit

Bit 1 Bit 0

Request Data
To Terminal

Send Ready

Value = 2 Value = 1

Modem Control
Least Signif icant Bit

Bit 1 Bit 0

RTS* DTR**
1 = Set 1 = Set

(I) = (I) =
Handshake Handshake

Value = 2 Value = 1

548 Interface Registers

RS-232 Status and Control Registers (cont.)

Status Register 6

Control Register 6

Status Register 7
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Control Register 7
Most Significant Bit

Bit 7
1

Bit 6
1

Data In (8 bits)

Data Out (8 bits)

Bit 5 Bit 4

0 0

Value = 32 Value = 16

Bit 5
1

Bit 4

Not Used

Value = 1281 Value = 641 Value = 32 1 Value = 16

Status Register 8
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Status Register 9
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Bit 5 Bit 4

0 0

Value = 32 Value = 16

Bit 5 Bit 4

0 0

Value = 32 Value = 16

Bit 3

Optional
Driver 3

Value = 8

Bit 3

Optional
Driver 3

Value = 8

Bit 3

Modem
Status

Change

Value = 8

Bit 3

(l)

Value = 8

Bit 2

Optional
Driver 4

Value = 4

Bit 2

Optional
Driver 4

Value = 4

Bit 2

Receiver
Line

Status

Value = 4

Bit 2

Optional Circuits
Least Sign ificant Bit

Bit 1 Bit 0

Optional Optional
Receiver 2 Receiver 3

Value = 2 Value = 1

Optional Circuits
Least Significant Bit

Bit 1
1

Bit 0

Not Used

Value = 2 1 Value = 1

Interrupt Enable Mask
Least Significant Bit

1

Bit 1 Bit 0

Transmitter
Receiver

Holding
Buffer

Register
Full

Empty

Value = 2 Value = 1

Interrupt Cause
Least Significant Bit

Bit 1 Bit 0

11 = Receiver Line Status
10 = Receiver Buffer Full o = UART
01 = Transmitter Holding Requesting

Register Empty Interrupt
00 = Modem Status Change

Value = 4 1 Value = 2 Value = 1

548 Interface Registers

RS-232 Status and Control Registers (cont.)

Status Register 6

Control Register 6

Status Register 7
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Control Register 7
Most Significant Bit

Bit 7
1

Bit 6
1

Data In (8 bits)

Data Out (8 bits)

Bit 5 Bit 4

0 0

Value = 32 Value = 16

Bit 5
1

Bit 4

Not Used

Value = 1281 Value = 641 Value = 32 1 Value = 16

Status Register 8
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Status Register 9
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Bit 5 Bit 4

0 0

Value = 32 Value = 16

Bit 5 Bit 4

0 0

Value = 32 Value = 16

Bit 3

Optional
Driver 3

Value = 8

Bit 3

Optional
Driver 3

Value = 8

Bit 3

Modem
Status

Change

Value = 8

Bit 3

(l)

Value = 8

Bit 2

Optional
Driver 4

Value = 4

Bit 2

Optional
Driver 4

Value = 4

Bit 2

Receiver
Line

Status

Value = 4

Bit 2

Optional Circuits
Least Sign ificant Bit

Bit 1 Bit 0

Optional Optional
Receiver 2 Receiver 3

Value = 2 Value = 1

Optional Circuits
Least Significant Bit

Bit 1
1

Bit 0

Not Used

Value = 2 1 Value = 1

Interrupt Enable Mask
Least Significant Bit

1

Bit 1 Bit 0

Transmitter
Receiver

Holding
Buffer

Register
Full

Empty

Value = 2 Value = 1

Interrupt Cause
Least Significant Bit

Bit 1 Bit 0

11 = Receiver Line Status
10 = Receiver Buffer Full o = UART
01 = Transmitter Holding Requesting

Register Empty Interrupt
00 = Modem Status Change

Value = 4 1 Value = 2 Value = 1

(

Interface Registers 549

RS-232 Status and Control Registers (cont.)

Status Register 10
Most Significant Bit

Bit 7 Bit 6

Transmit
Shift

(7)
Register
Empty

Value = 128 Value = 64

Status Register 11
Most Significant Bit

Bit 7 Bit 6

Carrier Ring
Detect Indicator

Value = 128 Value = 64

Status Register 12
Most Significant Bi t

Bit 7 Bit 6

Carrier
Detect Q)

Disable '

Value = 128 Value = 64

Bi t 5 Bit 4

Transmit
Holding Break
Register Received
Empty

Value = 32 Value = 16

Bit 5 Bit 4

Data Set Clear To
Ready Send

Value = 32 Value = 16

Bit 5 Bit 4

Data Set Clear to
Ready Send

Disable" Disable '"

Value = 32 Value = 16

o = Wait for Carrier Detect on Enter Operations; 1 = Don 't wait

Bit 3

Framing
Error

Value = 8

Bit 3

Change In
Carrier
Detect

Value = 8

Bit 3

Q)

Value = 8

o = Wait for Data Set Ready on Enter and Output Operations; 1 = Don 't wait
o = Wait for Clear to Send on Output Operations ; 1 = Don't wait

Bit 2

Parity
Error

Value = 4

Bit 2

Ring
Indicator
Changed
To False

Value = 4

UART Status
Least Significant Bit

Bit 1 Bit (7)

Receiver
Overrun

Buffer
Error

Full

Value = 2 Value = 1

Modem Status
Least Significant Bit

Bit 1 Bit (7)

Change In Change In
Data Set Clear

Ready To Send

Value = 2 Value = 1

Modem Handshake Control
Least Significant Bit

Bit 2 Bit 1 Bit (7)

Q) Q) Q)

Value = 4 Value = 2 Value = 1

(

Interface Registers 549

RS-232 Status and Control Registers (cont.)

Status Register 10
Most Significant Bit

Bit 7 Bit 6

Transmit
Shift

(7)
Register
Empty

Value = 128 Value = 64

Status Register 11
Most Significant Bit

Bit 7 Bit 6

Carrier Ring
Detect Indicator

Value = 128 Value = 64

Status Register 12
Most Significant Bi t

Bit 7 Bit 6

Carrier
Detect Q)

Disable '

Value = 128 Value = 64

Bi t 5 Bit 4

Transmit
Holding Break
Register Received
Empty

Value = 32 Value = 16

Bit 5 Bit 4

Data Set Clear To
Ready Send

Value = 32 Value = 16

Bit 5 Bit 4

Data Set Clear to
Ready Send

Disable" Disable '"

Value = 32 Value = 16

o = Wait for Carrier Detect on Enter Operations; 1 = Don 't wait

Bit 3

Framing
Error

Value = 8

Bit 3

Change In
Carrier
Detect

Value = 8

Bit 3

Q)

Value = 8

o = Wait for Data Set Ready on Enter and Output Operations; 1 = Don 't wait
o = Wait for Clear to Send on Output Operations ; 1 = Don't wait

Bit 2

Parity
Error

Value = 4

Bit 2

Ring
Indicator
Changed
To False

Value = 4

UART Status
Least Significant Bit

Bit 1 Bit (7)

Receiver
Overrun

Buffer
Error

Full

Value = 2 Value = 1

Modem Status
Least Significant Bit

Bit 1 Bit (7)

Change In Change In
Data Set Clear

Ready To Send

Value = 2 Value = 1

Modem Handshake Control
Least Significant Bit

Bit 2 Bit 1 Bit (7)

Q) Q) Q)

Value = 4 Value = 2 Value = 1

550 Interface Registers

RS-232 Status and Control Registers (cont.)

Control Register 12
Most Significant Bit

Bit 7 Bit 6

Carrier
Not Detect

Disable* Used

Value = 128 Value = 64

Bit 5 Bit 4

Data Set Clear to
Ready Send

Disable** Disable***

Value = 32 Value = 16

Modem Handshake Control
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit 0

Not Not Not Not
Used Used Used Used

Value = 8 Value = 4 Value = 2 Value = 1

o = Wait for Carrier Detect on Enter Operat ions : 1 = Don't wait
o = Wait for Data Set Ready on Enter and Output Operations: 1 = Don't wait
o = Wait for Clear to Send on Output Operat ions : 1 = Don't wait

Interrupt Enable Register (ENABLE INTR)
Most Significant Bit Least Significant Bit

Bit 7
\

Bit 6
\

Bit 5
I

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Modem Receiver
Transmitter

Receiver
Not Used Status Line

Holding
Buffer

Change Status
Register

Full
Empty

Value = 128\ Value = 64 \ Value = 32\ Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Status Register 13

Control Register 13

Status Register 14

Control Register 14

Read the SCRATCH A default baud rate. The interface is set to
this default when SCRATCH A occurs.

Set the SCRATCH A default baud rate. The values accepted are
the same as for CONTRoL/STATUS register 3. the default pow­
er-up value is 9600 baud.

Read the SCRATCH A default character format. The interface is
set to this default when SCRATCH A occurs.

Set the "SCRATCH A" default character format. The values
accepted are the same as for CONTROL/STATUS register 4. The
default values are: 8 bits/character, 1 stop bit, no parity.

550 Interface Registers

RS-232 Status and Control Registers (cont.)

Control Register 12
Most Significant Bit

Bit 7 Bit 6

Carrier
Not Detect

Disable* Used

Value = 128 Value = 64

Bit 5 Bit 4

Data Set Clear to
Ready Send

Disable** Disable***

Value = 32 Value = 16

Modem Handshake Control
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit 0

Not Not Not Not
Used Used Used Used

Value = 8 Value = 4 Value = 2 Value = 1

o = Wait for Carrier Detect on Enter Operat ions : 1 = Don't wait
o = Wait for Data Set Ready on Enter and Output Operations: 1 = Don't wait
o = Wait for Clear to Send on Output Operat ions : 1 = Don't wait

Interrupt Enable Register (ENABLE INTR)
Most Significant Bit Least Significant Bit

Bit 7
\

Bit 6
\

Bit 5
I

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Modem Receiver
Transmitter

Receiver
Not Used Status Line

Holding
Buffer

Change Status
Register

Full
Empty

Value = 128\ Value = 64 \ Value = 32\ Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Status Register 13

Control Register 13

Status Register 14

Control Register 14

Read the SCRATCH A default baud rate. The interface is set to
this default when SCRATCH A occurs.

Set the SCRATCH A default baud rate. The values accepted are
the same as for CONTRoL/STATUS register 3. the default pow­
er-up value is 9600 baud.

Read the SCRATCH A default character format. The interface is
set to this default when SCRATCH A occurs.

Set the "SCRATCH A" default character format. The values
accepted are the same as for CONTROL/STATUS register 4. The
default values are: 8 bits/character, 1 stop bit, no parity.

(

Interface Registers 551

GPIO Status and Control Registers
Status Register 0

Control Register 0

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrupts Interrupt
Are Enabled Requested

Value = 128 Value = 64

Control Register 1

Status Register 2
Most Significant Bit

Bit 7 Bit 6

(i) (i)

Value = 128 Value = 64

Control Register 2
Most Significant Bit

Bit 7
1

Bit 6
1

Card identification = 3

Reset interface if non-zero

Bit 5
1

Bit 4 Bit 3

Hardware Interrupt
Burst-
Mode

Level Switches
DMA

Value = 32 1 Value = 16 Value = 8

Set PCTl if non-zero

Bit 5 Bit 4 Bit 3

0 0 0

Value = 32 Value = 16 Value = 8

Bit 5
1

Bit 4
1

Bit 3

Not Used

Interrupt and DMA Status
Least Significant Bit

Bit 2

Word-
Mode
DMA

Value = 4

Bit 2

Handshake
In

Process

Value = 4

Bit 2

PSTS
Error

(1 = Report;
o = Ignore)

Bit 1 Bit (i)

DMA DMA
Channel 1 Channel (i)

Enabled Enabled

Value = 2 Value = 1

Least Significant Bit

Bit 1 Bit (i)

Interrupts
TRANSFER

In Are Enabled
Progress

Value = 2 Value = 1

Peripheral Control
Least Significant Bit

Bit 1 Bit (i)

Set CTL 1 Set CTL0
(1 = Low; (1 = Low;
o = High) o = High)

Value = 1281 Value = 641 Value = 321 Value = 161 Value = 8 Value = 4 Value = 2 Value = 1

Status Register 3

Control Register 3

Status Register 4

Data In (16 bits)

Data Out (16 bits)

Interface is Ready for a subsequent data transfer;
1 = Ready, 0 = Busy.

(

Interface Registers 551

GPIO Status and Control Registers
Status Register 0

Control Register 0

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrupts Interrupt
Are Enabled Requested

Value = 128 Value = 64

Control Register 1

Status Register 2
Most Significant Bit

Bit 7 Bit 6

(i) (i)

Value = 128 Value = 64

Control Register 2
Most Significant Bit

Bit 7
1

Bit 6
1

Card identification = 3

Reset interface if non-zero

Bit 5
1

Bit 4 Bit 3

Hardware Interrupt
Burst-
Mode

Level Switches
DMA

Value = 32 1 Value = 16 Value = 8

Set PCTl if non-zero

Bit 5 Bit 4 Bit 3

0 0 0

Value = 32 Value = 16 Value = 8

Bit 5
1

Bit 4
1

Bit 3

Not Used

Interrupt and DMA Status
Least Significant Bit

Bit 2

Word-
Mode
DMA

Value = 4

Bit 2

Handshake
In

Process

Value = 4

Bit 2

PSTS
Error

(1 = Report;
o = Ignore)

Bit 1 Bit (i)

DMA DMA
Channel 1 Channel (i)

Enabled Enabled

Value = 2 Value = 1

Least Significant Bit

Bit 1 Bit (i)

Interrupts
TRANSFER

In Are Enabled
Progress

Value = 2 Value = 1

Peripheral Control
Least Significant Bit

Bit 1 Bit (i)

Set CTL 1 Set CTL0
(1 = Low; (1 = Low;
o = High) o = High)

Value = 1281 Value = 641 Value = 321 Value = 161 Value = 8 Value = 4 Value = 2 Value = 1

Status Register 3

Control Register 3

Status Register 4

Data In (16 bits)

Data Out (16 bits)

Interface is Ready for a subsequent data transfer;
1 = Ready, 0 = Busy.

552 Interface Registers

GPIO Status and Control Registers (cont.)

Status Register 5
Most Significant Bit

Bit 7 Bit 6

(1) (1)

Value = 128 Value = 64

Bit 5 Bit 4

(1) (1)

Value = 32 Value = 16

Interrupt Enable Register (ENABLE INTR)
Most Significant Bit

Bit 7
/

Bit 6
/

Bit 5
/

Bit 4

Not Used

Bit 3 Bit 2

PSTS EIR
OK Line Low

Value = 8 Value = 4

1
Bit 3

1
Bit 2

Value = 1281 Value = 641 Value = 321 Value = 16/ Value = 8 / Value = 4

Peripheral Status
Least Significant Bit

Bit 1 Bit (1)

STI1 STI(1)
Line Low Line Low

Value = 2 Value = 1

Least Significant Bit

Bit 1 Bit (1)

Enable
Interface Enable

Ready EIR

Interrupts Interrupts

Value = 2 Value = 1

552 Interface Registers

GPIO Status and Control Registers (cont.)

Status Register 5
Most Significant Bit

Bit 7 Bit 6

(1) (1)

Value = 128 Value = 64

Bit 5 Bit 4

(1) (1)

Value = 32 Value = 16

Interrupt Enable Register (ENABLE INTR)
Most Significant Bit

Bit 7
/

Bit 6
/

Bit 5
/

Bit 4

Not Used

Bit 3 Bit 2

PSTS EIR
OK Line Low

Value = 8 Value = 4

1
Bit 3

1
Bit 2

Value = 1281 Value = 641 Value = 321 Value = 16/ Value = 8 / Value = 4

Peripheral Status
Least Significant Bit

Bit 1 Bit (1)

STI1 STI(1)
Line Low Line Low

Value = 2 Value = 1

Least Significant Bit

Bit 1 Bit (1)

Enable
Interface Enable

Ready EIR

Interrupts Interrupts

Value = 2 Value = 1

Interface Registers 553

BCD Status and Control Registers
Status Register 0
Control Register 0

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrupts
Interrupt Are

Enabled
Requested

Value = 128 Value = 64

Control Register 1

Status Register 2
Most Significant Bit

Bit 7 Bit 6

(l) (l)

Value = 128 Value = 64

Control Register 2

Status Register 3

Control Register 3

Card Identification = 4.
Reset Interface (if non-zero value sent) .

Bit 5
I

Bit 4 Bit 3 Bit 2

Hardware Interrupt
0 (l)

Level Switches

Value = 321 Value = 16 Value = 8 Value = 4

Reset driver pointer (if non-zero value sent) .

Bit 5 Bit 4 Bit 3 Bit 2

Handshake
(l) (l) (l) In

Progress

Value = 32 Value = 16 Value = 8 Value = 4

Interrupt Status
Least Significant Bit

Bit 1 Bit 0

(l) (l)

Value = 2 Value = 1

Busy Bit
Least Significant Bit

Bit 1 Bit 0

Interrupts
(l)

Enabled

Value = 2 Value = 1

Request data by Setting CTLA and CTLB (if a non-zero value is sent) ;
this operation also clears an Interrupt Request (clears bit 6 of Status
Register 1) .

Binary Mode: 1 if the interface is currently operating in Binary mode,
and 0 if in BCD mode.

Set Binary Mode: set Binary Mode if non-zero value sent, and BCD
Mode if zero sent.

Interface Registers 553

BCD Status and Control Registers
Status Register 0
Control Register 0

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrupts
Interrupt Are

Enabled
Requested

Value = 128 Value = 64

Control Register 1

Status Register 2
Most Significant Bit

Bit 7 Bit 6

(l) (l)

Value = 128 Value = 64

Control Register 2

Status Register 3

Control Register 3

Card Identification = 4.
Reset Interface (if non-zero value sent) .

Bit 5
I

Bit 4 Bit 3 Bit 2

Hardware Interrupt
0 (l)

Level Switches

Value = 321 Value = 16 Value = 8 Value = 4

Reset driver pointer (if non-zero value sent) .

Bit 5 Bit 4 Bit 3 Bit 2

Handshake
(l) (l) (l) In

Progress

Value = 32 Value = 16 Value = 8 Value = 4

Interrupt Status
Least Significant Bit

Bit 1 Bit 0

(l) (l)

Value = 2 Value = 1

Busy Bit
Least Significant Bit

Bit 1 Bit 0

Interrupts
(l)

Enabled

Value = 2 Value = 1

Request data by Setting CTLA and CTLB (if a non-zero value is sent) ;
this operation also clears an Interrupt Request (clears bit 6 of Status
Register 1) .

Binary Mode: 1 if the interface is currently operating in Binary mode,
and 0 if in BCD mode.

Set Binary Mode: set Binary Mode if non-zero value sent, and BCD
Mode if zero sent.

554 Interface Registers

BCD Status and Control Registers (cant.)

Status Register 4
Most Significant Bit

Bit 7 Bit 6

OF DATA
Switch Switch
Is ON Is ON

Value = 128 Value = 64

Control Register 4
Most Significant Bit

Bit 7 Bit 6

Set Set
00-7 00-6
True True

Value = 128 Value = 64

Status Register 5
Most Significant Bit

Bit 7 Bit 6

011-8 011-4
Is Is

True True

Value = 128 Value = 64

Status Register 6
Most Significant Bit

Bit 7 Bit 6

013-8 013-4
Is Is

True True

Value = 128 Value = 64

Bit 5 Bit 4

SGN1 SGN2
Switch Switch
Is ON Is ON

Value = 32 Value = 16

Bit 5 Bit 4

Set Set
00-5 00-4
True True

Value = 32 Value = 16

Bit 5 Bit 4

011-2 011-1
Is Is

True True

Value = 32 Value = 16

Bit 5 Bit 4

013-2 013-1
Is Is

True True

Value = 32 Value = 16

Switch and Line States
Least Sign ificant Bit

Bit 3 Bit 2 Bit 1 Bit 0

OVLO SGN1 SGN2 OVLO
Switch Input Input Input
Is ON Is True Is True Is True

Value = 8 Value = 4 Value = 2 Value = 1

Data Out Lines
Least Sign ificant Bit

Bit 3 Bit 2 Bit 1 Bit 0

Set Set Set Set
00-3 00-2 00-1 00-0
True True True True

Value = 8 Value = 4 Value = 2 Value = 1

BCD Digits D1 and D2
Least Significant Bi t

Bit 3 Bit 2 Bit 1 Bit 0

012-8 012-4 012-2 012-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

BCD Digits D3 and D4
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit 0

014-8 014-4 014-2 014-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

/

554 Interface Registers

BCD Status and Control Registers (cant.)

Status Register 4
Most Significant Bit

Bit 7 Bit 6

OF DATA
Switch Switch
Is ON Is ON

Value = 128 Value = 64

Control Register 4
Most Significant Bit

Bit 7 Bit 6

Set Set
00-7 00-6
True True

Value = 128 Value = 64

Status Register 5
Most Significant Bit

Bit 7 Bit 6

011-8 011-4
Is Is

True True

Value = 128 Value = 64

Status Register 6
Most Significant Bit

Bit 7 Bit 6

013-8 013-4
Is Is

True True

Value = 128 Value = 64

Bit 5 Bit 4

SGN1 SGN2
Switch Switch
Is ON Is ON

Value = 32 Value = 16

Bit 5 Bit 4

Set Set
00-5 00-4
True True

Value = 32 Value = 16

Bit 5 Bit 4

011-2 011-1
Is Is

True True

Value = 32 Value = 16

Bit 5 Bit 4

013-2 013-1
Is Is

True True

Value = 32 Value = 16

Switch and Line States
Least Sign ificant Bit

Bit 3 Bit 2 Bit 1 Bit 0

OVLO SGN1 SGN2 OVLO
Switch Input Input Input
Is ON Is True Is True Is True

Value = 8 Value = 4 Value = 2 Value = 1

Data Out Lines
Least Sign ificant Bit

Bit 3 Bit 2 Bit 1 Bit 0

Set Set Set Set
00-3 00-2 00-1 00-0
True True True True

Value = 8 Value = 4 Value = 2 Value = 1

BCD Digits D1 and D2
Least Significant Bi t

Bit 3 Bit 2 Bit 1 Bit 0

012-8 012-4 012-2 012-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

BCD Digits D3 and D4
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit 0

014-8 014-4 014-2 014-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

/

Interface Registers 555

BCD Status and Control Registers (cont.)

Status Register 7
Most Significant Bit

Bit 7 Bit 6

015-8 015-4
Is Is

True True

Value = 128 Value = 64

Status Register 8
Most Significant Bit

Bit 7 Bit 6

017-8 017-4
Is Is

True True

Value = 128 Value = 64

Status Register 9
Most Significant Bit

Bit 7 Bit 6

019-8 019-4
Is Is

True True

Value = 128 Value = 64

Bit 5 Bit 4

015-2 015-1
Is Is

True True

Value = 32 Value = 16

Bit 5 Bit 4

017-2 017-1
Is Is

True True

Value = 32 Value = 16

Bit 5 Bit 4

019-2 019-1
Is Is

True True

Value = 32 Value = 16

BCD Digits D5 and D6
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit 0

016-8 016-4 016-2 016-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

BCD Digits D7 and D8
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit0

018-8 018-4 018-2 018-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

BCD Digits D9 and DID
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit0

0110-8 0110-4 0110-2 0110-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

Interface Registers 555

BCD Status and Control Registers (cont.)

Status Register 7
Most Significant Bit

Bit 7 Bit 6

015-8 015-4
Is Is

True True

Value = 128 Value = 64

Status Register 8
Most Significant Bit

Bit 7 Bit 6

017-8 017-4
Is Is

True True

Value = 128 Value = 64

Status Register 9
Most Significant Bit

Bit 7 Bit 6

019-8 019-4
Is Is

True True

Value = 128 Value = 64

Bit 5 Bit 4

015-2 015-1
Is Is

True True

Value = 32 Value = 16

Bit 5 Bit 4

017-2 017-1
Is Is

True True

Value = 32 Value = 16

Bit 5 Bit 4

019-2 019-1
Is Is

True True

Value = 32 Value = 16

BCD Digits D5 and D6
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit 0

016-8 016-4 016-2 016-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

BCD Digits D7 and D8
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit0

018-8 018-4 018-2 018-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

BCD Digits D9 and DID
Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit0

0110-8 0110-4 0110-2 0110-1
Is Is Is Is

True True True True

Value = 8 Value = 4 Value = 2 Value = 1

556 Interface Registers

Data Communications
Status and Control Registers

General Notes: Control registers accept values in the range of zero through 255. Some regis­
ters require specified values, as indicated. Illegal values or values less than
zero or greater than 255, cause ERROR 327.

Status 0

Reset value, shown for various Control Registers, is the default value used by
the interface after a reset or power-up until the value is overridden by a
CONTROL statement.

Card Identification
Value returned: 52 (if 180 is returned, check select code switch cluster and make sure
switch R is ON).

Control 0 Card Reset

Status 1

Status 2

Status 3

Any value, 1 thru 255, resets the card. Immediate execution. Data in queues is destroyed.

Hardware Interrupt Status (not used in most applications)
1 = Enabled 0 = Disabled

Datacomm Activity
o = No activity pending on this select code.
Bit 0 set: ENTER in process.
Bit 1 set: OUTPUT in process.
Bit 2 set: inbound TRANSFER in process
Bit 3 set: outbound TRANSFER in process

Current Protocol Identification:
1 = Async, 2 = Data Link Protocol

Control3 Protocol to be used after next card reset (CONTROL Se to; 1)

1 = Async Protocol 2 = Data Link Protocol
This register overrides default switch configuration.

Status 4 Cause of ON INTR program branch.

Bit Function: Async Protocol Function: Data Link Protocol

0 Data and/or Control Block available Data Block Available

1 Prompt received Space available for a new transmis-
sion block

2 Framing and/or parity error Receive or transmit error

3 Modem line change Modem line change

4 No Activity timeout (forces a discon- No Activity timeout (forces a discon-
nect) nect)

5 Lost carrier or connection timeout Lost carrier or connection timeout
(forces a disconnect) (forces a disconnect)

6 End-of-line received Not Used

7 Break received Not Used

Contents of this register are cleared when a STATUS statement is executed to it.

556 Interface Registers

Data Communications
Status and Control Registers

General Notes: Control registers accept values in the range of zero through 255. Some regis­
ters require specified values, as indicated. Illegal values or values less than
zero or greater than 255, cause ERROR 327.

Status 0

Reset value, shown for various Control Registers, is the default value used by
the interface after a reset or power-up until the value is overridden by a
CONTROL statement.

Card Identification
Value returned: 52 (if 180 is returned, check select code switch cluster and make sure
switch R is ON).

Control 0 Card Reset

Status 1

Status 2

Status 3

Any value, 1 thru 255, resets the card. Immediate execution. Data in queues is destroyed.

Hardware Interrupt Status (not used in most applications)
1 = Enabled 0 = Disabled

Datacomm Activity
o = No activity pending on this select code.
Bit 0 set: ENTER in process.
Bit 1 set: OUTPUT in process.
Bit 2 set: inbound TRANSFER in process
Bit 3 set: outbound TRANSFER in process

Current Protocol Identification:
1 = Async, 2 = Data Link Protocol

Control3 Protocol to be used after next card reset (CONTROL Se to; 1)

1 = Async Protocol 2 = Data Link Protocol
This register overrides default switch configuration.

Status 4 Cause of ON INTR program branch.

Bit Function: Async Protocol Function: Data Link Protocol

0 Data and/or Control Block available Data Block Available

1 Prompt received Space available for a new transmis-
sion block

2 Framing and/or parity error Receive or transmit error

3 Modem line change Modem line change

4 No Activity timeout (forces a discon- No Activity timeout (forces a discon-
nect) nect)

5 Lost carrier or connection timeout Lost carrier or connection timeout
(forces a disconnect) (forces a disconnect)

6 End-of-line received Not Used

7 Break received Not Used

Contents of this register are cleared when a STATUS statement is executed to it.

Interface Registers 557

Datacomm Status and Control Registers (cant.)

Status 5 Inbound queue status

Value Interpretation

o Queue is empty
1 Queue contains data but no control blocks
2 Queue contains one or more control blocks but no data
3 Queue contains both data and one or more control blocks

Control5 Terminate Transmission
OUTPUT 8,5;0 is equivalent to OUTPUT 8;END

Data Link: Sends previous data as a single block with an ETX terminator, then idles the
line with an EOT.

Async: Tells card to turn half-duplex line around. Does nothing when line is full­
duplex. The next data OUTPUT automatically regains control of the line by
raising the RTS (request-to-send) modem line.

Status 6 Break status: 1 = BREAK transmission pending, 0 = no BREAK pending.

Control 6 Send Break; causes a Break to be sent as follows:

Data Link Protocol: Send Reverse Interrupt (RVl) reply to inbound block, or CN character
instead of data in next outbound block.

Async Protocol: Transmit Break. Length is defined by Control Register 39.

Note that the value sent to the register is arbitrary.

Status 7 Modem receiver line states (values shown are for male cable connector option for
connection to modems).

Bit 0 : Data Mode (Data Set Ready) line
Bit 1: Receive ready (Data Carrier Detect line)
Bit 2 : Clear-to-send (CTS) line
Bit 3: Incoming call (Ring Indicator line)
Bit 4: Depends on cable option or adapter used

Status 8 Returns modem driver line states.

Control 8 Sets modem driver line states (values shown are for male cable connector option
for connection to modems) .

Bit 0: Request-to-send (RS or RTS) line 1 = line set (active)
Bit 1: Data Terminal Ready (DTR) line 0 = line clear (inactive)
Bit 2: Driver 1: Data Rate Select
Bit 3: Driver 2: Depends on cable option or adapter used
Bit 4: Driver 3: Depends on cable option or adapter used
Bit 5: Driver 4: Depends on cable option or adapter used
Bits 6,7: Not used

Reset value = 0 prior to connect. Post-connect value is handshake dependent.

Note that RTS line cannot be altered (except by OUTPUT or OUTPUT.. .END) for half­
duplex modem connections.

Interface Registers 557

Datacomm Status and Control Registers (cant.)

Status 5 Inbound queue status

Value Interpretation

o Queue is empty
1 Queue contains data but no control blocks
2 Queue contains one or more control blocks but no data
3 Queue contains both data and one or more control blocks

Control5 Terminate Transmission
OUTPUT 8,5;0 is equivalent to OUTPUT 8;END

Data Link: Sends previous data as a single block with an ETX terminator, then idles the
line with an EOT.

Async: Tells card to turn half-duplex line around. Does nothing when line is full­
duplex. The next data OUTPUT automatically regains control of the line by
raising the RTS (request-to-send) modem line.

Status 6 Break status: 1 = BREAK transmission pending, 0 = no BREAK pending.

Control 6 Send Break; causes a Break to be sent as follows:

Data Link Protocol: Send Reverse Interrupt (RVl) reply to inbound block, or CN character
instead of data in next outbound block.

Async Protocol: Transmit Break. Length is defined by Control Register 39.

Note that the value sent to the register is arbitrary.

Status 7 Modem receiver line states (values shown are for male cable connector option for
connection to modems).

Bit 0 : Data Mode (Data Set Ready) line
Bit 1: Receive ready (Data Carrier Detect line)
Bit 2 : Clear-to-send (CTS) line
Bit 3: Incoming call (Ring Indicator line)
Bit 4: Depends on cable option or adapter used

Status 8 Returns modem driver line states.

Control 8 Sets modem driver line states (values shown are for male cable connector option
for connection to modems) .

Bit 0: Request-to-send (RS or RTS) line 1 = line set (active)
Bit 1: Data Terminal Ready (DTR) line 0 = line clear (inactive)
Bit 2: Driver 1: Data Rate Select
Bit 3: Driver 2: Depends on cable option or adapter used
Bit 4: Driver 3: Depends on cable option or adapter used
Bit 5: Driver 4: Depends on cable option or adapter used
Bits 6,7: Not used

Reset value = 0 prior to connect. Post-connect value is handshake dependent.

Note that RTS line cannot be altered (except by OUTPUT or OUTPUT.. .END) for half­
duplex modem connections.

558 Interface Registers

Status 9

Datacomm Status and Control Registers (cont.)

Returns control block TYPE if last ENTER terminated on a control block. See
Status Register 10 for values.

Status 10 Returns control block MODE if last ENTER terminated on a control block.

Async Protocol Control Blocks

Type Mode Interpretation

250 1 Break received (Channel A)
251 11 Framing error in the following character
251 21 Parity error in the follOWing character
251 31 Parity and framing errors in the follOWing character
252 1 End-of-line terminator detected
253 1 Prompt received from remote
o 0 No Control Block encountered

Data Link Protocol Control Blocks

Type Mode Interpretation

254 1 Preceding block terminated by ETB character
254 2 Preceding block terminated by ETX character
2532 (see following table for Mode interpretation)

o 0 No Control Block encountered.

Mode Bit(s)

o

2,1

3

Interpretation

1 = Transparent data in following block
o = Normal data in follOWing block

00 = Device select
01 = Group select
10 = Line select

1 = Command channel
2 = Data channel

Status 11 Returns available outbound queue space (in bytes) , provided there is sufficient
space for at least three control blocks. If not, value is zero.

Control 12 Datacomm Line connection control

Value Action

o Disconnect
1 Begin connection sequence
2 Begin autodial sequence

1 Parity/framing error control blocks are not generated when characters with parity and/or framing errors are replaced by an underscore (_)
character.

2 This type is used primarity in speCialized applications.

558 Interface Registers

Status 9

Datacomm Status and Control Registers (cont.)

Returns control block TYPE if last ENTER terminated on a control block. See
Status Register 10 for values.

Status 10 Returns control block MODE if last ENTER terminated on a control block.

Async Protocol Control Blocks

Type Mode Interpretation

250 1 Break received (Channel A)
251 11 Framing error in the following character
251 21 Parity error in the follOWing character
251 31 Parity and framing errors in the follOWing character
252 1 End-of-line terminator detected
253 1 Prompt received from remote
o 0 No Control Block encountered

Data Link Protocol Control Blocks

Type Mode Interpretation

254 1 Preceding block terminated by ETB character
254 2 Preceding block terminated by ETX character
2532 (see following table for Mode interpretation)

o 0 No Control Block encountered.

Mode Bit(s)

o

2,1

3

Interpretation

1 = Transparent data in following block
o = Normal data in follOWing block

00 = Device select
01 = Group select
10 = Line select

1 = Command channel
2 = Data channel

Status 11 Returns available outbound queue space (in bytes) , provided there is sufficient
space for at least three control blocks. If not, value is zero.

Control 12 Datacomm Line connection control

Value Action

o Disconnect
1 Begin connection sequence
2 Begin autodial sequence

1 Parity/framing error control blocks are not generated when characters with parity and/or framing errors are replaced by an underscore (_)
character.

2 This type is used primarity in speCialized applications.

Interface Registers 559

Datacomm Status and Control Registers (cont.)

Status 12 Datacomm Line connection status

Value Interpretation

o Disconnected
1 Attempting Connection
2 Dialing
3 Connected1

4 Suspended
5 Currently receiving data (Data Link only)
6 Currently transmitting data (Data Link only)

Note
When the datacomm line is suspended, CLEAR, ABORT, or RESET
must be executed before the line can be reconnected.

Reset value - 0 if R on interface select code switch cluster is ON (1) .

Status 13 Returns current ON INTR mask

Control 13 Sets ON INTR mask2

Data Link Protocol:

Bit Value

0 1
1 2
2 4
3 8
4 163

5 323

Async Protocol:

Bit Value

0 1
1 2
2 4
3 8
4 163

5 323

6 64
7 128

Reset value = 0

Enables interrupt when:

A full block is available in receive queue
Transmit queue is empty
Receive or transmit error detected
A modem line changed
No Activity timeout forced a disconnection
Lost Carrier or Connection timeout caused a disconnection

Enables interrupt when:

Data or control block available in receive queue
Prompt received from remote device
Framing or parity error detected in incoming data
A modem line changed
No Activity timeout forced a disconnection
Lost Carrier or Connection timeout caused a disconnection
End-of-Iine received
Break received

1 When using Data link: Connected - datacomm idle

2 If a CONTROL statement is used to access this register. the control block is placed in the outbound que ue. If the ENABLE INTR .. sta tement is
used with a mask, the mask value is placed directly in the control register. bypassing any queue delays.

3 If bits 4 and 5 are not set, the corresponding errors can be trapped by using an ON ERROR sta tement.

Interface Registers 559

Datacomm Status and Control Registers (cont.)

Status 12 Datacomm Line connection status

Value Interpretation

o Disconnected
1 Attempting Connection
2 Dialing
3 Connected1

4 Suspended
5 Currently receiving data (Data Link only)
6 Currently transmitting data (Data Link only)

Note
When the datacomm line is suspended, CLEAR, ABORT, or RESET
must be executed before the line can be reconnected.

Reset value - 0 if R on interface select code switch cluster is ON (1) .

Status 13 Returns current ON INTR mask

Control 13 Sets ON INTR mask2

Data Link Protocol:

Bit Value

0 1
1 2
2 4
3 8
4 163

5 323

Async Protocol:

Bit Value

0 1
1 2
2 4
3 8
4 163

5 323

6 64
7 128

Reset value = 0

Enables interrupt when:

A full block is available in receive queue
Transmit queue is empty
Receive or transmit error detected
A modem line changed
No Activity timeout forced a disconnection
Lost Carrier or Connection timeout caused a disconnection

Enables interrupt when:

Data or control block available in receive queue
Prompt received from remote device
Framing or parity error detected in incoming data
A modem line changed
No Activity timeout forced a disconnection
Lost Carrier or Connection timeout caused a disconnection
End-of-Iine received
Break received

1 When using Data link: Connected - datacomm idle

2 If a CONTROL statement is used to access this register. the control block is placed in the outbound que ue. If the ENABLE INTR .. sta tement is
used with a mask, the mask value is placed directly in the control register. bypassing any queue delays.

3 If bits 4 and 5 are not set, the corresponding errors can be trapped by using an ON ERROR sta tement.

560 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 14 Returns current Control Block mask.

Control 14 Sets Control Block mask. Control block information is queued sequentially with
incoming data as follows:

Status 15
Control 15

Status 16
Control 16

Status 17
Control 17

Bit

o
1
2
3

Value

1
2
4
8

Async Control Block Passed

Prompt position
End-of-line position
Framing and/or Parity error3

Break received

Reset Value: 0 (Control Blocks disabled)

Bits 4, 5, 6, and 7 are not used.

Returns current modem line interrupt mask.

Data Link Control Block Passed

Transparent/Normal Mode l
ETX Block T erminator2
ETB Block T erminator2

6 (ETX/ETB Enabled)

Sets modem line interrupt mask. Enables an interrupt to ON INTR when Bit 3 of
Control Register 13 is set as follows:

Bit

o
1
2
3
4

Value

1
2
4
8
16

Reset Value = 0

Modem Line to Cause Interrupt

Data Mode (Data Set Ready)
Receive Ready (Data Carrier Detect)
Clear-to-send
OCR1 , Incoming Call (Ring Indicator)
OCR2, Cable or adapter dependent

Note that bit functions are the same as for STATUS register 7. Functions shown are for
male connector cable option for modem connections.

Returns current connection timeout limit.
Sets Attempted Connection timeout limit.
Acceptable values: 1 thru 255 seconds. 0 = timeout disabled.
Reset Value = 25 seconds

Returns current No Activity timeout limit.
Sets No Activity timeout limit.
Acceptable values: 1 thru 255 minutes. 0 = timeout disabled.
Reset Value = 10 minutes (disabled if Async, non-modem handshake).

Status 18 Returns current Lost Carrier timeout limit.
Control 18 Sets Lost Carrier timeout limit in units of 10 ms.

Acceptable values: 1 thru 255. 0 = timeout disabled.
Reset Value = 40 (400 milliseconds)

1 Transparent/Normal format identification control block occurs at th e BEGINNING of a given block of data in the receive queue.

2 ETX and ETB Block Termination identification control blocks occur at the END of a given block of data in the receive queue.

3 This control block precedes each character containing a parity o r framing error.

560 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 14 Returns current Control Block mask.

Control 14 Sets Control Block mask. Control block information is queued sequentially with
incoming data as follows:

Status 15
Control 15

Status 16
Control 16

Status 17
Control 17

Bit

o
1
2
3

Value

1
2
4
8

Async Control Block Passed

Prompt position
End-of-line position
Framing and/or Parity error3

Break received

Reset Value: 0 (Control Blocks disabled)

Bits 4, 5, 6, and 7 are not used.

Returns current modem line interrupt mask.

Data Link Control Block Passed

Transparent/Normal Mode l
ETX Block T erminator2
ETB Block T erminator2

6 (ETX/ETB Enabled)

Sets modem line interrupt mask. Enables an interrupt to ON INTR when Bit 3 of
Control Register 13 is set as follows:

Bit

o
1
2
3
4

Value

1
2
4
8
16

Reset Value = 0

Modem Line to Cause Interrupt

Data Mode (Data Set Ready)
Receive Ready (Data Carrier Detect)
Clear-to-send
OCR1 , Incoming Call (Ring Indicator)
OCR2, Cable or adapter dependent

Note that bit functions are the same as for STATUS register 7. Functions shown are for
male connector cable option for modem connections.

Returns current connection timeout limit.
Sets Attempted Connection timeout limit.
Acceptable values: 1 thru 255 seconds. 0 = timeout disabled.
Reset Value = 25 seconds

Returns current No Activity timeout limit.
Sets No Activity timeout limit.
Acceptable values: 1 thru 255 minutes. 0 = timeout disabled.
Reset Value = 10 minutes (disabled if Async, non-modem handshake).

Status 18 Returns current Lost Carrier timeout limit.
Control 18 Sets Lost Carrier timeout limit in units of 10 ms.

Acceptable values: 1 thru 255. 0 = timeout disabled.
Reset Value = 40 (400 milliseconds)

1 Transparent/Normal format identification control block occurs at th e BEGINNING of a given block of data in the receive queue.

2 ETX and ETB Block Termination identification control blocks occur at the END of a given block of data in the receive queue.

3 This control block precedes each character containing a parity o r framing error.

Interface Registers 561

Datacomm Status and Control Registers (cant.)

Status 19 Returns current Transmit timeout limit.
Control 19 Sets Transmit timeout limit (loss of clock or CTS not returned by modem when transmis­

sion is attempted) .
Acceptable values: 1 thru 255.0 = timeout disabled.
Reset Value = 10 seconds

Status 20 Returns current transmission speed (baud rate) . See table for values.
Control 20 Sets transmission speed (baud rate) as follows:

Register Register
Value Baud Rate Value Baud Rate

0 External Clock 8 600
*1 50 9 1200
*2 75 10 1800
*3 110 11 2400
*4 134.5 12 3600
*5 150 13 4800
*6 200 14 9600

7 300 15 19200
", Async only. These values cannot be used with Data Link. These values set transmit speed
ONLY for Async; transmit AND receive speed for Data Link. Default value is defined by the
interface card configuration switches.

Status 21 Protocol dependent. Returns receive speed (Async) or GID address (Data Link) as
specified by Control Register 21.

Control 21 Protocol dependent. Functions are as follows :

Data Link: Sets Group IDentifier (GID) for terminal. Values 0 thru 26 correspond to

Async:

identifiers @, A, B, .. . Y, Z, respectively. Other values cause an error. Default
value is 1 ("A").
Sets datacomm receiver speed (baud rate) . Values and defaults are the same
as for Control Register 20.

Status 22 Protocol dependent. Returns DID (Data Link) or protocol handshake type (Async)
as specified by Control Register 22.

Control 22 Protocol dependent. Functions are as follows :
Data Link: Sets Device IDentifier (DID) for terminal. Values are the same as for Control

Register 21. Default is determined by interface card configuration switches.
Async: Defines protocol handshake type that is to be used.

Value Handshake type

o Protocol handshake disabled
1 ENQ/ACK with desktop computer as the host
2 ENQ/ACK, desktop computer as a terminal
3 DClIDC3, desktop computer as host
4 DClIDC3, desktop computer as a terminal
5 DClIDC3, desktop computer as both host and terminal

Interface Registers 561

Datacomm Status and Control Registers (cant.)

Status 19 Returns current Transmit timeout limit.
Control 19 Sets Transmit timeout limit (loss of clock or CTS not returned by modem when transmis­

sion is attempted) .
Acceptable values: 1 thru 255.0 = timeout disabled.
Reset Value = 10 seconds

Status 20 Returns current transmission speed (baud rate) . See table for values.
Control 20 Sets transmission speed (baud rate) as follows:

Register Register
Value Baud Rate Value Baud Rate

0 External Clock 8 600
*1 50 9 1200
*2 75 10 1800
*3 110 11 2400
*4 134.5 12 3600
*5 150 13 4800
*6 200 14 9600

7 300 15 19200
", Async only. These values cannot be used with Data Link. These values set transmit speed
ONLY for Async; transmit AND receive speed for Data Link. Default value is defined by the
interface card configuration switches.

Status 21 Protocol dependent. Returns receive speed (Async) or GID address (Data Link) as
specified by Control Register 21.

Control 21 Protocol dependent. Functions are as follows :

Data Link: Sets Group IDentifier (GID) for terminal. Values 0 thru 26 correspond to

Async:

identifiers @, A, B, .. . Y, Z, respectively. Other values cause an error. Default
value is 1 ("A").
Sets datacomm receiver speed (baud rate) . Values and defaults are the same
as for Control Register 20.

Status 22 Protocol dependent. Returns DID (Data Link) or protocol handshake type (Async)
as specified by Control Register 22.

Control 22 Protocol dependent. Functions are as follows :
Data Link: Sets Device IDentifier (DID) for terminal. Values are the same as for Control

Register 21. Default is determined by interface card configuration switches.
Async: Defines protocol handshake type that is to be used.

Value Handshake type

o Protocol handshake disabled
1 ENQ/ACK with desktop computer as the host
2 ENQ/ACK, desktop computer as a terminal
3 DClIDC3, desktop computer as host
4 DClIDC3, desktop computer as a terminal
5 DClIDC3, desktop computer as both host and terminal

562 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 23 Returns current hardware handshake type.
Control 23 Sets hardware handshake type as follows:

0= Handshake OFF, non-modem connection.
1 = FULL-DUPLEX modem connection.
2 = HALF-DUPLEX modem connection.
3 = Handshake ON, non-modem connection.
Reset Value is determined by interface configuration switches.

Status 24 Protocol dependent. Returns value set by preceding CONTROL statement to Con­
trol Register 24.

Control 24 Protocol dependent. Functions as follows:
Data Link protocol: Set outbound block size limit.

Value Block size Value Block size

0 512 bytes 4 8 bytes
1 2 bytes
2 4 bytes
3 6 bytes 255 510 bytes

Reset outbound block size limit = 512 bytes

Async Protocol: Set mask for control characters included in receive data message queue.
Bit set: transfer character(s) .
Bit cleared: delete character(s) .

Bit set Value Character(s) passed to receive queue

o 1 Handshake characters (ENQ, ACK, DC1 , DC3)
1 2 Inbound End-of-line character(s)
2 4 Inbound Prompt character(s)
3 8 NUL (CHR$(O))
4 16 DEL (CHR$(127))
5 32 CHR$(255)
6 64 Change parity/framing errors to underscores (_) if bit is set.
7 128 Not used

Reset value = 127 (bits 0 thru 6 set)

Status 25 Returns number of received errors since power up or
reset.

Note
Control Registers 26 through 35, Status Registers 27 through 35,
and Control and Status Registers 37 and 39 are used for ASYNC
protocol ONLY. They are not available during Data Link operation.

562 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 23 Returns current hardware handshake type.
Control 23 Sets hardware handshake type as follows:

0= Handshake OFF, non-modem connection.
1 = FULL-DUPLEX modem connection.
2 = HALF-DUPLEX modem connection.
3 = Handshake ON, non-modem connection.
Reset Value is determined by interface configuration switches.

Status 24 Protocol dependent. Returns value set by preceding CONTROL statement to Con­
trol Register 24.

Control 24 Protocol dependent. Functions as follows:
Data Link protocol: Set outbound block size limit.

Value Block size Value Block size

0 512 bytes 4 8 bytes
1 2 bytes
2 4 bytes
3 6 bytes 255 510 bytes

Reset outbound block size limit = 512 bytes

Async Protocol: Set mask for control characters included in receive data message queue.
Bit set: transfer character(s) .
Bit cleared: delete character(s) .

Bit set Value Character(s) passed to receive queue

o 1 Handshake characters (ENQ, ACK, DC1 , DC3)
1 2 Inbound End-of-line character(s)
2 4 Inbound Prompt character(s)
3 8 NUL (CHR$(O))
4 16 DEL (CHR$(127))
5 32 CHR$(255)
6 64 Change parity/framing errors to underscores (_) if bit is set.
7 128 Not used

Reset value = 127 (bits 0 thru 6 set)

Status 25 Returns number of received errors since power up or
reset.

Note
Control Registers 26 through 35, Status Registers 27 through 35,
and Control and Status Registers 37 and 39 are used for ASYNC
protocol ONLY. They are not available during Data Link operation.

Interface Registers 563

Datacomm Status and Control Registers (cont.)

Status 26 Protocol dependent
Data Link protocol: Returns number of transmit errors (NAKs received) since last interface

reset.
Async protocol: Returns first protocol handshake character (ACK or DC 1).

Control 26 Sets first protocol handshake character as follows:
(Async only) 6 =ACK, 17 = DCI. Other values used for special applications only. UseACK when Control

Register 22 is set to 1 or 2. Use DC1 when Control Register 22 is set to 3, 4, or 5.
Reset value = 17 (DC1)

Status 27 Returns second protocol handshake character.
(Async only)
Control 27 Sets second protocol handshake character as follows:
(Async only) 5 = ENQ, 19 = DC3. Other values used for special applications only. Use ENQ when Control

Register 22 is set to 1 or 2. Use DC3 when Control Register 22 is set to 3, 4, or 5.
Reset value = 19 (DC3)

Status 28 Returns number of characters in inbound end-of-line delimiter sequence.
(Async only)
Control 28 Sets number of characters in end-of-line delimiter sequence
(Async only) Acceptable values are 0 (no EOL delimiter) , 1, or 2.

Reset Value = 2

Status 29 Returns first end-of-line character.
(Async only)
Control 29 Sets first end-of-line character.
(Async only) Reset Value = 13 (carriage return)

Status 30 Returns second end-of-line character.
(Async only)
Control 30 Sets second end-of-line character.
(Async only) Reset Value = 10 (line feed)

Status 31 Returns number of characters in Prompt sequence.
(Async only)
Control 31 Sets number of characters in Prompt sequence.
(Async only) Acceptable values are 0 (Prompt disabled), 1 or 2.

Reset Value = 1

Status 32 Returns first character in Prompt sequence.
(Async only)
Control 32 Sets first character in Prompt sequence.
(Async only) Reset Value = 17 (DC1)

Status 33 Returns second character in Prompt sequence.
(Async only)
Control 33 Sets second character in Prompt sequence.
(Async only) Reset Value = 0 (null)

Interface Registers 563

Datacomm Status and Control Registers (cont.)

Status 26 Protocol dependent
Data Link protocol: Returns number of transmit errors (NAKs received) since last interface

reset.
Async protocol: Returns first protocol handshake character (ACK or DC 1).

Control 26 Sets first protocol handshake character as follows:
(Async only) 6 =ACK, 17 = DCI. Other values used for special applications only. UseACK when Control

Register 22 is set to 1 or 2. Use DC1 when Control Register 22 is set to 3, 4, or 5.
Reset value = 17 (DC1)

Status 27 Returns second protocol handshake character.
(Async only)
Control 27 Sets second protocol handshake character as follows:
(Async only) 5 = ENQ, 19 = DC3. Other values used for special applications only. Use ENQ when Control

Register 22 is set to 1 or 2. Use DC3 when Control Register 22 is set to 3, 4, or 5.
Reset value = 19 (DC3)

Status 28 Returns number of characters in inbound end-of-line delimiter sequence.
(Async only)
Control 28 Sets number of characters in end-of-line delimiter sequence
(Async only) Acceptable values are 0 (no EOL delimiter) , 1, or 2.

Reset Value = 2

Status 29 Returns first end-of-line character.
(Async only)
Control 29 Sets first end-of-line character.
(Async only) Reset Value = 13 (carriage return)

Status 30 Returns second end-of-line character.
(Async only)
Control 30 Sets second end-of-line character.
(Async only) Reset Value = 10 (line feed)

Status 31 Returns number of characters in Prompt sequence.
(Async only)
Control 31 Sets number of characters in Prompt sequence.
(Async only) Acceptable values are 0 (Prompt disabled), 1 or 2.

Reset Value = 1

Status 32 Returns first character in Prompt sequence.
(Async only)
Control 32 Sets first character in Prompt sequence.
(Async only) Reset Value = 17 (DC1)

Status 33 Returns second character in Prompt sequence.
(Async only)
Control 33 Sets second character in Prompt sequence.
(Async only) Reset Value = 0 (null)

564 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 34 Returns the number of bits per character.
(Async only)
Control 34 Sets the number of bits per character as follows:
(Async only) 0 = 5 bits/character 2 = 7 bits/character

1 = 6 bits/character 3 = 8 bits/character)
When 8 bits/char, parity must be NONE, ODD, or EVEN.
Reset Value is determined by interface card default switches.

Status 35 Returns the number of stop bits per character.
(Async only)
Control 35 Sets the number of stop bits per character as follows:
(Async only) 0 = 1 stop bit 1 = 1.5 stop bits 2 = 2 stop bits

Reset Value: 2 stop bits if 150 baud or less, otherwise 1 stop bit.
Reset Value is determined by interface configuration switch settings.

Status 36 Returns current Parity setting.
Control 36 Sets Parity for transmitting and receiving as follows:

Data Link Protocol: 0 = NO Parity; Network host is HP 1000 Computer.

Async Protocol

1 = ODD Parity; Network host is HP 3000 Computer.
Reset Value = 0
0 = NONE; no parity bit is included with any characters.
1 = ODD; Parity bit SET if there is an EVEN number of

" 1" s in the character body.
2 = EVEN; Parity bit OFF if there is an ODD number of

" 1" s in the character body.
3 = "0" ; Parity bit is always ZERO, but parity is not checked.
4 = "1"; Parity bit is always SET, but parity is not checked.

Default is determined by interface configuration switches. If 8 bits per character, parity
must be NONE, ODD, or EVEN.

Status 37 Returns inter-character time gap in character times.
(Async only)
Control 37 Sets inter-character time gap in character times.
(Async only) Acceptable values: 1 thru 255 character times.

0= No gap between characters.
Reset Value = 0

Status 38 Returns Transmit queue status.
If returned value = 1, queue is empty, and there are no pending transmissions.

Status 39 Returns current Break time (in character times) .
(Async only)
Control 39 Sets Break time in character times.
(Async only) Acceptable values are : 2 thru 255.

Reset Value = 4.

564 Interface Registers

Datacomm Status and Control Registers (cont.)

Status 34 Returns the number of bits per character.
(Async only)
Control 34 Sets the number of bits per character as follows:
(Async only) 0 = 5 bits/character 2 = 7 bits/character

1 = 6 bits/character 3 = 8 bits/character)
When 8 bits/char, parity must be NONE, ODD, or EVEN.
Reset Value is determined by interface card default switches.

Status 35 Returns the number of stop bits per character.
(Async only)
Control 35 Sets the number of stop bits per character as follows:
(Async only) 0 = 1 stop bit 1 = 1.5 stop bits 2 = 2 stop bits

Reset Value: 2 stop bits if 150 baud or less, otherwise 1 stop bit.
Reset Value is determined by interface configuration switch settings.

Status 36 Returns current Parity setting.
Control 36 Sets Parity for transmitting and receiving as follows:

Data Link Protocol: 0 = NO Parity; Network host is HP 1000 Computer.

Async Protocol

1 = ODD Parity; Network host is HP 3000 Computer.
Reset Value = 0
0 = NONE; no parity bit is included with any characters.
1 = ODD; Parity bit SET if there is an EVEN number of

" 1" s in the character body.
2 = EVEN; Parity bit OFF if there is an ODD number of

" 1" s in the character body.
3 = "0" ; Parity bit is always ZERO, but parity is not checked.
4 = "1"; Parity bit is always SET, but parity is not checked.

Default is determined by interface configuration switches. If 8 bits per character, parity
must be NONE, ODD, or EVEN.

Status 37 Returns inter-character time gap in character times.
(Async only)
Control 37 Sets inter-character time gap in character times.
(Async only) Acceptable values: 1 thru 255 character times.

0= No gap between characters.
Reset Value = 0

Status 38 Returns Transmit queue status.
If returned value = 1, queue is empty, and there are no pending transmissions.

Status 39 Returns current Break time (in character times) .
(Async only)
Control 39 Sets Break time in character times.
(Async only) Acceptable values are : 2 thru 255.

Reset Value = 4.

Interface Registers 565

Powerfail Status and Control Registers

Status Register 0
Control Register 0

Status Register 1
Most Significant Bit

Bit 7 1 Bit 6
I

Card Identification is always 5.
Shut Down. Any non-zero value written to this register will turn off
both battery and ac-line power to the computer, which conserves
battery power after the service routine has finished responding to the
powerfail. If ac-line power is on when this statement is executed, the
computer will be turned back on in the normal powerup sequence.

Bit 5
I

Bit 4 J Bit 3

Not Used

Powerfail Interrupt Cause
Least Significant Bit

Bit 2 Bit 1 Bit 0

One Power Power
Second Is Has

Left Back Failed

Value = 1281 Value = 641 Value = 321 Value = 161 Value = 8 Value = 4 Value = 2 Value = 1

Control Register 1

Status Register 2

Control Register 2

Status Register 3
Most Significant Bit

Bit 7 Bit 6

Failed
Self
Test

1

Undefined

Interrupt Mask has bit definitions identical to the preceding register.

Undefined

Bit 5
1

Bit 4 Bit 3 Bit 2

One Currently
Not Used Second Using

Left Battery

Powerfail Status
Least Significant Bit

Bit 1 Bit 0

Ac In the
Is Powerfail

Down State

Value = 128 Value = 641 Value = 321 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Control Register 3 Undefined.

Interface Registers 565

Powerfail Status and Control Registers

Status Register 0
Control Register 0

Status Register 1
Most Significant Bit

Bit 7 1 Bit 6
I

Card Identification is always 5.
Shut Down. Any non-zero value written to this register will turn off
both battery and ac-line power to the computer, which conserves
battery power after the service routine has finished responding to the
powerfail. If ac-line power is on when this statement is executed, the
computer will be turned back on in the normal powerup sequence.

Bit 5
I

Bit 4 J Bit 3

Not Used

Powerfail Interrupt Cause
Least Significant Bit

Bit 2 Bit 1 Bit 0

One Power Power
Second Is Has

Left Back Failed

Value = 1281 Value = 641 Value = 321 Value = 161 Value = 8 Value = 4 Value = 2 Value = 1

Control Register 1

Status Register 2

Control Register 2

Status Register 3
Most Significant Bit

Bit 7 Bit 6

Failed
Self
Test

1

Undefined

Interrupt Mask has bit definitions identical to the preceding register.

Undefined

Bit 5
1

Bit 4 Bit 3 Bit 2

One Currently
Not Used Second Using

Left Battery

Powerfail Status
Least Significant Bit

Bit 1 Bit 0

Ac In the
Is Powerfail

Down State

Value = 128 Value = 641 Value = 321 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Control Register 3 Undefined.

566 Interface Registers

Powerfail Status and Control Registers (cont.)

Status Register 4

Control Register 4

Status Register 5

Control Register 5

Status Register 6

Control Register 6

Status Register 7

Control Register 7

Status Registers 8
thru 71

Control Registers
8 thru 71

Overheat Protection Timer contains the amount of battery time used
during this Powerfail State (in tens of milliseconds). For every second
the power is down, it must be back for two seconds to ensure ade­
quate cooling for the machine. Thus, the value of this register bounds
the maximum amount of time that can be obtained from the battery,
even though 60 seconds may have been specified as the protection
time (CONTROL Register 6).

Undefined.

Power Back Timer contains the time elapsed since power was restored
after the last powerfail (in tens of milliseconds) .

Power Back Delay. The value of this register determines the amount
of time (in tens of milliseconds) that the computer will delay, after
power is back, before leaving the powerfail state (Le., before generat­
ing a "Power Is Back" interrupt) . The power-on default value is 50
(500 milliseconds) .

Powerfail Timer contains the time elapsed since the last powerfail (in
tens of milliseconds) .

Protection Time. The value of register determines the maximum
amount of time (in tens of milliseconds) that the computer is to have
battery backup. Power-on default is 6000 (60 seconds) .

Undefined.

Powerfail Delay Timer. The contents of this register determine the
amount of time (in tens of milliseconds) that the Powerfail-Protection
Interface will wait, after a powerfail, before generating a "Power Has
Failed" interrupt. Power-on default is 10 (100 milliseconds) .

Continuous-Memory Registers contain the 64 bytes of data written by
the last CONTROL statement directed to these registers.

Continuous-Memory Registers. These sixty-four, Single-byte registers
can be filled with any desired data, one byte (ASCII character) per
register.

566 Interface Registers

Powerfail Status and Control Registers (cont.)

Status Register 4

Control Register 4

Status Register 5

Control Register 5

Status Register 6

Control Register 6

Status Register 7

Control Register 7

Status Registers 8
thru 71

Control Registers
8 thru 71

Overheat Protection Timer contains the amount of battery time used
during this Powerfail State (in tens of milliseconds). For every second
the power is down, it must be back for two seconds to ensure ade­
quate cooling for the machine. Thus, the value of this register bounds
the maximum amount of time that can be obtained from the battery,
even though 60 seconds may have been specified as the protection
time (CONTROL Register 6).

Undefined.

Power Back Timer contains the time elapsed since power was restored
after the last powerfail (in tens of milliseconds) .

Power Back Delay. The value of this register determines the amount
of time (in tens of milliseconds) that the computer will delay, after
power is back, before leaving the powerfail state (Le., before generat­
ing a "Power Is Back" interrupt) . The power-on default value is 50
(500 milliseconds) .

Powerfail Timer contains the time elapsed since the last powerfail (in
tens of milliseconds) .

Protection Time. The value of register determines the maximum
amount of time (in tens of milliseconds) that the computer is to have
battery backup. Power-on default is 6000 (60 seconds) .

Undefined.

Powerfail Delay Timer. The contents of this register determine the
amount of time (in tens of milliseconds) that the Powerfail-Protection
Interface will wait, after a powerfail, before generating a "Power Has
Failed" interrupt. Power-on default is 10 (100 milliseconds) .

Continuous-Memory Registers contain the 64 bytes of data written by
the last CONTROL statement directed to these registers.

Continuous-Memory Registers. These sixty-four, Single-byte registers
can be filled with any desired data, one byte (ASCII character) per
register.

Status Register 0
Most Signif icant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Control Register 0

Status Register 1

Control Register 1

Status Register 2

Control Register 2

Status Register 3

Control Register 3

EPROM Programmer
Status and Control Registers

Bit 5 Bit 4 Bit 3 Bit 2

0 1 1 0

Value = 32 Value = 16 Value = 8 Value = 4

Bit 1

1

Interface Registers 567

ID Register
Least Signi ficant Bit

Bit 0

1

Value = 2 Value = 1

This register contains a value of 27 (decimal) which is the ID of an
EPROM Programmer card.

Interface Reset
Writing any non-zero value into this register resets the card; writing a
value of zero causes no action.

Read Program Time
A value of 0 indicates that the program time is 52.5 milliseconds for
each 16-bit word (default); a non-zero value indicates that the prog­
ram time is 13.1 milliseconds.

Set Program Time
Writing a value of 0 into this register sets the program time to 52.5
milliseconds for each 16-bit word; any non-zero value sets program
time to 13.1 milliseconds.

Read Target Address
This register contains the offset address (relative to the card's base
address) at which the next word of data will be read (via Status Regis­
ter 3) or written (via Control Register 3). The default address is 0,
which is the address of the first byte on the card.

Set Target Address
Writing to this register sets the offset address at which the next word of
data will be read (via Status Register 3) or written (via Control Register
3). The target address must always be an even number.

Read Word at Target Address
This register contains the 16-bit word at the current target address.

Write Word at Target Address
Writing a data word to this register programs a 16-bit word at the
current target address. The target address must be set (via Control
register 2) before every word is written. Automatic verification is also
performed after the word is programmed.

Status Register 0
Most Signif icant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Control Register 0

Status Register 1

Control Register 1

Status Register 2

Control Register 2

Status Register 3

Control Register 3

EPROM Programmer
Status and Control Registers

Bit 5 Bit 4 Bit 3 Bit 2

0 1 1 0

Value = 32 Value = 16 Value = 8 Value = 4

Bit 1

1

Interface Registers 567

ID Register
Least Signi ficant Bit

Bit 0

1

Value = 2 Value = 1

This register contains a value of 27 (decimal) which is the ID of an
EPROM Programmer card.

Interface Reset
Writing any non-zero value into this register resets the card; writing a
value of zero causes no action.

Read Program Time
A value of 0 indicates that the program time is 52.5 milliseconds for
each 16-bit word (default); a non-zero value indicates that the prog­
ram time is 13.1 milliseconds.

Set Program Time
Writing a value of 0 into this register sets the program time to 52.5
milliseconds for each 16-bit word; any non-zero value sets program
time to 13.1 milliseconds.

Read Target Address
This register contains the offset address (relative to the card's base
address) at which the next word of data will be read (via Status Regis­
ter 3) or written (via Control Register 3). The default address is 0,
which is the address of the first byte on the card.

Set Target Address
Writing to this register sets the offset address at which the next word of
data will be read (via Status Register 3) or written (via Control Register
3). The target address must always be an even number.

Read Word at Target Address
This register contains the 16-bit word at the current target address.

Write Word at Target Address
Writing a data word to this register programs a 16-bit word at the
current target address. The target address must be set (via Control
register 2) before every word is written. Automatic verification is also
performed after the word is programmed.

568 Interface Registers

Status Register 4

Control Register 4

Status Register 5

Control Register 5

Status Register 6

Control Register 6

Current Memory Card Capacity (in bytes)
This register contains the current capacity of a fully loaded card in
bytes; it also indirectly indicates which type of EPROM devices are
being used on the card. If 262 144 is returned, then 27128 EPROMs
are being used; if 131 072 is returned, then 2764 devices are being
used. A 0 is returned if the programmer card is not currently con­
nected to any EPROM memory card.

Undefined.

Number of Contiguous, Erased Bytes
Reading this register causes the system to begin counting the number
of subsequent bytes, beginning at the current target address, that are
erased (or are empty sockets) . The counting is stopped when a prog­
rammed byte (Le., one containing at least one logical 0) is found or
when the end of the card is reached. If the byte at the current target
address is not FF, then a count of 0 is returned. Error 84 is reported if
the programmer card is not currently connected to any EPROM card.

Undefined.

Base Address of EPROM Memory Card
This register contains the (absolute) base address of the EPROM
memory card to which the programmer card is currently connected;
this base address is also the absolute address of the first word on the
card. Error 84 is reported if the programmer card is not currently
connected to any EPROM memory card.

Undefined.

568 Interface Registers

Status Register 4

Control Register 4

Status Register 5

Control Register 5

Status Register 6

Control Register 6

Current Memory Card Capacity (in bytes)
This register contains the current capacity of a fully loaded card in
bytes; it also indirectly indicates which type of EPROM devices are
being used on the card. If 262 144 is returned, then 27128 EPROMs
are being used; if 131 072 is returned, then 2764 devices are being
used. A 0 is returned if the programmer card is not currently con­
nected to any EPROM memory card.

Undefined.

Number of Contiguous, Erased Bytes
Reading this register causes the system to begin counting the number
of subsequent bytes, beginning at the current target address, that are
erased (or are empty sockets) . The counting is stopped when a prog­
rammed byte (Le., one containing at least one logical 0) is found or
when the end of the card is reached. If the byte at the current target
address is not FF, then a count of 0 is returned. Error 84 is reported if
the programmer card is not currently connected to any EPROM card.

Undefined.

Base Address of EPROM Memory Card
This register contains the (absolute) base address of the EPROM
memory card to which the programmer card is currently connected;
this base address is also the absolute address of the first word on the
card. Error 84 is reported if the programmer card is not currently
connected to any EPROM memory card.

Undefined.

Status Register 0

Control Register 0

Status Register 1

Control Register 1

Status Register 2

Control Register 2

Status Register 3

Control Register 3

Parity, Cache and Float
Status and Control Registers

(Pseudo Select Code 32)
Parity checking
o = off, 1 = on

Sets parity checking
o = off, 1 = on

Cache
o = off, 1 = on

Sets cache
o = off, 1 = on

Interface Registers 569

HP 98635 floating-point math card/MC68881 floating-point math co­
processor
o = off, 1 = on

Sets HP 98635 floating-point math card/MC68881 floating-point
math co-processor
o = off, 1 = on

Cache
o = off, 1 = on

Sets cache
o = ofL non-O = on

Status Register 0

Control Register 0

Status Register 1

Control Register 1

Status Register 2

Control Register 2

Status Register 3

Control Register 3

Parity, Cache and Float
Status and Control Registers

(Pseudo Select Code 32)
Parity checking
o = off, 1 = on

Sets parity checking
o = off, 1 = on

Cache
o = off, 1 = on

Sets cache
o = off, 1 = on

Interface Registers 569

HP 98635 floating-point math card/MC68881 floating-point math co­
processor
o = off, 1 = on

Sets HP 98635 floating-point math card/MC68881 floating-point
math co-processor
o = off, 1 = on

Cache
o = off, 1 = on

Sets cache
o = ofL non-O = on

570 Interface Registers

Status Register 0

Status Register 1

Status Register 2

Status Register 3

Status Register 4

Status Register 5

Status Register 6

Status Register 7

Status Register 8

Status Register 11

Status Register 12

Summary of SRM Status Registers

Card Identification

52 if the Remote Control switch (R) is set to 0 (closed); 180 if switch is set
to 1 (open).

Interface Interrupts

1 = interrupts enabled; 0 = interrupts disabled.

Interface Busy

1 = busy; 0 = not busy.

Interface Firmware 10

Always 3 (the firmware 10 of the HP 98629A interface).

Not Implemented

Data Availability

o = receiver buffer empty;
1 = receiver data available but no control blocks buffered:
2 = receiver control blocks available but no data buffered;
3 = both control blocks and data available.

Node Address of the interface

Node address of the HP 98629A interface installed in this computer
which is set to the specified select code. The range of node addresses is 0
through 63.

CRC Errors

Total number of cyclic redundancy check (CRC) errors detected by the
interface since powerup or (RESET) .

Buffer Overflows

Total number of times the receive buffer has overflowed since powerup
or (RESEr).

Amount of available space (number of bytes) in the transmit-data buffer.

Number of transmission retries performed since powerup or (RESEr).

570 Interface Registers

Status Register 0

Status Register 1

Status Register 2

Status Register 3

Status Register 4

Status Register 5

Status Register 6

Status Register 7

Status Register 8

Status Register 11

Status Register 12

Summary of SRM Status Registers

Card Identification

52 if the Remote Control switch (R) is set to 0 (closed); 180 if switch is set
to 1 (open).

Interface Interrupts

1 = interrupts enabled; 0 = interrupts disabled.

Interface Busy

1 = busy; 0 = not busy.

Interface Firmware 10

Always 3 (the firmware 10 of the HP 98629A interface).

Not Implemented

Data Availability

o = receiver buffer empty;
1 = receiver data available but no control blocks buffered:
2 = receiver control blocks available but no data buffered;
3 = both control blocks and data available.

Node Address of the interface

Node address of the HP 98629A interface installed in this computer
which is set to the specified select code. The range of node addresses is 0
through 63.

CRC Errors

Total number of cyclic redundancy check (CRC) errors detected by the
interface since powerup or (RESET) .

Buffer Overflows

Total number of times the receive buffer has overflowed since powerup
or (RESEr).

Amount of available space (number of bytes) in the transmit-data buffer.

Number of transmission retries performed since powerup or (RESEr).

Useful Tables

Option Numbers
1 BASIC Main 19 ERR
2 GRAPH 20 DISC
3 GRAPHX 21 CS80
4 10 22 BUBBLE
5 BASIC Main 23 EPROM
6 TRANS 24 HP 9885
7 MAT 25 HPIB
8 PDEV 26 FHPIB
9 XREF 27 SERIAL

10 KBD 28 GPIO
11 CLOCK 29 BCD
12 LEX 30 DCOMM
13 BASIC Main 31-40 Reserved
14 MS 41 " PHYREC"
15 SRM 42 CRTB
16-17 Reserved 43 CRTA
18 KNB2-0

Interface Select Codes
Internal Select Codes

1 Display (alpha)
2 Keyboard
3 Display (graphics)
4 Internal floppy-disc drive
5 Optional powerfail protection interface
6 Display (Graphics for bit mapped)
7 HP-IB interface (built-in)

Factory Presets for External Interfaces

8 HP-IB
9 RS-232

10 (not used)
11 BCD
12 GPIO
14 HP-IB Disc Interface
20 Data Communications
21 Shared Resource Management
27 EPROM Programmer
28 Color Output
30 Bubble Memory
32 Parity, Cache, Float (Pseudo Select Code)

571

Useful Tables

Option Numbers
1 BASIC Main 19 ERR
2 GRAPH 20 DISC
3 GRAPHX 21 CS80
4 10 22 BUBBLE
5 BASIC Main 23 EPROM
6 TRANS 24 HP 9885
7 MAT 25 HPIB
8 PDEV 26 FHPIB
9 XREF 27 SERIAL

10 KBD 28 GPIO
11 CLOCK 29 BCD
12 LEX 30 DCOMM
13 BASIC Main 31-40 Reserved
14 MS 41 " PHYREC"
15 SRM 42 CRTB
16-17 Reserved 43 CRTA
18 KNB2-0

Interface Select Codes
Internal Select Codes

1 Display (alpha)
2 Keyboard
3 Display (graphics)
4 Internal floppy-disc drive
5 Optional powerfail protection interface
6 Display (Graphics for bit mapped)
7 HP-IB interface (built-in)

Factory Presets for External Interfaces

8 HP-IB
9 RS-232

10 (not used)
11 BCD
12 GPIO
14 HP-IB Disc Interface
20 Data Communications
21 Shared Resource Management
27 EPROM Programmer
28 Color Output
30 Bubble Memory
32 Parity, Cache, Float (Pseudo Select Code)

571

572 Useful Tables

Alpha Displays:

Bit-Mapped Displays:

Display-Enhancement Characters

Character
Code

128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143

Character
Code

128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143

Action Resulting from
Displaying the Character

All enhancements off
Inverse mode on
Blinking mode on
Inverse and Blinking modes on
Underline mode on
Underline and Inverse modes on
Underline and Blinking modes on
Underline, Inverse, and Blinking

modes on
White
Red
Yellow
Green
Cyan
Blue

Model 236C alpha colors.
(CRT control registers 5 and 15 through
17 also provide a method of changing
the alpha color.)

Magenta
Black

Action Resulting from
Displaying the Character

All enhancements off
Inverse mode on
No action
Inverse mode on
Underline mode on
Underline and Inverse modes on
Underline mode on
Underline and Inverse modes on
White (pen 1)
Red (pen 2)
Yellow (pen 3)
Green (pen 4)
Cyan (pen 5)
Blue (pen 6)
Magenta (pen 7)
Black (pen 0)

Default color map of displays
with at least three color planes.
(CRT control registers 5 and 15
through 17 also provide a
method of changing alpha
color.)

PR I NTing CHR$ (x), where 136 :os; x:os; 143, will provide the same colors as on the Model 236C as
long as the color map contains default values and the alpha write-enable mask includes planes
o through 2. A user-defined color map which changes the values of pens 0 to 7 will change the
meaning of CHR$ (x) .

572 Useful Tables

Alpha Displays:

Bit-Mapped Displays:

Display-Enhancement Characters

Character
Code

128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143

Character
Code

128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143

Action Resulting from
Displaying the Character

All enhancements off
Inverse mode on
Blinking mode on
Inverse and Blinking modes on
Underline mode on
Underline and Inverse modes on
Underline and Blinking modes on
Underline, Inverse, and Blinking

modes on
White
Red
Yellow
Green
Cyan
Blue

Model 236C alpha colors.
(CRT control registers 5 and 15 through
17 also provide a method of changing
the alpha color.)

Magenta
Black

Action Resulting from
Displaying the Character

All enhancements off
Inverse mode on
No action
Inverse mode on
Underline mode on
Underline and Inverse modes on
Underline mode on
Underline and Inverse modes on
White (pen 1)
Red (pen 2)
Yellow (pen 3)
Green (pen 4)
Cyan (pen 5)
Blue (pen 6)
Magenta (pen 7)
Black (pen 0)

Default color map of displays
with at least three color planes.
(CRT control registers 5 and 15
through 17 also provide a
method of changing alpha
color.)

PR I NTing CHR$ (x), where 136 :os; x:os; 143, will provide the same colors as on the Model 236C as
long as the color map contains default values and the alpha write-enable mask includes planes
o through 2. A user-defined color map which changes the values of pens 0 to 7 will change the
meaning of CHR$ (x) .

Useful Tables 573

(
US ASCII Character Codes

ASCII EQUIVALENT FORMS
HP-IB ASCII EQUIVALENT FORMS HP-IB

Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

NUL 0 00000000 000 00 space 32 00100000 040 20 LAO

SOH 1 00000001 001 01 GTL ! 33 00100001 041 21 LA1

STX 2 00000010 002 02 " 34 00100010 042 22 LA2

ETX 3 00000011 003 03 # 35 00100011 043 23 LA3

EOT 4 00000100 004 04 SOC $ 36 00100100 044 24 LA4

ENQ 5 00000101 005 05 PPC % 37 00100101 045 25 LA5

ACK 6 00000110 006 06 & 38 00100110 046 26 LA6

BEL 7 000001 11 007 07
,

39 00100111 047 27 LA7

BS 8 00001000 010 08 GET (40 00101000 050 28 LA8

HT 9 00001001 01 1 09 TCT) 41 00101001 051 29 LA9

LF 10 00001010 012 OA * 42 00101010 052 2A LA10

VT 11 00001011 013 OB + 43 0010101 1 053 2B LA1 1

FF 12 00001100 014 OC , 44 00101100 054 2C LA12

CR 13 00001101 015 00 - 45 00101101 055 20 LA13

SO 14 00001110 016 OE 46 00101 110' 056 2E LA14

S I 15 00001111 017 OF I 47 001011 11 057 2F LA15

OLE 16 00010000 020 10 0 48 00110000 060 30 LA16

OC1 17 00010001 021 11 LLO 1 49 00 110001 061 31 LA17

OC2 18 00010010 022 12 2 50 00110010 062 32 LA18

OC3 19 00010011 023 13 3 51 0011001 1 063 33 LA19

OC4 20 00010100 024 14 OCL 4 52 00110100 064 34 LA20

NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21

SYNC 22 00010110 026 16 6 54 00110110 066 36 LA22

ETB 23 00010111 027 17 7 55 00110111 067 37 LA23

CAN 24 00011000 030 18 SP E 8 56 00111000 070 38 LA24

EM 25 00011001 031 19 SPO 9 57 00111001 071 39 LA25

SUB 26 00011010 032 1A 58 00111010 072 3A LA26

ESC 27 00011011 033 1B , 59 00111011 073 3B LA27

FS 28 0001 1100 034 1C < 60 00111100 074 3C LA28

GS 29 00011 101 035 10 = 61 00111 101 075 3D LA29

RS 30 0001 1110 036 1E > 62 00111110 076 3E LA30

US 31 00011111 037 1F ? 63 00111111 077 3F UNL

Useful Tables 573

(
US ASCII Character Codes

ASCII EQUIVALENT FORMS
HP-IB ASCII EQUIVALENT FORMS HP-IB

Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

NUL 0 00000000 000 00 space 32 00100000 040 20 LAO

SOH 1 00000001 001 01 GTL ! 33 00100001 041 21 LA1

STX 2 00000010 002 02 " 34 00100010 042 22 LA2

ETX 3 00000011 003 03 # 35 00100011 043 23 LA3

EOT 4 00000100 004 04 SOC $ 36 00100100 044 24 LA4

ENQ 5 00000101 005 05 PPC % 37 00100101 045 25 LA5

ACK 6 00000110 006 06 & 38 00100110 046 26 LA6

BEL 7 000001 11 007 07
,

39 00100111 047 27 LA7

BS 8 00001000 010 08 GET (40 00101000 050 28 LA8

HT 9 00001001 01 1 09 TCT) 41 00101001 051 29 LA9

LF 10 00001010 012 OA * 42 00101010 052 2A LA10

VT 11 00001011 013 OB + 43 0010101 1 053 2B LA1 1

FF 12 00001100 014 OC , 44 00101100 054 2C LA12

CR 13 00001101 015 00 - 45 00101101 055 20 LA13

SO 14 00001110 016 OE 46 00101 110' 056 2E LA14

S I 15 00001111 017 OF I 47 001011 11 057 2F LA15

OLE 16 00010000 020 10 0 48 00110000 060 30 LA16

OC1 17 00010001 021 11 LLO 1 49 00 110001 061 31 LA17

OC2 18 00010010 022 12 2 50 00110010 062 32 LA18

OC3 19 00010011 023 13 3 51 0011001 1 063 33 LA19

OC4 20 00010100 024 14 OCL 4 52 00110100 064 34 LA20

NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21

SYNC 22 00010110 026 16 6 54 00110110 066 36 LA22

ETB 23 00010111 027 17 7 55 00110111 067 37 LA23

CAN 24 00011000 030 18 SP E 8 56 00111000 070 38 LA24

EM 25 00011001 031 19 SPO 9 57 00111001 071 39 LA25

SUB 26 00011010 032 1A 58 00111010 072 3A LA26

ESC 27 00011011 033 1B , 59 00111011 073 3B LA27

FS 28 0001 1100 034 1C < 60 00111100 074 3C LA28

GS 29 00011 101 035 10 = 61 00111 101 075 3D LA29

RS 30 0001 1110 036 1E > 62 00111110 076 3E LA30

US 31 00011111 037 1F ? 63 00111111 077 3F UNL

574 Useful Tables

US ASCII Character Codes

ASCII EQUIVALENT FORMS HP-IB ASCII EQUIVALENT FORMS HP-IB
Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

@ 64 01000000 100 40 TAO , 96 01100000 140 60 SCO

A 65 01000001 101 41 TAl a 97 01100001 141 61 SCI

B 66 01000010 102 42 TA2 b 98 01100010 142 62 SC2

C 67 01000011 103 43 TA3 c 99 01100011 143 63 SC3

D 68 01000100 104 44 TA4 d 100 01100100 144 64 SC4

E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5

F 70 01000110 106 46 TA6 f 102 01100110 146 66 SC6

G 71 01000111 107 47 TA7 9 103 01100111 147 67 SC7

H 72 01001000 110 48 TAS h 104 01101000 150 68 SC8

I 73 01001001 111 49 TA9 i 105 01101001 151 69 SC9

J 74 01001010 112 4A TA10 j 106 01101010 152 6A SC10

K 75 01001011 113 4B TAil k 107 01101011 153 6B SCII

L 76 01001100 114 4C TA12 I 108 01101100 154 6C SC12

M 77 01001101 115 4D TA13 m 109 01101101 155 6D SC13

N 78 01001110 116 4E TA14 n 110 01101110 156 6E SC14

0 79 01001111 117 4F TA15 0 111 01101111 157 6F SC15

P 80 01010000 120 50 TA16 P 112 01110000 160 70 SC16

Q 81 01010001 121 51 TA17 q 113 01110001 161 71 SC17

R 82 01010010 122 52 TA18 r 114 01110010 162 72 SC18

S 83 01010011 123 53 TA19 5 115 01110011 163 73 SC19

T 84 01010100 124 54 TA20 t 116 01110100 164 74 SC20

U 85 01010101 125 55 TA21 u 117 01110101 165 75 SC21

V 86 01010110 126 56 TA22 v 118 01110110 166 76 SC22

W 87 01010111 127 57 TA23 w 119 01110111 167 77 SC23

X 88 01011000 130 58 TA24 x 120 01111000 170 78 SC24

Y 89 01011001 131 59 TA25 Y 121 01111001 171 79 SC25

Z 90 01011010 132 5A TA26 z 122 01111010 172 7A SC26

[91 01011011 133 5B TA27 { 123 01111011 173 78 SC27

"- 92 01011100 134 5C TA28 I 124 01111100 174 7C SC28

1 93 01011101 135 5D TA29 } 125 01111101 175 7D SC29

A 94 01011110 136 5E TA30 - 126 01111110 176 7E SC30

- 95 01011111 137 5F UNT DEL 127 01111111 177 7F SC31

574 Useful Tables

US ASCII Character Codes

ASCII EQUIVALENT FORMS HP-IB ASCII EQUIVALENT FORMS HP-IB
Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

@ 64 01000000 100 40 TAO , 96 01100000 140 60 SCO

A 65 01000001 101 41 TAl a 97 01100001 141 61 SCI

B 66 01000010 102 42 TA2 b 98 01100010 142 62 SC2

C 67 01000011 103 43 TA3 c 99 01100011 143 63 SC3

D 68 01000100 104 44 TA4 d 100 01100100 144 64 SC4

E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5

F 70 01000110 106 46 TA6 f 102 01100110 146 66 SC6

G 71 01000111 107 47 TA7 9 103 01100111 147 67 SC7

H 72 01001000 110 48 TAS h 104 01101000 150 68 SC8

I 73 01001001 111 49 TA9 i 105 01101001 151 69 SC9

J 74 01001010 112 4A TA10 j 106 01101010 152 6A SC10

K 75 01001011 113 4B TAil k 107 01101011 153 6B SCII

L 76 01001100 114 4C TA12 I 108 01101100 154 6C SC12

M 77 01001101 115 4D TA13 m 109 01101101 155 6D SC13

N 78 01001110 116 4E TA14 n 110 01101110 156 6E SC14

0 79 01001111 117 4F TA15 0 111 01101111 157 6F SC15

P 80 01010000 120 50 TA16 P 112 01110000 160 70 SC16

Q 81 01010001 121 51 TA17 q 113 01110001 161 71 SC17

R 82 01010010 122 52 TA18 r 114 01110010 162 72 SC18

S 83 01010011 123 53 TA19 5 115 01110011 163 73 SC19

T 84 01010100 124 54 TA20 t 116 01110100 164 74 SC20

U 85 01010101 125 55 TA21 u 117 01110101 165 75 SC21

V 86 01010110 126 56 TA22 v 118 01110110 166 76 SC22

W 87 01010111 127 57 TA23 w 119 01110111 167 77 SC23

X 88 01011000 130 58 TA24 x 120 01111000 170 78 SC24

Y 89 01011001 131 59 TA25 Y 121 01111001 171 79 SC25

Z 90 01011010 132 5A TA26 z 122 01111010 172 7A SC26

[91 01011011 133 5B TA27 { 123 01111011 173 78 SC27

"- 92 01011100 134 5C TA28 I 124 01111100 174 7C SC28

1 93 01011101 135 5D TA29 } 125 01111101 175 7D SC29

A 94 01011110 136 5E TA30 - 126 01111110 176 7E SC30

- 95 01011111 137 5F UNT DEL 127 01111111 177 7F SC31

(

Useful Tables 575

U.S.lEuropean Display Characters
These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A
display) , 226, and 236 Computers.

ASCII EQUIVALENT FORMS
ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

',.:, 0 00000000 32 00100000 (Ei 64 01000000 96 01100000

i-! 00000001 ! 33 00100001 i:i 65 01000001 .:1. 97 01100001

:~.: 2 00000010 34 00100010 B 66 01000010 '- 98 01100010 i.)

~.: 3 00000011 i't 35 00100011 C" 67 01000011 !
..

99 01100011 ..

::,. 4 00000100 :.t: 36 00100100 ,", 68 01000100 .U d 100 01100100

E~ 5 00000101 ,"" 37 00100101 E 69 01000101 ~.:. 101 01100101

;:~: 6 00000110 ;~.: 38 00100110 r.:: 70 01000110 ! f' 102 01100110

7 00000111 39 00100111
, ..

71 01000111 '_:1 C! 103 01100111

E:- 8 00001000 40 00101000 H 72 01001000 I..
104 01101000 fl

r.
9 00001001 41 00101001 I 73 01001001 - 105 01101001 ,

if" 10 00001010 ~~ 42 00101010 .J 74 01001010 '-' 106 01101010

11 00001011 + 43 00101011 V 75 01001011 k 107 01101011

fi: 12 00001100 ~ 44 00101100 L 76 01001100 1
108 01101100

i::: 13 00001101 - 45 00101101 r'! 77 01001101 1'(1 109 01101101

14 00001110 , 46 00101110 iJ 78 01001110 j"'! 110 01101110

.:'
15 00001111 47 00101111 0 79 01001111 () 111 01101111

t; 16 00010000 i:::j 48 00110000 F' 80 01010000 1:-' 112 01110000

i',
17 00010001 i 49 00110001 0 81 01010001 q 113 01110001

i:::. 18 00010010
..
,::.. 50 00110010 F: 82 01010010 114 01110010

;'1..
19 00010011 :3 51 00110011 :::; 83 01010011 115 01110011

[:~ 20 00010100
,-:

52 00110100 " T 84 01010100 116 01110100

,;:.
21 00010101

i:::'
53 00110101 U 85 01010101 1) 117 01110101

-":y 22 00010110 c: 54 00110110 \,1 86 01010110 ',,! 118 01110110

9:: 23 00010111
.. ';:
! 55 00110111 i.-I 87 01010111 119 01110111

i'oj 24 00011000 :~~; 56 00111000 '.- 88 01011000 , ...• 120 01111000

~'i 25 00011001
.-.; 57 00111001 '/ 89 01011001 1.) 121 01111001

~: 26 00011010 58 00111010 2: 90 01011010 .':,. 122 01111010 .:.. ..

l;- 27 00011011 :; 59 00111011 [91 01011011 123 01111011

r·:' 28 00011100 60 00111100 92 01011100 124 01111100

1:- 29 00011101 '.,:. . .. 61 00111101
-;

93 01011101 125 01111101

~::- 30 00011110 62 00111110 94 01011110 126 01111110

=.1:- 31 00011111
.-.

63 00111111 : -. 95 0101 111 1 127 01111111

(

Useful Tables 575

U.S.lEuropean Display Characters
These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A
display) , 226, and 236 Computers.

ASCII EQUIVALENT FORMS
ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

',.:, 0 00000000 32 00100000 (Ei 64 01000000 96 01100000

i-! 00000001 ! 33 00100001 i:i 65 01000001 .:1. 97 01100001

:~.: 2 00000010 34 00100010 B 66 01000010 '- 98 01100010 i.)

~.: 3 00000011 i't 35 00100011 C" 67 01000011 !
..

99 01100011 ..

::,. 4 00000100 :.t: 36 00100100 ,", 68 01000100 .U d 100 01100100

E~ 5 00000101 ,"" 37 00100101 E 69 01000101 ~.:. 101 01100101

;:~: 6 00000110 ;~.: 38 00100110 r.:: 70 01000110 ! f' 102 01100110

7 00000111 39 00100111
, ..

71 01000111 '_:1 C! 103 01100111

E:- 8 00001000 40 00101000 H 72 01001000 I..
104 01101000 fl

r.
9 00001001 41 00101001 I 73 01001001 - 105 01101001 ,

if" 10 00001010 ~~ 42 00101010 .J 74 01001010 '-' 106 01101010

11 00001011 + 43 00101011 V 75 01001011 k 107 01101011

fi: 12 00001100 ~ 44 00101100 L 76 01001100 1
108 01101100

i::: 13 00001101 - 45 00101101 r'! 77 01001101 1'(1 109 01101101

14 00001110 , 46 00101110 iJ 78 01001110 j"'! 110 01101110

.:'
15 00001111 47 00101111 0 79 01001111 () 111 01101111

t; 16 00010000 i:::j 48 00110000 F' 80 01010000 1:-' 112 01110000

i',
17 00010001 i 49 00110001 0 81 01010001 q 113 01110001

i:::. 18 00010010
..
,::.. 50 00110010 F: 82 01010010 114 01110010

;'1..
19 00010011 :3 51 00110011 :::; 83 01010011 115 01110011

[:~ 20 00010100
,-:

52 00110100 " T 84 01010100 116 01110100

,;:.
21 00010101

i:::'
53 00110101 U 85 01010101 1) 117 01110101

-":y 22 00010110 c: 54 00110110 \,1 86 01010110 ',,! 118 01110110

9:: 23 00010111
.. ';:
! 55 00110111 i.-I 87 01010111 119 01110111

i'oj 24 00011000 :~~; 56 00111000 '.- 88 01011000 , ...• 120 01111000

~'i 25 00011001
.-.; 57 00111001 '/ 89 01011001 1.) 121 01111001

~: 26 00011010 58 00111010 2: 90 01011010 .':,. 122 01111010 .:.. ..

l;- 27 00011011 :; 59 00111011 [91 01011011 123 01111011

r·:' 28 00011100 60 00111100 92 01011100 124 01111100

1:- 29 00011101 '.,:. . .. 61 00111101
-;

93 01011101 125 01111101

~::- 30 00011110 62 00111110 94 01011110 126 01111110

=.1:- 31 00011111
.-.

63 00111111 : -. 95 0101 111 1 127 01111111

576 Useful Tables

U.S.lEuropean Display Characters
These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A
display), 226, and 236 Computers.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

~r. 128 10000000 r fF• 160 10100000 a 192 11000000 1=1 224 11100000

1'1'" 129 10000001 1:::1 161 10100001 !:::' 193 11 000001 FI 225 111 00001

I·F· 130 10000010 ~i 162 101 00010 {! 19~ 11 000010 ,;:;1. 226 111 00010

1'1" 131 10000011 E: 163 10100011 1 .. ·1 195 11 000011 D 227 11 100011

i'j> 132 10000100 j:::' 164 10100100 ,. ,:;:1. 196 11000100 .:::1 228 11 100100

I'r- 133 10000101 f.:: 165 10100101 i~::' 197 11000101 I 229 11100101

i'!:, 134 100001 10 I 166 10100110 b 198 11000110 I 230 11100110

j'l:' 135 10000111 I 167 10100111 U 199 11000111 (1 231 11100111

j'I-, 136 10001000 !" 168 10101000 ,:} 200 11001000 0 232 11101000

1'1" 137 10001001 169 10101001 !:~~. 201 11001001 0 233 11101001

I"" 138 10001010 r 170 10101010 ::::i 202 11001010 () 234 11101010

1'1" 139 10001011 171 10101011 : .. :1 203 11001011 ::; 235 11101 011

L
F' 140 10001100 172 10101100 .::i 204 11001100 ::;. 236 11101100

ir 141 10001101
; !

173 10101101 ! . ..1 I::;' 205 11001101 U 237 11101 101

142 10001110 U 174 10101110 I::! 206 110011 10 \' 238 11101110

i'!:, 143 10001111 t 175 10101111 (.:1 207 110011 11 i.) 239 11101111

!'F' 144 10010000 176 10110000 1":1 208 1101 0000 'i 240 11110000

I,
T 145 10010001 \' 177 10110001 'I 209 11010001 I.) 241 11110001

!-'" 146 10010010 ~) 178 10110010 !:::i 210 11010010 1'1" 242 11110010

~F' 147 10010011 (I 179 10110011 II 211 11010011 1'1" 243 11110011

fF' 148 10010100 C 180 10110100 a 212 11010100
,
'F' 244 11110100

1'1" 149 10010101 I:;; 181 10110101 :i 213 11010101
;,

245 11110101 i"

i'!:, 150 10010110 Fi 182 10110110 I;~! 214 11010110 i'F' 246 11110110

i'j:. 151 10010111 i:::; 183 101 10111 ::1:: 215 11010111 I',:, 247 11110111

ir 152 10011000 i 184 10111000 !:::I 216 11 011000 fF' 248 111 11000

1'1" 153 10011001 : 185 10111001 'I 217 1101 1001 !'F' 249 11111001

~F' 154 10011010 j::! 186 10111010 Ij 218 11011010 l'r.- 250 11111010

i'j:. 155 1001101 1 f 187 1011 1011 CI 219 1101 1011 ff' 251 11111011

1'1:' 156 10011 100 fr' 188 101 111 00 (: 220 11011100 1'1" 252 1111 11 00

1,1" 157 10011101 189 10111101 :(221 11011101 1'1" 253 11111101

r,', 158 10011110 !" 1'1" 190 10111110 r: 222 11011110 !'F' 254 11111110

j'j:' 159 10011111 i'F' 191 10111111 0 223 11011111 11 255 11111111

Note 1: Characiers 128 thru 135 produce highlights on machines with monochrome highlights when used in PRINT and DISP sta tements,
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color,
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements,

576 Useful Tables

U.S.lEuropean Display Characters
These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A
display), 226, and 236 Computers.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

~r. 128 10000000 r fF• 160 10100000 a 192 11000000 1=1 224 11100000

1'1'" 129 10000001 1:::1 161 10100001 !:::' 193 11 000001 FI 225 111 00001

I·F· 130 10000010 ~i 162 101 00010 {! 19~ 11 000010 ,;:;1. 226 111 00010

1'1" 131 10000011 E: 163 10100011 1 .. ·1 195 11 000011 D 227 11 100011

i'j> 132 10000100 j:::' 164 10100100 ,. ,:;:1. 196 11000100 .:::1 228 11 100100

I'r- 133 10000101 f.:: 165 10100101 i~::' 197 11000101 I 229 11100101

i'!:, 134 100001 10 I 166 10100110 b 198 11000110 I 230 11100110

j'l:' 135 10000111 I 167 10100111 U 199 11000111 (1 231 11100111

j'I-, 136 10001000 !" 168 10101000 ,:} 200 11001000 0 232 11101000

1'1" 137 10001001 169 10101001 !:~~. 201 11001001 0 233 11101001

I"" 138 10001010 r 170 10101010 ::::i 202 11001010 () 234 11101010

1'1" 139 10001011 171 10101011 : .. :1 203 11001011 ::; 235 11101 011

L
F' 140 10001100 172 10101100 .::i 204 11001100 ::;. 236 11101100

ir 141 10001101
; !

173 10101101 ! . ..1 I::;' 205 11001101 U 237 11101 101

142 10001110 U 174 10101110 I::! 206 110011 10 \' 238 11101110

i'!:, 143 10001111 t 175 10101111 (.:1 207 110011 11 i.) 239 11101111

!'F' 144 10010000 176 10110000 1":1 208 1101 0000 'i 240 11110000

I,
T 145 10010001 \' 177 10110001 'I 209 11010001 I.) 241 11110001

!-'" 146 10010010 ~) 178 10110010 !:::i 210 11010010 1'1" 242 11110010

~F' 147 10010011 (I 179 10110011 II 211 11010011 1'1" 243 11110011

fF' 148 10010100 C 180 10110100 a 212 11010100
,
'F' 244 11110100

1'1" 149 10010101 I:;; 181 10110101 :i 213 11010101
;,

245 11110101 i"

i'!:, 150 10010110 Fi 182 10110110 I;~! 214 11010110 i'F' 246 11110110

i'j:. 151 10010111 i:::; 183 101 10111 ::1:: 215 11010111 I',:, 247 11110111

ir 152 10011000 i 184 10111000 !:::I 216 11 011000 fF' 248 111 11000

1'1" 153 10011001 : 185 10111001 'I 217 1101 1001 !'F' 249 11111001

~F' 154 10011010 j::! 186 10111010 Ij 218 11011010 l'r.- 250 11111010

i'j:. 155 1001101 1 f 187 1011 1011 CI 219 1101 1011 ff' 251 11111011

1'1:' 156 10011 100 fr' 188 101 111 00 (: 220 11011100 1'1" 252 1111 11 00

1,1" 157 10011101 189 10111101 :(221 11011101 1'1" 253 11111101

r,', 158 10011110 !" 1'1" 190 10111110 r: 222 11011110 !'F' 254 11111110

j'j:' 159 10011111 i'F' 191 10111111 0 223 11011111 11 255 11111111

Note 1: Characiers 128 thru 135 produce highlights on machines with monochrome highlights when used in PRINT and DISP sta tements,
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color,
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements,

Useful Tables 577

(

U.S.lEuropean Display Characters
These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
982048 display) , and 237 computers, and on Series 300 computers using a 98546 Display
Compatibility Interface or 98700 Display Controller.

ASCII

NI.IIII. Ch r. NUfli. Chr . NUIII. Ch r. NU~I • Ch r .

0 N 32 64 @ 96 u
1 Ii 33 65 A 97 a H

2 Ii 34 66 B 98 b)(

3 E 35 # 67 C 99 c x
4 \ 36 $ 68 D 100 d
5 E 37 " 69 E 101 e Q

6 A 38 & 70 F 102 f K

7 1;1 39 71 G 103 9
8 e 40 72 H 104 h 5

9 H 41 73 I 105 i T

10 L 42 * 74 J 106 j F

11 v 43 + 75 K 107 k T

12 ff 44 76 L 108 1
13 c 45 77 M 109 m R

14 !i 46 78 N 110 n 0

15 5 47 / 79 0 111 0 I

16 0 48 0 80 P 112 P L

17 0, 49 1 81 Q 113 q
18 ~ 50 2 82 R 114 r
19 ~ 51 3 83 S 115 s
20 'a 52 4 84 T 116 t
21 N 53 5 85 U 117 u K

22 Ii 54 6 86 V 118 v y

23

'"
55 7 87 v.; 119 w

24 c 56 8 88 X 120 x N

25 Ii: 57 9 89 Y 121 Y M

26 \ 58 90 Z 122 z
27 ~ 59 91 [123 {

28 ~ 60 < 92 " 124 I
29 G 61 93] 125 } Ii

30 R 62 > 94 126 Ii

31 u 63 ? 95 127 • Ii

Useful Tables 577

(

U.S.lEuropean Display Characters
These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
982048 display) , and 237 computers, and on Series 300 computers using a 98546 Display
Compatibility Interface or 98700 Display Controller.

ASCII

NI.IIII. Ch r. NUfli. Chr . NUIII. Ch r. NU~I • Ch r .

0 N 32 64 @ 96 u
1 Ii 33 65 A 97 a H

2 Ii 34 66 B 98 b)(

3 E 35 # 67 C 99 c x
4 \ 36 $ 68 D 100 d
5 E 37 " 69 E 101 e Q

6 A 38 & 70 F 102 f K

7 1;1 39 71 G 103 9
8 e 40 72 H 104 h 5

9 H 41 73 I 105 i T

10 L 42 * 74 J 106 j F

11 v 43 + 75 K 107 k T

12 ff 44 76 L 108 1
13 c 45 77 M 109 m R

14 !i 46 78 N 110 n 0

15 5 47 / 79 0 111 0 I

16 0 48 0 80 P 112 P L

17 0, 49 1 81 Q 113 q
18 ~ 50 2 82 R 114 r
19 ~ 51 3 83 S 115 s
20 'a 52 4 84 T 116 t
21 N 53 5 85 U 117 u K

22 Ii 54 6 86 V 118 v y

23

'"
55 7 87 v.; 119 w

24 c 56 8 88 X 120 x N

25 Ii: 57 9 89 Y 121 Y M

26 \ 58 90 Z 122 z
27 ~ 59 91 [123 {

28 ~ 60 < 92 " 124 I
29 G 61 93] 125 } Ii

30 R 62 > 94 126 Ii

31 u 63 ? 95 127 • Ii

578 Useful Tables

U.S.!European Display Characters
These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
98204B display), and 237 computers, and on Series 300 computers using a 98546 Display
Compatibility Interface or 98700 Display Controller.

ASCII

NUhi. Ch r. NUlli. Ch r. NUhi. Ch r. NUlli. Ch r.

128 c 160 192 a 224 A L

129 I 161 A 193 ~ 225 J. v

130 B 162 ,.. 194 () 226 ~ G

131 I 163 t 195 0. 227 D B

132 u 164 ~ 196 a 228 d .L

133 I 165 It 197 e 229 :t ,!,/

134 B 166 1: 198 6 230 1: .Ii

135 I 167 :t 199 U 231 6 ,!,/

136 w 168 200 a 232 0 H

137 R 169 201 e 233 0 0

138 y 170 202 " 234 es E

139 G 171 203 U 235 S R

140 c 172 204 a 236 s y

141 B 173 U 205 e 237 u u
142 M 174 0 206 6 238 Y G

143 B 175 r 207 u 239 y K

144 8 176 208 A 240 P 0

145 8 177 B 209 r 241 \J 1 1

146 8 178 B 210 III 242 F
2 2 2

147 8 179 211 A 243 F
3 3

148 8 180 <; 212 a 244 F
lj lj

149 8 181 C; 213 f 245 I
:> 0

150 8 182 ~ 214 0 246 G

151 8 183 i'\ 215 a: 247 * 7

152 8 184 216 ji,. 248 t B

153 9 185 l 217 l 249 A-
9

154 9 186 tl 218 0 250 .Q
A

155 9 187 £ 219 D 251 « B

156 9 188 ¥ 220 t 252 • c
157 9 189 § 221 1 253 » 0

158 9 190 f 222 l3 254 ± E

159 8 191 ¢ 223 0 255 (;i F

578 Useful Tables

U.S.!European Display Characters
These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
98204B display), and 237 computers, and on Series 300 computers using a 98546 Display
Compatibility Interface or 98700 Display Controller.

ASCII

NUhi. Ch r. NUlli. Ch r. NUhi. Ch r. NUlli. Ch r.

128 c 160 192 a 224 A L

129 I 161 A 193 ~ 225 J. v

130 B 162 ,.. 194 () 226 ~ G

131 I 163 t 195 0. 227 D B

132 u 164 ~ 196 a 228 d .L

133 I 165 It 197 e 229 :t ,!,/

134 B 166 1: 198 6 230 1: .Ii

135 I 167 :t 199 U 231 6 ,!,/

136 w 168 200 a 232 0 H

137 R 169 201 e 233 0 0

138 y 170 202 " 234 es E

139 G 171 203 U 235 S R

140 c 172 204 a 236 s y

141 B 173 U 205 e 237 u u
142 M 174 0 206 6 238 Y G

143 B 175 r 207 u 239 y K

144 8 176 208 A 240 P 0

145 8 177 B 209 r 241 \J 1 1

146 8 178 B 210 III 242 F
2 2 2

147 8 179 211 A 243 F
3 3

148 8 180 <; 212 a 244 F
lj lj

149 8 181 C; 213 f 245 I
:> 0

150 8 182 ~ 214 0 246 G

151 8 183 i'\ 215 a: 247 * 7

152 8 184 216 ji,. 248 t B

153 9 185 l 217 l 249 A-
9

154 9 186 tl 218 0 250 .Q
A

155 9 187 £ 219 D 251 « B

156 9 188 ¥ 220 t 252 • c
157 9 189 § 221 1 253 » 0

158 9 190 f 222 l3 254 ± E

159 8 191 ¢ 223 0 255 (;i F

Useful Tables 579

U.S.!European Display Characters
These characters can be displayed on the screen of Series 300 computers (except with a 98546
Display Compatibility Interface or 98700 Display Controller; see the preceding table) ,

ASCII

NUlli . Ch r. NUlli. Ch r. NUlli. Ch r. NUlli. Ch r.

0 N 32 64 ~ 96 u
1 Ii 33 65 A 97 a H

2 !i 34 .. 66 B 98 b)::

3 E 35 # 67 C 99 c)(

4 -;. 36 $ 68 D 100 d
5 E 37 \ 69 E 101 e Q

6 A 38 & 70 F 102 f K

7 (I 39 71 G 103 9
8 8 40 72 H 104 h 5

9 H 41 73 I 105 i T

10 L 42 * 74 J 106 j F

11 v 43 + 75 K 107 k T

12 ff 44 76 L 108 1
13 c 45 77 M 109 m R

14 Ii 46 78 N 110 n 0

15 Ii 47 / 79 0 111 0 I

16 D 48 0 80 P 112 P L

17 D~ 49 1 81 Q 113 q
18 ~ 50 2 82 R 114 r-
19 ~ 51 3 83 S 115 s
20 'a 52 4 84 T 116 t
21 N 53 5 85 U 117 u K

22 Ii 54 6 86 V 118 v y

23 " 55 7 87 \of 119 w
24 c 56 8 88 X 120 x N

25 E 57 9 89 Y 121 Y H

26 \ 58 90 Z 122 z
27 't 59 91 [123 {

28 ~ 60 < 92 " 124 I
29 \ 61 93] 125 }

30 ~ 62 > 94 126
31 u 63 ? 95 127 • 5

Useful Tables 579

U.S.!European Display Characters
These characters can be displayed on the screen of Series 300 computers (except with a 98546
Display Compatibility Interface or 98700 Display Controller; see the preceding table) ,

ASCII

NUlli . Ch r. NUlli. Ch r. NUlli. Ch r. NUlli. Ch r.

0 N 32 64 ~ 96 u
1 Ii 33 65 A 97 a H

2 !i 34 .. 66 B 98 b)::

3 E 35 # 67 C 99 c)(

4 -;. 36 $ 68 D 100 d
5 E 37 \ 69 E 101 e Q

6 A 38 & 70 F 102 f K

7 (I 39 71 G 103 9
8 8 40 72 H 104 h 5

9 H 41 73 I 105 i T

10 L 42 * 74 J 106 j F

11 v 43 + 75 K 107 k T

12 ff 44 76 L 108 1
13 c 45 77 M 109 m R

14 Ii 46 78 N 110 n 0

15 Ii 47 / 79 0 111 0 I

16 D 48 0 80 P 112 P L

17 D~ 49 1 81 Q 113 q
18 ~ 50 2 82 R 114 r-
19 ~ 51 3 83 S 115 s
20 'a 52 4 84 T 116 t
21 N 53 5 85 U 117 u K

22 Ii 54 6 86 V 118 v y

23 " 55 7 87 \of 119 w
24 c 56 8 88 X 120 x N

25 E 57 9 89 Y 121 Y H

26 \ 58 90 Z 122 z
27 't 59 91 [123 {

28 ~ 60 < 92 " 124 I
29 \ 61 93] 125 }

30 ~ 62 > 94 126
31 u 63 ? 95 127 • 5

580 Useful Tables

U.S.!European Display Characters
These characters can be displayed on the screen of Series 300 computers (except with a 98546
Display Compatibility Interface or 98700 Display Controller; see the preceding table) .

ASCII

NUIII. Ch r. NUlll. Ch r. NUlll. Ch r. NUIIl. Ch r.

128 c 160 192 a 224 A L

129 I 161 A 193 ~ 225 J. v

130 B 162 "- 194 0 226 a G

131 I 163 E 195 (l 227 D B

132 u 164 ~ 196 a 228 c1 .L.

133 I 165 it 197 e 229 f ~

134 B 166 :t 198 6 230 :t .Ii

135 I 167 :t 199 U 231 0 ~

136 !oj 168 200 a 232 0 H

137 R 169 201 e 233 0 0

138 y 170 202 " 234 es E

139 G 171 203 U 235 S R

140 c 172 204 a 236 s y

141 B 173 U 205 e 237 u u
142 M 174 0 206 6 238 Y G

143 B 175 r 207 u 239 y K

144 9 176 208 A 240 P 0

145 9 177 It 209 i 241 P 1

146 9 178 y 210 0 242 2

147 9 179 211 " 243 f.l 3

148 9 180 9 212 a 244 ~ 1I

149 8 181 c; 213 f 245 I
5 0

150 8 182 ~ 214 ~ 246 6

151 8 183 P\ 215 E 247 i 7

152 8 184 216 i4. 248 i-s
153 8 185 (, 217 l 249 A-

9

154 9 186 0 218 b 250 2
A

155 8 187 £ 219 0 251 « B

156 8 188 V 220 E 252 • c
157 8 189 § 221 i 253 » 0

158 9 190 f 222 a 254 ± E

159 8 191 ¢ 223 0 255 [;1 F

580 Useful Tables

U.S.!European Display Characters
These characters can be displayed on the screen of Series 300 computers (except with a 98546
Display Compatibility Interface or 98700 Display Controller; see the preceding table) .

ASCII

NUIII. Ch r. NUlll. Ch r. NUlll. Ch r. NUIIl. Ch r.

128 c 160 192 a 224 A L

129 I 161 A 193 ~ 225 J. v

130 B 162 "- 194 0 226 a G

131 I 163 E 195 (l 227 D B

132 u 164 ~ 196 a 228 c1 .L.

133 I 165 it 197 e 229 f ~

134 B 166 :t 198 6 230 :t .Ii

135 I 167 :t 199 U 231 0 ~

136 !oj 168 200 a 232 0 H

137 R 169 201 e 233 0 0

138 y 170 202 " 234 es E

139 G 171 203 U 235 S R

140 c 172 204 a 236 s y

141 B 173 U 205 e 237 u u
142 M 174 0 206 6 238 Y G

143 B 175 r 207 u 239 y K

144 9 176 208 A 240 P 0

145 9 177 It 209 i 241 P 1

146 9 178 y 210 0 242 2

147 9 179 211 " 243 f.l 3

148 9 180 9 212 a 244 ~ 1I

149 8 181 c; 213 f 245 I
5 0

150 8 182 ~ 214 ~ 246 6

151 8 183 P\ 215 E 247 i 7

152 8 184 216 i4. 248 i-s
153 8 185 (, 217 l 249 A-

9

154 9 186 0 218 b 250 2
A

155 8 187 £ 219 0 251 « B

156 8 188 V 220 E 252 • c
157 8 189 § 221 i 253 » 0

158 9 190 f 222 a 254 ± E

159 8 191 ¢ 223 0 255 [;1 F

Useful Tables 581

Katakana Display Characters
These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

i;.l, 0 00000000 32 00100000 (~~i 64 01000000 96 01100000

::i.! 1 00000001 33 00100001 H 65 01000001 ·:::L 97 01100001

2 00000010
;:

34 00100010 'j:> 66 01000010 1-. 98 01100010 l...'

I:~.: 3 00000011 35 00100011 ; , 67 01000011 99 01100011

4 00000100 .;j:: 36 00100100 68 01000100 100 01100100

E~;i 5 00000101 37 00100101 F' 69 01000101 101 01100101

6 00000110 :: ~ . 38 00100110 70 01000110 102 01100110

....
7 00000111 39 00100111 i .. :; 71 01000111 q 103 01100111

E:: 8 00001000 40 00101000 H 72 01001000 104 01101000

9 00001001 41 00101001 73 01001001 105 01101001

Lr 10 00001010 ";!;, 42 00101010 74 01001010 .J 106 01101010

11 00001011 .oj-. 43 00101011
:,,'

75 01001011 k 107 01101011

fi:: 12 00001100 ~ 44 00101100 76 01001100 108 01101100

1": 13 00001101 45 00101101 ;';'1 77 01001101 rl"i 109 01101101

::;:; 14 00001110 46 00101110 i) 78 01001110 n 110 01101110

:::!: 15 00001111 47 00101111 ("1 79 01001111 ,-, 111 01101111

16 00010000 48 00110000 i:::: 80 01010000 !:::; 112 01110000

17 00010001 49 00110001 i) 81 01010001 q 113 01110001

i:~~ 18 00010010 ;~~~ 50 001 10010 [.::~ 82 01010010 114 01110010

19 00010011 51 00110011 83 01010011 115 01110011

;'
20 ",:! 00010100 ':l 52 00110100 84 01010100 116 01110100

" 21 00010101 53 00110101 U 85 01010101 !-~ 117 01110101

22 00010110 (: 54 00110110 86 01010110 i.) 118 01110110

" j;: 23 00010111 55 00110111 ~i.~ 87 01010111 119 01110111

24 00011000 ::::: 56 00111000 ;:< 88 01011000 120 01111000

f. : 25 00011001 I':"
,'M,

57 00111001 89 01011001 121 01111001

::i:: 26 00011010 58 00111010
.. '::

90 01011010 ,:: .. 122 01111010

27 00011011 :: 59 00111011 91 01011011 123 01111011

28 00011100 60 00111100 ¥= 92 01011100 I 124 01111100

29 00011101 61 00111101 93 01011101
,

125 01111101

30 00011110 62 00111110 94 01011110 ".' 126 01111110

31 00011111
,,::.

63 00111111 95 01011111 127 01111111

Useful Tables 581

Katakana Display Characters
These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

i;.l, 0 00000000 32 00100000 (~~i 64 01000000 96 01100000

::i.! 1 00000001 33 00100001 H 65 01000001 ·:::L 97 01100001

2 00000010
;:

34 00100010 'j:> 66 01000010 1-. 98 01100010 l...'

I:~.: 3 00000011 35 00100011 ; , 67 01000011 99 01100011

4 00000100 .;j:: 36 00100100 68 01000100 100 01100100

E~;i 5 00000101 37 00100101 F' 69 01000101 101 01100101

6 00000110 :: ~ . 38 00100110 70 01000110 102 01100110

....
7 00000111 39 00100111 i .. :; 71 01000111 q 103 01100111

E:: 8 00001000 40 00101000 H 72 01001000 104 01101000

9 00001001 41 00101001 73 01001001 105 01101001

Lr 10 00001010 ";!;, 42 00101010 74 01001010 .J 106 01101010

11 00001011 .oj-. 43 00101011
:,,'

75 01001011 k 107 01101011

fi:: 12 00001100 ~ 44 00101100 76 01001100 108 01101100

1": 13 00001101 45 00101101 ;';'1 77 01001101 rl"i 109 01101101

::;:; 14 00001110 46 00101110 i) 78 01001110 n 110 01101110

:::!: 15 00001111 47 00101111 ("1 79 01001111 ,-, 111 01101111

16 00010000 48 00110000 i:::: 80 01010000 !:::; 112 01110000

17 00010001 49 00110001 i) 81 01010001 q 113 01110001

i:~~ 18 00010010 ;~~~ 50 001 10010 [.::~ 82 01010010 114 01110010

19 00010011 51 00110011 83 01010011 115 01110011

;'
20 ",:! 00010100 ':l 52 00110100 84 01010100 116 01110100

" 21 00010101 53 00110101 U 85 01010101 !-~ 117 01110101

22 00010110 (: 54 00110110 86 01010110 i.) 118 01110110

" j;: 23 00010111 55 00110111 ~i.~ 87 01010111 119 01110111

24 00011000 ::::: 56 00111000 ;:< 88 01011000 120 01111000

f. : 25 00011001 I':"
,'M,

57 00111001 89 01011001 121 01111001

::i:: 26 00011010 58 00111010
.. '::

90 01011010 ,:: .. 122 01111010

27 00011011 :: 59 00111011 91 01011011 123 01111011

28 00011100 60 00111100 ¥= 92 01011100 I 124 01111100

29 00011101 61 00111101 93 01011101
,

125 01111101

30 00011110 62 00111110 94 01011110 ".' 126 01111110

31 00011111
,,::.

63 00111111 95 01011111 127 01111111

582 Useful Tables
Katakana Display Characters

These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

['F" 128 10000000 ~F' 160 10100000 .~:;I 192 11000000 i'i" 224 11100000

1'1" 129 10000001 0 161 10100001 :f 193 11000001 225 11100001

h·, 130 10000010 !"
I" 162 10100010 ilJ 194 11000010 ['F' 226 11100010

1,1" 131 10000011 ..I 163 10100011 'r 195 11000011 1'1" 227 11100011

132 10000100 164 10100100 ! 196 11000100 ['F' 228 11100100

it 133 10000101 165 10100101 197 11 000101 !'j:. 229 111 00101

~F' 134 10000110 :::;i 166 10100110
,-

198 110001 10 230 111 00110

~F' 135 10000111 .';:: 167 10100111 7:' 199 11 0001 11 ~F' 231 11 100111

It 136 10001000 ·1 168, 10101000 .:;~. 200 11001000
I,

j=' 232 11101000

I'F' 137 10001001 ,.::! 169 10101001 J 201 11 001001 i'F' 233 11101001

i'F' 138 10001010 170 10101010 1"1 202 11001010 234 11101010

t,;:- 139 10001011 171 10101011 I:::: 203 11001011 235 11101011

140 10001100 'j7- 172 10101100
.... :

204 11001100 !} 236 11101100

~F' 141 10001101 ~1 173 10101101 205 11001101 h·, 237 11101101

~F' 142 10001110 ::l 174 10101110 it; 206 11001110 1,1" 238 11101 110

]'::. 143 10001111 '" 175 10101111
•••• j

207 11001111 I} 239 11101111

fF' 144 10010000 176 10110000 208 1101 0000 I'j:' 240 11 110000

1'1:' 145 10010001 '? 177 10110001 {! 209 11010001 1'1" 241 11 110001

1'1" 146 10010010 '-1 178 10110010 ',' 210 11 010010 i'l:' 242 111 10010

fF' 147 10010011 ') 179 10110011 1= 211 11010011 - i'i:' 243 11110011

ff' 148 10010100 I 180 10110100 'I':' 212 11 010100 1}. 244 11110100

,
'F' 149 10010101 :::1' 181 10110101 ,1 213 11010101 1'1" 245 11110101

1'1" 150 10010110 'j"; 182 10110110 .'.' ::~i 214 11010110 i}. 246 11110110

I"j:- 151 10010111 ::!:: 183 10110111 215 11010111 1'j:- 247 11110111

I"j:- 152 10011000 ':J 184 10111000 I) 216 11011000 I"j:- 248 11111000

1'1" 153 10011001 185 10111001 it, 217 11011001 1-.. 249 11111001

rF' 154 10011010 J 186 10111010 l ... 218 11011010]'j:' 250 111 11 010

ff' 155 10011011 1) 187 1011101 1 0 219 11011011 h:. 251 11111011

ff' 156 10011100 ::,.1 188 10111100 I) 220 11011100 h:. 252 11111100

I"j:- 157 10011101 189 10111101 221 11011101 It 253 11111101

1'1" 158 10011110 'j':' 190 10111110 222 11011110 I'!:. 254 11111110

1-," 159 10011111 !" 191 1011 11 11 ;:; 223 11011111 nm 255 11111111

Note 1: Characters 128 thru 135 produce highligh ts on machines wi th monochrome highlights when used in PRINT and DISP statements,
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable o f displaying text in color.
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements,

582 Useful Tables
Katakana Display Characters

These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

['F" 128 10000000 ~F' 160 10100000 .~:;I 192 11000000 i'i" 224 11100000

1'1" 129 10000001 0 161 10100001 :f 193 11000001 225 11100001

h·, 130 10000010 !"
I" 162 10100010 ilJ 194 11000010 ['F' 226 11100010

1,1" 131 10000011 ..I 163 10100011 'r 195 11000011 1'1" 227 11100011

132 10000100 164 10100100 ! 196 11000100 ['F' 228 11100100

it 133 10000101 165 10100101 197 11 000101 !'j:. 229 111 00101

~F' 134 10000110 :::;i 166 10100110
,-

198 110001 10 230 111 00110

~F' 135 10000111 .';:: 167 10100111 7:' 199 11 0001 11 ~F' 231 11 100111

It 136 10001000 ·1 168, 10101000 .:;~. 200 11001000
I,

j=' 232 11101000

I'F' 137 10001001 ,.::! 169 10101001 J 201 11 001001 i'F' 233 11101001

i'F' 138 10001010 170 10101010 1"1 202 11001010 234 11101010

t,;:- 139 10001011 171 10101011 I:::: 203 11001011 235 11101011

140 10001100 'j7- 172 10101100
.... :

204 11001100 !} 236 11101100

~F' 141 10001101 ~1 173 10101101 205 11001101 h·, 237 11101101

~F' 142 10001110 ::l 174 10101110 it; 206 11001110 1,1" 238 11101 110

]'::. 143 10001111 '" 175 10101111
•••• j

207 11001111 I} 239 11101111

fF' 144 10010000 176 10110000 208 1101 0000 I'j:' 240 11 110000

1'1:' 145 10010001 '? 177 10110001 {! 209 11010001 1'1" 241 11 110001

1'1" 146 10010010 '-1 178 10110010 ',' 210 11 010010 i'l:' 242 111 10010

fF' 147 10010011 ') 179 10110011 1= 211 11010011 - i'i:' 243 11110011

ff' 148 10010100 I 180 10110100 'I':' 212 11 010100 1}. 244 11110100

,
'F' 149 10010101 :::1' 181 10110101 ,1 213 11010101 1'1" 245 11110101

1'1" 150 10010110 'j"; 182 10110110 .'.' ::~i 214 11010110 i}. 246 11110110

I"j:- 151 10010111 ::!:: 183 10110111 215 11010111 1'j:- 247 11110111

I"j:- 152 10011000 ':J 184 10111000 I) 216 11011000 I"j:- 248 11111000

1'1" 153 10011001 185 10111001 it, 217 11011001 1-.. 249 11111001

rF' 154 10011010 J 186 10111010 l ... 218 11011010]'j:' 250 111 11 010

ff' 155 10011011 1) 187 1011101 1 0 219 11011011 h:. 251 11111011

ff' 156 10011100 ::,.1 188 10111100 I) 220 11011100 h:. 252 11111100

I"j:- 157 10011101 189 10111101 221 11011101 It 253 11111101

1'1" 158 10011110 'j':' 190 10111110 222 11011110 I'!:. 254 11111110

1-," 159 10011111 !" 191 1011 11 11 ;:; 223 11011111 nm 255 11111111

Note 1: Characters 128 thru 135 produce highligh ts on machines wi th monochrome highlights when used in PRINT and DISP statements,
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable o f displaying text in color.
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements,

(

Useful Tables 583

Katakana Display Characters
These characters can be displayed on the Model 237 and on all Series 300 bit-mapped alpha
displays.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

;.~ 0 00000000 '-' 32 00100000 I~i 64 01000000 96 01100000

-i-l 1 00000001 ! 33 00100001 I:::! 65 01000001 ·:i 97 01100001

2 00000010 II 34 00100010 66 01000010 I"', 98 01100010

~.: 3 00000011 :H: 35 00100011 (" 67 01000011 99 01100011

!~. 4 00000100 36 00100100 68 01000100 d 100 01100100

;:'
5 00000101 "iJ

0

37 ,"" 00100101 69 01000101 i:::' 101 01100101

;~;. 6 00000110 38 00100110 70 01000110 102 01100110

J). 7 00000111 39 00100111 71 01000111 ,', 103 01100111

!::~ 8 00001000 ! 40 00101000 1···j 72 01001000 104 01101000

H
9 'r 00001001 ! 41 00101001 73 01001001 '1 105 01101001

Lt:- 10 00001010 42 00101010 .T 74 01001010 106 01101010

.....
11 00001011 , -I- 43 00101011 75 01001011 107 01101011

_.
~"F 12 00001100 :; 44 00101100 76 01001100 1 108 01101100 1

;:;. 13 00001101 - 45 00101101 hi 77 01001101 ff! 109 01101101

14 00001110 46 00101110 i~ 78 01001110 1"""! 110 01101110

::;t: 15 00001111 47 00101111 iJ 79 01001111 111 0110111 1

t: 16 00010000 48 00110000 P 80 01010000 i"': 112 01110000

;,
17 00010001 49 00110001 ,.) 81 01010001 q 113 01110001

t:,
18 00010010 ::. 50 00110010 b:' 82 01010010 i···· 114 01110010

.-
19 00010011 .- 51 00110011 ~=; 83 01010011 .::: 115 01110011

i::~ 20 00010100 ,~. 52 00110100 84 01010100 116 01110100

21 00010101 53 00110101 ; i 85 01010101 ',-' 1...1 117 011 10101

.:',' 22 00010110 j: •• , 54 00110110 I::! 86 01010110 118 01110110

23 00010111 55 00110111 i,i 87 01010111 i.:.! 119 01110111

i"j 24 00011000
,'-,

56 00111000 c' '.' 88 01011000 , ...• 120 01111000

!;~ .j 25 00011001 ::; 57 00111001 '.,' 89 01011001 I.) 121 01111001

26 00011010 58 00111010
--::

90 01011010 :z: 122 01111010

27 00011011 59 00111011 91 01011011 123 01111011

28 00011100 60 00111100 ::(92 01011100 124 01111100

29 00011101 61 00111101 93 01011101 125 01111101

F::, 30 00011110 62 00111110 94 01011110 ".' 126 01111110

31 00011111
.-',

63 00111111 .-.... 95 01011111 127 01111111

(

Useful Tables 583

Katakana Display Characters
These characters can be displayed on the Model 237 and on all Series 300 bit-mapped alpha
displays.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

;.~ 0 00000000 '-' 32 00100000 I~i 64 01000000 96 01100000

-i-l 1 00000001 ! 33 00100001 I:::! 65 01000001 ·:i 97 01100001

2 00000010 II 34 00100010 66 01000010 I"', 98 01100010

~.: 3 00000011 :H: 35 00100011 (" 67 01000011 99 01100011

!~. 4 00000100 36 00100100 68 01000100 d 100 01100100

;:'
5 00000101 "iJ

0

37 ,"" 00100101 69 01000101 i:::' 101 01100101

;~;. 6 00000110 38 00100110 70 01000110 102 01100110

J). 7 00000111 39 00100111 71 01000111 ,', 103 01100111

!::~ 8 00001000 ! 40 00101000 1···j 72 01001000 104 01101000

H
9 'r 00001001 ! 41 00101001 73 01001001 '1 105 01101001

Lt:- 10 00001010 42 00101010 .T 74 01001010 106 01101010

.....
11 00001011 , -I- 43 00101011 75 01001011 107 01101011

_.
~"F 12 00001100 :; 44 00101100 76 01001100 1 108 01101100 1

;:;. 13 00001101 - 45 00101101 hi 77 01001101 ff! 109 01101101

14 00001110 46 00101110 i~ 78 01001110 1"""! 110 01101110

::;t: 15 00001111 47 00101111 iJ 79 01001111 111 0110111 1

t: 16 00010000 48 00110000 P 80 01010000 i"': 112 01110000

;,
17 00010001 49 00110001 ,.) 81 01010001 q 113 01110001

t:,
18 00010010 ::. 50 00110010 b:' 82 01010010 i···· 114 01110010

.-
19 00010011 .- 51 00110011 ~=; 83 01010011 .::: 115 01110011

i::~ 20 00010100 ,~. 52 00110100 84 01010100 116 01110100

21 00010101 53 00110101 ; i 85 01010101 ',-' 1...1 117 011 10101

.:',' 22 00010110 j: •• , 54 00110110 I::! 86 01010110 118 01110110

23 00010111 55 00110111 i,i 87 01010111 i.:.! 119 01110111

i"j 24 00011000
,'-,

56 00111000 c' '.' 88 01011000 , ...• 120 01111000

!;~ .j 25 00011001 ::; 57 00111001 '.,' 89 01011001 I.) 121 01111001

26 00011010 58 00111010
--::

90 01011010 :z: 122 01111010

27 00011011 59 00111011 91 01011011 123 01111011

28 00011100 60 00111100 ::(92 01011100 124 01111100

29 00011101 61 00111101 93 01011101 125 01111101

F::, 30 00011110 62 00111110 94 01011110 ".' 126 01111110

31 00011111
.-',

63 00111111 .-.... 95 01011111 127 01111111

584 Useful Tables
Katakana Display Characters

These characters can be displayed on the Model 237 and on all Series 300 bit-mapped alpha
displays.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

c
10000000 L 128

k.
160 10100000 '::;i 192 11000000 EO 224 11100000

1
v 129 10000001 1:1 161 10100001 ." 193 11000001 EI 225 11100001

B
G 130 10000010 162 10100010 :=i 194 11000010 EZ 226 11100010

1
B 131 10000011 .J 163 10100011

...
'T' 195 11000011 E3 227 11100011

u
.L. 132 10000100 164 10100100 196 11000100 Eq 228 11100100

1
133 10000101 .!l " 165 10100101 + 197 11000101 ES 229 111 00101

B
134 10000110 .Ii

~ 166 101 00110 -7- 198 11 000110 ES 230 11 100110

1
135 10000111 .!l 167 10100111 ':::' 199 11000111 E7 231 11100111

101
136 10001000 H .', 168 10101000

..:,.
200 11001000 ·t· Ee 232 11101000

R
137 0 10001001 '":, 169 10101001 201 11001001 ES 233 11101001

y
E 138 10001010 ::1:: 170 10101010 . ; 202 11001010 EA 234 11101010

G
139 1000101 1 R 171 10101011 i···· 203 11001011 - EB 235 111 01011

c
140 10001100 y t:: 172 10101100 , 204 11001100 EC 236 11101100

B
141 10001101 u "; 173 10101101

....
205 11001101 Eo 237 11101101

M
142 G 10001110 :::j 174 101011 10 206 11001110 EE 238 11101110

B
143 10001111 K 175 10101111

_."
207 11001111 '.; EF 239 11101111

s
a 144 10010000 .- 176 101 10000 208 11010000 FO 240 11110000

s
1 145 10010001 177 10110001 : ... ; 209 11010001 Fl 241 11110001

s z 146 10010010 ·1 178 101 10010 '.' 210 11010010
F Z 242 11110010

s
3 147 10010011 ;~J 179 10110011 :;:: 21 1 11010011 F 3 243 11110011

s
q 148 10010100 :1: 180 10110100 212 11010100 Fa 244 11110100

s
149 10010101 s 71" 181 10110101 ." 213 11010101 _.L 1 0 245 11110101

s
s 150 10010110 i-: 182 101 10110 .'.' =! 214 11010110 -.: Fs 246 11110110

s
7 151 10010111 :'i" 183 101 10111 215 11010111 F7 247 11110111

s
B 152 10011000 .) 184 10111000 iJ 216 11011000 Fe 248 11111000

9
s 153 10011001 "T 185 10111001 lL: 217 1101 1001 FS 249 11111001

s
154 A 10011010 ::::i 186 10111010 218 11011010 FA 250 11111010

s
155 1001101 1 B '~r 187 10111011 U 219 11011 011 FB 251 11111011

s
c 156 10011100 : 188 10111 100 -'

;-', 220 11011100 • 252 11111100

s
0 157 10011101

... ::
189 10111101 221 11011101 Fo 253 1111 1101

s
E 158 10011110 190 10111110 222 11011110 FE 254 11111110

s
F 159 10011111 191 10111 111 ~ 223 1101 1111 ill 255 11111111

Note 1: Characters 128 thru 135 produce high lights on machines with monochrome highlights when used in PRINT and DISP statements.
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color.
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements.

584 Useful Tables
Katakana Display Characters

These characters can be displayed on the Model 237 and on all Series 300 bit-mapped alpha
displays.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

c
10000000 L 128

k.
160 10100000 '::;i 192 11000000 EO 224 11100000

1
v 129 10000001 1:1 161 10100001 ." 193 11000001 EI 225 11100001

B
G 130 10000010 162 10100010 :=i 194 11000010 EZ 226 11100010

1
B 131 10000011 .J 163 10100011

...
'T' 195 11000011 E3 227 11100011

u
.L. 132 10000100 164 10100100 196 11000100 Eq 228 11100100

1
133 10000101 .!l " 165 10100101 + 197 11000101 ES 229 111 00101

B
134 10000110 .Ii

~ 166 101 00110 -7- 198 11 000110 ES 230 11 100110

1
135 10000111 .!l 167 10100111 ':::' 199 11000111 E7 231 11100111

101
136 10001000 H .', 168 10101000

..:,.
200 11001000 ·t· Ee 232 11101000

R
137 0 10001001 '":, 169 10101001 201 11001001 ES 233 11101001

y
E 138 10001010 ::1:: 170 10101010 . ; 202 11001010 EA 234 11101010

G
139 1000101 1 R 171 10101011 i···· 203 11001011 - EB 235 111 01011

c
140 10001100 y t:: 172 10101100 , 204 11001100 EC 236 11101100

B
141 10001101 u "; 173 10101101

....
205 11001101 Eo 237 11101101

M
142 G 10001110 :::j 174 101011 10 206 11001110 EE 238 11101110

B
143 10001111 K 175 10101111

_."
207 11001111 '.; EF 239 11101111

s
a 144 10010000 .- 176 101 10000 208 11010000 FO 240 11110000

s
1 145 10010001 177 10110001 : ... ; 209 11010001 Fl 241 11110001

s z 146 10010010 ·1 178 101 10010 '.' 210 11010010
F Z 242 11110010

s
3 147 10010011 ;~J 179 10110011 :;:: 21 1 11010011 F 3 243 11110011

s
q 148 10010100 :1: 180 10110100 212 11010100 Fa 244 11110100

s
149 10010101 s 71" 181 10110101 ." 213 11010101 _.L 1 0 245 11110101

s
s 150 10010110 i-: 182 101 10110 .'.' =! 214 11010110 -.: Fs 246 11110110

s
7 151 10010111 :'i" 183 101 10111 215 11010111 F7 247 11110111

s
B 152 10011000 .) 184 10111000 iJ 216 11011000 Fe 248 11111000

9
s 153 10011001 "T 185 10111001 lL: 217 1101 1001 FS 249 11111001

s
154 A 10011010 ::::i 186 10111010 218 11011010 FA 250 11111010

s
155 1001101 1 B '~r 187 10111011 U 219 11011 011 FB 251 11111011

s
c 156 10011100 : 188 10111 100 -'

;-', 220 11011100 • 252 11111100

s
0 157 10011101

... ::
189 10111101 221 11011101 Fo 253 1111 1101

s
E 158 10011110 190 10111110 222 11011110 FE 254 11111110

s
F 159 10011111 191 10111 111 ~ 223 1101 1111 ill 255 11111111

Note 1: Characters 128 thru 135 produce high lights on machines with monochrome highlights when used in PRINT and DISP statements.
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color.
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements.

Power

On

CRT

CRT DISP Line Clear

CRT Display Functions Off

CRT Message Line Ready

CRT Input Line (Note 6) Clear

CRT Printout Area Clear

CRT Print Position (TABXY) 1,1

ALPHA ON/OFF (Note 3) On

KEYBOARD

Keyboard Recall Buffer Clear

Keyboard Result Buffer Empty

Keyboard Knob Mode t
Tabs On Input Line None

Typing Aid Labels Note 16

Keyboard Katakana Mode Off

SUSPEND INTERACTIVE Off

PRINTING

Print column 1

PRINTALL Off

PRINTALL IS 1

PRINTER IS 1

ENVIRONMENTS & VARIABLES

Allocated Variables None

Normal Variables None

COM Variables None

OPTION BASE 0

110 Path Names None

110 Path Names in COM None

Keyboard Variable Access No

BASIC Program Lines None

BASIC Program Environment Main

Normal Binary Programs None

SUB Stack Clear

NPAR 0

CONTINUE Allowed No

ON < event> ACTIO NS

ON < event> Log Empty

System Priority 0

ON KEY Labels None

ENABLE/DISABLE Enable

KNOBX & KNOBY 0

Master Reset Table
(fl
()

~
-i
()
I
l>

Clear

Off

Clear

Clear

Clear

1,1

On

-

Empty

t
None

Note 16

Off

Off

1

Off

1

1

None

None

None

0

Closed

Closed

No

None

Main

None

Clear

0

No

Empty

0

None

Enable

0

(fl

~ ()

~ -i
()

-i I ()
I ()

- -
- -

Clear Clear

Clear -
- -
- -
On On

- -
- -
t t

- -
- -

Off -
Off Off

- -

- -
- -
- -

None None

None None

- None

0 -

Closed Closed

- Closed

No No

None -
Main Main

- -
Clear Clear

0 0

No No

Empty Empty

0 0

None None

Enable Enable

0 0

Note 2

RESET END/ LOAD LOAD

STOP &Go

Clear - - -

- - - -

Reset - - -

Clear - - -

- - - -

Note 15 - - -
On On - -

- - - -

- - - -

t - - -

- - - -
- - - -

Off - - -

Off Off Off Off

1 - - -
Off - - -

- - - -

- - - -

Note 1 Note 1 None None

- - None None

- - - Note 9

- - - Note 9

None Closed Closed Closed

None - Note 10 Note 10

Main Main No In cnt.

- - Note 4 Note 4

Main Main Main Main

- - Note 5 Note 5

Clear Clear Clear Clear

0 0 0 0

No No No Yes

Empty Empty Empty Empty

0 0 0 0

None None None None

Enable Enable Enable Enable

0 0 0 0

Useful Tables 585

r
0

GET GET
l>

Main SUB SUB 0
(fl
C

&Go OJ Prerun Entry Exit

- - - - - -
- - - - - -
- - - Clear - -

- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -

- - - - - -

- - - - - -
- - - - - -

- - - - - -
- - - - - -
Off Off - Off - -

- - - - - -

- - - - - -

- - - - - -
- - - - - -

None None - None None Pre-ent

None None - Note 11 Note 11 Pre-ent

- Note 9 - - - -

- Note 9 - Note 9 Note 9 Pre-ent

Closed Closed - Closed - sub c1sd

Note 10 Note 10 - - - -
No In cnt. In cnt. Main SUB Pre-ent

Note 4 Note 4 Note 4 - - -
Main Main - Main SUB Pre-ent

- - - - - -
Clear Clear - Clear Push Pop

0 0 - 0 Actual Pre-ent

No Yes Yes Yes Yes Yes

Empty Empty - Empty Note 8 Note 8

0 0 - 0 Note 7 Pre-ent

None None - None - Pre-ent

Enable Enable - Enable - -
0 0 - 0 - -

Power

On

CRT

CRT DISP Line Clear

CRT Display Functions Off

CRT Message Line Ready

CRT Input Line (Note 6) Clear

CRT Printout Area Clear

CRT Print Position (TABXY) 1,1

ALPHA ON/OFF (Note 3) On

KEYBOARD

Keyboard Recall Buffer Clear

Keyboard Result Buffer Empty

Keyboard Knob Mode t
Tabs On Input Line None

Typing Aid Labels Note 16

Keyboard Katakana Mode Off

SUSPEND INTERACTIVE Off

PRINTING

Print column 1

PRINTALL Off

PRINTALL IS 1

PRINTER IS 1

ENVIRONMENTS & VARIABLES

Allocated Variables None

Normal Variables None

COM Variables None

OPTION BASE 0

110 Path Names None

110 Path Names in COM None

Keyboard Variable Access No

BASIC Program Lines None

BASIC Program Environment Main

Normal Binary Programs None

SUB Stack Clear

NPAR 0

CONTINUE Allowed No

ON < event> ACTIO NS

ON < event> Log Empty

System Priority 0

ON KEY Labels None

ENABLE/DISABLE Enable

KNOBX & KNOBY 0

Master Reset Table
(fl
()

~
-i
()
I
l>

Clear

Off

Clear

Clear

Clear

1,1

On

-

Empty

t
None

Note 16

Off

Off

1

Off

1

1

None

None

None

0

Closed

Closed

No

None

Main

None

Clear

0

No

Empty

0

None

Enable

0

(fl

~ ()

~ -i
()

-i I ()
I ()

- -
- -

Clear Clear

Clear -
- -
- -
On On

- -
- -
t t

- -
- -

Off -
Off Off

- -

- -
- -
- -

None None

None None

- None

0 -

Closed Closed

- Closed

No No

None -
Main Main

- -
Clear Clear

0 0

No No

Empty Empty

0 0

None None

Enable Enable

0 0

Note 2

RESET END/ LOAD LOAD

STOP &Go

Clear - - -

- - - -

Reset - - -

Clear - - -

- - - -

Note 15 - - -
On On - -

- - - -

- - - -

t - - -

- - - -
- - - -

Off - - -

Off Off Off Off

1 - - -
Off - - -

- - - -

- - - -

Note 1 Note 1 None None

- - None None

- - - Note 9

- - - Note 9

None Closed Closed Closed

None - Note 10 Note 10

Main Main No In cnt.

- - Note 4 Note 4

Main Main Main Main

- - Note 5 Note 5

Clear Clear Clear Clear

0 0 0 0

No No No Yes

Empty Empty Empty Empty

0 0 0 0

None None None None

Enable Enable Enable Enable

0 0 0 0

Useful Tables 585

r
0

GET GET
l>

Main SUB SUB 0
(fl
C

&Go OJ Prerun Entry Exit

- - - - - -
- - - - - -
- - - Clear - -

- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -

- - - - - -

- - - - - -
- - - - - -

- - - - - -
- - - - - -
Off Off - Off - -

- - - - - -

- - - - - -

- - - - - -
- - - - - -

None None - None None Pre-ent

None None - Note 11 Note 11 Pre-ent

- Note 9 - - - -

- Note 9 - Note 9 Note 9 Pre-ent

Closed Closed - Closed - sub c1sd

Note 10 Note 10 - - - -
No In cnt. In cnt. Main SUB Pre-ent

Note 4 Note 4 Note 4 - - -
Main Main - Main SUB Pre-ent

- - - - - -
Clear Clear - Clear Push Pop

0 0 - 0 Actual Pre-ent

No Yes Yes Yes Yes Yes

Empty Empty - Empty Note 8 Note 8

0 0 - 0 Note 7 Pre-ent

None None - None - Pre-ent

Enable Enable - Enable - -
0 0 - 0 - -

586 Useful Tables

Power

On

MISe.

GOSUB Stack Clear

TIMEDATE Note 14

ERRL, ERRN, and ERRDS 0

ERRM$ Null

DATA Pointer None

LEXICAL ORDER IS Stand.

MASS STORAGE IS Note 12

CHECKREAD ONIOFF Off

Angle Mode RAD

Random Number Seed Note 13

DET 0

TRANSFER None

TRACE ALL Off

- = Unchanged

(J)

n s;
--l
n
:!
»

Clear

-

0

Null

None

Stand.

Note 12

Off

RAD

Note 13

0

Aborts

Off

(J)

n
S;
--l
n
:!

Clear

-
-

-

None

-

-

-

RAD

Note 13

0

Note 17

Off

(J)

n
S;
--l n
:!
n

Clear

-

-

-

None

-

-

-
RAD

-

-

Waits

-

Pre-ent = As existed previous to entry into the subprogram.

In cnt. = Access to variables in current context only.

RESET

Clear

-

-
-

None

-
-
-

-

-

-
Aborts

-

1st main = Pointer set to first DATA statement in main program.

1st sub = Pointer set to first DATA statement in subprogram.

sub clsd = All local 110 path names are closed at subexit.

Waits = Operation waits until TRANSFER completes.

Note 1: Only those allocated in the main program are available.

Note 2 0
r

ENOl LOAD LOAD GET GET
»

Main SUB SUB 0
(J)
c

STOP &Go &Go OJ Prerun Entry Exit

Clear Clear Clear Clear Clear - Clear Local Pre-ent

- - - - - - - - -

- - 0 - 0 - 0 - -

- - Null - Null - Null - -

None None 1st main None 1st main - 1st main 1st sub Pre-ent

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- RAD RAD RAD RAD - RAD - Pre-ent

- - Note 13 - Note 13 - Note 13 - -

- - - - - - 0 - -

Waits None Note 18 None Waits - None - Note 19

- - - - - - - - -

Note 2: Pressing the STOP key is identical in iunction to executing STOP. Editing or altering a paused program causes the program to go

into the stopped state.

Note 3: Alpha is turned on automatically by typing on the input line, by writing to the display line, or by an output to the message line.

Note 4: Modified according to the statement or command parameters and file contents.

Note 5: Any new binary programs in the file are loaded.

Note 6: Includes cursor position, INS CHR mode, ANY CHAR sequence state, but not tabs, auto-repeat rate, and auto-repeat delay.

(These last three are defaulted only at SCRATCH A and Power On.)

Note 7: The system priority changes at SUB entry if the subroutine was invoked by an ON <event> CALL.

Note 8: See the appropriate keyword.

Note 9: As specified by the new environment or program.

Note 10: A COM mismatch between programs will close 1/0 path names. If I/O path names exist in a labeled COM, and a LOAD or GET

brings in a program which does not contain that labeled COM, those 1/0 path names are closed.

Note 11: Numeric variables are set to 0, and string lengths are set to O.

Note 12: The default mass storage device is INTERNAL (the right-hand drive) on the 9826 and 9836. See the 9816 Installation Manual for

information on its default mass storage device.

Note 13: The default random number seed is INT(PI x (231
- 2)/180). This is equal to 37480660.

Note 14: The default TIMEDATE is 2.086 62912 E+ 11 (midnight March 1, 1900, Julian time).

Note 15: After a RESET, the CRT print position is in column one of the next line below the print position before the RESET.

Note 16: Typing aid labels are displayed unless a program is in the RUN state.

Note 17: Operation waits until TRANSFER completes unless both 1/0 path names are in COM.

Note 18: Operation waits until TRANSFER completes unless both I/O path names are in a COM area preserved during the LOAD.

Note 19: Operation waits until TRANSFER completes if the TRANSFER uses a local 1/0 path name.

586 Useful Tables

Power

On

MISe.

GOSUB Stack Clear

TIMEDATE Note 14

ERRL, ERRN, and ERRDS 0

ERRM$ Null

DATA Pointer None

LEXICAL ORDER IS Stand.

MASS STORAGE IS Note 12

CHECKREAD ONIOFF Off

Angle Mode RAD

Random Number Seed Note 13

DET 0

TRANSFER None

TRACE ALL Off

- = Unchanged

(J)

n s;
--l
n
:!
»

Clear

-

0

Null

None

Stand.

Note 12

Off

RAD

Note 13

0

Aborts

Off

(J)

n
S;
--l
n
:!

Clear

-
-

-

None

-

-

-

RAD

Note 13

0

Note 17

Off

(J)

n
S;
--l n
:!
n

Clear

-

-

-

None

-

-

-
RAD

-

-

Waits

-

Pre-ent = As existed previous to entry into the subprogram.

In cnt. = Access to variables in current context only.

RESET

Clear

-

-
-

None

-
-
-

-

-

-
Aborts

-

1st main = Pointer set to first DATA statement in main program.

1st sub = Pointer set to first DATA statement in subprogram.

sub clsd = All local 110 path names are closed at subexit.

Waits = Operation waits until TRANSFER completes.

Note 1: Only those allocated in the main program are available.

Note 2 0
r

ENOl LOAD LOAD GET GET
»

Main SUB SUB 0
(J)
c

STOP &Go &Go OJ Prerun Entry Exit

Clear Clear Clear Clear Clear - Clear Local Pre-ent

- - - - - - - - -

- - 0 - 0 - 0 - -

- - Null - Null - Null - -

None None 1st main None 1st main - 1st main 1st sub Pre-ent

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- RAD RAD RAD RAD - RAD - Pre-ent

- - Note 13 - Note 13 - Note 13 - -

- - - - - - 0 - -

Waits None Note 18 None Waits - None - Note 19

- - - - - - - - -

Note 2: Pressing the STOP key is identical in iunction to executing STOP. Editing or altering a paused program causes the program to go

into the stopped state.

Note 3: Alpha is turned on automatically by typing on the input line, by writing to the display line, or by an output to the message line.

Note 4: Modified according to the statement or command parameters and file contents.

Note 5: Any new binary programs in the file are loaded.

Note 6: Includes cursor position, INS CHR mode, ANY CHAR sequence state, but not tabs, auto-repeat rate, and auto-repeat delay.

(These last three are defaulted only at SCRATCH A and Power On.)

Note 7: The system priority changes at SUB entry if the subroutine was invoked by an ON <event> CALL.

Note 8: See the appropriate keyword.

Note 9: As specified by the new environment or program.

Note 10: A COM mismatch between programs will close 1/0 path names. If I/O path names exist in a labeled COM, and a LOAD or GET

brings in a program which does not contain that labeled COM, those 1/0 path names are closed.

Note 11: Numeric variables are set to 0, and string lengths are set to O.

Note 12: The default mass storage device is INTERNAL (the right-hand drive) on the 9826 and 9836. See the 9816 Installation Manual for

information on its default mass storage device.

Note 13: The default random number seed is INT(PI x (231
- 2)/180). This is equal to 37480660.

Note 14: The default TIMEDATE is 2.086 62912 E+ 11 (midnight March 1, 1900, Julian time).

Note 15: After a RESET, the CRT print position is in column one of the next line below the print position before the RESET.

Note 16: Typing aid labels are displayed unless a program is in the RUN state.

Note 17: Operation waits until TRANSFER completes unless both 1/0 path names are in COM.

Note 18: Operation waits until TRANSFER completes unless both I/O path names are in a COM area preserved during the LOAD.

Note 19: Operation waits until TRANSFER completes if the TRANSFER uses a local 1/0 path name.

Useful Tables 587

Further Comments

The PAUSE key, the programmed PAUSE statement, and executing PAUSE from the keyboard all have identical effects. The only

permanent effects of the sequence " PAUSE ... CONTINUE" on a running program are:

1. Delay in execution.

2. Second and subsequent interrupt events of a given type are ignored.

3. INPUT, LINPUT, and ENTER 2 statements will be restarted.

4. ON KEY and ON KNOB are temporarily deactivated (i.e. not logged or executed) during the pause.

5. A TRANSFER may complete during the pause, causing ON EOT to be serviced at the next end-of-line.

Fatal program errors (i.e. those not trapped by ON ERROR) have the following effects:

-a PAUSE

- a beep

- an error message in the message line

- setting the values of the ERRL, the ERRN, and possibly the ERRDS functions

- setting the default EDIT line number to the number of the line in which the error occurred.

Autostart is equivalent to: Power On , LOAD "AUTOST", RUN.

CLR 10 terminates ENTER and OUTPUT on all interfaces, handshake setup operations, HP-IB control operations, DISP, ENTER

from CRT or keyboard, CAT, LIST, external plotter output, and output to the PRINTER IS , PRINTALL IS, and DUMP DEVICE IS

devices when they are external. CLR 10 does not terminate CONTROL, STATUS, READIO, WRITEIO, TRANSFER, real -time clock

operations, mass storage operations (other than CAT) , OUTPUT 2 (keyboard), or message line output.

CLR 10 clears any pending closure key action.

If CLR 10 is used to abort a DUMP GRAPHICS to an external device, the external device may be in the middle of an escape-code

sequence. Thus, it might be counting characters to determine when to return to normal mode (from graphics mode) . This means that a

subsequent I/O operation to the same device may yield "strange" results. Handling this situation is the responsibility of the user and is

beyond the scope of the firmware provided with the product. Sending 75 ASCII nulls is one way to "clear" the 9876 Graphics Printer.

Useful Tables 587

Further Comments

The PAUSE key, the programmed PAUSE statement, and executing PAUSE from the keyboard all have identical effects. The only

permanent effects of the sequence " PAUSE ... CONTINUE" on a running program are:

1. Delay in execution.

2. Second and subsequent interrupt events of a given type are ignored.

3. INPUT, LINPUT, and ENTER 2 statements will be restarted.

4. ON KEY and ON KNOB are temporarily deactivated (i.e. not logged or executed) during the pause.

5. A TRANSFER may complete during the pause, causing ON EOT to be serviced at the next end-of-line.

Fatal program errors (i.e. those not trapped by ON ERROR) have the following effects:

-a PAUSE

- a beep

- an error message in the message line

- setting the values of the ERRL, the ERRN, and possibly the ERRDS functions

- setting the default EDIT line number to the number of the line in which the error occurred.

Autostart is equivalent to: Power On , LOAD "AUTOST", RUN.

CLR 10 terminates ENTER and OUTPUT on all interfaces, handshake setup operations, HP-IB control operations, DISP, ENTER

from CRT or keyboard, CAT, LIST, external plotter output, and output to the PRINTER IS , PRINTALL IS, and DUMP DEVICE IS

devices when they are external. CLR 10 does not terminate CONTROL, STATUS, READIO, WRITEIO, TRANSFER, real -time clock

operations, mass storage operations (other than CAT) , OUTPUT 2 (keyboard), or message line output.

CLR 10 clears any pending closure key action.

If CLR 10 is used to abort a DUMP GRAPHICS to an external device, the external device may be in the middle of an escape-code

sequence. Thus, it might be counting characters to determine when to return to normal mode (from graphics mode) . This means that a

subsequent I/O operation to the same device may yield "strange" results. Handling this situation is the responsibility of the user and is

beyond the scope of the firmware provided with the product. Sending 75 ASCII nulls is one way to "clear" the 9876 Graphics Printer.

588 Useful Tables

Graphic Reset Table

Power

On

PLOTTER IS CRT

Graphics Memory Clear

VIEWPORT hrd clip

X and Y Scaling (unit of measure) GDU

Soft Clip hrd clip

Current Clip hrd clip

CLIP ON/OFF Off

PIVOT 0

AREA PEN 1

PEN 1

LINE TYPE 1,5

Pen Position 0,0

LORG 1

CSIZE 5,.6

LDIR 0

PDIR 0

GRAPHICS ON/OFF Off

ALPHA ON/OFF (Note 3) On

DUMP DEVICE IS 701

GRAPHICS INPUT IS None

TRACK ... ON/OFF Off

Color Map (Note 4) Off

Drawing Mode Norm

- = Unchanged

hrd clip = The default hard clip boundaries of the CRT.

(J)

n
~ n
I
l>

CRT

Clear

hrd clip

GDU

hrd clip

hrd clip

Off

0

1

1

1,5

0.0

1

5,.6

0

0

Off

On

701

None

Off

Off

Norm

(J)

n
~ n
I

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

On

-
-

-

-

-

(J)

n
~ n
I
n

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-

-

-

On

-

-

-

-

-

RESET

CRT

Note 1

hrd clip

GDU

hrd clip

hrd clip

Off

0

1

1

1.5

0,0

1

5 .. 6

0

0

-

On

-

None

Off

Note 5

Norm

Note 2

ENDI GINIT Main

STOP Prerun

- CRT -

- Note 1 -

- hrd clip -

- GDU -

- hrd clip -

- hrd clip -

- Off -

- 0 -

- 1 -

- 1 -

- 1.5 -

- 0.0 -

- 1 -

- 5 .. 6 -

- 0 -

- 0 -

- - -

On - -

- - -
- None -

- Off -

- Note 5 -

- Norm -

Note 1: Although RESET leaves the graphics memory unchanged, it will be cleared upon execution of the next graphics statementthat sets

a default plotter following the RESET.

Note 2: Pressing the STOP key is identical to executing STOP. Altering a paused program causes the program to go into the stopped state.

Note 3: Alpha is turned on automatically by typing on the input line, by writing to the display line, or by an output to the message line.

Note 4: With color map off, 8 standard colors are available. With color map on, 16 user-defined colors are available, See PLOTTER IS,

Note 5: Although the color map remains unchanged, it is changed if a graphics statement selects the device as a default plotter.

588 Useful Tables

Graphic Reset Table

Power

On

PLOTTER IS CRT

Graphics Memory Clear

VIEWPORT hrd clip

X and Y Scaling (unit of measure) GDU

Soft Clip hrd clip

Current Clip hrd clip

CLIP ON/OFF Off

PIVOT 0

AREA PEN 1

PEN 1

LINE TYPE 1,5

Pen Position 0,0

LORG 1

CSIZE 5,.6

LDIR 0

PDIR 0

GRAPHICS ON/OFF Off

ALPHA ON/OFF (Note 3) On

DUMP DEVICE IS 701

GRAPHICS INPUT IS None

TRACK ... ON/OFF Off

Color Map (Note 4) Off

Drawing Mode Norm

- = Unchanged

hrd clip = The default hard clip boundaries of the CRT.

(J)

n
~ n
I
l>

CRT

Clear

hrd clip

GDU

hrd clip

hrd clip

Off

0

1

1

1,5

0.0

1

5,.6

0

0

Off

On

701

None

Off

Off

Norm

(J)

n
~ n
I

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

On

-
-

-

-

-

(J)

n
~ n
I
n

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-

-

-

On

-

-

-

-

-

RESET

CRT

Note 1

hrd clip

GDU

hrd clip

hrd clip

Off

0

1

1

1.5

0,0

1

5 .. 6

0

0

-

On

-

None

Off

Note 5

Norm

Note 2

ENDI GINIT Main

STOP Prerun

- CRT -

- Note 1 -

- hrd clip -

- GDU -

- hrd clip -

- hrd clip -

- Off -

- 0 -

- 1 -

- 1 -

- 1.5 -

- 0.0 -

- 1 -

- 5 .. 6 -

- 0 -

- 0 -

- - -

On - -

- - -
- None -

- Off -

- Note 5 -

- Norm -

Note 1: Although RESET leaves the graphics memory unchanged, it will be cleared upon execution of the next graphics statementthat sets

a default plotter following the RESET.

Note 2: Pressing the STOP key is identical to executing STOP. Altering a paused program causes the program to go into the stopped state.

Note 3: Alpha is turned on automatically by typing on the input line, by writing to the display line, or by an output to the message line.

Note 4: With color map off, 8 standard colors are available. With color map on, 16 user-defined colors are available, See PLOTTER IS,

Note 5: Although the color map remains unchanged, it is changed if a graphics statement selects the device as a default plotter.

GPIO Card

Interrupt Enable Bit

Active Timeout Counter

Enable Interrupt Mask

Hardware Reset of Card (PRESET)

PSTS Error flag

RS-232 Card

Interrupt Enable Bit

Active Timeout Counter

Enable Interrupt Mask

Hardware Reset of Card

Data Rate/Character Format

RTS-DTR Latch

Request to Send Line

Data Terminal Ready Line

Line Status Register

Modem Status Register

Data-In Buffer

Error-Pend. flag

HP-IB

Interrupt Enable Bit

Active Timeout Counter

Interrupt Enable Mask

User Interrupt Status

Sertal Poll Register

Parallel Poll Register

My Address Register

IFC Sent

REN Set True

Data Communications

Interrupt Enable Bit

Active Timeout Counter

Interrupt Enable Mask

Hardware Reset of Card

Line State

Data Buffers

Protocol Selection (Async or Data Link)

Protocol Options

BCD Card

Interrupt Enable Bit

Active Timeout Counter

Interrupt Enable Mask

Hardware Reset of Card

Rewind Driver

BCDlBinary Mode

Interface Reset Table

Power

On

Clear

Clear

Clear

Reset

Clear

Clear

Clear

Clear

Reset

Swtch

Clear

Clear

Clear

Clear

Clear

Empty

Clear

Clear

Clear

Clear

Clear

Clear

Clear

Note 4

Note 3

Note 3

Clear

Clear

Clear

Reset

Oseon

Empty

Swtch

Swtch

Clear

Clear

Clear

Reset

Rwd

Swtch

'" ()

~
;:i
:r:
:>-

Clear

Clear

Clear

Note 1

Clear

Clear

Clear

Clear

Reset

Swtch

Clear

Clear

Clear

Clear

Clear

Empty

Clear

Clear

Clear

Clear

Clear

Clear

Clear

Note 4

Note 3

Note 3

Clear

Clear

Clear

Note 7

Dseon

Empty

Note 8

Swtch

Clear

Clear

Clear

Note 1

Rwd

Swtch

'" ()

~
~
()
:r:

Clear

Clear

Clear

Note 1

Clear

Clear

Clear

Clear

-

-

-

-
-

Clear

Clear

Empty

Clear

Clear

Clear

Clear

Clear

-

-

-

-

-

Clear

Clear

Clear

-
-

-

-

-

Clear

Clear

Clear

Note 1

Rwd

-

Note 5

BASIC END/ LOAD GET

RESET STOP

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Reset Note 1 Note 1 Note 1

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Reset - - -
- - - -
- - - -

Clear - - -
Clear - - -
Clear Clear Clear Clear

Clear Clear Clear Clear

Empty Empty Empty Empty

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear - - -
Clear - - -

- - - -
Note 3 - - -
Note 3 - - -

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Reset - - -
Dseon - - -
Empty - - -
Swtch - - -

Swtch - - -

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Note 1 Note 1 Note 1 Note 1

Rwd Rwd Rwd Rwd

- - - -

Useful Tables 589

Note 6

Reset Main SUB SUB CLR

Cmd Prerun Entry Exit VO

Clear Clear - - -

- Clear - - -
Clear Clear - - -
Reset Note 1 - - Note 1

Clear Clear - - -

Clear Clear - - -

- Clear - - -
Clear Clear - - -
Reset - - - -

- - - - -
Clear - - - -
Clear - - - Note 2

Clear - - - Note 2

Clear Clear - - Clear

Clear Clear - - Clear

Empty Empty - - Empty

Clear Clear - - Clear

Clear Clear - - -

- Clear - - -
Clear Clear - - -
Clear Clear - - -
Clear - - - -
Clear - - - -

- - - - -
Note 3 - - - -
Note 3 - - - -

Clear Clear - - -
- Clear - - -

Clear Clear - - -
Note 7 - - - -
Oseon - - - -
Empty - - - -
Note 8 - - - -
Swtch - - - -

Clear Clear - - -
- Clear - - -

Clear Clear - - -
Reset Note 1 - - Note 1

Rwd Rwd - - Rwd

- - - - -

GPIO Card

Interrupt Enable Bit

Active Timeout Counter

Enable Interrupt Mask

Hardware Reset of Card (PRESET)

PSTS Error flag

RS-232 Card

Interrupt Enable Bit

Active Timeout Counter

Enable Interrupt Mask

Hardware Reset of Card

Data Rate/Character Format

RTS-DTR Latch

Request to Send Line

Data Terminal Ready Line

Line Status Register

Modem Status Register

Data-In Buffer

Error-Pend. flag

HP-IB

Interrupt Enable Bit

Active Timeout Counter

Interrupt Enable Mask

User Interrupt Status

Sertal Poll Register

Parallel Poll Register

My Address Register

IFC Sent

REN Set True

Data Communications

Interrupt Enable Bit

Active Timeout Counter

Interrupt Enable Mask

Hardware Reset of Card

Line State

Data Buffers

Protocol Selection (Async or Data Link)

Protocol Options

BCD Card

Interrupt Enable Bit

Active Timeout Counter

Interrupt Enable Mask

Hardware Reset of Card

Rewind Driver

BCDlBinary Mode

Interface Reset Table

Power

On

Clear

Clear

Clear

Reset

Clear

Clear

Clear

Clear

Reset

Swtch

Clear

Clear

Clear

Clear

Clear

Empty

Clear

Clear

Clear

Clear

Clear

Clear

Clear

Note 4

Note 3

Note 3

Clear

Clear

Clear

Reset

Oseon

Empty

Swtch

Swtch

Clear

Clear

Clear

Reset

Rwd

Swtch

'" ()

~
;:i
:r:
:>-

Clear

Clear

Clear

Note 1

Clear

Clear

Clear

Clear

Reset

Swtch

Clear

Clear

Clear

Clear

Clear

Empty

Clear

Clear

Clear

Clear

Clear

Clear

Clear

Note 4

Note 3

Note 3

Clear

Clear

Clear

Note 7

Dseon

Empty

Note 8

Swtch

Clear

Clear

Clear

Note 1

Rwd

Swtch

'" ()

~
~
()
:r:

Clear

Clear

Clear

Note 1

Clear

Clear

Clear

Clear

-

-

-

-
-

Clear

Clear

Empty

Clear

Clear

Clear

Clear

Clear

-

-

-

-

-

Clear

Clear

Clear

-
-

-

-

-

Clear

Clear

Clear

Note 1

Rwd

-

Note 5

BASIC END/ LOAD GET

RESET STOP

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Reset Note 1 Note 1 Note 1

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Reset - - -
- - - -
- - - -

Clear - - -
Clear - - -
Clear Clear Clear Clear

Clear Clear Clear Clear

Empty Empty Empty Empty

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear - - -
Clear - - -

- - - -
Note 3 - - -
Note 3 - - -

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Reset - - -
Dseon - - -
Empty - - -
Swtch - - -

Swtch - - -

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Note 1 Note 1 Note 1 Note 1

Rwd Rwd Rwd Rwd

- - - -

Useful Tables 589

Note 6

Reset Main SUB SUB CLR

Cmd Prerun Entry Exit VO

Clear Clear - - -

- Clear - - -
Clear Clear - - -
Reset Note 1 - - Note 1

Clear Clear - - -

Clear Clear - - -

- Clear - - -
Clear Clear - - -
Reset - - - -

- - - - -
Clear - - - -
Clear - - - Note 2

Clear - - - Note 2

Clear Clear - - Clear

Clear Clear - - Clear

Empty Empty - - Empty

Clear Clear - - Clear

Clear Clear - - -

- Clear - - -
Clear Clear - - -
Clear Clear - - -
Clear - - - -
Clear - - - -

- - - - -
Note 3 - - - -
Note 3 - - - -

Clear Clear - - -
- Clear - - -

Clear Clear - - -
Note 7 - - - -
Oseon - - - -
Empty - - - -
Note 8 - - - -
Swtch - - - -

Clear Clear - - -
- Clear - - -

Clear Clear - - -
Reset Note 1 - - Note 1

Rwd Rwd - - Rwd

- - - - -

590 Useful Tables

EPROM Programmer

Hardware Reset of Card

Programming Time Register

Target Address Register

- = Unchanged

Power

On

Reset

Clear

Clear

(jl

n
::0 » ..,
n
I
»

Reset

Clear

Clear

(jl

n Note 5
::0 » BASIC ENOl ..,
n
I RESET STOP

- Reset -

- - -

- - -

Swtch = Set according to the switches on the interface card

Dscon = A disconnect is performed

Note 1: Reset only if card is not ready.

LOAD

-

-

-

Note 2: Cleared only if corresponding modem control line is not set.

Note 3: Sent only if System Controller.

Note 6

GET Reset Main SUB

Cmd Prerun Entry

- Reset - -

- Clear - -

- Clear - -

Note 4: If System Controller and Active Controller, address is set to 21. Otherwise, it is set to 20.

SUB CLR

Exit 1/0

- -

- -

- -

Note 5: Pressing the STOP key is identical in function to executing STOP or END. Editing or altering a paused program causes the

program to go into the stopped state.

Note 6: Caused by sending a non-zero value to CONTROL register O.

Note 7: This is a "soft reset," which does not include an interface self-test or a reconfiguration of protocol.

Note 8: Set according to the value used in the most recent CONTROL statement directed to Register 3. If there has been no

CONTROL 3 statement, the switch settings are used.

590 Useful Tables

EPROM Programmer

Hardware Reset of Card

Programming Time Register

Target Address Register

- = Unchanged

Power

On

Reset

Clear

Clear

(jl

n
::0 » ..,
n
I
»

Reset

Clear

Clear

(jl

n Note 5
::0 » BASIC ENOl ..,
n
I RESET STOP

- Reset -

- - -

- - -

Swtch = Set according to the switches on the interface card

Dscon = A disconnect is performed

Note 1: Reset only if card is not ready.

LOAD

-

-

-

Note 2: Cleared only if corresponding modem control line is not set.

Note 3: Sent only if System Controller.

Note 6

GET Reset Main SUB

Cmd Prerun Entry

- Reset - -

- Clear - -

- Clear - -

Note 4: If System Controller and Active Controller, address is set to 21. Otherwise, it is set to 20.

SUB CLR

Exit 1/0

- -

- -

- -

Note 5: Pressing the STOP key is identical in function to executing STOP or END. Editing or altering a paused program causes the

program to go into the stopped state.

Note 6: Caused by sending a non-zero value to CONTROL register O.

Note 7: This is a "soft reset," which does not include an interface self-test or a reconfiguration of protocol.

Note 8: Set according to the value used in the most recent CONTROL statement directed to Register 3. If there has been no

CONTROL 3 statement, the switch settings are used.

(

Useful Tables 591

Second Byte of Non-ASCII Key Sequences (String)
Holding the CTRL key and pressing a non-ASCII key generates a two-character sequence on the
CRT. The first character is an "inverse-video" K. This table can be used to look up the key that
corresponds to the second character of the sequence, (On the small keyboard of the Model 216,
some non-ASCII keys generate ASCII characters when they are pressed while holding the CTRL
key,)

Character Value Key Character Value Key

space I p 80 [PAUSE)
I 33 (STOP) Q 1

" I

35 ~
R 82 ~
s 83 [STEP)

$ 36 (ANY CHAR) T 84 (SHIFT)-CD
'X, 37 (CLR. END) u 85 (CAPS LOCK)
&, 38 (Select)

39 ~
(40 [SHIFT) -CillJ

1,1 86 CD
w 87 [SHIFT)-CD

" 88 (EXECUTE) ") 41 CillJ Y 89 Roman Mode

* 42 (INS LN) Z 1

+ 43 ~ [91 (CLR TAB)
, 44 ~ \ 92 CYJ
- 45 (DEL CHR) J 93 [SET TAB)

46 Ignored 94 CD
/ 47 (DEL LN)

I) 48 OU
- 95 (SHIFT) -(TI

1

1 49 OQ
2 50 CI)
3 51 OQ
LI 52 OQ
5 53 QQ

a 97 0iQJ
b 98 Oil]
c 99 DiD
oj 100 DiD
e 101 DiD

6 54 QQ
7 55 OU
B 56 CTI
9 57 OU
: 58 (SHIFT) -systemCJ[:Y
; 59 (SHIFT) -systemCJ[J '

< 60 ~

f 102 C§J
g 103 DiD
h 104 DiD
i 105 DiD
j 106 DiD
f, 107 [§J
1 108 C§U

= 61 [RESULT)

> 62 G]

,,1 109 ~
1'1 110 C§D

? 63 [RECALL) 0 111 (SHIFT) -system(IJ'
@ 64 (SHIFT) -(RECALL)

A 65 oo:illJ
B 66 [BACK SPACE)

p 112 (SHIFT) -systemCJCY

• 113 (SHIFT) -system~2
r 114 (SHIFT) -systemCKJ'

C 67 [CONTINUE)

D 68 QQiD
5 115 (SHIFT) -user(IJ'

t 116 (SHIFT) -userCD2
E 69 (ENTER) u 117 (SHIFT) -user~'
F 70 (DISPLAY FCTNS)

G 71 (SHIFT)-G]

H 72 (SH I FT)-~

I! 118 (SHIFT) -userCKJ'

1.1 119 (SHIFT) -userClL Y

x 120 (SHIFT) -user(I),
I 73 (CLR 1/0)

" 121 (SHIFT) -userCJ[J'
J 74 Katakana Mode 2 122 (SHIFT) -userC!IJ '
K 75 (CLR SCR) } ,123 (System)
L 76 [GRAPHICS) I 124 ~
M 77 [ALPHA) { 125· ~
N 78 (DUMP GRAPHICS)

D 79 (DUMP ALPHA)

- 126 (SHIFT)-~
f.i 1

1 These ch aracters cannot be generated by pressing t he CTRL key and a non-ASCII key. If one of these characters fo llows C H R$(255) in an
output to the keyboard, an error is reported (E r r 0 r 131 B a oj 1'101'1 - a l p h a 1'1 OJ III e ric Key cod e •).

2 System and user refer to the softkey menu wh ich is currently active.

(

Useful Tables 591

Second Byte of Non-ASCII Key Sequences (String)
Holding the CTRL key and pressing a non-ASCII key generates a two-character sequence on the
CRT. The first character is an "inverse-video" K. This table can be used to look up the key that
corresponds to the second character of the sequence, (On the small keyboard of the Model 216,
some non-ASCII keys generate ASCII characters when they are pressed while holding the CTRL
key,)

Character Value Key Character Value Key

space I p 80 [PAUSE)
I 33 (STOP) Q 1

" I

35 ~
R 82 ~
s 83 [STEP)

$ 36 (ANY CHAR) T 84 (SHIFT)-CD
'X, 37 (CLR. END) u 85 (CAPS LOCK)
&, 38 (Select)

39 ~
(40 [SHIFT) -CillJ

1,1 86 CD
w 87 [SHIFT)-CD

" 88 (EXECUTE) ") 41 CillJ Y 89 Roman Mode

* 42 (INS LN) Z 1

+ 43 ~ [91 (CLR TAB)
, 44 ~ \ 92 CYJ
- 45 (DEL CHR) J 93 [SET TAB)

46 Ignored 94 CD
/ 47 (DEL LN)

I) 48 OU
- 95 (SHIFT) -(TI

1

1 49 OQ
2 50 CI)
3 51 OQ
LI 52 OQ
5 53 QQ

a 97 0iQJ
b 98 Oil]
c 99 DiD
oj 100 DiD
e 101 DiD

6 54 QQ
7 55 OU
B 56 CTI
9 57 OU
: 58 (SHIFT) -systemCJ[:Y
; 59 (SHIFT) -systemCJ[J '

< 60 ~

f 102 C§J
g 103 DiD
h 104 DiD
i 105 DiD
j 106 DiD
f, 107 [§J
1 108 C§U

= 61 [RESULT)

> 62 G]

,,1 109 ~
1'1 110 C§D

? 63 [RECALL) 0 111 (SHIFT) -system(IJ'
@ 64 (SHIFT) -(RECALL)

A 65 oo:illJ
B 66 [BACK SPACE)

p 112 (SHIFT) -systemCJCY

• 113 (SHIFT) -system~2
r 114 (SHIFT) -systemCKJ'

C 67 [CONTINUE)

D 68 QQiD
5 115 (SHIFT) -user(IJ'

t 116 (SHIFT) -userCD2
E 69 (ENTER) u 117 (SHIFT) -user~'
F 70 (DISPLAY FCTNS)

G 71 (SHIFT)-G]

H 72 (SH I FT)-~

I! 118 (SHIFT) -userCKJ'

1.1 119 (SHIFT) -userClL Y

x 120 (SHIFT) -user(I),
I 73 (CLR 1/0)

" 121 (SHIFT) -userCJ[J'
J 74 Katakana Mode 2 122 (SHIFT) -userC!IJ '
K 75 (CLR SCR) } ,123 (System)
L 76 [GRAPHICS) I 124 ~
M 77 [ALPHA) { 125· ~
N 78 (DUMP GRAPHICS)

D 79 (DUMP ALPHA)

- 126 (SHIFT)-~
f.i 1

1 These ch aracters cannot be generated by pressing t he CTRL key and a non-ASCII key. If one of these characters fo llows C H R$(255) in an
output to the keyboard, an error is reported (E r r 0 r 131 B a oj 1'101'1 - a l p h a 1'1 OJ III e ric Key cod e •).

2 System and user refer to the softkey menu wh ich is currently active.

592 Useful Tables

Selected High-Precision Metric Conversion Factors

English Units Metric Units

Length
mil micrometre (micron)
inch millimetre
foot metre t
mile (intI.) kilometre

Area
inch2 millimetre2

foot2 metre2

mile2 kilometre2

acre hectare
(U.S. survey)

Volume
inches3 millimetres3

feet3 metres3

ounces centimetres3

(U .S. fluid)
gallon litre :j:
(U.S. flUid)

Mass
pound (avdp.) kilogram
ton (short) ton (metric)

Force
ounce (force) dyne
pound (force) newton

Pressure
psi pascal
inches of Hg
(at 32°F)

millibar

Energy
BTU (1ST) Calorie

(kg, thermochem.)
BTU (1ST) watt-hour
BTU (1ST) joule §
ft·lb joule

Power
BTU (1ST) / hr watt
horsepower watt
(mechanical)
horsepower watt
(electric)
ft·lb/s watt

Temperature
°Rankine kelvin
°Fahrenheit °Celsius

* Exact conversion
t Conversion redefined in 1959
:I: Conversion redefined in 1964
§ Conversion redefined in'1956

Note: The preferred metric unit for
force is the newton; for pressure, the
pascal; and for energy, the joule.

Sources

Prefix

exa
peta
tera
giga
mega
kilo
hecto
deka

To convert from To convert from
English to Metric, Metric to English,

multiply by: multiply by:

2.54 x 10 1 * 3.937007874 x 10-2

2.54 x 10 1* 3.937007874 x 10- 2

3.048 x 10-1* 3.280839895
1.609344* 6.213 711 922 x 10- 1

6.451 6 x 102* 1.550 003 100 x 10- 3

9.290304 x 10- 2 * 1.076391042 x 10 1

2.589988 110 3.861 021 585 x 10- 1

4.046873 x 10-1 2.471044

1.6387064 x 104 * 6.102 374409 x 10- 5

2.831 684659 x 10-2 3.531466672 x 10 1

2.957353 x 10 1 3.381 402 x 10-2

3.785412 2.641 721 x 10- 1

4.5359237 x 10-1* 2.204 622 622
9.0718474 x 10-1* 1.102311 311

2.780 138510 x 104 3.596943090 x 10-5

4.448221 615 2.248089431 x 10-1

6.894757293 x 103 1.450377 377 x 10-4

3.3864 x 101 2.952 9 x 10-2

2.521 644007 x 10-1 3.965666831

2.930710702 x 10-1 3.412 141 633
1.055055853 x 103 9.4 78 171 203 x 10-4

1.355817 948 7.375621493 x 10-1

2.930710702 x 10-1 3.412 141 633
7.456998716 x 102 1.341 022090 x 10-3

7.46 x 102 * 1.340482 574 x 10-3

1.355817948 7.375621493 x 10- 1

1.8* 5.555 555 556 x 10-1

°C=(oF -32) /1.8* OF = (C x 1.8)+32*

Symbol Multiplier Prefix Symbol Multiplier

E 1018 deci d 10-1

P 10 15 centi c 10-2

T 1012 milli m 10-3

G 109

M 106
micro /.L 10-6

nano n 10-9

k 103

h 102
pico p 10-12

femto f 10-15

da 10 1 atto a 10-18

American Society for Testing and Materials (ASTM), " Standard for Metric Practice" . Reprinted from Annual
Book of ASTM Standards.

U.S. Department of Commerce, National Bureau of Standards, " NBS Guidelines for the Use of the Metric
System" . Reprinted from Dimensions / NBS. (October 1977).

592 Useful Tables

Selected High-Precision Metric Conversion Factors

English Units Metric Units

Length
mil micrometre (micron)
inch millimetre
foot metre t
mile (intI.) kilometre

Area
inch2 millimetre2

foot2 metre2

mile2 kilometre2

acre hectare
(U.S. survey)

Volume
inches3 millimetres3

feet3 metres3

ounces centimetres3

(U .S. fluid)
gallon litre :j:
(U.S. flUid)

Mass
pound (avdp.) kilogram
ton (short) ton (metric)

Force
ounce (force) dyne
pound (force) newton

Pressure
psi pascal
inches of Hg
(at 32°F)

millibar

Energy
BTU (1ST) Calorie

(kg, thermochem.)
BTU (1ST) watt-hour
BTU (1ST) joule §
ft·lb joule

Power
BTU (1ST) / hr watt
horsepower watt
(mechanical)
horsepower watt
(electric)
ft·lb/s watt

Temperature
°Rankine kelvin
°Fahrenheit °Celsius

* Exact conversion
t Conversion redefined in 1959
:I: Conversion redefined in 1964
§ Conversion redefined in'1956

Note: The preferred metric unit for
force is the newton; for pressure, the
pascal; and for energy, the joule.

Sources

Prefix

exa
peta
tera
giga
mega
kilo
hecto
deka

To convert from To convert from
English to Metric, Metric to English,

multiply by: multiply by:

2.54 x 10 1 * 3.937007874 x 10-2

2.54 x 10 1* 3.937007874 x 10- 2

3.048 x 10-1* 3.280839895
1.609344* 6.213 711 922 x 10- 1

6.451 6 x 102* 1.550 003 100 x 10- 3

9.290304 x 10- 2 * 1.076391042 x 10 1

2.589988 110 3.861 021 585 x 10- 1

4.046873 x 10-1 2.471044

1.6387064 x 104 * 6.102 374409 x 10- 5

2.831 684659 x 10-2 3.531466672 x 10 1

2.957353 x 10 1 3.381 402 x 10-2

3.785412 2.641 721 x 10- 1

4.5359237 x 10-1* 2.204 622 622
9.0718474 x 10-1* 1.102311 311

2.780 138510 x 104 3.596943090 x 10-5

4.448221 615 2.248089431 x 10-1

6.894757293 x 103 1.450377 377 x 10-4

3.3864 x 101 2.952 9 x 10-2

2.521 644007 x 10-1 3.965666831

2.930710702 x 10-1 3.412 141 633
1.055055853 x 103 9.4 78 171 203 x 10-4

1.355817 948 7.375621493 x 10-1

2.930710702 x 10-1 3.412 141 633
7.456998716 x 102 1.341 022090 x 10-3

7.46 x 102 * 1.340482 574 x 10-3

1.355817948 7.375621493 x 10- 1

1.8* 5.555 555 556 x 10-1

°C=(oF -32) /1.8* OF = (C x 1.8)+32*

Symbol Multiplier Prefix Symbol Multiplier

E 1018 deci d 10-1

P 10 15 centi c 10-2

T 1012 milli m 10-3

G 109

M 106
micro /.L 10-6

nano n 10-9

k 103

h 102
pico p 10-12

femto f 10-15

da 10 1 atto a 10-18

American Society for Testing and Materials (ASTM), " Standard for Metric Practice" . Reprinted from Annual
Book of ASTM Standards.

U.S. Department of Commerce, National Bureau of Standards, " NBS Guidelines for the Use of the Metric
System" . Reprinted from Dimensions / NBS. (October 1977).

Error Messages

1 Missing option or configuration error. If a statement requires an option which is not loaded, the
option number or option name is given along with error 1. These numbers are listed in the Useful
Tables section. Error 1 without an option number indicates other configuration errors.

2 Memory overflow. If you get this error while loading a file . the program is too large for the
computer's me mory. If the program loads. but you get this error when you press RUN . then
the overflow was caused by th e variable declarations. Eith er way. you need to modify the
program or add more read/write memory.

3 line not found in current context. Could be a GOTO or GOSUB that references a non ­
existent (or deleted) line. or an EDIT command th at refers to a non-existent line label.

4 Imprope r RETURN . Executin g a RETURN statement with out previously executing an
appropriate GOSUB or functi o n ca ll. Also. a RETURN statement in a user-defined function
with no va lue specified.

5 Improper context terminator. Yo u forgot to put an END statement in the program. Also
applies to SUBEND and FNEND.

6 Improper FOR. .. NEXT matching. Executing a NEXT stateme nt without previously executing
the matching FOR statement. lndicates imprope r nesting or overlapping of th e loops.

7 Undefin ed functi on or subprogram . Attempt to call a SUB or user-defined function that is not
in memory. Look out for program lin es th at assum ed an optional CALL.

8 Improper parameter matching. A type mismatch betwee n a pass parameter and a formal
parameter of a subprogram.

9 Improper number of parameters. Passing either too few or too many parameters to a sub-
program. Applies only to non -optional parameters.

10 String type required. Attempting to return a numeric from a user-defined string function.

11 Numeric type required Attempting to return a string from a user-defined nume ric function.

12 Attempt to redecla re va riable. Including th e same variable name twice in declarative state­
ments such as DIM or INTEGER.

13 Array dimensions not specified. Using the (*) symbol after a variable name when that
variable has neve r been declare d as an array.

14 OPTION BASE not allowed here . The OPTION BASE statement must appear before any
declarative sta te ments such as DIM or INTEGER. Only one OPTION BASE statement is
allowed in one context.

15 Inva lid bounds. Attempt to declare an a rray with more than 32 767 ele me nts or with upper
bound less than lower bound.

16 Improper or inconsistent dimensions. Using the wrong number of subscripts when referencing
an array e leme nt.

17 Subscrip t out of range. A subscript in an array reference is o utside the current bounds of the
array.

593

Error Messages

1 Missing option or configuration error. If a statement requires an option which is not loaded, the
option number or option name is given along with error 1. These numbers are listed in the Useful
Tables section. Error 1 without an option number indicates other configuration errors.

2 Memory overflow. If you get this error while loading a file . the program is too large for the
computer's me mory. If the program loads. but you get this error when you press RUN . then
the overflow was caused by th e variable declarations. Eith er way. you need to modify the
program or add more read/write memory.

3 line not found in current context. Could be a GOTO or GOSUB that references a non ­
existent (or deleted) line. or an EDIT command th at refers to a non-existent line label.

4 Imprope r RETURN . Executin g a RETURN statement with out previously executing an
appropriate GOSUB or functi o n ca ll. Also. a RETURN statement in a user-defined function
with no va lue specified.

5 Improper context terminator. Yo u forgot to put an END statement in the program. Also
applies to SUBEND and FNEND.

6 Improper FOR. .. NEXT matching. Executing a NEXT stateme nt without previously executing
the matching FOR statement. lndicates imprope r nesting or overlapping of th e loops.

7 Undefin ed functi on or subprogram . Attempt to call a SUB or user-defined function that is not
in memory. Look out for program lin es th at assum ed an optional CALL.

8 Improper parameter matching. A type mismatch betwee n a pass parameter and a formal
parameter of a subprogram.

9 Improper number of parameters. Passing either too few or too many parameters to a sub-
program. Applies only to non -optional parameters.

10 String type required. Attempting to return a numeric from a user-defined string function.

11 Numeric type required Attempting to return a string from a user-defined nume ric function.

12 Attempt to redecla re va riable. Including th e same variable name twice in declarative state­
ments such as DIM or INTEGER.

13 Array dimensions not specified. Using the (*) symbol after a variable name when that
variable has neve r been declare d as an array.

14 OPTION BASE not allowed here . The OPTION BASE statement must appear before any
declarative sta te ments such as DIM or INTEGER. Only one OPTION BASE statement is
allowed in one context.

15 Inva lid bounds. Attempt to declare an a rray with more than 32 767 ele me nts or with upper
bound less than lower bound.

16 Improper or inconsistent dimensions. Using the wrong number of subscripts when referencing
an array e leme nt.

17 Subscrip t out of range. A subscript in an array reference is o utside the current bounds of the
array.

593

594 Error Messages

18 String overflow or substring error. String overflow is an attempt to put too many characters
into a string (exceeding dimensioned length) . This can happen in an assignment, an ENTER
an INPUT, or a READ. A substring error is an attempted violation of the rules for substrings.
Watch out for null strings where you weren ' t expecting them.

19 Improper value or out of range. A value is too large or too small. Applies to items found in a
variety of statements. Often occurs when the number builder overflows (or underflows)
during an 110 operation .

20 INTEGER overflow. An assignment or result exceeds the range allowed for INTEGER vari­
ables. Must be - 32 768 thru 32 767.

22 REAL overflow. An assignment or result exceeds the range allowed for REAL variables.

24 Trig argument too large for accurate evaluation. Out-of-range argument for a function such as
TAN or LDIR.

25 Magnitude of ASN or ACS argument is greater than 1. Arguments to these functions must be
in the range - 1 thru + 1.

26 Zero to non-positive power. Exponentiation error.

27 Negative base to non-integer power. Exponentiation error.

28 LOG or LGT of a non-positive number.

29 Illegal floating point number. Does not occur as a result of any calculations, but is possible
when a FORMAT OFF 110 operation fills a REAL variable with something other than a REAL
number.

30 SQR of a negative number.

31 Division (or MOD) by zero.

32 String does not represent a valid number. Attempt to use " non -numeric" characters as an
argument for VAL, data for a READ, or in response to an INPUT statement requesting a
number.

33 Improper argument for NUM or RPT$. Null string not allowed.

34 Referenced line not an IMAGE statement. A USING clause contains a line identifier, and the
line referred to is not an IMAGE statement.

35 Improper image. See IMAGE or the appropriate keyword in the BASIC Language Reference.

36 Out of data in READ . A READ statement is expecting more data than is available in the
referenced DATA statements. Check for deleted lines, proper OPTION BASE, proper use of
RESTORE, or typing errors.

38 TAB or TABXY not allowed here. The tab functions are not allowed in statements that contain
a USING clause . TABXY is allowed only in a PRINT statement.

40 Improper REN, COPYLINES, or MOVELINES command. Line numbers must be whole
numbers from 1 to 32 766. This may also result from a COPYLINES or MOVELINES state­
ment whose destination line numbers lie within the source range.

41 First line number greater than second line number. Parameters out of order in a statement like
SAVE, LIST, or DEL.

43 Matrix must be square. The MAT functions : ION, INV, and DET require the array to have
equal numbers of rows and columns.

44 Result cannot be an operand. Attempt to use a matrix as both result and argument in a MAT
TRN or matrix multiplication .

46 Attempting a SAVE when there is no program in memory.

594 Error Messages

18 String overflow or substring error. String overflow is an attempt to put too many characters
into a string (exceeding dimensioned length) . This can happen in an assignment, an ENTER
an INPUT, or a READ. A substring error is an attempted violation of the rules for substrings.
Watch out for null strings where you weren ' t expecting them.

19 Improper value or out of range. A value is too large or too small. Applies to items found in a
variety of statements. Often occurs when the number builder overflows (or underflows)
during an 110 operation .

20 INTEGER overflow. An assignment or result exceeds the range allowed for INTEGER vari­
ables. Must be - 32 768 thru 32 767.

22 REAL overflow. An assignment or result exceeds the range allowed for REAL variables.

24 Trig argument too large for accurate evaluation. Out-of-range argument for a function such as
TAN or LDIR.

25 Magnitude of ASN or ACS argument is greater than 1. Arguments to these functions must be
in the range - 1 thru + 1.

26 Zero to non-positive power. Exponentiation error.

27 Negative base to non-integer power. Exponentiation error.

28 LOG or LGT of a non-positive number.

29 Illegal floating point number. Does not occur as a result of any calculations, but is possible
when a FORMAT OFF 110 operation fills a REAL variable with something other than a REAL
number.

30 SQR of a negative number.

31 Division (or MOD) by zero.

32 String does not represent a valid number. Attempt to use " non -numeric" characters as an
argument for VAL, data for a READ, or in response to an INPUT statement requesting a
number.

33 Improper argument for NUM or RPT$. Null string not allowed.

34 Referenced line not an IMAGE statement. A USING clause contains a line identifier, and the
line referred to is not an IMAGE statement.

35 Improper image. See IMAGE or the appropriate keyword in the BASIC Language Reference.

36 Out of data in READ . A READ statement is expecting more data than is available in the
referenced DATA statements. Check for deleted lines, proper OPTION BASE, proper use of
RESTORE, or typing errors.

38 TAB or TABXY not allowed here. The tab functions are not allowed in statements that contain
a USING clause . TABXY is allowed only in a PRINT statement.

40 Improper REN, COPYLINES, or MOVELINES command. Line numbers must be whole
numbers from 1 to 32 766. This may also result from a COPYLINES or MOVELINES state­
ment whose destination line numbers lie within the source range.

41 First line number greater than second line number. Parameters out of order in a statement like
SAVE, LIST, or DEL.

43 Matrix must be square. The MAT functions : ION, INV, and DET require the array to have
equal numbers of rows and columns.

44 Result cannot be an operand. Attempt to use a matrix as both result and argument in a MAT
TRN or matrix multiplication .

46 Attempting a SAVE when there is no program in memory.

(

Error Messages 595

47 COM declarations are inconsistent or incorrect. Includes such things as mismatched dimensions,
unspecified dimensions, and blank COM occurring for the first time in a subprogram.

49 Branch destination not found. A statement such as ON ERROR or ON KEY refers to a line that
does not exist. Branch destinations must be in the same context as the ON ... statement.

51 File not currently assigned. Attempting an ONIOFF END statement with an unassigned I/O path
name.

52 Improper mass storage unit specifier. The characters used for a msus do not form a valid speCifier.
This could be a missing colon, too many parameters, illegal characters, etc.

53 Improper file name. File names are limited to 10 characters. Foreign characters are allowed, but
punctuation is not.

54 Duplicate file name. The specified file name already exists in directory. It is illegal to have two files
with the same name on one volume.

55 Directory overflow. Although there may be room on the media for the file, there is no room in the
directory for another file name. Discs initialized by BASIC have room for over 100 entries in the
directory, but other systems may make a directory of a different size.

56 File name is undefined. The specified file name does not exist in the directory. Check the contents
of the disc with a CAT command.

58 Improper file type. Many mass storage operations are limited to certain file types. For example,
LOAD is limited to PROG fi les and ASSIGN is limited to ASCII and BOAT files.

59 End of file or buffer found. For files : No data left when reading a file , or no space left when writing
a file. For buffers: No data left for an ENTER, or no buffer space left for an OUTPUT. Also,
WORD-mode TRANSFER terminated with odd number of bytes.

60 End of record found in random mode. Attempt to ENTER a field that is larger than a defined
record.

62 Protect code violation. Failure to specify the protect code of a protected file , or attempting to
protect a file of the wrong type.

64 Mass storage media overflow. There is not enough contiguous free space for the specified file size.
The disc is full.

65 Incorrect data type. The array used in a graphics operation, such as GLOAD, is the wrong type
(INTEGER or REAL) .

66 INITIALIZE failed. Too many bad tracks found. The disc is defective, damaged, or dirty.

67 Illegal mass storage parameter. A mass storage statement contains a parameter that is out of
range, such as a negative record number or an out of range number of records.

68 Syntax error occurred during GET. One or more lines in the file could not be stored as valid
program lines. The offending lines are usually listed on the system printer. Also occurs if the first
line in the file does not start with a valid line number.

72 Disc controller not found or bad controller address. The msus contains an improper device
selector, or no external disc is connected.

73 Improper device type in mass storage unit specifier. The msus has the correct general form, but
the characters used for a device type are not recognized.

76 Incorrect unit number in mass storage unit specifier. The msus contains a unit number that does
not exist on the specified device.

77 Attempt to purge an open file. The specified file is assigned to an 1/0 path name which has not
been closed.

(

Error Messages 595

47 COM declarations are inconsistent or incorrect. Includes such things as mismatched dimensions,
unspecified dimensions, and blank COM occurring for the first time in a subprogram.

49 Branch destination not found. A statement such as ON ERROR or ON KEY refers to a line that
does not exist. Branch destinations must be in the same context as the ON ... statement.

51 File not currently assigned. Attempting an ONIOFF END statement with an unassigned I/O path
name.

52 Improper mass storage unit specifier. The characters used for a msus do not form a valid speCifier.
This could be a missing colon, too many parameters, illegal characters, etc.

53 Improper file name. File names are limited to 10 characters. Foreign characters are allowed, but
punctuation is not.

54 Duplicate file name. The specified file name already exists in directory. It is illegal to have two files
with the same name on one volume.

55 Directory overflow. Although there may be room on the media for the file, there is no room in the
directory for another file name. Discs initialized by BASIC have room for over 100 entries in the
directory, but other systems may make a directory of a different size.

56 File name is undefined. The specified file name does not exist in the directory. Check the contents
of the disc with a CAT command.

58 Improper file type. Many mass storage operations are limited to certain file types. For example,
LOAD is limited to PROG fi les and ASSIGN is limited to ASCII and BOAT files.

59 End of file or buffer found. For files : No data left when reading a file , or no space left when writing
a file. For buffers: No data left for an ENTER, or no buffer space left for an OUTPUT. Also,
WORD-mode TRANSFER terminated with odd number of bytes.

60 End of record found in random mode. Attempt to ENTER a field that is larger than a defined
record.

62 Protect code violation. Failure to specify the protect code of a protected file , or attempting to
protect a file of the wrong type.

64 Mass storage media overflow. There is not enough contiguous free space for the specified file size.
The disc is full.

65 Incorrect data type. The array used in a graphics operation, such as GLOAD, is the wrong type
(INTEGER or REAL) .

66 INITIALIZE failed. Too many bad tracks found. The disc is defective, damaged, or dirty.

67 Illegal mass storage parameter. A mass storage statement contains a parameter that is out of
range, such as a negative record number or an out of range number of records.

68 Syntax error occurred during GET. One or more lines in the file could not be stored as valid
program lines. The offending lines are usually listed on the system printer. Also occurs if the first
line in the file does not start with a valid line number.

72 Disc controller not found or bad controller address. The msus contains an improper device
selector, or no external disc is connected.

73 Improper device type in mass storage unit specifier. The msus has the correct general form, but
the characters used for a device type are not recognized.

76 Incorrect unit number in mass storage unit specifier. The msus contains a unit number that does
not exist on the specified device.

77 Attempt to purge an open file. The specified file is assigned to an 1/0 path name which has not
been closed.

596 Error Messages

78 Invalid mass storage volume label. Usually indicates that the media has not been initialized on
a compatible system. Could also be a bad disc.

79 File open on target device. Attempt to copy an entire volume with a file open on the destina­
tion disc.

80 Disc changed or not in drive. Either there is no disc in the drive or the drive door was opened
while a file was assigned.

81 Mass storage hardware failure. Also occurs when the disc is pinched and not turning. Try
reinserting the disc.

82 Mass storage unit not present. Hardware problem or an attempt to access a left-hand drive on
the Model 226.

83 Write protected. Attempting to write to a write_protected disc. This includes many operations
such as PURGE, INITIALIZE, CREATE, SAVE, OUTPUT, etc.

84 Record not found. Usually indicates that the media has not been initialized.

85 Media not initialized. (Usually not produced by the internal drive.)

87 Record address error. Usually indicates a problem with the media.

88 Read data error. The media is physically or magnetically damaged, and the data cannot be
read.

89 Checkread error. An error was detected when reading the data just written. The media is
probably damaged.

90 Mass storage system error. Usually a problem with the hardware or the media.

93 Incorrect volume code in MSUS. The MSUS contains a volume number that does not exist on
the specified device.

100 Numeric IMAGE for string item.

101 String IMAGE for numeric item.

102 Numeric field specifier is too large . Specifying more than 256 characters in a numeric field.

103 Item has no corresponding IMAGE. The image specifier has no fields that are used for item
processing. Specifiers such as #)-(/ are not used to process the data for the item list.
Item-processing specifiers include things like K DBA.

105 Numeric IMAGE field too small. Not enough characters are specified to represent the number.

106 IMAGE exponent field too small. Not enough exponent characters are specified to represent
the number.

107 IMAGE sign specifier missing. Not enough characters are specified to represent the number.
Number would fit except for the minus sign.

117 Too many nested structures. The nesting level is too deep for such structures as FOR,
SELECT, IF, LOOP, etc.

118 Too many structures in context. Refers to such structures as FOR/NEXT, IF/THEN/ELSE,
SELECT/CASE, WHILE, etc.

120 Not allowed while program running. The program must be stopped before you can execute
this command.

121 Line not in main program. The run line specified in a LOAD or GET is not in the main context.

122 Program is not continuable. The program is in the stopped state, not the paused state. CONT
is allowed only in the paused state.

596 Error Messages

78 Invalid mass storage volume label. Usually indicates that the media has not been initialized on
a compatible system. Could also be a bad disc.

79 File open on target device. Attempt to copy an entire volume with a file open on the destina­
tion disc.

80 Disc changed or not in drive. Either there is no disc in the drive or the drive door was opened
while a file was assigned.

81 Mass storage hardware failure. Also occurs when the disc is pinched and not turning. Try
reinserting the disc.

82 Mass storage unit not present. Hardware problem or an attempt to access a left-hand drive on
the Model 226.

83 Write protected. Attempting to write to a write_protected disc. This includes many operations
such as PURGE, INITIALIZE, CREATE, SAVE, OUTPUT, etc.

84 Record not found. Usually indicates that the media has not been initialized.

85 Media not initialized. (Usually not produced by the internal drive.)

87 Record address error. Usually indicates a problem with the media.

88 Read data error. The media is physically or magnetically damaged, and the data cannot be
read.

89 Checkread error. An error was detected when reading the data just written. The media is
probably damaged.

90 Mass storage system error. Usually a problem with the hardware or the media.

93 Incorrect volume code in MSUS. The MSUS contains a volume number that does not exist on
the specified device.

100 Numeric IMAGE for string item.

101 String IMAGE for numeric item.

102 Numeric field specifier is too large . Specifying more than 256 characters in a numeric field.

103 Item has no corresponding IMAGE. The image specifier has no fields that are used for item
processing. Specifiers such as #)-(/ are not used to process the data for the item list.
Item-processing specifiers include things like K DBA.

105 Numeric IMAGE field too small. Not enough characters are specified to represent the number.

106 IMAGE exponent field too small. Not enough exponent characters are specified to represent
the number.

107 IMAGE sign specifier missing. Not enough characters are specified to represent the number.
Number would fit except for the minus sign.

117 Too many nested structures. The nesting level is too deep for such structures as FOR,
SELECT, IF, LOOP, etc.

118 Too many structures in context. Refers to such structures as FOR/NEXT, IF/THEN/ELSE,
SELECT/CASE, WHILE, etc.

120 Not allowed while program running. The program must be stopped before you can execute
this command.

121 Line not in main program. The run line specified in a LOAD or GET is not in the main context.

122 Program is not continuable. The program is in the stopped state, not the paused state. CONT
is allowed only in the paused state.

Error Messages 597

126 Quote mark in unquoted string. Quote marks must be used in pairs.

127 Statements which affect the knob mode are out of order.

128 Line too long during GET.

131 Unrecognized non-ASCII keycode. An output to the keyboard contained a CHR$(255) fol­
lowed by an illegal byte.

132 Keycode buffer overflow. Trying to send too many characters to the keyboard buffer with an
OUTPUT 2 statement.

133 DELSUB of non-existent or busy subprogram.

134 Improper SCRATCH statement.

135 READlO/WRITEIO to nonexistent memory location.

136 REAL underflow. The input or result is closer to zero than 10-308 (approximately).

140 Too many symbols in the program. Symbols are variable names , I/O path names, COM block
names, subprogram names, and line identifiers.

141 Variable cannot be allocated. It is already allocated.

142 Variable not allocated. Attempt to DEALLOCATE a variable that was not allocated.

143 Reference to missing OPTIONAL parameter. The subprogram is trying to use an optional
parameter that didn ' t have any value passed to it. Use NPAR to check the number of passed
parameters.

145 May not build COM at this time. Attempt to add or change COM when a program is running.
For example, a program does a LOADSUB and the COM in the new subprogram does not
match existing COM.

146 Duplicate line label in context. There cannot be two lines with the same line label in one
context.

150 Illegal interface select code or device selector. Value out of range.

152 Parity error.

153 Insufficient data for ENTER. A statement terminator was received before the variable list was
satisfied.

154 String greater than 32 767 bytes in ENTER.

155 Improper interface register number. Value out of range or negative.

156 lllegal expression type in list. For example, trying to ENTER into a constant.

157 No ENTER terminator found. The variable list has been satisfied. but no statement terminator
was received in the next 256 characters. The :j:I: specifier allows the statement to terminate
when the last item is satisfied.

158 Improper image specifier or nesting images more than 8 deep. The characters used for an
image specifier are improper or in an improper order.

159 Numeric data not received. When entering characters for a numeric field , an item terminator
was encountered before any " numeric" characters were received.

160 Attempt to enter more than 32767 digits into one number.

163 Interface not present. The intended interface is not present, set to a different select code , or is
malfunctioning.

164 Illegal BYTE/WORD operation. Attempt to ASSIGN with the WORD attribute to a non -word
device.

Error Messages 597

126 Quote mark in unquoted string. Quote marks must be used in pairs.

127 Statements which affect the knob mode are out of order.

128 Line too long during GET.

131 Unrecognized non-ASCII keycode. An output to the keyboard contained a CHR$(255) fol­
lowed by an illegal byte.

132 Keycode buffer overflow. Trying to send too many characters to the keyboard buffer with an
OUTPUT 2 statement.

133 DELSUB of non-existent or busy subprogram.

134 Improper SCRATCH statement.

135 READlO/WRITEIO to nonexistent memory location.

136 REAL underflow. The input or result is closer to zero than 10-308 (approximately).

140 Too many symbols in the program. Symbols are variable names , I/O path names, COM block
names, subprogram names, and line identifiers.

141 Variable cannot be allocated. It is already allocated.

142 Variable not allocated. Attempt to DEALLOCATE a variable that was not allocated.

143 Reference to missing OPTIONAL parameter. The subprogram is trying to use an optional
parameter that didn ' t have any value passed to it. Use NPAR to check the number of passed
parameters.

145 May not build COM at this time. Attempt to add or change COM when a program is running.
For example, a program does a LOADSUB and the COM in the new subprogram does not
match existing COM.

146 Duplicate line label in context. There cannot be two lines with the same line label in one
context.

150 Illegal interface select code or device selector. Value out of range.

152 Parity error.

153 Insufficient data for ENTER. A statement terminator was received before the variable list was
satisfied.

154 String greater than 32 767 bytes in ENTER.

155 Improper interface register number. Value out of range or negative.

156 lllegal expression type in list. For example, trying to ENTER into a constant.

157 No ENTER terminator found. The variable list has been satisfied. but no statement terminator
was received in the next 256 characters. The :j:I: specifier allows the statement to terminate
when the last item is satisfied.

158 Improper image specifier or nesting images more than 8 deep. The characters used for an
image specifier are improper or in an improper order.

159 Numeric data not received. When entering characters for a numeric field , an item terminator
was encountered before any " numeric" characters were received.

160 Attempt to enter more than 32767 digits into one number.

163 Interface not present. The intended interface is not present, set to a different select code , or is
malfunctioning.

164 Illegal BYTE/WORD operation. Attempt to ASSIGN with the WORD attribute to a non -word
device.

598 Error Messages

165 Image specifier greater than dimensioned string length.

167 Interface status error. Exact meaning depends upon the interface type. With HP-IB , this can
happen when a non-controller operation by the computer is aborted by the bus.

168 Device timeout occurred and the ON TIMEOUT branch could not be taken.

170 I/O operation not allowed. The I/O statement has the proper form , but its operation is not
defined for the specified device. For example, using an HP-IB statement on a non-HP-IB
interface or directing a LIST to the keyboard.

171 Illegal 110 addressing sequence. The secondary addressing in a device selector is improper or
primary address too large for specified device.

172 Peripheral error. PSTS line is false. If used, this means that the peripheral device is down. If
PSTS is not being used , this error can be suppressed by using control register 2 of the GPIO.

173 Active or system controller required. The HP-IB is not active controller and needs to be for
the speCified operation .

174 Nested I/O prohibited. An 110 statement contains a user-defined function. Both the original
statement and the function are trying to access the same file or device.

177 Undefined I/O path name. Attempting to use an I/O path name that is not assigned to a device
or file.

178 Trailing punctuation in ENTER. The trailing comma or semicolon that is sometimes used at
the end of OUTPUT statements is not allowed at the end of ENTER statements.

301 Cannot do while connected.

303 Not allowed when trace active.

304 Too many characters without terminator.

306 Interface card failure. The datacomm card has failed self-test.

308 Illegal character in data. Datacomm error.

310 Not connected. Datacomm error.

313 USART receive buffer overflow. Overrun error detected. Interface card is unable to keep up
with incoming data rate. Data has been lost.

314 Receive buffer overflow. Program is not accepting data fast enough to keep up with incoming
data rate. Data has been lost.

315 Missing data transmit clock. A transmit timeout has occurred because a missing data clock
prevented the card from transmitting. The card has disconnected from the line.

316 CTS false too long. The interface card was unable to transmit for a predetermined period of
time because Clear-To-Send was false on a half-duplex line. The card has disconnected from
the line.

317 Lost carrier disconnect. Data Set Ready (DSR) or Data Carrier Detect (if full duplex) went
inactive for too long.

318 No activity disconnect. The card has disconnected from the line because no data was trans­
mitted or received for a predetermined length of time.

319 Connection not established. Data Set Ready or Data Carrier Detect (if full duplex) did not
become active within a predetermined length of time.

324 Card trace buffer overflow.

325 Illegal databits/parity combination. Attempting to program 8 bits-per-character and a parity of
"1" or "0".

598 Error Messages

165 Image specifier greater than dimensioned string length.

167 Interface status error. Exact meaning depends upon the interface type. With HP-IB , this can
happen when a non-controller operation by the computer is aborted by the bus.

168 Device timeout occurred and the ON TIMEOUT branch could not be taken.

170 I/O operation not allowed. The I/O statement has the proper form , but its operation is not
defined for the specified device. For example, using an HP-IB statement on a non-HP-IB
interface or directing a LIST to the keyboard.

171 Illegal 110 addressing sequence. The secondary addressing in a device selector is improper or
primary address too large for specified device.

172 Peripheral error. PSTS line is false. If used, this means that the peripheral device is down. If
PSTS is not being used , this error can be suppressed by using control register 2 of the GPIO.

173 Active or system controller required. The HP-IB is not active controller and needs to be for
the speCified operation .

174 Nested I/O prohibited. An 110 statement contains a user-defined function. Both the original
statement and the function are trying to access the same file or device.

177 Undefined I/O path name. Attempting to use an I/O path name that is not assigned to a device
or file.

178 Trailing punctuation in ENTER. The trailing comma or semicolon that is sometimes used at
the end of OUTPUT statements is not allowed at the end of ENTER statements.

301 Cannot do while connected.

303 Not allowed when trace active.

304 Too many characters without terminator.

306 Interface card failure. The datacomm card has failed self-test.

308 Illegal character in data. Datacomm error.

310 Not connected. Datacomm error.

313 USART receive buffer overflow. Overrun error detected. Interface card is unable to keep up
with incoming data rate. Data has been lost.

314 Receive buffer overflow. Program is not accepting data fast enough to keep up with incoming
data rate. Data has been lost.

315 Missing data transmit clock. A transmit timeout has occurred because a missing data clock
prevented the card from transmitting. The card has disconnected from the line.

316 CTS false too long. The interface card was unable to transmit for a predetermined period of
time because Clear-To-Send was false on a half-duplex line. The card has disconnected from
the line.

317 Lost carrier disconnect. Data Set Ready (DSR) or Data Carrier Detect (if full duplex) went
inactive for too long.

318 No activity disconnect. The card has disconnected from the line because no data was trans­
mitted or received for a predetermined length of time.

319 Connection not established. Data Set Ready or Data Carrier Detect (if full duplex) did not
become active within a predetermined length of time.

324 Card trace buffer overflow.

325 Illegal databits/parity combination. Attempting to program 8 bits-per-character and a parity of
"1" or "0".

(
326

327

328

330

331

332

333

334

335

337

338

340

341

342

343

344

345

346

347

Error Messages 599

Register address out of range. A control or status register access was attempted to a non­
existent register.

Register value out of range. Attempting to place an illegal value in a control register.

USART Transmit underrun.

User-defined LEXICAL ORDER IS table size exceeds array size .

Repeated value in pointer. A MAT REORDER vector has repeated subscripts. This error is not
always caught.

Non -existent dimension given. Attempt to specify a non-existent dimension in a MAT REOR­
DER operation.

Improper subscript in pointer. A MAT REORDER vector specifies a non-existent subscript.

Pointer size is not equal to the number of records. A MAT REORDER vector has a different
number of elements than the specified dimension of the array.

Pointer is not a vector. Only Single-dimension arrays (vectors) can be used as the pointer in a
MAT REORDER or a MAT SORT statement.

Substring key is out-of-range. The specified substring range of the sort key exceeds the
dimensioned length of the elements in the array.

Key subscript out-of-range. Attempt to specify a subscript in a sort key outside the current
bounds of the array.

Mode table too long. User-defined LEXICAL ORDER IS mode table contains more than 63
entries.

Improper mode indicator. User-defined LEXICAL ORDER IS table contains an illegal com­
bination of mode type and mode pointer.

Not a single-dimension integer array. User-defined LEXICAL ORDER IS mode table must be
a single-dimension array of type INTEGER.

Mode pointer is out of range . User-defined LEXICAL ORDER IS table has a mode pointer
greater than the existing mode table size.

1 for 2 list empty or too long. A user-defined LEXICAL ORDER IS table contains an entry
indicating an improper number of 1 for 2 secondaries.

CASE expression type mismatch. The SELECT statement and its CASE statements must refer
to the same general type, numeric or string.

INDENT parameter out-of-range. The parameters must be in the range: 0 thru eight charac­
ters less than the screen width.

Structures improperly matched. There is not a corresponding number of structure beginnings
and endings. Usually means that you forgot a statement such as END IF, NEXT, END
SELECT. etc.

349 CSUB has been modified. A contiguous block of compiled subroutines has been modified
since it was loaded. A single module that shows as multiple CSUB statements has been
altered because program lines were inserted or deleted.

353 Data link failure.

369-399 Errors in this range are reported if a run-time Pascal error occurs in a CSUB. To determine the
Pascal error number, subtract 400 from the BASIC error number. Information on the Pascal
error can be found in the Pascal Workstation System manual.

(
326

327

328

330

331

332

333

334

335

337

338

340

341

342

343

344

345

346

347

Error Messages 599

Register address out of range. A control or status register access was attempted to a non­
existent register.

Register value out of range. Attempting to place an illegal value in a control register.

USART Transmit underrun.

User-defined LEXICAL ORDER IS table size exceeds array size .

Repeated value in pointer. A MAT REORDER vector has repeated subscripts. This error is not
always caught.

Non -existent dimension given. Attempt to specify a non-existent dimension in a MAT REOR­
DER operation.

Improper subscript in pointer. A MAT REORDER vector specifies a non-existent subscript.

Pointer size is not equal to the number of records. A MAT REORDER vector has a different
number of elements than the specified dimension of the array.

Pointer is not a vector. Only Single-dimension arrays (vectors) can be used as the pointer in a
MAT REORDER or a MAT SORT statement.

Substring key is out-of-range. The specified substring range of the sort key exceeds the
dimensioned length of the elements in the array.

Key subscript out-of-range. Attempt to specify a subscript in a sort key outside the current
bounds of the array.

Mode table too long. User-defined LEXICAL ORDER IS mode table contains more than 63
entries.

Improper mode indicator. User-defined LEXICAL ORDER IS table contains an illegal com­
bination of mode type and mode pointer.

Not a single-dimension integer array. User-defined LEXICAL ORDER IS mode table must be
a single-dimension array of type INTEGER.

Mode pointer is out of range . User-defined LEXICAL ORDER IS table has a mode pointer
greater than the existing mode table size.

1 for 2 list empty or too long. A user-defined LEXICAL ORDER IS table contains an entry
indicating an improper number of 1 for 2 secondaries.

CASE expression type mismatch. The SELECT statement and its CASE statements must refer
to the same general type, numeric or string.

INDENT parameter out-of-range. The parameters must be in the range: 0 thru eight charac­
ters less than the screen width.

Structures improperly matched. There is not a corresponding number of structure beginnings
and endings. Usually means that you forgot a statement such as END IF, NEXT, END
SELECT. etc.

349 CSUB has been modified. A contiguous block of compiled subroutines has been modified
since it was loaded. A single module that shows as multiple CSUB statements has been
altered because program lines were inserted or deleted.

353 Data link failure.

369-399 Errors in this range are reported if a run-time Pascal error occurs in a CSUB. To determine the
Pascal error number, subtract 400 from the BASIC error number. Information on the Pascal
error can be found in the Pascal Workstation System manual.

600 Error Messages

401 Bad system function argument. An invalid argument was given to a time, date , base conver­
sion , or SYSTEM$ function .

403 Copy failed ; program modification incomplete. An error occurred during a COPYLINES or
MOVELINES resulting in an incomplete operation. Some lines may not have been copied or
moved.

427 Priority may not be lowered.

450 Volume not found-SRM error.

451 Volume labels do not match-SRM error.

453 File in use-SRM error.

454 Directory formats do not match-SRM error.

455 Possibly corrupt file-SRM error.

456 Unsupported directory operation-SRM error.

457 Passwords not supported -SRM error.

458 Unsupported directory format-SRM error.

459 Specified file is not a directory-SRM error.

460 Directory not empty-SRM error.

462 Invalid password-SRM error.

465 Invalid rename across volumes-SRM error.

471 TRANSFER not supported by the interface.

481 File locked or open exclusively-SRM error.

482 Cannot move a directory with a RENAME operation-SRM error.

483 System down-SRM error.

484 Password not found-SRM error.

485 Invalid volume copy-SRM error.

488 DMA hardware required. HP 9885 disc drive requires a DMA card or is malfunctioning.

511 The result array in a MAT INV must be of type REAL.

600 Attribute cannot be modified. The WORD/BYTE mode cannot be changed after assigning the
I/O path name.

601 Improper CONVERT lifetime. When the CONVERT attribute is included in the assignment of
an 110 path name , the name of a string variable containing the conversion is also specified.
The conversion string must exist as long as the 110 path name is valid.

602 Improper BUFFER lifetime. The variable deSignated as a buffer during an 110 path name
assignment must exist as long as the 110 path name is valid.

603 Variable was not declared as a BUFFER. Attempt to assign a variable as a buffer without first
declaring the variable as a BUFFER.

604 Bad source or destination for a TRANSFER statement. Transfers are not allowed to the CRT,
keyboard, or tape backup on CS80 drives. Buffer to buffer or device to device transfers are
not allowed.

605 BDAT file type required. Only BDAT files can be used in a TRANSFER operation.

606 Improper TRANSFER parameters. Conflicting or invalid TRANSFER parameters were speci­
fied , such as RECORDS without and EOR clause, or DELIM with an outbound TRANSFER.

600 Error Messages

401 Bad system function argument. An invalid argument was given to a time, date , base conver­
sion , or SYSTEM$ function .

403 Copy failed ; program modification incomplete. An error occurred during a COPYLINES or
MOVELINES resulting in an incomplete operation. Some lines may not have been copied or
moved.

427 Priority may not be lowered.

450 Volume not found-SRM error.

451 Volume labels do not match-SRM error.

453 File in use-SRM error.

454 Directory formats do not match-SRM error.

455 Possibly corrupt file-SRM error.

456 Unsupported directory operation-SRM error.

457 Passwords not supported -SRM error.

458 Unsupported directory format-SRM error.

459 Specified file is not a directory-SRM error.

460 Directory not empty-SRM error.

462 Invalid password-SRM error.

465 Invalid rename across volumes-SRM error.

471 TRANSFER not supported by the interface.

481 File locked or open exclusively-SRM error.

482 Cannot move a directory with a RENAME operation-SRM error.

483 System down-SRM error.

484 Password not found-SRM error.

485 Invalid volume copy-SRM error.

488 DMA hardware required. HP 9885 disc drive requires a DMA card or is malfunctioning.

511 The result array in a MAT INV must be of type REAL.

600 Attribute cannot be modified. The WORD/BYTE mode cannot be changed after assigning the
I/O path name.

601 Improper CONVERT lifetime. When the CONVERT attribute is included in the assignment of
an 110 path name , the name of a string variable containing the conversion is also specified.
The conversion string must exist as long as the 110 path name is valid.

602 Improper BUFFER lifetime. The variable deSignated as a buffer during an 110 path name
assignment must exist as long as the 110 path name is valid.

603 Variable was not declared as a BUFFER. Attempt to assign a variable as a buffer without first
declaring the variable as a BUFFER.

604 Bad source or destination for a TRANSFER statement. Transfers are not allowed to the CRT,
keyboard, or tape backup on CS80 drives. Buffer to buffer or device to device transfers are
not allowed.

605 BDAT file type required. Only BDAT files can be used in a TRANSFER operation.

606 Improper TRANSFER parameters. Conflicting or invalid TRANSFER parameters were speci­
fied , such as RECORDS without and EOR clause, or DELIM with an outbound TRANSFER.

Error Messages 601

607 Inconsistent attributes. Such as CONVERT or PARITY with FORMAT OFF.

609 IVAL or DVAL result too large. Attempt to convert a binary, octal. decimal , or hexadecimal
string into a value outside the range of the function .

612 BUFFER pOinters in use. Attempt to change one or more buffer pointers while a TRANSFER
is in progress.

700 Improper plotter speCifier. The characters used as a plotter specifier are not recognized. May
be misspelled or contain illegal characters.

702 CRT graphics hardware missing. Hardware problem.

704 Upper bound not greater than lower bound. Applies to P2 < = PI or VIEWPORT upper
bound and CLIP limits.

705 VIEWPORT or CLIP beyond hard clip limits.

708 Device not initialized.

713 Request not supported by specified device. Trying to equate color CRT characteristics with an
external device; such as COLOR MAP on a plotter.

733 GESCAPE opcode not recognized. Only values 1 thru 5 can be used.

900 Undefined typing aid key.

901 Typing aid memory overflow.

902 Must delete entire context. Attempt to delete a SUB or DEF FN statement without deleting its
entire context. Easiest way to delete is with DELSUB.

903 No room to renumber. While EDIT mode was renumbering during an insert, all available line
numbers were used between insert location and end of program.

904 Null FIND or CHANGE string.

905 CHANGE would produce a line too long for the system. Maximum line length is two lines on
the CRT.

906 SUB or DEF FN not allowed here. Attempt to insert a SUB or DEF FN statement into the
middle of a context. Subprograms must be appended at the end.

909 May not replace SUB or DEF FN. Similar to deleting a SUB or DEF FN.

910 Identifier not found in this context. The keyboard-specified variable does not already exist in
the program. Variables cannot be created from the keyboard; they must be created by
running a program.

911 Improper 110 list.

920 Numeric constant not allowed.

921 Numeric identifier not allowed.

922 Numeric array element not allowed.

923 Numeric expression not allowed.

924 Quoted string not a llowed.

925 String identifier not allowed.

926 String array element not allowed.

927 Substring not allowed.

928 String expression not allowed.

929 110 path name not allowed.

Error Messages 601

607 Inconsistent attributes. Such as CONVERT or PARITY with FORMAT OFF.

609 IVAL or DVAL result too large. Attempt to convert a binary, octal. decimal , or hexadecimal
string into a value outside the range of the function .

612 BUFFER pOinters in use. Attempt to change one or more buffer pointers while a TRANSFER
is in progress.

700 Improper plotter speCifier. The characters used as a plotter specifier are not recognized. May
be misspelled or contain illegal characters.

702 CRT graphics hardware missing. Hardware problem.

704 Upper bound not greater than lower bound. Applies to P2 < = PI or VIEWPORT upper
bound and CLIP limits.

705 VIEWPORT or CLIP beyond hard clip limits.

708 Device not initialized.

713 Request not supported by specified device. Trying to equate color CRT characteristics with an
external device; such as COLOR MAP on a plotter.

733 GESCAPE opcode not recognized. Only values 1 thru 5 can be used.

900 Undefined typing aid key.

901 Typing aid memory overflow.

902 Must delete entire context. Attempt to delete a SUB or DEF FN statement without deleting its
entire context. Easiest way to delete is with DELSUB.

903 No room to renumber. While EDIT mode was renumbering during an insert, all available line
numbers were used between insert location and end of program.

904 Null FIND or CHANGE string.

905 CHANGE would produce a line too long for the system. Maximum line length is two lines on
the CRT.

906 SUB or DEF FN not allowed here. Attempt to insert a SUB or DEF FN statement into the
middle of a context. Subprograms must be appended at the end.

909 May not replace SUB or DEF FN. Similar to deleting a SUB or DEF FN.

910 Identifier not found in this context. The keyboard-specified variable does not already exist in
the program. Variables cannot be created from the keyboard; they must be created by
running a program.

911 Improper 110 list.

920 Numeric constant not allowed.

921 Numeric identifier not allowed.

922 Numeric array element not allowed.

923 Numeric expression not allowed.

924 Quoted string not a llowed.

925 String identifier not allowed.

926 String array element not allowed.

927 Substring not allowed.

928 String expression not allowed.

929 110 path name not allowed.

602 Error Messages

930 Numeric array not allowed.

931 String array not allowed.

932 Excess keys specified. A sort key was specified following a key which specified the entire
record.

935 Identifier is too long: 15 characters maximum.

936 Unrecognized character. Attempt to store a program line containing an improper name or
illegal character.

937 Invalid OPTION BASE. Only 0 and 1 are allowed.

939 OPTIONAL appears twice. A parameter list may have only one OPTIONAL keyword. All
parameters listed before it are required, all listed after it are optional.

940 Duplicate formal parameter name.

942 Invalid 110 path name. The characters after the @ are not a valid name. Names must start
with a letter.

943 Invalid function name. The characters after the FN are not a valid name. Names must start
with a letter.

946 Dimensions are inconsistent with previous declaration. The references to an array contain a
different number of subscripts at different places in the program.

947 Invalid array bounds. Value out of range, or more than 32 767 elements specified.

948 Multiple assignment prohibited. You cannot assign the same value to multiple variables by
stating i< = Y = Z = o. A separate assignment must be made for each variable .

949 This symbol not allowed here. This is the general " syntax error" message. The statement you
typed contains elements that don ' t belong together, are in the wrong order, or are misspelled.

950 Must be a positive integer.

951 Incomplete statement. This keyword must be followed by other items to make a valid state­
ment.

961 CASE expression type mismatch. The CASE line contains items that are not the same general
type, numeric or string.

962 Programmable only: cannot be executed from the keyboard.

963 Command only: cannot be stored as a program line.

977 Statement is too complex. Contains too many operators and functions. Break the expression
down so that it is performed by two or more program lines.

980 Too many symbols in this context. Symbols include variable names, 110 path names, COM
block names, subprogram names, and line identifiers.

982 Too many subscripts: maximum of six dimensions allowed.

983 Wrong type or number of parameters. An improper parameter list for a machine-resident
function .

985 Invalid quoted string.

987 Invalid line number: must be a whole number 1 thru 32 766.

602 Error Messages

930 Numeric array not allowed.

931 String array not allowed.

932 Excess keys specified. A sort key was specified following a key which specified the entire
record.

935 Identifier is too long: 15 characters maximum.

936 Unrecognized character. Attempt to store a program line containing an improper name or
illegal character.

937 Invalid OPTION BASE. Only 0 and 1 are allowed.

939 OPTIONAL appears twice. A parameter list may have only one OPTIONAL keyword. All
parameters listed before it are required, all listed after it are optional.

940 Duplicate formal parameter name.

942 Invalid 110 path name. The characters after the @ are not a valid name. Names must start
with a letter.

943 Invalid function name. The characters after the FN are not a valid name. Names must start
with a letter.

946 Dimensions are inconsistent with previous declaration. The references to an array contain a
different number of subscripts at different places in the program.

947 Invalid array bounds. Value out of range, or more than 32 767 elements specified.

948 Multiple assignment prohibited. You cannot assign the same value to multiple variables by
stating i< = Y = Z = o. A separate assignment must be made for each variable .

949 This symbol not allowed here. This is the general " syntax error" message. The statement you
typed contains elements that don ' t belong together, are in the wrong order, or are misspelled.

950 Must be a positive integer.

951 Incomplete statement. This keyword must be followed by other items to make a valid state­
ment.

961 CASE expression type mismatch. The CASE line contains items that are not the same general
type, numeric or string.

962 Programmable only: cannot be executed from the keyboard.

963 Command only: cannot be stored as a program line.

977 Statement is too complex. Contains too many operators and functions. Break the expression
down so that it is performed by two or more program lines.

980 Too many symbols in this context. Symbols include variable names, 110 path names, COM
block names, subprogram names, and line identifiers.

982 Too many subscripts: maximum of six dimensions allowed.

983 Wrong type or number of parameters. An improper parameter list for a machine-resident
function .

985 Invalid quoted string.

987 Invalid line number: must be a whole number 1 thru 32 766.

Keyword Summary

Program Entry/Editing Memory Allocation

CHANGE

COPYLINES

EDIT

FIND

DEL

DELSUB

INDENT

LIST

LIST BIN

MOVELINES

REM and I

REN

SECURE

XREF

Performs search and replace operations
while editing a program.

Copies program lines from one place to
another.

Accesses a program edit mode to enter
new program lines or modify existing
ones. Also used with typing aids.

Searches for a character sequence in a
program.

Deletes specified program lines from
memory.

Deletes specified subprograms from
memory.

Indents a program to reflect its structure.

lists program lines or typing aids.

lists options in the system.

Moves program lines from one place to
another.

Allows comments on program lines.

Renumbers programs.

Makes program lines unlistable.

Provides a cross-reference to all identi­
fiers used in a program.

ALLOCATE

COM

DEALLOCATE

DIM

INTEGER

OPTION BASE

REAL

SCRATCH

SYSBOOT

General Math

+

*

i
Program Debugging ABS

ERRDS

ERRL

ERRM$

ERRN

TRACE ALL

TRACE PAUSE

TRACE OFF

Returns the device selector involved in
the last 1/0 error.

Indicates if an error occurred during ex­
ecution of a speCified line.

Returns the text of the last error message.

Returns the most recent program execu­
tion error.

Allows tracing of program flow and vari­
able assignments during program execu­
tion.

DIV

ORO UNO

EXP

FRACT

INT

LET

Causes program execution to pause at a LGT
specified line.

Disables TRACE ALL and TRACE LOG
PAUSE.

Allocates memory for arrays or string
variables during program execution.

Reserves memory for variables in a com­
mon area for access by more than one
context.

Reclaims memory previously allocated.

Dimensions and reserves memory for
REAL numeric arrays and strings.

Dimensions and reserves memory for IN­
TEGER variables and arrays.

Specifies the default lower bound for
arrays.

Dimensions and reserves memory for full
precision variables and arrays.

Erases selected portions of memory.

Returns system control to the boot ROM.

Addition operator.

Subtraction operator.

Multiplication operator.

Division operator.

Exponentiation operator.

Returns an argument's absolute value.

Divides one argument by another and re­
turns the integer portion of the quotient.

Returns the value of an expression ,
rounded to a specified number of digits.

Raises the base e to a specified power.

Returns the fractional portion of an ex­
pression.

Returns the integer portion of an ex­
pression.

Assigns values to variables.

Returns the log (base 10) of an argu­
ment.

Returns the natural logarithm (base e) of
an argument.

603

Keyword Summary

Program Entry/Editing Memory Allocation

CHANGE

COPYLINES

EDIT

FIND

DEL

DELSUB

INDENT

LIST

LIST BIN

MOVELINES

REM and I

REN

SECURE

XREF

Performs search and replace operations
while editing a program.

Copies program lines from one place to
another.

Accesses a program edit mode to enter
new program lines or modify existing
ones. Also used with typing aids.

Searches for a character sequence in a
program.

Deletes specified program lines from
memory.

Deletes specified subprograms from
memory.

Indents a program to reflect its structure.

lists program lines or typing aids.

lists options in the system.

Moves program lines from one place to
another.

Allows comments on program lines.

Renumbers programs.

Makes program lines unlistable.

Provides a cross-reference to all identi­
fiers used in a program.

ALLOCATE

COM

DEALLOCATE

DIM

INTEGER

OPTION BASE

REAL

SCRATCH

SYSBOOT

General Math

+

*

i
Program Debugging ABS

ERRDS

ERRL

ERRM$

ERRN

TRACE ALL

TRACE PAUSE

TRACE OFF

Returns the device selector involved in
the last 1/0 error.

Indicates if an error occurred during ex­
ecution of a speCified line.

Returns the text of the last error message.

Returns the most recent program execu­
tion error.

Allows tracing of program flow and vari­
able assignments during program execu­
tion.

DIV

ORO UNO

EXP

FRACT

INT

LET

Causes program execution to pause at a LGT
specified line.

Disables TRACE ALL and TRACE LOG
PAUSE.

Allocates memory for arrays or string
variables during program execution.

Reserves memory for variables in a com­
mon area for access by more than one
context.

Reclaims memory previously allocated.

Dimensions and reserves memory for
REAL numeric arrays and strings.

Dimensions and reserves memory for IN­
TEGER variables and arrays.

Specifies the default lower bound for
arrays.

Dimensions and reserves memory for full
precision variables and arrays.

Erases selected portions of memory.

Returns system control to the boot ROM.

Addition operator.

Subtraction operator.

Multiplication operator.

Division operator.

Exponentiation operator.

Returns an argument's absolute value.

Divides one argument by another and re­
turns the integer portion of the quotient.

Returns the value of an expression ,
rounded to a specified number of digits.

Raises the base e to a specified power.

Returns the fractional portion of an ex­
pression.

Returns the integer portion of an ex­
pression.

Assigns values to variables.

Returns the log (base 10) of an argu­
ment.

Returns the natural logarithm (base e) of
an argument.

603

604 Keyword Summary

MAX

MAXREAL

MIN

MINREAL

MOD

MODULO

PI

PROUND

RANDOMIZE

RES

RND

SGN

SQR

Returns the largest value in a list of argu­
ments.

Returns the largest number available.

Returns the smallest value in a list of
arguments.

Returns the smallest number available.

Returns the remainder of integer division.

Return the molulo of division.

Returns an approximation of 'IT .

Returns the value of an expression ,
rounded to the specified power of ten.

Modifies the seed used by the RND func­
tion.

Returns last live keyboard numeric result.

Returns a pseudo-random number.

Returns the sign of an argument.

Returns the square root of an argument.

Binary Functions

BINAND

BINCMP

BINEOR

BINIOR

BIT

ROTATE

SHIFT

Returns the bit-by-bit logical-and of two
arguments.

Returns the bit-by-bit complement of an
argument.

Returns the bit-by-bit exclusive-or of two
arguments.

Returns the bit-by-bit inclusive-or of two
arguments.

Returns the state of a specified bit of an
argument.

Returns a value obtained by shifting an
argument's binary representation a num­
ber of bit positions, with wrap-around.

Returns a value obtained by shifting an
argument's binary representation a num­
ber of bit positions , without wrap ­
around.

Trigonometric Operations

ACS

ASN

ATN

COS

DEG

RAD

SIN

TAN

Returns the arccosine of an argument.

Returns the arcsine of an argument.

Returns the arctangent of an argument.

Returns the cosine of an angle.

Sets the degrees mode.

Sets the radians mode.

Returns the sine of an angle.

Returns the tangent of an angle.

String Operations

&

CHR$

DVAL

DVAL$

IVAL

IVAL$

LEN

Concatenates two string expressions.

Converts a numeric value into an ASCII
character.

Converts an alternate-base representa­
tion into a numeric value.

Converts a numeric value into an alter­
nate-base representation.

Converts an alternate-base representa­
tion into an INTEGER number.

Converts an INTEGER into an alternate­
base representation.

Returns the number of characters in a
string expression.

LEXICAL ORDER IS Determines the collating sequence used
in string comparisons.

LWC$

NUM

POS

REV$

RPT$

TRIM$

UPC$

VAL

VAL$

Returns the lowercase value of a string
expression.

Returns the decimal value of the first
character in a string.

Returns the position of a string within a
string expression.

Reverses the order of the characters in a
string expression.

Repeats the characters in a string ex­
pression a specified number of times.

Removes the leading and trailing blanks
from a string expression.

Returns the uppercase value of a string
expression.

Converts a string of numerals into a
numeric value.

Returns a string expression representing
a speCified numeric value.

Logical Operators

AND

EXOR

NOT

OR

Returns 1 or 0 based on the logical AND
of two arguments.

Returns 1 or 0 based on the logical exclu­
sive-or of two arguments.

Returns 1 or 0 based on the logical com­
plement of an argument.

Returns 1 or 0 based on the logical inclu­
sive-or of two arguments.

604 Keyword Summary

MAX

MAXREAL

MIN

MINREAL

MOD

MODULO

PI

PROUND

RANDOMIZE

RES

RND

SGN

SQR

Returns the largest value in a list of argu­
ments.

Returns the largest number available.

Returns the smallest value in a list of
arguments.

Returns the smallest number available.

Returns the remainder of integer division.

Return the molulo of division.

Returns an approximation of 'IT .

Returns the value of an expression ,
rounded to the specified power of ten.

Modifies the seed used by the RND func­
tion.

Returns last live keyboard numeric result.

Returns a pseudo-random number.

Returns the sign of an argument.

Returns the square root of an argument.

Binary Functions

BINAND

BINCMP

BINEOR

BINIOR

BIT

ROTATE

SHIFT

Returns the bit-by-bit logical-and of two
arguments.

Returns the bit-by-bit complement of an
argument.

Returns the bit-by-bit exclusive-or of two
arguments.

Returns the bit-by-bit inclusive-or of two
arguments.

Returns the state of a specified bit of an
argument.

Returns a value obtained by shifting an
argument's binary representation a num­
ber of bit positions, with wrap-around.

Returns a value obtained by shifting an
argument's binary representation a num­
ber of bit positions , without wrap ­
around.

Trigonometric Operations

ACS

ASN

ATN

COS

DEG

RAD

SIN

TAN

Returns the arccosine of an argument.

Returns the arcsine of an argument.

Returns the arctangent of an argument.

Returns the cosine of an angle.

Sets the degrees mode.

Sets the radians mode.

Returns the sine of an angle.

Returns the tangent of an angle.

String Operations

&

CHR$

DVAL

DVAL$

IVAL

IVAL$

LEN

Concatenates two string expressions.

Converts a numeric value into an ASCII
character.

Converts an alternate-base representa­
tion into a numeric value.

Converts a numeric value into an alter­
nate-base representation.

Converts an alternate-base representa­
tion into an INTEGER number.

Converts an INTEGER into an alternate­
base representation.

Returns the number of characters in a
string expression.

LEXICAL ORDER IS Determines the collating sequence used
in string comparisons.

LWC$

NUM

POS

REV$

RPT$

TRIM$

UPC$

VAL

VAL$

Returns the lowercase value of a string
expression.

Returns the decimal value of the first
character in a string.

Returns the position of a string within a
string expression.

Reverses the order of the characters in a
string expression.

Repeats the characters in a string ex­
pression a specified number of times.

Removes the leading and trailing blanks
from a string expression.

Returns the uppercase value of a string
expression.

Converts a string of numerals into a
numeric value.

Returns a string expression representing
a speCified numeric value.

Logical Operators

AND

EXOR

NOT

OR

Returns 1 or 0 based on the logical AND
of two arguments.

Returns 1 or 0 based on the logical exclu­
sive-or of two arguments.

Returns 1 or 0 based on the logical com­
plement of an argument.

Returns 1 or 0 based on the logical inclu­
sive-or of two arguments.

(

Comparison Operators

< >

<

< =

>

> =

Mass Storage

ASSIGN

CAT

CHECKREAD

COpy

CREATE ASCII

CREATE BDAT

CREATE DlR

GET

INITIALIZE

LOAD

LOAD BIN

LOAD KEY

LOADSUB

LOCK

MASS STORAGE IS
MSI

PRINT LABEL

PROTECT

PURGE

READ LABEL

RENAME

SAVE
RE-SAVE

Equality,

Inequality,

Less than,

Less than or equal to,

Greater than.

Greater than or equal to,

Assigns an 110 path name and attributes
to a file,

Lists the contents of the mass storage
media's directory,

Enables or disables read-after-write veri­
fication of a mass storage operation,

Provides a method of copying mass stor­
age files and volumes,

Creates an ASCII-type file on the mass
storage media,

Creates a BOAT -type file on the mass
storage media.

Creates an SRM directory file .

Reads an ASCII file into memory as a
program,

Prepares the mass storage media for use,

Loads a PROG-type file into memory,

Loads a BIN-type file into memory,

Loads typing-aid definitions for the soft­
keys,

Loads BASIC subprograms from a
PROG-type file into memory,

Prevents other SRM workstation compu­
ters from accessing the remote file to
which the 110 path is currently assigned,

Specifies the default mass storage device.

Writes a string expression to the label of a
media,

Specifies a protect code for PROG ,
BOAT, and BIN files,

Deletes a file entry from the directory,

Reads the label of a media to a string
variable,

Changes a file's name,

Creates an ASCII file and copies BASIC
program lines from memory into the file,

STORE
RE-STORE

STORE KEY
RE-STORE KEY

STORE SYSTEM

UNLOCK

Keyword Summary 605

Creates a PROG file and copies BASIC
program lines from memory into the file
in an internal format

Creates a BOAT file and stores the typ­
ing-aid definitions into the file,

Stores BASIC and options currently in
memory into a SYSTM file.

Removes exclusive access to a remote
(SRM) file set by the LOCK statement

Program Control

CALL

CONT

DEFFN
FNEND

END

FN

FOR" ,NEXT

GOTO

GOSUB

Transfers program execution to a speci­
fied subprogram and passes parameters,

Resumes execution of a paused program,

Defines the bounds of a user-defined
function subprogram.

Terminates program execution and
marks the end of the main program seg­
ment

Invokes a user-defined function,

Defines a loop which is repeated a speci­
fied number of times,

Transfers program execution to a speci­
fied line,

Transfers program execution to a speci­
fied subroutine,

IF",THEN Provides a conditional execution of a
ELSE program segment

LOOP Provides looping with conditional exit
EXIT IF

NPAR Returns the number of parameters
passed to the current subprogram,

KBD$ Returns the contents of the ON KBD
buffer,

KNOBX Returns the number of horizontal knob
pulses,

KNOBY Returns the number of vertical knob
pulses,

ON expression Transfers program execution to one of
several locations based on the value of an
expression,

PAUSE Suspends program execution,

REPEAT " UNTIL Allows execution of a program segment
until the specified condition is true,

RETURN Transfers program execution from a sub­
routine to the line following the invoking
GOSUB,

RETURN expression Transfers program execution from a user­
defined function by returning a value to
the calling context

(

Comparison Operators

< >

<

< =

>

> =

Mass Storage

ASSIGN

CAT

CHECKREAD

COpy

CREATE ASCII

CREATE BDAT

CREATE DlR

GET

INITIALIZE

LOAD

LOAD BIN

LOAD KEY

LOADSUB

LOCK

MASS STORAGE IS
MSI

PRINT LABEL

PROTECT

PURGE

READ LABEL

RENAME

SAVE
RE-SAVE

Equality,

Inequality,

Less than,

Less than or equal to,

Greater than.

Greater than or equal to,

Assigns an 110 path name and attributes
to a file,

Lists the contents of the mass storage
media's directory,

Enables or disables read-after-write veri­
fication of a mass storage operation,

Provides a method of copying mass stor­
age files and volumes,

Creates an ASCII-type file on the mass
storage media,

Creates a BOAT -type file on the mass
storage media.

Creates an SRM directory file .

Reads an ASCII file into memory as a
program,

Prepares the mass storage media for use,

Loads a PROG-type file into memory,

Loads a BIN-type file into memory,

Loads typing-aid definitions for the soft­
keys,

Loads BASIC subprograms from a
PROG-type file into memory,

Prevents other SRM workstation compu­
ters from accessing the remote file to
which the 110 path is currently assigned,

Specifies the default mass storage device.

Writes a string expression to the label of a
media,

Specifies a protect code for PROG ,
BOAT, and BIN files,

Deletes a file entry from the directory,

Reads the label of a media to a string
variable,

Changes a file's name,

Creates an ASCII file and copies BASIC
program lines from memory into the file,

STORE
RE-STORE

STORE KEY
RE-STORE KEY

STORE SYSTEM

UNLOCK

Keyword Summary 605

Creates a PROG file and copies BASIC
program lines from memory into the file
in an internal format

Creates a BOAT file and stores the typ­
ing-aid definitions into the file,

Stores BASIC and options currently in
memory into a SYSTM file.

Removes exclusive access to a remote
(SRM) file set by the LOCK statement

Program Control

CALL

CONT

DEFFN
FNEND

END

FN

FOR" ,NEXT

GOTO

GOSUB

Transfers program execution to a speci­
fied subprogram and passes parameters,

Resumes execution of a paused program,

Defines the bounds of a user-defined
function subprogram.

Terminates program execution and
marks the end of the main program seg­
ment

Invokes a user-defined function,

Defines a loop which is repeated a speci­
fied number of times,

Transfers program execution to a speci­
fied line,

Transfers program execution to a speci­
fied subroutine,

IF",THEN Provides a conditional execution of a
ELSE program segment

LOOP Provides looping with conditional exit
EXIT IF

NPAR Returns the number of parameters
passed to the current subprogram,

KBD$ Returns the contents of the ON KBD
buffer,

KNOBX Returns the number of horizontal knob
pulses,

KNOBY Returns the number of vertical knob
pulses,

ON expression Transfers program execution to one of
several locations based on the value of an
expression,

PAUSE Suspends program execution,

REPEAT " UNTIL Allows execution of a program segment
until the specified condition is true,

RETURN Transfers program execution from a sub­
routine to the line following the invoking
GOSUB,

RETURN expression Transfers program execution from a user­
defined function by returning a value to
the calling context

606 Keyword Summary

RUN

SELECT... CASE

STOP

SUB
SUBEND

SUBEXIT

SUSPEND/
RESUME
INTERACTIVE

SYSTEM$

WAIT

WAIT FOR EOR

WAIT FOR EOT

WHILE

Starts program execution.

Allows execution of one program seg­
ment of several.

Terminates execution of the program.

Defines the bounds of a subprogram.

Transfers control from within a subpro­
gram to the calling context.

Allows suspending and resuming interac­
tive keyboard operation while a program
is running.

Returns selected system status and con­
figuration information.

Causes program execution to wait a spe­
cified number of seconds.

Causes program execution to wait for an
end-of-record during a TRANSFER.

Causes program execution to wait for an
end-of-transfer.

Allows execution of a program segment
while the specified condition is true.

Graphics Control

ALPHA ON/OFF Turns the alpha display on or off.

AREA Selects an area fill color.

CLIP Redefines a soft-clip area.

DIGITIZE Inputs the coordinates of a digitized
point.

DUMP GRAPHICS Copies the contents of the graphics dis­
play to a printing device.

DUMP DEVICE IS Specifies the device for DUMP opera­
tions.

GCLEAR Clears the graphics area.

GESCAPE Sends device-dependent information to
the display device.

GINIT Resets graphics parameters to power-on
values.

GLOAD Loads the graphics display from an INTE­
GER array.

GRAPHICS ON/OFF Turns the graphfcs display on or off.

GRAPHICS INPUT IS Specifies the device for digitizing opera­
tions.

GSTORE Copies the contents of the graphics dis­
play to an INTEGER array.

PLOTTER IS Specifies the default plotting device.

RATIO Returns the physical aspect ratio of the
plotter's hard-clip limits.

READ LOCATOR

SET ECHO

SET LOCATOR

SET PEN

SHOW

TRACK .. ON/OFF

VIEWPORT

WHERE

WINDOW

Samples the locator device, without wait­
ing for a digitize signal.

Specifies the coordinates of an echo on
the current plotting device.

Sets the locator position on the input de­
vice.

Defines the color of entries in the color
map.

Defines plotting units that will appear in
the VIEWPORT area.

Enables and disables locator tracking on
the current display device.

Specifies an area in which WINDOW and
SHOW statements are mapped.

Returns the current logical position of the
pen.

Specifies the min and max values for the
plotting area specified by VIEWPORT.

Graphics Plotting

DRAW

LINE TYPE

!DRAW

IMOVE

IPLOT

MOVE

PDIR

PEN

PENUP

PIVOT

PLOT

POLYGON

POLYLINE

RECTANGLE

RPLOT

Draws a line to a specified point.

Selects a plotting line type.

Draws a line incrementally to a specified
point.

Moves the pen incrementally to a speci­
fied point.

Draws a line incrementally to the speci­
fied point with optional pen control.

Moves the pen to a specified point.

Specifies rotation for IPLOT, RPLOT,
RECTANGLE, POLYGON and POLY­
LINE.

Selects a plotter pen.

Ufts the pen from the plotting surface.

Specifies rotation for lines made with
moves, draws, plots, polygons, or rec­
tangles.

Draws a line to the specified point with
optional pen control.

Draws all or part of a closed polygon.

Draws all or part of an open polygon.

Draws a rectangle that can be filled and
edged.

Draws a line relative to a movable origin
with optional pen control.

606 Keyword Summary

RUN

SELECT... CASE

STOP

SUB
SUBEND

SUBEXIT

SUSPEND/
RESUME
INTERACTIVE

SYSTEM$

WAIT

WAIT FOR EOR

WAIT FOR EOT

WHILE

Starts program execution.

Allows execution of one program seg­
ment of several.

Terminates execution of the program.

Defines the bounds of a subprogram.

Transfers control from within a subpro­
gram to the calling context.

Allows suspending and resuming interac­
tive keyboard operation while a program
is running.

Returns selected system status and con­
figuration information.

Causes program execution to wait a spe­
cified number of seconds.

Causes program execution to wait for an
end-of-record during a TRANSFER.

Causes program execution to wait for an
end-of-transfer.

Allows execution of a program segment
while the specified condition is true.

Graphics Control

ALPHA ON/OFF Turns the alpha display on or off.

AREA Selects an area fill color.

CLIP Redefines a soft-clip area.

DIGITIZE Inputs the coordinates of a digitized
point.

DUMP GRAPHICS Copies the contents of the graphics dis­
play to a printing device.

DUMP DEVICE IS Specifies the device for DUMP opera­
tions.

GCLEAR Clears the graphics area.

GESCAPE Sends device-dependent information to
the display device.

GINIT Resets graphics parameters to power-on
values.

GLOAD Loads the graphics display from an INTE­
GER array.

GRAPHICS ON/OFF Turns the graphfcs display on or off.

GRAPHICS INPUT IS Specifies the device for digitizing opera­
tions.

GSTORE Copies the contents of the graphics dis­
play to an INTEGER array.

PLOTTER IS Specifies the default plotting device.

RATIO Returns the physical aspect ratio of the
plotter's hard-clip limits.

READ LOCATOR

SET ECHO

SET LOCATOR

SET PEN

SHOW

TRACK .. ON/OFF

VIEWPORT

WHERE

WINDOW

Samples the locator device, without wait­
ing for a digitize signal.

Specifies the coordinates of an echo on
the current plotting device.

Sets the locator position on the input de­
vice.

Defines the color of entries in the color
map.

Defines plotting units that will appear in
the VIEWPORT area.

Enables and disables locator tracking on
the current display device.

Specifies an area in which WINDOW and
SHOW statements are mapped.

Returns the current logical position of the
pen.

Specifies the min and max values for the
plotting area specified by VIEWPORT.

Graphics Plotting

DRAW

LINE TYPE

!DRAW

IMOVE

IPLOT

MOVE

PDIR

PEN

PENUP

PIVOT

PLOT

POLYGON

POLYLINE

RECTANGLE

RPLOT

Draws a line to a specified point.

Selects a plotting line type.

Draws a line incrementally to a specified
point.

Moves the pen incrementally to a speci­
fied point.

Draws a line incrementally to the speci­
fied point with optional pen control.

Moves the pen to a specified point.

Specifies rotation for IPLOT, RPLOT,
RECTANGLE, POLYGON and POLY­
LINE.

Selects a plotter pen.

Ufts the pen from the plotting surface.

Specifies rotation for lines made with
moves, draws, plots, polygons, or rec­
tangles.

Draws a line to the specified point with
optional pen control.

Draws all or part of a closed polygon.

Draws all or part of an open polygon.

Draws a rectangle that can be filled and
edged.

Draws a line relative to a movable origin
with optional pen control.

Keyword Summary 607

Graphic Axes and Labeling PRINTER IS Specifies a device for PRINT, CAT and
LIST statements.

AXES

CSIZE

FRAME

GRID

lABEL

LDIR

LORG

SYMBOL

Input/Output

ABORTIO

ASSIGN

BEEP

BREAK

CONTROL

CRT

DATA

DISP

DUMP ALPHA

DUMP DEVICE IS

ENTER

IMAGE

INPUT

KBD

LIN PUT

OUTPUT

PRINT

PRINTAll IS

Draws axes with optional tick marks.

Sets the size and aspect ratio for labeled
characters.

Draws a frame around the current clip­
ping area.

Draws a full grid pattern for axes.

Draws alphanumeric labels.

Defines the angle for drawing labels.

Specifies a labeling location relative to
the pen location.

Allows labeling with user-defined sym­
bols.

Terminates an active TRANSFER.

Associates an lIO path name and attri­
butes with a device, group of devices,
mass storage file , or buffer.

Produces one of 63 audible tones.

Sends a Break signal on a serial interface.

Sends control information to an interface
or a table associated with an lIO path
name.

Returns the device selector of the CRT.

Specifies data accessible via READ state­
ments.

Outputs items to the CRT display line.

PRT

READ

READIO

RESET

RESTORE

SC

STATUS

TAB

TABXY

TRANSFER

WRITEIO

HP-IB Control

ABORT

CLEAR

lOCAL

Returns 701, usually the device selector
of an external printer.

Inputs data from DATA lists to variables.

Reads the contents of the specified hard­
ware registers on the specified interface.

Resets an interface or pointers of an lIO
path.

Causes a READ statement to access the
specified DATA statement.

Returns the interface select code associ­
ated with an I/O path.

Returns the value from a specified inter­
face status register.

Moves the print position ahead to a speci­
fied point; used within PRINT and DISP
statements.

Specifies the print position on the internal
CRT; used with PRINT statements.

Initiates unformatted lIO transfers.

Writes an integer representation of the
register data to the specified hardware
register on the specified interface.

Terminates bus activity and asserts IFe.

Places specified devices in a device­
dependent state.

Returns specified devices to their local
state.

Transfers contents of the CRT output lOCAL lOCKOUT
area to a specified device.

Sends the llO message, disabling all de­
vice's front-panel controls.

Specifies a device for DUMP ALPHA and PASS CONTROL
DUMP GRAPHICS operations.

Passes Active Controller capability to
another device.

Inputs data from a device, file , string, or
buffer to a list of variables.

Provides formats for use with ENTER,
OUTPUT, DISP,lABEl and PRINT op­
erations.

Inputs data from the keyboard to a list of
variables.

Returns the device selector of the
keyboard.

Inputs literal data from the keyboard to a
string variable.

Outputs items to a specified device, file,
string, or buffer.

Outputs items to the current PRINTER IS
device.

Specifies a device for logging messages
sent to the display.

PPOll Returns a parallel poll byte from the bus.

PPOll CONFIGURE Programs a parallel poll bit for a specified
device.

PPOll RESPONSE Defines the computers response to a par­
allel poll.

PPOll UNCONFIGURE Disables parallel poll for specified de­
vices.

REMOTE

REQUEST

SEND

SPOll

TRIGGER

Sets specified devices to their remote
state.

Sends a service request to the Active
Controller.

Sends explicit command and data mes­
sages on the bus.

Returns a serial poll byte from a specified
device.

Sends the trigger message to specified
devices.

Keyword Summary 607

Graphic Axes and Labeling PRINTER IS Specifies a device for PRINT, CAT and
LIST statements.

AXES

CSIZE

FRAME

GRID

lABEL

LDIR

LORG

SYMBOL

Input/Output

ABORTIO

ASSIGN

BEEP

BREAK

CONTROL

CRT

DATA

DISP

DUMP ALPHA

DUMP DEVICE IS

ENTER

IMAGE

INPUT

KBD

LIN PUT

OUTPUT

PRINT

PRINTAll IS

Draws axes with optional tick marks.

Sets the size and aspect ratio for labeled
characters.

Draws a frame around the current clip­
ping area.

Draws a full grid pattern for axes.

Draws alphanumeric labels.

Defines the angle for drawing labels.

Specifies a labeling location relative to
the pen location.

Allows labeling with user-defined sym­
bols.

Terminates an active TRANSFER.

Associates an lIO path name and attri­
butes with a device, group of devices,
mass storage file , or buffer.

Produces one of 63 audible tones.

Sends a Break signal on a serial interface.

Sends control information to an interface
or a table associated with an lIO path
name.

Returns the device selector of the CRT.

Specifies data accessible via READ state­
ments.

Outputs items to the CRT display line.

PRT

READ

READIO

RESET

RESTORE

SC

STATUS

TAB

TABXY

TRANSFER

WRITEIO

HP-IB Control

ABORT

CLEAR

lOCAL

Returns 701, usually the device selector
of an external printer.

Inputs data from DATA lists to variables.

Reads the contents of the specified hard­
ware registers on the specified interface.

Resets an interface or pointers of an lIO
path.

Causes a READ statement to access the
specified DATA statement.

Returns the interface select code associ­
ated with an I/O path.

Returns the value from a specified inter­
face status register.

Moves the print position ahead to a speci­
fied point; used within PRINT and DISP
statements.

Specifies the print position on the internal
CRT; used with PRINT statements.

Initiates unformatted lIO transfers.

Writes an integer representation of the
register data to the specified hardware
register on the specified interface.

Terminates bus activity and asserts IFe.

Places specified devices in a device­
dependent state.

Returns specified devices to their local
state.

Transfers contents of the CRT output lOCAL lOCKOUT
area to a specified device.

Sends the llO message, disabling all de­
vice's front-panel controls.

Specifies a device for DUMP ALPHA and PASS CONTROL
DUMP GRAPHICS operations.

Passes Active Controller capability to
another device.

Inputs data from a device, file , string, or
buffer to a list of variables.

Provides formats for use with ENTER,
OUTPUT, DISP,lABEl and PRINT op­
erations.

Inputs data from the keyboard to a list of
variables.

Returns the device selector of the
keyboard.

Inputs literal data from the keyboard to a
string variable.

Outputs items to a specified device, file,
string, or buffer.

Outputs items to the current PRINTER IS
device.

Specifies a device for logging messages
sent to the display.

PPOll Returns a parallel poll byte from the bus.

PPOll CONFIGURE Programs a parallel poll bit for a specified
device.

PPOll RESPONSE Defines the computers response to a par­
allel poll.

PPOll UNCONFIGURE Disables parallel poll for specified de­
vices.

REMOTE

REQUEST

SEND

SPOll

TRIGGER

Sets specified devices to their remote
state.

Sends a service request to the Active
Controller.

Sends explicit command and data mes­
sages on the bus.

Returns a serial poll byte from a specified
device.

Sends the trigger message to specified
devices.

608 Keyword Summary

Array Operations

BASE Returns the lower bound of a dimension
of an array.

DET Returns the determinant of a matrix.

DOT Returns the dot product of two vectors.

MAT Performs various operations on numeric
and string arrays.

MAT REORDER Reorders the elements in an array
according to the subscript list in a vector.

MAT SORT Sorts an array along one dimension
according to lexical or numeric order.

RANK Returns the number of dimensions in an
array.

REDIM Changes the subscript range of an array.

SIZE Returns the number of elements in a
dimension of an array.

SUM Returns the sum of all the elements in a
numeric array.

Clock and Calendar

DATE

DATE$

SET TIME

SET TIMEDATE

TIME

TIME$

TIMEDATE

Converts a formatted date into a number
of seconds.

Converts a number of seconds into a for­
matted date.

Sets the time of day on the real-time
clock

Sets the time and date on the real-time
clock.

Converts a formatted time of day into a
number of seconds past midnight.

Converts a number of seconds past mid­
night into a formatted time of day.

Returns the value of the real-time clock.

Event-Initiated Branching

ENABLE
DISABLE

ENABLEINTR
DISABLE INTR

ON CYCLE
OFF CYCLE

ON DELAY
OFF DELAY

ON END
OFF END

ONEOR
OFF EOR

ONEOT
OFF EOT

ON ERROR
OFF ERROR

ONINTR
OFF INTR

ONKBD
OFF KBD

ON KEY. .. LABEL
OFF KEY

ON KNOB
OFF KNOB

ON SIGNAL
OFF SIGNAL

ON TIME
OFF TIME

ON TIMEOUT
OFF TIMEOUT

SIGNAL

SYSTEM PRIORITY

Enables or disables event-initiated
branching (except for ON END, ON
ERROR, and ON TIMEOUT).

Enables or disables interrupts defined by
the ON INTR statement.

Sets up an event-initiated branch at
periodic intervals.

Sets up an event-initiated branch after a
specified elapsed time.

Sets up an event-initiated branch when
an end-of-file condition occurs.

Sets up an event-initiated branch when
an end-of-record occurs during a
TRANSFER.

Sets up an event-initiated branch when
an end-of-transfer occurs.

Sets up an event-initiated branch when a
trappable program error occurs.

Sets up an event-initiated branch when a
specified interface card generates an in­
terrupt.

Sets up an event-initiated branch when a
key is pressed.

Sets up an event-initiated branch when a
specified softkey is pressed.

Sets up an event-initiated branch when
the knob (cursor wheel) is rotated.

Sets up an event-initiated branch when a
software interrupt is generated.

Sets up an event-initiated branch when a
specified time of day is reached.

Sets up an event-initiated branch when
an
110 timeout occurs on a specified inter­
face.

Generates a software interrupt.

Sets a minimun level of system priority
for event-initiated branches.

608 Keyword Summary

Array Operations

BASE Returns the lower bound of a dimension
of an array.

DET Returns the determinant of a matrix.

DOT Returns the dot product of two vectors.

MAT Performs various operations on numeric
and string arrays.

MAT REORDER Reorders the elements in an array
according to the subscript list in a vector.

MAT SORT Sorts an array along one dimension
according to lexical or numeric order.

RANK Returns the number of dimensions in an
array.

REDIM Changes the subscript range of an array.

SIZE Returns the number of elements in a
dimension of an array.

SUM Returns the sum of all the elements in a
numeric array.

Clock and Calendar

DATE

DATE$

SET TIME

SET TIMEDATE

TIME

TIME$

TIMEDATE

Converts a formatted date into a number
of seconds.

Converts a number of seconds into a for­
matted date.

Sets the time of day on the real-time
clock

Sets the time and date on the real-time
clock.

Converts a formatted time of day into a
number of seconds past midnight.

Converts a number of seconds past mid­
night into a formatted time of day.

Returns the value of the real-time clock.

Event-Initiated Branching

ENABLE
DISABLE

ENABLEINTR
DISABLE INTR

ON CYCLE
OFF CYCLE

ON DELAY
OFF DELAY

ON END
OFF END

ONEOR
OFF EOR

ONEOT
OFF EOT

ON ERROR
OFF ERROR

ONINTR
OFF INTR

ONKBD
OFF KBD

ON KEY. .. LABEL
OFF KEY

ON KNOB
OFF KNOB

ON SIGNAL
OFF SIGNAL

ON TIME
OFF TIME

ON TIMEOUT
OFF TIMEOUT

SIGNAL

SYSTEM PRIORITY

Enables or disables event-initiated
branching (except for ON END, ON
ERROR, and ON TIMEOUT).

Enables or disables interrupts defined by
the ON INTR statement.

Sets up an event-initiated branch at
periodic intervals.

Sets up an event-initiated branch after a
specified elapsed time.

Sets up an event-initiated branch when
an end-of-file condition occurs.

Sets up an event-initiated branch when
an end-of-record occurs during a
TRANSFER.

Sets up an event-initiated branch when
an end-of-transfer occurs.

Sets up an event-initiated branch when a
trappable program error occurs.

Sets up an event-initiated branch when a
specified interface card generates an in­
terrupt.

Sets up an event-initiated branch when a
key is pressed.

Sets up an event-initiated branch when a
specified softkey is pressed.

Sets up an event-initiated branch when
the knob (cursor wheel) is rotated.

Sets up an event-initiated branch when a
software interrupt is generated.

Sets up an event-initiated branch when a
specified time of day is reached.

Sets up an event-initiated branch when
an
110 timeout occurs on a specified inter­
face.

Generates a software interrupt.

Sets a minimun level of system priority
for event-initiated branches.

Keyword Summary 609

Vocabulary
The following list contains all the words which are recognized by Series 200/300 computers
with BASIC 4. O. Each individual word is some part of one or more valid statements or func-
tions. These words cannot be used as variable names unless you mix their letter case.

ABORT DEG GOSUB MANAGER RAD STOP
ABORTIO DEL GOTO MAP RANDOMIZE STORAGE
ABS DELAY GRAPHICS MASS RANK STORE
ACS DELETE GRID MAT RATIO SUB
All DELIM GSTORE MAX RE SUBEND
AllOCATE DElSUB MAXREAl READ SUBEXIT
ALPHA DES HEADER MIN READIO SUM
AND DET MINREAl REAL SUSPEND
AREA DEVICE ION MlA RECORDS SV
ASCII DIGITIZE IDRAW MOD RECOVER SWEDISH
ASN DIM IF MODE RECTANGLE SYMBOL
ASSIGN DlR IMAGE MODULO REDIM SYSBOOT
ATN DISABLE IMOVE MOVE REM SYSTEM
AXES DlSP IN MOVELINES REMOTE SYSTEM$

DlV INDENT MSI REN
BASE DOT INDEX MTA RENAME TAB
BOAT DRAW INITIALIZE REORDER TABXY
BEEP DROUND INPUT NEXT REPEAT TALK
BIN DUMP INT NF REQUEST TAN
BINAND OVAL INTEGER NO RES THEN
BINCMP DVAL$ INTENSITY NOT RE-SAVE TIME
BINEOR INTERACTIVE NPAR RESET TIME$
BINIOR ECHO INTR NUM RESPONSE TIMEDATE
BIT EDGE INV NV RESTORE TIMEOUT
BREAK EDIT 10 RE-STORE TO
BUFFER ELSE IPLOT ODD RESUME TRACE
BY ENABLE IS OFF RETURN TRACK
BYTE END IVAl ON REV$ TRANSFER

ENTER IVAl$ ONE RND TRIGGER
CAll EOl OPTION ROTATE TRIM$
CASE EOR KBD OPTIONAL RPLOT TRN
CAT EOT KBD$ OR RPT$ TYPE
CHANGE ERRDS KEY ORDER RSUM
CHECKREAD ERRl KNOB OUT RUN UN
CHR$ ERRM$ KNOBX OUTPUT UNCONFIGURE
CLEAR ERRN KNOBY SAVE UNl
CLIP ERROR PAIRS SB UNLOCK
CM EVEN lABEL PARITY SC UNT
CMD EXIT lDlR PASS SCALE UNTIL
COLOR EXOR lEN PAUSE SCRATCH UPC$
COM EXP lET PDlR SEC USING
CONFIGURE EXPANDED lEXICAL PEN SECURE
CONT lGT PENUP SELECT VAL
CONTROL FIll LINE PI SEND VAl$
CONVERT FIND LlNPUT PIVOT SET VIEWPORT
COPY FN LIST PLOT SF
COPYLINES FNEND LISTEN PLOTTER SGN WAIT
COS FOR II POLYGON SHIFT WHERE
COUNT FORMAT IN POLYLINE SHOW WHilE
CREATE FRACT LOAD POS SIGNAL WIDTH
CRT FRAME LOADSUB PPOll SIN WINDOW
CSIZE FRENCH lOCAL PRINT SIZE WORD
CSUM FROM lOCATE PRINTAll SKIP WRITE
CYCLE GClEAR lOCATOR PRINTER SORT WRITEIO

GERMAN lOCK PRIORITY SPANISH
DATA GESCAPE lOCKOUT PROTECT SPOll XREF
DATE GET lOG PRO UNO SQR
DATE$ GINIT lOOP PRT STANDARD ZERO
DEAllOCATE GlOAD LORG PURGE STATUS
DEF GO lWC$ STEP

NOTE 1: Although LOCATE and SCALE are recognized as reserved words when entered, they are stored and listed back as VIEWPORT and
WINDOW, respectively.
NOTE 2: Although CSUB can appear as a reserved word in a program listing, it is not recognized as a reserved word when entered from the
keyboard.

Keyword Summary 609

Vocabulary
The following list contains all the words which are recognized by Series 200/300 computers
with BASIC 4. O. Each individual word is some part of one or more valid statements or func-
tions. These words cannot be used as variable names unless you mix their letter case.

ABORT DEG GOSUB MANAGER RAD STOP
ABORTIO DEL GOTO MAP RANDOMIZE STORAGE
ABS DELAY GRAPHICS MASS RANK STORE
ACS DELETE GRID MAT RATIO SUB
All DELIM GSTORE MAX RE SUBEND
AllOCATE DElSUB MAXREAl READ SUBEXIT
ALPHA DES HEADER MIN READIO SUM
AND DET MINREAl REAL SUSPEND
AREA DEVICE ION MlA RECORDS SV
ASCII DIGITIZE IDRAW MOD RECOVER SWEDISH
ASN DIM IF MODE RECTANGLE SYMBOL
ASSIGN DlR IMAGE MODULO REDIM SYSBOOT
ATN DISABLE IMOVE MOVE REM SYSTEM
AXES DlSP IN MOVELINES REMOTE SYSTEM$

DlV INDENT MSI REN
BASE DOT INDEX MTA RENAME TAB
BOAT DRAW INITIALIZE REORDER TABXY
BEEP DROUND INPUT NEXT REPEAT TALK
BIN DUMP INT NF REQUEST TAN
BINAND OVAL INTEGER NO RES THEN
BINCMP DVAL$ INTENSITY NOT RE-SAVE TIME
BINEOR INTERACTIVE NPAR RESET TIME$
BINIOR ECHO INTR NUM RESPONSE TIMEDATE
BIT EDGE INV NV RESTORE TIMEOUT
BREAK EDIT 10 RE-STORE TO
BUFFER ELSE IPLOT ODD RESUME TRACE
BY ENABLE IS OFF RETURN TRACK
BYTE END IVAl ON REV$ TRANSFER

ENTER IVAl$ ONE RND TRIGGER
CAll EOl OPTION ROTATE TRIM$
CASE EOR KBD OPTIONAL RPLOT TRN
CAT EOT KBD$ OR RPT$ TYPE
CHANGE ERRDS KEY ORDER RSUM
CHECKREAD ERRl KNOB OUT RUN UN
CHR$ ERRM$ KNOBX OUTPUT UNCONFIGURE
CLEAR ERRN KNOBY SAVE UNl
CLIP ERROR PAIRS SB UNLOCK
CM EVEN lABEL PARITY SC UNT
CMD EXIT lDlR PASS SCALE UNTIL
COLOR EXOR lEN PAUSE SCRATCH UPC$
COM EXP lET PDlR SEC USING
CONFIGURE EXPANDED lEXICAL PEN SECURE
CONT lGT PENUP SELECT VAL
CONTROL FIll LINE PI SEND VAl$
CONVERT FIND LlNPUT PIVOT SET VIEWPORT
COPY FN LIST PLOT SF
COPYLINES FNEND LISTEN PLOTTER SGN WAIT
COS FOR II POLYGON SHIFT WHERE
COUNT FORMAT IN POLYLINE SHOW WHilE
CREATE FRACT LOAD POS SIGNAL WIDTH
CRT FRAME LOADSUB PPOll SIN WINDOW
CSIZE FRENCH lOCAL PRINT SIZE WORD
CSUM FROM lOCATE PRINTAll SKIP WRITE
CYCLE GClEAR lOCATOR PRINTER SORT WRITEIO

GERMAN lOCK PRIORITY SPANISH
DATA GESCAPE lOCKOUT PROTECT SPOll XREF
DATE GET lOG PRO UNO SQR
DATE$ GINIT lOOP PRT STANDARD ZERO
DEAllOCATE GlOAD LORG PURGE STATUS
DEF GO lWC$ STEP

NOTE 1: Although LOCATE and SCALE are recognized as reserved words when entered, they are stored and listed back as VIEWPORT and
WINDOW, respectively.
NOTE 2: Although CSUB can appear as a reserved word in a program listing, it is not recognized as a reserved word when entered from the
keyboard.

610 Keyword Summary

Manual Comment Sheet Instruction
If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page) , include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

610 Keyword Summary

Manual Comment Sheet Instruction
If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page) , include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

Reorder Number
98613·90051
Printed in U.S.A. 7/85

Flin- HEWLETT
a:~ PACKARD

98613-90654
Mfg. No. Only

Reorder Number
98613·90051
Printed in U.S.A. 7/85

Flin- HEWLETT
a:~ PACKARD

98613-90654
Mfg. No. Only

Scan Copyright ©

The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP

Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.

