
HP 9000 Series 200/300 Computers

BASIC 4.0 Programming Techniques

Flin- HEWLETT
~~ PACKARD HP 9000 Series 200/300 Computers

BASIC 4.0 Programming Techniques

Flin- HEWLETT
~~ PACKARD

BASIC 4.0 Programming Techniques
for HP 9000 Series 2001300 Computers

Manual Reorder No. 98613-90011

© Copyright 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present fo rm or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(8) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

BASIC 4.0 Programming Techniques
for HP 9000 Series 2001300 Computers

Manual Reorder No. 98613-90011

© Copyright 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present fo rm or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(8) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

JUly 1985 ... Edition 1

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett­
Packard shall not be liable for errors contained herein or direct, indirect, special , incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from
your local Sales and Service Office.

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

JUly 1985 ... Edition 1

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett­
Packard shall not be liable for errors contained herein or direct, indirect, special , incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Table of Contents

Chapter 1: Manual Organization
Welcome 1
What's in This Manual. 2

Chapter 2: Entering, Running, and Storing Programs
Introduction . 5
Some BASIC Vocabulary .. 5

What Is a Program? 5
What Is a Command? .. 6
Enter or Execute .. 6

Using EDIT Mode 7
Getting Into EDIT Mode. .. 7
Editing the Current Line 8
Entering Program Lines .. 8
Inserting Lines 9
Deleting and Recalling Lines .. 10
Renumbering a Program 10
Listing a Program .. 11
Using Comments 11
Getting Out of EDIT Mode 14

Running a Program. 15
Prerun 15
Normal Program Execution .. 15
Non-Executed Statements 16
Live Keyboard. 16

Wholesale Program Editing .. 20
Moving Program Segments . 20
Copying Program Segmerits .. 21
Search and Replace Operations .. 21
Using Subprogram Libraries . 23
Indenting .. 23
Cross-references . . , 26

Program Storage and Retrieval . 27
Find a Usable Volume .. 27
Recording a Program . 28
Retrieving a Program .. 30
Autostart of a PROG File. 35

System Configuration .. 37
Loading BINs 37
Storing the System. .. 37
Scratching BINs. .. 37

Other Mass Storage Operations .. 38

iii

Table of Contents

Chapter 1: Manual Organization
Welcome 1
What's in This Manual. 2

Chapter 2: Entering, Running, and Storing Programs
Introduction . 5
Some BASIC Vocabulary .. 5

What Is a Program? 5
What Is a Command? .. 6
Enter or Execute .. 6

Using EDIT Mode 7
Getting Into EDIT Mode. .. 7
Editing the Current Line 8
Entering Program Lines .. 8
Inserting Lines 9
Deleting and Recalling Lines .. 10
Renumbering a Program 10
Listing a Program .. 11
Using Comments 11
Getting Out of EDIT Mode 14

Running a Program. 15
Prerun 15
Normal Program Execution .. 15
Non-Executed Statements 16
Live Keyboard. 16

Wholesale Program Editing .. 20
Moving Program Segments . 20
Copying Program Segmerits .. 21
Search and Replace Operations .. 21
Using Subprogram Libraries . 23
Indenting .. 23
Cross-references . . , 26

Program Storage and Retrieval . 27
Find a Usable Volume .. 27
Recording a Program . 28
Retrieving a Program .. 30
Autostart of a PROG File. 35

System Configuration .. 37
Loading BINs 37
Storing the System. .. 37
Scratching BINs. .. 37

Other Mass Storage Operations .. 38

iii

iv

Using Softkeys as Typing-Aid Keys. .. 39
Default Typing-Aid Definitions 39
Defining Typing-Aids .. 39
Typing-Aid Definitions 41
Listing Typing-Aid Definitions 41
Typing-Aid Files. .. 41
Defining Typing-Aids Programmatically .. 42

Software Security. .. 43
Securing Program Lines. .. 43
Using Serial Numbers. .. 44

Clearing the Computer. .. 46

Chapter 3: Program Structure and Flow
Introduction .. 47
The Program Counter .. 47
Sequence .. 48

Linear Flow .. 48
Halting Program Execution .. 48
Simple Branching. .. 50

Selection .. 53
Conditional Execution of One Segment 53
Choosing One of Two Segments 56
Choosing One of Many Segments .. 58

Repetition 61
Fixed Number of Iterations 61
Conditional Number of Iterations .. 63
Arbitrary Exit Points .. 65

Event-Initiated Branching 68
Enabling Events 68
Using the Knob .. 70
DeactivatingEven~ 71
Disabling Events 73

Chapter 4: Numeric Computation
Introduction 75

Numeric Data Types 75
Internal Numeric Formats. .. 77

Evaluating Scalar Expressions . 79
The Hierarchy . 79
Operators. .. 81
Resident Numerical Functions. .. 84

Array Operations 87
Dimensioning an Array. .. 87
Finding Out the Dimensions of an Array .. 93
Filling an Array .. 94
Extracting Values From Arrays 96
Redimensioning Arrays 97
Arrays and Arithmetic Operators. .. 98

iv

Using Softkeys as Typing-Aid Keys. .. 39
Default Typing-Aid Definitions 39
Defining Typing-Aids .. 39
Typing-Aid Definitions 41
Listing Typing-Aid Definitions 41
Typing-Aid Files. .. 41
Defining Typing-Aids Programmatically .. 42

Software Security. .. 43
Securing Program Lines. .. 43
Using Serial Numbers. .. 44

Clearing the Computer. .. 46

Chapter 3: Program Structure and Flow
Introduction .. 47
The Program Counter .. 47
Sequence .. 48

Linear Flow .. 48
Halting Program Execution .. 48
Simple Branching. .. 50

Selection .. 53
Conditional Execution of One Segment 53
Choosing One of Two Segments 56
Choosing One of Many Segments .. 58

Repetition 61
Fixed Number of Iterations 61
Conditional Number of Iterations .. 63
Arbitrary Exit Points .. 65

Event-Initiated Branching 68
Enabling Events 68
Using the Knob .. 70
DeactivatingEven~ 71
Disabling Events 73

Chapter 4: Numeric Computation
Introduction 75

Numeric Data Types 75
Internal Numeric Formats. .. 77

Evaluating Scalar Expressions . 79
The Hierarchy . 79
Operators. .. 81
Resident Numerical Functions. .. 84

Array Operations 87
Dimensioning an Array. .. 87
Finding Out the Dimensions of an Array .. 93
Filling an Array .. 94
Extracting Values From Arrays 96
Redimensioning Arrays 97
Arrays and Arithmetic Operators. .. 98

Boolean Arrays 100
Reordering Arrays. .. 101
Sorting Arrays 102
Matrices and Vectors 105
Solving Simultaneous Equations 110
Singular Matrices 112
The Determinant of a Matrix .. 113
Ill-Conditioned Matrices. .. 114
Using Arrays for Code Conversion. .. 118

Chapter 5: String Manipulation
Introduction. .. 121

String Storage. .. 122
String Arrays . 122

Evaluating Expressions Containing Strings. .. 123
Evaluation Hierarchy .. 123
String Concatenation .. 123
Relational Operations .. 123

Substrings. .. 124
Single-Subscript Substrings. .. 124 .
Double-Subscript Substrings. .. 125
Special Considerations. .. 125

String-Related Functions. .. 127
String Length 127
Substring Position .. 127
String-to-Numeric Conversion 128
Numeric-to-String Conversion 129
CRT Character Set. .. 130

String Functions 131
String Reverse .. 131
String Repeat. 131
Trimming a String 131
Case Conversion 132

Searching and Sorting. .. 133
MAT Functions and String Arrays. .. 134
Reordering an Array. 137
Searching for Strings 138

Number-Base Conversion 140
Introduction to Lexical Order. 141

Why Lexical Order? 141
How it Works. 141
The ASCII Character Set .. 142
The Extended Character Set 145

Predefined Lexical Order .. 147

v

Boolean Arrays 100
Reordering Arrays. .. 101
Sorting Arrays 102
Matrices and Vectors 105
Solving Simultaneous Equations 110
Singular Matrices 112
The Determinant of a Matrix .. 113
Ill-Conditioned Matrices. .. 114
Using Arrays for Code Conversion. .. 118

Chapter 5: String Manipulation
Introduction. .. 121

String Storage. .. 122
String Arrays . 122

Evaluating Expressions Containing Strings. .. 123
Evaluation Hierarchy .. 123
String Concatenation .. 123
Relational Operations .. 123

Substrings. .. 124
Single-Subscript Substrings. .. 124 .
Double-Subscript Substrings. .. 125
Special Considerations. .. 125

String-Related Functions. .. 127
String Length 127
Substring Position .. 127
String-to-Numeric Conversion 128
Numeric-to-String Conversion 129
CRT Character Set. .. 130

String Functions 131
String Reverse .. 131
String Repeat. 131
Trimming a String 131
Case Conversion 132

Searching and Sorting. .. 133
MAT Functions and String Arrays. .. 134
Reordering an Array. 137
Searching for Strings 138

Number-Base Conversion 140
Introduction to Lexical Order. 141

Why Lexical Order? 141
How it Works. 141
The ASCII Character Set .. 142
The Extended Character Set 145

Predefined Lexical Order .. 147

v

vi

Lexical Tables. .. 148
Notation 148
ASCII Lexical Order .. 148
FRENCH Lexical Order . 150
GERMAN Lexical Order .. 152
SPANISH Lexical Order 154
SWEDISH Lexical Order 156
User-defined LEXICAL ORDER . 158

User-Defined Lexical Orders 160
Sequence Numbers 161
Mode Entries 161
Bits, Bytes, and Mode Types .. 162

Chapter 6: User-Defined Functions and Subprograms
Introduction .. 167
Some Startup Details 168

Location . 168
Naming 168
For Example 168
The Difference Between a Function and a Subprogram 169
REAL Precision Functions and String Functions. 170

Calling and Executing a Subprogram 171
Communication. .. 172
Context Switching 178
live Keyboard 180
Speed Considerations. .. 180

Using Subprogram libraries. 182
Loading Subprograms One at a Time . 182
Loading Several Subprograms at Once 182
Loading Subprograms Prior to Execution .. 182
Deleting Subprograms Programmatically .. 183
Editing Subprograms 184
SUBEND and FNEND .. 185
Recursion. .. 186

Top-Down Design 187
The Problem 187
A Data Structure. .. 187

Chapter 7: Data Storage and Retrieval
Storing Data in Programs .. 195

Storing Data in Variables. 196
Data Input by the User .. 196
Using DATA and READ Statements . 196

Mass Storage Tutorial 200
What is Mass Storage? .. 200
The Structure of Model 226/236 Discs 200
The Structure of Data Files . 205

vi

Lexical Tables. .. 148
Notation 148
ASCII Lexical Order .. 148
FRENCH Lexical Order . 150
GERMAN Lexical Order .. 152
SPANISH Lexical Order 154
SWEDISH Lexical Order 156
User-defined LEXICAL ORDER . 158

User-Defined Lexical Orders 160
Sequence Numbers 161
Mode Entries 161
Bits, Bytes, and Mode Types .. 162

Chapter 6: User-Defined Functions and Subprograms
Introduction .. 167
Some Startup Details 168

Location . 168
Naming 168
For Example 168
The Difference Between a Function and a Subprogram 169
REAL Precision Functions and String Functions. 170

Calling and Executing a Subprogram 171
Communication. .. 172
Context Switching 178
live Keyboard 180
Speed Considerations. .. 180

Using Subprogram libraries. 182
Loading Subprograms One at a Time . 182
Loading Several Subprograms at Once 182
Loading Subprograms Prior to Execution .. 182
Deleting Subprograms Programmatically .. 183
Editing Subprograms 184
SUBEND and FNEND .. 185
Recursion. .. 186

Top-Down Design 187
The Problem 187
A Data Structure. .. 187

Chapter 7: Data Storage and Retrieval
Storing Data in Programs .. 195

Storing Data in Variables. 196
Data Input by the User .. 196
Using DATA and READ Statements . 196

Mass Storage Tutorial 200
What is Mass Storage? .. 200
The Structure of Model 226/236 Discs 200
The Structure of Data Files . 205

Mass Storage Techniques 210
Initializing a Disc .. 210
Disc Labels. .. 211
Overview of Mass Storage Access 212
Media Specifiers .. 213
Non-Disc Mass Storage 216
Accessing Files 218

Reading and Writing BOAT Files 221
System Sector. .. 221
Defining Records. .. 221
Choosing A Record Length. 222
EOF Pointers. .. 224
Writing Data. .. 225
Serial OUTPUT. 225
Random OUTPUT .. 230
Reading Data From BOAT Files . 233
Single-Byte Access 235

General Mass Storage Operations .. 236
Trapping EOF and EOR Conditions 236
Protecting Files .. 238
Copying Files and Volumes 240
Purging Files .. 241
Accessing Directories .. 242
Extended Access of Directories .. 243

Chapter 8: Using a Printer
Introduction . 249

Fundamentals .. 249
Device Selectors .. 250

Primary Addresses .. 250
Using Device Selectors .. 252
Using the External Printer .. 253
Control Characters .. 253

Escape-Code Sequences 254
Formatted Printing. .. 255

Using Images. 256
Special Considerations .. 260

Chapter 9: The Real-Time Clock
Introduction 261

Language Option Required 261
Clock Range and Accuracy 261
Initial Clock Value 261
Reading the Clock . 262

Determining Date and Time of Day .. 262
Setting the Clock. 263

Clock Time Format. 263
Setting the Time .. 265

vii

Mass Storage Techniques 210
Initializing a Disc .. 210
Disc Labels. .. 211
Overview of Mass Storage Access 212
Media Specifiers .. 213
Non-Disc Mass Storage 216
Accessing Files 218

Reading and Writing BOAT Files 221
System Sector. .. 221
Defining Records. .. 221
Choosing A Record Length. 222
EOF Pointers. .. 224
Writing Data. .. 225
Serial OUTPUT. 225
Random OUTPUT .. 230
Reading Data From BOAT Files . 233
Single-Byte Access 235

General Mass Storage Operations .. 236
Trapping EOF and EOR Conditions 236
Protecting Files .. 238
Copying Files and Volumes 240
Purging Files .. 241
Accessing Directories .. 242
Extended Access of Directories .. 243

Chapter 8: Using a Printer
Introduction . 249

Fundamentals .. 249
Device Selectors .. 250

Primary Addresses .. 250
Using Device Selectors .. 252
Using the External Printer .. 253
Control Characters .. 253

Escape-Code Sequences 254
Formatted Printing. .. 255

Using Images. 256
Special Considerations .. 260

Chapter 9: The Real-Time Clock
Introduction 261

Language Option Required 261
Clock Range and Accuracy 261
Initial Clock Value 261
Reading the Clock . 262

Determining Date and Time of Day .. 262
Setting the Clock. 263

Clock Time Format. 263
Setting the Time .. 265

vii

viii

Setting the Date 267
Using the Routines .. 269

Day of the Week .. 270
Days Between Two Dates 270
Interval Timing 271

Branching on Clock Events . 272
Cycles and Delays 272
Time of Day. .. 273
Priority Restrictions .. 273
Branching Restrictions 275

Chapter 10: Communicating with the Operator
Introduction .. 277
Displaying and Prompting . 278

Clearing the CRT . 278
Determining Screen Width 281
An Expanded Softkey Menu 282
Moving a Pointer. .. 286

Accepting Keyboard Input . 289
Get Past the First Trap 289
Entering a Single Item .. 290
LINPUT with Multiple Fields .. 293
Yes and No Questions .. 294
An Example Custom Keyboard Interface . 295

Chapter 11: Error Handling
Introduction .. 297
Anticipating Operator Errors. 298

Boundary Conditions. 298
REAL Numbers and Comparisons .. 299

Error Trapping 300
ON/OFF ERROR. 300
ERRN/ERRLlERRM$.. 300

Chapter 12: Program Debugging
Introduction , 305
Using Live Keyboard. .. 306
Stepping . 308
Tracing . 309

TRACE ALL .. 309
PRINT ALL IS 311
TRACE PAUSE 311
TRACE OFF 311
The CLR I/O Key 312

/

viii

Setting the Date 267
Using the Routines .. 269

Day of the Week .. 270
Days Between Two Dates 270
Interval Timing 271

Branching on Clock Events . 272
Cycles and Delays 272
Time of Day. .. 273
Priority Restrictions .. 273
Branching Restrictions 275

Chapter 10: Communicating with the Operator
Introduction .. 277
Displaying and Prompting . 278

Clearing the CRT . 278
Determining Screen Width 281
An Expanded Softkey Menu 282
Moving a Pointer. .. 286

Accepting Keyboard Input . 289
Get Past the First Trap 289
Entering a Single Item .. 290
LINPUT with Multiple Fields .. 293
Yes and No Questions .. 294
An Example Custom Keyboard Interface . 295

Chapter 11: Error Handling
Introduction .. 297
Anticipating Operator Errors. 298

Boundary Conditions. 298
REAL Numbers and Comparisons .. 299

Error Trapping 300
ON/OFF ERROR. 300
ERRN/ERRLlERRM$.. 300

Chapter 12: Program Debugging
Introduction , 305
Using Live Keyboard. .. 306
Stepping . 308
Tracing . 309

TRACE ALL .. 309
PRINT ALL IS 311
TRACE PAUSE 311
TRACE OFF 311
The CLR I/O Key 312

/

Chapter 13: Efficient Use of the Computer's Resources
Introduction 313
Data Storage 313

Data Storage in ReadlWrite Memory 313
Data Storage on Mass Memory Devices 314
Comments and Multicharacter Identifiers 315
Variable and Array Initialization 315

Mass Memory Performance 316
Program Files 316
Data Files. 316

Benchmarking Techniques. .. 317
INTEGER Variables 319

Minimum and Maximum Values 319
Mathematical Operations 319
Loops 320
Array Indexing. 321

REAL Numbers . 322
Minimum and Maximum Values .. 322
Type Conversions .. 322
Constants . 323
Polynomial Evaluations . 323
Logical Comparisons for Equality on REAL Numbers 324

Saving Time. .. 325
Multiply vs. Add . 325
Exponentiation vs. Multiply and SQR. .. 325
Array Fetches vs. Simple Variables. .. 325
Concatenation vs. Substring Placement. 325

HP 98635 Floating-Point Math Card . 327
MC68881 Floating-Point Math Co-Processor 327
Enabling and Disabling Floating-Point Math Hardware .. 327
MC68020 Internal Cache Memory. 328
Saving Memory .. 329

Chapter 14: Using SRM
System Concepts .. 331

Shared Resource Support of the BASIC Language 331
SRM's Hierarchical Directory Structure .. 332
How the SRM System Stores Remote Directories and Files . 334
Shared Access to Remote Directories and Files 334
How the SRM System Manages Shared Peripheral Use .. 335

Using Your BASIC Workstation on SRM . 336
Booting From the SRM .. 336
Accessing the Shared Mass Storage Device . 338
Creating Directories and Files .. 339
Copying Files 342
Using a Shared Printer or Plotter .. 344
Protecting Files and Directories. 346
Purging Remote Files and Directories. 349

ix

Chapter 13: Efficient Use of the Computer's Resources
Introduction 313
Data Storage 313

Data Storage in ReadlWrite Memory 313
Data Storage on Mass Memory Devices 314
Comments and Multicharacter Identifiers 315
Variable and Array Initialization 315

Mass Memory Performance 316
Program Files 316
Data Files. 316

Benchmarking Techniques. .. 317
INTEGER Variables 319

Minimum and Maximum Values 319
Mathematical Operations 319
Loops 320
Array Indexing. 321

REAL Numbers . 322
Minimum and Maximum Values .. 322
Type Conversions .. 322
Constants . 323
Polynomial Evaluations . 323
Logical Comparisons for Equality on REAL Numbers 324

Saving Time. .. 325
Multiply vs. Add . 325
Exponentiation vs. Multiply and SQR. .. 325
Array Fetches vs. Simple Variables. .. 325
Concatenation vs. Substring Placement. 325

HP 98635 Floating-Point Math Card . 327
MC68881 Floating-Point Math Co-Processor 327
Enabling and Disabling Floating-Point Math Hardware .. 327
MC68020 Internal Cache Memory. 328
Saving Memory .. 329

Chapter 14: Using SRM
System Concepts .. 331

Shared Resource Support of the BASIC Language 331
SRM's Hierarchical Directory Structure .. 332
How the SRM System Stores Remote Directories and Files . 334
Shared Access to Remote Directories and Files 334
How the SRM System Manages Shared Peripheral Use .. 335

Using Your BASIC Workstation on SRM . 336
Booting From the SRM .. 336
Accessing the Shared Mass Storage Device . 338
Creating Directories and Files .. 339
Copying Files 342
Using a Shared Printer or Plotter .. 344
Protecting Files and Directories. 346
Purging Remote Files and Directories. 349

ix

x

Accessing Files Created on Non-Series 200 SRM Workstations. 349
Locking and Unlocking Remote Files. 350
Returning to Local Mass Storage . 350

Modifying Existing Programs to Access Shared Resources .. 351
Files Specifiers. .. 351
Mass Storage Unit Specification .. 352
Allowing for Directory Paths . 352
Passwords and Protect Codes. .. 353

Chapter 15: Porting To BASIC 3.0
Configuring BASIC .. 355

Helpful Documentation .. 356
Missing Language Extensions BIN Files .. 356
Missing Driver BIN Files .. 357

Statement Changes .. 357
CSUBs 357
PHYREC 358
Knob 359

The KNOBX Function . 359
Keyboards with Built-in Knob 360
HP-HIL Keyboards with Mouse " 361
Programming for Both Versions and Keyboards .. 361
KNB2_0 362

Graphics. .. 363
Default Plotter . 363
Implicit GCLEAR . 363
Input Device Viewport . 363
Graphics Tablet DIGITIZE 363
The VIEWPORT Statement. .. 364
The PIVOT Statement 367

Display Functions 371
Pre run On LOADSUB .. 372
Special Case of I/O Transfers 372

Chapter 16: Porting to Series 300
Introduction. .. 373

Methods of Porting. 373
Chapter Organization 374

Description of Series 300 Hardware 374
Displays .. 375
Processor Boards 376
Battery-Backed Real-Time Clock 376
Built-In Interfaces 376
ID PROM 379

Just Loading and Running Programs .. 380
Should Problems Arise .. 380

x

Accessing Files Created on Non-Series 200 SRM Workstations. 349
Locking and Unlocking Remote Files. 350
Returning to Local Mass Storage . 350

Modifying Existing Programs to Access Shared Resources .. 351
Files Specifiers. .. 351
Mass Storage Unit Specification .. 352
Allowing for Directory Paths . 352
Passwords and Protect Codes. .. 353

Chapter 15: Porting To BASIC 3.0
Configuring BASIC .. 355

Helpful Documentation .. 356
Missing Language Extensions BIN Files .. 356
Missing Driver BIN Files .. 357

Statement Changes .. 357
CSUBs 357
PHYREC 358
Knob 359

The KNOBX Function . 359
Keyboards with Built-in Knob 360
HP-HIL Keyboards with Mouse " 361
Programming for Both Versions and Keyboards .. 361
KNB2_0 362

Graphics. .. 363
Default Plotter . 363
Implicit GCLEAR . 363
Input Device Viewport . 363
Graphics Tablet DIGITIZE 363
The VIEWPORT Statement. .. 364
The PIVOT Statement 367

Display Functions 371
Pre run On LOADSUB .. 372
Special Case of I/O Transfers 372

Chapter 16: Porting to Series 300
Introduction. .. 373

Methods of Porting. 373
Chapter Organization 374

Description of Series 300 Hardware 374
Displays .. 375
Processor Boards 376
Battery-Backed Real-Time Clock 376
Built-In Interfaces 376
ID PROM 379

Just Loading and Running Programs .. 380
Should Problems Arise .. 380

Using a Configuration Program 381
HP 98644 Serial Interface Configuration 381
HP 98203 Keyboard Compatibility Mode . 382
Configuring Separate Alpha and Graphics Planes 391

Using the Display Compatibility Interface. 392
Hardware Description 393
Steps in Using this Card Set .. 395
Switching Back to the Series 300 Display . 396
Automatic Display Selection at System Boot. 396
Removing Display Drivers . 396
If Your Screen is Blank. 397

Modifying the Source Program .. 398
Incompatible CSUBs . 398
HP 98203 Specific Key Codes . 398
Additional Porting Considerations. 398

Appendix
Error Messages 401
Second Byte of Non-ASCII Key Codes 411
US ASCII Character Codes 412

Subject Index

xi

Using a Configuration Program 381
HP 98644 Serial Interface Configuration 381
HP 98203 Keyboard Compatibility Mode . 382
Configuring Separate Alpha and Graphics Planes 391

Using the Display Compatibility Interface. 392
Hardware Description 393
Steps in Using this Card Set .. 395
Switching Back to the Series 300 Display . 396
Automatic Display Selection at System Boot. 396
Removing Display Drivers . 396
If Your Screen is Blank. 397

Modifying the Source Program .. 398
Incompatible CSUBs . 398
HP 98203 Specific Key Codes . 398
Additional Porting Considerations. 398

Appendix
Error Messages 401
Second Byte of Non-ASCII Key Codes 411
US ASCII Character Codes 412

Subject Index

xi

xii xii

Manual Organization
Chapter

1

Welcome
This manual is intended to introduce you to the Series 200/300 BASIC programming language

and to provide some helpful hints on getting the most utility from it. Although this manual assumes ·
that you have had some previous programming experience, you need not have a high skill level,
nor does your previous experience need to be in BASIC. If you have never programmed a
computer before, it will probably be more comfortable for you to start with one of the many
beginner's text books available from various publishing companies. However, some beginners may
find that they are able to start in this manual by concentrating on the fundamentals presented in the
first few chapters. If you are a programming expert or are already familiar with the BASIC language
of other HP desktop computers, you may start faster by going directly to the BASIC Language
Reference manual and checking the keywords you normally use. You can always come back to this
manual when you have extra time to explore the computer's capabilities, or if you bump into an
unfamiliar concept.

Durability is a built-in feature of this easy-to-operate computer, so don't be afraid to test it. After
reading each section and trying the examples shown, try your own examples. Experiment. You
cannot damage the computer by pressing the wrong keys. The worst that can happen is an error
message will appear. These messages help you learn its language and needs by communicating
with you. All error codes are listed at the back of this manual.

1

Manual Organization
Chapter

1

Welcome
This manual is intended to introduce you to the Series 200/300 BASIC programming language

and to provide some helpful hints on getting the most utility from it. Although this manual assumes ·
that you have had some previous programming experience, you need not have a high skill level,
nor does your previous experience need to be in BASIC. If you have never programmed a
computer before, it will probably be more comfortable for you to start with one of the many
beginner's text books available from various publishing companies. However, some beginners may
find that they are able to start in this manual by concentrating on the fundamentals presented in the
first few chapters. If you are a programming expert or are already familiar with the BASIC language
of other HP desktop computers, you may start faster by going directly to the BASIC Language
Reference manual and checking the keywords you normally use. You can always come back to this
manual when you have extra time to explore the computer's capabilities, or if you bump into an
unfamiliar concept.

Durability is a built-in feature of this easy-to-operate computer, so don't be afraid to test it. After
reading each section and trying the examples shown, try your own examples. Experiment. You
cannot damage the computer by pressing the wrong keys. The worst that can happen is an error
message will appear. These messages help you learn its language and needs by communicating
with you. All error codes are listed at the back of this manual.

1

2 Manual Organization

What's In This Manual?
No matter what your skill level, it is helpful to understand the contents and organization of this
manual. First of all, there are some things that it is not. Because it is organized by topics and
concepts, it is not a good place to find an individual keyword in a hurry. Keywords can be found
using the index, but even so, they are often imbedded in discussions, contained in more than one
place, or only partially explained. Also, this is not a good place to find complete syntactical details.
Program statements are often presented only in the form that applies to the specific concept being
discussed, even though there may be other forms of the statement that accomplish different
purposes. If you want to qUickly find the complete formal syntax of a keyword, use the BASIC
Language Reference. It is specifically intended for that purpose.

This manual contains explanations and programming hints organized topically. A program per­
forms various "sub-tasks" as it completes its overall job. Many of these tasks can, or should be,
viewed separately to be understood more easily and used more effectively. For example, perhaps
you have experience in another programming language. You know exactly what a " loop" does,
but you didn't find the statement you were looking for in the BASIC Language Reference. In the
chapter on "Program Flow", there is a section called "Repetition" which explains the kinds of loops
available and all the statements needed to create them. The following is an overview of the chapters
in this manual.

Chapter 1: Manual Organization

Chapter 2: Entering, Running, and Storing Programs

This chapter explains the mechanics of the programming process. It discusses ways to type in a
program, modify it, run it, print it, make it more readable, and save it on a disc so you can
continue improving it tomorrow.

Chapter 3: Program Structure and Flow

This chapter tells how the computer finds its way around your program and offers ideas on
getting it to follow the proper path efficiently.

Chapter 4: Numeric Computation

This chapter covers mathematical operations and the use of numeric variables. It includes
discussions on types of variables, expression evaluation, arrays, and methods of managing
data memory.

Chapter 5: String Manipulation

Although string data can be used for any purpose the programmer desires, it is most often
used for the processing of characters, words, and text. Since words are more pleasant than
numbers to humans, skillful use of strings can make the input and output of programs much
more natural to those using the programs. This chapter explains the programming tools
available for processing string data.

Chapter 6: User-Defined Functions and Subprograms

An outstanding feature of this language is its ability to change program contexts and the speed
with which it can do so. Alternate contexts (or environments) are available as user-defined
functions or subprograms. These are discussed in this chapter.

2 Manual Organization

What's In This Manual?
No matter what your skill level, it is helpful to understand the contents and organization of this
manual. First of all, there are some things that it is not. Because it is organized by topics and
concepts, it is not a good place to find an individual keyword in a hurry. Keywords can be found
using the index, but even so, they are often imbedded in discussions, contained in more than one
place, or only partially explained. Also, this is not a good place to find complete syntactical details.
Program statements are often presented only in the form that applies to the specific concept being
discussed, even though there may be other forms of the statement that accomplish different
purposes. If you want to qUickly find the complete formal syntax of a keyword, use the BASIC
Language Reference. It is specifically intended for that purpose.

This manual contains explanations and programming hints organized topically. A program per­
forms various "sub-tasks" as it completes its overall job. Many of these tasks can, or should be,
viewed separately to be understood more easily and used more effectively. For example, perhaps
you have experience in another programming language. You know exactly what a " loop" does,
but you didn't find the statement you were looking for in the BASIC Language Reference. In the
chapter on "Program Flow", there is a section called "Repetition" which explains the kinds of loops
available and all the statements needed to create them. The following is an overview of the chapters
in this manual.

Chapter 1: Manual Organization

Chapter 2: Entering, Running, and Storing Programs

This chapter explains the mechanics of the programming process. It discusses ways to type in a
program, modify it, run it, print it, make it more readable, and save it on a disc so you can
continue improving it tomorrow.

Chapter 3: Program Structure and Flow

This chapter tells how the computer finds its way around your program and offers ideas on
getting it to follow the proper path efficiently.

Chapter 4: Numeric Computation

This chapter covers mathematical operations and the use of numeric variables. It includes
discussions on types of variables, expression evaluation, arrays, and methods of managing
data memory.

Chapter 5: String Manipulation

Although string data can be used for any purpose the programmer desires, it is most often
used for the processing of characters, words, and text. Since words are more pleasant than
numbers to humans, skillful use of strings can make the input and output of programs much
more natural to those using the programs. This chapter explains the programming tools
available for processing string data.

Chapter 6: User-Defined Functions and Subprograms

An outstanding feature of this language is its ability to change program contexts and the speed
with which it can do so. Alternate contexts (or environments) are available as user-defined
functions or subprograms. These are discussed in this chapter.

Manual Organization 3

Chapter 7: Data Storage and Retrieval

This chapter shows many of the alternatives available for storing the data that is intended as
program input or created as program output. Topics range from convenient ways to define
constants to a discussion of the computer's unified mass storage system.

Chapter 8: Using a Printer

This chapter tells how to connect and use an external printer. Also covered are the formatting
techniques (useful on both printer and CRT) to create organized, highly-readable printouts.

Chapter 9: Using the Real-Time Clock

An accurate real-time clock is available with timing resolution to the hundredth of a second
and a range of years. Its capabilities are covered in this chapter.

Chapter 10: Communicating with the Operator

It is very fustrating for operator and programmer alike when the operator cannot figure out
what is expected next, or the program crashes every time a wrong key is pressed. The chapter
presents some programming techniques that help ease the interaction between the computer
and a human operator.

Chapter 11: Error Handling

This chapter discusses techniques for intercepting (or trapping) errors that might occur while a
program is running. Many errors can be dealt with easily by a programmer. Error trapping
keeps the program running and provides valuable assistance to the computer operator.

Chapter 12: Program Debugging

We all wish that every program would run perfectly the first time and every time. Unfortunate­
ly, there is little evidence in real life to support that fantasy. The next best thing is to get the
computer to do most of the debugging work for you. This chapter explains the powerful
debugging features available on the computer.

Chapter 13: Efficient Use of the Computer's Resources

Which takes longer, calculating a square root or raising a number to the .5 power? Does a
program run faster if the variable names are shorter? If you have a time-critical or memory­
critical application, you will be interested in these answers and others proVided in this chapter.

Chapter 14: Using SRM

This chapter describes using the Shared Resource Management (SRM) system, which allows
many workstation computers to share resources such as hard discs, printers, and plotters

Chapter 15: Porting to 3.0

This chapter helps the user who is porting programs from previous versions of BASIC to the
3.0 system. It discusses changes and enhancements.

Manual Organization 3

Chapter 7: Data Storage and Retrieval

This chapter shows many of the alternatives available for storing the data that is intended as
program input or created as program output. Topics range from convenient ways to define
constants to a discussion of the computer's unified mass storage system.

Chapter 8: Using a Printer

This chapter tells how to connect and use an external printer. Also covered are the formatting
techniques (useful on both printer and CRT) to create organized, highly-readable printouts.

Chapter 9: Using the Real-Time Clock

An accurate real-time clock is available with timing resolution to the hundredth of a second
and a range of years. Its capabilities are covered in this chapter.

Chapter 10: Communicating with the Operator

It is very fustrating for operator and programmer alike when the operator cannot figure out
what is expected next, or the program crashes every time a wrong key is pressed. The chapter
presents some programming techniques that help ease the interaction between the computer
and a human operator.

Chapter 11: Error Handling

This chapter discusses techniques for intercepting (or trapping) errors that might occur while a
program is running. Many errors can be dealt with easily by a programmer. Error trapping
keeps the program running and provides valuable assistance to the computer operator.

Chapter 12: Program Debugging

We all wish that every program would run perfectly the first time and every time. Unfortunate­
ly, there is little evidence in real life to support that fantasy. The next best thing is to get the
computer to do most of the debugging work for you. This chapter explains the powerful
debugging features available on the computer.

Chapter 13: Efficient Use of the Computer's Resources

Which takes longer, calculating a square root or raising a number to the .5 power? Does a
program run faster if the variable names are shorter? If you have a time-critical or memory­
critical application, you will be interested in these answers and others proVided in this chapter.

Chapter 14: Using SRM

This chapter describes using the Shared Resource Management (SRM) system, which allows
many workstation computers to share resources such as hard discs, printers, and plotters

Chapter 15: Porting to 3.0

This chapter helps the user who is porting programs from previous versions of BASIC to the
3.0 system. It discusses changes and enhancements.

4 Manual Organization

Chapter 16: Porting to Series 300

This chapter describes Series 300 computer hardware from the standpoint of how it is different
from Series 200 hardware. Then, it presents the methods of porting existing Series 200
software to Series 300 computers.

What's Not in this Manual
This is a manual of programming techniques, helpful hints, and explanations of capabilities. It is not
a rigorous derivation of the BASIC language. Any statements appropriate to the topic being
discussed are included in each chapter, whether they have been previously introduced or not.
Since most users will not read this manual from cover to cover anyway, the approach chosen
should not present any significant problems. In those cases when you have difficulty getting the
meaning of certain items from context, consult the Index to find additional information.

4 Manual Organization

Chapter 16: Porting to Series 300

This chapter describes Series 300 computer hardware from the standpoint of how it is different
from Series 200 hardware. Then, it presents the methods of porting existing Series 200
software to Series 300 computers.

What's Not in this Manual
This is a manual of programming techniques, helpful hints, and explanations of capabilities. It is not
a rigorous derivation of the BASIC language. Any statements appropriate to the topic being
discussed are included in each chapter, whether they have been previously introduced or not.
Since most users will not read this manual from cover to cover anyway, the approach chosen
should not present any significant problems. In those cases when you have difficulty getting the
meaning of certain items from context, consult the Index to find additional information.

Entering, Running, and
Storing Programs

Introduction

Chapter

2

One of the first things you need to know when learning to use a new system is how to get a program
into the computer. If your background is punched cards and batch jobs, you will be delighted to
discover how easy program development is on this BASIC system. If you have experience on other
HP desktop computer systems, you should find the computer's programming procedures familiar,
with some improvements. Whatever your starting point, it makes sense to learn the mechanics of
program writing before you become absorbed in a study of all the available program statements.

Some BASIC Vocabulary

What Is a Program?
A main program is a list of program lines, with an END statement on the last line. A program line
contains at least a line number followed by a statemenP. A statement is a keyword (sometimes
optional) followed by any parameters, lists, specifiers, and secondary keywords that are
allowed with that keyword and fit in the program line. The maximum length of a program line is
256 characters. When entering programs from the keyboard, the maximum length is reduced to
two CRT lines. A keyword is a group of uppercase characters that is understood by the
computer's language system to represent some predefined action.

The computer also allows subprograms to be appended to a main program. Subprograms are
also lists of program lines, but they have special requirements for their first and last lines.
Subprograms are a useful programming tool, but the computer is capable of running just fine
without them. Therefore, most of the concepts in this manual are presented using examples in a
main program context. Subprograms are covered in depth in "User-Defined Functions and
Subprograms" Chapter.

1 A line number may be optionally followed by a line label. A line label is a name that is placed after the line number and is terminated by a
colon. Chapter 3 tells more about labels.

5

Entering, Running, and
Storing Programs

Introduction

Chapter

2

One of the first things you need to know when learning to use a new system is how to get a program
into the computer. If your background is punched cards and batch jobs, you will be delighted to
discover how easy program development is on this BASIC system. If you have experience on other
HP desktop computer systems, you should find the computer's programming procedures familiar,
with some improvements. Whatever your starting point, it makes sense to learn the mechanics of
program writing before you become absorbed in a study of all the available program statements.

Some BASIC Vocabulary

What Is a Program?
A main program is a list of program lines, with an END statement on the last line. A program line
contains at least a line number followed by a statemenP. A statement is a keyword (sometimes
optional) followed by any parameters, lists, specifiers, and secondary keywords that are
allowed with that keyword and fit in the program line. The maximum length of a program line is
256 characters. When entering programs from the keyboard, the maximum length is reduced to
two CRT lines. A keyword is a group of uppercase characters that is understood by the
computer's language system to represent some predefined action.

The computer also allows subprograms to be appended to a main program. Subprograms are
also lists of program lines, but they have special requirements for their first and last lines.
Subprograms are a useful programming tool, but the computer is capable of running just fine
without them. Therefore, most of the concepts in this manual are presented using examples in a
main program context. Subprograms are covered in depth in "User-Defined Functions and
Subprograms" Chapter.

1 A line number may be optionally followed by a line label. A line label is a name that is placed after the line number and is terminated by a
colon. Chapter 3 tells more about labels.

5

6 Entering, Running, and Storing Programs

What Is a Command?
This manual makes frequent reference to "statements" and "commands". As previously men­
tioned, a statement is a keyword followed by any other elements that are appropriate for that
keyword. If a statement is placed after a line number and entered, it becomes a program line. If a
statement is typed without a line number and executed, it is called a command. There are some
commands that cannot be stored as program lines, such as those using DEL and SCRATCH. There
are also statements that can't be executed as commands, such as those using DIM and RETURN.
However, many statements are both programmable and executable, such as those using PRINT
and CALL.

When a keyword is described, the most descriptive term (statement, command, or function) is used
and any restrictions are noted in the text. Since these terms are not necessarily mutually exclusive,
read more than just the one term to determine the legal uses of a keyword. For example, the use of
the term "statement" does not imply that a certain keyword is not keyboard executable; but the
phrase "cannot be executed as a command" clearly indicates that a keyword can only be used in a
program line.

Enter or Execute
Entering a program line means that you type a line number followed by a valid statement and then
press one of these keys: (RETURN), (ENTER) , (EXECUTE) or (EXEC). The line is stored in memory as
part of a program. The line performs no function until you run the program.

Executing a command means that you type a statement (no line number) and press one of the keys
listed above. The command is executed immediately. It is not stored in a program.

Depending on the keyboard, you have at least one of the keys listed. In most cases it does not
matter which key you use. (In some Edit modes such as FIND there is a difference between (ENTER)
and (EXECUTE).)

(KEYS)

Throughout the BASIC manuals you will see a word, letter or symbol enclosed in a box. This
indicates an actual key on the keyboard, or a function key shown on the menu on the display.

There are several different keyboards for the Series 200 computers. (Series 300 computers all use
the HIL keyboard.) Each keyboard has slightly different key labels. (The BASIC User's Guide
describes all keyboards in detail.) Within this manual the keys are listed once the first time they are
used in a topic. Thereafter, only one of the keys is used. If you have any confusion over which key
to use, refer to the BASIC User's Guide which includes a table of keys.

6 Entering, Running, and Storing Programs

What Is a Command?
This manual makes frequent reference to "statements" and "commands". As previously men­
tioned, a statement is a keyword followed by any other elements that are appropriate for that
keyword. If a statement is placed after a line number and entered, it becomes a program line. If a
statement is typed without a line number and executed, it is called a command. There are some
commands that cannot be stored as program lines, such as those using DEL and SCRATCH. There
are also statements that can't be executed as commands, such as those using DIM and RETURN.
However, many statements are both programmable and executable, such as those using PRINT
and CALL.

When a keyword is described, the most descriptive term (statement, command, or function) is used
and any restrictions are noted in the text. Since these terms are not necessarily mutually exclusive,
read more than just the one term to determine the legal uses of a keyword. For example, the use of
the term "statement" does not imply that a certain keyword is not keyboard executable; but the
phrase "cannot be executed as a command" clearly indicates that a keyword can only be used in a
program line.

Enter or Execute
Entering a program line means that you type a line number followed by a valid statement and then
press one of these keys: (RETURN), (ENTER) , (EXECUTE) or (EXEC). The line is stored in memory as
part of a program. The line performs no function until you run the program.

Executing a command means that you type a statement (no line number) and press one of the keys
listed above. The command is executed immediately. It is not stored in a program.

Depending on the keyboard, you have at least one of the keys listed. In most cases it does not
matter which key you use. (In some Edit modes such as FIND there is a difference between (ENTER)
and (EXECUTE).)

(KEYS)

Throughout the BASIC manuals you will see a word, letter or symbol enclosed in a box. This
indicates an actual key on the keyboard, or a function key shown on the menu on the display.

There are several different keyboards for the Series 200 computers. (Series 300 computers all use
the HIL keyboard.) Each keyboard has slightly different key labels. (The BASIC User's Guide
describes all keyboards in detail.) Within this manual the keys are listed once the first time they are
used in a topic. Thereafter, only one of the keys is used. If you have any confusion over which key
to use, refer to the BASIC User's Guide which includes a table of keys.

Entering, Running, and Storing Programs 7

Using EDIT Mode
It is possible to enter a program by typing entire program lines (line number and statement) on the
normal input line of the CRT and pressing the (ENTER) or (RETURN) key. There are some disadvan­
tages to this method. First, it forces you to type in the line number (which means you have to
remember what line number needs to be supplied). Second, the program lines disappear after they
are entered, so it is difficult to keep track of where you are in the program and what the lines above
are doing. Third, there is no way to review the program except the LIST command. Listing to a
printer gives a readable copy of the program, but is slow and paper-consuming during program
development. A program listed to the CRT goes by so fast that you won't be able to read anything
but the end. Listing program portions to the CRT requires you to remember the line numbers of
every segment you want to see. The solution to all these problems is the EDIT mode.

Getting Into ED IT Mode
To get into EDIT mode, either press the QQj[) key or type the word ED IT, then press (RETURN)
or (EXECUTE). As a result, the format of the CRT display is transformed as shown in the following
diagram.

} P",;o", Pmgcam Uoe, (;, oay)

} Current Program Line (2 CRT lines)

} System Message Line (if needed)

} Follow;og Pmgcam Uoe, (If oay)

} Soft key Labels

In this mode, you can view several lines before and after the line you are editing. The system
supplies the line number for the current line and program portions can be viewed by simple
scrolling.

The EDIT command allows two parameters. The first is a line identifier and the second is the
increment between line numbers. For example:

EDIT 140t20

This command tells the computer to place the program on the CRT so that line 140 is in the
current-line position. Also, any lines that are added to the program get a line number 20 greater
than the previous line. .

Entering, Running, and Storing Programs 7

Using EDIT Mode
It is possible to enter a program by typing entire program lines (line number and statement) on the
normal input line of the CRT and pressing the (ENTER) or (RETURN) key. There are some disadvan­
tages to this method. First, it forces you to type in the line number (which means you have to
remember what line number needs to be supplied). Second, the program lines disappear after they
are entered, so it is difficult to keep track of where you are in the program and what the lines above
are doing. Third, there is no way to review the program except the LIST command. Listing to a
printer gives a readable copy of the program, but is slow and paper-consuming during program
development. A program listed to the CRT goes by so fast that you won't be able to read anything
but the end. Listing program portions to the CRT requires you to remember the line numbers of
every segment you want to see. The solution to all these problems is the EDIT mode.

Getting Into ED IT Mode
To get into EDIT mode, either press the QQj[) key or type the word ED IT, then press (RETURN)
or (EXECUTE). As a result, the format of the CRT display is transformed as shown in the following
diagram.

} P",;o", Pmgcam Uoe, (;, oay)

} Current Program Line (2 CRT lines)

} System Message Line (if needed)

} Follow;og Pmgcam Uoe, (If oay)

} Soft key Labels

In this mode, you can view several lines before and after the line you are editing. The system
supplies the line number for the current line and program portions can be viewed by simple
scrolling.

The EDIT command allows two parameters. The first is a line identifier and the second is the
increment between line numbers. For example:

EDIT 140t20

This command tells the computer to place the program on the CRT so that line 140 is in the
current-line position. Also, any lines that are added to the program get a line number 20 greater
than the previous line. .

8 Entering, Running, and Storing Programs

If the increment parameter is not specified, the computer assumes a value of 10. For example:

EDIT 1000

This command tells the computer to place the program on the CRT so that line 1000 is in the
current-line position, and added lines get a line number 10 greater than the previous line.

When the line identifier is not supplied, the computer has some interesting ways of assuming a line
number. If this is the first EDIT after a power-up, SCRATCH, SCRATCH A, SCRATCH BIN or
LOAD, the assumed line number is 10. If EDIT is performed immediately after a program has
paused because of an error, the number of the line that generated the error is assumed. At any
other time, EDIT assumes the number of the line that was being edited the last time you were in
EDIT mode.

The line identifier also can be a line label. This makes it very easy to find a specific program segment
without needing to remember its line number. For example, assume that you want to edit a sorting
routine that begins with a line labeled "Go_sort" . Simply execute:

EDIT GO_SORT

The line labeled "Go_sort" is placed in the current-line position and the next several lines of the
routine are displayed below it.

The EDIT command is not programmable and cannot be used while a program is running.

Editing the Current Line
The BASIC User's Guide explains the keyboard and its use for typing and editing on the input line.
All of these normal editing features are available in EDIT mode, plus some additional actions
specific to programming. The extra EDIT mode features are explained in subsequent sections.

Entering Program Lines
Program lines are entered by typing them after the line number and pressing (ENTER) , (RETURN) or
(EXECUTE) . Before storing the line, the computer checks for syntax errors and converts letter case to
the required form for names and keywords.

Although the computer supplies a line number automatically, you are not forced to use that number
if you don't want to. To change the line number, simply back up the cursor and type in the line
number you want to use. This can be done to existing lines as a way of copying them to another
part of the program. When you change a line number, the program is moved on the CRT so that
the line just stored is one line above the current-line position. In other words, when you move a line
to a new location, the new location is displayed.

Here are some points to keep in mind when changing the line numbers supplied by the computer.
Changing the line number of an existing line causes a copy operation, not a move. The line still
exists in its original location. Existing lines are replaced by any line entered with their same line
number. Be careful that you don't accidentally replace a line because of a typing mistake in the line
number.

8 Entering, Running, and Storing Programs

If the increment parameter is not specified, the computer assumes a value of 10. For example:

EDIT 1000

This command tells the computer to place the program on the CRT so that line 1000 is in the
current-line position, and added lines get a line number 10 greater than the previous line.

When the line identifier is not supplied, the computer has some interesting ways of assuming a line
number. If this is the first EDIT after a power-up, SCRATCH, SCRATCH A, SCRATCH BIN or
LOAD, the assumed line number is 10. If EDIT is performed immediately after a program has
paused because of an error, the number of the line that generated the error is assumed. At any
other time, EDIT assumes the number of the line that was being edited the last time you were in
EDIT mode.

The line identifier also can be a line label. This makes it very easy to find a specific program segment
without needing to remember its line number. For example, assume that you want to edit a sorting
routine that begins with a line labeled "Go_sort" . Simply execute:

EDIT GO_SORT

The line labeled "Go_sort" is placed in the current-line position and the next several lines of the
routine are displayed below it.

The EDIT command is not programmable and cannot be used while a program is running.

Editing the Current Line
The BASIC User's Guide explains the keyboard and its use for typing and editing on the input line.
All of these normal editing features are available in EDIT mode, plus some additional actions
specific to programming. The extra EDIT mode features are explained in subsequent sections.

Entering Program Lines
Program lines are entered by typing them after the line number and pressing (ENTER) , (RETURN) or
(EXECUTE) . Before storing the line, the computer checks for syntax errors and converts letter case to
the required form for names and keywords.

Although the computer supplies a line number automatically, you are not forced to use that number
if you don't want to. To change the line number, simply back up the cursor and type in the line
number you want to use. This can be done to existing lines as a way of copying them to another
part of the program. When you change a line number, the program is moved on the CRT so that
the line just stored is one line above the current-line position. In other words, when you move a line
to a new location, the new location is displayed.

Here are some points to keep in mind when changing the line numbers supplied by the computer.
Changing the line number of an existing line causes a copy operation, not a move. The line still
exists in its original location. Existing lines are replaced by any line entered with their same line
number. Be careful that you don't accidentally replace a line because of a typing mistake in the line
number.

Entering, Running, and Storing Programs 9

Syntax Checking
Syntax is a term used to describe the elements that compose a line and their order. Immediate
syntax checking is one big advantage of writing programs in HP BASIC instead of turning in a batch
of punched cards. A great many programming errors can be detected at program entry time, which
increases the chances of having a program run properly and cuts down debugging time. If the
syntax of the line is proper, the line is stored, and the next line number appears in front of the
cursor.

If the system detects an error in the input line, it displays an error message immediately below the
line and places the cursor at the location it blames for the error. Keep in mind that there is an
endless variety of human mistakes that might occur and the computer is acting on erroneous input.
As a result, you might not always agree with its diagnosis of the exact error or the error's location.
However, an error message is proof that something needs to be fixed. There is a complete list of
error messages and their meanings in the last chapter of this manual.

Uppercase or Lowercase?
Program entry is simplified by the computer's ability to recognize the uppercase and lowercase
requirements for most elements in a statement. An entire statement can be typed using all upper­
case or all lowercase letters. If the statement's syntax is otherwise correct and there are no keyword
conflicts, the computer places all keywords in uppercase and all variable names in lowercase with
an uppercase first letter. In other words, you don't usually have to bother with the (SHIFT) key when
you enter a line, because the computer knows what the line is supposed to look like. If there is a
keyword conflict, an error occurs. A keyword conflict occurs when the letters of a keyword are used
as an identifier (variable name, line label, or subprogram name). When this happens, simply
change the case of at least one letter in the identifier name and enter the line again. A word
containing a mixture of uppercase and lowercase letters is assumed to be an identifier.

The computer's assumptions about the appearance of a line won't cause any problems if your line
has the proper syntax. However, if you are guessing at a keyword or syntax, don't assume that you
got the line right just because the computer stored it. Take a close look at what was stored. If the
computer put lowercase letters in something that you thought was a keyword, then it wasn't really a
keyword. That misspelled "keyword" was perceived as a subprogram call or a variable name by
the computer.

Inserting Lines
Lines can be easily inserted into a program. As an example, assume that you want to insert some
lines between line 90 and line 100 in your program. Place line 100 in the current-line position and
press the insert line key. The program display "opens" and a new line number appears between
line 90 and line 100. Type and store the inserted lines in the normal manner. Appropriate line
numbers will appear automatically. The insert mode can be cancelled by pressing the insert line key
again or by performing an operation that causes a new current line to appear (such as scrolling).

While inserting lines, the computer maintains the established interval between line numbers, if
possible. If the interval between lines in the preceding example was 5, the first line number
appearing would be 95. When the normal interval between lines can no longer be maintained, an
interval of 1 is used. Thus, after line 95 is stored, the next line number supplied is 96. When there
are no line numbers available between the current line and the next line, enough of the program
below the current line is renumbered to allow the insert operation to continue. In the example, this
would happen after line 99 is stored. The original line 100 is renumbered to 101 and the number
100 appears in the current line.

Entering, Running, and Storing Programs 9

Syntax Checking
Syntax is a term used to describe the elements that compose a line and their order. Immediate
syntax checking is one big advantage of writing programs in HP BASIC instead of turning in a batch
of punched cards. A great many programming errors can be detected at program entry time, which
increases the chances of having a program run properly and cuts down debugging time. If the
syntax of the line is proper, the line is stored, and the next line number appears in front of the
cursor.

If the system detects an error in the input line, it displays an error message immediately below the
line and places the cursor at the location it blames for the error. Keep in mind that there is an
endless variety of human mistakes that might occur and the computer is acting on erroneous input.
As a result, you might not always agree with its diagnosis of the exact error or the error's location.
However, an error message is proof that something needs to be fixed. There is a complete list of
error messages and their meanings in the last chapter of this manual.

Uppercase or Lowercase?
Program entry is simplified by the computer's ability to recognize the uppercase and lowercase
requirements for most elements in a statement. An entire statement can be typed using all upper­
case or all lowercase letters. If the statement's syntax is otherwise correct and there are no keyword
conflicts, the computer places all keywords in uppercase and all variable names in lowercase with
an uppercase first letter. In other words, you don't usually have to bother with the (SHIFT) key when
you enter a line, because the computer knows what the line is supposed to look like. If there is a
keyword conflict, an error occurs. A keyword conflict occurs when the letters of a keyword are used
as an identifier (variable name, line label, or subprogram name). When this happens, simply
change the case of at least one letter in the identifier name and enter the line again. A word
containing a mixture of uppercase and lowercase letters is assumed to be an identifier.

The computer's assumptions about the appearance of a line won't cause any problems if your line
has the proper syntax. However, if you are guessing at a keyword or syntax, don't assume that you
got the line right just because the computer stored it. Take a close look at what was stored. If the
computer put lowercase letters in something that you thought was a keyword, then it wasn't really a
keyword. That misspelled "keyword" was perceived as a subprogram call or a variable name by
the computer.

Inserting Lines
Lines can be easily inserted into a program. As an example, assume that you want to insert some
lines between line 90 and line 100 in your program. Place line 100 in the current-line position and
press the insert line key. The program display "opens" and a new line number appears between
line 90 and line 100. Type and store the inserted lines in the normal manner. Appropriate line
numbers will appear automatically. The insert mode can be cancelled by pressing the insert line key
again or by performing an operation that causes a new current line to appear (such as scrolling).

While inserting lines, the computer maintains the established interval between line numbers, if
possible. If the interval between lines in the preceding example was 5, the first line number
appearing would be 95. When the normal interval between lines can no longer be maintained, an
interval of 1 is used. Thus, after line 95 is stored, the next line number supplied is 96. When there
are no line numbers available between the current line and the next line, enough of the program
below the current line is renumbered to allow the insert operation to continue. In the example, this
would happen after line 99 is stored. The original line 100 is renumbered to 101 and the number
100 appears in the current line.

10 Entering, Running, and Storing Programs

Deleting and Recalling Lines
Lines can be deleted one at a time or in blocks. The delete line key is used to delete the current line.
If delete line is pressed by mistake, the line can be recovered by pressing (RECALL) , then (ENTER) or
(RETURN). The computer has a recall buffer that holds the last several lines entered, deleted, or
executed.

The DEL command can also be used to delete lines. When the keyword DEL is followed by a single
line identifier, only a single line is deleted. The line identifier can be a line number or a line label. A
combination of an EDIT command and a press of the delete line key produces the same results, but
has some advantages. There is a typing aid key to start the command, you can see the line before
you delete it, and the delete line key saves the line in the recall buffer (the DEL command does
not) . Therefore, DEL is more useful for deleting blocks of lines.

Blocks of program lines can be deleted by using two line identifiers in the DEL command. The first
number or label identifies the start of the block to be deleted, and the second number or label
identifies the end of the block to be deleted. The line identifiers must appear in the same order they
do in the program. Here are some examples.

DEL 100,200 Deletes lines 100 thru 200, inclusive.

DE L 5 1 0 C f,2 ,327 G G Deletes all the lines from the one labeled' 'Block2" to the end of the
program.

DE L 250,10 Does nothing except generate an error.

If you have subprograms or user-defined functions in your program, they can only be deleted in
certain ways. Primarily, the SUB or DEF FN statement cannot be deleted without deleting the entire
subprogram or function. This is explained fully in the "User-defined Functions and Subprograms"
chapter. A CSUB line can be deleted, and doing so removes the entire subprogram.

The DEL command is not programmable and cannot be used while a program is running.

Renumbering a Program
After an editing session with many deletes and inserts, the appearance of your program can be
improved by renumbering. This also helps make room for long inserts. Renumbering is done by the
REN command. The starting line number, the interval between lines and the range can be speci­
fied. For example:

REN 100,5 IN 1 , 5 00

This command renumbers current lines 1 thru 500, using 100 for the first line number and an
increment of 5. If the increment (second parameter) is not specified, 10 is assumed. If a range is not
specified, the entire program is renumbered. For example:

REN 1000

This command renumbers the entire program, using 1000 for the first line number and an incre­
ment of 10. When no parameters are specified (REN), 10 is assumed for the first line number and
the increment, and the entire program is renumbered.

10 Entering, Running, and Storing Programs

Deleting and Recalling Lines
Lines can be deleted one at a time or in blocks. The delete line key is used to delete the current line.
If delete line is pressed by mistake, the line can be recovered by pressing (RECALL) , then (ENTER) or
(RETURN). The computer has a recall buffer that holds the last several lines entered, deleted, or
executed.

The DEL command can also be used to delete lines. When the keyword DEL is followed by a single
line identifier, only a single line is deleted. The line identifier can be a line number or a line label. A
combination of an EDIT command and a press of the delete line key produces the same results, but
has some advantages. There is a typing aid key to start the command, you can see the line before
you delete it, and the delete line key saves the line in the recall buffer (the DEL command does
not) . Therefore, DEL is more useful for deleting blocks of lines.

Blocks of program lines can be deleted by using two line identifiers in the DEL command. The first
number or label identifies the start of the block to be deleted, and the second number or label
identifies the end of the block to be deleted. The line identifiers must appear in the same order they
do in the program. Here are some examples.

DEL 100,200 Deletes lines 100 thru 200, inclusive.

DE L 5 1 0 C f,2 ,327 G G Deletes all the lines from the one labeled' 'Block2" to the end of the
program.

DE L 250,10 Does nothing except generate an error.

If you have subprograms or user-defined functions in your program, they can only be deleted in
certain ways. Primarily, the SUB or DEF FN statement cannot be deleted without deleting the entire
subprogram or function. This is explained fully in the "User-defined Functions and Subprograms"
chapter. A CSUB line can be deleted, and doing so removes the entire subprogram.

The DEL command is not programmable and cannot be used while a program is running.

Renumbering a Program
After an editing session with many deletes and inserts, the appearance of your program can be
improved by renumbering. This also helps make room for long inserts. Renumbering is done by the
REN command. The starting line number, the interval between lines and the range can be speci­
fied. For example:

REN 100,5 IN 1 , 5 00

This command renumbers current lines 1 thru 500, using 100 for the first line number and an
increment of 5. If the increment (second parameter) is not specified, 10 is assumed. If a range is not
specified, the entire program is renumbered. For example:

REN 1000

This command renumbers the entire program, using 1000 for the first line number and an incre­
ment of 10. When no parameters are specified (REN), 10 is assumed for the first line number and
the increment, and the entire program is renumbered.

Entering, Running, and Storing Programs 11

Listing a Program
All or part of your program can be displayed or printed by executing a LIST statement. The LIST
statement allows parameters that specify both the range of lines to be listed and the device to which
the listing should be sent. If the keyword LIST is executed without any parameters, the assumed
action is to list the entire program on the system printer. The default system printer after a power-on
or SCRATCH A is the CRT. (The system printer is defined by the PRINTER IS statement.)

Starting and ending line numbers can be specified in the LIST statement. The line identifiers can be
labels. For example:

LI ST 100,200 Lists lines 100 thru 200, inclusive.

LIST 1850 Lists the last portion of the program, from line 1850 to the end.

LIS T Roc f, e t Lists the program from the line labeled "Rocket" to the end.

Directing the listing to a device other than the CRT is easy, but involves concepts that have not
been introduced yet. If you want a listing on an external printer and you don't understand the brief
examples here, refer to the beginning of the "Using a Printer" chapter for an explanation of device
selectors. One way to get a listing on an external printer is to specify a different system printer. This
is done with the PRINTER IS statement described in the "Using a Printer" chapter. However, it is
often desirable to keep the CRT as system printer and still get program listings on an external
printer. This is done by specifying the printer in the LIST statement. For example:

LIST #701

This statement sends the entire program listing to an HP-IB printer (address 01) without changing
the system printer selection. When both the printer and the line range are specified, the printer
number is specified first and terminated with a semicolon. The following example lists lines 200 thru
500 on the device serviced by interface select code 12.

LIST #12;200,500

Using Comments
When first learning how to program, most people view the use of comments, long variable names,
descriptive printouts, ,and other documentation tools as merely extra typing that isn't really neces­
sary in their short programs. As time passes, old programs are expanded, new programs are written,
and more people use the available software. Eventually, software support activities become neces­
sary. Some obscure bug is found or some exciting enhancement is requested. The programmer
picks up a copy of a program written a year ago and can't begin to remember what "Xl" was or
why you would ever want to divide it by "X2". Program documentation can make the difference
between a supportable tool that adapts to the needs of the users and a support nightmare that
never really does exactly what the current user wants. Keep in mind that the local software support
person just might be you.

Entering, Running, and Storing Programs 11

Listing a Program
All or part of your program can be displayed or printed by executing a LIST statement. The LIST
statement allows parameters that specify both the range of lines to be listed and the device to which
the listing should be sent. If the keyword LIST is executed without any parameters, the assumed
action is to list the entire program on the system printer. The default system printer after a power-on
or SCRATCH A is the CRT. (The system printer is defined by the PRINTER IS statement.)

Starting and ending line numbers can be specified in the LIST statement. The line identifiers can be
labels. For example:

LI ST 100,200 Lists lines 100 thru 200, inclusive.

LIST 1850 Lists the last portion of the program, from line 1850 to the end.

LIS T Roc f, e t Lists the program from the line labeled "Rocket" to the end.

Directing the listing to a device other than the CRT is easy, but involves concepts that have not
been introduced yet. If you want a listing on an external printer and you don't understand the brief
examples here, refer to the beginning of the "Using a Printer" chapter for an explanation of device
selectors. One way to get a listing on an external printer is to specify a different system printer. This
is done with the PRINTER IS statement described in the "Using a Printer" chapter. However, it is
often desirable to keep the CRT as system printer and still get program listings on an external
printer. This is done by specifying the printer in the LIST statement. For example:

LIST #701

This statement sends the entire program listing to an HP-IB printer (address 01) without changing
the system printer selection. When both the printer and the line range are specified, the printer
number is specified first and terminated with a semicolon. The following example lists lines 200 thru
500 on the device serviced by interface select code 12.

LIST #12;200,500

Using Comments
When first learning how to program, most people view the use of comments, long variable names,
descriptive printouts, ,and other documentation tools as merely extra typing that isn't really neces­
sary in their short programs. As time passes, old programs are expanded, new programs are written,
and more people use the available software. Eventually, software support activities become neces­
sary. Some obscure bug is found or some exciting enhancement is requested. The programmer
picks up a copy of a program written a year ago and can't begin to remember what "Xl" was or
why you would ever want to divide it by "X2". Program documentation can make the difference
between a supportable tool that adapts to the needs of the users and a support nightmare that
never really does exactly what the current user wants. Keep in mind that the local software support
person just might be you.

12 Entering, Running, and Storing Programs

This BASIC language makes it easy to write self-documenting programs. In addition to BASIC's
standard REM (remark) capability, its primary documentation features are line labels, IS-character
names, and end-of-line comments. Although this section deals primarily with commenting
methods, all of these features work together to make a readable program. The following example
shows two versions of the same program. The first version is uncommented and uses "traditional"
BASIC variable names. The second version uses the features of HP's BASIC language to make the
program more easily understood. Which version would you rather work with?

100 PRINTER IS 1
110 A=.03
120 B=.02
130 }(=o

1l1O '(=0
150 C=A+B
lGO PRINT" IteM
170 PRINT" Price

Total
Ta x

Total"
Cost"

180 PRINT "------------------------------
190 P=O
200 INPUT "Input itef,1 price" ,p
210 IF P<O THEN 290
220 D=P*C
230 E=P+D
240 >(=}< +D
250 Y=Y+ E
2GO DISP "Tax ="jDj"Itef,1 cost ="jE
270 PRINT P ,~<,'(
280 GDTD 190
290 END

100 This pro.raM COMPutes the sales tax for
110 a list of prices. IteM prices are input
120 individually. The tax and total cost for
130 each iteM are displa yed. The runnin.
140 totals for tax and cost are printed on
150 the CRT. Modify line 220 to chan.e the
lGO the SYsteM printer.
170
180 I Sales tax rates are assi.ned on l ines 230
190 ! and 240. The rates used in this version
200 ! of the pro.raM were in effect 1 /1/81 .
210
220 PRINTER IS 1
230 State_tax=.03
240 CitY_tax=.02
250
2GO
270
280
290

Total_ta x=O
Total_cost=O

300 PRINT" Itef,1
310 PRINT" Price

I Use CRT for printout
I Local tax rates

I Initialize variables

! Print coluMn headers
Total Total"

Ta x Cost"
320 PRINT "------------------------------
330 !
340 Get_price: ! Start of Main loop
350
3GO
370

Price=O ! Don't change totals if no entrY
INPUT "Inpl.lt itef,1 price" ,Price
IF Price<O THEN Done ! Ne.ative entrY stops pro.raM

390 IteM_cost=Price+Ta x
400 Total_tax=Total_tax+Tax ! AccuMulate totals
410 Total_cost=Total_cost+IteM_cost
420 DISP "Tax =" jT ax j" Itef,1 cost =" jItef'l_cost
430 PRINT Price ,Total_tax ,Total_cost
440 GOTO Get_price ! Repeat loop for ne xt iteM
450 Done: END

12 Entering, Running, and Storing Programs

This BASIC language makes it easy to write self-documenting programs. In addition to BASIC's
standard REM (remark) capability, its primary documentation features are line labels, IS-character
names, and end-of-line comments. Although this section deals primarily with commenting
methods, all of these features work together to make a readable program. The following example
shows two versions of the same program. The first version is uncommented and uses "traditional"
BASIC variable names. The second version uses the features of HP's BASIC language to make the
program more easily understood. Which version would you rather work with?

100 PRINTER IS 1
110 A=.03
120 B=.02
130 }(=o

1l1O '(=0
150 C=A+B
lGO PRINT" IteM
170 PRINT" Price

Total
Ta x

Total"
Cost"

180 PRINT "------------------------------
190 P=O
200 INPUT "Input itef,1 price" ,p
210 IF P<O THEN 290
220 D=P*C
230 E=P+D
240 >(=}< +D
250 Y=Y+ E
2GO DISP "Tax ="jDj"Itef,1 cost ="jE
270 PRINT P ,~<,'(
280 GDTD 190
290 END

100 This pro.raM COMPutes the sales tax for
110 a list of prices. IteM prices are input
120 individually. The tax and total cost for
130 each iteM are displa yed. The runnin.
140 totals for tax and cost are printed on
150 the CRT. Modify line 220 to chan.e the
lGO the SYsteM printer.
170
180 I Sales tax rates are assi.ned on l ines 230
190 ! and 240. The rates used in this version
200 ! of the pro.raM were in effect 1 /1/81 .
210
220 PRINTER IS 1
230 State_tax=.03
240 CitY_tax=.02
250
2GO
270
280
290

Total_ta x=O
Total_cost=O

300 PRINT" Itef,1
310 PRINT" Price

I Use CRT for printout
I Local tax rates

I Initialize variables

! Print coluMn headers
Total Total"

Ta x Cost"
320 PRINT "------------------------------
330 !
340 Get_price: ! Start of Main loop
350
3GO
370

Price=O ! Don't change totals if no entrY
INPUT "Inpl.lt itef,1 price" ,Price
IF Price<O THEN Done ! Ne.ative entrY stops pro.raM

390 IteM_cost=Price+Ta x
400 Total_tax=Total_tax+Tax ! AccuMulate totals
410 Total_cost=Total_cost+IteM_cost
420 DISP "Tax =" jT ax j" Itef,1 cost =" jItef'l_cost
430 PRINT Price ,Total_tax ,Total_cost
440 GOTO Get_price ! Repeat loop for ne xt iteM
450 Done: END

Entering, Running, and Storing Programs 13

There are two methods for including comments in your programs. The use of an exclamation point
is demonstrated in the second example program. The exclamation point marks the boundary
between an executable statement and comment text. There does not have to be an executable
statement on a line containing a comment. Therefore, the exclamation point can be used to
introduce a line of comments, to add comments to a statement, or simply to create a "blank" line to
separate program segments. Exclamation points may be indented as necessary to help keep the
comments neat.

The REM statement can also be used for comments. The exclamation point is neater and more
flexible, but the REM statement provides compatibility with other BASIC languages. The REM
keyword must be the first entry after the line identifier and must be followed by at least one blank.
Here are some examples of proper and improper REM statements.

RIGHT WRONG

10 REM ChecK BooK Balance 20 REMinitialize array
40 Start2 : REM Subtotal loop 50 X=PI*R"2 REM Area of circle

Each programmer has an individual style in the use of comments. Therefore, the following is not a
list of rules. It is simply some suggestions on the effective use of comments.

• Include a heading on programs that tells the purpose of the program. Why was the program
written, what does it do, and who would probably be using it?

• Give any helpful support information, such as the author of the program, the revision date,
where to call or write for help, and instructions for any modifications that might be made by a
normal user.

• Identify all significant variables, especially global variables. A descriptive variable name may do
the job, or a more detailed explanation may be needed.

• Describe any input or output devices that are required for the proper running of the program.
This may even include an explanation of how to modify the program to accommodate alter­
nate devices (when such changes are reasonable).

• Make major blocks and entry points visible. Many tools are available for this, including descrip­
tive labels, indenting, spacing, and comments describing program flow.

• Use comments freely to describe the action of complex lines, equations, fancy manipulations,
and "low-level" operations like CONTROL statements and escape code sequences. These
heavily coded operations can be very important to the computer and very mysterious to the
human trying to read the program.

Entering, Running, and Storing Programs 13

There are two methods for including comments in your programs. The use of an exclamation point
is demonstrated in the second example program. The exclamation point marks the boundary
between an executable statement and comment text. There does not have to be an executable
statement on a line containing a comment. Therefore, the exclamation point can be used to
introduce a line of comments, to add comments to a statement, or simply to create a "blank" line to
separate program segments. Exclamation points may be indented as necessary to help keep the
comments neat.

The REM statement can also be used for comments. The exclamation point is neater and more
flexible, but the REM statement provides compatibility with other BASIC languages. The REM
keyword must be the first entry after the line identifier and must be followed by at least one blank.
Here are some examples of proper and improper REM statements.

RIGHT WRONG

10 REM ChecK BooK Balance 20 REMinitialize array
40 Start2 : REM Subtotal loop 50 X=PI*R"2 REM Area of circle

Each programmer has an individual style in the use of comments. Therefore, the following is not a
list of rules. It is simply some suggestions on the effective use of comments.

• Include a heading on programs that tells the purpose of the program. Why was the program
written, what does it do, and who would probably be using it?

• Give any helpful support information, such as the author of the program, the revision date,
where to call or write for help, and instructions for any modifications that might be made by a
normal user.

• Identify all significant variables, especially global variables. A descriptive variable name may do
the job, or a more detailed explanation may be needed.

• Describe any input or output devices that are required for the proper running of the program.
This may even include an explanation of how to modify the program to accommodate alter­
nate devices (when such changes are reasonable).

• Make major blocks and entry points visible. Many tools are available for this, including descrip­
tive labels, indenting, spacing, and comments describing program flow.

• Use comments freely to describe the action of complex lines, equations, fancy manipulations,
and "low-level" operations like CONTROL statements and escape code sequences. These
heavily coded operations can be very important to the computer and very mysterious to the
human trying to read the program.

14 Entering, Running, and Storing Programs

Getting Out of EDIT Mode
There are many ways to terminate the EDIT mode. Your choice depends upon what you want to
do next. If you simply want to return the CRT to its "normal" mode (input line on the bottom and
printout area above), press (PAUSE), (CLR SCR) or (Clear display) . Either of these keys terminates
EDIT mode and returns the screen to the normal format.

Another way to leave EDIT mode is to proceed with another operation. The key choices in this case
are (RESET), ~, (STEP), and (CONTINUE). All of these keys terminate EDIT mode and perform
their normal function. A detailed list of the items affected by (RESET) is contained in the "Useful
Tables" chapter at the back of the BASIC Language Reference. The ~ key starts normal
program execution. This is described in the "Running a Program" section of this chapter. The
(STEP) key starts single-step program execution, as described in the "Program Debugging"
chapter.

CONTINUE is not always a valid way to leave EDIT mode. If you paused a program and used EDIT
mode only as a means of looking at various program segments, (CONTINUE) may be pressed to
resume program execution. However, if any program lines are changed while in EDIT mode, the
program moves from the paused state into the stopped state. In that case, CONTINUE is not a valid
operation and results in an error. This is covered in the next section, "Running a Program"

EDIT mode is also terminated by a GET or LOAD operation or by an operation that uses the CRT
(for example: CAT).

14 Entering, Running, and Storing Programs

Getting Out of EDIT Mode
There are many ways to terminate the EDIT mode. Your choice depends upon what you want to
do next. If you simply want to return the CRT to its "normal" mode (input line on the bottom and
printout area above), press (PAUSE), (CLR SCR) or (Clear display) . Either of these keys terminates
EDIT mode and returns the screen to the normal format.

Another way to leave EDIT mode is to proceed with another operation. The key choices in this case
are (RESET), ~, (STEP), and (CONTINUE). All of these keys terminate EDIT mode and perform
their normal function. A detailed list of the items affected by (RESET) is contained in the "Useful
Tables" chapter at the back of the BASIC Language Reference. The ~ key starts normal
program execution. This is described in the "Running a Program" section of this chapter. The
(STEP) key starts single-step program execution, as described in the "Program Debugging"
chapter.

CONTINUE is not always a valid way to leave EDIT mode. If you paused a program and used EDIT
mode only as a means of looking at various program segments, (CONTINUE) may be pressed to
resume program execution. However, if any program lines are changed while in EDIT mode, the
program moves from the paused state into the stopped state. In that case, CONTINUE is not a valid
operation and results in an error. This is covered in the next section, "Running a Program"

EDIT mode is also terminated by a GET or LOAD operation or by an operation that uses the CRT
(for example: CAT).

Entering, Running, and Storing Programs 15

Running a Program
The normal running of a program is started by the eM.[] key or the RUN command. Pressing the
~ key is equivalent to typing RUN and pressing (EXECUTE) , (ENTER) or (RETURN) . This tells the
computer to go through a prerun phase and then begin normal program execution with the lowest
numbered line in the main program. The RUN command can also be followed by a line identifier
that lets you specify where the program execution is to begin.

Prerun
There are three primary reasons for the prerun. The first purpose is to reserve sufficient memory for
all the variables in the program (except those that are ALLOCATEd). This includes all variables in
COM statements, those declared in DIM, REAL, and INTEGER statements, and all implicitly
declared variables. The "Number Computation" chapter explains the declaration of numeric vari­
ables, and the "String Manipulation" chapter covers the dimensioning of string variables.

The second purpose is to locate all the context boundaries. These are defined by the END, SUB,
SUBEND, DEF FN, and FNEND statements.

The third purpose of the prerun is to detect errors that involve interaction between lines. The
previous section explained that the computer checks for syntax errors before it stores a program
line. Although this is true, there are some errors that can't be detected by looking at a single line.
For example, a program line that uses properly placed subscripts can appear to be correct when it is
stored. However, if that line references three dimensions in an array that had previously been
declared to have only two dimensions, it is in error. To detect an error of that kind, the computer
needs to "look at" the entire program to see all the dimension statements as well as the variables
used in each line. Some other examples of this kind of error are specifying a ON .. . GOTO to a line
that does not exist or improper matching of statements like FOR ... NEXT and IF ... END IF.

Normal Program Execution
Program execution is not a method for destroying programs (although there are some reported
cases of programmers having an urge to kill). The term execution is used to describe the process
used by the computer while it is completing the tasks described in its program. The process of
program execution is summarized below.

1. Determine which program line is to be acted on next.

2. Identify the statement that follows the line number and label (if any) on that line.

3. If the statement has a run-time action, perform the action described in the statement.

4. Repeat steps 1 thru 4 until an END, STOP, or PAUSE statement is executed.

The continuing process of determining which line is to be executed next is discussed in detail in the
next chapter, "Program Structure and Flow". The RUN command determines which line is acted
on first. Executing RUN with no parameters, or pressing the ~ key, causes the execution
process to begin at the first (lowest-numbered) line of the main program. Execution can be started
anywhere in the main program by using the RUN command with a line identifier. For example:

RUN 220

Entering, Running, and Storing Programs 15

Running a Program
The normal running of a program is started by the eM.[] key or the RUN command. Pressing the
~ key is equivalent to typing RUN and pressing (EXECUTE) , (ENTER) or (RETURN) . This tells the
computer to go through a prerun phase and then begin normal program execution with the lowest
numbered line in the main program. The RUN command can also be followed by a line identifier
that lets you specify where the program execution is to begin.

Prerun
There are three primary reasons for the prerun. The first purpose is to reserve sufficient memory for
all the variables in the program (except those that are ALLOCATEd). This includes all variables in
COM statements, those declared in DIM, REAL, and INTEGER statements, and all implicitly
declared variables. The "Number Computation" chapter explains the declaration of numeric vari­
ables, and the "String Manipulation" chapter covers the dimensioning of string variables.

The second purpose is to locate all the context boundaries. These are defined by the END, SUB,
SUBEND, DEF FN, and FNEND statements.

The third purpose of the prerun is to detect errors that involve interaction between lines. The
previous section explained that the computer checks for syntax errors before it stores a program
line. Although this is true, there are some errors that can't be detected by looking at a single line.
For example, a program line that uses properly placed subscripts can appear to be correct when it is
stored. However, if that line references three dimensions in an array that had previously been
declared to have only two dimensions, it is in error. To detect an error of that kind, the computer
needs to "look at" the entire program to see all the dimension statements as well as the variables
used in each line. Some other examples of this kind of error are specifying a ON .. . GOTO to a line
that does not exist or improper matching of statements like FOR ... NEXT and IF ... END IF.

Normal Program Execution
Program execution is not a method for destroying programs (although there are some reported
cases of programmers having an urge to kill). The term execution is used to describe the process
used by the computer while it is completing the tasks described in its program. The process of
program execution is summarized below.

1. Determine which program line is to be acted on next.

2. Identify the statement that follows the line number and label (if any) on that line.

3. If the statement has a run-time action, perform the action described in the statement.

4. Repeat steps 1 thru 4 until an END, STOP, or PAUSE statement is executed.

The continuing process of determining which line is to be executed next is discussed in detail in the
next chapter, "Program Structure and Flow". The RUN command determines which line is acted
on first. Executing RUN with no parameters, or pressing the ~ key, causes the execution
process to begin at the first (lowest-numbered) line of the main program. Execution can be started
anywhere in the main program by using the RUN command with a line identifier. For example:

RUN 220

16 Entering, Running, and Storing Programs

This command causes execution to begin at line 220, if there is such a line. If there is no line 220 in
the main program, execution begins with the line whose number is closest to and greater than 220.
The line identifier can also be a label. For example:

This command causes execution to begin with the line labeled "SpoLrun". If there is no such label,
an error results.

Note that the prerun phase is always the same, whether the actual execution begins at the program
start or somewhere in the middle. Also, if a starting line is specified, that line must be in the main
program. An error 3 results if you attempt to start a program in a user-defined function or subprog­
ram. Even if the starting point is correctly specified, be alert to the effects of starting a program in the
middle. Skipping over a section of the program may result in null values for some of the variables.
Although it is legal to start in the middle of a subroutine, an error is generated when the RETURN
statement is executed.

Non-Executed Statements
In the preceding summary of normal execution, step 3 mentioned that only statements with
run-time actions are executed. The term run-time refers to the state that exists after the prerun,
when the computer is actually performing the actions described in the program. Some statements
are not executed in the course of normal program flow, but are merely "looked at" and then
bypassed. The following is a list of some statements that do not cause an action as a result of
run-time execution.

• Comments and REM statements. These never cause an action.

• Variable declarations; COM, DIM, REAL, and INTEGER. These are executed during prerun
and skipped over at run-time. The OPTION BASE statement is part of the declaring process.

• DATA statements. These are accessed by the READ statement, not executed.

• SUB and DEF FN statements. These are used during prerun to establish the program structure
and are skipped over at run-time.

• Structuring statements, such as LOOP, END LOOP, ELSE, END IF, etc. These are matched
and checked for proper nesting at prerun.

Live Keyboard
When a program is running, the keyboard is still active. Commands can be executed, variables can
be inspected and changed, and the state of the computer can be changed. The term live keyboard
is used when talking about commands that are executed during a running program. One of the
principal uses for live keyboard commands is the troubleshooting and debugging of programs in the
development stage. This application is covered in the "Program Debugging" chapter. The discus­
sions presented here are intended to demonstrate the various machine states (running, paused, and
stopped).

16 Entering, Running, and Storing Programs

This command causes execution to begin at line 220, if there is such a line. If there is no line 220 in
the main program, execution begins with the line whose number is closest to and greater than 220.
The line identifier can also be a label. For example:

This command causes execution to begin with the line labeled "SpoLrun". If there is no such label,
an error results.

Note that the prerun phase is always the same, whether the actual execution begins at the program
start or somewhere in the middle. Also, if a starting line is specified, that line must be in the main
program. An error 3 results if you attempt to start a program in a user-defined function or subprog­
ram. Even if the starting point is correctly specified, be alert to the effects of starting a program in the
middle. Skipping over a section of the program may result in null values for some of the variables.
Although it is legal to start in the middle of a subroutine, an error is generated when the RETURN
statement is executed.

Non-Executed Statements
In the preceding summary of normal execution, step 3 mentioned that only statements with
run-time actions are executed. The term run-time refers to the state that exists after the prerun,
when the computer is actually performing the actions described in the program. Some statements
are not executed in the course of normal program flow, but are merely "looked at" and then
bypassed. The following is a list of some statements that do not cause an action as a result of
run-time execution.

• Comments and REM statements. These never cause an action.

• Variable declarations; COM, DIM, REAL, and INTEGER. These are executed during prerun
and skipped over at run-time. The OPTION BASE statement is part of the declaring process.

• DATA statements. These are accessed by the READ statement, not executed.

• SUB and DEF FN statements. These are used during prerun to establish the program structure
and are skipped over at run-time.

• Structuring statements, such as LOOP, END LOOP, ELSE, END IF, etc. These are matched
and checked for proper nesting at prerun.

Live Keyboard
When a program is running, the keyboard is still active. Commands can be executed, variables can
be inspected and changed, and the state of the computer can be changed. The term live keyboard
is used when talking about commands that are executed during a running program. One of the
principal uses for live keyboard commands is the troubleshooting and debugging of programs in the
development stage. This application is covered in the "Program Debugging" chapter. The discus­
sions presented here are intended to demonstrate the various machine states (running, paused, and
stopped).

Entering, Running, and Storing Programs 17

Pausing and Stopping
If the operator does not intervene, a program will run until it reaches an END, STOP, or PAUSE
statement, or until it pauses to input some data or report an error. If you wish to pause or stop a
program before its normal completion, the (PAUSE), (STOP), or (RESET) keys can be used. Here is a
summary of the action of these keys. ((CLR 1/0) has an action very similar to (PAUSE) if the computer is
executing an 110 statement.)

• (RESET) - This stops the program immediately, aborting any 110 operations and resetting
any interface cards. (RESET) does not affect the printout area of the CRT, program or variable
memory, tabs, or the recall buffer. CONTINUE is not allowed after a RESET.

• (STOP) - This stops the program after the computer finishes executing the current line. STOP
does not affect the interfaces, the CRT, program memory, the values of variables, tabs, or the
recall buffer. STOP returns the program to the main context. CONTINUE is not allowed after a
STOP.

• (PAUSE) - This pauses program execution after the computer finishes the current line and any
110 operations in progress. PAUSE leaves all necessary internal information intact, so that
program execution can be resumed again with the (CONTINUE) key. Pressing (CONTINUE) after a
PAUSE causes program execution to resume in a normal manner from the place where it was
paused.

• (CLR 1/0)- This aborts any 110 statement in progress and pauses the program. The program
counter is returned to the beginning of the aborted 110 statement, so that CONTINUE causes
the program to resume with that same statement. This is useful when the computer is "hung"
trying to output to a device that is down, or for pausing a program that is executing an INPUT
statement.

On an HP 46020A keyboard, STOP is (SHIFT) (STOP), PAUSE is (STOP), CLR 110 is (BREAK).

The current state of the computer is indicated in the lower right-hand corner of the CRT. The
character in this corner is referred to as the "run light". The following table shows the various
indications of the run light and their meaning.

Indicator

(blank)

Computer State

Program stopped; CONTINUE not allowed

Program running

Program paused; may be continued

I 0 Program paused, but a TRANSFER is still active

? Computer is waiting for an input from the keyboard

* Computer is executing a command from the keyboard

Entering, Running, and Storing Programs 17

Pausing and Stopping
If the operator does not intervene, a program will run until it reaches an END, STOP, or PAUSE
statement, or until it pauses to input some data or report an error. If you wish to pause or stop a
program before its normal completion, the (PAUSE), (STOP), or (RESET) keys can be used. Here is a
summary of the action of these keys. ((CLR 1/0) has an action very similar to (PAUSE) if the computer is
executing an 110 statement.)

• (RESET) - This stops the program immediately, aborting any 110 operations and resetting
any interface cards. (RESET) does not affect the printout area of the CRT, program or variable
memory, tabs, or the recall buffer. CONTINUE is not allowed after a RESET.

• (STOP) - This stops the program after the computer finishes executing the current line. STOP
does not affect the interfaces, the CRT, program memory, the values of variables, tabs, or the
recall buffer. STOP returns the program to the main context. CONTINUE is not allowed after a
STOP.

• (PAUSE) - This pauses program execution after the computer finishes the current line and any
110 operations in progress. PAUSE leaves all necessary internal information intact, so that
program execution can be resumed again with the (CONTINUE) key. Pressing (CONTINUE) after a
PAUSE causes program execution to resume in a normal manner from the place where it was
paused.

• (CLR 1/0)- This aborts any 110 statement in progress and pauses the program. The program
counter is returned to the beginning of the aborted 110 statement, so that CONTINUE causes
the program to resume with that same statement. This is useful when the computer is "hung"
trying to output to a device that is down, or for pausing a program that is executing an INPUT
statement.

On an HP 46020A keyboard, STOP is (SHIFT) (STOP), PAUSE is (STOP), CLR 110 is (BREAK).

The current state of the computer is indicated in the lower right-hand corner of the CRT. The
character in this corner is referred to as the "run light". The following table shows the various
indications of the run light and their meaning.

Indicator

(blank)

Computer State

Program stopped; CONTINUE not allowed

Program running

Program paused; may be continued

I 0 Program paused, but a TRANSFER is still active

? Computer is waiting for an input from the keyboard

* Computer is executing a command from the keyboard

18 Entering, Running, and Storing Programs

For Example
To demonstrate some of the interaction between a program and the keyboard, enter the following
simple program.

10 DISP " NE>(T COMMAND?"
20 }-{= 0

30 PRINT \I •
(\ ,

40 }-{=}{+ 1

50 WAIT • 1
GO GOTO 30
70 END

1. After you have entered the program, press ~ and observe the CRT. Notice that the
DISP message appears in the display line, the printout area fills with a sequence of numbers,
and the run light indicates that a program is running.

2. Press (PAUSE). The printout of numbers stops, and all the data on the CRT remains un­
changed. The run light now indicates that the program is paused and can be continued. The
program line that appears at the bottom of the CRT is the next line that will be executed
when program execution resumes.

3. Press (STEP) a number of times. The program is executed one line at a time, as indicated by
the lines changing at the bottom of the CRT,. Notice that the program is still paused and
continuable after each press of the (STEP) key. The ~ key can be a great help when you
are trying to find certain kinds of problems. Chapter 12 "Program Debugging" gives the
details of this and other debugging tools.

4. Press (CONTINUE) . The printout on the CRT resumes with the next number in the sequence.
The run light again indicates that a program is running.

5. Press (STOP). The printout of numbers stops, and all the data on the CRT remains un­
changed. However, the run light is off, indicating a stopped condition.

6. Press (CONTINUE). An error results. A stopped program cannot be continued.

7. Press ~. The program runs again, but the number sequence has restarted from the
beginning, not from the next number in the sequence. RUN causes the program to restart,
not resume.

8. Type){ = 1 and press (EXECUTE) or (RETURN). Notice that the numbers being printed start
over with " 1". The live keyboard was used to change the value of "X", and the program
used the new value from the keyboard.

9. Press (RESET). The program stops and the data remains in the printout area, but the display
line is cleared and the message BAS I C Res e t appears at the bottom of the CRT.
Although the clearing of the display line seems like a minor effect, it indicates an impor­
tant point. (RESET) and STOP have different effects on interfaces and peripheral devices. This
aspect of (RESET) is summarized in the RESET Tables in the back of the BASIC Language
Reference and is discussed fully in the BASIC Interfacing Techniques manual.

10. Press ~, then type W A IT 5 and press execute. Notice that the run light changes to
indicate that a keyboard command is being executed and the printout is delayed for five
seconds while the live keyboard command is processed. Actually, the run light changed
when the)(= 1 command was executed in step 8, but it happened so fast that you didn't see
it.

18 Entering, Running, and Storing Programs

For Example
To demonstrate some of the interaction between a program and the keyboard, enter the following
simple program.

10 DISP " NE>(T COMMAND?"
20 }-{= 0

30 PRINT \I •
(\ ,

40 }-{=}{+ 1

50 WAIT • 1
GO GOTO 30
70 END

1. After you have entered the program, press ~ and observe the CRT. Notice that the
DISP message appears in the display line, the printout area fills with a sequence of numbers,
and the run light indicates that a program is running.

2. Press (PAUSE). The printout of numbers stops, and all the data on the CRT remains un­
changed. The run light now indicates that the program is paused and can be continued. The
program line that appears at the bottom of the CRT is the next line that will be executed
when program execution resumes.

3. Press (STEP) a number of times. The program is executed one line at a time, as indicated by
the lines changing at the bottom of the CRT,. Notice that the program is still paused and
continuable after each press of the (STEP) key. The ~ key can be a great help when you
are trying to find certain kinds of problems. Chapter 12 "Program Debugging" gives the
details of this and other debugging tools.

4. Press (CONTINUE) . The printout on the CRT resumes with the next number in the sequence.
The run light again indicates that a program is running.

5. Press (STOP). The printout of numbers stops, and all the data on the CRT remains un­
changed. However, the run light is off, indicating a stopped condition.

6. Press (CONTINUE). An error results. A stopped program cannot be continued.

7. Press ~. The program runs again, but the number sequence has restarted from the
beginning, not from the next number in the sequence. RUN causes the program to restart,
not resume.

8. Type){ = 1 and press (EXECUTE) or (RETURN). Notice that the numbers being printed start
over with " 1". The live keyboard was used to change the value of "X", and the program
used the new value from the keyboard.

9. Press (RESET). The program stops and the data remains in the printout area, but the display
line is cleared and the message BAS I C Res e t appears at the bottom of the CRT.
Although the clearing of the display line seems like a minor effect, it indicates an impor­
tant point. (RESET) and STOP have different effects on interfaces and peripheral devices. This
aspect of (RESET) is summarized in the RESET Tables in the back of the BASIC Language
Reference and is discussed fully in the BASIC Interfacing Techniques manual.

10. Press ~, then type W A IT 5 and press execute. Notice that the run light changes to
indicate that a keyboard command is being executed and the printout is delayed for five
seconds while the live keyboard command is processed. Actually, the run light changed
when the)(= 1 command was executed in step 8, but it happened so fast that you didn't see
it.

Entering, Running, and Storing Programs 19

11 . Press (PAUSE), then type ED IT and press (EXECUTE) or (RETURN). The display on the CRT
changes to show the program. The line you were editing last appears in the current-line
position. Notice that the run light is still visible in the lower right-hand corner and it indicates
that the program is paused.

12. Press (CONTINUE). The CRT returns to normal mode, and the printout of numbers continues in
sequence. However, the previous data on the display was lost when the CRT was used for
EDIT mode.

13. Press (PAUSE), then type EDIT 50 and press (EXECUTE) or (RETURN). The CRT changes to
EDIT mode, and the program appears again. This time, line 50 is in the current-line position.
Notice that the run light indicates that the program is paused. Change line 50 to WA IT. 2
and press (ENTER) or (RETURN). The new line 50 is entered, but the run light goes out.
Changing the program caused it to move from the paused state to the stopped state.

14. Press (CONTINUE). An error results. As mentioned earlier, a program can be viewed while it is
paused, but it cannot be changed. Once any program line has been changed, the program is
no longer paused, and CONTINUE is not allowed.

This simple demonstration covers most of the highlights of live keyboard, program states, and the
run light. The "waiting for input" indication can be seen when using the INPUT and LINPUT
statements described in Chapter 10, "Communicating with the Operator" . The "paused with
TRANSFER completing" indication is not described in this manual. It is a special state that results
from the use of overlapped I/O and is discussed in the BASIC Interfacing Techniques manual.

Entering, Running, and Storing Programs 19

11 . Press (PAUSE), then type ED IT and press (EXECUTE) or (RETURN). The display on the CRT
changes to show the program. The line you were editing last appears in the current-line
position. Notice that the run light is still visible in the lower right-hand corner and it indicates
that the program is paused.

12. Press (CONTINUE). The CRT returns to normal mode, and the printout of numbers continues in
sequence. However, the previous data on the display was lost when the CRT was used for
EDIT mode.

13. Press (PAUSE), then type EDIT 50 and press (EXECUTE) or (RETURN). The CRT changes to
EDIT mode, and the program appears again. This time, line 50 is in the current-line position.
Notice that the run light indicates that the program is paused. Change line 50 to WA IT. 2
and press (ENTER) or (RETURN). The new line 50 is entered, but the run light goes out.
Changing the program caused it to move from the paused state to the stopped state.

14. Press (CONTINUE). An error results. As mentioned earlier, a program can be viewed while it is
paused, but it cannot be changed. Once any program line has been changed, the program is
no longer paused, and CONTINUE is not allowed.

This simple demonstration covers most of the highlights of live keyboard, program states, and the
run light. The "waiting for input" indication can be seen when using the INPUT and LINPUT
statements described in Chapter 10, "Communicating with the Operator" . The "paused with
TRANSFER completing" indication is not described in this manual. It is a special state that results
from the use of overlapped I/O and is discussed in the BASIC Interfacing Techniques manual.

20 Entering, Running, and Storing Programs

Wholesale Program Editing
There are some commands which make is easy to do large amounts of program editing very
qUickly. Among these are commands to move blocks of text, copy blocks of text, replace occurr­
ences of one string with another string, find occurrences of a string, cross-reference the program,
selectively load and delete subprograms, and more. A detailed explanation of these commands
follows. Some commands require the PDEV or XREF extensions.

Moving Program Segments
Often during program development, you enter a section of code that performs some function,
thinking that this function will only be needed in that one place. Sure enough, a short time later you
find that you need it here and here, too. It becomes obvious that the section of code would be
much better as a subprogram. But how on earth do you move those thirty-five lines of code? You
certainly don't want to retype the whole thing. The non-programmable MOVELINES command is
made for just this type of problem. What you need to do is:

1. Go to the end of the program (after everything else) .

2. Enter the subprogram header (because you can't enter a SUB or DEF FN statement if there
are other statements following it).

3. Move the text from its old position to a line number greater than the line number of the SUB
or DEF FN statement you entered in Step 2.

4. Terminate the new subprogram with a SUBEND or FNEND.

5. Go back to the place where the code came from, and enter a line which invokes the new
subprogram.

Another situation in which MOVE LINES is very useful is in a large program which is developed
over a period of time. You eventually come to the point where it would be nice to have the
logically-connected subprograms together in their respective areas of the program. A typical exam­
ple follows.

Your program has these main functions:

• Load the data

• Edit the data

• Print a report

• Plot a graph

• Store the data

The Editing, Printing, and Plotting options may each have options of their own. You'd like the Load
subprogram to be followed by all the Edit subprograms, followed by all the Printing subprograms,
etc. The MOVELINES command is a tremendous aid in doing this; however, there is one
restriction: you cannot move a subprogram to a point where there would be lines of code after it.
That is, you cannot move a subprogram to a line number which is less than or equal to the largest
line number. Nevertheless, the same thing is accomplished by moving other things to the end of the
program. Say you have subprograms A, C, 0 , and B in that order, and you want them in A, B, C, 0
order. You'd like to move subprogram B to a position between A and C. You can't do this. But you
can do something else which amounts to the same thing: move both C and 0 to a point after B.

20 Entering, Running, and Storing Programs

Wholesale Program Editing
There are some commands which make is easy to do large amounts of program editing very
qUickly. Among these are commands to move blocks of text, copy blocks of text, replace occurr­
ences of one string with another string, find occurrences of a string, cross-reference the program,
selectively load and delete subprograms, and more. A detailed explanation of these commands
follows. Some commands require the PDEV or XREF extensions.

Moving Program Segments
Often during program development, you enter a section of code that performs some function,
thinking that this function will only be needed in that one place. Sure enough, a short time later you
find that you need it here and here, too. It becomes obvious that the section of code would be
much better as a subprogram. But how on earth do you move those thirty-five lines of code? You
certainly don't want to retype the whole thing. The non-programmable MOVELINES command is
made for just this type of problem. What you need to do is:

1. Go to the end of the program (after everything else) .

2. Enter the subprogram header (because you can't enter a SUB or DEF FN statement if there
are other statements following it).

3. Move the text from its old position to a line number greater than the line number of the SUB
or DEF FN statement you entered in Step 2.

4. Terminate the new subprogram with a SUBEND or FNEND.

5. Go back to the place where the code came from, and enter a line which invokes the new
subprogram.

Another situation in which MOVE LINES is very useful is in a large program which is developed
over a period of time. You eventually come to the point where it would be nice to have the
logically-connected subprograms together in their respective areas of the program. A typical exam­
ple follows.

Your program has these main functions:

• Load the data

• Edit the data

• Print a report

• Plot a graph

• Store the data

The Editing, Printing, and Plotting options may each have options of their own. You'd like the Load
subprogram to be followed by all the Edit subprograms, followed by all the Printing subprograms,
etc. The MOVELINES command is a tremendous aid in doing this; however, there is one
restriction: you cannot move a subprogram to a point where there would be lines of code after it.
That is, you cannot move a subprogram to a line number which is less than or equal to the largest
line number. Nevertheless, the same thing is accomplished by moving other things to the end of the
program. Say you have subprograms A, C, 0 , and B in that order, and you want them in A, B, C, 0
order. You'd like to move subprogram B to a position between A and C. You can't do this. But you
can do something else which amounts to the same thing: move both C and 0 to a point after B.

Entering, Running, and Storing Programs 21

Note that when dealing with entire subprograms with either MOVELINES or COPYLINES (discus­
sed next), any comments which occur after the SUBEND or FNEND must be moved/copied also.

This is a good way to insure that the many utility subprograms used by large programs can be found
in an extensive listing: put them in alphabetical order.

Copying Program Segments
The non-programmable COPYLINES command is similar to the MOVELINES command, except it
leaves the code in the old location also. This is desirable when you want a section of code that is
very similar, but not identical to a section of code you already have. (If it were identical, you'd
probably put it into a subprogram.) It is often easier to copy code and modify one version than to
type two separate, only slightly different, versions. Here is an example of where COPYLINES is
useful.

You are working in the Personnel department of your company, and you're writing a program
which will need to be run on several Series 200/300 computers. Most Series 200 and 300 compu­
ters have 80-column screens; however, the Model 226 has a 50-column screen, and the Model 237
and Series 300 machines with high-resolution displays have 128-column screens. This means that
the softkey labels must have different lengths. On the Model 226, they are eight characters long; on
the Model 216 and Model 236, they are fourteen characters long; and on the Model 237 and Series
300 high-resolution displays they are 16 characters long. In the section of code you're writing you'd
like the ON KEY labels to be as descriptive as possible; you want to use all fourteen characters if
you have them.

100 IF POS(SYSTEM$("CRT 1011) ,1150 II) THEN I 50-coluITl1'Is; s h 0 r t labels
110 ON KEY 1 LABEL "I.lAC SCHO" CALL t.J a cat ion _ s c h e d
120 ON KEY 2 LABEL "SICK Lt,)" CALL Sicf,_leal)e
130 ON KEY 3 LABEL "PAYROLL" CALL Pa)'rol l
laO ON KEY a LABEL "CROT UN" CALL Credit_union
150 ON KEY 5 LABEL "WRK HIST" CALL Wo rf,_histo ry
160 ELSE t 80-colufTlns; long labels
170 ON KEY 1 LABEL "t.JACATION SCHEO" CALL t.lacation_sched
180 ON KEY 2 LABEL "SICK LEAt.lE" CALL Sicf,_leal)e
190 ON KEY 3 LABEL "PAYROLL" CALL Payroll
200 ON KEY a LABEL "CREDIT UNION" CALL Credit_union
210 ON KEY 5 LABEL "WORK HISTORY" CALL Worf,_histon'
220 END IF

As you can tell by looking at this code, lines 170 through 210 are almost identical to lines 110
through 150. Therefore, copying those five lines to the new place and editing the key labels would
be much faster than retyping the entire line.

Search and Replace Operations
The non-programmable FIND command finds all the occurrences of a particular string in a prog­
ram. Suppose, for example, you have a variable called "Tax" in your program, and you want to
change it to either "State_tax" or "City_tax", but which one you change it to depends on the
context of the statement. A FIND command finds each occurrence of the string' 'Tax". Once there,
you can look at the statement and decide whether it should be changed to "State_tax" or "City_
tax".

Entering, Running, and Storing Programs 21

Note that when dealing with entire subprograms with either MOVELINES or COPYLINES (discus­
sed next), any comments which occur after the SUBEND or FNEND must be moved/copied also.

This is a good way to insure that the many utility subprograms used by large programs can be found
in an extensive listing: put them in alphabetical order.

Copying Program Segments
The non-programmable COPYLINES command is similar to the MOVELINES command, except it
leaves the code in the old location also. This is desirable when you want a section of code that is
very similar, but not identical to a section of code you already have. (If it were identical, you'd
probably put it into a subprogram.) It is often easier to copy code and modify one version than to
type two separate, only slightly different, versions. Here is an example of where COPYLINES is
useful.

You are working in the Personnel department of your company, and you're writing a program
which will need to be run on several Series 200/300 computers. Most Series 200 and 300 compu­
ters have 80-column screens; however, the Model 226 has a 50-column screen, and the Model 237
and Series 300 machines with high-resolution displays have 128-column screens. This means that
the softkey labels must have different lengths. On the Model 226, they are eight characters long; on
the Model 216 and Model 236, they are fourteen characters long; and on the Model 237 and Series
300 high-resolution displays they are 16 characters long. In the section of code you're writing you'd
like the ON KEY labels to be as descriptive as possible; you want to use all fourteen characters if
you have them.

100 IF POS(SYSTEM$("CRT 1011) ,1150 II) THEN I 50-coluITl1'Is; s h 0 r t labels
110 ON KEY 1 LABEL "I.lAC SCHO" CALL t.J a cat ion _ s c h e d
120 ON KEY 2 LABEL "SICK Lt,)" CALL Sicf,_leal)e
130 ON KEY 3 LABEL "PAYROLL" CALL Pa)'rol l
laO ON KEY a LABEL "CROT UN" CALL Credit_union
150 ON KEY 5 LABEL "WRK HIST" CALL Wo rf,_histo ry
160 ELSE t 80-colufTlns; long labels
170 ON KEY 1 LABEL "t.JACATION SCHEO" CALL t.lacation_sched
180 ON KEY 2 LABEL "SICK LEAt.lE" CALL Sicf,_leal)e
190 ON KEY 3 LABEL "PAYROLL" CALL Payroll
200 ON KEY a LABEL "CREDIT UNION" CALL Credit_union
210 ON KEY 5 LABEL "WORK HISTORY" CALL Worf,_histon'
220 END IF

As you can tell by looking at this code, lines 170 through 210 are almost identical to lines 110
through 150. Therefore, copying those five lines to the new place and editing the key labels would
be much faster than retyping the entire line.

Search and Replace Operations
The non-programmable FIND command finds all the occurrences of a particular string in a prog­
ram. Suppose, for example, you have a variable called "Tax" in your program, and you want to
change it to either "State_tax" or "City_tax", but which one you change it to depends on the
context of the statement. A FIND command finds each occurrence of the string' 'Tax". Once there,
you can look at the statement and decide whether it should be changed to "State_tax" or "City_
tax".

22 Entering, Running, and Storing Programs

When a program line has been found, just edit the line in the normal way and press (ENTER) or
(RETURN). If your change results in a syntax error, correct it and press (ENTER) or (RETURN) again;
the FIND is not cancelled. If you want to delete the line found, press (DEL LN); the line is deleted and
the FIND is immediately resumed. If you don't want to change the line, press (CONTINUE), and the
search resumes where it left off.

To cancel a search operation before it is finished, press CD, CD, or (EXECUTE).

Literal replacement is done with the non-programmable CHANGE command. CHANGE is like
FIND in that it looks through your program and finds occurrences of the specified string. However,
it also makes a tentative change that you can confirm by pressing (ENTER) or (RETURN), or deny by
pressing (CONTINUE). If you are positive that you don't need to verify each replacement, appending
; ALL will cause the search-and-replace to be done with no further user intervention.

Here is an example where you replace one variable name with two variable names: You discover,
to your dismay, that after writing twenty-five subprograms, all of which use a particular COM
statement, that you need another variable in the middle of that COM statement. The CHANGE
command just cries out to be used in this case. Say, for example, that your COM statement looks
like:

where P lot t e r _ isis the currently specified device selector for the plotter, P lot t e r _ 5 P e c $ is
the plotter specifier and P r i n t e r _ isis the device selector for the printer. You want to put
Ou III P _ d e v into the COM statement, right after the variable P lot teL 5 P e c $. Your CHANGE
command could look like this:

CHANGE l_spec$,Pri" TO "_spec$,OuII1P_de\) ,Pri" IN 1,32766

Note that the string you're changing from contains a comma. This helps narrow down the number
of occurrences that match the string selected and it is desirable for this reason: if you just changed
P lot t e r _ 5 P e c $ to P lot t e r _ 5 P e c $,0 U III P _ de \), the computer would change all the occurr­
ences you want to be changed, but it would also change many you don't want to change. In this
case, you would also cause all the places which either use or define P lot t e r _ 5 P e c $ to be
changed, even though you wouldn't want them to be. You would change

Plotter_spec$=IINTERNAL"

to

P lot t e r _ 5 P e c $,0 U ITl P _ d e \) = II I NT ERN A L II

and this, of course, would cause a syntax error. You will learn efficient ways to specify searches after
using the command several times.

To search the entire program, you could either go to the top of program memory with a (SHIFT)­
CD or use the line range of IN 1,32766. The former method is faster, and fewer keystrokes,
but if you need to stay in a particular place in memory in order to type a long search key, the latter
method is useful.

22 Entering, Running, and Storing Programs

When a program line has been found, just edit the line in the normal way and press (ENTER) or
(RETURN). If your change results in a syntax error, correct it and press (ENTER) or (RETURN) again;
the FIND is not cancelled. If you want to delete the line found, press (DEL LN); the line is deleted and
the FIND is immediately resumed. If you don't want to change the line, press (CONTINUE), and the
search resumes where it left off.

To cancel a search operation before it is finished, press CD, CD, or (EXECUTE).

Literal replacement is done with the non-programmable CHANGE command. CHANGE is like
FIND in that it looks through your program and finds occurrences of the specified string. However,
it also makes a tentative change that you can confirm by pressing (ENTER) or (RETURN), or deny by
pressing (CONTINUE). If you are positive that you don't need to verify each replacement, appending
; ALL will cause the search-and-replace to be done with no further user intervention.

Here is an example where you replace one variable name with two variable names: You discover,
to your dismay, that after writing twenty-five subprograms, all of which use a particular COM
statement, that you need another variable in the middle of that COM statement. The CHANGE
command just cries out to be used in this case. Say, for example, that your COM statement looks
like:

where P lot t e r _ isis the currently specified device selector for the plotter, P lot t e r _ 5 P e c $ is
the plotter specifier and P r i n t e r _ isis the device selector for the printer. You want to put
Ou III P _ d e v into the COM statement, right after the variable P lot teL 5 P e c $. Your CHANGE
command could look like this:

CHANGE l_spec$,Pri" TO "_spec$,OuII1P_de\) ,Pri" IN 1,32766

Note that the string you're changing from contains a comma. This helps narrow down the number
of occurrences that match the string selected and it is desirable for this reason: if you just changed
P lot t e r _ 5 P e c $ to P lot t e r _ 5 P e c $,0 U III P _ de \), the computer would change all the occurr­
ences you want to be changed, but it would also change many you don't want to change. In this
case, you would also cause all the places which either use or define P lot t e r _ 5 P e c $ to be
changed, even though you wouldn't want them to be. You would change

Plotter_spec$=IINTERNAL"

to

P lot t e r _ 5 P e c $,0 U ITl P _ d e \) = II I NT ERN A L II

and this, of course, would cause a syntax error. You will learn efficient ways to specify searches after
using the command several times.

To search the entire program, you could either go to the top of program memory with a (SHIFT)­
CD or use the line range of IN 1,32766. The former method is faster, and fewer keystrokes,
but if you need to stay in a particular place in memory in order to type a long search key, the latter
method is useful.

Entering, Running, and Storing Programs 23

Using Subprogram Libraries
Often, a programmer has a program which is quite large, along with sizable data arrays, and an
Err 0 r 2: MellI 0 r }' 0 l,l e r flo IAI becomes all too common an occurrence. And neither the prog­
ram nor the data can be reduced in any way. There are two keywords, LOADSUB and DELSUB

which address this problem. They are mentioned here because they are part of Entering, Running
and Storing Programs, which is the subject of this chapter, however, they are not necessary to get
started. This subject will be covered later.

See Chapter 6 "User-defined Functions and Subprograms" for a detailed discussion on subprog­
ram libraries.

Indenting
INDENT is a non-programmable command which scans the entire program and indents in
appropriate places. What is meant by "appropriate places" is this: Whenever there is the beginning
or end of a program statement which causes looping, is conditionally executed, or is a separate
program segment (subprogram), the first character of each program line contained in that seg­
ment-excluding the line number-is moved to the right or left to make the structure of the
program more intuitively obvious. For a list of how each kind of statement affects the indentation,
see the BASIC Language Reference manual.

An example dealing with the INDENT command's capabilities follows. This program is not to be
noted for its efficiency (or lack thereof-the conditions could better be checked with a SELECT
statement); it is merely for the purpose of demonstrating the INDENT command. The program is
shown after having been indented with various parameters. Notice how the indented structures
make it easier to understand the logic flow.

This example was indented with the command

INDENT 7,2

10 FOR 1=1 TO 5
20 REPEAT
30 INPUT "Hol.1 o ld are you?" .Age
40 Reasonable=1 I ASSUMe the y' re tellinl the truth •••
50 IF Age(O THEN
GOD I S P II A fAI, C I tTl an! Yo l.t can I t bell; Age; II }' ear 5 old. You got tab e b 0 r n !

70 Reasonable=O
80 ELSE
90 IF Ale) 120 THEN
100
110
120
130
140

DISP "Oh. pshal.1 1 I don ' t beliel,le you."
Reasonable=O

ELSE
IF Ale)100 THEN

DIS P "HrTIITI .. d' 0 u ' r e 1.1 ell nil h a f 0 s s i 1. huh?"
150 ELSE
lGO IF Ag e) GO THEN
170 DISP "Wow! Most people Your ale don 't use COMPuters Much."
180 ELSE
190 DISP "Glad to Meet you."
200 END IF
210 END IF
220 END IF
230 END IF
240 WAIT 4
250 UNTIL Reasonable
2GO DISP "You 1.lere";Ale*3G5. 242 198781 ;" da l's old on I' our las t birthda y ."
270 WAIT 3
280 NE >(J I
290 END

Entering, Running, and Storing Programs 23

Using Subprogram Libraries
Often, a programmer has a program which is quite large, along with sizable data arrays, and an
Err 0 r 2: MellI 0 r }' 0 l,l e r flo IAI becomes all too common an occurrence. And neither the prog­
ram nor the data can be reduced in any way. There are two keywords, LOADSUB and DELSUB

which address this problem. They are mentioned here because they are part of Entering, Running
and Storing Programs, which is the subject of this chapter, however, they are not necessary to get
started. This subject will be covered later.

See Chapter 6 "User-defined Functions and Subprograms" for a detailed discussion on subprog­
ram libraries.

Indenting
INDENT is a non-programmable command which scans the entire program and indents in
appropriate places. What is meant by "appropriate places" is this: Whenever there is the beginning
or end of a program statement which causes looping, is conditionally executed, or is a separate
program segment (subprogram), the first character of each program line contained in that seg­
ment-excluding the line number-is moved to the right or left to make the structure of the
program more intuitively obvious. For a list of how each kind of statement affects the indentation,
see the BASIC Language Reference manual.

An example dealing with the INDENT command's capabilities follows. This program is not to be
noted for its efficiency (or lack thereof-the conditions could better be checked with a SELECT
statement); it is merely for the purpose of demonstrating the INDENT command. The program is
shown after having been indented with various parameters. Notice how the indented structures
make it easier to understand the logic flow.

This example was indented with the command

INDENT 7,2

10 FOR 1=1 TO 5
20 REPEAT
30 INPUT "Hol.1 o ld are you?" .Age
40 Reasonable=1 I ASSUMe the y' re tellinl the truth •••
50 IF Age(O THEN
GOD I S P II A fAI, C I tTl an! Yo l.t can I t bell; Age; II }' ear 5 old. You got tab e b 0 r n !

70 Reasonable=O
80 ELSE
90 IF Ale) 120 THEN
100
110
120
130
140

DISP "Oh. pshal.1 1 I don ' t beliel,le you."
Reasonable=O

ELSE
IF Ale)100 THEN

DIS P "HrTIITI .. d' 0 u ' r e 1.1 ell nil h a f 0 s s i 1. huh?"
150 ELSE
lGO IF Ag e) GO THEN
170 DISP "Wow! Most people Your ale don 't use COMPuters Much."
180 ELSE
190 DISP "Glad to Meet you."
200 END IF
210 END IF
220 END IF
230 END IF
240 WAIT 4
250 UNTIL Reasonable
2GO DISP "You 1.lere";Ale*3G5. 242 198781 ;" da l's old on I' our las t birthda y ."
270 WAIT 3
280 NE >(J I
290 END

24 Entering, Running, and Storing Programs

And this example was indented with the command

INDENT 10,1

10 FOR 1=1 TO 5
20 REPEAT
30 I N PUT "H 0 'A' 0 1 dar e)' 0 u?" ,A 9 e
40 Reasonable=l ! AssuMe the r 're tel l ing t h e truth •••
50 IF Age(O THEN
GO DISP "A'A' , c'IIlon! You can ' t be "jAgej")'ears old. You gotta be born l

70
80
90
100
110
120
130
140
150
I GO
170
180

Reasonable=O
ELSE

IF A!le >120 THEN
DISP "Oh, psha'.J! I don't believe)' 01.1."

Reasonable=O
ELSE

IF Age >100 THEN
DISP "HMM ••• you ' re wel l nigh a fossil, huh?"

ELSE
IF Age >GO THEN

DISP "WO'A'! Most people your age don't use COIIIPuters illuch."
ELSE

190 DIS P "G 1 ad to ITI e e t r 0 '.1. "

200 END IF
210 END IF
220 END IF
230 END IF
240 WAIT 4
250 UNTIL Reasonable
2GO DISP "You 'A'ere"jAge*3G5.242198781j"da)' s old on)'our last birthda)'."
270 WAIT 3
280 NE)-n I
2 90 END

If one generalizes from the previous examples, the question arises: "What happens if the indented
code goes completely off the right edge of the screen?" There are two ways that this could
happen: either the starting column parameter is too large, or the number of nesting levels is too
great for the specified indentation increment. If, for either of these two reasons, a line of code gets
longer than the listable length of the machine, an asterisk (*) is placed immediately after the line
number of that line, and the right end of the line is not visible.

To correct a problem of program lines longer than the listable length of the machine, execute
another INDENT statement whose parameters are smaller.

A program which contains lines longer than 256 characters still executes, STOREs and LOADs
properly, but if you SAVE the program without correcting the problem, it will not syntax properly
when you do a GET operation. What is sent to the file is the line number, the asterisk, and as much
of the program line as possible. The asterisk will prevent the proper syntaxing of the statement
when the GET is attempted, in addition to the fact that part of the statement is missing.

Note that you can create a program on one model computer using the maximum line length and
then get that program and run it on a model with a smaller CRT. You cannot, however, modify any
program line which is longer than the maximum length for the current CRT without shortening it.

24 Entering, Running, and Storing Programs

And this example was indented with the command

INDENT 10,1

10 FOR 1=1 TO 5
20 REPEAT
30 I N PUT "H 0 'A' 0 1 dar e)' 0 u?" ,A 9 e
40 Reasonable=l ! AssuMe the r 're tel l ing t h e truth •••
50 IF Age(O THEN
GO DISP "A'A' , c'IIlon! You can ' t be "jAgej")'ears old. You gotta be born l

70
80
90
100
110
120
130
140
150
I GO
170
180

Reasonable=O
ELSE

IF A!le >120 THEN
DISP "Oh, psha'.J! I don't believe)' 01.1."

Reasonable=O
ELSE

IF Age >100 THEN
DISP "HMM ••• you ' re wel l nigh a fossil, huh?"

ELSE
IF Age >GO THEN

DISP "WO'A'! Most people your age don't use COIIIPuters illuch."
ELSE

190 DIS P "G 1 ad to ITI e e t r 0 '.1. "

200 END IF
210 END IF
220 END IF
230 END IF
240 WAIT 4
250 UNTIL Reasonable
2GO DISP "You 'A'ere"jAge*3G5.242198781j"da)' s old on)'our last birthda)'."
270 WAIT 3
280 NE)-n I
2 90 END

If one generalizes from the previous examples, the question arises: "What happens if the indented
code goes completely off the right edge of the screen?" There are two ways that this could
happen: either the starting column parameter is too large, or the number of nesting levels is too
great for the specified indentation increment. If, for either of these two reasons, a line of code gets
longer than the listable length of the machine, an asterisk (*) is placed immediately after the line
number of that line, and the right end of the line is not visible.

To correct a problem of program lines longer than the listable length of the machine, execute
another INDENT statement whose parameters are smaller.

A program which contains lines longer than 256 characters still executes, STOREs and LOADs
properly, but if you SAVE the program without correcting the problem, it will not syntax properly
when you do a GET operation. What is sent to the file is the line number, the asterisk, and as much
of the program line as possible. The asterisk will prevent the proper syntaxing of the statement
when the GET is attempted, in addition to the fact that part of the statement is missing.

Note that you can create a program on one model computer using the maximum line length and
then get that program and run it on a model with a smaller CRT. You cannot, however, modify any
program line which is longer than the maximum length for the current CRT without shortening it.

Entering, Running, and Storing Programs 25

When indentation parameters attempt to force program statements to start too far to the right, they
are bounded by the width of the screen minus eight characters. That is, the first character of a
program line (excluding the line number) will never start to the right of the screen width - 8. When
this is attempted, there may be several lines of code (which should differ in indentation) starting in
column screen width - 8. Therefore, until the nesting level gets back down to a manageable point,
indentation will be disabled. Note, however, that an internal indentation counter is maintained, so
statements at the same nesting level will continue to have matching indentation. See the example
below which was indented with the command

INDENT 10 ti5

Note that this was done on a machine with an eighty-column screen. Had it been done on a Model
226, with its fifty-column screen, the right-hand limit would have been reached more qUickly.

10 FOR 1=1 TO 5
20 REPEAT
30
lIO

INPUT " Hol,1 old are }' ou?" .Age
Reasonable=1 1 Assume the y 're telling the

truth • ••
50
60

IF Age <O THEN

t bell; A 9 e ; 11 " ear sol d t Yo IJ 90 t tab e bar n ! I'
70
80
90
100
shall,!! I don ' t beliel,le >' Qu. 1I

ELSE

DIS P 11 AlAI, C I rll 0 n ! You can I

Reasonable=O

IF Age >120 THEN
DISP "Oh. p

110 Reasonable=
o
120
130
THEN

ELSE
IF Age >100

ll10 DISP "HrTlIrt
t tt Y 0 U I re IAt ell n i 9 h a f ass i 1 f h t.l h? 11

150 ELSE
160 IF Age >60

THEN
170

Most people Your age don ' t use computers much."
180
190
d t a jTl e e t , 'Q U t II

DISP "WO~I

ELSE
DISP "Gla

200 END IF
210 END IF
220 END IF
230 END IF
2110 WAIT II
250
260

birthda y ,!!
27 0
280 NE){T I
290 END

UNTIL Reasonable
DISP "You 1,lere"jAge*365.2l12198781j"da)'s old on }' Ol.lr last

WAIT 3

Observe that there are several lines (140 and 160 through 200) which should be indented farther to
the right. But since the column position of the screen width minus eight is the boundary on the right
edge, they are not permitted to go as far right as they "should." Note, however, that indentation
recovers and is still correct after the point at which they attempt to exceed the right-hand limit.

Entering, Running, and Storing Programs 25

When indentation parameters attempt to force program statements to start too far to the right, they
are bounded by the width of the screen minus eight characters. That is, the first character of a
program line (excluding the line number) will never start to the right of the screen width - 8. When
this is attempted, there may be several lines of code (which should differ in indentation) starting in
column screen width - 8. Therefore, until the nesting level gets back down to a manageable point,
indentation will be disabled. Note, however, that an internal indentation counter is maintained, so
statements at the same nesting level will continue to have matching indentation. See the example
below which was indented with the command

INDENT 10 ti5

Note that this was done on a machine with an eighty-column screen. Had it been done on a Model
226, with its fifty-column screen, the right-hand limit would have been reached more qUickly.

10 FOR 1=1 TO 5
20 REPEAT
30
lIO

INPUT " Hol,1 old are }' ou?" .Age
Reasonable=1 1 Assume the y 're telling the

truth • ••
50
60

IF Age <O THEN

t bell; A 9 e ; 11 " ear sol d t Yo IJ 90 t tab e bar n ! I'
70
80
90
100
shall,!! I don ' t beliel,le >' Qu. 1I

ELSE

DIS P 11 AlAI, C I rll 0 n ! You can I

Reasonable=O

IF Age >120 THEN
DISP "Oh. p

110 Reasonable=
o
120
130
THEN

ELSE
IF Age >100

ll10 DISP "HrTlIrt
t tt Y 0 U I re IAt ell n i 9 h a f ass i 1 f h t.l h? 11

150 ELSE
160 IF Age >60

THEN
170

Most people Your age don ' t use computers much."
180
190
d t a jTl e e t , 'Q U t II

DISP "WO~I

ELSE
DISP "Gla

200 END IF
210 END IF
220 END IF
230 END IF
2110 WAIT II
250
260

birthda y ,!!
27 0
280 NE){T I
290 END

UNTIL Reasonable
DISP "You 1,lere"jAge*365.2l12198781j"da)'s old on }' Ol.lr last

WAIT 3

Observe that there are several lines (140 and 160 through 200) which should be indented farther to
the right. But since the column position of the screen width minus eight is the boundary on the right
edge, they are not permitted to go as far right as they "should." Note, however, that indentation
recovers and is still correct after the point at which they attempt to exceed the right-hand limit.

26 Entering, Running, and Storing Programs

Cross-references
The non-programmable XREF command prints a cross-reference listing on the device of your
choice. You can get a cross-reference listing for everything in memory, or just a selected subpro­
gram. The uses for a cross-reference listing are many. Here are a few of its uses.

When debugging a program, something goes wrong and you haven't a clue as to what it is, a
cross-reference is useful because it lists variable names in alphabetical order. If you've misspelled a
variable name somewhere, it can throw the program into a tizzy in a very subtle (hard-to-find) way.
If you've narrowed the problem down to one subprogram, (R e po r t _1, for example) you could
execute

The computer will print a cross-reference listing for the subprogram Rep 0 r t _ 1, and, among other
things, would list the variable names. Be especially careful about variable names that are different
but still are perfectly reasonable variable names. For example,)-(\.! e 1 0 cit}' and)-(_ \.! e 1 0 cit y.
Obviously, changing one would have no effect on the other.

Example
Here is an example of a cross-reference listing dealing with the little program in the section called
"Defining Typing-Aids Files Programmatically" at the end of this chapter.

»» Cross Reference ««

* Numeric Variables

* Strin~ Variables
Key_t.Jalue$

* liD Path Names
@Keys

Unused entries 7

GO 80
30 <:-DEF

20 <:-DEF

50 80

70 80

70 80

100

This is not an exhaustive list of the XREF outputs, since there were no common blocks, subprogram
calls, line labels, etc., but it gives an idea of the general format of a cross-reference listing. Note the
<: - DE F which appears in some of the line number lists. This appears when:

• The identifier is a variable in a formal parameter list; i.e., in a SUB or DEF FN statement,

• The identifier is a variable declared in a COM, DIM, REAL, or INTEGER statement, or

• The identifier is a line label for that line.

The number entitled "Unused entries" deals with the internal workings of the system. It tells how
many symbol table entries are available for which space has already been made, but which are not
currently defined. Prerun will convert unreferenced symbol table entries (entries which are defined,
but not used in the program) into unused entries. Unreferenced entries can arise because you
changed your mind about a variable name or corrected a typing error. They can also arise in the
syntaxing of some statements where a numeric variable is entered which turns out to be a line label
or a subprogram name. Also, REN can cause line numbers to merge if you have unsatisfied line
number references. This shows up in the cross-reference as separate (but adjacent) entries for the
multiple symbol table entries for the line number.

26 Entering, Running, and Storing Programs

Cross-references
The non-programmable XREF command prints a cross-reference listing on the device of your
choice. You can get a cross-reference listing for everything in memory, or just a selected subpro­
gram. The uses for a cross-reference listing are many. Here are a few of its uses.

When debugging a program, something goes wrong and you haven't a clue as to what it is, a
cross-reference is useful because it lists variable names in alphabetical order. If you've misspelled a
variable name somewhere, it can throw the program into a tizzy in a very subtle (hard-to-find) way.
If you've narrowed the problem down to one subprogram, (R e po r t _1, for example) you could
execute

The computer will print a cross-reference listing for the subprogram Rep 0 r t _ 1, and, among other
things, would list the variable names. Be especially careful about variable names that are different
but still are perfectly reasonable variable names. For example,)-(\.! e 1 0 cit}' and)-(_ \.! e 1 0 cit y.
Obviously, changing one would have no effect on the other.

Example
Here is an example of a cross-reference listing dealing with the little program in the section called
"Defining Typing-Aids Files Programmatically" at the end of this chapter.

»» Cross Reference ««

* Numeric Variables

* Strin~ Variables
Key_t.Jalue$

* liD Path Names
@Keys

Unused entries 7

GO 80
30 <:-DEF

20 <:-DEF

50 80

70 80

70 80

100

This is not an exhaustive list of the XREF outputs, since there were no common blocks, subprogram
calls, line labels, etc., but it gives an idea of the general format of a cross-reference listing. Note the
<: - DE F which appears in some of the line number lists. This appears when:

• The identifier is a variable in a formal parameter list; i.e., in a SUB or DEF FN statement,

• The identifier is a variable declared in a COM, DIM, REAL, or INTEGER statement, or

• The identifier is a line label for that line.

The number entitled "Unused entries" deals with the internal workings of the system. It tells how
many symbol table entries are available for which space has already been made, but which are not
currently defined. Prerun will convert unreferenced symbol table entries (entries which are defined,
but not used in the program) into unused entries. Unreferenced entries can arise because you
changed your mind about a variable name or corrected a typing error. They can also arise in the
syntaxing of some statements where a numeric variable is entered which turns out to be a line label
or a subprogram name. Also, REN can cause line numbers to merge if you have unsatisfied line
number references. This shows up in the cross-reference as separate (but adjacent) entries for the
multiple symbol table entries for the line number.

Entering, Running, and Storing Programs 2 7

Another way of using a cross-reference listing is when you need to find every place a particular
variable name is used, but the computer (and therefore the FIND command) is not available. It is
often advisable to get a cross-reference listing at the end of a hard-copy program listing, especially
if it is a large program. In this way, finding each occurrence of a variable is made easier.

Program Storage and Retrieval
The previous sections in this chapter have shown how to enter, edit, and run a program. The next
logical step is to save the program for future use or further developement. Mass storage devices can
be used to keep programs or data. The operations required to keep programs are simple. Record­
ing data requires a greater understanding of mass storage operations and is described in Chapter 7
"Data Storage and Retrieval".

Find a Usable Volume
The exact procedure for storing and retrieving programs depends upon the type of mass storage
deVice" you are using. Your Series 200 computer may have an internaI5.25-inch disc drive, an SRM
system, or one of the many external disc drives that are compatable with your system.

All mass storage operations, including program storage, require a properly initialized volume. With
5.25-inch discs, one disc contains one volume. With SRM, there are many volumes on-line, and a
directory can be thought of as a volume. Some external disc drives have one volume per disc, and
others have multiple volumes on a disc. In BASIC, volumes are specified by using a mass storage
unit specifier. This is a string expression which tells the computer where to look for the desired
volume. Mass storage unit specifiers (msus) are discussed in detail in Chapter 7. Most mass storage
operations will use a default msus if you do not include one in your mass storage statement.

One easy way to see if a mass storage volume has been properly initialized is to execute a CAT
command for that volume. A CAT command displays the contents of a volume's directory. To see
the directory of the default mass storage device, execute:

CAT

If the CRT displays a catalog listing, then you are looking at the directory of the default mass storage
volume. Therefore, that volume is properly initialized and can be used for program storage. If you
get an Error 80, then there is no disc in the default disc drive, or the disc has not been inserted
properly. If you get a different error number, then some other problem is indicated. It is beyond the
scope of this introductory section to explain all possible mass storage errors. If you get an error,
there are several things you might want to do, depending upon your situation.

• Be sure the appropriate driver BINs have been loaded.

• If the error is caused by a missing disc or improperly inserted disc, you can correct the error by
inserting a disc properly.

• If the error is caused by a disc that is uninitialized or improperly initialized (typically errors 78,
84, or 85) , you can execute an INITIALIZE command. Refer to Chapter 7 or the BASIC
Language Reference if you are not familiar with this command. Be careful! When you initialize
a disc, all data on the disc is destroyed.

Entering, Running, and Storing Programs 2 7

Another way of using a cross-reference listing is when you need to find every place a particular
variable name is used, but the computer (and therefore the FIND command) is not available. It is
often advisable to get a cross-reference listing at the end of a hard-copy program listing, especially
if it is a large program. In this way, finding each occurrence of a variable is made easier.

Program Storage and Retrieval
The previous sections in this chapter have shown how to enter, edit, and run a program. The next
logical step is to save the program for future use or further developement. Mass storage devices can
be used to keep programs or data. The operations required to keep programs are simple. Record­
ing data requires a greater understanding of mass storage operations and is described in Chapter 7
"Data Storage and Retrieval".

Find a Usable Volume
The exact procedure for storing and retrieving programs depends upon the type of mass storage
deVice" you are using. Your Series 200 computer may have an internaI5.25-inch disc drive, an SRM
system, or one of the many external disc drives that are compatable with your system.

All mass storage operations, including program storage, require a properly initialized volume. With
5.25-inch discs, one disc contains one volume. With SRM, there are many volumes on-line, and a
directory can be thought of as a volume. Some external disc drives have one volume per disc, and
others have multiple volumes on a disc. In BASIC, volumes are specified by using a mass storage
unit specifier. This is a string expression which tells the computer where to look for the desired
volume. Mass storage unit specifiers (msus) are discussed in detail in Chapter 7. Most mass storage
operations will use a default msus if you do not include one in your mass storage statement.

One easy way to see if a mass storage volume has been properly initialized is to execute a CAT
command for that volume. A CAT command displays the contents of a volume's directory. To see
the directory of the default mass storage device, execute:

CAT

If the CRT displays a catalog listing, then you are looking at the directory of the default mass storage
volume. Therefore, that volume is properly initialized and can be used for program storage. If you
get an Error 80, then there is no disc in the default disc drive, or the disc has not been inserted
properly. If you get a different error number, then some other problem is indicated. It is beyond the
scope of this introductory section to explain all possible mass storage errors. If you get an error,
there are several things you might want to do, depending upon your situation.

• Be sure the appropriate driver BINs have been loaded.

• If the error is caused by a missing disc or improperly inserted disc, you can correct the error by
inserting a disc properly.

• If the error is caused by a disc that is uninitialized or improperly initialized (typically errors 78,
84, or 85) , you can execute an INITIALIZE command. Refer to Chapter 7 or the BASIC
Language Reference if you are not familiar with this command. Be careful! When you initialize
a disc, all data on the disc is destroyed.

28 Entering, Running, and Storing Programs

• The error might have occurred because you couldn't (or didn't want to) use the default
volume. To be sure that your mass storage system is configured properly, refer to the appropri­
ate manual, for example, the SRM manual, the disc drive manual, or the operating manual for
your computer. To specify a different volume to be the default volume, use the MASS STOR­
AGE IS command. (Refer to Chapter 7 or the BASIC Language Reference.)

• If you have determined that the error is caused by a hardware failure, then call your local HP
Sales and Service Office and describe the error message and the system configuration.

Recording a Program
To record a program, you can use a SAVE or STORE command with a suitable file name. A file
name is the identifier that is stored in the disc's directory and used to access the program. When
recording a program, it is logical to use the program name as the file name. Series 200 computers
permit a maximum of ten characters in a file name. Those characters can be any uppercase or
lowercase letters (including foreign characters), the numerals 0 thru 9, and the underbar (_)
character. 1

Either the SAVE or STORE operation can be used to record a program. There is no "right" or
"wrong" choice; your choice depends upon the type of file you want. If you aren't sure what kind
of file you want, use STORE. You can always LOAD the program and create another file type later
if you have that need.

If a SAVE command is used, the actual text of the program is recorded in an ASCII file. If a STORE
command is used, an internal representation of the program is recorded in a PROG file. The main
advantage of an ASCII file is that it can be read as data by another program or any LIF-compatible2

device (such as an HP 2642 disc-based terminal). The main advantage of a PROG file is rapid
access. The following table gives a brief summary of the differences between SAVE and STORE.
Note that this table uses the typical performance of a Model 226 internal drive as a basis for
comparison. The actual speed of external devices will be different from that shown, but similar
relationships will exist.

File type created:
Retrieved by:
Approximate storage speed:
Approximate retrieval speed:
Can file be read as data?
LIF compatible file?
Arbitrary program segments allowed?

SAVE

ASCII
GET

900 bytes/s
300 bytes/s3

Yes
Yes
Yes

STORE

PROG
LOAD

13k bytes/s4

14k bytes/s4

No
No
No

1 If you want an LlF-compatible file name, you must restrict the characters to uppercase English letters and the numerals 0 thru 9. Also, the first
character must be a letter.

2 " LlF" stands for " Logical Interchange Format". This is an HP standard for the format of the directory and files on a mass storage device .

3 The retrieval speed for GET is very data -dependent. It c~ n vary from 20 bytes!s to 600 bytes!s (and maybe beyond those limits) according to
the contents of the file and the syntax checking required to enter the lines into program memory.

4 The speeds for LOAD and STORE are approximate for an interleave of one. Interleave factors greater than one will cause a corresponding
decrease in speed.

28 Entering, Running, and Storing Programs

• The error might have occurred because you couldn't (or didn't want to) use the default
volume. To be sure that your mass storage system is configured properly, refer to the appropri­
ate manual, for example, the SRM manual, the disc drive manual, or the operating manual for
your computer. To specify a different volume to be the default volume, use the MASS STOR­
AGE IS command. (Refer to Chapter 7 or the BASIC Language Reference.)

• If you have determined that the error is caused by a hardware failure, then call your local HP
Sales and Service Office and describe the error message and the system configuration.

Recording a Program
To record a program, you can use a SAVE or STORE command with a suitable file name. A file
name is the identifier that is stored in the disc's directory and used to access the program. When
recording a program, it is logical to use the program name as the file name. Series 200 computers
permit a maximum of ten characters in a file name. Those characters can be any uppercase or
lowercase letters (including foreign characters), the numerals 0 thru 9, and the underbar (_)
character. 1

Either the SAVE or STORE operation can be used to record a program. There is no "right" or
"wrong" choice; your choice depends upon the type of file you want. If you aren't sure what kind
of file you want, use STORE. You can always LOAD the program and create another file type later
if you have that need.

If a SAVE command is used, the actual text of the program is recorded in an ASCII file. If a STORE
command is used, an internal representation of the program is recorded in a PROG file. The main
advantage of an ASCII file is that it can be read as data by another program or any LIF-compatible2

device (such as an HP 2642 disc-based terminal). The main advantage of a PROG file is rapid
access. The following table gives a brief summary of the differences between SAVE and STORE.
Note that this table uses the typical performance of a Model 226 internal drive as a basis for
comparison. The actual speed of external devices will be different from that shown, but similar
relationships will exist.

File type created:
Retrieved by:
Approximate storage speed:
Approximate retrieval speed:
Can file be read as data?
LIF compatible file?
Arbitrary program segments allowed?

SAVE

ASCII
GET

900 bytes/s
300 bytes/s3

Yes
Yes
Yes

STORE

PROG
LOAD

13k bytes/s4

14k bytes/s4

No
No
No

1 If you want an LlF-compatible file name, you must restrict the characters to uppercase English letters and the numerals 0 thru 9. Also, the first
character must be a letter.

2 " LlF" stands for " Logical Interchange Format". This is an HP standard for the format of the directory and files on a mass storage device .

3 The retrieval speed for GET is very data -dependent. It c~ n vary from 20 bytes!s to 600 bytes!s (and maybe beyond those limits) according to
the contents of the file and the syntax checking required to enter the lines into program memory.

4 The speeds for LOAD and STORE are approximate for an interleave of one. Interleave factors greater than one will cause a corresponding
decrease in speed.

Entering, Running, and Storing Programs 29

To STORE a program, simply insert an initialized disc, type the keyword STORE followed by a file
name, and press (EXECUTE) or (RETURN) . For example, the command to create a program file
called "Mortage" is:

STORE " Mortase"

If you should happen to get an error 54, that means that there is already a file on the disc with the
name you are using. In this event, you have three choices. First, pick a different name that doesn't
already exist. To determine which file names are already being used, execute a CAT command.
Second, you may want to replace the existing file with a new one (like when you are updating
program files with new, improved versions). To replace an existing file a RE-STORE command is
used. For example, the command to replace a program file called "BEAMS" is:

RE-STORE "BEAMS"

Note that the hyphen must be used in the RE-STORE statement. (RESTORE without a hyphen is
used for an entirely different operation described in Chapter 7.) The third choice is to PURGE the
old file , then STORE the new one.

Before a program is run, the computer goes through an operation called "prerun. " This creates the
symbol table and other information tables. These tables can be stored onto the PROG file created
by the STORE command. To make sure these tables exist before you STORE the program, press
(STEP). This will do the prerun processing and pause before executing the first line of code. Now
STORE the program, and the newly-created internal information tables are stored along with the
program. Whenever the program is loaded, the symbol table already exists and does not need to be
re-created. In a very large program, prerun processing could take several seconds. You can insulate
your users from this delay by prerunning your programs before you store them.

The SAVE procedure is similar, with one exception. The SAVE statement allows line identifiers that
specify what portion of the program you want to save. This is especially helpful when moving or
appending program segments during major editing operations. Here are some examples of using
the SAVE statement. To save all of a program in an ASCII file called "WHALES", execute the
following command:

SAl.!E " WHALES "

The next command saves the last part of a program, from line 500 to the end, in an ASCII file called
"TEMP".

SA l.!E "TEMP" ,50 0

When both the starting and ending lines are specified, any arbitrary portion of a program can be
saved. Executing the command

SA'.!E " sort_co d e" , So r t , Printout

saves that portion of a program that is between the lines labeled "Sort" and "Printout" (inclusive)
in an ASCII file called "sorLcode" .

There is also a RE-SAVE statement that allows an existing file to be replaced by a newly created file
with the same name. For example, to update an ASCII file called "Analysis" with a new version of
the program, the following command would be used:

RE-SA '.!E "Anah'sis"

Entering, Running, and Storing Programs 29

To STORE a program, simply insert an initialized disc, type the keyword STORE followed by a file
name, and press (EXECUTE) or (RETURN) . For example, the command to create a program file
called "Mortage" is:

STORE " Mortase"

If you should happen to get an error 54, that means that there is already a file on the disc with the
name you are using. In this event, you have three choices. First, pick a different name that doesn't
already exist. To determine which file names are already being used, execute a CAT command.
Second, you may want to replace the existing file with a new one (like when you are updating
program files with new, improved versions). To replace an existing file a RE-STORE command is
used. For example, the command to replace a program file called "BEAMS" is:

RE-STORE "BEAMS"

Note that the hyphen must be used in the RE-STORE statement. (RESTORE without a hyphen is
used for an entirely different operation described in Chapter 7.) The third choice is to PURGE the
old file , then STORE the new one.

Before a program is run, the computer goes through an operation called "prerun. " This creates the
symbol table and other information tables. These tables can be stored onto the PROG file created
by the STORE command. To make sure these tables exist before you STORE the program, press
(STEP). This will do the prerun processing and pause before executing the first line of code. Now
STORE the program, and the newly-created internal information tables are stored along with the
program. Whenever the program is loaded, the symbol table already exists and does not need to be
re-created. In a very large program, prerun processing could take several seconds. You can insulate
your users from this delay by prerunning your programs before you store them.

The SAVE procedure is similar, with one exception. The SAVE statement allows line identifiers that
specify what portion of the program you want to save. This is especially helpful when moving or
appending program segments during major editing operations. Here are some examples of using
the SAVE statement. To save all of a program in an ASCII file called "WHALES", execute the
following command:

SAl.!E " WHALES "

The next command saves the last part of a program, from line 500 to the end, in an ASCII file called
"TEMP".

SA l.!E "TEMP" ,50 0

When both the starting and ending lines are specified, any arbitrary portion of a program can be
saved. Executing the command

SA'.!E " sort_co d e" , So r t , Printout

saves that portion of a program that is between the lines labeled "Sort" and "Printout" (inclusive)
in an ASCII file called "sorLcode" .

There is also a RE-SAVE statement that allows an existing file to be replaced by a newly created file
with the same name. For example, to update an ASCII file called "Analysis" with a new version of
the program, the following command would be used:

RE-SA '.!E "Anah'sis"

30 Entering, Running, and Storing Programs

Retrieving a Program
Programs saved in an ASCII file are retrieved with the GET statement. Programs stored in a PROG
file are retrieved with the LOAD statement. These statements can be executed from the keyboard
as commands or included in a program. When executed as commands, they are used to bring a
program into the computer's memory so that it can be edited or run. When included in a program,
they are used to link together the segments of large programs.

To retrieve a program you need to know the name and type of the file in which it is stored. If you
are not sure of either of these, execute a CAT command. The catalog display shows the name and
type of all files on the disc. The options available for ASCII files are discussed first.

Using GET as a Command
The GET command is used to bring in programs or program segments from an ASCII file, with the
options of appending them to an existing program and/or beginning program execution at a
specified line. To clear any existing program from the computer's memory and bring in the contents
of an ASCII file , the command is simply the keyword GET followed by the file name. For example:

GET "FORMU LA"

This command clears the BASIC program memory and brings in the contents of the ASCII file
called "FORMULA", assuming that the file contains valid program lines. If the first line does not
start with a valid line number, the GET is not performed and an error 68 is reported. If the file is not
an ASCII file, the GET is not performed and an error 58 is reported.

Assuming that the file contains valid program lines that were placed in the file by a SAVE operation,
and their line numbers are still valid after any renumbering that is specified, the lines will be entered
into program memory. If there is a syntax error in any of the program lines in the file , the lines in
error are turned into comments, an error 68 is reported, and the syntax error message is sent to the
system printer. This might happen if the program was written and saved on a computer that had a
different version of BASIC than the one being used for the GET operation.

To append the contents of an ASCII file to an existing program, a line identifier is added to the GET
command. For example, assume that there is a program already in the computer that ends with line
number 740, and you want to append the contents of a file called "George" . The following
command could be used.

GET "Geo r9"e" t750

This appends the program lines from file "George" to the existing program, renumbering them to
start with line number 750. If the command GET "G eo r 9" e" t 100 were used in the same situa­
tion, all existing program lines from 100 to the end of the program in memory would be deleted and
the contents of file "George" would be appended to the lines that remained at the beginning of the
program. The program lines in file "George" would be renumbered to start with line 100.

Sometimes it is not possible to enter a line into the program. This can happen, for example, if the
specified renumbering would create an invalid line number. In these cases, the line in error is sent to
the system printer with an error message, but it is not entered into program memory.

30 Entering, Running, and Storing Programs

Retrieving a Program
Programs saved in an ASCII file are retrieved with the GET statement. Programs stored in a PROG
file are retrieved with the LOAD statement. These statements can be executed from the keyboard
as commands or included in a program. When executed as commands, they are used to bring a
program into the computer's memory so that it can be edited or run. When included in a program,
they are used to link together the segments of large programs.

To retrieve a program you need to know the name and type of the file in which it is stored. If you
are not sure of either of these, execute a CAT command. The catalog display shows the name and
type of all files on the disc. The options available for ASCII files are discussed first.

Using GET as a Command
The GET command is used to bring in programs or program segments from an ASCII file, with the
options of appending them to an existing program and/or beginning program execution at a
specified line. To clear any existing program from the computer's memory and bring in the contents
of an ASCII file , the command is simply the keyword GET followed by the file name. For example:

GET "FORMU LA"

This command clears the BASIC program memory and brings in the contents of the ASCII file
called "FORMULA", assuming that the file contains valid program lines. If the first line does not
start with a valid line number, the GET is not performed and an error 68 is reported. If the file is not
an ASCII file, the GET is not performed and an error 58 is reported.

Assuming that the file contains valid program lines that were placed in the file by a SAVE operation,
and their line numbers are still valid after any renumbering that is specified, the lines will be entered
into program memory. If there is a syntax error in any of the program lines in the file , the lines in
error are turned into comments, an error 68 is reported, and the syntax error message is sent to the
system printer. This might happen if the program was written and saved on a computer that had a
different version of BASIC than the one being used for the GET operation.

To append the contents of an ASCII file to an existing program, a line identifier is added to the GET
command. For example, assume that there is a program already in the computer that ends with line
number 740, and you want to append the contents of a file called "George" . The following
command could be used.

GET "Geo r9"e" t750

This appends the program lines from file "George" to the existing program, renumbering them to
start with line number 750. If the command GET "G eo r 9" e" t 100 were used in the same situa­
tion, all existing program lines from 100 to the end of the program in memory would be deleted and
the contents of file "George" would be appended to the lines that remained at the beginning of the
program. The program lines in file "George" would be renumbered to start with line 100.

Sometimes it is not possible to enter a line into the program. This can happen, for example, if the
specified renumbering would create an invalid line number. In these cases, the line in error is sent to
the system printer with an error message, but it is not entered into program memory.

Entering, Running, and Storing Programs 31

The GET command can also specify that program execution is to begin. This is done by adding two
line identifiers: one specifies the placement and renumbering just described, and the other specifies
the line at which execution is to begin. For example, assume that there is no program in memory
and that an ASCII file "RATES" contains valid program lines. A typical command to bring the
contents of this file into memory and begin execution at the first line is:

GET "RATES",10,10

If there is already a program in memory, an append and run is allowed. For example:

GET "RATES" ,250,100

This command specifies that any existing lines from 250 to the end are to be deleted, the contents
of file "RATES" is to be renumbered and appended beginning at line 250, and then normal
program execution is to begin at line 100. Although any combination of line identifiers is allowed,
the line specified as the start of execution must be in the main program segment (not in a SUB or
user-defined function). Execution will not begin if there was an error during the GET operation.

Using GET in a Program Line
The GET statement can be used in a program to transfer execution from one program segment to
another. When used in a program line, the actions of the GET statement are the same as those
described for the GET command, except as noted in the following paragraphs. Two examples of a
programmed GET are shown here. One demonstrates a simple linkage of two program segments,
as might occur when the entire program is too long to fit in memory. The second shows a simple
example of keeping a file manager in memory to GET and run various routines.

A large program can be divided into smaller segments that are connected by using a GET statement
to move from one to the next. The following short example shows this technique.

First Program Segment:

10 COM OhfllS ,AfllPS ,1.Jolts

200hfTls=120

30 1•Jolts=240

40 AMPs=Volts/OhMs

50 GET "IAlattage"

60 END

File "wattage":

10 COM OhfllS ,AfllPS ,1.Jolts

20 Watts=AMPs*Volts
30 PRINT "Resistor OhfllS ="jOhfllS

40 PRINT "Resistor Wattage =" j Watts

50 END

Entering, Running, and Storing Programs 31

The GET command can also specify that program execution is to begin. This is done by adding two
line identifiers: one specifies the placement and renumbering just described, and the other specifies
the line at which execution is to begin. For example, assume that there is no program in memory
and that an ASCII file "RATES" contains valid program lines. A typical command to bring the
contents of this file into memory and begin execution at the first line is:

GET "RATES",10,10

If there is already a program in memory, an append and run is allowed. For example:

GET "RATES" ,250,100

This command specifies that any existing lines from 250 to the end are to be deleted, the contents
of file "RATES" is to be renumbered and appended beginning at line 250, and then normal
program execution is to begin at line 100. Although any combination of line identifiers is allowed,
the line specified as the start of execution must be in the main program segment (not in a SUB or
user-defined function). Execution will not begin if there was an error during the GET operation.

Using GET in a Program Line
The GET statement can be used in a program to transfer execution from one program segment to
another. When used in a program line, the actions of the GET statement are the same as those
described for the GET command, except as noted in the following paragraphs. Two examples of a
programmed GET are shown here. One demonstrates a simple linkage of two program segments,
as might occur when the entire program is too long to fit in memory. The second shows a simple
example of keeping a file manager in memory to GET and run various routines.

A large program can be divided into smaller segments that are connected by using a GET statement
to move from one to the next. The following short example shows this technique.

First Program Segment:

10 COM OhfllS ,AfllPS ,1.Jolts

200hfTls=120

30 1•Jolts=240

40 AMPs=Volts/OhMs

50 GET "IAlattage"

60 END

File "wattage":

10 COM OhfllS ,AfllPS ,1.Jolts

20 Watts=AMPs*Volts
30 PRINT "Resistor OhfllS ="jOhfllS

40 PRINT "Resistor Wattage =" j Watts

50 END

32 Entering, Running, and Storing Programs

One important point to note is the use of a COM statement. The COM statement places
variables in a section of memory that is preserved during the GET operation. Since the program
saved in the file "wattage" also has a COM statement that contains three REAL scaler variables,
the values assigned to those variables in the previous program segment are preserved. If the
program segments did not contain equivalent COM statements, all variables in the mismatched
COM blocks would be rendered undefined by the prerun that is preformed after the GET
operation. Therefore, to effectively use the GET statement to link program segments, all vari­
ables that need to be preserved must be placed in COM statements, and all program segments
using those variables must have equivalent COM statements.

Note also the form of the GET statement. If this particular statement were executed from the
keyboard, no program execution would take place. However, the computer understands that a
GET in a program is meant to cause execution to resume. When no parameters are specified in
a programmed GET, the entire old program segment is replaced by the new segment, and
execution resumes with the first line in the new program segment.

If a single line identifier is used in a programmed GET (such as GET "f 0 reTl at" , 15 0), the last
part of the old program segment is deleted (from the specified line to the end) , the new program
segment is renumbered and appended to the remaining portion of the old segment, and
execution resumes with the first line of the resulting program. If two line identifiers are specified,
the action is the same as described for the GET command from the keyboard. In these cases, it
is usually not necessary to repeat the COM statement in the second program segment. Since
the COM statement is usually in the first (undeleted) part of the program, it remains after the
second segment is in place. If there are two identical COM statements in the same program
context, an error 12 results. Program segments that are linked in with the GET statement should
repeat the original COM statement only if that original COM statement is deleted as a result of
the GET operation.

An example of programming a GET statement with two line identifiers is a "file executive"
program that gets and runs other program files . This technique is sometimes used when most of
the computer's memory is needed to store data and the various program files perform indi­
vidual operations on that data . A small example of the general technique follows . Admittedly,
the tasks shown are all simple enough to be contained in a single program with plenty of room
left for data. The example merely demonstrates the structures involved with this type of file
linking.

In this example, a large portion of memory is used to hold weights input from an electronic
scale. The "file executive" gives the operator a menu of operations to choose from and gets the
requested file . The requested file performs its task and returns control to the "executive" . The
individual tasks shown here are the printout of the weights and the statistical analysis of the
weights. Assumed, but not shown, is a routine that entered the weights from the scale and
stored them in the array. (The input of data from external devices is covered in the BASIC
Interfacing Techniques manual.)

32 Entering, Running, and Storing Programs

One important point to note is the use of a COM statement. The COM statement places
variables in a section of memory that is preserved during the GET operation. Since the program
saved in the file "wattage" also has a COM statement that contains three REAL scaler variables,
the values assigned to those variables in the previous program segment are preserved. If the
program segments did not contain equivalent COM statements, all variables in the mismatched
COM blocks would be rendered undefined by the prerun that is preformed after the GET
operation. Therefore, to effectively use the GET statement to link program segments, all vari­
ables that need to be preserved must be placed in COM statements, and all program segments
using those variables must have equivalent COM statements.

Note also the form of the GET statement. If this particular statement were executed from the
keyboard, no program execution would take place. However, the computer understands that a
GET in a program is meant to cause execution to resume. When no parameters are specified in
a programmed GET, the entire old program segment is replaced by the new segment, and
execution resumes with the first line in the new program segment.

If a single line identifier is used in a programmed GET (such as GET "f 0 reTl at" , 15 0), the last
part of the old program segment is deleted (from the specified line to the end) , the new program
segment is renumbered and appended to the remaining portion of the old segment, and
execution resumes with the first line of the resulting program. If two line identifiers are specified,
the action is the same as described for the GET command from the keyboard. In these cases, it
is usually not necessary to repeat the COM statement in the second program segment. Since
the COM statement is usually in the first (undeleted) part of the program, it remains after the
second segment is in place. If there are two identical COM statements in the same program
context, an error 12 results. Program segments that are linked in with the GET statement should
repeat the original COM statement only if that original COM statement is deleted as a result of
the GET operation.

An example of programming a GET statement with two line identifiers is a "file executive"
program that gets and runs other program files . This technique is sometimes used when most of
the computer's memory is needed to store data and the various program files perform indi­
vidual operations on that data . A small example of the general technique follows . Admittedly,
the tasks shown are all simple enough to be contained in a single program with plenty of room
left for data. The example merely demonstrates the structures involved with this type of file
linking.

In this example, a large portion of memory is used to hold weights input from an electronic
scale. The "file executive" gives the operator a menu of operations to choose from and gets the
requested file . The requested file performs its task and returns control to the "executive" . The
individual tasks shown here are the printout of the weights and the statistical analysis of the
weights. Assumed, but not shown, is a routine that entered the weights from the scale and
stored them in the array. (The input of data from external devices is covered in the BASIC
Interfacing Techniques manual.)

Entering, Running, and Storing Programs 33

Main Executive:

100 This program manages the utility files for
110 some hypothetical data . Data was stored
120 in the REAL array "Weights". The de\,Jice
130 selector for the e xt ernal printer is
140 is assigned in line 200. Each utility
150 file sends control bacf, to line "Start"
160 when it is done . The program disc must be
170 present when this executive is used.
180
185 OPTION BASE 1
180 COM Weights(5000) ,SafllPles ,Printer
200 Printer =7 01 External printer for data
210 Samples=5000 Also see array declaration
220
230 Start: Main entn' point
240 PRINTER IS 1 For program messages
250 PRINT
260 PRINT "Enter P to print IAleights"
270 PRINT "Enter A for a n analysis"
280
280 AsK: INPUT "Enter COfllflland Letter" ,In$
300 IF In$="P" THEN GET "Printout",330,330
310 IF In$="A" THEN GET "Analysis" ,330,330
320 GOTO AsK Incorrect entrY
330 END

File "Printout" :

100 This routine prints the data in the array
110 "Weights" to an external printer .
120 Necessary variables are initialized in
130 the main e xecutive.
140
150
160
170
180
180
200
210

PRINTER IS Printer
FOR 1=1 TO Samples

PRINT "SafrlPle #" il i "
NE >n I
PRINT CHR$(12)
GOTO Start
END

Use external printer
Print all weights

IAI e i g h s " ; Wei g h t s (I)

I Forfll-feed
I Return to executive

Entering, Running, and Storing Programs 33

Main Executive:

100 This program manages the utility files for
110 some hypothetical data . Data was stored
120 in the REAL array "Weights". The de\,Jice
130 selector for the e xt ernal printer is
140 is assigned in line 200. Each utility
150 file sends control bacf, to line "Start"
160 when it is done . The program disc must be
170 present when this executive is used.
180
185 OPTION BASE 1
180 COM Weights(5000) ,SafllPles ,Printer
200 Printer =7 01 External printer for data
210 Samples=5000 Also see array declaration
220
230 Start: Main entn' point
240 PRINTER IS 1 For program messages
250 PRINT
260 PRINT "Enter P to print IAleights"
270 PRINT "Enter A for a n analysis"
280
280 AsK: INPUT "Enter COfllflland Letter" ,In$
300 IF In$="P" THEN GET "Printout",330,330
310 IF In$="A" THEN GET "Analysis" ,330,330
320 GOTO AsK Incorrect entrY
330 END

File "Printout" :

100 This routine prints the data in the array
110 "Weights" to an external printer .
120 Necessary variables are initialized in
130 the main e xecutive.
140
150
160
170
180
180
200
210

PRINTER IS Printer
FOR 1=1 TO Samples

PRINT "SafrlPle #" il i "
NE >n I
PRINT CHR$(12)
GOTO Start
END

Use external printer
Print all weights

IAI e i g h s " ; Wei g h t s (I)

I Forfll-feed
I Return to executive

34 Entering, Running, and Storing Programs

File "Analysis":

100 This routine finds the Mean and standard
110 deviation of the data in "Wei!'1hts",
120 Necessary variables are initialized in
130 the Main executive,
140
150
160
170

SUfllX=O
S Ufll X 2 = 0
FOR 1=1 TO SaMPles

180 SUMx=SuMx+Wei!'1hts(I)

Clear SUfil of){
Clear SUM of X s9uared
Calculate sUMMations

180 SUMx2=SuMx2+Wei!'1hts(I)"2
200 NE)<T I
210 Mean=SuMx/SaMPles
220 Stddev=SQR((SuMx2-SuMx"2/SaMPles)/(SaMPles-l))
230 PRINT
240 PRINT "Nufllber of safTlPles ="iSafllPles
250 PRINT "Mean 1.lei !'1ht =" ;Mean
260 PRINT "Standard del.liation ="iStddel.l
270 GO TO Start ! Return to executive
280 END

Notice that any information that is shared by all the routines is placed in COM. The individual
task files do not contain COM statements because the COM statement in the executive routine
is never deleted. Values that are shared by all routines are initialized by the executive. In that
manner, a standard characteristic can be changed in the executive, with no alterations required
in any of the other files. The "shared" values used in this example are the number of weights in
the array (Samples) and the device selector of the external printer (Printer).

Using LOAD as a Command
The LOAD command is used to bring in programs from a PROG file, with the option of
beginning program execution at a specified line. To clear any existing program from the compu­
ter's memory and load the contents of a PROG file, the command is simply the keyword LOAD
followed by the file name. For example:

LOAD "Cannon"

This command clears the program memory and brings in the contents of the PROG file called
"Cannon". If the file is not a PROG file, the LOAD is not performed and an error 58 is reported. If
any lines require a language extension that is not currently installed, those lines cannot be executed.
However, the LOAD proceeds without error.

The LOAD command can also specify that program execution is to begin. This is done by
adding a line identifier. For example:

LOAD "STONE" ,10

This command causes the computer to load the program in file "STONE" and begin execution
at line 10. The line identifier may be a label or a line number, but it must identify a line in the
main program segment (not in a SUB or user-defined function).

34 Entering, Running, and Storing Programs

File "Analysis":

100 This routine finds the Mean and standard
110 deviation of the data in "Wei!'1hts",
120 Necessary variables are initialized in
130 the Main executive,
140
150
160
170

SUfllX=O
S Ufll X 2 = 0
FOR 1=1 TO SaMPles

180 SUMx=SuMx+Wei!'1hts(I)

Clear SUfil of){
Clear SUM of X s9uared
Calculate sUMMations

180 SUMx2=SuMx2+Wei!'1hts(I)"2
200 NE)<T I
210 Mean=SuMx/SaMPles
220 Stddev=SQR((SuMx2-SuMx"2/SaMPles)/(SaMPles-l))
230 PRINT
240 PRINT "Nufllber of safTlPles ="iSafllPles
250 PRINT "Mean 1.lei !'1ht =" ;Mean
260 PRINT "Standard del.liation ="iStddel.l
270 GO TO Start ! Return to executive
280 END

Notice that any information that is shared by all the routines is placed in COM. The individual
task files do not contain COM statements because the COM statement in the executive routine
is never deleted. Values that are shared by all routines are initialized by the executive. In that
manner, a standard characteristic can be changed in the executive, with no alterations required
in any of the other files. The "shared" values used in this example are the number of weights in
the array (Samples) and the device selector of the external printer (Printer).

Using LOAD as a Command
The LOAD command is used to bring in programs from a PROG file, with the option of
beginning program execution at a specified line. To clear any existing program from the compu­
ter's memory and load the contents of a PROG file, the command is simply the keyword LOAD
followed by the file name. For example:

LOAD "Cannon"

This command clears the program memory and brings in the contents of the PROG file called
"Cannon". If the file is not a PROG file, the LOAD is not performed and an error 58 is reported. If
any lines require a language extension that is not currently installed, those lines cannot be executed.
However, the LOAD proceeds without error.

The LOAD command can also specify that program execution is to begin. This is done by
adding a line identifier. For example:

LOAD "STONE" ,10

This command causes the computer to load the program in file "STONE" and begin execution
at line 10. The line identifier may be a label or a line number, but it must identify a line in the
main program segment (not in a SUB or user-defined function).

Entering, Running, and Storing Programs 35

The LOAD command cannot be used to bring in arbitrary program segments or append to a main
program like GET can. Subprogram segments can be appended using the LOADSUB command.
This is described in Chapter 7.

Using LOAD in a Program Line
When used in a program line, the actions of the LOAD statement are the same as those described
for the LOAD command, except program execution resumes whether a line identifier is specified or
not. For example:

120 LOAD "PART2"

When this program statement is executed, the existing program is replaced by the contents of the
PROG file called "PART2" and program execution resumes with the first line in the new program.
When a line identifier is included in a programmed LOAD statement, execution resumes with the
specified line after the file is loaded.

Remember to include in a COM statement any variables that must be shared by more than one
program segment. The COM statement must be present before and after the LOAD if you want all
the data in COM to be preserved. The section describing GET has an example of using COM to
preserve data.

Autostart of a PROG File
Your computer can be configured to LOAD and RUN a program automatically when the power is
switched on. To use this feature, STORE a PROG file called "AUTOST" on the "default" volume1

.

Then when the power is switched on, the computer automatically loads that file and begins
executing the program from the first line. No action is taken if there is no "AUTOST" file present.

If you want to give your program file a more meaningful name than "AUTOST", create an
"AUTOST" file that simply loads the desired file. For example, if you want to autostart a program
called "ALARM", store this in the "AUTOST" file:

10 ! This i s the AUT OST f i le f or p r o~ r a m ALARM
20 LOAD "ALARM"
30 END

On a dual-drive machine like the Model 236, the autostarted program is not restricted to the space
remaining on the language system disc because there are two disc drives. A short AUTOST file on
drive 0 can load a long program file from drive 1. The following example shows this technique.

10 ! Thi s is the AUTOST file for pro~ram ALARM
20 MASS STORAGE I S " : INTERNALt4 11"
30 LOAD "ALARM"
40 END

By using the appropriate mass storage unit specifier, this general technique can be extended to use
external disc drives.

1 See " How the Default Volume Is Chosen" on the next page fo r details.

Entering, Running, and Storing Programs 35

The LOAD command cannot be used to bring in arbitrary program segments or append to a main
program like GET can. Subprogram segments can be appended using the LOADSUB command.
This is described in Chapter 7.

Using LOAD in a Program Line
When used in a program line, the actions of the LOAD statement are the same as those described
for the LOAD command, except program execution resumes whether a line identifier is specified or
not. For example:

120 LOAD "PART2"

When this program statement is executed, the existing program is replaced by the contents of the
PROG file called "PART2" and program execution resumes with the first line in the new program.
When a line identifier is included in a programmed LOAD statement, execution resumes with the
specified line after the file is loaded.

Remember to include in a COM statement any variables that must be shared by more than one
program segment. The COM statement must be present before and after the LOAD if you want all
the data in COM to be preserved. The section describing GET has an example of using COM to
preserve data.

Autostart of a PROG File
Your computer can be configured to LOAD and RUN a program automatically when the power is
switched on. To use this feature, STORE a PROG file called "AUTOST" on the "default" volume1

.

Then when the power is switched on, the computer automatically loads that file and begins
executing the program from the first line. No action is taken if there is no "AUTOST" file present.

If you want to give your program file a more meaningful name than "AUTOST", create an
"AUTOST" file that simply loads the desired file. For example, if you want to autostart a program
called "ALARM", store this in the "AUTOST" file:

10 ! This i s the AUT OST f i le f or p r o~ r a m ALARM
20 LOAD "ALARM"
30 END

On a dual-drive machine like the Model 236, the autostarted program is not restricted to the space
remaining on the language system disc because there are two disc drives. A short AUTOST file on
drive 0 can load a long program file from drive 1. The following example shows this technique.

10 ! Thi s is the AUTOST file for pro~ram ALARM
20 MASS STORAGE I S " : INTERNALt4 11"
30 LOAD "ALARM"
40 END

By using the appropriate mass storage unit specifier, this general technique can be extended to use
external disc drives.

1 See " How the Default Volume Is Chosen" on the next page fo r details.

36 Entering, Running, and Storing Programs

The AUTOST program can also load the BIN files automatically. For example,

10 !This is the AUTOST file.
20 LOAD BIN "DISC:HP.702"
30 LDAD BIN "HPIB:HP.702"
40 MASS STDRAGE IS ":HP.702" 'Specif y if different from where SYSTM
50 LOAD BIN "MS" I,,'as loaded.
GO LOAD BIN "10"
70 LOAD BIN "GRAPH"
80 END

Be sure to load the drivers for the mass storage device and the card driver before you load the other
BINs.

If you load BASIC from an SRM, the system looks for a file in the SYSTEMS directory named
AUTOSTNN where NN is your node number. If this file is not found, the system looks for a file
named AUTOST in the root directory.

How the Default Volume Is Chosen
The following table shows the order in which the Boot Rom (versions 3.0 or later) scans mass
storage devices for the presence of system files. The Boot Rom then boots the first operating system
it finds (unless you intervene, such as by pressing a key). In general, the storage device from which
a system is booted becomes the BASIC system's "default" (MASS STORAGE IS) device. Howev­
er, with Rom BASIC systems, the default mass storage is generally the first device found with media
present. If no device has media, then the first device found becomes the default mass storage
device.

Priority

1

2

3

4

5

6

7

8

9

Mass Storage Device

External disc drives on select codes 0 thru 31; Drive 0, Volume 0 . When searching on
an HP-IB device, only HP-IB Address 0 is checked.

Shared Resource Management (SRM) on select code 21; Node 0, Volume 8, Root File
"SYSTEMS" .

Bubble Memory on select code 30. Bubble memory is treated the same as a disc file or
any other mass storage device.

EPROM "disc" Unit O. EPROM is treated as a mass storage disc, and contents are
transferred to user memory for subsequent execution. The CPU does not directly
execute code stored in EPROM.

ROM-based operating systems. ROM-based systems are executed directly, and are
not relocated to user memory.

l~~
Remaining external disc drives on select codes 0 thru 31; Drives 0 ttlru 7, Volumes 0
and 11. All HP-IB Primary Addresses are checked for each HP-IB interface.

Remaining Shared Resource Management Systems on select codes 0 thru 31 ; all
nodes and disc units are checked except Node 0, Unit 8. System must be identified in
root directory "SYSTEMS".

Remaining Bubble Memory on select codes 0 thru 29 and 31.

Remaining EPROM "disc" units.

36 Entering, Running, and Storing Programs

The AUTOST program can also load the BIN files automatically. For example,

10 !This is the AUTOST file.
20 LOAD BIN "DISC:HP.702"
30 LDAD BIN "HPIB:HP.702"
40 MASS STDRAGE IS ":HP.702" 'Specif y if different from where SYSTM
50 LOAD BIN "MS" I,,'as loaded.
GO LOAD BIN "10"
70 LOAD BIN "GRAPH"
80 END

Be sure to load the drivers for the mass storage device and the card driver before you load the other
BINs.

If you load BASIC from an SRM, the system looks for a file in the SYSTEMS directory named
AUTOSTNN where NN is your node number. If this file is not found, the system looks for a file
named AUTOST in the root directory.

How the Default Volume Is Chosen
The following table shows the order in which the Boot Rom (versions 3.0 or later) scans mass
storage devices for the presence of system files. The Boot Rom then boots the first operating system
it finds (unless you intervene, such as by pressing a key). In general, the storage device from which
a system is booted becomes the BASIC system's "default" (MASS STORAGE IS) device. Howev­
er, with Rom BASIC systems, the default mass storage is generally the first device found with media
present. If no device has media, then the first device found becomes the default mass storage
device.

Priority

1

2

3

4

5

6

7

8

9

Mass Storage Device

External disc drives on select codes 0 thru 31; Drive 0, Volume 0 . When searching on
an HP-IB device, only HP-IB Address 0 is checked.

Shared Resource Management (SRM) on select code 21; Node 0, Volume 8, Root File
"SYSTEMS" .

Bubble Memory on select code 30. Bubble memory is treated the same as a disc file or
any other mass storage device.

EPROM "disc" Unit O. EPROM is treated as a mass storage disc, and contents are
transferred to user memory for subsequent execution. The CPU does not directly
execute code stored in EPROM.

ROM-based operating systems. ROM-based systems are executed directly, and are
not relocated to user memory.

l~~
Remaining external disc drives on select codes 0 thru 31; Drives 0 ttlru 7, Volumes 0
and 11. All HP-IB Primary Addresses are checked for each HP-IB interface.

Remaining Shared Resource Management Systems on select codes 0 thru 31 ; all
nodes and disc units are checked except Node 0, Unit 8. System must be identified in
root directory "SYSTEMS".

Remaining Bubble Memory on select codes 0 thru 29 and 31.

Remaining EPROM "disc" units.

Entering, Running, and Storing Programs 37

System Configuration
The BASIC Language System is contained in several files. The SYSTM file contains what is
sometimes called "core" BASIC. Extensions to core BASIC and device drivers are in BIN files. The
language extensions add statements to BASIC. For example, the PDEV extension gives you the
MOVELINES and COPYLINES commands. The device drivers allow you to use mass storage
devices other than the internal discs and memory. Whenever you need an extension for an
example in this manual, the BIN file name is given.

Loading BINs
As shown in the previous example, you load an extension or driver with the LOAD BIN statement.

LOAD BIN "GRAPH)-(:HP , 700"
LOAD BIN "ERR "
LOAD BI N "DISC :I NTERNAL , LI,1"

If you attempt to execute a statement that requires a language extension, error 1 occurs. You can
load the required BIN and then continue your programming.

You can LOAD a STOREd program that requires language extensions not present in the computer,
but you cannot run it. Error 1 occurs and the option number, or extension name if ERR is loaded, is
displayed. The option numbers are listed in the Useful Tables section of the BASIC Language
Reference manual.

You can GET a SAVEd program that requires language extensions, but errors occur during the
GET. Each statement that requires a missing option is made a comment. An ! is placed before the
line. You can load the missing BIN and then edit the program.

Storing the System
Once you have all the BINs in memory, you may want to save that configuration for the next time
you boot up the system. The STORE SYSTEM command stores core BASIC and all the BINs into
one file.

STORE SY STEM "SYSTEM_B:HP , 702 , 1"
STORE SYSTEM "SYSTEM_2:REMOTE "
STORE SYSTEM "S YS_MINE"

The Boot ROM looks for a SYSTM file which begins with "SYSTE~". Boot Rom 3.0 and later
versions also look for SYSTM files which begin with "SYS_" . A SYSTM file which has a different
prefex cannot be booted. If there is more than one loadable file, and you press the space bar on the
keyboard after power up and before the file is loaded, allioadable files are listed. You can choose
the one you want loaded. If you do not press the space bar, the boot ROM loads the first SYSTM
file it finds.

Since core BASIC uses most of a 5 % - inch flexible disc, you cannot store more than one system
on the disc. You also cannot store several BINs with core BASIC on this disc.

Scratching BINs
You can delete the BINs from memory with the SCRATCH BIN statement. This statement deletes
all the BINs, except the one which drives the CRT. Note that it also scratches any program in
memory.

Entering, Running, and Storing Programs 37

System Configuration
The BASIC Language System is contained in several files. The SYSTM file contains what is
sometimes called "core" BASIC. Extensions to core BASIC and device drivers are in BIN files. The
language extensions add statements to BASIC. For example, the PDEV extension gives you the
MOVELINES and COPYLINES commands. The device drivers allow you to use mass storage
devices other than the internal discs and memory. Whenever you need an extension for an
example in this manual, the BIN file name is given.

Loading BINs
As shown in the previous example, you load an extension or driver with the LOAD BIN statement.

LOAD BIN "GRAPH)-(:HP , 700"
LOAD BIN "ERR "
LOAD BI N "DISC :I NTERNAL , LI,1"

If you attempt to execute a statement that requires a language extension, error 1 occurs. You can
load the required BIN and then continue your programming.

You can LOAD a STOREd program that requires language extensions not present in the computer,
but you cannot run it. Error 1 occurs and the option number, or extension name if ERR is loaded, is
displayed. The option numbers are listed in the Useful Tables section of the BASIC Language
Reference manual.

You can GET a SAVEd program that requires language extensions, but errors occur during the
GET. Each statement that requires a missing option is made a comment. An ! is placed before the
line. You can load the missing BIN and then edit the program.

Storing the System
Once you have all the BINs in memory, you may want to save that configuration for the next time
you boot up the system. The STORE SYSTEM command stores core BASIC and all the BINs into
one file.

STORE SY STEM "SYSTEM_B:HP , 702 , 1"
STORE SYSTEM "SYSTEM_2:REMOTE "
STORE SYSTEM "S YS_MINE"

The Boot ROM looks for a SYSTM file which begins with "SYSTE~". Boot Rom 3.0 and later
versions also look for SYSTM files which begin with "SYS_" . A SYSTM file which has a different
prefex cannot be booted. If there is more than one loadable file, and you press the space bar on the
keyboard after power up and before the file is loaded, allioadable files are listed. You can choose
the one you want loaded. If you do not press the space bar, the boot ROM loads the first SYSTM
file it finds.

Since core BASIC uses most of a 5 % - inch flexible disc, you cannot store more than one system
on the disc. You also cannot store several BINs with core BASIC on this disc.

Scratching BINs
You can delete the BINs from memory with the SCRATCH BIN statement. This statement deletes
all the BINs, except the one which drives the CRT. Note that it also scratches any program in
memory.

38 Entering, Running, and Storing Programs

Other Mass Storage Operations
The general mass storage capabilities of the computer are discussed in Chapter 7. Because many of
the operations are applicable to program files as well as data files, certain operations are summa­
rized here. If these brief examples do not provide sufficient information, refer to Chapter 7 for more
details.

The name of a file can be changed without disturbing the file's contents. This is done with the
RENAME statement. For example, to change the name of a file from "George" to "Frank" , use the
statement:

RENAME "George" TO "Franf,"

A file entry can be removed from the disc directory with the PURGE statement. This prevents any
further access to the file . For example:

PURGE "Mifile"

This statement eliminates the file "Myfile" from the disc directory.

A file can be given a protect code by using the PROTECT statement. A protect code is a 2-character
string that must be specified to modify the file, but it does not appear in the catalog display. For
example, to protect the file "SECRET" with the protect code "BS", use this statement:

PROTECT "SECRET"," BS"

The protect code is placed after the file name to allow access. For example, to PURGE the
previously protected file "SECRET", the statement is:

PURGE "SECRET < BS >"

Files can be copied with the COPY statement. Some examples:

COpy "MYPROG" TO "MYPROG:INTERNAL,Lj,l"
COPY "MYPROG:HPB280){,700,O" TO "MYPROG:HPB280){,700,1"

These statements create a backup copy of the file MYPROG. The first example copies from the
right-hand drive to the left-hand drive on a Model 236. The second example copies a file from the
left-hand drive to the right-hand drive on an external device such as the HP 82901 or HP 9121.

38 Entering, Running, and Storing Programs

Other Mass Storage Operations
The general mass storage capabilities of the computer are discussed in Chapter 7. Because many of
the operations are applicable to program files as well as data files, certain operations are summa­
rized here. If these brief examples do not provide sufficient information, refer to Chapter 7 for more
details.

The name of a file can be changed without disturbing the file's contents. This is done with the
RENAME statement. For example, to change the name of a file from "George" to "Frank" , use the
statement:

RENAME "George" TO "Franf,"

A file entry can be removed from the disc directory with the PURGE statement. This prevents any
further access to the file . For example:

PURGE "Mifile"

This statement eliminates the file "Myfile" from the disc directory.

A file can be given a protect code by using the PROTECT statement. A protect code is a 2-character
string that must be specified to modify the file, but it does not appear in the catalog display. For
example, to protect the file "SECRET" with the protect code "BS", use this statement:

PROTECT "SECRET"," BS"

The protect code is placed after the file name to allow access. For example, to PURGE the
previously protected file "SECRET", the statement is:

PURGE "SECRET < BS >"

Files can be copied with the COPY statement. Some examples:

COpy "MYPROG" TO "MYPROG:INTERNAL,Lj,l"
COPY "MYPROG:HPB280){,700,O" TO "MYPROG:HPB280){,700,1"

These statements create a backup copy of the file MYPROG. The first example copies from the
right-hand drive to the left-hand drive on a Model 236. The second example copies a file from the
left-hand drive to the right-hand drive on an external device such as the HP 82901 or HP 9121.

Entering, Running, and Storing Programs 39

Using Softkeys as Typing-Aid Keys
There is a set of keys on your keyboard labeled either OU thru QQ -or C1IJ thru ClL) .
These are softkeys. You can define the function of these keys as typing aids. That is, you define one
softkey to contain any combination of keystrokes. You may include all the ASCII characters, as well
as non-ASCII keys, such as arrow keys, insert and delete character, continue, etc. This has nothing
to do with programmatic ON KEY definitions; they are discussed in future chapters ("Program
Structure" and "Communicating With the Operator") and in the BASIC Language Reference.

The KBD extension is required to use typing aids. When you load KBD, the typing aids are given
default definitions. These default definitions include some commonly used commands. For exam­
ple, [}L) and 00 are defined as SCRATCH . OQ and ~ are defined as CA T. You can
see the definitions in the softkey menu on your display.

If you have an HP 46020A keyboard, your softkeys are labeled C1IJ thru 00. There are
System defined softkeys and User softkeys. You cannot change the definitions for the System keys.
These keys represent physical keys on other keyboards. There are three sets of Users softkeys,
which give you 24 definable softkeys. You can change any of them. In general, the menu which is
displayed shows the currently active definitions of the softkeys. To cycle through User menus, press
the (]hili] and ~ keys. To go from the User menu to the System menu, press the (System) key.
To go from the System menu to the User 1 menu, press (]hili] (System).

If you have the HP 98203A keyboard (the standard keyboard for the Model 216) , you have five
softkeys. Each softkey can have two definitions. When you press (SHIFT) and a softkey, you access
CEQ..] thru ~. When you press just the softkey, you access [}L) thru QQ. All ten
definitions are displayed on the menu.

If you have the HP 98203B keyboard (the standard keyboard for the Model 236) , you have ten
softkeys labeled CEQ..] thru QQ. These keys also have a shifted version. When you press (SHIFT)
and a softkey, you access O!QJ thru ~ . The softkey menu displays the first 10 softkey
definitions. The second 10 definitions cannot be displayed.

Default Typing-Aid Definitions
Several typing aid definitions are loaded when you load KBD. These definitions are loaded for your
convienence. You can change the definitions, load your own definitions or delete the definitions.
The following sections explain how you do this.

Defining Typing-Aids
To define a typing aid, type EDIT KE Y and the number of the softkey you want to define. For
example,

EDI T KEY 2

You could also press miD ITJ or miD CKJ , which is the same as the EDIT KEY com­
mand.

When you execute this command, the follOWing message is displayed:

Editing f, el' 2

If softkey 2 is currently defined, its definition is displayed. If it is not defined, the input line is blank.

Entering, Running, and Storing Programs 39

Using Softkeys as Typing-Aid Keys
There is a set of keys on your keyboard labeled either OU thru QQ -or C1IJ thru ClL) .
These are softkeys. You can define the function of these keys as typing aids. That is, you define one
softkey to contain any combination of keystrokes. You may include all the ASCII characters, as well
as non-ASCII keys, such as arrow keys, insert and delete character, continue, etc. This has nothing
to do with programmatic ON KEY definitions; they are discussed in future chapters ("Program
Structure" and "Communicating With the Operator") and in the BASIC Language Reference.

The KBD extension is required to use typing aids. When you load KBD, the typing aids are given
default definitions. These default definitions include some commonly used commands. For exam­
ple, [}L) and 00 are defined as SCRATCH . OQ and ~ are defined as CA T. You can
see the definitions in the softkey menu on your display.

If you have an HP 46020A keyboard, your softkeys are labeled C1IJ thru 00. There are
System defined softkeys and User softkeys. You cannot change the definitions for the System keys.
These keys represent physical keys on other keyboards. There are three sets of Users softkeys,
which give you 24 definable softkeys. You can change any of them. In general, the menu which is
displayed shows the currently active definitions of the softkeys. To cycle through User menus, press
the (]hili] and ~ keys. To go from the User menu to the System menu, press the (System) key.
To go from the System menu to the User 1 menu, press (]hili] (System).

If you have the HP 98203A keyboard (the standard keyboard for the Model 216) , you have five
softkeys. Each softkey can have two definitions. When you press (SHIFT) and a softkey, you access
CEQ..] thru ~. When you press just the softkey, you access [}L) thru QQ. All ten
definitions are displayed on the menu.

If you have the HP 98203B keyboard (the standard keyboard for the Model 236) , you have ten
softkeys labeled CEQ..] thru QQ. These keys also have a shifted version. When you press (SHIFT)
and a softkey, you access O!QJ thru ~ . The softkey menu displays the first 10 softkey
definitions. The second 10 definitions cannot be displayed.

Default Typing-Aid Definitions
Several typing aid definitions are loaded when you load KBD. These definitions are loaded for your
convienence. You can change the definitions, load your own definitions or delete the definitions.
The following sections explain how you do this.

Defining Typing-Aids
To define a typing aid, type EDIT KE Y and the number of the softkey you want to define. For
example,

EDI T KEY 2

You could also press miD ITJ or miD CKJ , which is the same as the EDIT KEY com­
mand.

When you execute this command, the follOWing message is displayed:

Editing f, el' 2

If softkey 2 is currently defined, its definition is displayed. If it is not defined, the input line is blank.

40 Entering, Running, and Storing Programs

To enter the new definition, use the keyboard. Type ASCII characters directly. To get non-ASCII
keystrokes, use the (CTRL) key and the function key you want to use. For example type the
folloWing:

(CTRL) -(CLR LN) (IJ CIJ ~ CL) (CTRL) -(EXECUTE)

Note
This technique will not work for some non -ASCII keys on an
HP 98203A keyboard. To enter non-ASCII keystrokes, refer to the
Second Byte of Non-ASCII Key Sequences table in the Useful Table
section of the BASIC Language Reference manual. Press (ANY CHAR)
Q:J CO CO followed by the character associated with the
desired key.

(You may have keys other than (CLR LN) or (EXECUTE). Use the key which means clear line and
execute or return.)

By pressing (CTRL) and (CLR LN) together, you get ~#. (CTRL)-(EXECUTE) gives you ~X. The ~
means you have pressed a system key. The # or X means you have pressed (CLR LN) or
(EXECUTE).

Now, press (ENTER) or (RETURN) . The definition is stored and the softkey menu changes.

Press C!LJ or cn=l.

The LIST command is entered on the input line and then executed. You may not be able to see the
command displayed because it is executed immediately.

If you do not want the command executed, leave out (CTRL)-(EXECUTE).

Besides commands, you can define the softkeys to display any sequence of characters. For exam­
ple, if you are writing a program and want to separate each subprogram with a line of asterisks you
could define a softkey to do this.

! * * ******************************(ENTER)

If a (CLR LN) is the first character in the definition, it will not show in the label. If you want a softkey
label which "looks nice" - it doesn't have a lot of inverse-video Ks in it - you can have the visible
character be an aesthetically pleasing label, the next thing a (CLR LN), which erases the label which
prints when the key is invoked, and the next n characters be the functional "core" of what the key is
supposed to do. The result of this strategy is that when you press a softkey, the aesthetically­
pleasing label is displayed, immediately erased, and the characters following the label are displayed
and, if you specified, processed with an (ENTER), (EXECUTE) or (RETURN) , etc.

40 Entering, Running, and Storing Programs

To enter the new definition, use the keyboard. Type ASCII characters directly. To get non-ASCII
keystrokes, use the (CTRL) key and the function key you want to use. For example type the
folloWing:

(CTRL) -(CLR LN) (IJ CIJ ~ CL) (CTRL) -(EXECUTE)

Note
This technique will not work for some non -ASCII keys on an
HP 98203A keyboard. To enter non-ASCII keystrokes, refer to the
Second Byte of Non-ASCII Key Sequences table in the Useful Table
section of the BASIC Language Reference manual. Press (ANY CHAR)
Q:J CO CO followed by the character associated with the
desired key.

(You may have keys other than (CLR LN) or (EXECUTE). Use the key which means clear line and
execute or return.)

By pressing (CTRL) and (CLR LN) together, you get ~#. (CTRL)-(EXECUTE) gives you ~X. The ~
means you have pressed a system key. The # or X means you have pressed (CLR LN) or
(EXECUTE).

Now, press (ENTER) or (RETURN) . The definition is stored and the softkey menu changes.

Press C!LJ or cn=l.

The LIST command is entered on the input line and then executed. You may not be able to see the
command displayed because it is executed immediately.

If you do not want the command executed, leave out (CTRL)-(EXECUTE).

Besides commands, you can define the softkeys to display any sequence of characters. For exam­
ple, if you are writing a program and want to separate each subprogram with a line of asterisks you
could define a softkey to do this.

! * * ******************************(ENTER)

If a (CLR LN) is the first character in the definition, it will not show in the label. If you want a softkey
label which "looks nice" - it doesn't have a lot of inverse-video Ks in it - you can have the visible
character be an aesthetically pleasing label, the next thing a (CLR LN), which erases the label which
prints when the key is invoked, and the next n characters be the functional "core" of what the key is
supposed to do. The result of this strategy is that when you press a softkey, the aesthetically­
pleasing label is displayed, immediately erased, and the characters following the label are displayed
and, if you specified, processed with an (ENTER), (EXECUTE) or (RETURN) , etc.

Entering, Running, and Storing Programs 41

Typing-Aid Definitions
There is 1024 bytes of memory set aside for softkey definitions. Since there is a certain amount of
overhead necessary for each one, there are approximately one thousand characters available for
softkey definitions.

The maximum number of characters which may be entered in a definition is two full CRT lines. If
you define the softkeys on one Series 200 and store the definitions, you can load the definitions on
another Series 200 even if the definitions are greater than two of the loading computer's CRT lines.
You will not be able to modify the long definitions, but you can delete the old and enter a new
definition. Attempting to use an overlong typing aid will cause the typing aid buffer to overflow.
Some characters will be lost.

Listing Typing-Aid Definitions
You can list the softkey definitions. All of the currently defined softkeys are listed. To list to the
system printer execute:

LIST KEY

To specify a device that is not the current system printer, include a device selector in the command.
To send the listing to the printer execute:

LIST KEY #PRT

The listing does not look like what you typed for the definition if you included system keys. Since
most printers cannot print an inverse video K, the term System key: is listed. Each system key is
listed on a separate line. For example, if you entered the definition for c:EiJ in the first example,
your listing is:

K e}' 2:

S}'stelll f,e }': #

LIST
S}'stelll f,e}':){

Typing-Aid Files
When you have the typing-aid softkey definitions as you want them, you can store them on a file
which can be loaded at your convenience. To store the currently-defined typing-aid definitions onto
a file, use a STORE KEY command. For example, the following commands store the current key
definitions onto a file called AIDS:

STORE KEY "AIDS"

or

RE-STORE KEY "AIDS"

Later, when you want to load those definitions you stored, type:

LOAD KEY "AIDS"

Executing a LOAD KEY command without a file name causes the default, power-up definitions to
be restored.

Entering, Running, and Storing Programs 41

Typing-Aid Definitions
There is 1024 bytes of memory set aside for softkey definitions. Since there is a certain amount of
overhead necessary for each one, there are approximately one thousand characters available for
softkey definitions.

The maximum number of characters which may be entered in a definition is two full CRT lines. If
you define the softkeys on one Series 200 and store the definitions, you can load the definitions on
another Series 200 even if the definitions are greater than two of the loading computer's CRT lines.
You will not be able to modify the long definitions, but you can delete the old and enter a new
definition. Attempting to use an overlong typing aid will cause the typing aid buffer to overflow.
Some characters will be lost.

Listing Typing-Aid Definitions
You can list the softkey definitions. All of the currently defined softkeys are listed. To list to the
system printer execute:

LIST KEY

To specify a device that is not the current system printer, include a device selector in the command.
To send the listing to the printer execute:

LIST KEY #PRT

The listing does not look like what you typed for the definition if you included system keys. Since
most printers cannot print an inverse video K, the term System key: is listed. Each system key is
listed on a separate line. For example, if you entered the definition for c:EiJ in the first example,
your listing is:

K e}' 2:

S}'stelll f,e }': #

LIST
S}'stelll f,e}':){

Typing-Aid Files
When you have the typing-aid softkey definitions as you want them, you can store them on a file
which can be loaded at your convenience. To store the currently-defined typing-aid definitions onto
a file, use a STORE KEY command. For example, the following commands store the current key
definitions onto a file called AIDS:

STORE KEY "AIDS"

or

RE-STORE KEY "AIDS"

Later, when you want to load those definitions you stored, type:

LOAD KEY "AIDS"

Executing a LOAD KEY command without a file name causes the default, power-up definitions to
be restored.

42 Entering, Running, and Storing Programs

Defining Typing-Aid Files Programmatically
When you type S TOR EKE Y "K E Y S ", the computer takes the current softkey definitions, and
writes them to a BOAT file in a format which can be understood by a LOAD KEY command. The
LOAD KEY command, however, doesn't know (or particularly care) how that BOAT file got there,
as long as it's in the correct format.

The correct format for key definitions on file is this:

• The file must be a BOAT (Binary DATa) file.

• The file must be created with FORMAT OFF. This causes the data to be written to the file in
internal format, not ASCII representation.

• Each key's data consists of an integer (the key number-zero through twenty-three) followed
by a string-the key's value.

See the example program below. Note that all of the keys do not have to be put onto the file, nor
do the key definitions sent to the file have to be in numerical order.

10
20
30
L10
50
GO
70
80
90
100
110

I File "DoKeyFile".
DIM Key_value$[lGOJ
INTEGER Key_number
CREATE BDAT "SOFTKEYS" ,3
ASSIGN @Ke)'s TO "SOFTKEYS"
FOR 1=0 TO 9

READ Key_number,Key_value$

NE)H I
ASSIGN @Keys TO *
LOAD KEY "SOFTKEYS"

! Name of file which holds profram
I In case YOU have a LONG Key def.
! Must be lG-bit Key number
! Create a 3-record BDAT file
I Open file (FORMAT OFF is default)
! First ten Keys •••
! Get Key number and definition
I Write them to the file
I et cetera
I Write EOF, close the file
I See if it worKed

120 I --- Key data ---
1 30 D A T A 9 t 11 1 ... 1 0 r ~~ ! II t 5 , 11 t hat II ,8 , 11 1 ... 1 a u 1 d 11 ,() , 11 You II tat II yOU II t 7 , II t h i n g II t 2 t 11 I 11 , 1 t 11 see? II

f 3 tilt old II , G , I I t his II

lL10 END

In this way, a program can define made-to-order typing-aid key definitions.

42 Entering, Running, and Storing Programs

Defining Typing-Aid Files Programmatically
When you type S TOR EKE Y "K E Y S ", the computer takes the current softkey definitions, and
writes them to a BOAT file in a format which can be understood by a LOAD KEY command. The
LOAD KEY command, however, doesn't know (or particularly care) how that BOAT file got there,
as long as it's in the correct format.

The correct format for key definitions on file is this:

• The file must be a BOAT (Binary DATa) file.

• The file must be created with FORMAT OFF. This causes the data to be written to the file in
internal format, not ASCII representation.

• Each key's data consists of an integer (the key number-zero through twenty-three) followed
by a string-the key's value.

See the example program below. Note that all of the keys do not have to be put onto the file, nor
do the key definitions sent to the file have to be in numerical order.

10
20
30
L10
50
GO
70
80
90
100
110

I File "DoKeyFile".
DIM Key_value$[lGOJ
INTEGER Key_number
CREATE BDAT "SOFTKEYS" ,3
ASSIGN @Ke)'s TO "SOFTKEYS"
FOR 1=0 TO 9

READ Key_number,Key_value$

NE)H I
ASSIGN @Keys TO *
LOAD KEY "SOFTKEYS"

! Name of file which holds profram
I In case YOU have a LONG Key def.
! Must be lG-bit Key number
! Create a 3-record BDAT file
I Open file (FORMAT OFF is default)
! First ten Keys •••
! Get Key number and definition
I Write them to the file
I et cetera
I Write EOF, close the file
I See if it worKed

120 I --- Key data ---
1 30 D A T A 9 t 11 1 ... 1 0 r ~~ ! II t 5 , 11 t hat II ,8 , 11 1 ... 1 a u 1 d 11 ,() , 11 You II tat II yOU II t 7 , II t h i n g II t 2 t 11 I 11 , 1 t 11 see? II

f 3 tilt old II , G , I I t his II

lL10 END

In this way, a program can define made-to-order typing-aid key definitions.

Entering, Running, and Storing Programs 43

Software Security
Occasionally you may want to keep others from listing or running your software. BASIC provides
two methods of "securing" programs:

• The SECURE statement prevents all or specified lines of a program from being edited and
listed (but not from being executed) .

• You can read the serial number of the computer or HP 46084 Security Module, and use this
information to programmatically determine whether or not software is to be executed.

Securing Program Lines
While PROTECT prevents unintentional writing into files and directories, it does not prevent a
programmer from looking at lines in a program. The SECURE statement prevents program lines
from being listed.

For example, the following statement secures lines 10 thru 100 of the program currently in
memory.

SECURE 10,100

If you want the entire program to be secure just execute:

SECURE

Note
Once a program is secured, it cannot be UNsecured. You should keep a
backup copy of all programs in their unsecured form.

When you list a program, the secured lines are listed with asterisks after the line numbers. For
example, lines 30 thru 60 are secured in the following listing.

10 !ExaMPle of Secured
20 !6e~in password check
30*
40*
50*
60*
70 !End of password check
80

Entering, Running, and Storing Programs 43

Software Security
Occasionally you may want to keep others from listing or running your software. BASIC provides
two methods of "securing" programs:

• The SECURE statement prevents all or specified lines of a program from being edited and
listed (but not from being executed) .

• You can read the serial number of the computer or HP 46084 Security Module, and use this
information to programmatically determine whether or not software is to be executed.

Securing Program Lines
While PROTECT prevents unintentional writing into files and directories, it does not prevent a
programmer from looking at lines in a program. The SECURE statement prevents program lines
from being listed.

For example, the following statement secures lines 10 thru 100 of the program currently in
memory.

SECURE 10,100

If you want the entire program to be secure just execute:

SECURE

Note
Once a program is secured, it cannot be UNsecured. You should keep a
backup copy of all programs in their unsecured form.

When you list a program, the secured lines are listed with asterisks after the line numbers. For
example, lines 30 thru 60 are secured in the following listing.

10 !ExaMPle of Secured
20 !6e~in password check
30*
40*
50*
60*
70 !End of password check
80

44 Entering, Running, and Storing Programs

Using Serial Numbers
There are two places where "serial number" information can be placed in Series 200 and 300
computers:

• In an ID PROM in the computer (a PROM is a memory location whose contents are perma­
nent) .

• In an HP 46084 ID Module.

ID PROMs
Only Series 200 computers currently have this feature. Execute this statement to determine
whether or not yours does.

SYSTEM$("SERIAL NUMBER")

The serial number of your computer is returned, if present. Nothing (Le., the "null" string) is
returned if there is no ID PROM.

ID Modules
The security module is an HP-HIL (Hewlett-Packard Human Interface link) device, which plugs
into the HIL interface card in the computer.

All Series 300 models have built-in HIL cards, since their keyboards are connected through this
interface. The only Series 200 computers that may use HIL interfaces are Models 217 and 237.

Reading the Serial Number
Use the following statement to read the serial number:

SYSTEM$("SERIAL NUMBER").

A strange-looking string is returned. Here is a program that formats it into a humanly understand­
able form. (A copy of the program is provided on the "Manual Examples" disc.)

10 Sn$=SYSTEM$("SERIAL NUMBER")
20 OUTPUT Sn_disp$ USING 190" ;25G*(25G*(25G.*(NUM(Sn$[SJ) MOD G4)+NUM(Sn$[7]
))+NUM(Sn$[GJ))+NUM(Sn$[5])
30 PRINT VAL$(25G*(25G.*BIT(NUM(Sn$[4]) ,7)+NUM(Sn$[3]))+NUM(Sn$[2]))&CHR$(NU
M(Sn$[4]) MOD 12S) ,Sn_disp$[1 ,4l&:CHR$(NUM(Sn$[9]) MOD 12S)B:SlLdisp$[5]
40 END

Here are typical results of executing the program.

4GOS4A 2519A00055

44 Entering, Running, and Storing Programs

Using Serial Numbers
There are two places where "serial number" information can be placed in Series 200 and 300
computers:

• In an ID PROM in the computer (a PROM is a memory location whose contents are perma­
nent) .

• In an HP 46084 ID Module.

ID PROMs
Only Series 200 computers currently have this feature. Execute this statement to determine
whether or not yours does.

SYSTEM$("SERIAL NUMBER")

The serial number of your computer is returned, if present. Nothing (Le., the "null" string) is
returned if there is no ID PROM.

ID Modules
The security module is an HP-HIL (Hewlett-Packard Human Interface link) device, which plugs
into the HIL interface card in the computer.

All Series 300 models have built-in HIL cards, since their keyboards are connected through this
interface. The only Series 200 computers that may use HIL interfaces are Models 217 and 237.

Reading the Serial Number
Use the following statement to read the serial number:

SYSTEM$("SERIAL NUMBER").

A strange-looking string is returned. Here is a program that formats it into a humanly understand­
able form. (A copy of the program is provided on the "Manual Examples" disc.)

10 Sn$=SYSTEM$("SERIAL NUMBER")
20 OUTPUT Sn_disp$ USING 190" ;25G*(25G*(25G.*(NUM(Sn$[SJ) MOD G4)+NUM(Sn$[7]
))+NUM(Sn$[GJ))+NUM(Sn$[5])
30 PRINT VAL$(25G*(25G.*BIT(NUM(Sn$[4]) ,7)+NUM(Sn$[3]))+NUM(Sn$[2]))&CHR$(NU
M(Sn$[4]) MOD 12S) ,Sn_disp$[1 ,4l&:CHR$(NUM(Sn$[9]) MOD 12S)B:SlLdisp$[5]
40 END

Here are typical results of executing the program.

4GOS4A 2519A00055

Entering, Running, and Storing Programs 45

Here is an example of using the information to allow/disallow executing a program on a given
machine (line 510 will contain the serial number that must be matched):

510 IF SYSTEM$("SERIAL NUMBER")="nnnnnnnnn" THEN PerMission_ok
520 DISP "This pro9'rarli is not authorized to run " ;
530 DISP" on this Machine. Pro9'rarli terrliinated."
540 STDP
550
560 PerMission_ok : Continue norMally, since serial nUMber Matches.

If the code read from the ID Module (or ID PROM) matches the string ("nnnnnnnnn") on line 510,
then the program continues execution. If not, it is terminated with a message.

Normally your program will include an algorithm that asks the user for a special code (that you have
derived from his serial number, and then provided to him whenever you want to allow the program
to be executed on his machine). That way you will not have to make a unique copy of the program
for every user.

Note about Installing and Removing ID Modules
The HP 46084 ID Module is an HIL device which connects to the computer through the HIL
(Human-Interface Link) interface. Normally you will be connecting this module to the computer
before booting the system. When BASIC is booted, the system recognizes that the module is
installed. The SYSTEM$ function reads the module's contents each time the function is accessed,
rather than keeping the contents in memory.

You can also, however, install the module when the computer is running. However, in order for
BASIC to recognize that it has been connected, you must execute this statement:

SCRATCH A

Executing this statement performs a "re-configuration" of the link, after which the BASIC system
recognizes and can properly talk to any additional HIL devices.

If your machine has both an ID PROM and an ID module, the ID module has precedence. In other
words, if both are installed (and recognized at boot or SCRATCH A time), then the ID module's
contents are read and returned by the SYSTEM$ function.

If you remove the ID module and do not re-boot or execute SCRATCH A, then the SYSTEM$
function will return a null string (even if an ID PROM is present) . This behavior is due to the fact that
the system still expects the ID module to be installed, and thus reads nothing when you attempt to
read it with SYSTEM$.

Conversely, if you install an ID module in a machine with an ID PROM after booting BASIC and
without performing a SCRATCH A, then SYSTEM$("SERIAL NUMBER") will return the ID
PROM's contents (because it does not recognize that the module is present) .

Entering, Running, and Storing Programs 45

Here is an example of using the information to allow/disallow executing a program on a given
machine (line 510 will contain the serial number that must be matched):

510 IF SYSTEM$("SERIAL NUMBER")="nnnnnnnnn" THEN PerMission_ok
520 DISP "This pro9'rarli is not authorized to run " ;
530 DISP" on this Machine. Pro9'rarli terrliinated."
540 STDP
550
560 PerMission_ok : Continue norMally, since serial nUMber Matches.

If the code read from the ID Module (or ID PROM) matches the string ("nnnnnnnnn") on line 510,
then the program continues execution. If not, it is terminated with a message.

Normally your program will include an algorithm that asks the user for a special code (that you have
derived from his serial number, and then provided to him whenever you want to allow the program
to be executed on his machine). That way you will not have to make a unique copy of the program
for every user.

Note about Installing and Removing ID Modules
The HP 46084 ID Module is an HIL device which connects to the computer through the HIL
(Human-Interface Link) interface. Normally you will be connecting this module to the computer
before booting the system. When BASIC is booted, the system recognizes that the module is
installed. The SYSTEM$ function reads the module's contents each time the function is accessed,
rather than keeping the contents in memory.

You can also, however, install the module when the computer is running. However, in order for
BASIC to recognize that it has been connected, you must execute this statement:

SCRATCH A

Executing this statement performs a "re-configuration" of the link, after which the BASIC system
recognizes and can properly talk to any additional HIL devices.

If your machine has both an ID PROM and an ID module, the ID module has precedence. In other
words, if both are installed (and recognized at boot or SCRATCH A time), then the ID module's
contents are read and returned by the SYSTEM$ function.

If you remove the ID module and do not re-boot or execute SCRATCH A, then the SYSTEM$
function will return a null string (even if an ID PROM is present) . This behavior is due to the fact that
the system still expects the ID module to be installed, and thus reads nothing when you attempt to
read it with SYSTEM$.

Conversely, if you install an ID module in a machine with an ID PROM after booting BASIC and
without performing a SCRATCH A, then SYSTEM$("SERIAL NUMBER") will return the ID
PROM's contents (because it does not recognize that the module is present) .

46 Entering, Running, and Storing Programs

Clearing the Computer
When power is first switched on and the language system is loaded, the memory is clear and
various system elements are assigned default values. (For example, the CRT is assigned as the
system printer.) This condition is called the "power-on state" of the computer. A detailed list of the
conditions established at power-on is given in the "Useful Tables" chapter at the back of the BASIC
Language Reference. Turning power off, then back on again is one way to clear the computer's
memory. However, this is not necessary and often is not convenient.

The most useful method of clearing the computer is to use the SCRATCH command. There are
four forms of this command to allow a choice of clearing actions. The following paragraphs give the
details of the choices.

SCRATCH - This command clears all program statements from the computer's memory. It also
clears any data which has not been placed in COM (see Chapter 6 for a description of
COM).

S C RAT C H C - This command clears all variables from the computer's memory, including COM
variables.

SCRATCH A - This command clears almost everything from the computer's memory. The only
exceptions are the recall buffer, the real-time clock and BINs.

S C RAT C H BIN - This command clears all BINs except the one which drives the CRT from the
computer's memory. It also performs a SCRATCH A.

SCRATCH KEY - This allows you to clear individual softkeys, or all of them at once. If you
want to scratch a particular key, you can do this two ways. The following example clears
the typing-aid definition for softkey 4 .

• SCRATCH KEY 4, or

• SCRATCH eEL)

To erase all softkey definitions, execute

SCRATCH KEY

No SCRATCH commands are allowed in a program, and they may not be executed while a
program is running.

46 Entering, Running, and Storing Programs

Clearing the Computer
When power is first switched on and the language system is loaded, the memory is clear and
various system elements are assigned default values. (For example, the CRT is assigned as the
system printer.) This condition is called the "power-on state" of the computer. A detailed list of the
conditions established at power-on is given in the "Useful Tables" chapter at the back of the BASIC
Language Reference. Turning power off, then back on again is one way to clear the computer's
memory. However, this is not necessary and often is not convenient.

The most useful method of clearing the computer is to use the SCRATCH command. There are
four forms of this command to allow a choice of clearing actions. The following paragraphs give the
details of the choices.

SCRATCH - This command clears all program statements from the computer's memory. It also
clears any data which has not been placed in COM (see Chapter 6 for a description of
COM).

S C RAT C H C - This command clears all variables from the computer's memory, including COM
variables.

SCRATCH A - This command clears almost everything from the computer's memory. The only
exceptions are the recall buffer, the real-time clock and BINs.

S C RAT C H BIN - This command clears all BINs except the one which drives the CRT from the
computer's memory. It also performs a SCRATCH A.

SCRATCH KEY - This allows you to clear individual softkeys, or all of them at once. If you
want to scratch a particular key, you can do this two ways. The following example clears
the typing-aid definition for softkey 4 .

• SCRATCH KEY 4, or

• SCRATCH eEL)

To erase all softkey definitions, execute

SCRATCH KEY

No SCRATCH commands are allowed in a program, and they may not be executed while a
program is running.

Program Structure and Flow
Chapter

3

Introduction
Two of the most significant characteristics of a computer are its ability to perform computations and
its ability to make decisions. If the execution sequence could never be changed within a program,
the computer could do little more than plug numbers into a formula. Computers have powerful
computational features, but the heart of a computer's intelligence is its ability to make decisions.

The computational power of your computer is exercised as it evaluates the expressions contained in
the program lines. Chapters 4 and 5 present the various data manipulation tools available. The
decision-making power is used to determine the order in which lines will be executed. This chapter
discusses the ways of controlling the "flow" of program execution.

The Program Counter
The key to the concept of decision making in a computer is an understanding of the program
counter. The program counter is the part of the computer's internal system that tells it which line to
execute. Unless otherwise specified, the program counter automatically updates at the end of each
line so that it points to the next program line. This is illustrated in the following drawing.

Program Lines

1
1:0 R=R+:
130 Area=PH, R":
131 PRINT R
lLlO PRINT "Area
150 STOP

Value in Program Counter
at End of Line

~
DE::]
c:::BO

=" i Area ~
jdon't care l

This fundamental type of program flow is called "linear flow". As shown by the arrow, you can
visualize the flow of statement execution as being a straight line through the program listing.
Although linear flow seems very elementary, always remember that this is the computer's normal
mode of operation. Even experienced programmers are sometimes embarrassed to discover that a
"bug" in their program was caused by the simple incrementing of the program counter into the
wrong portion of the program.

As stated in the introduction of this chapter, a computer would be little more than a glOrified adding
machine if it were limited to linear flow. There are three general categories of program flow. These
are sequence, selection (conditional execution), and repetition. In addition to capabilities in all
three of these categories, your computer also has a powerful special case of selection, called
event-initiated branching. The rest of this chapter shows how to use all of these types of program
flow and gives suggestions for choosing the type of flow that is best for your application.

47

Program Structure and Flow
Chapter

3

Introduction
Two of the most significant characteristics of a computer are its ability to perform computations and
its ability to make decisions. If the execution sequence could never be changed within a program,
the computer could do little more than plug numbers into a formula. Computers have powerful
computational features, but the heart of a computer's intelligence is its ability to make decisions.

The computational power of your computer is exercised as it evaluates the expressions contained in
the program lines. Chapters 4 and 5 present the various data manipulation tools available. The
decision-making power is used to determine the order in which lines will be executed. This chapter
discusses the ways of controlling the "flow" of program execution.

The Program Counter
The key to the concept of decision making in a computer is an understanding of the program
counter. The program counter is the part of the computer's internal system that tells it which line to
execute. Unless otherwise specified, the program counter automatically updates at the end of each
line so that it points to the next program line. This is illustrated in the following drawing.

Program Lines

1
1:0 R=R+:
130 Area=PH, R":
131 PRINT R
lLlO PRINT "Area
150 STOP

Value in Program Counter
at End of Line

~
DE::]
c:::BO

=" i Area ~
jdon't care l

This fundamental type of program flow is called "linear flow". As shown by the arrow, you can
visualize the flow of statement execution as being a straight line through the program listing.
Although linear flow seems very elementary, always remember that this is the computer's normal
mode of operation. Even experienced programmers are sometimes embarrassed to discover that a
"bug" in their program was caused by the simple incrementing of the program counter into the
wrong portion of the program.

As stated in the introduction of this chapter, a computer would be little more than a glOrified adding
machine if it were limited to linear flow. There are three general categories of program flow. These
are sequence, selection (conditional execution), and repetition. In addition to capabilities in all
three of these categories, your computer also has a powerful special case of selection, called
event-initiated branching. The rest of this chapter shows how to use all of these types of program
flow and gives suggestions for choosing the type of flow that is best for your application.

47

48 Program Structure and Flow

Sequence
Linear Flow
The simplest form of sequence is linear flow. The preceding section showed an example of this
type of flow. Although linear flow is not at all glamorous, it has a very important purpose. Most
operations required of the computer are too complex to perform using one line of BASIC.
Linear flow allows many program lines to be grouped together to perform a specific task in a
predictable manner. Although this form of flow requires little explanation, keep these character­
istics in mind:

• Linear flow involves no decision making. Unless there is an error condition, the program
lines involved in this type of flow will always be executed in exactly the same order,
regardless of the results of or arguments to any expression .

• Linear flow is the default mode of program execution. Unless you include a statement that
stops or alters program flow, the computer will always "fall through" to the next higher­
numbered line after finishing the line it is on.

Halting Program Execution
One of the obvious alternatives to executing the next line in sequence is not to execute
anything. There are three statements that can be used to block the execution of the next line
and halt program flow. Each of these statements has a specific purpose, as explained in the
following paragraphs.

Chapter 2 defined a main program as a list of program lines with an END statement on the last
line. Marking the end of the main program is the primary purpose of the END statement.
Therefore, a program can contain only one END statement. The secondary purpose of the END
statement is stopping program execution. When an END statement is executed, program flow
stops and the program moves into the stopped (non-continuable) state.

It is often necessary to stop the program flow at some point other than the end of the main
program. This is the purpose of the STOP statement. A program can contain any number of
STOP statements in any program context. When a STOP statement is executed, program flow
stops and the program moves into the stopped (non-continuable) state. Also, if the STOP
statement is executed in a subprogram context, the main program context is restored. (Subpro­
grams and context switching are explained in Chapter 6.)

As an example of the use of STOP and END, consider the following program.

100 Radius=5
110 Circum=PI*2*Radius
120 PRINT INT(Circum)
130 STOP
140 Area=PI*Radius ~ 2

150 PRINT INT(Area)
180 END

When the ~ key is pressed, the computer prints 3 1 on the CRT and the Run Indicator (lower
right corner of CRT) goes off. This first press of the RUN key caused linear execution of lines 100
thru 130, with line 130 stopping that execution. If the ~ key is pressed again, the same thing

48 Program Structure and Flow

Sequence
Linear Flow
The simplest form of sequence is linear flow. The preceding section showed an example of this
type of flow. Although linear flow is not at all glamorous, it has a very important purpose. Most
operations required of the computer are too complex to perform using one line of BASIC.
Linear flow allows many program lines to be grouped together to perform a specific task in a
predictable manner. Although this form of flow requires little explanation, keep these character­
istics in mind:

• Linear flow involves no decision making. Unless there is an error condition, the program
lines involved in this type of flow will always be executed in exactly the same order,
regardless of the results of or arguments to any expression .

• Linear flow is the default mode of program execution. Unless you include a statement that
stops or alters program flow, the computer will always "fall through" to the next higher­
numbered line after finishing the line it is on.

Halting Program Execution
One of the obvious alternatives to executing the next line in sequence is not to execute
anything. There are three statements that can be used to block the execution of the next line
and halt program flow. Each of these statements has a specific purpose, as explained in the
following paragraphs.

Chapter 2 defined a main program as a list of program lines with an END statement on the last
line. Marking the end of the main program is the primary purpose of the END statement.
Therefore, a program can contain only one END statement. The secondary purpose of the END
statement is stopping program execution. When an END statement is executed, program flow
stops and the program moves into the stopped (non-continuable) state.

It is often necessary to stop the program flow at some point other than the end of the main
program. This is the purpose of the STOP statement. A program can contain any number of
STOP statements in any program context. When a STOP statement is executed, program flow
stops and the program moves into the stopped (non-continuable) state. Also, if the STOP
statement is executed in a subprogram context, the main program context is restored. (Subpro­
grams and context switching are explained in Chapter 6.)

As an example of the use of STOP and END, consider the following program.

100 Radius=5
110 Circum=PI*2*Radius
120 PRINT INT(Circum)
130 STOP
140 Area=PI*Radius ~ 2

150 PRINT INT(Area)
180 END

When the ~ key is pressed, the computer prints 3 1 on the CRT and the Run Indicator (lower
right corner of CRT) goes off. This first press of the RUN key caused linear execution of lines 100
thru 130, with line 130 stopping that execution. If the ~ key is pressed again, the same thing

Program Structure and Flow 49

will happen; the program does not resume execution from its stopping point in response to a RUN
command. However, RUN can specify a starting point. So, execute RUN 1 40. The computer prints
o and stops. This command caused linear execution of lines 140 thru 160, with line 160 stopping
that execution. However, a RUN command also causes a prerun initialization (see Chapter 2 if this
is an unfamiliar term) which zeroed the value of the variable R a diu s.

You could try pressing (CONTINUE) in the preceding example, but you will get an error. A stopped
program is not continuable. This leads up to the third statement for halting program flow.
Replace the STOP statement on line 130 with a PAUSE statement, yielding the following
program.

100 Radius=5
110 Circum=PI * 2*Radius
120 PRINT INT (Circum)
130 PAUSE
140 Area=PI*Radius~2

150 PRINT INT(Area)
160 END

Now press ~, and the computer prints 3 1 on the CRT. Then press (CONTINUE) , and the
computer prints 78 on the CRT. The purpose of the PAUSE statement is to temporarily halt
program execution, leaving the program counter intact and the program in a continuable state.
One common use for the PAUSE statement is in program troubleshooting and debugging. This
is covered in Chapter 12. Another use for PAUSE is to allow time for the computer user to read
messages or follow instructions. Interfacing with a human is covered in greater depth in Chapter
14, but here is one example of using the PAUSE statement in this way.

100
110
120
130
140
150
160
170
180

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PAUSE

"This prOSrafTl senerates a cross-reference"
"printout. The file to be cross-referenced"
"fTlust be an ASCII file containins a BASIC"
"prosrafTl. "

"Insert the disc 1"lith your files on it and"
"press CONTINUE."

Prosram execution resumes here after CONTINUE

lines 100 thru 160 are instructions to the program user. Since a user will often just load a
program and press ~, the programmer cannot assume that the user's disc is in place at the
start of the program. The instructions on the CRT remind the user of the program's purpose
and review the initial actions needed. The PAUSE statement on line 170 gives the user all the
time he needs to read the instructions, remove the program disc, and insert the "data disc". It
would be ridiculous to use a WAIT statement to try to anticipate the number of seconds
required for these actions. The PAUSE statement gives freedom to the user to take as little or as
much time as necessary.

When (CONTINUE) is pressed, the program resumes with any necessary input of file names and
assignments. Questions such as "Have you inserted the proper disc?" are unnecessary now.
The user has already indicated compliance with the instructions by pressing (CONTINUE) .

Program Structure and Flow 49

will happen; the program does not resume execution from its stopping point in response to a RUN
command. However, RUN can specify a starting point. So, execute RUN 1 40. The computer prints
o and stops. This command caused linear execution of lines 140 thru 160, with line 160 stopping
that execution. However, a RUN command also causes a prerun initialization (see Chapter 2 if this
is an unfamiliar term) which zeroed the value of the variable R a diu s.

You could try pressing (CONTINUE) in the preceding example, but you will get an error. A stopped
program is not continuable. This leads up to the third statement for halting program flow.
Replace the STOP statement on line 130 with a PAUSE statement, yielding the following
program.

100 Radius=5
110 Circum=PI * 2*Radius
120 PRINT INT (Circum)
130 PAUSE
140 Area=PI*Radius~2

150 PRINT INT(Area)
160 END

Now press ~, and the computer prints 3 1 on the CRT. Then press (CONTINUE) , and the
computer prints 78 on the CRT. The purpose of the PAUSE statement is to temporarily halt
program execution, leaving the program counter intact and the program in a continuable state.
One common use for the PAUSE statement is in program troubleshooting and debugging. This
is covered in Chapter 12. Another use for PAUSE is to allow time for the computer user to read
messages or follow instructions. Interfacing with a human is covered in greater depth in Chapter
14, but here is one example of using the PAUSE statement in this way.

100
110
120
130
140
150
160
170
180

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PAUSE

"This prOSrafTl senerates a cross-reference"
"printout. The file to be cross-referenced"
"fTlust be an ASCII file containins a BASIC"
"prosrafTl. "

"Insert the disc 1"lith your files on it and"
"press CONTINUE."

Prosram execution resumes here after CONTINUE

lines 100 thru 160 are instructions to the program user. Since a user will often just load a
program and press ~, the programmer cannot assume that the user's disc is in place at the
start of the program. The instructions on the CRT remind the user of the program's purpose
and review the initial actions needed. The PAUSE statement on line 170 gives the user all the
time he needs to read the instructions, remove the program disc, and insert the "data disc". It
would be ridiculous to use a WAIT statement to try to anticipate the number of seconds
required for these actions. The PAUSE statement gives freedom to the user to take as little or as
much time as necessary.

When (CONTINUE) is pressed, the program resumes with any necessary input of file names and
assignments. Questions such as "Have you inserted the proper disc?" are unnecessary now.
The user has already indicated compliance with the instructions by pressing (CONTINUE) .

50 Program Structure and Flow

Simple Branching
An alternative to linear flow is branching. Although conditional branching is one of the building
blocks for selection structures, the unconditional branch is simply a redirection of sequential
flow. The keywords which provide unconditional branching are GOTO, GOSUB, CALL, and
FN. The CALL and FN keywords invoke new contexts, in addition to their branching action.
This is a complex action that is the topic of an entire chapter (Chapter 6). This section discusses
the use of GOSUB and GOTO.

Using GOTO
First, you should be aware that the structuring capabilities available in BASIC make it possible to
avoid the use of the unconditional GOTO in most applications. You should also be aware that this is
a highly desirable goal. The problem is not anything inherent in the GOTO statement. The problem
lies in the programmer's tendency to "glue together" pieces of an algorithm, using more and more
GOTOs with each revision. Then comes that inevitable day when a fatal bug reveals that it is
impossible to "GET BACK FROM" the last "GO TO". The excessive use of GOTO has been
appropriately named spaghetti coding. Keep this very descriptive term in mind when you are
deciding whether to "just throw something together" or "do it right the first time". (See the section
on "Top-Down Design" in Chapter 6.)

The only difference between linear flow and a GOTO is that the GOTO loads the program
counter with a value that is (usually) different from the next-higher line number. The GOTO
statement can specify either the line number or the line label of the destination. The following
drawing shows the program flow and contents of the program counter in a program segment
containing a GOTO.

Value in Program Counter
Program Lines at End of Line

R=R+2
Area=PI*R"2
GOTO 240
Width=Width+l
Len9'th=Len9'th+l
Area= Width *Len9'th
PRINT "Area =" i Area
GOTO 210

~
[]Q2J
~
~
~
~
@QJ
[]lQJ

As you can see, the execution is still sequential and no decision making is involved. The first
GOTO (line 200) produces a forward jump, and the second GOTO (line 250) produces a
backward jump. A forward jump is used to skip over a section of the program. An unconditional
backward jump can produce an infinite loop. This is the endless repitition of a section of the
program. In this example, the infinite loop is line 210 thru 250.

An infinite loop by itself is not usually a desirable program structure. However, it does have its
place when mixed with conditional branching or event-initiated branching. Examples of these
structures are given later in this chapter.

Using GOSUB
The GOSUB statement is used to transfer program execution to a subroutine. Note that a sub­
routine and a subprogram are very different in HP BASIC. Calling a subprogram invokes a new
context. Subprograms can declare formal parameters and local variables. A subroutine is simply a

50 Program Structure and Flow

Simple Branching
An alternative to linear flow is branching. Although conditional branching is one of the building
blocks for selection structures, the unconditional branch is simply a redirection of sequential
flow. The keywords which provide unconditional branching are GOTO, GOSUB, CALL, and
FN. The CALL and FN keywords invoke new contexts, in addition to their branching action.
This is a complex action that is the topic of an entire chapter (Chapter 6). This section discusses
the use of GOSUB and GOTO.

Using GOTO
First, you should be aware that the structuring capabilities available in BASIC make it possible to
avoid the use of the unconditional GOTO in most applications. You should also be aware that this is
a highly desirable goal. The problem is not anything inherent in the GOTO statement. The problem
lies in the programmer's tendency to "glue together" pieces of an algorithm, using more and more
GOTOs with each revision. Then comes that inevitable day when a fatal bug reveals that it is
impossible to "GET BACK FROM" the last "GO TO". The excessive use of GOTO has been
appropriately named spaghetti coding. Keep this very descriptive term in mind when you are
deciding whether to "just throw something together" or "do it right the first time". (See the section
on "Top-Down Design" in Chapter 6.)

The only difference between linear flow and a GOTO is that the GOTO loads the program
counter with a value that is (usually) different from the next-higher line number. The GOTO
statement can specify either the line number or the line label of the destination. The following
drawing shows the program flow and contents of the program counter in a program segment
containing a GOTO.

Value in Program Counter
Program Lines at End of Line

R=R+2
Area=PI*R"2
GOTO 240
Width=Width+l
Len9'th=Len9'th+l
Area= Width *Len9'th
PRINT "Area =" i Area
GOTO 210

~
[]Q2J
~
~
~
~
@QJ
[]lQJ

As you can see, the execution is still sequential and no decision making is involved. The first
GOTO (line 200) produces a forward jump, and the second GOTO (line 250) produces a
backward jump. A forward jump is used to skip over a section of the program. An unconditional
backward jump can produce an infinite loop. This is the endless repitition of a section of the
program. In this example, the infinite loop is line 210 thru 250.

An infinite loop by itself is not usually a desirable program structure. However, it does have its
place when mixed with conditional branching or event-initiated branching. Examples of these
structures are given later in this chapter.

Using GOSUB
The GOSUB statement is used to transfer program execution to a subroutine. Note that a sub­
routine and a subprogram are very different in HP BASIC. Calling a subprogram invokes a new
context. Subprograms can declare formal parameters and local variables. A subroutine is simply a

Program Structure and Flow 51

segment of a program that is entered with a GOSUB and exited with a RETURN. Subroutines are
always in the same context as the program line that invokes them. There are no parameters passed
and no local variables. If you are a newcomer to HP's BASIC, be careful to distinguish between
these two terms. They have been used differently in some other programming languages.

The GOSUB is very useful in structuring and controlling programs. The similarity it has to a
procedure call is that program flow can automatically return to the proper line when the
subroutine is finished . The GOSUB statement can specify either the line label or the line
number of the desired subroutine entry point. The following drawing shows the program flow
and contents of the program counter in a program segment containing a GOSUB.

Value in Program Counter
Subroutine Program Lines at End of Line Program Lines

Value in Program Counter
at End of Line

10 00 PRINT Are a ; I I s 9 u are i n f " []QIQ]

~
3 0 0 R=R+2 []lQ]

1010 Cent =Area*G.a 5 1G ~ 310 Area =PI* R .. ~ ~ "'-
102 0 PRIN T Ce n t j " s 9 l.1a re CITl

ll ~ 32 0 GOS UB 100 0 [i]Q2J
10 30 PRIN T ~ 3 3 0 Width=W i dth+l ~
10aO RETURN ~ l ;~:~: Length=Length+l @TI

I Program c ontinues

Program execution is sequential and no decision making is involved. The main reason that a
GOSUB is a more desirable action than a GOTO is the effect of the RETURN statement. The
RETURN statement always returns program execution to the line that would have been ex­
ecuted if the GOSUB had not occurred. This is especially useful when using an event-initiated
GOSUB. Since it is usually impossible to predict when a user might press a softkey (for
example) , it is usually impossible to predict what program line should be returned to at the end
of a service routine. By using GOSUB and RETURN, the computer does the work for you.

Another common advantage gained from the use of GOSUB is program economy resulting
from the consolidation of common tasks. For example , assume that you are writing a page
formatter program to neatly print letters, reports, etc. The actions taken at the end of each page
might be such things as:

1. Skip two blank lines

2. Print the page number

3. Update the page counter

4. Print a form-feed

5. Zero the line counter

These end-of-page actions might be necessary at many places in the program. For example: in
the new-page segment, in the conditional-page algorithm, in the normal line-printing segment,
and in the end-of-file process. It would be wasteful duplication to repeat all those end-of-page
steps every place they are needed.

That kind of duplication also opens the door to updating problems. Suppose that you wanted to
modify the end-of-page action to make it print line-feeds instead of a form-feed for the benefit
of a printer that doesn't use form-feeds. If you had duplicated the end-of-page routine in five
different places in the program (or was that six?) , you will be doing five times as much typing to
make the change, and you will probably miss a spot.

Program Structure and Flow 51

segment of a program that is entered with a GOSUB and exited with a RETURN. Subroutines are
always in the same context as the program line that invokes them. There are no parameters passed
and no local variables. If you are a newcomer to HP's BASIC, be careful to distinguish between
these two terms. They have been used differently in some other programming languages.

The GOSUB is very useful in structuring and controlling programs. The similarity it has to a
procedure call is that program flow can automatically return to the proper line when the
subroutine is finished . The GOSUB statement can specify either the line label or the line
number of the desired subroutine entry point. The following drawing shows the program flow
and contents of the program counter in a program segment containing a GOSUB.

Value in Program Counter
Subroutine Program Lines at End of Line Program Lines

Value in Program Counter
at End of Line

10 00 PRINT Are a ; I I s 9 u are i n f " []QIQ]

~
3 0 0 R=R+2 []lQ]

1010 Cent =Area*G.a 5 1G ~ 310 Area =PI* R .. ~ ~ "'-
102 0 PRIN T Ce n t j " s 9 l.1a re CITl

ll ~ 32 0 GOS UB 100 0 [i]Q2J
10 30 PRIN T ~ 3 3 0 Width=W i dth+l ~
10aO RETURN ~ l ;~:~: Length=Length+l @TI

I Program c ontinues

Program execution is sequential and no decision making is involved. The main reason that a
GOSUB is a more desirable action than a GOTO is the effect of the RETURN statement. The
RETURN statement always returns program execution to the line that would have been ex­
ecuted if the GOSUB had not occurred. This is especially useful when using an event-initiated
GOSUB. Since it is usually impossible to predict when a user might press a softkey (for
example) , it is usually impossible to predict what program line should be returned to at the end
of a service routine. By using GOSUB and RETURN, the computer does the work for you.

Another common advantage gained from the use of GOSUB is program economy resulting
from the consolidation of common tasks. For example , assume that you are writing a page
formatter program to neatly print letters, reports, etc. The actions taken at the end of each page
might be such things as:

1. Skip two blank lines

2. Print the page number

3. Update the page counter

4. Print a form-feed

5. Zero the line counter

These end-of-page actions might be necessary at many places in the program. For example: in
the new-page segment, in the conditional-page algorithm, in the normal line-printing segment,
and in the end-of-file process. It would be wasteful duplication to repeat all those end-of-page
steps every place they are needed.

That kind of duplication also opens the door to updating problems. Suppose that you wanted to
modify the end-of-page action to make it print line-feeds instead of a form-feed for the benefit
of a printer that doesn't use form-feeds. If you had duplicated the end-of-page routine in five
different places in the program (or was that six?) , you will be doing five times as much typing to
make the change, and you will probably miss a spot.

52 Program Structure and Flow

The solution is a subroutine. For the sake of completeness in this example, the hypothetical
end-of-page subroutine is shown below.

54 0 End_pa9'e: !
5 50 PRINT USING " 21 , K" ;Pa9'enulTl ber
580 Pa9'enuM b e r= Pa9'enuMber+l
570 PRINTCHR$ (12);
580 Lines=O
590 RETURN

There are no "rules" to say when a program action should be made into a subroutine and when
it should be left in linear-flow. The following suggestions may help you decide.

• There is no significant speed penalty for using a subroutine. The time required to process
the GOSUB and RETURN is extremely small. If you are having trouble getting your
application to rUn fast enough, it is doubtful that your problems will be solved by removing
a couple of GOSUBs. In fact , the resulting loss of " readability" may actually make it more
difficult to identify and correct the real problem in timing.

• The "cross-over point" in line overhead is a subroutine that is only three lines long and is
called from only two places in the program. In other words, it takes the same number of
program lines to duplicate three lines as it does to stick a RETURN on the end of them and
add two GOSUB statements. However, there is nothing "magical" about this observation.
It does not mean that you shouldn 't have a subroutine shorter than three lines, or that you
should go around making a subroutine out of every three-line sequence you see repeated.
It should simply make you aware of possible improvements that could be made if you see
the same sequence repeated in several places in your program.

• Decisions about subroutines are best made On a conceptual level. Although there is noth­
ing wrong with aCcidentally discovering that you repeated ten lines which would make a
good subroutine, it is better to identify the appropriateness of subroutines during planning.
One question to ask yourself is, " Does it make sense to handle this task in a subroutine?" If
it takes a dozen flags and status variables to select all the variations that are needed from
One call to the next, a subprogram is probably a cleaner solution. Lines of code that "just
happen" to be repeated in several places are not good candidates for a subroutine. A
subroutine should have some identifiable task, like opening a file , normalizing a variable,
processing an end-of-page, decoding a keypress, parsing a string, and so forth .

52 Program Structure and Flow

The solution is a subroutine. For the sake of completeness in this example, the hypothetical
end-of-page subroutine is shown below.

54 0 End_pa9'e: !
5 50 PRINT USING " 21 , K" ;Pa9'enulTl ber
580 Pa9'enuM b e r= Pa9'enuMber+l
570 PRINTCHR$ (12);
580 Lines=O
590 RETURN

There are no "rules" to say when a program action should be made into a subroutine and when
it should be left in linear-flow. The following suggestions may help you decide.

• There is no significant speed penalty for using a subroutine. The time required to process
the GOSUB and RETURN is extremely small. If you are having trouble getting your
application to rUn fast enough, it is doubtful that your problems will be solved by removing
a couple of GOSUBs. In fact , the resulting loss of " readability" may actually make it more
difficult to identify and correct the real problem in timing.

• The "cross-over point" in line overhead is a subroutine that is only three lines long and is
called from only two places in the program. In other words, it takes the same number of
program lines to duplicate three lines as it does to stick a RETURN on the end of them and
add two GOSUB statements. However, there is nothing "magical" about this observation.
It does not mean that you shouldn 't have a subroutine shorter than three lines, or that you
should go around making a subroutine out of every three-line sequence you see repeated.
It should simply make you aware of possible improvements that could be made if you see
the same sequence repeated in several places in your program.

• Decisions about subroutines are best made On a conceptual level. Although there is noth­
ing wrong with aCcidentally discovering that you repeated ten lines which would make a
good subroutine, it is better to identify the appropriateness of subroutines during planning.
One question to ask yourself is, " Does it make sense to handle this task in a subroutine?" If
it takes a dozen flags and status variables to select all the variations that are needed from
One call to the next, a subprogram is probably a cleaner solution. Lines of code that "just
happen" to be repeated in several places are not good candidates for a subroutine. A
subroutine should have some identifiable task, like opening a file , normalizing a variable,
processing an end-of-page, decoding a keypress, parsing a string, and so forth .

Program Structure and Flow 53

Selection
The heart of a computer's decision-making power is the category of program flow called selection,
or conditional execution. As the name implies, a certain segment of the program either is or is not
executed according to the results of a test or condition. This is the basic action which gives the
computer an appearance of possessing intelligence. Actually, it is the intelligence of the pro­
grammer which is remembered by the program and reflected in the pattern of conditional execu­
tion.

Consider a chemistry lab application as an example. There would be little use for a computer whose
only function was to turn on a valve when a technician pressed the "START" button. The techni­
cian might just as well turn the valve himself. However, if the computer turned on a valve when the
"START" was pressed and turned off the valve when a specified pH level occurred, then it is
performing a much more useful task. If the example is extended to include state-of-the-art remote­
control valves and electronic pH measuring devices, the computer is now significantly out­
performing the technician. In this example, (in spite of any fancy instrumentation) the quality that
moved the computer from "useless" to "useful" was its ability to decide when to turn off the valve.
It was the programmer (you) who actually specified the criteria for the decision. Those criteria were
then communicated to the computer using conditional-execution program structures. As a result,
the computer was able to repeat the programmer's intention with much greater speed and accuracy
than a human.

This section presents the conditional-execution statements according to various applications. The
following is a summary of these groupings.

1. Conditional execution of one segment.

2. Conditionally choosing one of two segments.

3. Conditionally choosing one of many segments.

Conditional Execution of One Segment
The basic decision to execute or not execute a program segment is made by the IF. .. THEN
statement. This statement includes a numeric expression that is evaluated as being either true or
false. If true (non-zero) , the conditional segment is executed. If false (zero) , the conditional segment
is bypassed. Although the expression contained in an IF. .. THEN is treated as a Boolean expression,
note that there is no "BOOLEAN" data type. Any valid numeric expression is allowed.

The conditional segment can be either a single BASIC statement or a program segment containing
any number of statements. The first example shows conditional execution of a single BASIC
statement.

100 IF Ph >7 . 7 THEN OUTPUT l.J alve USING " # 18";0

Notice the test (p h > 7 • 7) and the conditional statement (0 U T PUT l.J a 1 I) e .. .) which appear on
either side of the keyword THEN. When the computer executes this program line, it evaluates the
expression Ph> 7 • 7. If the value contained in the variable Phis 7.7 or less, the expression evaluates
to 0 (false) , and the line is exited. If the value contained in the variable Ph is greater than 7.7, the
expression evaluates as 1 (true) , and the OUTPUT statement is executed. If you don't already
understand logical and relational operators, refer to Chapter 4 (numbers) or Chapter 5 (strings).

Program Structure and Flow 53

Selection
The heart of a computer's decision-making power is the category of program flow called selection,
or conditional execution. As the name implies, a certain segment of the program either is or is not
executed according to the results of a test or condition. This is the basic action which gives the
computer an appearance of possessing intelligence. Actually, it is the intelligence of the pro­
grammer which is remembered by the program and reflected in the pattern of conditional execu­
tion.

Consider a chemistry lab application as an example. There would be little use for a computer whose
only function was to turn on a valve when a technician pressed the "START" button. The techni­
cian might just as well turn the valve himself. However, if the computer turned on a valve when the
"START" was pressed and turned off the valve when a specified pH level occurred, then it is
performing a much more useful task. If the example is extended to include state-of-the-art remote­
control valves and electronic pH measuring devices, the computer is now significantly out­
performing the technician. In this example, (in spite of any fancy instrumentation) the quality that
moved the computer from "useless" to "useful" was its ability to decide when to turn off the valve.
It was the programmer (you) who actually specified the criteria for the decision. Those criteria were
then communicated to the computer using conditional-execution program structures. As a result,
the computer was able to repeat the programmer's intention with much greater speed and accuracy
than a human.

This section presents the conditional-execution statements according to various applications. The
following is a summary of these groupings.

1. Conditional execution of one segment.

2. Conditionally choosing one of two segments.

3. Conditionally choosing one of many segments.

Conditional Execution of One Segment
The basic decision to execute or not execute a program segment is made by the IF. .. THEN
statement. This statement includes a numeric expression that is evaluated as being either true or
false. If true (non-zero) , the conditional segment is executed. If false (zero) , the conditional segment
is bypassed. Although the expression contained in an IF. .. THEN is treated as a Boolean expression,
note that there is no "BOOLEAN" data type. Any valid numeric expression is allowed.

The conditional segment can be either a single BASIC statement or a program segment containing
any number of statements. The first example shows conditional execution of a single BASIC
statement.

100 IF Ph >7 . 7 THEN OUTPUT l.J alve USING " # 18";0

Notice the test (p h > 7 • 7) and the conditional statement (0 U T PUT l.J a 1 I) e .. .) which appear on
either side of the keyword THEN. When the computer executes this program line, it evaluates the
expression Ph> 7 • 7. If the value contained in the variable Phis 7.7 or less, the expression evaluates
to 0 (false) , and the line is exited. If the value contained in the variable Ph is greater than 7.7, the
expression evaluates as 1 (true) , and the OUTPUT statement is executed. If you don't already
understand logical and relational operators, refer to Chapter 4 (numbers) or Chapter 5 (strings).

54 Program Structure and Flow

By the way, the image specifier *" I B causes the output of a single byte. In the example, the value for
that byte is specified as zero (all bits cleared) . Presumably, this turns off all devices connected to a
GPIO interface. That interface is specified by the value contained in the device selector I.) a 1 v e. It is
beyond the scope of this manual to explain the details of controlling valves and instruments. If you
want to do this kind of control, refer to the BASIC Interfacing Techniques manual and study the
appropriate Interface Installation manual.

The same variable is allowed on both sides of an IF. .. THEN statement. For example, the following
statement could be used to keep a user-supplied value within bounds.

IF Number >8 THEN Number=8

When the computer executes this statement, it checks the initial value of N u)11 b e r . If the variable
contains a value less than or equal to nine, that value is left unchanged, and the statement is exited.
If the value of N u)11 b e r is greater than nine, the conditional assignment is performed, replacing the
Original value in N u)11 b e r with the value nine.

Prohibited Statements
Certain statements are not allowed as the conditional statement in a single-line IF. .. THEN. The
disallowed statements are used for various purposes, but the "common denominator" is that the
computer needs to find them during prerun as the first keyword on a line. (A possible exception to
this reasoning is REM, which is not allowed because it makes no sense to allow it. Comments
certainly aren' t executed conditionally. If comments are necessary on an IF...THEN line, the
exclamation point can be used.) The following statements are not allowed in a Single-line
IF. .. THEN.

Keywords used in the declaration of variables:

COM
DIM
INTEGER

OPTION BASE
REAL

Keywords that define context boundaries:

DEFFN
SUB
END

FNEND
SUB END

Keywords that define program structures:

CASE
CASE ELSE
ELSE
END IF
END LOOP
END SELECT
END WHILE
EXIT IF

FOR
IF
LOOP
NEXT
REPEAT
SELECT
UNTIL
WHILE

Keywords used to identify lines that are literals:

DATA
REM

54 Program Structure and Flow

By the way, the image specifier *" I B causes the output of a single byte. In the example, the value for
that byte is specified as zero (all bits cleared) . Presumably, this turns off all devices connected to a
GPIO interface. That interface is specified by the value contained in the device selector I.) a 1 v e. It is
beyond the scope of this manual to explain the details of controlling valves and instruments. If you
want to do this kind of control, refer to the BASIC Interfacing Techniques manual and study the
appropriate Interface Installation manual.

The same variable is allowed on both sides of an IF. .. THEN statement. For example, the following
statement could be used to keep a user-supplied value within bounds.

IF Number >8 THEN Number=8

When the computer executes this statement, it checks the initial value of N u)11 b e r . If the variable
contains a value less than or equal to nine, that value is left unchanged, and the statement is exited.
If the value of N u)11 b e r is greater than nine, the conditional assignment is performed, replacing the
Original value in N u)11 b e r with the value nine.

Prohibited Statements
Certain statements are not allowed as the conditional statement in a single-line IF. .. THEN. The
disallowed statements are used for various purposes, but the "common denominator" is that the
computer needs to find them during prerun as the first keyword on a line. (A possible exception to
this reasoning is REM, which is not allowed because it makes no sense to allow it. Comments
certainly aren' t executed conditionally. If comments are necessary on an IF...THEN line, the
exclamation point can be used.) The following statements are not allowed in a Single-line
IF. .. THEN.

Keywords used in the declaration of variables:

COM
DIM
INTEGER

OPTION BASE
REAL

Keywords that define context boundaries:

DEFFN
SUB
END

FNEND
SUB END

Keywords that define program structures:

CASE
CASE ELSE
ELSE
END IF
END LOOP
END SELECT
END WHILE
EXIT IF

FOR
IF
LOOP
NEXT
REPEAT
SELECT
UNTIL
WHILE

Keywords used to identify lines that are literals:

DATA
REM

Program Structure and Flow 55

Conditional Branching
Powerful control structures can be developed by using branching statements in an IF.. .THEN. Here
are some examples.

11 0 IF F r ee_space { 100 THEN GOSUB Expand_file
120 The line after i s always e xecu t ed

This statement checks the value of a variable called F r e e _ 5 pac e, and executes a file-expansion
subroutine if the value tested is not large enough. The same technique can be used with a CALL
statement to invoke a subprogram conditionally. One important feature of this structure is that the
program flow is essentially linear, except for the conditional "side trip" to a subroutine and back.
This is illustrated in the following drawing.

1000
1010
1020
1030
10 a O

PR IN T Are aj"s9uar e
Cen t= Are a*6. a51 6
PRINT Centj" s9ua r e
PRI NT
RETURN

i n. II

C fT1
1I

P_flag = 1 P _flag = 0

I~ 3 10 N13 00

~ m
R=R +2
Are a=PI *R"2
I F P_f l a9 THE N GOS UB
Wi dth=W i dth+ l
Len 9th =Le n9th+l

1000

The conditional GOTO is such a commonly used technique that the computer allows a special case
of syntax to specify it. Assuming that line number 200 is labeled "Start", the following statements
will all cause a branch to line 200 if X is equal to 3.

IF)-(=3 THEN GOTO 200
IF)-(=3 THE N GOTO S t a rt
IF)-(=3 THE N 20 0
IF)(=3 THEN St ar t

When a line number or line label is specified immediately after THEN , the computer assumes a
GOTO statement for that line. (This improves the readability of programs, because phrases like
"then start" sound more like English and less like computer jargon.) If execution is redirected by a
conditional GOTO (implied or expressed), the program flow does not automatically return to the
line following the IF.. . THEN. Thus, a conditional GOTO acts like a switch on a railroad track. This is
illustrated in the following drawing.

1 100 Re c o r d : ! ,ueri 55 0 Se n d_ t e xt: I

111 0 I Test for ope n f i le = 1 560 IF File THE N Re c or d
1120 ! Do an)' CREATE. ASSIGN . et c . File 5 70 PRINT Te x t$
11 30 OUTP UT @F il eiTe xt $ = 0 58 0 Li n e s =Lines + l
l la O ! Con ti nu e 'AI i t h f i 1 e o p e ra ti on 5 90 I Cont i nu e 'A' i t h p rintin9

Program Structure and Flow 55

Conditional Branching
Powerful control structures can be developed by using branching statements in an IF.. .THEN. Here
are some examples.

11 0 IF F r ee_space { 100 THEN GOSUB Expand_file
120 The line after i s always e xecu t ed

This statement checks the value of a variable called F r e e _ 5 pac e, and executes a file-expansion
subroutine if the value tested is not large enough. The same technique can be used with a CALL
statement to invoke a subprogram conditionally. One important feature of this structure is that the
program flow is essentially linear, except for the conditional "side trip" to a subroutine and back.
This is illustrated in the following drawing.

1000
1010
1020
1030
10 a O

PR IN T Are aj"s9uar e
Cen t= Are a*6. a51 6
PRINT Centj" s9ua r e
PRI NT
RETURN

i n. II

C fT1
1I

P_flag = 1 P _flag = 0

I~ 3 10 N13 00

~ m
R=R +2
Are a=PI *R"2
I F P_f l a9 THE N GOS UB
Wi dth=W i dth+ l
Len 9th =Le n9th+l

1000

The conditional GOTO is such a commonly used technique that the computer allows a special case
of syntax to specify it. Assuming that line number 200 is labeled "Start", the following statements
will all cause a branch to line 200 if X is equal to 3.

IF)-(=3 THEN GOTO 200
IF)-(=3 THE N GOTO S t a rt
IF)-(=3 THE N 20 0
IF)(=3 THEN St ar t

When a line number or line label is specified immediately after THEN , the computer assumes a
GOTO statement for that line. (This improves the readability of programs, because phrases like
"then start" sound more like English and less like computer jargon.) If execution is redirected by a
conditional GOTO (implied or expressed), the program flow does not automatically return to the
line following the IF.. . THEN. Thus, a conditional GOTO acts like a switch on a railroad track. This is
illustrated in the following drawing.

1 100 Re c o r d : ! ,ueri 55 0 Se n d_ t e xt: I

111 0 I Test for ope n f i le = 1 560 IF File THE N Re c or d
1120 ! Do an)' CREATE. ASSIGN . et c . File 5 70 PRINT Te x t$
11 30 OUTP UT @F il eiTe xt $ = 0 58 0 Li n e s =Lines + l
l la O ! Con ti nu e 'AI i t h f i 1 e o p e ra ti on 5 90 I Cont i nu e 'A' i t h p rintin9

56 Program Structure and Flow

Multiple-Line Conditional Segments
If the conditional program segment requires more than one statement, a slightly different structure
is used. Let's expand the valve-control example.

100 IF Ph)7.7 THEN
110 OUTPUT l.Jal!.!e USING "#,B";O
120 PRINT "Final Ph =" iPh
130 GOSUB Next_tube
140 END IF
150 Pro~raM continues here

Any number of program lines can be placed between a THEN and an END I F statement. In
executing this example, the computer evaluates the expression Ph) 7 • 7 in the IF... THEN state­
ment. If the result is false, the program counter is set to 150, and execution resumes with the line
following the END IF statement. If the condition is true, the program counter is set to 110, and the
three conditional statements (lines 110, 120, 130) are executed. Program flow then picks up at line
150, because the END IF is only used during prerun.

When using multiple-line IF. .. THEN structures, remember to mark the end of the structure with an
END IF statement and don't put any of the statements on the same line as the IF ... THEN. If the
beginning and end of the structure are not properly marked, the computer reports error 347 during
prerun.

The conditional segment can contain any statement except one which is used to set context
boundaries (such as END or DEF FN). In the previous example, the GOSUB N ext _ tub e could
have been aGO TON ext _ tub e. In that case, program execution does not pass through 150 when
the condition is true. A false condition would cause a branch to line 150, while a true condition
would send execution from line 100, to 110, to 120, to 130, and then to the line labeled "NexL
tube" .

If structuring statements are used within a multiple-line IF.. .THEN, the entire structure must be
contained in one conditional segment. This is called nested constructs. The following example
shows some properly nested constructs. Notice that the use of indenting improves the readability of
the code.

1000 IF Fla~ THEN
1010 IF End_of_pa~e THEN
1020 FOR 1=1 TO SKip_len~th

1030 PRINT
1040 Lines=Lines+l
1050 ND(T I
lOGO END IF
1070 END IF

Choosing One of Two Segments
Often you want a program flow that passes through only one of two paths depending upon a
condition. This type of decision is represented pictorally by the following diagram. If you have ever
been forced to program this type of structure using only the conditional GOTO, you know that the
result is much more confUSing than it needs to be.

56 Program Structure and Flow

Multiple-Line Conditional Segments
If the conditional program segment requires more than one statement, a slightly different structure
is used. Let's expand the valve-control example.

100 IF Ph)7.7 THEN
110 OUTPUT l.Jal!.!e USING "#,B";O
120 PRINT "Final Ph =" iPh
130 GOSUB Next_tube
140 END IF
150 Pro~raM continues here

Any number of program lines can be placed between a THEN and an END I F statement. In
executing this example, the computer evaluates the expression Ph) 7 • 7 in the IF... THEN state­
ment. If the result is false, the program counter is set to 150, and execution resumes with the line
following the END IF statement. If the condition is true, the program counter is set to 110, and the
three conditional statements (lines 110, 120, 130) are executed. Program flow then picks up at line
150, because the END IF is only used during prerun.

When using multiple-line IF. .. THEN structures, remember to mark the end of the structure with an
END IF statement and don't put any of the statements on the same line as the IF ... THEN. If the
beginning and end of the structure are not properly marked, the computer reports error 347 during
prerun.

The conditional segment can contain any statement except one which is used to set context
boundaries (such as END or DEF FN). In the previous example, the GOSUB N ext _ tub e could
have been aGO TON ext _ tub e. In that case, program execution does not pass through 150 when
the condition is true. A false condition would cause a branch to line 150, while a true condition
would send execution from line 100, to 110, to 120, to 130, and then to the line labeled "NexL
tube" .

If structuring statements are used within a multiple-line IF.. .THEN, the entire structure must be
contained in one conditional segment. This is called nested constructs. The following example
shows some properly nested constructs. Notice that the use of indenting improves the readability of
the code.

1000 IF Fla~ THEN
1010 IF End_of_pa~e THEN
1020 FOR 1=1 TO SKip_len~th

1030 PRINT
1040 Lines=Lines+l
1050 ND(T I
lOGO END IF
1070 END IF

Choosing One of Two Segments
Often you want a program flow that passes through only one of two paths depending upon a
condition. This type of decision is represented pictorally by the following diagram. If you have ever
been forced to program this type of structure using only the conditional GOTO, you know that the
result is much more confUSing than it needs to be.

Flag = 1

L100
L110
L120
L130
LIllO
L150
L1GO
L170
L1BO
L1BO

Flag = (1)

IF Flag THEN J
R=R+:::'
Area=PI*R :::'

ELSE

Wldth=Wldth+1 I
Le ngth=Length+1
Area=Wldth*Length

END IF
PRINT "Area =" jArea
I Program contInues

Program Structure and Flow 57

This language has an IF...THEN ... ELSE structrure which makes the one-of-two choice easy and
readable. The following example looks at a device selector which mayor may not contain a primary
address. The variable I s c is needed later in the program and must be only an interface select code.
If the operator-supplied device selector is greater than 31, the interface select code is extracted from
it. If it is equal to or less than 31, it already is an interface select code. (This example assumes that
no secondary addreSSing is used.)

500 IF Select>31 THEN
510 Isc=Select D H) 100
520 ELSE
530 Isc=Select
540 END IF

Notice that this structure is similar to the multiple-line IF... THEN shown previously. The only
difference is the addition of the keyword ELSE. Like the previous example, the structure is termin­
ated by END IF, and the proper nesting of other structures is allowed. The next example shows a
program segment that removes certain "escape sequences" from a string. The number of bytes in
the escape sequence varies, but can be determined by inspecting the characters following the
escape code. Notice the nesting of structures and the conditional branch. When no more escape
sequences remain in the string, program execution continues at N ext _ s e 9.

3800 Escape:
3810 Point=POS(AS,EscS)
3820 IF NOT Point THEN Next_seg
3830 IF AS[Point+1 i1J<>"e,:" THEN
3840 AS[PointJ=AS [Poin t+2J
3850 ELSE
3860
3870
3880
3880
3800
3810

IF AS[Point+2i1J="d" THEN
AS[PointJ=AS[Point+4J

ELSE
AS[PointJ=AS[Point+5J

END IF
END IF

3820 GOTO Escape
3830
3840 Next_seg:

2-byte se9uence

4-b}'te se9uence

5-b}'te se9uence

! Loof; for [!lore

! Program co n tinues here

Flag = 1

L100
L110
L120
L130
LIllO
L150
L1GO
L170
L1BO
L1BO

Flag = (1)

IF Flag THEN J
R=R+:::'
Area=PI*R :::'

ELSE

Wldth=Wldth+1 I
Le ngth=Length+1
Area=Wldth*Length

END IF
PRINT "Area =" jArea
I Program contInues

Program Structure and Flow 57

This language has an IF...THEN ... ELSE structrure which makes the one-of-two choice easy and
readable. The following example looks at a device selector which mayor may not contain a primary
address. The variable I s c is needed later in the program and must be only an interface select code.
If the operator-supplied device selector is greater than 31, the interface select code is extracted from
it. If it is equal to or less than 31, it already is an interface select code. (This example assumes that
no secondary addreSSing is used.)

500 IF Select>31 THEN
510 Isc=Select D H) 100
520 ELSE
530 Isc=Select
540 END IF

Notice that this structure is similar to the multiple-line IF... THEN shown previously. The only
difference is the addition of the keyword ELSE. Like the previous example, the structure is termin­
ated by END IF, and the proper nesting of other structures is allowed. The next example shows a
program segment that removes certain "escape sequences" from a string. The number of bytes in
the escape sequence varies, but can be determined by inspecting the characters following the
escape code. Notice the nesting of structures and the conditional branch. When no more escape
sequences remain in the string, program execution continues at N ext _ s e 9.

3800 Escape:
3810 Point=POS(AS,EscS)
3820 IF NOT Point THEN Next_seg
3830 IF AS[Point+1 i1J<>"e,:" THEN
3840 AS[PointJ=AS [Poin t+2J
3850 ELSE
3860
3870
3880
3880
3800
3810

IF AS[Point+2i1J="d" THEN
AS[PointJ=AS[Point+4J

ELSE
AS[PointJ=AS[Point+5J

END IF
END IF

3820 GOTO Escape
3830
3840 Next_seg:

2-byte se9uence

4-b}'te se9uence

5-b}'te se9uence

! Loof; for [!lore

! Program co n tinues here

58 Program Structure and Flow

Choosing One of Many Segments

Using SELECT Constructs
Consider as an example the processing of readings from a voltmeter. In this example, we assume
that the reading has already been entered, and it contained a function code. These hypothetical
function codes identify the type of reading and are shown in the following table.

Function Code Type of Reading

DV DC Volts
AV AC Volts
01 DC Current
AI AC Current

OM Ohms

The first example shows the use of the SELECT construct. The function code is contained in the
variable Fun c t $. For the sake of simplicity, the example does not show any actual processing.
Comments are used to identify the location of the processing segments. The rules about illegal
statements and proper nesting are the same as those discussed previously in the IF. .. THEN section.

2000 SELECT Funct$
2010 CASE "Dt.!"
2020
2030 ! Process i ng' for DC t.! 01 t s
2040
2050 CASE II Al.,J II

2060
2070 ! Processing' for AC t.J 01 t s
2080
2080 CASE "0 I"
2100
2110 ! Processi n g' for DC Amps
2120
2130 CASE "A I"
2140
2150 ! Proces s ing' for AC AlllPS
2160
2170 CASE "OM"
2180
2180 ! Proce s sing' for o hIllS
2200
2210 CASE ELSE
2220 BEEP
2230 PRINT " INt.JALID READING"
2240 END SELECT
2250 ! Prog'ralll execution continues here

58 Program Structure and Flow

Choosing One of Many Segments

Using SELECT Constructs
Consider as an example the processing of readings from a voltmeter. In this example, we assume
that the reading has already been entered, and it contained a function code. These hypothetical
function codes identify the type of reading and are shown in the following table.

Function Code Type of Reading

DV DC Volts
AV AC Volts
01 DC Current
AI AC Current

OM Ohms

The first example shows the use of the SELECT construct. The function code is contained in the
variable Fun c t $. For the sake of simplicity, the example does not show any actual processing.
Comments are used to identify the location of the processing segments. The rules about illegal
statements and proper nesting are the same as those discussed previously in the IF. .. THEN section.

2000 SELECT Funct$
2010 CASE "Dt.!"
2020
2030 ! Process i ng' for DC t.! 01 t s
2040
2050 CASE II Al.,J II

2060
2070 ! Processing' for AC t.J 01 t s
2080
2080 CASE "0 I"
2100
2110 ! Processi n g' for DC Amps
2120
2130 CASE "A I"
2140
2150 ! Proces s ing' for AC AlllPS
2160
2170 CASE "OM"
2180
2180 ! Proce s sing' for o hIllS
2200
2210 CASE ELSE
2220 BEEP
2230 PRINT " INt.JALID READING"
2240 END SELECT
2250 ! Prog'ralll execution continues here

Program Structure and Flow 59

Notice that the SELECT construct starts with a SELECT statement specifying the variable to be
tested and ends with an END SELECT statement. The anticipated values are placed in CASE
statements. Although this example shows a string tested against simple literals, the SELECT state­
ment works for numeric or string variables or expressions. The CASE statements can contain
constants, variables, expressions, comparison operators, or a range specification. The anticipated
values, or match items, must be of the same type (numeric or string) as the tested variable.

The CASE ELSE statement is optional. It defines a program segment that is executed if the tested
variable does not match any of the cases. If CASE ELSE is not included and no match is found,
program execution simply continues with the line following END SELECT.

The following example shows a numeric variable tested with comparison operators and a range
specifier.

1500 SELECT Os
1510 CASE <1
1520 ! Processing for invalid device selector
1530 CASE 1 TO 31
1540 ! Processing for interface select code
1550 CASE >31
1580 Contains primar Y address
1570 ENO SELECT

A CASE statement can also specify multiple matches by separating them with commas, as shown
below.

CASE -1 ti,3 TO 7,>15

The following CASE statement shows the use of a string expression, rather than a simple constant.
CASE CHR$(27)&:")@"&:Eol$

You should be aware that if an error occurs when the computer tries to evaluate an expression in a
CASE statement, the error is reported for the line containing the SELECT statement. This is a result
of the nature of SELECT constructs and is not a bug. However, it can make things a bit confusing if
you aren't aware of it. An error message pointing to a SELECT statement actually means that there
was an error in that line or in one of the CASE statements. It requires more "detective work" on
your part to locate the line which actually contains the erroneous expression.

Using the ON Statement
This type of program flow can also be generated with the ON statement and some additional
processing. Let's do a string example first, using the previous voltmeter example. All the anticipated
values are placed in a simple string. This string is then searched using the POS function. The results
of the POS function are adjusted to become consecutive integers beginning with one. This result
can then be used in the ON statement.

100 Match$=101.JA 1.IOIAIOM"

500 Pointer=POS (Match$,Funct$)
510 Pointer=INT((Pointer-1)/2+1)
520 ON Pointer+1 GOSUS Case_else , Case_dv,Case_av ,
Case_di ,Case_ai ,Case_orrl

Program Structure and Flow 59

Notice that the SELECT construct starts with a SELECT statement specifying the variable to be
tested and ends with an END SELECT statement. The anticipated values are placed in CASE
statements. Although this example shows a string tested against simple literals, the SELECT state­
ment works for numeric or string variables or expressions. The CASE statements can contain
constants, variables, expressions, comparison operators, or a range specification. The anticipated
values, or match items, must be of the same type (numeric or string) as the tested variable.

The CASE ELSE statement is optional. It defines a program segment that is executed if the tested
variable does not match any of the cases. If CASE ELSE is not included and no match is found,
program execution simply continues with the line following END SELECT.

The following example shows a numeric variable tested with comparison operators and a range
specifier.

1500 SELECT Os
1510 CASE <1
1520 ! Processing for invalid device selector
1530 CASE 1 TO 31
1540 ! Processing for interface select code
1550 CASE >31
1580 Contains primar Y address
1570 ENO SELECT

A CASE statement can also specify multiple matches by separating them with commas, as shown
below.

CASE -1 ti,3 TO 7,>15

The following CASE statement shows the use of a string expression, rather than a simple constant.
CASE CHR$(27)&:")@"&:Eol$

You should be aware that if an error occurs when the computer tries to evaluate an expression in a
CASE statement, the error is reported for the line containing the SELECT statement. This is a result
of the nature of SELECT constructs and is not a bug. However, it can make things a bit confusing if
you aren't aware of it. An error message pointing to a SELECT statement actually means that there
was an error in that line or in one of the CASE statements. It requires more "detective work" on
your part to locate the line which actually contains the erroneous expression.

Using the ON Statement
This type of program flow can also be generated with the ON statement and some additional
processing. Let's do a string example first, using the previous voltmeter example. All the anticipated
values are placed in a simple string. This string is then searched using the POS function. The results
of the POS function are adjusted to become consecutive integers beginning with one. This result
can then be used in the ON statement.

100 Match$=101.JA 1.IOIAIOM"

500 Pointer=POS (Match$,Funct$)
510 Pointer=INT((Pointer-1)/2+1)
520 ON Pointer+1 GOSUS Case_else , Case_dv,Case_av ,
Case_di ,Case_ai ,Case_orrl

60 Program Structure and Flow

Notice that a match can only cause values of 1, 3 , 5, 7, or 9 from the POS function. A "match not
found" gives a value of O. Line 510 converts these to consecutive integers from 0 thru 5. The
Poi n t e r + 1 expression in line 520 shifts the values to a range 1 thru 6, which is acceptable to the
ON statement.

The values of the match characters will determine the "pre-processing" necessary. If you are trying
to match single bytes, simply adding one to the results of the POS is all that is necessary. Finding
3-letter sequences requires a line like 510, only with a division by 3. Note also that, except for single
bytes, this method may not always work. For example, if the current ranges had been indicated by
DA and AA (instead of DI and Al) , Match$ would be "DVAVDAAAOM". A subsequent search for
"AA" would return 6 instead of 7 - not good. In a case like that, there are two choices. One
approach is to rearrange the string being searched; "DVAVDAOMAA" would work. Perhaps the
items in the string could be separated with a "pad" character and the calculation adjusted accor­
dingly. The other approach is to make each match value a separate element of a string array. The
array could then be "searched" with a FOR ... NEXT loop. This approach works well to resolve
conflicts, especially with long match strings. However, the extra code lines and array accesses slow
the process down significantly.

The ON statement can also be used for numeric values. If the numeric values you are trying to
match just happen to be consecutive integers starting with one, the variable to be tested can be
used in the ON statement. However, programmers don't usually get that lucky. To match arbitrary
values, the following trick can be used. This example tests the three cases: < 0, 1, and > 1.

700 Pointer=1*(X < 0)+2*(X=1)+3*(X>1)

71 0 ON Pointer GOSUB Ne9'atil)e,One,Greater

Assuming that you use non-overlapping comparison tests, only one of the values in parentheses will
be true. The system returns a value of "1" for true. This is multiplied times the corresponding factor
to give the final value to Pointer. All the other factors drop out because their comparison result is
zero. Programmers who like strong type checking may raise an eyebrow at this technique, but it
works.

Another way of testing for numbers that are integers between 0 and 255 is to use the CHR$
function to create string bytes and apply the POS function as explained previously.

60 Program Structure and Flow

Notice that a match can only cause values of 1, 3 , 5, 7, or 9 from the POS function. A "match not
found" gives a value of O. Line 510 converts these to consecutive integers from 0 thru 5. The
Poi n t e r + 1 expression in line 520 shifts the values to a range 1 thru 6, which is acceptable to the
ON statement.

The values of the match characters will determine the "pre-processing" necessary. If you are trying
to match single bytes, simply adding one to the results of the POS is all that is necessary. Finding
3-letter sequences requires a line like 510, only with a division by 3. Note also that, except for single
bytes, this method may not always work. For example, if the current ranges had been indicated by
DA and AA (instead of DI and Al) , Match$ would be "DVAVDAAAOM". A subsequent search for
"AA" would return 6 instead of 7 - not good. In a case like that, there are two choices. One
approach is to rearrange the string being searched; "DVAVDAOMAA" would work. Perhaps the
items in the string could be separated with a "pad" character and the calculation adjusted accor­
dingly. The other approach is to make each match value a separate element of a string array. The
array could then be "searched" with a FOR ... NEXT loop. This approach works well to resolve
conflicts, especially with long match strings. However, the extra code lines and array accesses slow
the process down significantly.

The ON statement can also be used for numeric values. If the numeric values you are trying to
match just happen to be consecutive integers starting with one, the variable to be tested can be
used in the ON statement. However, programmers don't usually get that lucky. To match arbitrary
values, the following trick can be used. This example tests the three cases: < 0, 1, and > 1.

700 Pointer=1*(X < 0)+2*(X=1)+3*(X>1)

71 0 ON Pointer GOSUB Ne9'atil)e,One,Greater

Assuming that you use non-overlapping comparison tests, only one of the values in parentheses will
be true. The system returns a value of "1" for true. This is multiplied times the corresponding factor
to give the final value to Pointer. All the other factors drop out because their comparison result is
zero. Programmers who like strong type checking may raise an eyebrow at this technique, but it
works.

Another way of testing for numbers that are integers between 0 and 255 is to use the CHR$
function to create string bytes and apply the POS function as explained previously.

Program Structure and Flow 61

Repetition
Humans usually prefer tasks with variety that avoid tedious repetition. A computer does not have
this shortcoming. You have four structures available for creating repetition. The FOR .. NEXT
structure is used for repeating a program segment a predetermined number of times. Two other
structures (REPEAT. .. UNTIL and WHILE) are used for repeating a program segment indefinitely,
waiting for a specified condition to occur. The LOOP .. . EXIT IF structure is used to create an
iterative structure that allows multiple exit points at arbitrary locations.

Fixed Number of Iterations
The general concept of repetitive program flow can be shown with the FOR .. NEXT structure. With
this structure, a program segment is executed a predetermined number of times. The FOR state­
ment marks the beginning of the repeated segment and establishes the number of repetitions. The
NEXT statement marks the end of the repeated segment. This structure uses a numeric variable as a
loop counter. This variable is available for use within the loop, if desired. The following drawing
shows the basic elements of a FOR .. NEXT loop.

200

{

210
REPEATED 220
SEGMENT 230

240

STARTING
VALUE

LOOP i FINAL STEP
COUNTER VALUE SIZE
,.--., ~ ~

FOR Count=10 TO 0 STEP -1
BEEP
PRINT Count
WA IT 1

NE){T Count

The number of loop iterations is determined by the FOR statement. This statement identifies the
loop counter, assigns a starting value to it, specifies the desired final value, and determines the step
size that will be used to take the loop counter from the starting value to the final value. When the
loop counter is an INTEGER, the number of iterations can be predicted using the following formula:

INT (
Step Size + Final Value - Starting Value

Step Size)
Note that the formula applies to the values in the variables, not necessarily the numbers in the
program source. For example, if you use an INTEGER loop counter and specify a step size of 0.7,
the value will be rounded to one. Therefore, 1 should be used in the formula, not 0.7.

Program Structure and Flow 61

Repetition
Humans usually prefer tasks with variety that avoid tedious repetition. A computer does not have
this shortcoming. You have four structures available for creating repetition. The FOR .. NEXT
structure is used for repeating a program segment a predetermined number of times. Two other
structures (REPEAT. .. UNTIL and WHILE) are used for repeating a program segment indefinitely,
waiting for a specified condition to occur. The LOOP .. . EXIT IF structure is used to create an
iterative structure that allows multiple exit points at arbitrary locations.

Fixed Number of Iterations
The general concept of repetitive program flow can be shown with the FOR .. NEXT structure. With
this structure, a program segment is executed a predetermined number of times. The FOR state­
ment marks the beginning of the repeated segment and establishes the number of repetitions. The
NEXT statement marks the end of the repeated segment. This structure uses a numeric variable as a
loop counter. This variable is available for use within the loop, if desired. The following drawing
shows the basic elements of a FOR .. NEXT loop.

200

{

210
REPEATED 220
SEGMENT 230

240

STARTING
VALUE

LOOP i FINAL STEP
COUNTER VALUE SIZE
,.--., ~ ~

FOR Count=10 TO 0 STEP -1
BEEP
PRINT Count
WA IT 1

NE){T Count

The number of loop iterations is determined by the FOR statement. This statement identifies the
loop counter, assigns a starting value to it, specifies the desired final value, and determines the step
size that will be used to take the loop counter from the starting value to the final value. When the
loop counter is an INTEGER, the number of iterations can be predicted using the following formula:

INT (
Step Size + Final Value - Starting Value

Step Size)
Note that the formula applies to the values in the variables, not necessarily the numbers in the
program source. For example, if you use an INTEGER loop counter and specify a step size of 0.7,
the value will be rounded to one. Therefore, 1 should be used in the formula, not 0.7.

62 Program Structure and Flow

The loop counter can be a REAL number, with REAL quantities for the step size, starting, or final
values. In some cases, using REAL numbers will cause the number of iterations to be off by one
from the preceding formula. This is because the NEXT statement performs an "increment and
compare", and there is a slight inaccuracy in the comparison of REAL numbers. If you are
interested, this is discussed in the next chapter. However, there is no "clean" way around it with
FOR .. NEXT loops. Here is an example:

200 Count=O
210 FOR X=10 TO 20
220 Count=Count+1
230 PRINT Count
240 NE){T){

According to the formula, this loop should execute 11 times: INT((l +20-10)/1 = 11). The result
On the CRT confirms this when the loop is executed. If line 210 is changed to:

210 FOR X=l TO 2 STEP .1

the formula still yields 11 as the number of iterations. However, executing the loop produces only
10 repetitions. This is because of a very, very small accumulated error that results from the
successive addition of one-tenth. The error is less significant than the 15th digit, but discernable to
the computer. In this case, rounding cannot be performed at a time that would help. When you find
yourself in this situation, one solution is to add a slight adjustment factor to the final value. One half
of the step size is a convenient adjustment factor. The following line does give the 11 iterations
predicted by the formula.

210 FOR X=l TO 2.05 STEP .1

Remembering the "increment and compare" operation at the bottom of the loop is helpful. After
the loop counter is updated, it is compared to the final value established by the FOR statement. If
the loop counter has passed the specified final value, the loop is exited. If it has not passed the
specified final value, the loop is repeated. The loop counter retains its exit value after the loop is
finished. This is not necessarily one full step past the final value. For example:

FOR 1=1 TO 8.8

This statement establishes a loop that executes nine times (the default step size is one) . The variable
I has the value 10 when the loop is exited.

FOR Count=12 TO 1 STEP -0.3

This statement establishes a loop that executes 37 times. The variable Count has the value. 9 when
the loop is exited. Notice that negative step sizes are allowed using the same keywords as positive
step sizes.

The final points to mention concern the execution of the FOR statement. If any variables are
present to the right of the equal sign, the value used is the value they have when the FOR statement
is executed. Remember that the FOR statement is only executed once before the loop begins. Also,
if the number of iterations evaluates to zero or less, the loop is not executed and program execution
goes immediately to the line following the NEXT statement. Here are some examples.

62 Program Structure and Flow

The loop counter can be a REAL number, with REAL quantities for the step size, starting, or final
values. In some cases, using REAL numbers will cause the number of iterations to be off by one
from the preceding formula. This is because the NEXT statement performs an "increment and
compare", and there is a slight inaccuracy in the comparison of REAL numbers. If you are
interested, this is discussed in the next chapter. However, there is no "clean" way around it with
FOR .. NEXT loops. Here is an example:

200 Count=O
210 FOR X=10 TO 20
220 Count=Count+1
230 PRINT Count
240 NE){T){

According to the formula, this loop should execute 11 times: INT((l +20-10)/1 = 11). The result
On the CRT confirms this when the loop is executed. If line 210 is changed to:

210 FOR X=l TO 2 STEP .1

the formula still yields 11 as the number of iterations. However, executing the loop produces only
10 repetitions. This is because of a very, very small accumulated error that results from the
successive addition of one-tenth. The error is less significant than the 15th digit, but discernable to
the computer. In this case, rounding cannot be performed at a time that would help. When you find
yourself in this situation, one solution is to add a slight adjustment factor to the final value. One half
of the step size is a convenient adjustment factor. The following line does give the 11 iterations
predicted by the formula.

210 FOR X=l TO 2.05 STEP .1

Remembering the "increment and compare" operation at the bottom of the loop is helpful. After
the loop counter is updated, it is compared to the final value established by the FOR statement. If
the loop counter has passed the specified final value, the loop is exited. If it has not passed the
specified final value, the loop is repeated. The loop counter retains its exit value after the loop is
finished. This is not necessarily one full step past the final value. For example:

FOR 1=1 TO 8.8

This statement establishes a loop that executes nine times (the default step size is one) . The variable
I has the value 10 when the loop is exited.

FOR Count=12 TO 1 STEP -0.3

This statement establishes a loop that executes 37 times. The variable Count has the value. 9 when
the loop is exited. Notice that negative step sizes are allowed using the same keywords as positive
step sizes.

The final points to mention concern the execution of the FOR statement. If any variables are
present to the right of the equal sign, the value used is the value they have when the FOR statement
is executed. Remember that the FOR statement is only executed once before the loop begins. Also,
if the number of iterations evaluates to zero or less, the loop is not executed and program execution
goes immediately to the line following the NEXT statement. Here are some examples.

Program Structure and Flow 63

40 0 FOR I t eM=First TO Last
410 GOSUB Process
420 Last=La s t+l
430 NE)<T It e fll
44 0 ! Executio n continues he r e

This loop would not be executed if Last were less than First. This is almost always desirable, since it
prevents the subroutine Process from being invoked with a null item. Also notice that the number of
iterations is fixed at loop entry when line 400 is executed. That number of iterations does not
change when the value of Last is changed.

FOR IteM=Ite M+l TO Last

The variable Item is used as the loop counter. It receives a starting value that is one greater than the
value it had when this line is executed.

Conditional Number of Iterations
The FOR .. NEXT loop produces a fixed number of iterations, established by the FOR statement
before the loop is executed. Some applications need a loop that is executed until a certain condition
is true, without specifically stating the number of iterations involved. Consider a very simple
example. The following segment asks the operator to input a positive number. Presumably, nega­
tive numbers are not acceptable. A looping structure is used to repeat the entry operation if an
improper value is given. Notice that it is not important how many times the loop is executed. If it
only takes once, that is just fine. If the poor operator takes ten tries before he realizes what the
computer is asking for, so be it. What is important is that a specific condition is met. In this
example, the condition is that a value be non-negative. As soon as that condition has been satisfied,
the loop is exited.

800 REPEAT
810 INPUT "Enter a posit i l,J e n Ufll ber " , Nufllbe r
82 0 UNTIL NUMber >=O

A typical use of this is an iterative problem involving non-linear increments. One example is musical
notes. Performing the same operation on all the notes in a 3-octave band is a repetitive process, but
not a linear one. Musical notes are related geometrically by the 12th root of two. The following
example simply prints the frequencies involved, but your application could involve any number of
operations.

1200 Note =11 0
1210 REPEAT
12 20 PRINT No t e ;
1230 Note=Note*2 " (1/ 12)
12 40 UNTIL Note >88 0 ! En d at hig h A

For this example, a FOR .. NEXT loop might have been used, with the loop counter appearing in an
exponent. That would work because it is relatively easy to know how many notes there are in three
octaves of the musical scale. However, the REPEAT .. . UNTIL structure is more flexible than
FOR .. NEXT when working with exponential data in general. Examples often occur in the area of
graphics. The following segment could be used to plot audio frequency data, where the x-axis is
logarithmic.

Program Structure and Flow 63

40 0 FOR I t eM=First TO Last
410 GOSUB Process
420 Last=La s t+l
430 NE)<T It e fll
44 0 ! Executio n continues he r e

This loop would not be executed if Last were less than First. This is almost always desirable, since it
prevents the subroutine Process from being invoked with a null item. Also notice that the number of
iterations is fixed at loop entry when line 400 is executed. That number of iterations does not
change when the value of Last is changed.

FOR IteM=Ite M+l TO Last

The variable Item is used as the loop counter. It receives a starting value that is one greater than the
value it had when this line is executed.

Conditional Number of Iterations
The FOR .. NEXT loop produces a fixed number of iterations, established by the FOR statement
before the loop is executed. Some applications need a loop that is executed until a certain condition
is true, without specifically stating the number of iterations involved. Consider a very simple
example. The following segment asks the operator to input a positive number. Presumably, nega­
tive numbers are not acceptable. A looping structure is used to repeat the entry operation if an
improper value is given. Notice that it is not important how many times the loop is executed. If it
only takes once, that is just fine. If the poor operator takes ten tries before he realizes what the
computer is asking for, so be it. What is important is that a specific condition is met. In this
example, the condition is that a value be non-negative. As soon as that condition has been satisfied,
the loop is exited.

800 REPEAT
810 INPUT "Enter a posit i l,J e n Ufll ber " , Nufllbe r
82 0 UNTIL NUMber >=O

A typical use of this is an iterative problem involving non-linear increments. One example is musical
notes. Performing the same operation on all the notes in a 3-octave band is a repetitive process, but
not a linear one. Musical notes are related geometrically by the 12th root of two. The following
example simply prints the frequencies involved, but your application could involve any number of
operations.

1200 Note =11 0
1210 REPEAT
12 20 PRINT No t e ;
1230 Note=Note*2 " (1/ 12)
12 40 UNTIL Note >88 0 ! En d at hig h A

For this example, a FOR .. NEXT loop might have been used, with the loop counter appearing in an
exponent. That would work because it is relatively easy to know how many notes there are in three
octaves of the musical scale. However, the REPEAT .. . UNTIL structure is more flexible than
FOR .. NEXT when working with exponential data in general. Examples often occur in the area of
graphics. The following segment could be used to plot audio frequency data, where the x-axis is
logarithmic.

64 Program Structure and Flow

1500 Freq=20
1510 MOI,JE LOG(Freq) ,FNFunc ti on (Freq)

1520 REPEAT
1530 DRAW LOG(Freq) ,FNFunction(Freq)

1540 Freq=Freq*1.2

1550 UNTIL Freq)20000

The flexibility of this structure is in line 1540. By increasing the frequency with a factor of 1.2, a very
fast but rough graph is generated. (You need the GRAPH BIN to run this example.) This lets you
place axes, labels, markers, etc. where you want them without waiting for a time-consuming plot for
each cosmetic change. Once you have the desired appearance, you could change line 1540 to
F r e q = F r e q * 1 .01 . This would greatly increase the resolution of the plot (and reduce its speed) .
To take it one step further, you could make the "resolution factor" a variable and input its value at
the start of the program. That would make it easy to try many different increments to achieve the
best compromise between resolution and smoothness. Attempting a similar technique with
FOR. .. NEXT loops would involve many extra (and unnecessary) calculations.

The WHILE loop is used for the same purpose as the REPEAT loop. The only difference between
the two is the location of the test for exiting the loop. The REPEAT loop has its test at the bottom.
This means that the loop is always executed at least once, regardless of the value of the condition.
The WHILE loop has its test at the top. Therefore, it is possible for the loop to be skipped entirely (if
the conditions so dictate). The following segment shows the same plotting example using a WHILE
loop.

1500 Freq=20
151 0 MOI,JE LOG(Freq) , FNFunction(Freq)

1520 WHILE Freq { =20000

1530 DRAW LOG(Freq) ,FNFunction(Freq)

1540 Freq=Freq*1.2

1550 END WHILE

The next segment shows the use of conditional branching to simulate a REPEAT. .. UNTIL structure.

1500 Freq =20

1510 MOI,JE LOG(Freq) ,FNFu n ction(Freq)

1520 Loop_top :

1530 DRA W LOG(Freq) , FNFunction(Freq)

1540 Freq=Freq*1.2

15 50 IF Freq{=20000 THEN Loop_top

The WHILE structure can also be simulated using GOTO statements. The following segment shows
this technique.

1500 Freq=20
1510 MOI,JE LOG(Freq) ,FNFunction(Freq)

15 20 Loop_top :

1530 IF Freq) 20 0 00 THEN Loop _ exit

1540 DRAW LOG(Freq) ,FNFunct i on(Freq)

1550 Freq =Freq*1.2

1560 GOTO Loop_top

1570 Loop _ ex i t :

64 Program Structure and Flow

1500 Freq=20
1510 MOI,JE LOG(Freq) ,FNFunc ti on (Freq)

1520 REPEAT
1530 DRAW LOG(Freq) ,FNFunction(Freq)

1540 Freq=Freq*1.2

1550 UNTIL Freq)20000

The flexibility of this structure is in line 1540. By increasing the frequency with a factor of 1.2, a very
fast but rough graph is generated. (You need the GRAPH BIN to run this example.) This lets you
place axes, labels, markers, etc. where you want them without waiting for a time-consuming plot for
each cosmetic change. Once you have the desired appearance, you could change line 1540 to
F r e q = F r e q * 1 .01 . This would greatly increase the resolution of the plot (and reduce its speed) .
To take it one step further, you could make the "resolution factor" a variable and input its value at
the start of the program. That would make it easy to try many different increments to achieve the
best compromise between resolution and smoothness. Attempting a similar technique with
FOR. .. NEXT loops would involve many extra (and unnecessary) calculations.

The WHILE loop is used for the same purpose as the REPEAT loop. The only difference between
the two is the location of the test for exiting the loop. The REPEAT loop has its test at the bottom.
This means that the loop is always executed at least once, regardless of the value of the condition.
The WHILE loop has its test at the top. Therefore, it is possible for the loop to be skipped entirely (if
the conditions so dictate). The following segment shows the same plotting example using a WHILE
loop.

1500 Freq=20
151 0 MOI,JE LOG(Freq) , FNFunction(Freq)

1520 WHILE Freq { =20000

1530 DRAW LOG(Freq) ,FNFunction(Freq)

1540 Freq=Freq*1.2

1550 END WHILE

The next segment shows the use of conditional branching to simulate a REPEAT. .. UNTIL structure.

1500 Freq =20

1510 MOI,JE LOG(Freq) ,FNFu n ction(Freq)

1520 Loop_top :

1530 DRA W LOG(Freq) , FNFunction(Freq)

1540 Freq=Freq*1.2

15 50 IF Freq{=20000 THEN Loop_top

The WHILE structure can also be simulated using GOTO statements. The following segment shows
this technique.

1500 Freq=20
1510 MOI,JE LOG(Freq) ,FNFunction(Freq)

15 20 Loop_top :

1530 IF Freq) 20 0 00 THEN Loop _ exit

1540 DRAW LOG(Freq) ,FNFunct i on(Freq)

1550 Freq =Freq*1.2

1560 GOTO Loop_top

1570 Loop _ ex i t :

Program Structure and Flow 65

The REPEAT. .. UNTIL and WHILE structures are especially useful for tasks that are impossible with
a FOR ... NEXT loop. One such situation is a loop where both the loop counter and the final value
are changing. Consider the example of stripping all control characters from a string. This can't be
done in a loop that starts FOR I = 1 TO LEN (A $) , because the length of A$ changes each time a
character is deleted. Therefore, the loop counter used as a subscript will eventually exceed the
length of the string by more than one, generating an error. The WHILE loop does not have this
problem. Note that the test at the top of the loop prevents the subscripting from being attempted on
a null string. This is necessary to avoid an error.

600 1=1
610 WHILE I<=LEN(A$)
620 IF AHI i1J<CHR$ (32) THEN
630 A$[IJ=A$[I+1J
640 ELSE
650 1=1+1
660 END IF
670 END WHILE

Arbitrary Exit Points
A pass through any of the loop structures discussed so far included the entire program segment
between the top and the bottom of the loop. There are times when this is not the desired program
flow. The LOOP structure defines a repeated program segment and allows any number of con­
ditional exits points in that segment.

For the first example, consider a search and replace operation on string data. In this example, the
"shift out" control character is being used to initiate underlining on a printer that understands
standard escape sequences. The "shift in" control character is used to turn off the underline mode.
(There is nothing significant about this choice of characters. Any combination of characters could
serve the same purpose.)

One approach is to use a loop to search every character in every string to see if it is one of the
special characters. There are two problems with this method. First, it is a little cumbersome when
the replacement string is a different length than the target string. Second, it is slow. Admittedly,
speed it not a significant consideration when driving common mechanical printers. But the destina­
tion might eventually be a lazer printer or mass storage file, making the program's speed more
visible.

A better approach is to use the POS function to locate the target string. Since this function locates
only the first occurrence of a pattern, it must be placed in a loop to insure that multiple occurrences
will be found. The LOOP structure is well suited to this task, as shown in the following example.

Program Structure and Flow 65

The REPEAT. .. UNTIL and WHILE structures are especially useful for tasks that are impossible with
a FOR ... NEXT loop. One such situation is a loop where both the loop counter and the final value
are changing. Consider the example of stripping all control characters from a string. This can't be
done in a loop that starts FOR I = 1 TO LEN (A $) , because the length of A$ changes each time a
character is deleted. Therefore, the loop counter used as a subscript will eventually exceed the
length of the string by more than one, generating an error. The WHILE loop does not have this
problem. Note that the test at the top of the loop prevents the subscripting from being attempted on
a null string. This is necessary to avoid an error.

600 1=1
610 WHILE I<=LEN(A$)
620 IF AHI i1J<CHR$ (32) THEN
630 A$[IJ=A$[I+1J
640 ELSE
650 1=1+1
660 END IF
670 END WHILE

Arbitrary Exit Points
A pass through any of the loop structures discussed so far included the entire program segment
between the top and the bottom of the loop. There are times when this is not the desired program
flow. The LOOP structure defines a repeated program segment and allows any number of con­
ditional exits points in that segment.

For the first example, consider a search and replace operation on string data. In this example, the
"shift out" control character is being used to initiate underlining on a printer that understands
standard escape sequences. The "shift in" control character is used to turn off the underline mode.
(There is nothing significant about this choice of characters. Any combination of characters could
serve the same purpose.)

One approach is to use a loop to search every character in every string to see if it is one of the
special characters. There are two problems with this method. First, it is a little cumbersome when
the replacement string is a different length than the target string. Second, it is slow. Admittedly,
speed it not a significant consideration when driving common mechanical printers. But the destina­
tion might eventually be a lazer printer or mass storage file, making the program's speed more
visible.

A better approach is to use the POS function to locate the target string. Since this function locates
only the first occurrence of a pattern, it must be placed in a loop to insure that multiple occurrences
will be found. The LOOP structure is well suited to this task, as shown in the following example.

66 Program Structure and Flow

2000

2010

2020

2030

20LlO

2050

2080

2070

2080

2080

2100

2110

LOOP

Position=POS(A$,CHR$(1L1»

EXIT IF NOT Position

A$[Pos i t i on] =CHR$ (27) e,: "e,:dD " e,:A$ [Pos i t i on+1]

END LOOP

LOOP

Position=POS(A$,CHR$(15»

EXIT IF NOT Position

A$[Pos i t i on] =CHR$ (27) e,:"e,:d@"e,:A$[Position+1J

END LOOP

! Last EXIT goes to here

In this segment, all occurrences of "shift out" are replaced by "escape &dO" to enable underline
mode. All occurrences of "shift in" are replaced by "escape &d@" to disable underlining. Notice
that there is no problem replacing one character with four (assuming that A$ is large enough). Lines
containing no special characters are processed by only two POS functions, which is much faster and
cleaner than performing two comparisons for every character in every line.

Another common use for this structure is the processing of operator input. Recall the RE­
PEAT. .. UNTIL example that tested for the input of a positive number. Although this structure kept
the computer happy, it left the operator in the dark. The LOOP structure provides for the additional
processing needed, as shown in the following example.

200 LOOP

210 INPUT "Enter a positive nUfTlber," ,NufTlber

220 EXIT IF Number)=O

230 BEEP

2L10 PRINT

250 PRINT "Negatit.!e nUfTlbers are not allol,led,"

280 PRINT "Repeat entrY 1,lith a positive nUfTlber,

270 END LOOP

Another point to remember is that the LOOP structure permits more than one exit point. This
allows loops that are exited on a "whichever comes first" basis. Also, the EXIT IF statement can be
at the top or bottom of the loop. This means that the LOOP structure can serve the same purposes
as REPEAT. .. UNTIL and WHILE, if that suits your programming style.

66 Program Structure and Flow

2000

2010

2020

2030

20LlO

2050

2080

2070

2080

2080

2100

2110

LOOP

Position=POS(A$,CHR$(1L1»

EXIT IF NOT Position

A$[Pos i t i on] =CHR$ (27) e,: "e,:dD " e,:A$ [Pos i t i on+1]

END LOOP

LOOP

Position=POS(A$,CHR$(15»

EXIT IF NOT Position

A$[Pos i t i on] =CHR$ (27) e,:"e,:d@"e,:A$[Position+1J

END LOOP

! Last EXIT goes to here

In this segment, all occurrences of "shift out" are replaced by "escape &dO" to enable underline
mode. All occurrences of "shift in" are replaced by "escape &d@" to disable underlining. Notice
that there is no problem replacing one character with four (assuming that A$ is large enough). Lines
containing no special characters are processed by only two POS functions, which is much faster and
cleaner than performing two comparisons for every character in every line.

Another common use for this structure is the processing of operator input. Recall the RE­
PEAT. .. UNTIL example that tested for the input of a positive number. Although this structure kept
the computer happy, it left the operator in the dark. The LOOP structure provides for the additional
processing needed, as shown in the following example.

200 LOOP

210 INPUT "Enter a positive nUfTlber," ,NufTlber

220 EXIT IF Number)=O

230 BEEP

2L10 PRINT

250 PRINT "Negatit.!e nUfTlbers are not allol,led,"

280 PRINT "Repeat entrY 1,lith a positive nUfTlber,

270 END LOOP

Another point to remember is that the LOOP structure permits more than one exit point. This
allows loops that are exited on a "whichever comes first" basis. Also, the EXIT IF statement can be
at the top or bottom of the loop. This means that the LOOP structure can serve the same purposes
as REPEAT. .. UNTIL and WHILE, if that suits your programming style.

Program Structure and Flow 67

The EXIT IF statement must appear at the same nesting level as the LOOP statement for a given
loop. This requirement is best shown with an example. In the "WRONG" example, the EXIT IF
statement has been nested one level deeper than the LOOP statement because it was placed in an
IF ... THEN structure.

WRONG

600 LOOP
610 Test=RND-.5
620 IF Test<O THEN
630 GOSUS Negative
640 ELSE
650 EXIT IF Test>.4
660 GOSUS Positive
670 END IF
680 END LOOP

RIGHT

600 LOOP
610 Test=RND-.5
620 EXIT IF Test>.4
630 IF Test<O THEN
640 GOSUS Negative
650 ELSE
660 GOSUS Positive
670 END IF
680 END LOOP

Program Structure and Flow 67

The EXIT IF statement must appear at the same nesting level as the LOOP statement for a given
loop. This requirement is best shown with an example. In the "WRONG" example, the EXIT IF
statement has been nested one level deeper than the LOOP statement because it was placed in an
IF ... THEN structure.

WRONG

600 LOOP
610 Test=RND-.5
620 IF Test<O THEN
630 GOSUS Negative
640 ELSE
650 EXIT IF Test>.4
660 GOSUS Positive
670 END IF
680 END LOOP

RIGHT

600 LOOP
610 Test=RND-.5
620 EXIT IF Test>.4
630 IF Test<O THEN
640 GOSUS Negative
650 ELSE
660 GOSUS Positive
670 END IF
680 END LOOP

68 Program Structure and Flow

Event -Initiated Branching
Your computer has a special kind of program flow that provides some very powerful tools. This
tool, called event-initiated branching, uses interrupts to redirect program flow. The process can be
visualized as a special case of selection. Every time program flow leaves a line, the computer
executes an "event-checking" routine. This is a set of machine-language "if ... then" statements
concerning interrupts. If an event is enabled and "true", this "event-checking" routine causes the
program to branch.

The process of "event checking" is represented in the following lines. Notice that it is possible for
event-initiated branching to occur at the end of any program line, which includes the lines of a
subprogram. This can give the appearance of "middle-of-line" branching when it occurs during a
user-defined function. These potential branching points are marked by the words "gosub evenL
check". This does not refer to a BASIC subroutine, but is just a symbolic reminder of where
event-initiated branching can occur. If the operating system finds a "true" event, a branch is taken.
If not, program execution resumes with the "normal" program flow.

1 0 P R I N T ~{(gosub evenLcheck)
20)(=)(+ 1 (gosub evenLcheck)
30 GOT 0 1 0 (gosub evenLcheck)

Enabling Events
Event-initiated branching is established by the ON-event statements. Here is a list of the statements
that fall in this category:

ON END
ONKBD
ON KNOB
ON TIMEOUT

ON ERROR
ON KEY
ONINTR
ON SIGNAL

ON CYCLE
ON DELAY
ON TIME

ONEOR
ONEOT

The ON END event is used to detect when the end of a mass storage file is reached. This is
discussed in Chapter 7.

The ON CYCLE, ON DELAY and ON TIME statements are used to direct program flow using the
clock. They are discussed in Chapter 9.

The ON ERROR event is used to trap run-time errors and provide for error-recovery routines. This
is discussed in Chapter 11.

The ON KBD, ON KEY, and ON KNOB events pertain to various parts of the keyboard and are
used to enhance the "human interface" of programs. ON KBD lets you re-define the entire
keyboard to suit the needs of your program. This is discussed in the BASIC Interfacing Techniques
manual. The ON KEY statement is used to define and label the softkeys on the keyboard. The ON
KNOB statement lets you capture turns of the knob. This chapter has some examples of ON KEY
and ON KNOB. The chapter called "Communicating with the Operator" also provides examples of
ON KEY.

The ON EOR, ON EOT, ON SIGNAL, ON INTR and ON TIMEOUT events pertain to data transfer,
interfaces and I/O operations. These are discussed in the BASIC Interfacing Techniques manual.

68 Program Structure and Flow

Event -Initiated Branching
Your computer has a special kind of program flow that provides some very powerful tools. This
tool, called event-initiated branching, uses interrupts to redirect program flow. The process can be
visualized as a special case of selection. Every time program flow leaves a line, the computer
executes an "event-checking" routine. This is a set of machine-language "if ... then" statements
concerning interrupts. If an event is enabled and "true", this "event-checking" routine causes the
program to branch.

The process of "event checking" is represented in the following lines. Notice that it is possible for
event-initiated branching to occur at the end of any program line, which includes the lines of a
subprogram. This can give the appearance of "middle-of-line" branching when it occurs during a
user-defined function. These potential branching points are marked by the words "gosub evenL
check". This does not refer to a BASIC subroutine, but is just a symbolic reminder of where
event-initiated branching can occur. If the operating system finds a "true" event, a branch is taken.
If not, program execution resumes with the "normal" program flow.

1 0 P R I N T ~{(gosub evenLcheck)
20)(=)(+ 1 (gosub evenLcheck)
30 GOT 0 1 0 (gosub evenLcheck)

Enabling Events
Event-initiated branching is established by the ON-event statements. Here is a list of the statements
that fall in this category:

ON END
ONKBD
ON KNOB
ON TIMEOUT

ON ERROR
ON KEY
ONINTR
ON SIGNAL

ON CYCLE
ON DELAY
ON TIME

ONEOR
ONEOT

The ON END event is used to detect when the end of a mass storage file is reached. This is
discussed in Chapter 7.

The ON CYCLE, ON DELAY and ON TIME statements are used to direct program flow using the
clock. They are discussed in Chapter 9.

The ON ERROR event is used to trap run-time errors and provide for error-recovery routines. This
is discussed in Chapter 11.

The ON KBD, ON KEY, and ON KNOB events pertain to various parts of the keyboard and are
used to enhance the "human interface" of programs. ON KBD lets you re-define the entire
keyboard to suit the needs of your program. This is discussed in the BASIC Interfacing Techniques
manual. The ON KEY statement is used to define and label the softkeys on the keyboard. The ON
KNOB statement lets you capture turns of the knob. This chapter has some examples of ON KEY
and ON KNOB. The chapter called "Communicating with the Operator" also provides examples of
ON KEY.

The ON EOR, ON EOT, ON SIGNAL, ON INTR and ON TIMEOUT events pertain to data transfer,
interfaces and I/O operations. These are discussed in the BASIC Interfacing Techniques manual.

Program Structure and Flow 69

The best way to understand how event-initiated branches operate in a program is to sit down at the
computer and try a few examples. Start by entering the following short program.

110 ON KEY LABEL "Inc" GoSUB Plus
120 ON KEY 5 LABEL "Dec" GoSU B Minus
130
140 Spin : DISP X
150 GoTo Spin
160
170 Plus: }(=}(+1
180 RET URN
190
200 Minus : X= X-l
210 RETURN
220 END

Notice the various structures in this sample program. The ON KEY statements are executed only
once at the start of the program. Once defined, these event-initiated branches remain in effect for
the rest of the program. (Disabling and deactivating are discussed later.) The program segment
labeled "Spin" is an infinite loop. If it weren't for interrupts, this program couldn't do anything
except display a zero. However, there is an implied IF .. . THEN at the end of lines 140 and 150
because of the ON KEY action. This allows a selection process to occur. Either the "Plus" or the
"Minus" subroutine can be selected as a result of softkey presses. These are normal subroutines
terminated with a RETURN statement. (In the context of interrupt programming, these subroutines
are called service routines.) The following section of pseudocode shows what the program flow of
the "Spin" segment actually looks like to the computer.

Spin: display X
if Key 1 then gosub Plus
if KeyS then gosub Minus
goto Spin

This pseudocode is an over-simplification of what is actually happening, but it shows that the
"Spin" segment is not really an infinite loop with no deciSion-making structure. Actually, most
programs that use event-initiated branching to control program flow will contain what appears to be
an infinite loop. That is the easiest way to "keep the computer busy" while it is waiting for an
interrupt.

Now run the sample program you just entered. Notice that the bottom two lines of the screen
display an inverse-video label area. These labels are arranged to correspond to the layout of the
softkeys. The labels are displayed when the softkeys are active and are not displayed when the
softkeys are not active. 1 Any label which your program has not defined is blank. The label areas are
defined in the ON KEY statement by using the keyword "LABEL" followed by a string.

The starting value in the display line is zero, since numeric variables are initialized to zero at prerun.
Each time you press G:J or c::::IT:J , the displayed value of X is incremented. Each time you press
eEL] or DO, the displayed value of X is decremented. This simple demonstration should
aquaint you with the basic action of the softkeys.

1 See the BASIC In terfacing Techniques manual for additional examples of softkeys and labels.

Program Structure and Flow 69

The best way to understand how event-initiated branches operate in a program is to sit down at the
computer and try a few examples. Start by entering the following short program.

110 ON KEY LABEL "Inc" GoSUB Plus
120 ON KEY 5 LABEL "Dec" GoSU B Minus
130
140 Spin : DISP X
150 GoTo Spin
160
170 Plus: }(=}(+1
180 RET URN
190
200 Minus : X= X-l
210 RETURN
220 END

Notice the various structures in this sample program. The ON KEY statements are executed only
once at the start of the program. Once defined, these event-initiated branches remain in effect for
the rest of the program. (Disabling and deactivating are discussed later.) The program segment
labeled "Spin" is an infinite loop. If it weren't for interrupts, this program couldn't do anything
except display a zero. However, there is an implied IF .. . THEN at the end of lines 140 and 150
because of the ON KEY action. This allows a selection process to occur. Either the "Plus" or the
"Minus" subroutine can be selected as a result of softkey presses. These are normal subroutines
terminated with a RETURN statement. (In the context of interrupt programming, these subroutines
are called service routines.) The following section of pseudocode shows what the program flow of
the "Spin" segment actually looks like to the computer.

Spin: display X
if Key 1 then gosub Plus
if KeyS then gosub Minus
goto Spin

This pseudocode is an over-simplification of what is actually happening, but it shows that the
"Spin" segment is not really an infinite loop with no deciSion-making structure. Actually, most
programs that use event-initiated branching to control program flow will contain what appears to be
an infinite loop. That is the easiest way to "keep the computer busy" while it is waiting for an
interrupt.

Now run the sample program you just entered. Notice that the bottom two lines of the screen
display an inverse-video label area. These labels are arranged to correspond to the layout of the
softkeys. The labels are displayed when the softkeys are active and are not displayed when the
softkeys are not active. 1 Any label which your program has not defined is blank. The label areas are
defined in the ON KEY statement by using the keyword "LABEL" followed by a string.

The starting value in the display line is zero, since numeric variables are initialized to zero at prerun.
Each time you press G:J or c::::IT:J , the displayed value of X is incremented. Each time you press
eEL] or DO, the displayed value of X is decremented. This simple demonstration should
aquaint you with the basic action of the softkeys.

1 See the BASIC In terfacing Techniques manual for additional examples of softkeys and labels.

70 Program Structure and Flow

It is possible to make structures that are much more elaborate, with assignable priorities for each
key, and keys that interrupt the service routines of other keys. There are many applications where
priorites are not of any real significance, such as the example program running now. However,
priorities will sometimes cause unexpected flow problems. One type of priority problem can be
shown with a simple modification to our example program. Insert the following line right after line
170.

171 GOTO 171

Now run the program and press 0iJ or OD. Notice that the program "locks up" and all
subsequent presses of either softkey do nothing. This is not simply because line 171 creates an
infinite loop. The program segment at "Spin" was a infinite loop and that didn't bother the softkeys
at all. The problem is that the priority for the "Plus" service routine is higher than the main program
priority. None of the softkeys have been assigned a high enough priority to interrupt another service
routine. A full discussion on interrupt priority can be found in the "Interface Events" chapter of the
BASIC Interfacing Techniques manual. If you think you have an application that is "priority
sensitive" , read that section carefully.

Using the Knob
One characteristic of interrupt-driven program flow is that the computer's decisions can be more
easily synchronized with the actions of devices connected to it. This type of application is often
called real-time programming. An important example of real-time programming is machine con­
trol. A computer running an automatic packing machine must turn off the flow immediately when
the jar is full. It is not acceptable for the computer to wait until the inventory printout is done and
peanut butter is dumped all over the conveyor belt. Although machine control applications are very
important, their extensive interfacing makes them inconvenient or impossible to use as demonstra­
tion programs in a manual such as this.

Another common example of real-time programming is computer games. The computer is ex­
pected to respond "instantly" to button presses, lever movement, etc. The operator expects
immediate correlation between their input and the computer's output or display. Your BASIC
Utilities Disc has a couple of simple games on it that demonstate interaction between the CRT,
softkeys, and knob. Feel free to list any of the programs on that disc if you want further examples of
various techniques.

The follOWing program is a very short example that demonstates a real-time interaction between the
knob and the CRT. If you run this example program and turn the knob, you will see the kind of
interaction that might be used for cursor control in a text editor. ObViously, a real cursor-control
routine would be much more sophisticated, but this demonstrates the basic idea.

70 Program Structure and Flow

It is possible to make structures that are much more elaborate, with assignable priorities for each
key, and keys that interrupt the service routines of other keys. There are many applications where
priorites are not of any real significance, such as the example program running now. However,
priorities will sometimes cause unexpected flow problems. One type of priority problem can be
shown with a simple modification to our example program. Insert the following line right after line
170.

171 GOTO 171

Now run the program and press 0iJ or OD. Notice that the program "locks up" and all
subsequent presses of either softkey do nothing. This is not simply because line 171 creates an
infinite loop. The program segment at "Spin" was a infinite loop and that didn't bother the softkeys
at all. The problem is that the priority for the "Plus" service routine is higher than the main program
priority. None of the softkeys have been assigned a high enough priority to interrupt another service
routine. A full discussion on interrupt priority can be found in the "Interface Events" chapter of the
BASIC Interfacing Techniques manual. If you think you have an application that is "priority
sensitive" , read that section carefully.

Using the Knob
One characteristic of interrupt-driven program flow is that the computer's decisions can be more
easily synchronized with the actions of devices connected to it. This type of application is often
called real-time programming. An important example of real-time programming is machine con­
trol. A computer running an automatic packing machine must turn off the flow immediately when
the jar is full. It is not acceptable for the computer to wait until the inventory printout is done and
peanut butter is dumped all over the conveyor belt. Although machine control applications are very
important, their extensive interfacing makes them inconvenient or impossible to use as demonstra­
tion programs in a manual such as this.

Another common example of real-time programming is computer games. The computer is ex­
pected to respond "instantly" to button presses, lever movement, etc. The operator expects
immediate correlation between their input and the computer's output or display. Your BASIC
Utilities Disc has a couple of simple games on it that demonstate interaction between the CRT,
softkeys, and knob. Feel free to list any of the programs on that disc if you want further examples of
various techniques.

The follOWing program is a very short example that demonstates a real-time interaction between the
knob and the CRT. If you run this example program and turn the knob, you will see the kind of
interaction that might be used for cursor control in a text editor. ObViously, a real cursor-control
routine would be much more sophisticated, but this demonstrates the basic idea.

Program Structure and Flow 71

10 ON KNOB .1 GOSUB Moue_blip
20 Spin: GO TO Spin
30
40 Moue_blip:
50 PRINT TAB}(Y(Spotx,Spot!');" ";
60 Spotx=Spotx+KNOB X/5
70 Spot!'=Spot!'+KNOBY/5
80 IF Spot!'{l THEN Spot!'=l
80 IF Spot !')18 THEN Spot!'=18
100 IF Spotx{l THEN Spotx=l
110 IF Spotx)50 THEN Spotx=50
120 PRINT TAB}(Y(Spot x ,Spot}')iCHR$(127);
130 RETURN
140 END

This example uses a short infinite loop to wait for pulses from the knob (line 20). Interrupts from the
knob are enabled by the ON KNOB statement in line 10. The service routine erases the old "blip" ,
performs some scaling and range checking on the knob input, and prints the new "blip".

The scaling and range checking are very important in this kind of interactive routine. Humans
expect their interface to have a certain "feel" . Displays should not change too quickly or too slowly.
Certain kinds of displays are expected to change logarithmically, others are expected to change
linearly. The boundary values of variables are expected to conform to the boundaries of the
display. To initiate yourself to some of these concepts, try modifying this simple example. Remove
one or more of the range checking lines. (An easy way to do this kind of editing is to place an
exclamation point in front of the statement. This turns it into a comment, removing it from the flow
of execution. But it can be easily returned to the program by deleting the exclamation point.) Also
try changing the scaling factor in lines 60 and 70. Notice the "feel" that results from larger and
smaller increments, or even logarithmic scaling.

Deactivating Events
Knowing how to "turn off" the interrupt mechanism is just as important as knowing how to enable
it. Often, an event is a desired input during one part of the program, but not during another. You
might use softkeys to set certain process parameters the start of a program, but you don't want
interrupts from those keys once the process starts. For example, a report generating program could
use a softkey to select single or double spacing. This key should be disabled once the printout starts
so that an accidental keypress does not cause the computer to abort the printout and return to the
questions at the beginning of the program. On the other hand, you might want an "Abort" key that
does precisely that. The important thing is that you decide on the desired action and make the
computer obey your wishes.

Before going any further, let's explain some important terminology. There are two general methods
for "turning off" an interrupt. If an interrupt source is deactivated, it no longer has any influence on
program flow. You can press a deactivated key all day long and nothing will happen. However, if
an event is disabled, its action has only been temporarily postponed. The computer remembers
that a key was pressed while it was disabled, and the action for that key will occur at the earliest
opportunity once the disabled state is removed. There are examples in this section to demonstate
the difference betweem these two conditions.

Program Structure and Flow 71

10 ON KNOB .1 GOSUB Moue_blip
20 Spin: GO TO Spin
30
40 Moue_blip:
50 PRINT TAB}(Y(Spotx,Spot!');" ";
60 Spotx=Spotx+KNOB X/5
70 Spot!'=Spot!'+KNOBY/5
80 IF Spot!'{l THEN Spot!'=l
80 IF Spot !')18 THEN Spot!'=18
100 IF Spotx{l THEN Spotx=l
110 IF Spotx)50 THEN Spotx=50
120 PRINT TAB}(Y(Spot x ,Spot}')iCHR$(127);
130 RETURN
140 END

This example uses a short infinite loop to wait for pulses from the knob (line 20). Interrupts from the
knob are enabled by the ON KNOB statement in line 10. The service routine erases the old "blip" ,
performs some scaling and range checking on the knob input, and prints the new "blip".

The scaling and range checking are very important in this kind of interactive routine. Humans
expect their interface to have a certain "feel" . Displays should not change too quickly or too slowly.
Certain kinds of displays are expected to change logarithmically, others are expected to change
linearly. The boundary values of variables are expected to conform to the boundaries of the
display. To initiate yourself to some of these concepts, try modifying this simple example. Remove
one or more of the range checking lines. (An easy way to do this kind of editing is to place an
exclamation point in front of the statement. This turns it into a comment, removing it from the flow
of execution. But it can be easily returned to the program by deleting the exclamation point.) Also
try changing the scaling factor in lines 60 and 70. Notice the "feel" that results from larger and
smaller increments, or even logarithmic scaling.

Deactivating Events
Knowing how to "turn off" the interrupt mechanism is just as important as knowing how to enable
it. Often, an event is a desired input during one part of the program, but not during another. You
might use softkeys to set certain process parameters the start of a program, but you don't want
interrupts from those keys once the process starts. For example, a report generating program could
use a softkey to select single or double spacing. This key should be disabled once the printout starts
so that an accidental keypress does not cause the computer to abort the printout and return to the
questions at the beginning of the program. On the other hand, you might want an "Abort" key that
does precisely that. The important thing is that you decide on the desired action and make the
computer obey your wishes.

Before going any further, let's explain some important terminology. There are two general methods
for "turning off" an interrupt. If an interrupt source is deactivated, it no longer has any influence on
program flow. You can press a deactivated key all day long and nothing will happen. However, if
an event is disabled, its action has only been temporarily postponed. The computer remembers
that a key was pressed while it was disabled, and the action for that key will occur at the earliest
opportunity once the disabled state is removed. There are examples in this section to demonstate
the difference betweem these two conditions.

72 Program Structure and Flow

All the "ON-event" statements have a corresponding "OFF-event" statement. This is one way to
deactivate an interrupt source .

• OFF KEY deactivates interrupts from the softkeys. If a softkey is pressed while deactivated, it
does nothing .

• OFF KNOB deactivates the ON KNOB interrupts. Turning the knob while ON KNOB is
deactivated causes normal scrolling on the CRT.

The following example shows one use of OFF KEY to disable the softkeys. (Note that ~ is
used in the description. If you have an HP 46020A keyboard, just substitue OU .) A softkey is
used to select a parameter for a small printing routine. Each press of ~ increments and displays
the step size that will be used as an interval between the printed numbers. When the desired step
size has been selected, ~ is pressed to start the printout. Enter and run this example. Notice
that with line 240 and 250 commented out, the softkey menu, or label area, never changes.

100 Begi n:
11 0 ON KEY 1 LABEL" DELTA" GO SUB S tep _ size
120 ON KEY 4 LAB EL" START" GOTO P ro ces s
130 Inc=1
140 DISP " S tep Size = 1"
150
160 Sp i n: GOTO Sp i n
170 !
180 S t ep _ s iz e:
180
200
21 0
220

In c= In c+ l
DI S P " S te p Size =" ; Inc
RETURN

230 Proce ss:

! Wa it f o r Ke ypre ss

! Cha ng e i nc rem en t

240 I OFF KEY I De act iv ate f irs t cho i ces
25 0 ! ON KEY 8 LABEL " ABORT " GOTO Le av e
26 0 NUITlbe r= O
27 0 FOR I=1 TO 10
28 0 Number =Number+In c
280 PRINT Number ;
300 WAIT. 6
3 10 NE){T I
32 0 LealJe :
330 OF KEY 8 ! Deactivate ABORT
3 40 PRINT ! End line
350 GOTO Begin I S tart over
360 END

Now run the example again and press ~ or ~ while the printout is in progress. Notice that
the keys are still active and produce undesired effects on the printing process. To "fix this bug" ,
remove the exclamation point from line 240. This disables all the softkeys when the printing process
starts. Notice that the softkey menu goes away when no sofkeys are active. This is a very handy
feature while you are experimenting with interupts. It provides immediated feedback to indicate
when interrupts are active and when they are not.

Finally, remove the exclamation point from line 250. Now, the softkey menu appears during the
printing process. However, the choices are different than at the start of the program. The keys used
to select the parameter and start the process are not active, because they are not needed at this
point in the program. Instead, CJLJ can be used to "gracefully" abort the process and return to
the start of the program.

72 Program Structure and Flow

All the "ON-event" statements have a corresponding "OFF-event" statement. This is one way to
deactivate an interrupt source .

• OFF KEY deactivates interrupts from the softkeys. If a softkey is pressed while deactivated, it
does nothing .

• OFF KNOB deactivates the ON KNOB interrupts. Turning the knob while ON KNOB is
deactivated causes normal scrolling on the CRT.

The following example shows one use of OFF KEY to disable the softkeys. (Note that ~ is
used in the description. If you have an HP 46020A keyboard, just substitue OU .) A softkey is
used to select a parameter for a small printing routine. Each press of ~ increments and displays
the step size that will be used as an interval between the printed numbers. When the desired step
size has been selected, ~ is pressed to start the printout. Enter and run this example. Notice
that with line 240 and 250 commented out, the softkey menu, or label area, never changes.

100 Begi n:
11 0 ON KEY 1 LABEL" DELTA" GO SUB S tep _ size
120 ON KEY 4 LAB EL" START" GOTO P ro ces s
130 Inc=1
140 DISP " S tep Size = 1"
150
160 Sp i n: GOTO Sp i n
170 !
180 S t ep _ s iz e:
180
200
21 0
220

In c= In c+ l
DI S P " S te p Size =" ; Inc
RETURN

230 Proce ss:

! Wa it f o r Ke ypre ss

! Cha ng e i nc rem en t

240 I OFF KEY I De act iv ate f irs t cho i ces
25 0 ! ON KEY 8 LABEL " ABORT " GOTO Le av e
26 0 NUITlbe r= O
27 0 FOR I=1 TO 10
28 0 Number =Number+In c
280 PRINT Number ;
300 WAIT. 6
3 10 NE){T I
32 0 LealJe :
330 OF KEY 8 ! Deactivate ABORT
3 40 PRINT ! End line
350 GOTO Begin I S tart over
360 END

Now run the example again and press ~ or ~ while the printout is in progress. Notice that
the keys are still active and produce undesired effects on the printing process. To "fix this bug" ,
remove the exclamation point from line 240. This disables all the softkeys when the printing process
starts. Notice that the softkey menu goes away when no sofkeys are active. This is a very handy
feature while you are experimenting with interupts. It provides immediated feedback to indicate
when interrupts are active and when they are not.

Finally, remove the exclamation point from line 250. Now, the softkey menu appears during the
printing process. However, the choices are different than at the start of the program. The keys used
to select the parameter and start the process are not active, because they are not needed at this
point in the program. Instead, CJLJ can be used to "gracefully" abort the process and return to
the start of the program.

Program Structure and Flow 73

The OFF KEY statement can include a key number to deactivate a selected key. This was done in
line 330.

Disabling Events
All the previous examples have shown complete deactivation of the softkeys. It is also possible to
temporarily disable an event-initiated branch. This is done when an active event is desired in a
process, but there is a special section of the program that you don't want to be interrupted. Since it
is impossible to predict when an external event will occur, the special section of code can be
"protected" with a DISABLE statement. This is sometimes necessary to prevent a certain variable
from being changed in the middle of a calculation or to insure that a interface polling sequence runs
to completion. It is difficult in a short, simple example to show why you would need to do this. But it
is not difficult to show how to do it.

100 ON KEY 9 LABEL " ABORT" GOTO Leave
110
120 Print_line:
130 DISABLE
140 FOR 1=1 TO 10
150 PRINT Ii
160 WAIT.3
170 NE){T I
180 PRINT
190 ENABLE
200 GOTO Pr i nt_line
210
220 Leave: END

This example shows a DISABLE and ENABLE statement used to "frame" the PrinUine segment
of the program. The "ABORT" key is active during the entire program, but the branch to exit the
routine will not be taken until an entire line is printed. The operator can press the "ABORT" key at
any time. The keypress will be logged, or remembered, by the computer. Then when the ENABLE
statement is executed, the event-initated branch is taken. Enter and run the example to observe this
method of delaying interrupt servicing.

Program Structure and Flow 73

The OFF KEY statement can include a key number to deactivate a selected key. This was done in
line 330.

Disabling Events
All the previous examples have shown complete deactivation of the softkeys. It is also possible to
temporarily disable an event-initiated branch. This is done when an active event is desired in a
process, but there is a special section of the program that you don't want to be interrupted. Since it
is impossible to predict when an external event will occur, the special section of code can be
"protected" with a DISABLE statement. This is sometimes necessary to prevent a certain variable
from being changed in the middle of a calculation or to insure that a interface polling sequence runs
to completion. It is difficult in a short, simple example to show why you would need to do this. But it
is not difficult to show how to do it.

100 ON KEY 9 LABEL " ABORT" GOTO Leave
110
120 Print_line:
130 DISABLE
140 FOR 1=1 TO 10
150 PRINT Ii
160 WAIT.3
170 NE){T I
180 PRINT
190 ENABLE
200 GOTO Pr i nt_line
210
220 Leave: END

This example shows a DISABLE and ENABLE statement used to "frame" the PrinUine segment
of the program. The "ABORT" key is active during the entire program, but the branch to exit the
routine will not be taken until an entire line is printed. The operator can press the "ABORT" key at
any time. The keypress will be logged, or remembered, by the computer. Then when the ENABLE
statement is executed, the event-initated branch is taken. Enter and run the example to observe this
method of delaying interrupt servicing.

74 Program Structure and Flow

Notes

74 Program Structure and Flow

Notes

Numeric Computation
Chapter

4

Introduction
When most people think about computers , the first thing that they think of is number­
crunching, the giant calculator with a brain. Whether this is an accurate impression or not,
numeric computations are an important part of computer programming.

Numeric computations deal exclusively with numeric values. Thus, adding two numbers and
finding a sine or a logarithm are all numeric operations; while converting bases and converting a
number to a string or a string to a number are not. (Converting bases and converting numbers
to strings and strings to numbers are covered in the chapter on String Operations.)

The most fundamental numeric operation is the assignment operation, achieved with the LET
statement. The LET statement originally required the keyword LET for BASIC interpreters, but
your computer makes it optional. Thus the following statements are equivalent:

LET A = A + 1
A = A + 1

Numeric Data Types
There are two numeric data types in BASIC that you are using, INTEGER and REAL. Any numeric
variable that is not declared an INTEGER is a REAL variable. The valid range for REAL numbers is
approximately:

-1. 797 073 134862 315 X 10308 thru 1. 797 073 134862 315 X 10308

the smallest non-zero REAL value allowed is approximately:

± 2.225073858507202 X 10-308

A REAL can also have the value of zero.

An INTEGER can have any whole-number value from:

- 32768 thru + 32 767

Both REAL and INTEGER variables may be grouped into arrays.

75

Numeric Computation
Chapter

4

Introduction
When most people think about computers , the first thing that they think of is number­
crunching, the giant calculator with a brain. Whether this is an accurate impression or not,
numeric computations are an important part of computer programming.

Numeric computations deal exclusively with numeric values. Thus, adding two numbers and
finding a sine or a logarithm are all numeric operations; while converting bases and converting a
number to a string or a string to a number are not. (Converting bases and converting numbers
to strings and strings to numbers are covered in the chapter on String Operations.)

The most fundamental numeric operation is the assignment operation, achieved with the LET
statement. The LET statement originally required the keyword LET for BASIC interpreters, but
your computer makes it optional. Thus the following statements are equivalent:

LET A = A + 1
A = A + 1

Numeric Data Types
There are two numeric data types in BASIC that you are using, INTEGER and REAL. Any numeric
variable that is not declared an INTEGER is a REAL variable. The valid range for REAL numbers is
approximately:

-1. 797 073 134862 315 X 10308 thru 1. 797 073 134862 315 X 10308

the smallest non-zero REAL value allowed is approximately:

± 2.225073858507202 X 10-308

A REAL can also have the value of zero.

An INTEGER can have any whole-number value from:

- 32768 thru + 32 767

Both REAL and INTEGER variables may be grouped into arrays.

75

76 Numeric Computation

Declarations
It is good programming practice to declare all variables, and both INTEGER and REAL state­
ments are provided for declaring variables:

INTEGER I , J, Da }'s(5) , Weef, s(5: 17)

REAL)<, y , I.JoltageUI) , Hours(5,8:13)

Each of the above statements declares two scalar and two array variables. A scalar is a variable
which can, at any given time, represent a single value. An array is a subscripted variable, and
can contain multiple values, accessed by subscripts. It is posible to specify both the lower and
upper bounds of an array, or to specify the upper bound only, and use the existing OPTION
BASE as the lower bound. Details on declarations of arrays and how to use them are provided
later in this chapter when arrays are dealt with in detail. The DIM statement may also be used to
declare a REAL array.

DIM RUI,5)

An ALLOCATE statement can be used to declare both REAL and INTEGER arrays.

ALLOCATE REAL C o_ ords(2 , l:Points), INTEGER Statu s (l : Points)

The ALLOCATE statement allows you to dynamically allocate memory in programs which
need tight control over memory use.

Type Conversions
The computer will automatically convert between REAL and INTEGER values in assignment
statements and when parameters are pased by value in function and subprogram calls. When
parameters are passed by reference the conversion will not be made and a type mismatch error
will be reported. Whenever numbers are converted from REAL to INTEGER representations,
information can be lost. There are two potential problem areas in this conversion, rounding
errors and range errors.

The computer will automatically convert between types when an assignment is made, and this
presents no problem when an INTEGER is converted to a REAL. However, when a REAL is
converted to an INTEGER, the REAL is rounded to the closest INTEGER value. When this is
done, all information about the number to the right of the radix (decimal point) is lost. If the
fractional information is truly not needed, there is no problem, but converting back to a REAL
will not reconstruct the lost information - it stays lost.

Another potential problem with REAL to INTEGER conversions is the difference in ranges.
While REAL values range from approximately - 10308 to + 10308

, the INTEGER range is only
from - 32 768 to + 32 767 (approximately -104 thru + 104

). Obviously, not all REAL values
can be rounded into an equivalent INTEGER value. This problem can generate INTEGER
Overflow errors.

While the rounding problem is important, it does not generate an execution error. The range
problem can generate an execution error, and you should protect yourself from crashing the
program by either testing values before assignments are made, or by using ON ERROR to trap
the error, and making corrections after the fact.

76 Numeric Computation

Declarations
It is good programming practice to declare all variables, and both INTEGER and REAL state­
ments are provided for declaring variables:

INTEGER I , J, Da }'s(5) , Weef, s(5: 17)

REAL)<, y , I.JoltageUI) , Hours(5,8:13)

Each of the above statements declares two scalar and two array variables. A scalar is a variable
which can, at any given time, represent a single value. An array is a subscripted variable, and
can contain multiple values, accessed by subscripts. It is posible to specify both the lower and
upper bounds of an array, or to specify the upper bound only, and use the existing OPTION
BASE as the lower bound. Details on declarations of arrays and how to use them are provided
later in this chapter when arrays are dealt with in detail. The DIM statement may also be used to
declare a REAL array.

DIM RUI,5)

An ALLOCATE statement can be used to declare both REAL and INTEGER arrays.

ALLOCATE REAL C o_ ords(2 , l:Points), INTEGER Statu s (l : Points)

The ALLOCATE statement allows you to dynamically allocate memory in programs which
need tight control over memory use.

Type Conversions
The computer will automatically convert between REAL and INTEGER values in assignment
statements and when parameters are pased by value in function and subprogram calls. When
parameters are passed by reference the conversion will not be made and a type mismatch error
will be reported. Whenever numbers are converted from REAL to INTEGER representations,
information can be lost. There are two potential problem areas in this conversion, rounding
errors and range errors.

The computer will automatically convert between types when an assignment is made, and this
presents no problem when an INTEGER is converted to a REAL. However, when a REAL is
converted to an INTEGER, the REAL is rounded to the closest INTEGER value. When this is
done, all information about the number to the right of the radix (decimal point) is lost. If the
fractional information is truly not needed, there is no problem, but converting back to a REAL
will not reconstruct the lost information - it stays lost.

Another potential problem with REAL to INTEGER conversions is the difference in ranges.
While REAL values range from approximately - 10308 to + 10308

, the INTEGER range is only
from - 32 768 to + 32 767 (approximately -104 thru + 104

). Obviously, not all REAL values
can be rounded into an equivalent INTEGER value. This problem can generate INTEGER
Overflow errors.

While the rounding problem is important, it does not generate an execution error. The range
problem can generate an execution error, and you should protect yourself from crashing the
program by either testing values before assignments are made, or by using ON ERROR to trap
the error, and making corrections after the fact.

Numeric Computation 77

The following fragment shows a method to protect against INTEGER overflow errors:

200
210
220

IF }<

IF v
1\

Intx

>
<:
=

32787 THEN X= 32787
-3278B THEN X = -3278B
}{

It is possible to achieve the same effect using M A){ and MIN functions :

200 Y = MA>«M IN()-(, 32787), -3278B)

Both these methods limit the excursion, but lose the fact that the values were originally out of
range. If out-of-range is a meaningful condition, an error handling trap is more appropriate.

200 IF (-3278B(=X) AND (X(=32787) THEN
210
220
230

\I _ \I

I - l\

ELSE
GOSUB Out_of_range

240 END IF

Internal Numeric Formats
The storage format for REAL and INTEGER numbers in memory are as follows:

WORD A WORD A+1 WORD A+2 WORD A+3

15 4[1 III 15 III 15 III 15 III

rT--r-r1111--.-rT111--.-r-r111...,.r-,:11 I :"'--"'::"1111 11111111111111111 11111111111111111 11111111111111111

L~BI~~~g'N!~623)' ~ M:2N~:~~A '
11 BITS

MANTISSA SIGN BINARY POINT

manlissa sign 2 e xponent - 1023

-1 X X I .mantissa

Storage Format for REAL Variables

INTEGER
(2'5 COMPLEMENT)

r 1

15 III

11111111111111111

t
SIGN

Storage Format for INTEGER Variables

Numeric Computation 77

The following fragment shows a method to protect against INTEGER overflow errors:

200
210
220

IF }<

IF v
1\

Intx

>
<:
=

32787 THEN X= 32787
-3278B THEN X = -3278B
}{

It is possible to achieve the same effect using M A){ and MIN functions :

200 Y = MA>«M IN()-(, 32787), -3278B)

Both these methods limit the excursion, but lose the fact that the values were originally out of
range. If out-of-range is a meaningful condition, an error handling trap is more appropriate.

200 IF (-3278B(=X) AND (X(=32787) THEN
210
220
230

\I _ \I

I - l\

ELSE
GOSUB Out_of_range

240 END IF

Internal Numeric Formats
The storage format for REAL and INTEGER numbers in memory are as follows:

WORD A WORD A+1 WORD A+2 WORD A+3

15 4[1 III 15 III 15 III 15 III

rT--r-r1111--.-rT111--.-r-r111...,.r-,:11 I :"'--"'::"1111 11111111111111111 11111111111111111 11111111111111111

L~BI~~~g'N!~623)' ~ M:2N~:~~A '
11 BITS

MANTISSA SIGN BINARY POINT

manlissa sign 2 e xponent - 1023

-1 X X I .mantissa

Storage Format for REAL Variables

INTEGER
(2'5 COMPLEMENT)

r 1

15 III

11111111111111111

t
SIGN

Storage Format for INTEGER Variables

78 Numeric Computation

Precision and Accuracy: The Machine Limits!
Your computer stores all REAL variables with a sign, approximately 15 significant digits, and the
exponent value. For most engineering and other applications, rounding errors are not a problem
because the resolution of the computer is well beyond the limitations of most scientific measuring
devices. However, when high-resolution numerical analysis requires accuracy approaching the
limits of the computer, round-off errors must be considered.

Rounding errors should be considered when conversions are made between decimal digits and
binary form. Input and output operations are one time when this occurs. Given the format used for
REALs, the conversion REAL -7 decimal-7 REAL will yield an identity only if the REAL -7 decimal
conversion produces a 17 -decimal-digit mantissa and the calculations for the conversions are done
in extra precision. This is not the case on Series 200/300 computers. Therefore, several things can
be said about these conversions on Series 200/300 computers:

• Up to and including 16 decimal digits are allowed when storing a number in internal form. If
there are more digits, they are ignored.

• Up to and including 15 decimal digits may be output when converting a REAL for printing,
display, etc. A full 16-digit conversion is not allowed because there are not 16 full digits of
precision.

• It is possible for two distinct decimal numbers to map onto the same REAL number because
the binary mantisa does not have enough bits to represent all 16 decimal digits. This can
happen only if the decimal numbers are specified to 16-digits.

• It is possible for two distinct REAL numbers to convert to the same decimal number even if the
conversion is done to 15-decimal-digit accuracy. Therefore, you cannot use a comparison of
the digits in printed or displayed numbers to check for equality.

• All distinct 15 digit decimal strings have a correct distinct REAL representation, but it is not
always possible to map them onto their correct representation because REAL multiplies are not
done in extra precision, and the table entries are only 64 bits. In other words, the decimal -7
REAL conversion may produce a REAL that differs from the true representation by a max­
imum of two bits.

There are references at the end of this chapter to documents that contain further information on the
subject of representing real numbers.

1 For further information on the increases in accuracy of floating- point computations achieved with the MC68881 co-processor, see the chapter
called "Efficient Use of the Computer's Resources."

78 Numeric Computation

Precision and Accuracy: The Machine Limits!
Your computer stores all REAL variables with a sign, approximately 15 significant digits, and the
exponent value. For most engineering and other applications, rounding errors are not a problem
because the resolution of the computer is well beyond the limitations of most scientific measuring
devices. However, when high-resolution numerical analysis requires accuracy approaching the
limits of the computer, round-off errors must be considered.

Rounding errors should be considered when conversions are made between decimal digits and
binary form. Input and output operations are one time when this occurs. Given the format used for
REALs, the conversion REAL -7 decimal-7 REAL will yield an identity only if the REAL -7 decimal
conversion produces a 17 -decimal-digit mantissa and the calculations for the conversions are done
in extra precision. This is not the case on Series 200/300 computers. Therefore, several things can
be said about these conversions on Series 200/300 computers:

• Up to and including 16 decimal digits are allowed when storing a number in internal form. If
there are more digits, they are ignored.

• Up to and including 15 decimal digits may be output when converting a REAL for printing,
display, etc. A full 16-digit conversion is not allowed because there are not 16 full digits of
precision.

• It is possible for two distinct decimal numbers to map onto the same REAL number because
the binary mantisa does not have enough bits to represent all 16 decimal digits. This can
happen only if the decimal numbers are specified to 16-digits.

• It is possible for two distinct REAL numbers to convert to the same decimal number even if the
conversion is done to 15-decimal-digit accuracy. Therefore, you cannot use a comparison of
the digits in printed or displayed numbers to check for equality.

• All distinct 15 digit decimal strings have a correct distinct REAL representation, but it is not
always possible to map them onto their correct representation because REAL multiplies are not
done in extra precision, and the table entries are only 64 bits. In other words, the decimal -7
REAL conversion may produce a REAL that differs from the true representation by a max­
imum of two bits.

There are references at the end of this chapter to documents that contain further information on the
subject of representing real numbers.

1 For further information on the increases in accuracy of floating- point computations achieved with the MC68881 co-processor, see the chapter
called "Efficient Use of the Computer's Resources."

Numeric Computation 79

Evaluating Scalar Expressions
The Hierarchy
If you look at the expression 2 + 4/2 + 6, it can be interpreted several ways:

e 2 + (4/2) + 6 = 10

e (2+4)/2+6 = 9

e2+4/(2+6) = 2.5

e (2+4)/(2+6) = .75

Computers do not deal well with ambiguity, so an arbitrary hierarchy is used for evaluating
expressions to eliminate any questions about the meaning of an expression. When the compu­
ter encounters a mathematical expression, an expression evaluator is called. If you do not
understand the expression evaluator, you can easily be surprised by the value returned for a
given expression. In order to understand the expression evaluator, it is necessary to understand
the valid elements in an expression and the evaluation hierarchy (the order of evaluation of the
elements) .

Six items can appear in a numeric expression; operators, constants, variables, intrinsic func­
tions, user-defined functions and parentheses. Operators modify other elements of the express­
ion. Constants and variables represent numeric values in the system. Functions, both intrinsic
and user-defined, return a value which replaces them in the evaluation of the expression.
Parentheses are used to modify the evaluation hierarchy.

The following table defines the hierarchy used by the computer in evaluating numeric expres­
sions.

Precedence

Highest

Lowest

Math Hierarchy

Operator

Parentheses; they may be used to force any order of operation
Functions, both user-defined and machine-resident
Exponentiation: ...
Multiplication and division: * / MOD D I I.i MOD U L 0
Addition, subtraction, monadic plus and minus: +
Relational Operators: = <::> <: :> <: = >
NOT
AND
OR D(oR

Numeric Computation 79

Evaluating Scalar Expressions
The Hierarchy
If you look at the expression 2 + 4/2 + 6, it can be interpreted several ways:

e 2 + (4/2) + 6 = 10

e (2+4)/2+6 = 9

e2+4/(2+6) = 2.5

e (2+4)/(2+6) = .75

Computers do not deal well with ambiguity, so an arbitrary hierarchy is used for evaluating
expressions to eliminate any questions about the meaning of an expression. When the compu­
ter encounters a mathematical expression, an expression evaluator is called. If you do not
understand the expression evaluator, you can easily be surprised by the value returned for a
given expression. In order to understand the expression evaluator, it is necessary to understand
the valid elements in an expression and the evaluation hierarchy (the order of evaluation of the
elements) .

Six items can appear in a numeric expression; operators, constants, variables, intrinsic func­
tions, user-defined functions and parentheses. Operators modify other elements of the express­
ion. Constants and variables represent numeric values in the system. Functions, both intrinsic
and user-defined, return a value which replaces them in the evaluation of the expression.
Parentheses are used to modify the evaluation hierarchy.

The following table defines the hierarchy used by the computer in evaluating numeric expres­
sions.

Precedence

Highest

Lowest

Math Hierarchy

Operator

Parentheses; they may be used to force any order of operation
Functions, both user-defined and machine-resident
Exponentiation: ...
Multiplication and division: * / MOD D I I.i MOD U L 0
Addition, subtraction, monadic plus and minus: +
Relational Operators: = <::> <: :> <: = >
NOT
AND
OR D(oR

80 Numeric Computation

When an expression is being evaluated it is read from left to right and operations are performed
as encountered, unless a higher precedence operation is encountered immediately to the right
of the operation encountered, or unless the hierarchy is modified by parenthesis. If the compu­
ter cannot deal immediately with the operation, it is stacked, and the evaluator continues to
read until it encounters an operation it can perform. It is easier to understand if you see how an
expression is actually handled. The following expression is complex enough to demonstrate
most of what goes on in expression evaluation.

In order to evaluate this expresion, it is necessary to have some historical data. We will assume
that DEG has been executed, that X = 90, and that FNNegl returns -1. Evaluation proceeds as
follows:

5+3*(4+2)/SIN(X)+ X *(I) X)+FNNe~I*(X < 5 AND X)O)

T
5+3*G/SIN(X)+X*(I)X)+FNNe~I*(X<5 AND X)O)

T
5+18/SIN(X)+X*(I)X)+FNNe~I*(X < 5 AND X)O)

T
5+18/1+ X *(I)X)+FNNe~I*(X<5 AND X) O)

T
5+18+ X *(I) X) +FNNe~I*(X < 5 AND X) O)

T
23+X*(I)X)+FNNe~I*(X< 5 AND X)O)

T
23+X*0+FNNe~I*(X<5 AND X)O)

T
23+0+FNNe~I*(X<5 AND X) O)

T
23+ F NNe~I*(X< 5 AND X) O)

T
23+-1*(X<5 AND X)O)

T
23+-1*(0 AND X) O)

T
23+ - 1*(0 AND 1)

23+-1Hl
7

T
23+0

T
23

80 Numeric Computation

When an expression is being evaluated it is read from left to right and operations are performed
as encountered, unless a higher precedence operation is encountered immediately to the right
of the operation encountered, or unless the hierarchy is modified by parenthesis. If the compu­
ter cannot deal immediately with the operation, it is stacked, and the evaluator continues to
read until it encounters an operation it can perform. It is easier to understand if you see how an
expression is actually handled. The following expression is complex enough to demonstrate
most of what goes on in expression evaluation.

In order to evaluate this expresion, it is necessary to have some historical data. We will assume
that DEG has been executed, that X = 90, and that FNNegl returns -1. Evaluation proceeds as
follows:

5+3*(4+2)/SIN(X)+ X *(I) X)+FNNe~I*(X < 5 AND X)O)

T
5+3*G/SIN(X)+X*(I)X)+FNNe~I*(X<5 AND X)O)

T
5+18/SIN(X)+X*(I)X)+FNNe~I*(X < 5 AND X)O)

T
5+18/1+ X *(I)X)+FNNe~I*(X<5 AND X) O)

T
5+18+ X *(I) X) +FNNe~I*(X < 5 AND X) O)

T
23+X*(I)X)+FNNe~I*(X< 5 AND X)O)

T
23+X*0+FNNe~I*(X<5 AND X)O)

T
23+0+FNNe~I*(X<5 AND X) O)

T
23+ F NNe~I*(X< 5 AND X) O)

T
23+-1*(X<5 AND X)O)

T
23+-1*(0 AND X) O)

T
23+ - 1*(0 AND 1)

23+-1Hl
7

T
23+0

T
23

Numeric Computation 81

The Delayed Binding Surprise
The computer delays binding of a variable to its value as long as possible. In the actual
evaluation, a pointer to the location of a variable is what is stacked. This means that if a variable
exists in an area of COM accessible to both the main program and a user-defined-function, is
used in an expression that also calls the user-defined-function, and is modified in the function ,
the value of the expression can be surprising, although not unpredictable. For example, if we
define a function F NNe s 1 that returns a minus 1, we would expect the following lines to print 2.

10 COM){

20 \I = 3 1\

30 Y = \I + FNNe s 1 1\

40 PRINT Y

However, if the user-defined-function looks like this:

1000 DEF FNNes1
1010 COM)-(

1020)(= 500
1030 RETURN - 1
1040 FN END

The actual result will be 499. Surprising, but not unpredictable. The same thing will happen if
the variable is passed by reference and modified in the user-defined-function. This general case
of occurrences is lumped together under the term side-effects, and should be avoided. There­
fore , don 't use a user-defined-function to modify values of variables. They are designed for
returning a single value, and are best reserved for that.

Operators
There are three types of operators in BASIC, monadic, dyadic, and comparison.

• A monadic operator performs its operation on the expression immediately to its right.

+ - NOT

• A dyadic operator performs its operation on the two values it is between.

A * / MOD MODULO DIV + - = <> < > <= >= AND OR EXOR

• A comparison operator returns a 1 (true) or a zero (false) based on the result of a relational test
of the operands it separates. The comparison operators are a subset of the dyadic operators
that are considered to produce boolean results.

<: > <= >= = <>

While the use of most operators is obvious from the descriptions in the language reference,
some of the operators have uses and side-effects that are not always apparent.

Expressions, Calls, and Functions
All numeric expressions are passed by value to subprograms. Thus 5 + X is obviously passed by
value. Not quite so obviously, + X is also passed by value. The monadic operator makes it an
expression .

Numeric Computation 81

The Delayed Binding Surprise
The computer delays binding of a variable to its value as long as possible. In the actual
evaluation, a pointer to the location of a variable is what is stacked. This means that if a variable
exists in an area of COM accessible to both the main program and a user-defined-function, is
used in an expression that also calls the user-defined-function, and is modified in the function ,
the value of the expression can be surprising, although not unpredictable. For example, if we
define a function F NNe s 1 that returns a minus 1, we would expect the following lines to print 2.

10 COM){

20 \I = 3 1\

30 Y = \I + FNNe s 1 1\

40 PRINT Y

However, if the user-defined-function looks like this:

1000 DEF FNNes1
1010 COM)-(

1020)(= 500
1030 RETURN - 1
1040 FN END

The actual result will be 499. Surprising, but not unpredictable. The same thing will happen if
the variable is passed by reference and modified in the user-defined-function. This general case
of occurrences is lumped together under the term side-effects, and should be avoided. There­
fore , don 't use a user-defined-function to modify values of variables. They are designed for
returning a single value, and are best reserved for that.

Operators
There are three types of operators in BASIC, monadic, dyadic, and comparison.

• A monadic operator performs its operation on the expression immediately to its right.

+ - NOT

• A dyadic operator performs its operation on the two values it is between.

A * / MOD MODULO DIV + - = <> < > <= >= AND OR EXOR

• A comparison operator returns a 1 (true) or a zero (false) based on the result of a relational test
of the operands it separates. The comparison operators are a subset of the dyadic operators
that are considered to produce boolean results.

<: > <= >= = <>

While the use of most operators is obvious from the descriptions in the language reference,
some of the operators have uses and side-effects that are not always apparent.

Expressions, Calls, and Functions
All numeric expressions are passed by value to subprograms. Thus 5 + X is obviously passed by
value. Not quite so obviously, + X is also passed by value. The monadic operator makes it an
expression .

82 Numeric Computation

Strings in Numeric Expressions
String expressions can be directly included in numeric expressions if they are separated by
comparison operators. The comparison operators always yield boolean results, and boolean
results are numeric values in BASIC.

Step Functions
The comparison operators are obviously useful for conditional branching (IF. .. THEN state­
ments), but are also valuable for creating numeric expressions representing step-functions. For
example, let's try to represent the function :

• IF S e 1 e c t < 0
Then Res u 1 t = 0

• IF 0 < = S e 1 e c t < 1
Then Res u 1 t equals the square root of N + B2.

• IF Se 1 e c t > = 1 (any other value)
Then Res u 1 t = 15

It is possible to generate the required response through a series of IF, , , THEN statements, but
it can also be done with the following expression:

1210 Result=(Select(OI*O+(Select)=O AND Select(II*SQR(A"2+B"21+(Select)II*15

While the technique may not please the purist, it actually represents the step function very well.
The boolean expressions each return a 1 or 0 which is then multiplied by the accompanying
expression. Expressions not matching the selection return 0, and are not included in the result.
The value assigned to S e 1 e c t before the expression is evaluated determines the computation
placed in the result. This technique can be used to represent other functions, but the program
statement cannot exceed the maximum allowable line length.

Making Comparisons Work
If you are comparing INTEGER numbers, no special precautions are necessary. However, if
you are comparing REAL values, especially those which are the results of calculations and
functions, it is possible to run into problems due to rounding and other limits inherent in the
system. For example, consider the use of comparison operators in IF.. THEN statments to check
for equality in any situation resembling the following:

1220 DEG
1230 A=25,3765477
1240 IF SIN(AI"2+COS(A)"2=1 THEN
1250 PRINT "E9ual"
1260 ELSE
1270 PRINT "Not E9ual"
1280 END IF

You may find that the equality test fails due to rounding errors or other errors caused by the
inherent limitations of finite machines. A repeating decimal or irrational number cannot be
represented exactly in any finite machine.

82 Numeric Computation

Strings in Numeric Expressions
String expressions can be directly included in numeric expressions if they are separated by
comparison operators. The comparison operators always yield boolean results, and boolean
results are numeric values in BASIC.

Step Functions
The comparison operators are obviously useful for conditional branching (IF. .. THEN state­
ments), but are also valuable for creating numeric expressions representing step-functions. For
example, let's try to represent the function :

• IF S e 1 e c t < 0
Then Res u 1 t = 0

• IF 0 < = S e 1 e c t < 1
Then Res u 1 t equals the square root of N + B2.

• IF Se 1 e c t > = 1 (any other value)
Then Res u 1 t = 15

It is possible to generate the required response through a series of IF, , , THEN statements, but
it can also be done with the following expression:

1210 Result=(Select(OI*O+(Select)=O AND Select(II*SQR(A"2+B"21+(Select)II*15

While the technique may not please the purist, it actually represents the step function very well.
The boolean expressions each return a 1 or 0 which is then multiplied by the accompanying
expression. Expressions not matching the selection return 0, and are not included in the result.
The value assigned to S e 1 e c t before the expression is evaluated determines the computation
placed in the result. This technique can be used to represent other functions, but the program
statement cannot exceed the maximum allowable line length.

Making Comparisons Work
If you are comparing INTEGER numbers, no special precautions are necessary. However, if
you are comparing REAL values, especially those which are the results of calculations and
functions, it is possible to run into problems due to rounding and other limits inherent in the
system. For example, consider the use of comparison operators in IF.. THEN statments to check
for equality in any situation resembling the following:

1220 DEG
1230 A=25,3765477
1240 IF SIN(AI"2+COS(A)"2=1 THEN
1250 PRINT "E9ual"
1260 ELSE
1270 PRINT "Not E9ual"
1280 END IF

You may find that the equality test fails due to rounding errors or other errors caused by the
inherent limitations of finite machines. A repeating decimal or irrational number cannot be
represented exactly in any finite machine.

Numeric Computation 83

A good example of equality error occurs when multiplying or dividing data values. A product of
two non-integer values nearly always results in more digits beyond the decimal point than exists
in either of the two numbers being multiplied. Any tests for equality must consider the exact
variable value to its greatest resolution . If you cannot guarantee that all digits beyond the
required resolution are zero, there are three techniques that can be used to eliminate equality
errors:

• Use the ORO UNO function to eliminate unwanted resolution before comparing results.

• Use the absolute value of the difference between the two values, and test for the difference
less than a specified limit.

• Use the absolute value of the relative difference between two values, and test for the
difference less than a specified limit:

IF ABS ((C-F)/ C) < 10"·-Delta_poI.ler THEN PRINT "C is e9ual to F"

The following example shows the OROUNO technique:

1050
1080
1070

A=32 . 5087
B=31.825

C=A*B
1080 D=32.5122
1080 E=31.821595509

Product is 1028 . 08783750

1100 F=D*E ! Product is 1028.08783751
1110 IF C=F THEN 1130
1120 PRINT "C is not e9ual to F "
1130 C=DRDUND(C,7)
1140 F=DRDUND(F , 7)
1150 IF C=F THEN
1180 PRINT "C e9uals F after DRDUND"
1170 ELSE
1180 PRINT "C not e9ual to F after DRDUND"
1190 END IF
1200 END

You can experiment with the concept by substituting other values for variables A, B, 0 , and E,
and by changing the number of digits specified in the OROUNO function.

Here is an example of the absolute value method of testing equality. In this case, a difference of
less than 0.001 is assumed to be evidence of adequate equality. Using the previous example,
we change technique at line 1130.

1130 IF ABS(C-F)<.OOl THEN
1140 PRINT "C is e9ual to F I.Iithin 0.0 0 1"
1150 ELSE
1180 PRINT "C i s not e9ual to F I.Iithin 0.0 0 1"
1170 END IF
1180 END

This technique has the advantage that no additional statements are invested in overhead while
preparing the data for evaluation. It also enables you to easily establish tolerance limits in
making value comparisons, a capability that is useful in production and testing applications.

Numeric Computation 83

A good example of equality error occurs when multiplying or dividing data values. A product of
two non-integer values nearly always results in more digits beyond the decimal point than exists
in either of the two numbers being multiplied. Any tests for equality must consider the exact
variable value to its greatest resolution . If you cannot guarantee that all digits beyond the
required resolution are zero, there are three techniques that can be used to eliminate equality
errors:

• Use the ORO UNO function to eliminate unwanted resolution before comparing results.

• Use the absolute value of the difference between the two values, and test for the difference
less than a specified limit.

• Use the absolute value of the relative difference between two values, and test for the
difference less than a specified limit:

IF ABS ((C-F)/ C) < 10"·-Delta_poI.ler THEN PRINT "C is e9ual to F"

The following example shows the OROUNO technique:

1050
1080
1070

A=32 . 5087
B=31.825

C=A*B
1080 D=32.5122
1080 E=31.821595509

Product is 1028 . 08783750

1100 F=D*E ! Product is 1028.08783751
1110 IF C=F THEN 1130
1120 PRINT "C is not e9ual to F "
1130 C=DRDUND(C,7)
1140 F=DRDUND(F , 7)
1150 IF C=F THEN
1180 PRINT "C e9uals F after DRDUND"
1170 ELSE
1180 PRINT "C not e9ual to F after DRDUND"
1190 END IF
1200 END

You can experiment with the concept by substituting other values for variables A, B, 0 , and E,
and by changing the number of digits specified in the OROUNO function.

Here is an example of the absolute value method of testing equality. In this case, a difference of
less than 0.001 is assumed to be evidence of adequate equality. Using the previous example,
we change technique at line 1130.

1130 IF ABS(C-F)<.OOl THEN
1140 PRINT "C is e9ual to F I.Iithin 0.0 0 1"
1150 ELSE
1180 PRINT "C i s not e9ual to F I.Iithin 0.0 0 1"
1170 END IF
1180 END

This technique has the advantage that no additional statements are invested in overhead while
preparing the data for evaluation. It also enables you to easily establish tolerance limits in
making value comparisons, a capability that is useful in production and testing applications.

84 Numeric Computation

Finally, here is an example of the relative difference method. Once again, we change the
technique at line 1130.

1130
1140
1150
1160
1170
1180

IF ABS«C - Fl/Cl(10 ~ -3 THEN
PRINT "Relative differe n ce be tlAle en C an d F less than 10'" -3"

ELSE
PRINT "Relative difference betlAleen C and F greater t han 10'" - 3"

END IF
END

Resident Numerical Functions
The resident functions are the functions that are part of the BASIC language (also called
intrinsic). Numerous functions are included in the BASIC you are using to make mathematical
modeling easier. The following functions are available:

Function

ABS

ACS

ASN

ATN

BASE

BINAND

BINCMP

BINEOR

BINIOR

BIT

COS

CRT

DATE

DET

DOT

DROUND

OVAL

EXP

FRACT

INT

IVAL

KBD

LGT

Description

Returns the absolute value of an expression.

Returns the arccosine of an expression.

Returns the arcsine of an expression.

Returns the arctangent of an expression.

Returns the lower subSCript bound of a dimension of an array. (Requires MAT)

Returns the bit-by-bit logical-and of two arguments.

Returns the bit-by-bit complement of two arguments.

Returns the bit-by-bit exclusive-or of two arguments.

Returns the bit-by-bit inclusive-or of two arguments.

Returns the state of a bit of the argument.

Returns the cosine of the angle represented by the expression.

Returns the INTEGER 1. This is the select code of the internal CRT.

Takes a string expression and returns the number of seconds between midnight on the
morning of the date represented by the string expression and 24 November -4713.
(Requires CLOCK)

Returns the determinant of a matrix. (Requires MAT)

Returns the inner (dot) product of two vectors. (Requires MAT)

Rounds a number to a number of digits.

Returns the whole number value of a binary, octal, decimal, or hexadecimal 32-bit
integer. The argument is a string.

Raise the Napierian e to an power. e = 2.718 281 828459 05.

Returns the "fractional" part of the argument.

Returns the greatest integer that is less than or equal to an expression. The result is of the
same type (INTEGER or REAL) as the original number.

Returns the INTEGER value of a binary, octal, decimal, or hexadecimal 16-bit integer.
The argument is a string.

Returns the INTEGER 2. This is the select code of the keyboard.

Returns the base 10 logarithm of an expression.

84 Numeric Computation

Finally, here is an example of the relative difference method. Once again, we change the
technique at line 1130.

1130
1140
1150
1160
1170
1180

IF ABS«C - Fl/Cl(10 ~ -3 THEN
PRINT "Relative differe n ce be tlAle en C an d F less than 10'" -3"

ELSE
PRINT "Relative difference betlAleen C and F greater t han 10'" - 3"

END IF
END

Resident Numerical Functions
The resident functions are the functions that are part of the BASIC language (also called
intrinsic). Numerous functions are included in the BASIC you are using to make mathematical
modeling easier. The following functions are available:

Function

ABS

ACS

ASN

ATN

BASE

BINAND

BINCMP

BINEOR

BINIOR

BIT

COS

CRT

DATE

DET

DOT

DROUND

OVAL

EXP

FRACT

INT

IVAL

KBD

LGT

Description

Returns the absolute value of an expression.

Returns the arccosine of an expression.

Returns the arcsine of an expression.

Returns the arctangent of an expression.

Returns the lower subSCript bound of a dimension of an array. (Requires MAT)

Returns the bit-by-bit logical-and of two arguments.

Returns the bit-by-bit complement of two arguments.

Returns the bit-by-bit exclusive-or of two arguments.

Returns the bit-by-bit inclusive-or of two arguments.

Returns the state of a bit of the argument.

Returns the cosine of the angle represented by the expression.

Returns the INTEGER 1. This is the select code of the internal CRT.

Takes a string expression and returns the number of seconds between midnight on the
morning of the date represented by the string expression and 24 November -4713.
(Requires CLOCK)

Returns the determinant of a matrix. (Requires MAT)

Returns the inner (dot) product of two vectors. (Requires MAT)

Rounds a number to a number of digits.

Returns the whole number value of a binary, octal, decimal, or hexadecimal 32-bit
integer. The argument is a string.

Raise the Napierian e to an power. e = 2.718 281 828459 05.

Returns the "fractional" part of the argument.

Returns the greatest integer that is less than or equal to an expression. The result is of the
same type (INTEGER or REAL) as the original number.

Returns the INTEGER value of a binary, octal, decimal, or hexadecimal 16-bit integer.
The argument is a string.

Returns the INTEGER 2. This is the select code of the keyboard.

Returns the base 10 logarithm of an expression.

Function

LOG
MAX
MAXREAL
MIN
MINREAL
PI
PROUND
PRT

RANK
RES
RND
ROTATE

SC
SIN
SIZE
SGN
SHIFT

SQR
SUM
TAN
TIME

Description

Returns the natural logarithm (Napierian base e) of an expression.
Returns the larger of a list of expressions. (Requires MAT)
Returns the largest REAL number.
Returns the smaller of a list of expressions. (Requires MAT)
Returns the smallest REAL number.

Numeric Computation 85

Returns the constant 3.141 592653589 79, an approximate value for 1T.

Returns the value of the argument rounded to a power of ten.
Returns the INTEGER 701. This is the default (factory set) device selector for an external
printer.
Returns the number of dimensions in an array. (Requires MAT)
Returns the last live keyboard numeric result.
Returns a pseudo-random number that is greater than 0 but less than 1.
Returns a value obtained by shifting an INTEGER representation of an argument a
specific number of bit positions, with wraparound.
Returns the interface select code associated with an I/O path name.
Returns the sine of the angle represented by an expression.
Returns the number of elements in a dimension of an array. (Requires MAT)
Returns the sign of an expression: 1 if positive, 0 if 0, - 1 if negative.
Returns a value obtained by shifting an INTEGER representation of an argument a
specific number of bit positions, without wraparound.
Returns the square root of an expression.
Returns the sum of all the elements in an array. (Requires MAT)
Returns the tangent of the angle represented by an expression.
Returns the number of seconds between midnight and the time represented by the string
argument. (Requires CLOCK)

Dealing with Angles and Such
Six functions are provided for dealing with angles and angular measure (SIN, ASN, COS, ACS,
TAN, ATN) . The default mode for all angular measure is radians. Degrees can be selected with
the DEG statement. Radians may be re-selected by the RAD statement. It is a good idea to
explicitly set a mode for any angular calculations, even if you are using the default (radian)
mode. This is especially important in writing subprograms, as the subprogram inherits the
angular mode from the context that calls it. When the calling context is restored, the angle
mode is also restored.

Range Limits
It is sometimes necessary to limit the range of excursion of a variable (as in the discussion of
REAL to INTEGER conversions mentioned in the introduction to this chapter) . While it is
possible to do this with IF .. . THEN statements:

200 IF X>Max x THEN X = Ma xx
210 IF X<Min x THEN X = Mi n x

it is more convenient to use the MAX and MIN functions.

200)(= MI N(MA>(X,Minx) ,Max x)

Note that MAX is used to establish the lower bound, and MIN is used to establish the upper
bound. If you think about it a minute, it makes sense.

Function

LOG
MAX
MAXREAL
MIN
MINREAL
PI
PROUND
PRT

RANK
RES
RND
ROTATE

SC
SIN
SIZE
SGN
SHIFT

SQR
SUM
TAN
TIME

Description

Returns the natural logarithm (Napierian base e) of an expression.
Returns the larger of a list of expressions. (Requires MAT)
Returns the largest REAL number.
Returns the smaller of a list of expressions. (Requires MAT)
Returns the smallest REAL number.

Numeric Computation 85

Returns the constant 3.141 592653589 79, an approximate value for 1T.

Returns the value of the argument rounded to a power of ten.
Returns the INTEGER 701. This is the default (factory set) device selector for an external
printer.
Returns the number of dimensions in an array. (Requires MAT)
Returns the last live keyboard numeric result.
Returns a pseudo-random number that is greater than 0 but less than 1.
Returns a value obtained by shifting an INTEGER representation of an argument a
specific number of bit positions, with wraparound.
Returns the interface select code associated with an I/O path name.
Returns the sine of the angle represented by an expression.
Returns the number of elements in a dimension of an array. (Requires MAT)
Returns the sign of an expression: 1 if positive, 0 if 0, - 1 if negative.
Returns a value obtained by shifting an INTEGER representation of an argument a
specific number of bit positions, without wraparound.
Returns the square root of an expression.
Returns the sum of all the elements in an array. (Requires MAT)
Returns the tangent of the angle represented by an expression.
Returns the number of seconds between midnight and the time represented by the string
argument. (Requires CLOCK)

Dealing with Angles and Such
Six functions are provided for dealing with angles and angular measure (SIN, ASN, COS, ACS,
TAN, ATN) . The default mode for all angular measure is radians. Degrees can be selected with
the DEG statement. Radians may be re-selected by the RAD statement. It is a good idea to
explicitly set a mode for any angular calculations, even if you are using the default (radian)
mode. This is especially important in writing subprograms, as the subprogram inherits the
angular mode from the context that calls it. When the calling context is restored, the angle
mode is also restored.

Range Limits
It is sometimes necessary to limit the range of excursion of a variable (as in the discussion of
REAL to INTEGER conversions mentioned in the introduction to this chapter) . While it is
possible to do this with IF .. . THEN statements:

200 IF X>Max x THEN X = Ma xx
210 IF X<Min x THEN X = Mi n x

it is more convenient to use the MAX and MIN functions.

200)(= MI N(MA>(X,Minx) ,Max x)

Note that MAX is used to establish the lower bound, and MIN is used to establish the upper
bound. If you think about it a minute, it makes sense.

86 Numeric Computation

Rounding
Rounding occurs frequently in computer operations. The most common rounding occurs in
printouts and displays, where it can be handled effectively with a USING clause in the output
operation. For details see the section on Formatted Output in the Using a Printer chapter. This
works in statements such as PRINT, LABEL, OUTPUT and DISP.

Sometimes it is necessary to round a number in a calculation, to eliminate unwanted resolution.
There are two basic types of rounding; rounding to a total number of decimal digits and
rounding to a number of decimal places (limiting fractional information) . Both types of round­
ing have their own application in programming.

There is a tendency for the number of decimal places to grow as calculations are performed on
the results of other calculations. One of the first things covered in training for engineering and
the sciences is how to handle the growth of the number of decimal places in a calculation. If the
initial measurements from an experiment produced three digits of information per reading, it is
very misleading to produce a seven-digit number as the result of a long series of calculations.
The DROUND function allows you to eliminate the unwanted digits, to produce more realistic
calculations and answers.

)(=DRDUND(SQR(Y ···3+Gr···3) ,3)

It is also possible to round to a number of decimal places. The idea is to eliminate decimal
representation beyond a specific power of ten. The PROUND function allows you to perform a
round to any specified power of ten.

200)(=PRDUND(){1 ,Places)

Random Numbers
The RND function returns a psuedo-random random number between 0 and 1. Since many
modeling systems require random numbers with arbitrary ranges, it is necessary to scale the
numbers.

200 R=INT(RND*Ranfe)+Dffset

The above statement will return an integer between 0 f f set and 0 f f set + Ran f e.

The random number generator is seeded with the value 37 480 660 at power-on, SCRATCH,
SCRATCH A, and prerun. The pattern period is 231

- 2. You can change the seed with the
RANDOMIZE statement, which will give a new pattern of numbers.

Binary Operations
In actuality, all operations the computer performs are binary. There are, however, some logical
and bit-level operations available on the computer that are commonly called binary operations.
When any of these operations are used, the arguments are first converted to INTEGER (if they
are not already in the correct form) and then the specified operation is performed. It is best to
restrict bit-oriented binary operations to declared INTEGERs. If it is necessary to operate on a
REAL, make sure the precautions described under Conversions, at the beginning of this chap­
ter, are employed, to avoid INTEGER overflow.

86 Numeric Computation

Rounding
Rounding occurs frequently in computer operations. The most common rounding occurs in
printouts and displays, where it can be handled effectively with a USING clause in the output
operation. For details see the section on Formatted Output in the Using a Printer chapter. This
works in statements such as PRINT, LABEL, OUTPUT and DISP.

Sometimes it is necessary to round a number in a calculation, to eliminate unwanted resolution.
There are two basic types of rounding; rounding to a total number of decimal digits and
rounding to a number of decimal places (limiting fractional information) . Both types of round­
ing have their own application in programming.

There is a tendency for the number of decimal places to grow as calculations are performed on
the results of other calculations. One of the first things covered in training for engineering and
the sciences is how to handle the growth of the number of decimal places in a calculation. If the
initial measurements from an experiment produced three digits of information per reading, it is
very misleading to produce a seven-digit number as the result of a long series of calculations.
The DROUND function allows you to eliminate the unwanted digits, to produce more realistic
calculations and answers.

)(=DRDUND(SQR(Y ···3+Gr···3) ,3)

It is also possible to round to a number of decimal places. The idea is to eliminate decimal
representation beyond a specific power of ten. The PROUND function allows you to perform a
round to any specified power of ten.

200)(=PRDUND(){1 ,Places)

Random Numbers
The RND function returns a psuedo-random random number between 0 and 1. Since many
modeling systems require random numbers with arbitrary ranges, it is necessary to scale the
numbers.

200 R=INT(RND*Ranfe)+Dffset

The above statement will return an integer between 0 f f set and 0 f f set + Ran f e.

The random number generator is seeded with the value 37 480 660 at power-on, SCRATCH,
SCRATCH A, and prerun. The pattern period is 231

- 2. You can change the seed with the
RANDOMIZE statement, which will give a new pattern of numbers.

Binary Operations
In actuality, all operations the computer performs are binary. There are, however, some logical
and bit-level operations available on the computer that are commonly called binary operations.
When any of these operations are used, the arguments are first converted to INTEGER (if they
are not already in the correct form) and then the specified operation is performed. It is best to
restrict bit-oriented binary operations to declared INTEGERs. If it is necessary to operate on a
REAL, make sure the precautions described under Conversions, at the beginning of this chap­
ter, are employed, to avoid INTEGER overflow.

Numeric Computation 87

Array Operations
An array is a multi-dimensioned structure of variables that are given a common name. The array
can have one through six dimensions. Each location in an array can contain one variable value, and
each value has the characteristics of a single variable, depending on whether the array consists of
REAL or INTEGER values (string arrays are discussed in Chapter 5, "String Manipulation"). Note
that many of the statements that deal with arrays (such as MAT) require the MAT BIN.

A one-dimensional array consists of n elements, each identified by a single subscript. A two­
dimensional array consists of m times n elements where m and n are the maximum number of
elements in the two respective dimensions. Arrays require a subscript in each dimension , in
order to locate a given element of the array . Up to six dimensions can be specified for any array
in a program. REAL arrays require eight bytes of memory for each element, plus overhead; so
you can see that large arrays can demand massive memory resources.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for these
elements is reserved whether you use them or not.

Dimensioning an Array
Before you use an array , you should tell the system how much memory to reserve for it. This is
called "dimensioning" an array. You can dimension arrays with the DIM, COM, ALLOCATE,
INTEGER, or REAL statements. An array is a type of variable and as such follows all rules for
variable names. Unless you explicitly specify INTEGER type in the dimensioning statement,
arrays default to REAL type. The same array can only be dimensioned once in a context! .
However, as we explain later in this section, arrays can be REDIMensioned.

When you dimension an array, the system reserves space in internal memory for it. The system
also sets up a table which it uses to locate each element in the array. The location of each
element is designated by a unique combination of subscripts, one subscript for each dimension.
For a four-dimensional array, for instance, each element is identified by four subscript values.
Each unique set of subscript values points to one, and only one, array element.

The actual size of an array is governed by the number of dimensions and the subscript range of
each dimension. If A is a three-dimensional array with a subscript range of 1 thru 4 for each
dimension , then its size is 4 x 4 x 4 , 64 elements.

When you dimension an array, therefore, you must give not only the number of dimensions but
also the subscript range of each dimension. Subscript ranges can be specified by giving the
lower and upper bounds, or by giving just the upper bound. If you give only the upper bound,
the lower bound defaults to the current option base setting.

1 There is orie exception to this rule: If you ALLOCATE an array, and then DEALLOCATE it, you can dimension the array again.

Numeric Computation 87

Array Operations
An array is a multi-dimensioned structure of variables that are given a common name. The array
can have one through six dimensions. Each location in an array can contain one variable value, and
each value has the characteristics of a single variable, depending on whether the array consists of
REAL or INTEGER values (string arrays are discussed in Chapter 5, "String Manipulation"). Note
that many of the statements that deal with arrays (such as MAT) require the MAT BIN.

A one-dimensional array consists of n elements, each identified by a single subscript. A two­
dimensional array consists of m times n elements where m and n are the maximum number of
elements in the two respective dimensions. Arrays require a subscript in each dimension , in
order to locate a given element of the array . Up to six dimensions can be specified for any array
in a program. REAL arrays require eight bytes of memory for each element, plus overhead; so
you can see that large arrays can demand massive memory resources.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for these
elements is reserved whether you use them or not.

Dimensioning an Array
Before you use an array , you should tell the system how much memory to reserve for it. This is
called "dimensioning" an array. You can dimension arrays with the DIM, COM, ALLOCATE,
INTEGER, or REAL statements. An array is a type of variable and as such follows all rules for
variable names. Unless you explicitly specify INTEGER type in the dimensioning statement,
arrays default to REAL type. The same array can only be dimensioned once in a context! .
However, as we explain later in this section, arrays can be REDIMensioned.

When you dimension an array, the system reserves space in internal memory for it. The system
also sets up a table which it uses to locate each element in the array. The location of each
element is designated by a unique combination of subscripts, one subscript for each dimension.
For a four-dimensional array, for instance, each element is identified by four subscript values.
Each unique set of subscript values points to one, and only one, array element.

The actual size of an array is governed by the number of dimensions and the subscript range of
each dimension. If A is a three-dimensional array with a subscript range of 1 thru 4 for each
dimension , then its size is 4 x 4 x 4 , 64 elements.

When you dimension an array, therefore, you must give not only the number of dimensions but
also the subscript range of each dimension. Subscript ranges can be specified by giving the
lower and upper bounds, or by giving just the upper bound. If you give only the upper bound,
the lower bound defaults to the current option base setting.

1 There is orie exception to this rule: If you ALLOCATE an array, and then DEALLOCATE it, you can dimension the array again.

88 Numeric Computation

Each context initializes to an option base of 0 (but arrays appearing in COM statements with an (*)
will keep the base with which they were originally dimensioned). However, you can set the option
base to 1 with the OPTION BASE command. You can have only one OPTION BASE statement in
a context, and it must precede all explicit variable declarations.

The following examples illustrate some of the flexibility you have in dimensioning arrays.

10 OP TION BASE 1
20 " DIM A(3,4,0:2)

(1 ,1,0)

z
0
1i5

(1,2,0) z
UJ
~
0
"0
c (1,3,0) N

(1 ,4,0)

(1 ,1,1)

(1,1,2)

(1 ,2,1)

(1 ,2,2)

(1 ,3,1)

(1 ,3,2)

1st Dimension
2nd Dimension
3rd Dimension

(2,1,0)

(2,2 ,0)

(2,3,0)

(2,4,0)

Size

3
4
3

(3,1,0)

(2,1,1) (3,1,1)

(2 ,1,2) (3,2,0)

(2,2,1) (3,2,1)

(2 ,2,2) (3,3,0)

(2,3,1)

(2 ,3,2)

(2 ,4,1) (3,4,1)

(2,4,2)

1st DIMENSION

Lower Bound

1
1
o

Upper Bound

3
4
2

(3 ,1,2)

(3 ,2,2)

(3 ,3,2)

In this example we portray the first dimension as planes, the second dimension as rows, and the
third dimension as columns. In general, the last two dimensions of any array always refer to
rows and columns, respectively. When we discuss two-dimensional arrays, the first dimension
will always represent rows, and the second dimension will always represent columns. Note also
in the above example that the first two dimensions use the default setting of 1 for the lower
bound, while the third dimension explicitly defines 0 as the lower bound. The numbers in
parentheses are the subscript values for the particular elements. These are the numbers you use
to identify each array element.

88 Numeric Computation

Each context initializes to an option base of 0 (but arrays appearing in COM statements with an (*)
will keep the base with which they were originally dimensioned). However, you can set the option
base to 1 with the OPTION BASE command. You can have only one OPTION BASE statement in
a context, and it must precede all explicit variable declarations.

The following examples illustrate some of the flexibility you have in dimensioning arrays.

10 OP TION BASE 1
20 " DIM A(3,4,0:2)

(1 ,1,0)

z
0
1i5

(1,2,0) z
UJ
~
0
"0
c (1,3,0) N

(1 ,4,0)

(1 ,1,1)

(1,1,2)

(1 ,2,1)

(1 ,2,2)

(1 ,3,1)

(1 ,3,2)

1st Dimension
2nd Dimension
3rd Dimension

(2,1,0)

(2,2 ,0)

(2,3,0)

(2,4,0)

Size

3
4
3

(3,1,0)

(2,1,1) (3,1,1)

(2 ,1,2) (3,2,0)

(2,2,1) (3,2,1)

(2 ,2,2) (3,3,0)

(2,3,1)

(2 ,3,2)

(2 ,4,1) (3,4,1)

(2,4,2)

1st DIMENSION

Lower Bound

1
1
o

Upper Bound

3
4
2

(3 ,1,2)

(3 ,2,2)

(3 ,3,2)

In this example we portray the first dimension as planes, the second dimension as rows, and the
third dimension as columns. In general, the last two dimensions of any array always refer to
rows and columns, respectively. When we discuss two-dimensional arrays, the first dimension
will always represent rows, and the second dimension will always represent columns. Note also
in the above example that the first two dimensions use the default setting of 1 for the lower
bound, while the third dimension explicitly defines 0 as the lower bound. The numbers in
parentheses are the subscript values for the particular elements. These are the numbers you use
to identify each array element.

10 OPTION BASE 1
20 COM B(1:5 , 2:8)

(1 ,2)

(2 ,2)

(3 ,2)

(4,2)

(5 ,2)

1st Dimension
2nd Dimension

10 OPTION BASE 1

(1 ,3)

(2,3)

(3 ,3)

(4,3)

(5,3)

Size

5
5

20 ALLOCATE INTEGER C(2:4,-2:2)

(2,-2)

(3,-2)

(4,-2)

1st Dimension
2nd Dimension

(2,-1)

(3,-1)

(4,-1)

Size

3
5

(1 ,4) (1 ,5)

(2,4) (2,5)

(3 ,4) (3,5)

(4,4) (4,5)

(5,4) (5,5)

Lower Bound

(3,0)

(3,0)

(4,0)

1
2

(2,1)

(3,1)

(4,1)

Lower Bound

2
-2

Numeric Computation 89

(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

Upper Bound

(2,2)

(3,2)

(4,2)

5
6

Upper Bound

4
2

10 OPTION BASE 1
20 COM B(1:5 , 2:8)

(1 ,2)

(2 ,2)

(3 ,2)

(4,2)

(5 ,2)

1st Dimension
2nd Dimension

10 OPTION BASE 1

(1 ,3)

(2,3)

(3 ,3)

(4,3)

(5,3)

Size

5
5

20 ALLOCATE INTEGER C(2:4,-2:2)

(2,-2)

(3,-2)

(4,-2)

1st Dimension
2nd Dimension

(2,-1)

(3,-1)

(4,-1)

Size

3
5

(1 ,4) (1 ,5)

(2,4) (2,5)

(3 ,4) (3,5)

(4,4) (4,5)

(5,4) (5,5)

Lower Bound

(3,0)

(3,0)

(4,0)

1
2

(2,1)

(3,1)

(4,1)

Lower Bound

2
-2

Numeric Computation 89

(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

Upper Bound

(2,2)

(3,2)

(4,2)

5
6

Upper Bound

4
2

90 Numeric Computation

10 OPTION BASE 0
20 REAL D (1 ,0)

(0,0)

(1,0)

1st Dimension
2nd Dimension

10 COM E(-3:0)

(-3)

(-2)

(-1)

(0)

1st Dimension

Size

2
1

Size

4

Lower Bound

o
o

Lower Bound

-3

Upper Bound

1
o

Upper Bound

o

90 Numeric Computation

10 OPTION BASE 0
20 REAL D (1 ,0)

(0,0)

(1,0)

1st Dimension
2nd Dimension

10 COM E(-3:0)

(-3)

(-2)

(-1)

(0)

1st Dimension

Size

2
1

Size

4

Lower Bound

o
o

Lower Bound

-3

Upper Bound

1
o

Upper Bound

o

Numeric Computation 91

10 OPTION BASE 0
20 INTEGER F <l t Llt-1 : 2)

(0,0, -1)

(0,1 , -1)

(0,2,-1)

(0 ,3,-1)

(0,4, - 1)

(0,0,0)

(0,0,1)

(0,1,0)

(0,1,1)

(0,2,0)

(0,2,1)

(0,3 ,0)

(0,3,1)

(0,4,0)

(0,4,1)

1st Dimension
2nd Dimension
3rd Dimension

(0 ,0,2)

(0,1 ,2)

(0,2,2)

(0 ,3,2)

(0,4,2)

Size

2
5
4

(1,0, -1)

(1,1 , -1)

(1,2 , -1)

(1 ,3, -1)

(1,4, -1)

Lower Bound

o
o

- 1

(1,0 ,0)

(1 ,0,1)

(1 ,1,0)

(1,2 ,0)

(1,2,1)

(1 ,3,0)

(1,3,1)

(1,4,0)

(1,4 ,1)

Upper Bound

1
4
2

(1,1,2)

(1,2,2)

(1,3,2)

(1,4,2)

Arrays are limited to six dimensions, and the subscript range for each dimension must lie
between - 32767 and 32767. (REDIM and ALLOCATE allow the subscript range to go down
to - 32768, but the total size of each dimension must be less than 32768 elements.) For the
most part, we use only two-dimensional examples since they are easier to illustrate. However,
the same principles apply to arrays of more than two dimensions as well.

Note
Throughout this chapter we will be using DIM statements without
specifying what the current option base setting is . Unless explicitly
specified otherwise, all examples in this chapter use option base 1.

Numeric Computation 91

10 OPTION BASE 0
20 INTEGER F <l t Llt-1 : 2)

(0,0, -1)

(0,1 , -1)

(0,2,-1)

(0 ,3,-1)

(0,4, - 1)

(0,0,0)

(0,0,1)

(0,1,0)

(0,1,1)

(0,2,0)

(0,2,1)

(0,3 ,0)

(0,3,1)

(0,4,0)

(0,4,1)

1st Dimension
2nd Dimension
3rd Dimension

(0 ,0,2)

(0,1 ,2)

(0,2,2)

(0 ,3,2)

(0,4,2)

Size

2
5
4

(1,0, -1)

(1,1 , -1)

(1,2 , -1)

(1 ,3, -1)

(1,4, -1)

Lower Bound

o
o

- 1

(1,0 ,0)

(1 ,0,1)

(1 ,1,0)

(1,2 ,0)

(1,2,1)

(1 ,3,0)

(1,3,1)

(1,4,0)

(1,4 ,1)

Upper Bound

1
4
2

(1,1,2)

(1,2,2)

(1,3,2)

(1,4,2)

Arrays are limited to six dimensions, and the subscript range for each dimension must lie
between - 32767 and 32767. (REDIM and ALLOCATE allow the subscript range to go down
to - 32768, but the total size of each dimension must be less than 32768 elements.) For the
most part, we use only two-dimensional examples since they are easier to illustrate. However,
the same principles apply to arrays of more than two dimensions as well.

Note
Throughout this chapter we will be using DIM statements without
specifying what the current option base setting is . Unless explicitly
specified otherwise, all examples in this chapter use option base 1.

92 Numeric Computation

As an example of a four-dimensional array, consider a five-story library. On each floor there are
20 stacks, each stack contains 10 shelves, and each shelf holds 100 books. To specify the
location of a particular book you would give the number of the floor , the stack, the shelf, and
the particular book on that shelf. We could dimension an array for the library with the state­
ment:

DIM Libran (5 ,20 d O dOO)

This means that there are 100,000 book locations. To identify a particular book you would
specify its subscripts. For instance, Lib r a r }' (2 , 1 2 , 3 ,35) would identify the 35th book on
the 3rd shelf of the 12th stack on the 2nd floor.

We can imagine accessing a particular page of a book by using a 5-dimensional array. For
instance, if we dimension an array,

DIM Pase (5 , 20,1 0, 1 00, 200)

then P age (1 ,7 , 2 , 1 8 , 1 3 I») would designate page 130 of the 19th book on the 2nd shelf
of the 7th stack on the 1st floor.

We could specify words on pages by using a 6-dimensional array. Six dimensions is the
maximum, though , so we could not specify letters of words.

Also, you can dimension more than one array in a single statement by separating the declara­
tions with a comma. For instance,

10 DIM A(1 ,3, 4) ,5 (-2: 0, 2:5) ,C(5)

would dimension all three arrays: A, B, and C.

Problems with Implicit Dimensioning
In any environment, an array must have a dimensioned size. This size can be passed into an
environment through a passed parameter list or a COM statement. It may be explicitly dimen­
sioned through COM, INTEGER, REAL or ALLOCATE. It can also be implicitly dimensioned
through a subscripted reference to it in a program statement other than a MAT or a REDIM
statement. An attempt to use an array that does not have a dimensioned size in the current
environment in a MAT or REDIM statement will result in an error. In other words, MAT and
REDIM statements cannot be used to implicitly dimension an array.

92 Numeric Computation

As an example of a four-dimensional array, consider a five-story library. On each floor there are
20 stacks, each stack contains 10 shelves, and each shelf holds 100 books. To specify the
location of a particular book you would give the number of the floor , the stack, the shelf, and
the particular book on that shelf. We could dimension an array for the library with the state­
ment:

DIM Libran (5 ,20 d O dOO)

This means that there are 100,000 book locations. To identify a particular book you would
specify its subscripts. For instance, Lib r a r }' (2 , 1 2 , 3 ,35) would identify the 35th book on
the 3rd shelf of the 12th stack on the 2nd floor.

We can imagine accessing a particular page of a book by using a 5-dimensional array. For
instance, if we dimension an array,

DIM Pase (5 , 20,1 0, 1 00, 200)

then P age (1 ,7 , 2 , 1 8 , 1 3 I») would designate page 130 of the 19th book on the 2nd shelf
of the 7th stack on the 1st floor.

We could specify words on pages by using a 6-dimensional array. Six dimensions is the
maximum, though , so we could not specify letters of words.

Also, you can dimension more than one array in a single statement by separating the declara­
tions with a comma. For instance,

10 DIM A(1 ,3, 4) ,5 (-2: 0, 2:5) ,C(5)

would dimension all three arrays: A, B, and C.

Problems with Implicit Dimensioning
In any environment, an array must have a dimensioned size. This size can be passed into an
environment through a passed parameter list or a COM statement. It may be explicitly dimen­
sioned through COM, INTEGER, REAL or ALLOCATE. It can also be implicitly dimensioned
through a subscripted reference to it in a program statement other than a MAT or a REDIM
statement. An attempt to use an array that does not have a dimensioned size in the current
environment in a MAT or REDIM statement will result in an error. In other words, MAT and
REDIM statements cannot be used to implicitly dimension an array.

Numeric Computation 93

Finding Out the Dimensions of an Array
There are a number of statements that allow you to determine the size and shape of an array. To
find out how many dimensions are in an array, use the RANK function. For instance:

OPTION BASE 0
DIM F(1,4,-1:2)

PRINT RANK (F)

would print 3.

The SIZE function returns the size (number of elements) of a particular dimension. For instance,

would return 5 , the number of elements in F's second dimension.

To find out what the lower bound of a dimension is, use the BASE statement. Referring again to
array F

BASE (F tl)

would return a 0, while,

BASE (F,3)

would return a-I.

By using the SIZE and BASE statements together, you can determine the upper bounds of any
dimension (e.g., SIZE+ BASE -1 = Upper Bound).

It may seem pointless to have all these functions that return the dimension specifications which
you yourself assigned. After all , if you assigned the dimensions, you should know what they
are; and if you forget , you can always look at the appropriate dimensioning statement. Howev­
er, these functions are powerful tools for writing programs that perform functions on an array
regardless of the array's size or shape. In addition, the system automatically redimensions
arrays during certain operations. The functions discussed above provide you with a means for
determining the new dimensions. As an example of a general purpose program utilizing these
statements, consider the subprogram below which prints a two-dimensional array in rows and
columns.

100 SUB Printmat(Array(* »

110 OPTION BASE 1

120 FOR ROIAI=BASE(Arraytl) TO SIZE (Arraytl)+BASE(Arra}'tl)-l

130 FOR ColuITln=BASE(Arra }' ,2) TO SIZE(Arra}' ,2)+BASE(ArraY ,2)- 1

140 PRINT USING "DDDD.DD,)O(, #" ;Array(RoIAI ,C oluITln)

150 NE XT Column

160 PRINT
170 NE)<T ROIAI

180 SUBEND

Numeric Computation 93

Finding Out the Dimensions of an Array
There are a number of statements that allow you to determine the size and shape of an array. To
find out how many dimensions are in an array, use the RANK function. For instance:

OPTION BASE 0
DIM F(1,4,-1:2)

PRINT RANK (F)

would print 3.

The SIZE function returns the size (number of elements) of a particular dimension. For instance,

would return 5 , the number of elements in F's second dimension.

To find out what the lower bound of a dimension is, use the BASE statement. Referring again to
array F

BASE (F tl)

would return a 0, while,

BASE (F,3)

would return a-I.

By using the SIZE and BASE statements together, you can determine the upper bounds of any
dimension (e.g., SIZE+ BASE -1 = Upper Bound).

It may seem pointless to have all these functions that return the dimension specifications which
you yourself assigned. After all , if you assigned the dimensions, you should know what they
are; and if you forget , you can always look at the appropriate dimensioning statement. Howev­
er, these functions are powerful tools for writing programs that perform functions on an array
regardless of the array's size or shape. In addition, the system automatically redimensions
arrays during certain operations. The functions discussed above provide you with a means for
determining the new dimensions. As an example of a general purpose program utilizing these
statements, consider the subprogram below which prints a two-dimensional array in rows and
columns.

100 SUB Printmat(Array(* »

110 OPTION BASE 1

120 FOR ROIAI=BASE(Arraytl) TO SIZE (Arraytl)+BASE(Arra}'tl)-l

130 FOR ColuITln=BASE(Arra }' ,2) TO SIZE(Arra}' ,2)+BASE(ArraY ,2)- 1

140 PRINT USING "DDDD.DD,)O(, #" ;Array(RoIAI ,C oluITln)

150 NE XT Column

160 PRINT
170 NE)<T ROIAI

180 SUBEND

94 Numeric Computation

Filling an Array
Once an array has been dimensioned, the next step is to fill it with useful values. Initially, every
element in an array equals zero. There are a number of different ways to change these values.
The most obvious is to assign a particular value to each element. This is done by specifying the
element's subscripts. For instance, the statement,

A(3tLl)=13

would assign the value 13 to the element in the third row and fourth column of A. You must
give enough subscripts for the system to identify a single element. For a three-dimensional
array, for instance, you would provide three subscripts. All subscripts, moreover, must lie within
the dimensioned range. If you use out-of-range subscripts, the system returns an error.

For some applications, you may want to initialize every element in an array to some particular
value. You can do this by assigning a value to the array name. However, you must precede the
assignment with the MAT keyword. For example,

MAT A= (10)

will assign the value 10 to every element in array A regardless of A's size. Note that the numeric
expression on the right-hand side of the assignment must be enclosed in parentheses.

Another way to assign values to an array is by using the READ and DATA statements. The DATA
statement allows you to create a stream of data items, and the READ statement enables you to
enter the data stream into an array. For example:

10 OPTION BASE 1
20 DIM A(3t3)
30 DATA -L1t38t2.3t5t88t17t-8t-12tLl2
L10 READ A(*)
50 END

The asterisk in line 40 is used to designate the entire array rather than a single element. Note also
that the right-most subscript varies fastest. In this case, it means that the system fill an entire row
before going to the next one. The READ/DATA statements are discussed further in Chapter 7.

If we use the Printmat subprogram (shown on previous page) to display A, we get:

-L1.00
5.00

-8.00

Copying Arrays

38.00
88.00

-12.00

2.30
17.00
L12.00

A fourth way to fill an array is to copy the elements from one array into another. Suppose, for
example, that you have the two arrays A and B shown below.

[0 ~ 0]
000
000

94 Numeric Computation

Filling an Array
Once an array has been dimensioned, the next step is to fill it with useful values. Initially, every
element in an array equals zero. There are a number of different ways to change these values.
The most obvious is to assign a particular value to each element. This is done by specifying the
element's subscripts. For instance, the statement,

A(3tLl)=13

would assign the value 13 to the element in the third row and fourth column of A. You must
give enough subscripts for the system to identify a single element. For a three-dimensional
array, for instance, you would provide three subscripts. All subscripts, moreover, must lie within
the dimensioned range. If you use out-of-range subscripts, the system returns an error.

For some applications, you may want to initialize every element in an array to some particular
value. You can do this by assigning a value to the array name. However, you must precede the
assignment with the MAT keyword. For example,

MAT A= (10)

will assign the value 10 to every element in array A regardless of A's size. Note that the numeric
expression on the right-hand side of the assignment must be enclosed in parentheses.

Another way to assign values to an array is by using the READ and DATA statements. The DATA
statement allows you to create a stream of data items, and the READ statement enables you to
enter the data stream into an array. For example:

10 OPTION BASE 1
20 DIM A(3t3)
30 DATA -L1t38t2.3t5t88t17t-8t-12tLl2
L10 READ A(*)
50 END

The asterisk in line 40 is used to designate the entire array rather than a single element. Note also
that the right-most subscript varies fastest. In this case, it means that the system fill an entire row
before going to the next one. The READ/DATA statements are discussed further in Chapter 7.

If we use the Printmat subprogram (shown on previous page) to display A, we get:

-L1.00
5.00

-8.00

Copying Arrays

38.00
88.00

-12.00

2.30
17.00
L12.00

A fourth way to fill an array is to copy the elements from one array into another. Suppose, for
example, that you have the two arrays A and B shown below.

[0 ~ 0]
000
000

Numeric Computation 95

Note that A is a 3x3 array which is filled entirely with 0' s, while B is a 3x2 array filled with
non-zero values. To copy B to A, we would execute:

MAT A=B

Again, you must precede the assignment with MAT. The system will automatically redimension
the "result array" (the one on the left-hand side of the assignment) so that it is the same size as
the " operand array" (the one on the right side of the equation.) There are two restrictions on
redimensioning an array .

• The two arrays must have the same rank (e.g., the same number of dimensions.)

• The dimensioned size of the result array must be at least as large as the current size of the
operand array.

If the system cannot redimension the result array to the proper size, it returns an error.

Automatic redimensioning of an array will not affect the lower bounds, only the upper bounds.
So the BASE values of each dimension of the result array will remain the same. Also keep in
mind that the size restriction applies to the dimensioned size of the result array and the current
size of the operand array. Suppose we dimension arrays A, Band C to the following sizes:

10 OPTION BASE 1
20 DIM A(313) IB(2 12) IC(21L1)

We can execute,

MAT A=B

since A is dimensioned to 9 elements and B is only 4 elements. The copy automatically
redimensions A to a 2x2 array. Nevertheless, we can still execute:

MAT A=C

This is because the nine elements originally reserved for A remain available until the program is
scratched. A now becomes a 2x4 matrix. After MAT A = C, we could not execute:

MAT B=A
or

MAT B=C

since in each of these cases, we are trying to copy a larger array into a smaller one. But we could
execute

MAT C=A

after the original MAT A = B assignment, since C' s dimensioned size (8) is larger than A's current
size (4).

Numeric Computation 95

Note that A is a 3x3 array which is filled entirely with 0' s, while B is a 3x2 array filled with
non-zero values. To copy B to A, we would execute:

MAT A=B

Again, you must precede the assignment with MAT. The system will automatically redimension
the "result array" (the one on the left-hand side of the assignment) so that it is the same size as
the " operand array" (the one on the right side of the equation.) There are two restrictions on
redimensioning an array .

• The two arrays must have the same rank (e.g., the same number of dimensions.)

• The dimensioned size of the result array must be at least as large as the current size of the
operand array.

If the system cannot redimension the result array to the proper size, it returns an error.

Automatic redimensioning of an array will not affect the lower bounds, only the upper bounds.
So the BASE values of each dimension of the result array will remain the same. Also keep in
mind that the size restriction applies to the dimensioned size of the result array and the current
size of the operand array. Suppose we dimension arrays A, Band C to the following sizes:

10 OPTION BASE 1
20 DIM A(313) IB(2 12) IC(21L1)

We can execute,

MAT A=B

since A is dimensioned to 9 elements and B is only 4 elements. The copy automatically
redimensions A to a 2x2 array. Nevertheless, we can still execute:

MAT A=C

This is because the nine elements originally reserved for A remain available until the program is
scratched. A now becomes a 2x4 matrix. After MAT A = C, we could not execute:

MAT B=A
or

MAT B=C

since in each of these cases, we are trying to copy a larger array into a smaller one. But we could
execute

MAT C=A

after the original MAT A = B assignment, since C' s dimensioned size (8) is larger than A's current
size (4).

96 Numeric Computation

Extracting Values From Arrays
As with entering values into arrays, there are a number of ways to extract values as well. To
extract the value of a particular element, simply specify the element's subscripts. For instance,
the statement,

)(=A(3 , Li , Z)

would assign the value of the element occupying the given location in A to the variable)-(. The
system will automatically convert variable types. For example, if you assign an element from a
Real array to an Integer variable, the system will perform the necessary rounding.

Certain operations (e.g. , PRINT, OUTPUT, ENTER and READ) allow you to access all ele­
ments of an array merely by using an asterisk in place of the subscript list. The statement,

PRINT A(*) i

would display every element of A on the current PRINTER IS device. The elements are display­
ed in order, with the rightmost subscripts varying fastest. The semi-colon at the end of the
statement is equivalent to putting a semi-colon between each element. When they are display­
ed, therefore, they will be separated by a space. (The default is to place elements in successive
columns.)

The asterisk is also used to pass an array as a parameter to a function or subprogram. For
instance, to pass an array A to the Printmat subprogram listed earlier, we would write:

Pri n t lll at (A (* »

In addition to extracting the values of elements in an array, there are also functions that compute
the sum of an entire row or column of an array. However, since these functions are limited to
two-dimensional arrays, we will reserve their discussion for the section on matrices. The statement
that returns the sum of all elements in an array, however, works for arrays of any dimension. Given
the array A below,

the function ,

SUM (A)

would return 29.

96 Numeric Computation

Extracting Values From Arrays
As with entering values into arrays, there are a number of ways to extract values as well. To
extract the value of a particular element, simply specify the element's subscripts. For instance,
the statement,

)(=A(3 , Li , Z)

would assign the value of the element occupying the given location in A to the variable)-(. The
system will automatically convert variable types. For example, if you assign an element from a
Real array to an Integer variable, the system will perform the necessary rounding.

Certain operations (e.g. , PRINT, OUTPUT, ENTER and READ) allow you to access all ele­
ments of an array merely by using an asterisk in place of the subscript list. The statement,

PRINT A(*) i

would display every element of A on the current PRINTER IS device. The elements are display­
ed in order, with the rightmost subscripts varying fastest. The semi-colon at the end of the
statement is equivalent to putting a semi-colon between each element. When they are display­
ed, therefore, they will be separated by a space. (The default is to place elements in successive
columns.)

The asterisk is also used to pass an array as a parameter to a function or subprogram. For
instance, to pass an array A to the Printmat subprogram listed earlier, we would write:

Pri n t lll at (A (* »

In addition to extracting the values of elements in an array, there are also functions that compute
the sum of an entire row or column of an array. However, since these functions are limited to
two-dimensional arrays, we will reserve their discussion for the section on matrices. The statement
that returns the sum of all elements in an array, however, works for arrays of any dimension. Given
the array A below,

the function ,

SUM (A)

would return 29.

Numeric Computation 97

Redimensioning Arrays
In our discussion of copying arrays we saw that the system automatically redimensions an array if
necessary. You can also explicitly redimension an array with the REDIM statement. As with auto­
matic redimensioning, the following two rules apply to all REDIM statements:

• A REDIMed array must maintain the same number of dimensions .

• You cannot REDIM an array so that it contains more elements than it was originally
dimensioned to hold.

Suppose A is the 3x3 array shown below.

A

[1 2 3]
456
7 8 9

To redimension it to a 2x4 array, you would execute:

REDIM A (2 , 4)

The new array now looks like the figure below:

A

[
1 2 3 4J
567 8

Note that it retains the values of the elements, though not necessarily in the same locations. For
instance, A (2, 1) in the original array was 4, whereas in the redimensioned array it equals 5. If
we REDIMed A again , this time to a 2x2 array, we would get:

REDIM A (O:l,O:l)

We could then initialize all elements to 0:

MAT A= (0)

Numeric Computation 97

Redimensioning Arrays
In our discussion of copying arrays we saw that the system automatically redimensions an array if
necessary. You can also explicitly redimension an array with the REDIM statement. As with auto­
matic redimensioning, the following two rules apply to all REDIM statements:

• A REDIMed array must maintain the same number of dimensions .

• You cannot REDIM an array so that it contains more elements than it was originally
dimensioned to hold.

Suppose A is the 3x3 array shown below.

A

[1 2 3]
456
7 8 9

To redimension it to a 2x4 array, you would execute:

REDIM A (2 , 4)

The new array now looks like the figure below:

A

[
1 2 3 4J
567 8

Note that it retains the values of the elements, though not necessarily in the same locations. For
instance, A (2, 1) in the original array was 4, whereas in the redimensioned array it equals 5. If
we REDIMed A again , this time to a 2x2 array, we would get:

REDIM A (O:l,O:l)

We could then initialize all elements to 0:

MAT A= (0)

98 Numeric Computation

It is also important to realize that elements that are out of range in the REDIMed array still retain
their values. The fifth thru ninth elements in A still equal 5 thru 9 even though they are now
inaccessible. If we REDIM A back to a 3x3 array, these values will reappear. For example:

REDIM A13t3)

produces:

A

[
0 0 0]
056
789

One of the major strengths of the REDIM statement is that it allows you to use variables for the
subscript ranges: this is not allowed when you originally dimension an array. In effect, this
enables you to dynamically dimension arrays. This should not be confused with the ALLO­
CATE statement which allows you to dynamically reserve memory for arrays. In the example
below, for instance, we enter the dimensions from the keyboard.

10 OPTION BASE 1
20 DIM A I 100 t1 00 1 1000 ELEMENT ARRAY
30 INPUT "Enter lOIAler and upper bounds of difrlensions" t

LOIAil tUp1 tLOIAI2 tUp2

40 IF IUp1-Low1+1l*IUp2-Low2+1l}10000 THEN Too_bi~

50 REDIM AILolAil :Upl tLOIAI2:Up2)

Line 40 tests to see whether the new dimensions are too big. If so, program control is passed to
a line labelled "Too_big". If line 40 were not present, the REDIM statement would return an
error if the dimensions were too large.

Arrays and Arithmetic Operators
It is possible to multiply, divide, add, and subtract scalars to an array, as well as to add, subtract,
multiply, and divide one array to another. All arithmetic functions involving arrays must be
preceded by the MAT keyword. The specified operation is performed on each individual
element in the operand array(s) and the results are placed in the result array. The result array
must be dimensioned to be at least as large as the current size of the operand array(s). If it is of a
different shape than the operand array(s), the system will redimension it. Given the array A
below, note how these arithmetic functions are performed.

MAT B= A+(3)

A

[1 2 3]
456
789

B
5
8
11

98 Numeric Computation

It is also important to realize that elements that are out of range in the REDIMed array still retain
their values. The fifth thru ninth elements in A still equal 5 thru 9 even though they are now
inaccessible. If we REDIM A back to a 3x3 array, these values will reappear. For example:

REDIM A13t3)

produces:

A

[
0 0 0]
056
789

One of the major strengths of the REDIM statement is that it allows you to use variables for the
subscript ranges: this is not allowed when you originally dimension an array. In effect, this
enables you to dynamically dimension arrays. This should not be confused with the ALLO­
CATE statement which allows you to dynamically reserve memory for arrays. In the example
below, for instance, we enter the dimensions from the keyboard.

10 OPTION BASE 1
20 DIM A I 100 t1 00 1 1000 ELEMENT ARRAY
30 INPUT "Enter lOIAler and upper bounds of difrlensions" t

LOIAil tUp1 tLOIAI2 tUp2

40 IF IUp1-Low1+1l*IUp2-Low2+1l}10000 THEN Too_bi~

50 REDIM AILolAil :Upl tLOIAI2:Up2)

Line 40 tests to see whether the new dimensions are too big. If so, program control is passed to
a line labelled "Too_big". If line 40 were not present, the REDIM statement would return an
error if the dimensions were too large.

Arrays and Arithmetic Operators
It is possible to multiply, divide, add, and subtract scalars to an array, as well as to add, subtract,
multiply, and divide one array to another. All arithmetic functions involving arrays must be
preceded by the MAT keyword. The specified operation is performed on each individual
element in the operand array(s) and the results are placed in the result array. The result array
must be dimensioned to be at least as large as the current size of the operand array(s). If it is of a
different shape than the operand array(s), the system will redimension it. Given the array A
below, note how these arithmetic functions are performed.

MAT B= A+(3)

A

[1 2 3]
456
789

B
5
8
11

Numeric Computation 99

MAT C= 5/(2)

C

[is 2.5 H 4
5.5

MAT C= C*(1+1+1)

C

[I~S 7.5 I~S] 12
15 16.5 18

Note that the result array can be the same as the operand array. Also, the scalar must be
enclosed in parentheses.

In addition to performing arithmetic operations with scalars, you can also add, subtract, divide
and multiply two arrays together. Except for multiplication with an asterisk, which is described
later, these functions proceed as follows: Corresponding elements of each operand array are
processed according to the specified operation, and the result is placed in the result array. The
two operand arrays must be exactly the same size though their particular subscript ranges can
be different. For multiplication, use a period rather than an asterisk. Using arrays A and B
above, the statement,

MAT D= A+5

would give the array:

D

[Ii 7 1;] 13
17 19 21

The statement,

MAT 5= A.5

would give:

B

[2~ 10 18] 40 54
70 88 108

Again, the dimensioned size of the result array must be as large as the current size of each
operand array. The two operand arrays must be identical in shape and size, but not necessarily
in subscript ranges. For instance, A and B could have been dimensioned:

10 DIM A<1:3,2:4) ,5(-1:1 ,0:2)

Numeric Computation 99

MAT C= 5/(2)

C

[is 2.5 H 4
5.5

MAT C= C*(1+1+1)

C

[I~S 7.5 I~S] 12
15 16.5 18

Note that the result array can be the same as the operand array. Also, the scalar must be
enclosed in parentheses.

In addition to performing arithmetic operations with scalars, you can also add, subtract, divide
and multiply two arrays together. Except for multiplication with an asterisk, which is described
later, these functions proceed as follows: Corresponding elements of each operand array are
processed according to the specified operation, and the result is placed in the result array. The
two operand arrays must be exactly the same size though their particular subscript ranges can
be different. For multiplication, use a period rather than an asterisk. Using arrays A and B
above, the statement,

MAT D= A+5

would give the array:

D

[Ii 7 1;] 13
17 19 21

The statement,

MAT 5= A.5

would give:

B

[2~ 10 18] 40 54
70 88 108

Again, the dimensioned size of the result array must be as large as the current size of each
operand array. The two operand arrays must be identical in shape and size, but not necessarily
in subscript ranges. For instance, A and B could have been dimensioned:

10 DIM A<1:3,2:4) ,5(-1:1 ,0:2)

100 Numeric Computation

Boolean Arrays
In addition to the arithmetic operators, you can also use relational operators with arrays. The
result is a boolean l array (e.g., an array composed entirely of l's and O's). Given array B above,
suppose you wanted to know how many elements were greater than 50. First you execute the
statement,

MAT F= 5>(50)

which results in the array:

Then you execute the statement,

PRINT SUM(F)

F

[0 ° 0] 001
111

which causes the computer to display "4" on the current PRINTER IS device.

You can also compare two arrays to each other. If, for example, you wanted to compare the
two arrays below,

[1 ~ 5]
287
1 4 6

you could execute the statement:

MAT C= A=5

B

[
1 3 4]
2 ° 7
144

By looking at C, you can tell which elements are the same for both A and B.

C

[1 1 0]
101
110

1 Strictly speaking, these are not really boolean arrays since the values of the elements are not TRUE and FALSE.

100 Numeric Computation

Boolean Arrays
In addition to the arithmetic operators, you can also use relational operators with arrays. The
result is a boolean l array (e.g., an array composed entirely of l's and O's). Given array B above,
suppose you wanted to know how many elements were greater than 50. First you execute the
statement,

MAT F= 5>(50)

which results in the array:

Then you execute the statement,

PRINT SUM(F)

F

[0 ° 0] 001
111

which causes the computer to display "4" on the current PRINTER IS device.

You can also compare two arrays to each other. If, for example, you wanted to compare the
two arrays below,

[1 ~ 5]
287
1 4 6

you could execute the statement:

MAT C= A=5

B

[
1 3 4]
2 ° 7
144

By looking at C, you can tell which elements are the same for both A and B.

C

[1 1 0]
101
110

1 Strictly speaking, these are not really boolean arrays since the values of the elements are not TRUE and FALSE.

Numeric Computation 101

Reordering Arrays
The MAT REORDER statement allows you to re-arrange an array so that one dimension is in a
particular order. The new order is specified in a vector (a vector is a one-dimensional array).
The vector contains the subscripts of the reordered dimension in their new order. The sub­
scripts must correspond to the array's current dimensions and subscript ranges. Suppose A is
the array below. Let us also assume that A has been dimensioned in OPTION BASE 1, and that
the upper bound to both dimensions is 3.

A

[1 3 2]
4 5 7
689

To reverse the order of the rows, we would first dimension a vector,

10 DIM Reverse(3'

and then assign its elements the following values:

Reverse(I'=3
Reverse(2'=2
Rel}erse(3'=1

The array R e l) e r s e now appears:

If we execute the statement,

MAT REORDER A BY Reverse

the result array will be:

Reverse
[3 2 1J

A

[6 8 9]
457
132

Note that the rows are exchanged, rather than the columns. This is because the default is to
re-order the 1st dimension. However, you can override the default by specifying a particular
dimension to be re-ordered. For example, if we wanted to reverse columns rather than rows,
we could use the same vector, but this time specify dimension 2:

MAT REORDER A BY Reverse,2

The transformation would be:

A A

[6 8 9]
457
132 [9 8 6]

754
231

Numeric Computation 101

Reordering Arrays
The MAT REORDER statement allows you to re-arrange an array so that one dimension is in a
particular order. The new order is specified in a vector (a vector is a one-dimensional array).
The vector contains the subscripts of the reordered dimension in their new order. The sub­
scripts must correspond to the array's current dimensions and subscript ranges. Suppose A is
the array below. Let us also assume that A has been dimensioned in OPTION BASE 1, and that
the upper bound to both dimensions is 3.

A

[1 3 2]
4 5 7
689

To reverse the order of the rows, we would first dimension a vector,

10 DIM Reverse(3'

and then assign its elements the following values:

Reverse(I'=3
Reverse(2'=2
Rel}erse(3'=1

The array R e l) e r s e now appears:

If we execute the statement,

MAT REORDER A BY Reverse

the result array will be:

Reverse
[3 2 1J

A

[6 8 9]
457
132

Note that the rows are exchanged, rather than the columns. This is because the default is to
re-order the 1st dimension. However, you can override the default by specifying a particular
dimension to be re-ordered. For example, if we wanted to reverse columns rather than rows,
we could use the same vector, but this time specify dimension 2:

MAT REORDER A BY Reverse,2

The transformation would be:

A A

[6 8 9]
457
132 [9 8 6]

754
231

102 Numeric Computation

Remember that although our examples are confined to two dimensions for illustrative pur­
poses, the same principles apply to arrays of three and more dimensions . In a three­
dimensional array, for instance, reordering the 1st dimension would reorder planes rather than
rows or columns.

In most cases, rather than creating a reorder vector and assigning values to it, you will already
have a vector as the result of a sort operation. This is described in the next section.

Sorting Arrays
A frequent operation performed on arrays is a sort. Sorting an array rearranges the array so that
one dimension (which you specify) is in numerical order. Given the array A below, watch how
the MAT SORT changes it.

A

[5 6 8]
351
248

MAT SORT A(* Ii)

[2 ~ 8]
351
568

The asterisk specifies the dimension to be sorted, and the subscript(s) tells which elements in
that dimension to use as the sorting values. In the example above, we told the system to sort
rows (asterisk is located in the first subscript position), and to use the first element in each row
as the sorting value. With the new array A (from the sort performed above), the following
statement will sort columns using the second element in each column as the sorting value.

MAT SORT A(2,*)

A

[8 2 4]
135
856

The key values in this sort are 1, 3 and 5, the second elements in each column. Sorting by
placing the lowest values first is known as sorting by "ascending" order. This is the default. You
can also sort by "descending" order by specifying the secondary keyword DES. For instance,
the statement,

MAT SORT A(*,2) DES

would produce the following transformation:

A A

[8 2 4]
135
856 [8 5 6]

135
824

102 Numeric Computation

Remember that although our examples are confined to two dimensions for illustrative pur­
poses, the same principles apply to arrays of three and more dimensions . In a three­
dimensional array, for instance, reordering the 1st dimension would reorder planes rather than
rows or columns.

In most cases, rather than creating a reorder vector and assigning values to it, you will already
have a vector as the result of a sort operation. This is described in the next section.

Sorting Arrays
A frequent operation performed on arrays is a sort. Sorting an array rearranges the array so that
one dimension (which you specify) is in numerical order. Given the array A below, watch how
the MAT SORT changes it.

A

[5 6 8]
351
248

MAT SORT A(* Ii)

[2 ~ 8]
351
568

The asterisk specifies the dimension to be sorted, and the subscript(s) tells which elements in
that dimension to use as the sorting values. In the example above, we told the system to sort
rows (asterisk is located in the first subscript position), and to use the first element in each row
as the sorting value. With the new array A (from the sort performed above), the following
statement will sort columns using the second element in each column as the sorting value.

MAT SORT A(2,*)

A

[8 2 4]
135
856

The key values in this sort are 1, 3 and 5, the second elements in each column. Sorting by
placing the lowest values first is known as sorting by "ascending" order. This is the default. You
can also sort by "descending" order by specifying the secondary keyword DES. For instance,
the statement,

MAT SORT A(*,2) DES

would produce the following transformation:

A A

[8 2 4]
135
856 [8 5 6]

135
824

Numeric Computation 103

Sometimes the values of two or more sorting elements are the same. For instance, if we sorted
A by rows using the first element,

MAT SORT A(*t1)

we get:

[8 ~ 6]
135
824

A

[1 3 5]
8 56
8 24

The first elements in the last two rows are the same, so the system leaves them in the order they
held before the sort. However, you can specify a second sort element to be used in the case of
ties. We could execute:

This tells the system to sort by rows using the first element as the sorting value; and in the case
of ties, to use the second element. The result array would be:

[
1 15]
856
824

A

[1 3 5]
8 24
856

The maximum number of sorting keys is 25.

If a key is specified that is recognized by the system as rendering all other keys redundant (such as a
non-substringed key for a one dimensional string array) no other keys can be specified. However, if
the computer cannot tell that keys are redundant (such as MAT SO R T A (* t){) t A (* t Y) with)-(
equal to Y) it will permit redundant keys. Redundant keys will slow down execution of the MAT
SORT statement. If you include the DES secondary word, it refers only to the sort element which
immediately precedes it.

Sorting to a Vector
So far , all of our sort examples have actually re-arranged the array in question. Alternatively,
you can record the new order in a vector and leave the array intact. The vector must have been
dimensioned to have at least as many elements as the current size of the array being sorted. If
necessary, the system will redimension the vector. Thus, executing the statement:

MAT SOR T A (3 t *) TO Vect

with the array A:

A

[1 3 5]
824
856

The array A remains unchanged, but the vector t.J e c t now contains the values:

Veet
[2 3 1J

Numeric Computation 103

Sometimes the values of two or more sorting elements are the same. For instance, if we sorted
A by rows using the first element,

MAT SORT A(*t1)

we get:

[8 ~ 6]
135
824

A

[1 3 5]
8 56
8 24

The first elements in the last two rows are the same, so the system leaves them in the order they
held before the sort. However, you can specify a second sort element to be used in the case of
ties. We could execute:

This tells the system to sort by rows using the first element as the sorting value; and in the case
of ties, to use the second element. The result array would be:

[
1 15]
856
824

A

[1 3 5]
8 24
856

The maximum number of sorting keys is 25.

If a key is specified that is recognized by the system as rendering all other keys redundant (such as a
non-substringed key for a one dimensional string array) no other keys can be specified. However, if
the computer cannot tell that keys are redundant (such as MAT SO R T A (* t){) t A (* t Y) with)-(
equal to Y) it will permit redundant keys. Redundant keys will slow down execution of the MAT
SORT statement. If you include the DES secondary word, it refers only to the sort element which
immediately precedes it.

Sorting to a Vector
So far , all of our sort examples have actually re-arranged the array in question. Alternatively,
you can record the new order in a vector and leave the array intact. The vector must have been
dimensioned to have at least as many elements as the current size of the array being sorted. If
necessary, the system will redimension the vector. Thus, executing the statement:

MAT SOR T A (3 t *) TO Vect

with the array A:

A

[1 3 5]
824
856

The array A remains unchanged, but the vector t.J e c t now contains the values:

Veet
[2 3 1J

104 Numeric Computation

This assumes that the array A has been dimensioned so that the subscript range is 1 thru 3. If A
had been dimensioned.

10 DIM A(1:3 t -l:l)

then 1,1 e c t would contain the values:

Vect
[0 1 -lJ

This vector should look very reminiscent of the vectors used to reorder arrays. And, in fact, you
can use these vectors in a MAT REORDER statement to rearrange the array. That is, we could
now execute:

MAT REORDER A BY Vectt2

and the new array would be:

A

[3 5 1]
248
568

Note that the dimension number in the MAT REORDER statement corresponds to the position
of the asterisk in the MAT SORT statement.

Sorting to a vector is particularly useful if you want to sort the same array along different
dimensions or using different sort elements. Each sort can be stored in a vector to be used later.
Meanwhile, the original array remains unchanged.

In addition, sorting to a vector allows you to use the same sorting order with parallel arrays.
That is, if you have several arrays that contain data about the same elements, you can sort one
of them, and then use that same sorting order to reorder the others.

Finally, sorting to a vector enables you to manipulate an unsorted array as if it were sorted. For
instance, suppose you have the array shown below:

A

[
2 7 4]
018
531

Let us also assume that the subscript range for each dimension in A is 1 thru 3. If we sort A to a
vector 5,

MAT SORT A(* t l) TO B

we can then use 5 to define elements in A. For instance, to get the value of A(l ,l) in its sorted
form, we could write:

)-(=A(B(1) Ii)

104 Numeric Computation

This assumes that the array A has been dimensioned so that the subscript range is 1 thru 3. If A
had been dimensioned.

10 DIM A(1:3 t -l:l)

then 1,1 e c t would contain the values:

Vect
[0 1 -lJ

This vector should look very reminiscent of the vectors used to reorder arrays. And, in fact, you
can use these vectors in a MAT REORDER statement to rearrange the array. That is, we could
now execute:

MAT REORDER A BY Vectt2

and the new array would be:

A

[3 5 1]
248
568

Note that the dimension number in the MAT REORDER statement corresponds to the position
of the asterisk in the MAT SORT statement.

Sorting to a vector is particularly useful if you want to sort the same array along different
dimensions or using different sort elements. Each sort can be stored in a vector to be used later.
Meanwhile, the original array remains unchanged.

In addition, sorting to a vector allows you to use the same sorting order with parallel arrays.
That is, if you have several arrays that contain data about the same elements, you can sort one
of them, and then use that same sorting order to reorder the others.

Finally, sorting to a vector enables you to manipulate an unsorted array as if it were sorted. For
instance, suppose you have the array shown below:

A

[
2 7 4]
018
531

Let us also assume that the subscript range for each dimension in A is 1 thru 3. If we sort A to a
vector 5,

MAT SORT A(* t l) TO B

we can then use 5 to define elements in A. For instance, to get the value of A(l ,l) in its sorted
form, we could write:

)-(=A(B(1) Ii)

Numeric Computation 105

In this case, X would equal O. By incrementing the subscript value of B, we can simulate a
sorted A.

We should point out again that although these examples are two-dimensional, the same princi­
ples apply to arrays of any rank. You must have one, and only one, asterisk in the subscript list
of a sort. The other subscripts specify the particular elements to be used as the sorting keys.

Matrices and Vectors
A two-dimensional numeric array is called a "matrix" and a one-dimensional numeric array is
called a "vector". An entire branch of mathematics is devoted to matrices and vectors, and their
applications are surprisingly broad. There are certain operations that are frequently performed on
matrices which have been incorporated in BASIC. Keep in mind that the functions described in this
section apply only to two-dimensional, and occasionally one-dimensional arrays, but never to
arrays of more than two dimensions.

Matrix Multiplication
You may recall from our discussion of arrays and arithmetic operations that the asterisk (*) is
reserved for matrix multiplication. If A is an i-by-k matrix and B is a k-by-j matrix, then C = A*B is
defined by the following equation:

Translated into english, this equation means that the element in the ith row and jth column of
the product (C) is the sum of the products by pairs of the elements in the ith row of A and the jth
column of B. A couple of examples will help make this clear.

Suppose A and B are the matrices shown below.

A B

[3 8 2]
165
420 [1 -2 3]

-6 47
o 8 2

If C=A*B, then:

C (1 t1) = A (1 t1) *B (1 t1) +A (1 t 2) *B (2 t1) +A (1 t 3) *B (3 t1) = (3* 1) +(8* - G) + (2*0) = - 45

C (2 t1) = A (2 t1) *B (1 t1) +A (2 t 2) *B (2 t1) +A (2 t 3) *B (3 t 1) = (1* 1) + (G* - G) + (5*0) = - 35

C (3 t 2) = A (3 t1) *B (1 t 2) +A (3 t 2) *B (2 t 2) +A (3 t 3) *B (3 t 2) = (4* - 1)+ (2*4) + (0*8) = 0

Following this procedure for each element in C, we get the matrix shown below.

MAT C=A*B

C

[

-45
-35
- 8

~~ ~;]
o 26

Numeric Computation 105

In this case, X would equal O. By incrementing the subscript value of B, we can simulate a
sorted A.

We should point out again that although these examples are two-dimensional, the same princi­
ples apply to arrays of any rank. You must have one, and only one, asterisk in the subscript list
of a sort. The other subscripts specify the particular elements to be used as the sorting keys.

Matrices and Vectors
A two-dimensional numeric array is called a "matrix" and a one-dimensional numeric array is
called a "vector". An entire branch of mathematics is devoted to matrices and vectors, and their
applications are surprisingly broad. There are certain operations that are frequently performed on
matrices which have been incorporated in BASIC. Keep in mind that the functions described in this
section apply only to two-dimensional, and occasionally one-dimensional arrays, but never to
arrays of more than two dimensions.

Matrix Multiplication
You may recall from our discussion of arrays and arithmetic operations that the asterisk (*) is
reserved for matrix multiplication. If A is an i-by-k matrix and B is a k-by-j matrix, then C = A*B is
defined by the following equation:

Translated into english, this equation means that the element in the ith row and jth column of
the product (C) is the sum of the products by pairs of the elements in the ith row of A and the jth
column of B. A couple of examples will help make this clear.

Suppose A and B are the matrices shown below.

A B

[3 8 2]
165
420 [1 -2 3]

-6 47
o 8 2

If C=A*B, then:

C (1 t1) = A (1 t1) *B (1 t1) +A (1 t 2) *B (2 t1) +A (1 t 3) *B (3 t1) = (3* 1) +(8* - G) + (2*0) = - 45

C (2 t1) = A (2 t1) *B (1 t1) +A (2 t 2) *B (2 t1) +A (2 t 3) *B (3 t 1) = (1* 1) + (G* - G) + (5*0) = - 35

C (3 t 2) = A (3 t1) *B (1 t 2) +A (3 t 2) *B (2 t 2) +A (3 t 3) *B (3 t 2) = (4* - 1)+ (2*4) + (0*8) = 0

Following this procedure for each element in C, we get the matrix shown below.

MAT C=A*B

C

[

-45
-35
- 8

~~ ~;]
o 26

106 Numeric Computation

Note that the product is a 3x3 matrix. There are three general rules to matrix multiplication:

• Multiplication between two matrices is legal only if the second dimension of the first array
is the same size as the first dimension of the second array. That is, the two inner dimen­
sions must be the same.

• The result matrix will have the same number of rows as the first operand matrix and the
same number of columns as the second operand matrix. That is, the dimensions of the
result matrix will be the same as the outer dimensions of the operand matrices.

• The result array cannot be the same as either of the operand arrays. For example,

MAT A= A*B

is an illegal statement.

If A is a 2x3 matrix and B is a 3x2 matrix, A*B will result in a 2x2 matrix. B*A, on the other hand,
produces a 3x3 matrix. Given the two matrices below, you can see how their position in the
equation affects the product.

Multiplication With Vectors

[~
A
8

- 3

A*B

[7 -14J
4 24

B

[-1 1]
2 - 2
3 4

B*A

[- 4 -11 5]
8 22 -10

26 12 13

We described a vector as a one-dimensional array. For instance,

10 DIM A(3)

would create a vector with three elements and a rank of 1. Suppose we give A the values shown
below.

A
[1 2 3J

Notice that we have portrayed A as a row vector. We could have just as easily portrayed A as a
column vector:

A

m

106 Numeric Computation

Note that the product is a 3x3 matrix. There are three general rules to matrix multiplication:

• Multiplication between two matrices is legal only if the second dimension of the first array
is the same size as the first dimension of the second array. That is, the two inner dimen­
sions must be the same.

• The result matrix will have the same number of rows as the first operand matrix and the
same number of columns as the second operand matrix. That is, the dimensions of the
result matrix will be the same as the outer dimensions of the operand matrices.

• The result array cannot be the same as either of the operand arrays. For example,

MAT A= A*B

is an illegal statement.

If A is a 2x3 matrix and B is a 3x2 matrix, A*B will result in a 2x2 matrix. B*A, on the other hand,
produces a 3x3 matrix. Given the two matrices below, you can see how their position in the
equation affects the product.

Multiplication With Vectors

[~
A
8

- 3

A*B

[7 -14J
4 24

B

[-1 1]
2 - 2
3 4

B*A

[- 4 -11 5]
8 22 -10

26 12 13

We described a vector as a one-dimensional array. For instance,

10 DIM A(3)

would create a vector with three elements and a rank of 1. Suppose we give A the values shown
below.

A
[1 2 3J

Notice that we have portrayed A as a row vector. We could have just as easily portrayed A as a
column vector:

A

m

(

Numeric Computation 107

So which is it? A row vector or a column vector? Actually, a vector can behave like either
depending on its position in an equation. If a vector is the first operand in a multiplication, then
it acts like an lXn array (row vector) ; if it's the second operand, it behaves like a nXl array
(column vector); and if it's the result array, it can act like either. A few examples will help
illustrate these principles. Let A be the vector shown above, and B, C, and D be the arrays
shown below.

B C D

[1 2 3]
456
789 [

0 0 0] 000
000 m

Let us suppose that D has been explicitly defined as a two-dimensional array:

10 DIM D(311)

If we execute:

MAT C= A*D

we get:

C
[12J

Since A is the first operand, it behaves like a lx3 matrix. The equation, therefore, is:

The result is a lxl matrix. If we try to reverse the order:

MAT C=D *A

the system returns:

ERROR 16 Imp r oper d imensions

This is because we tried to multiply a 3xl matrix by a 3xl matrix:

Since the inner dimensions are not the same, the system returns an error. Suppose we try:

MAT C=B*A

(

Numeric Computation 107

So which is it? A row vector or a column vector? Actually, a vector can behave like either
depending on its position in an equation. If a vector is the first operand in a multiplication, then
it acts like an lXn array (row vector) ; if it's the second operand, it behaves like a nXl array
(column vector); and if it's the result array, it can act like either. A few examples will help
illustrate these principles. Let A be the vector shown above, and B, C, and D be the arrays
shown below.

B C D

[1 2 3]
456
789 [

0 0 0] 000
000 m

Let us suppose that D has been explicitly defined as a two-dimensional array:

10 DIM D(311)

If we execute:

MAT C= A*D

we get:

C
[12J

Since A is the first operand, it behaves like a lx3 matrix. The equation, therefore, is:

The result is a lxl matrix. If we try to reverse the order:

MAT C=D *A

the system returns:

ERROR 16 Imp r oper d imensions

This is because we tried to multiply a 3xl matrix by a 3xl matrix:

Since the inner dimensions are not the same, the system returns an error. Suppose we try:

MAT C=B*A

108 Numeric Computation

In this case, we are multiplying a 3x3 array to a column vector.

The result is a 3xl matrix:

C

[H]
If the result array is a vector, then it will behave like either a row vector or a column vector
depending on which is called for. The only other possibility is if both operand arrays are vectors.
In this case, the result is always a lxl array. For instance, if A and B are the vectors below,

A B

m [J]
then multiplying A by B results in the equation:

MAT C=A *B

C equals - 2 . Reversing the operand arrays, we get:

MAT C=B*A

c ~ [o 1 - 1]' m
Again, C equals - 2. Because the product of two vectors is always a single element, BASIC has
a DOT function that multiplies two vectors and comes up with a Real or Integer numeric. For
example,

){=DOT (A ,B)

would assign the value - 2 to X. If both vectors are Integer, then the product is an Integer.
Otherwise, the product is Real. The two vectors must be the same size or the system will return
an error.

108 Numeric Computation

In this case, we are multiplying a 3x3 array to a column vector.

The result is a 3xl matrix:

C

[H]
If the result array is a vector, then it will behave like either a row vector or a column vector
depending on which is called for. The only other possibility is if both operand arrays are vectors.
In this case, the result is always a lxl array. For instance, if A and B are the vectors below,

A B

m [J]
then multiplying A by B results in the equation:

MAT C=A *B

C equals - 2 . Reversing the operand arrays, we get:

MAT C=B*A

c ~ [o 1 - 1]' m
Again, C equals - 2. Because the product of two vectors is always a single element, BASIC has
a DOT function that multiplies two vectors and comes up with a Real or Integer numeric. For
example,

){=DOT (A ,B)

would assign the value - 2 to X. If both vectors are Integer, then the product is an Integer.
Otherwise, the product is Real. The two vectors must be the same size or the system will return
an error.

Numeric Computation 109

Identity Matrix
An "identity matrix" is defined as a matrix which , when multiplied to another matrix A, pro­
duces the same matrix A. It is analogous to a 1 in normal arithmetic. For example, if I stands for
an identity matrix, then A = I * A and also A = A * I. In order for an identity matrix to exist at all, A
must be a square matrix (e.g. , it must have the same number of columns as rows).

As it turns out, all identity matrices have the same form. They are square and consist of l' s
along the main diagonal , and O's everywhere else. For example, if A is a 3x3 matrix, then the
identity matrix for A is:

For a 4x4 matrix, I would be:

I

[
1 ° ° 0] o 1 0 0
o 0 1 0
o 0 0 1

Since identity matrices are used frequently in matrix arithmetic, BASIC has a special function
(ION) that turns a square matrix into an identity matrix. For instance:

10 OPTION BASE 1
2 0 DI M 1 (2 , 2)
30 MAT I=IDN

The matrix I now contains the elements:

If I was not a square matrix, line 20 would have returned an error.

Inverse Matrix
Although division is not defined for matrices, there is a similar operation which involves finding
the inverse of a matrix. As with identity matrices, a matrix must be square in order to have an
inverse. Inverse matrices are notated by a superscript - 1. If A is a square matrix, then A-I
denotes its inverse. The inverse is defined by the equation:

where I is the identity matrix. You can see how similar this is to division since, if A were a real
number, then:

Numeric Computation 109

Identity Matrix
An "identity matrix" is defined as a matrix which , when multiplied to another matrix A, pro­
duces the same matrix A. It is analogous to a 1 in normal arithmetic. For example, if I stands for
an identity matrix, then A = I * A and also A = A * I. In order for an identity matrix to exist at all, A
must be a square matrix (e.g. , it must have the same number of columns as rows).

As it turns out, all identity matrices have the same form. They are square and consist of l' s
along the main diagonal , and O's everywhere else. For example, if A is a 3x3 matrix, then the
identity matrix for A is:

For a 4x4 matrix, I would be:

I

[
1 ° ° 0] o 1 0 0
o 0 1 0
o 0 0 1

Since identity matrices are used frequently in matrix arithmetic, BASIC has a special function
(ION) that turns a square matrix into an identity matrix. For instance:

10 OPTION BASE 1
2 0 DI M 1 (2 , 2)
30 MAT I=IDN

The matrix I now contains the elements:

If I was not a square matrix, line 20 would have returned an error.

Inverse Matrix
Although division is not defined for matrices, there is a similar operation which involves finding
the inverse of a matrix. As with identity matrices, a matrix must be square in order to have an
inverse. Inverse matrices are notated by a superscript - 1. If A is a square matrix, then A-I
denotes its inverse. The inverse is defined by the equation:

where I is the identity matrix. You can see how similar this is to division since, if A were a real
number, then:

110 Numeric Computation

The inverse of a matrix is found by using the INV function. For instance, the inverse of:

A

[02 0]
-1 2 0

2 0 2

is found by executing:

The system computes the values of the inverse and places them in the matrix A _ i 1"1 l,!:

A-inv

[.i -~ ~]
- 1 1 .5

To check that this is really the inverse, you could execute the statement:

MAT B= A*A_inv

As expected, B turns out to be an identity matrix:

B

[1 0 0]
010
001

Unfortunately, these expectations are not always fulfilled . Some matrices do not have an
inverse. In other words, for a certain matrix called A, there exists no other matrix that, when
multiplied to A produces an identity matrix. Matrices that don' t have an inverse are called
"singular". Singular matrices are easily detected and therefore aren't too dangerous. A more
troublesome type of matrix is one that is " ill-conditioned". Ill-conditioned matrices are ones
whose inverse can't be found by the computer because of round-off errors. These are difficult
to detect and almost impossible to correct. We'll talk more about singular and ill-conditioned
matrices, but before we do, we should discuss why you'd use an inverse in the first place.

Solving Simultaneous Equations
One of the most common applications of matrices is in the solution of simultaneous equations.
Suppose we have the three equations shown below:

4X+2Y -Z=5
2X-3Y+3Z=5
X+Y-2Z= -3

Note that there are three unknowns (X,Y, and Z) and three equations. This is a necessity for
solVing by matrix arithmetic: you must have the same number of equations as unknowns. We
can re-write these equations in matrix format as the product of two arrays:

110 Numeric Computation

The inverse of a matrix is found by using the INV function. For instance, the inverse of:

A

[02 0]
-1 2 0

2 0 2

is found by executing:

The system computes the values of the inverse and places them in the matrix A _ i 1"1 l,!:

A-inv

[.i -~ ~]
- 1 1 .5

To check that this is really the inverse, you could execute the statement:

MAT B= A*A_inv

As expected, B turns out to be an identity matrix:

B

[1 0 0]
010
001

Unfortunately, these expectations are not always fulfilled . Some matrices do not have an
inverse. In other words, for a certain matrix called A, there exists no other matrix that, when
multiplied to A produces an identity matrix. Matrices that don' t have an inverse are called
"singular". Singular matrices are easily detected and therefore aren't too dangerous. A more
troublesome type of matrix is one that is " ill-conditioned". Ill-conditioned matrices are ones
whose inverse can't be found by the computer because of round-off errors. These are difficult
to detect and almost impossible to correct. We'll talk more about singular and ill-conditioned
matrices, but before we do, we should discuss why you'd use an inverse in the first place.

Solving Simultaneous Equations
One of the most common applications of matrices is in the solution of simultaneous equations.
Suppose we have the three equations shown below:

4X+2Y -Z=5
2X-3Y+3Z=5
X+Y-2Z= -3

Note that there are three unknowns (X,Y, and Z) and three equations. This is a necessity for
solVing by matrix arithmetic: you must have the same number of equations as unknowns. We
can re-write these equations in matrix format as the product of two arrays:

Numeric Computation 111

For the sake of simplicity, let's name these three arrays A, B, and c. The equation, therefore, is:

A*B=C

If we multiply both sides of the equation by the inverse of A, we get:

A-l*A*B =A-1*C

Since A-1*A is simply a 3x3 identity matrix, the equation simplifies to:

I*B=A-I *C

which further simplifies to:

B=A-I *C

Remember, B is the matrix that contains the three variables X,Y and Z. To solve for these
variables, therefore, all we have to do is multiply the matrix C by A-I. This is accomplished in the
program lines listed below.

200 DIM Solutiord3) ,A_ilHJ(3,3)

220 MAT A_inu=INV(A)

230 MAT Solution=A_inu*C
240 PRINT 1)-(=";Solution(l)

250 PRINT IY=";So l ution(2)

260 PRINT IZ=";Solution (3)

When we run this program, it will print the values of X, Y, and Z. The values are:

\I_I"")
1-';""

Z=3

For any set of simultaneous equations where there are the same number of unknown variables
as there are equations, there are three possible classes of solution.

• There is no solution (e.g., there exist no values for the variables such that all of the
equations are true) .

• There are an infinite number of solutions.

• There is one, and only one, solution.

The first two cases are called "singular" sets of equations. You may recall that a Singular matrix
is one that has no inverse. It should not be surprising, therefore, that singular sets of equations
always result in Singular matrices when they are translated to matrix form . This is explained in
the next section.

Numeric Computation 111

For the sake of simplicity, let's name these three arrays A, B, and c. The equation, therefore, is:

A*B=C

If we multiply both sides of the equation by the inverse of A, we get:

A-l*A*B =A-1*C

Since A-1*A is simply a 3x3 identity matrix, the equation simplifies to:

I*B=A-I *C

which further simplifies to:

B=A-I *C

Remember, B is the matrix that contains the three variables X,Y and Z. To solve for these
variables, therefore, all we have to do is multiply the matrix C by A-I. This is accomplished in the
program lines listed below.

200 DIM Solutiord3) ,A_ilHJ(3,3)

220 MAT A_inu=INV(A)

230 MAT Solution=A_inu*C
240 PRINT 1)-(=";Solution(l)

250 PRINT IY=";So l ution(2)

260 PRINT IZ=";Solution (3)

When we run this program, it will print the values of X, Y, and Z. The values are:

\I_I"")
1-';""

Z=3

For any set of simultaneous equations where there are the same number of unknown variables
as there are equations, there are three possible classes of solution.

• There is no solution (e.g., there exist no values for the variables such that all of the
equations are true) .

• There are an infinite number of solutions.

• There is one, and only one, solution.

The first two cases are called "singular" sets of equations. You may recall that a Singular matrix
is one that has no inverse. It should not be surprising, therefore, that singular sets of equations
always result in Singular matrices when they are translated to matrix form . This is explained in
the next section.

112 Numeric Computation

Singular Matrices
Any set of equations that has no solution or an infinite number of solutions is singular. Likewise,
the matrix formed from these equations is also singular. More specifically, we mean the matrix
on the left-hand side of the equation, what we've been calling matrix A. Consider the two
equations listed below:

4X+6Y=5
4X+6Y=6

Obviously, there is no solution to this set of equations because any values assigned to X and Y
will make only one of the equations true, not both. It is important to realize, however, that the
singularity of these equations has nothing to do with the values on the right hand side of the
equation. If, for example, we made the two equations the same,

4X+6Y=6
4X+6Y=6

then there would be an infinite number of solutions. For instance, X could equal 0 and Y equal
1, or X could equal 1.5 and Y could equal O. In fact, so long as X= 1.5(1-Y), the two equations
will always be true. What is important here is that the two equations,

4X+6Y=
4X+6Y=

will be singular regardless of what we put on the right-hand side of the equal sign. If we translate
these equations into matrix form , we get:

The matrix,

[! ~J
is singular: it has no inverse. If, however, we call this matrix A and do an INV on it, the system
will not report an error. On the contrary, it will go ahead and find what it thinks is an inverse.
However, whatever matrix it comes up with will not be the inverse. Let's see what happens with
our Singular matrix A.

MAT A_inl.1=IN l,J(A)
PRINT A_int.d*)

When we execute these statements, the system will display the following:

.BBBBBBBBBBB 7 .1BBBGGBBBBB7 o -1

Arranging these values in the proper rows and columns, we get:

A_inv

[
.66666666667 OJ
.16666666667 - 1

112 Numeric Computation

Singular Matrices
Any set of equations that has no solution or an infinite number of solutions is singular. Likewise,
the matrix formed from these equations is also singular. More specifically, we mean the matrix
on the left-hand side of the equation, what we've been calling matrix A. Consider the two
equations listed below:

4X+6Y=5
4X+6Y=6

Obviously, there is no solution to this set of equations because any values assigned to X and Y
will make only one of the equations true, not both. It is important to realize, however, that the
singularity of these equations has nothing to do with the values on the right hand side of the
equation. If, for example, we made the two equations the same,

4X+6Y=6
4X+6Y=6

then there would be an infinite number of solutions. For instance, X could equal 0 and Y equal
1, or X could equal 1.5 and Y could equal O. In fact, so long as X= 1.5(1-Y), the two equations
will always be true. What is important here is that the two equations,

4X+6Y=
4X+6Y=

will be singular regardless of what we put on the right-hand side of the equal sign. If we translate
these equations into matrix form , we get:

The matrix,

[! ~J
is singular: it has no inverse. If, however, we call this matrix A and do an INV on it, the system
will not report an error. On the contrary, it will go ahead and find what it thinks is an inverse.
However, whatever matrix it comes up with will not be the inverse. Let's see what happens with
our Singular matrix A.

MAT A_inl.1=IN l,J(A)
PRINT A_int.d*)

When we execute these statements, the system will display the following:

.BBBBBBBBBBB 7 .1BBBGGBBBBB7 o -1

Arranging these values in the proper rows and columns, we get:

A_inv

[
.66666666667 OJ
.16666666667 - 1

Numeric Computation 113

To see whether this is a real inverse , we can multiply it by A. If it is the inverse, the product
should be an identity matrix.

MAT I =A* A_ i n \)

I

[3 . 3333~!33333 _ ~]

Obviously, the system has made a mistake - A_ i n \.1 is not the inverse of A. SO how do we
know if an inverse is valid? Or, to put it another way, how do we detect a singular matrix? We
have just seen one method: multiply the matrix by its inverse and see whether you get an
identity matrix. There is, however, a much easier method. You simply look at the " determi­
nant" of the matrix.

The Determinant of a Matrix
The determinant of a matrix is defined somewhat mysteriously as the sum of all possible
products formed by taking one element from each row in order starting from the top and one
element from each column, where the sign of each product depends on the permutation of the
column indices.

It's not really important that you understand how to calculate a determinant since the computer
does it for you whenever you use the DET function. For instance, to print the determinant of
matrix A, you would write:

PRINT DET (A)

Also the determinant is a byproduct of inversions. Thus, whenever you invert a matrix, the
system computes the determinant and stores it. If you use DET without specifying a matrix, the
system will return the determinant of the matrix most recently inverted. For example,

MAT A_ inv=HP.J(A)
PRINT DET

would print the determinant of A.

Although the computation of the determinant is quite complex, its Significance is very simple. If
the determinant of a matrix equals 0, either a REAL underflow occurred during the inversion or
the matrix is singular. To find out if an inversion is invalid, therefore, you merely test the
matrix's determinant. If the determinant is zero, then the inverse is invalid. For example, if A is a
square matrix, we could execute:

100 MAT A_ in v=I NV(A)
11 0 IF DET= O THEN S i n~u l ar

Numeric Computation 113

To see whether this is a real inverse , we can multiply it by A. If it is the inverse, the product
should be an identity matrix.

MAT I =A* A_ i n \)

I

[3 . 3333~!33333 _ ~]

Obviously, the system has made a mistake - A_ i n \.1 is not the inverse of A. SO how do we
know if an inverse is valid? Or, to put it another way, how do we detect a singular matrix? We
have just seen one method: multiply the matrix by its inverse and see whether you get an
identity matrix. There is, however, a much easier method. You simply look at the " determi­
nant" of the matrix.

The Determinant of a Matrix
The determinant of a matrix is defined somewhat mysteriously as the sum of all possible
products formed by taking one element from each row in order starting from the top and one
element from each column, where the sign of each product depends on the permutation of the
column indices.

It's not really important that you understand how to calculate a determinant since the computer
does it for you whenever you use the DET function. For instance, to print the determinant of
matrix A, you would write:

PRINT DET (A)

Also the determinant is a byproduct of inversions. Thus, whenever you invert a matrix, the
system computes the determinant and stores it. If you use DET without specifying a matrix, the
system will return the determinant of the matrix most recently inverted. For example,

MAT A_ inv=HP.J(A)
PRINT DET

would print the determinant of A.

Although the computation of the determinant is quite complex, its Significance is very simple. If
the determinant of a matrix equals 0, either a REAL underflow occurred during the inversion or
the matrix is singular. To find out if an inversion is invalid, therefore, you merely test the
matrix's determinant. If the determinant is zero, then the inverse is invalid. For example, if A is a
square matrix, we could execute:

100 MAT A_ in v=I NV(A)
11 0 IF DET= O THEN S i n~u l ar

114 Numeric Computation

If A is singular, program control is passed to a line named "Singular". Note that we did not have
to specify a matrix in line 110 since A was the last matrix inverted.

Unless you know for certain that a matrix is not singular, we recommend that you use the
determinant test after each inversion. Otherwise, you may perform calculations using an invalid
inverse.

Ill-Conditioned Matrices
In a few unusual cases, the inverse of a matrix will be invalid even though the determinant of
the matrix is non-zero. These situations occur due to round-off errors internal to the computer.
They are difficult to detect and even more difficult to correct. Fortunately, they occur very
rarely. Unless you are having problems with a program involving matrix operations producing
unexpected results, you can skip over to "Miscellaneous Matrix Functions." If you are having
problems, listed below is an example of an ill-conditioned set of equations.

X1 + OX2 + 3X3 + 8X4 = 12
2X1 + X2 + 6X3 + 15.9X4 = 24.9
3X1 + X2 + 8.9X3 + 24X4 = 36.9
4X1 + X2 + 11.9X3 + 32X4 = 48.9

We have selected the numbers on the right-hand side of the equation so that all of the X's equal
1. Watch what happens though when we try to solve these equations through matrix inversion.
First, we set up the equations in matrix format.

A Var

[!
0 3

1~9 J
mJ

1 6 *
1 8.9 24
1 11.9 32

Then we execute the program statements below.

100 MAT A_ inv=INV (A)
110 MAT Var=A_ i nv*Ans
12 0 FOR Y= l TO 4
130 PRINT Usi ng " " ")«" "tDt"") =""tK"jYtl.) ar(Y)
140 NE)<T Y

The computer displays:

}((1) =25G

)< (2) =0

)« 3)=-3 2
}((4)=- lG

Ans

[~~9 J 36.9
48.9

ObViously something has gone wrong. The problem is that the inverse found by the computer is
far off the mark from the actual inverse. The system of equations, though, is not singular. The
determinant, though small, does not equal zero.

114 Numeric Computation

If A is singular, program control is passed to a line named "Singular". Note that we did not have
to specify a matrix in line 110 since A was the last matrix inverted.

Unless you know for certain that a matrix is not singular, we recommend that you use the
determinant test after each inversion. Otherwise, you may perform calculations using an invalid
inverse.

Ill-Conditioned Matrices
In a few unusual cases, the inverse of a matrix will be invalid even though the determinant of
the matrix is non-zero. These situations occur due to round-off errors internal to the computer.
They are difficult to detect and even more difficult to correct. Fortunately, they occur very
rarely. Unless you are having problems with a program involving matrix operations producing
unexpected results, you can skip over to "Miscellaneous Matrix Functions." If you are having
problems, listed below is an example of an ill-conditioned set of equations.

X1 + OX2 + 3X3 + 8X4 = 12
2X1 + X2 + 6X3 + 15.9X4 = 24.9
3X1 + X2 + 8.9X3 + 24X4 = 36.9
4X1 + X2 + 11.9X3 + 32X4 = 48.9

We have selected the numbers on the right-hand side of the equation so that all of the X's equal
1. Watch what happens though when we try to solve these equations through matrix inversion.
First, we set up the equations in matrix format.

A Var

[!
0 3

1~9 J
mJ

1 6 *
1 8.9 24
1 11.9 32

Then we execute the program statements below.

100 MAT A_ inv=INV (A)
110 MAT Var=A_ i nv*Ans
12 0 FOR Y= l TO 4
130 PRINT Usi ng " " ")«" "tDt"") =""tK"jYtl.) ar(Y)
140 NE)<T Y

The computer displays:

}((1) =25G

)< (2) =0

)« 3)=-3 2
}((4)=- lG

Ans

[~~9 J 36.9
48.9

ObViously something has gone wrong. The problem is that the inverse found by the computer is
far off the mark from the actual inverse. The system of equations, though, is not singular. The
determinant, though small, does not equal zero.

Numeric Computation 115

Detecting Ill-conditioned Matrices
Now that you've seen how ill-conditioning can affect the solutions to a set of simultaneous
equations, you're probably wondering how you can tell an ill-conditioned matrix when you see
one. There are a number of different techniques, none of which is entirely fail-proof. Used
together, however, they are quite dependable.

In general, the determinant of an ill-conditioned matrix is very small compared with the ele­
ments of the matrix. So one of the first steps you can take is to look at the determinant. The
term "very small" is, of course, relative. If a matrix contained elements all greater than 1000,
then a determinant that equaled 10 would be very small. On the other hand, if all the elements
in an array were less than 20 then a determinant of 10 would be quite reasonable. One
equation for determining whether the determinant is "too small" is given below:

DET(A)
-~======== < < 1

V~~ A~
i=l j = l

We can execute this equation in a program as follows.

100 FOR X= (BASE Atl) TO (SIZE Atl)+(BASE Atl)-l
120 FOR Y=(BASE At2) TO (SIZE At2)+(BASE At2)-1
130 Total=Total+AO(tV) "'2
140 NEl{T Y
150 NEXT X
180 Test=DET(A)/SQ R(Total)
170 IF Test{.OOl THEN Ill_con

Note that line 170 can be changed depending on how much accuracy you require for your
particular application. If we execute this program for the ill-conditioned matrix discussed earlier,
the value of " Test" comes out to 9 .527E-19. Since this value is much smaller than .001, this
test would have correctly identified A as an ill-conditioned matrix.

Another technique for detecting ill-conditioned matrices is to multiply the matrix by its inverse
and compare the product with the identity matrix. Again, you can demand as much accuracy as
necessary. In the program below, we look for any elements in the product that differ by more
than .001 from the identity matrix.

100 MAT I=IDN
110 MAT A_inv=INl.J(A)
120 MAT Product=A_in t.!*A
130 MAT Differ=,< Product-I)
140 MAT COfrlPare=Differ>(.001)
150 MAT COMParel=Differ{(-.OOl)
180 IF SUM(CoMPare)+SUM(CoMParel»O THEN Ill_con

Numeric Computation 115

Detecting Ill-conditioned Matrices
Now that you've seen how ill-conditioning can affect the solutions to a set of simultaneous
equations, you're probably wondering how you can tell an ill-conditioned matrix when you see
one. There are a number of different techniques, none of which is entirely fail-proof. Used
together, however, they are quite dependable.

In general, the determinant of an ill-conditioned matrix is very small compared with the ele­
ments of the matrix. So one of the first steps you can take is to look at the determinant. The
term "very small" is, of course, relative. If a matrix contained elements all greater than 1000,
then a determinant that equaled 10 would be very small. On the other hand, if all the elements
in an array were less than 20 then a determinant of 10 would be quite reasonable. One
equation for determining whether the determinant is "too small" is given below:

DET(A)
-~======== < < 1

V~~ A~
i=l j = l

We can execute this equation in a program as follows.

100 FOR X= (BASE Atl) TO (SIZE Atl)+(BASE Atl)-l
120 FOR Y=(BASE At2) TO (SIZE At2)+(BASE At2)-1
130 Total=Total+AO(tV) "'2
140 NEl{T Y
150 NEXT X
180 Test=DET(A)/SQ R(Total)
170 IF Test{.OOl THEN Ill_con

Note that line 170 can be changed depending on how much accuracy you require for your
particular application. If we execute this program for the ill-conditioned matrix discussed earlier,
the value of " Test" comes out to 9 .527E-19. Since this value is much smaller than .001, this
test would have correctly identified A as an ill-conditioned matrix.

Another technique for detecting ill-conditioned matrices is to multiply the matrix by its inverse
and compare the product with the identity matrix. Again, you can demand as much accuracy as
necessary. In the program below, we look for any elements in the product that differ by more
than .001 from the identity matrix.

100 MAT I=IDN
110 MAT A_inv=INl.J(A)
120 MAT Product=A_in t.!*A
130 MAT Differ=,< Product-I)
140 MAT COfrlPare=Differ>(.001)
150 MAT COMParel=Differ{(-.OOl)
180 IF SUM(CoMPare)+SUM(CoMParel»O THEN Ill_con

116 Numeric Computation

Applying this algorithm to our ill-conditioned matrix, we get:

A*A-inv

[J J ~J J]
-2 -.5 - 8 - 16

As you can see, 12 of the 16 elements differ from the identity matrix by more than 1, so this test
also would have worked.

One drawback of this method is that it requires several additional matrices. If you are strapped
for memory, this method could be unsatisfactory.

A third technique is to take the inverse of the inverse and compare it to the original matrix. The
program below utilizes this method. Again, we are looking for differences greater than 0.001.

10 0 MAT A_ in!) = I Nt) (A)
120 MAT A_i nv _in v=I NV(Ainv)
130 MAT Diff er =(A_ inv_inv-A)
140 MA T C a III par e = D iff e r > (• 00 1)
150 MAT COMPare1=Differ« -. 00 1)
160 IF SUM (CoMPare)+SUM(CoMPare1 » 0 THEN I ll_con

Applying this technique to our ill-conditioned matrix, we find that all 16 elements of
A _ i n l) _ i n l) differ from A by more than .001 .

This technique will in general find more ill-conditioned matrices than the previous one. This is
because any round-off errors are exaggerated by the second inverse. By the same token, it will
occasionally detect an ill-conditioned matrix which might actually have been alright before the
second inverse.

As stated before, none of these methods alone is decisive. What it all comes down to is that the
precision of MAT INV falls off as a matrix approaches singularity. By using combinations of the
tests described above, it is possible to determine how much precision has been lost, and then
compare it to the precision actually required by your application.

116 Numeric Computation

Applying this algorithm to our ill-conditioned matrix, we get:

A*A-inv

[J J ~J J]
-2 -.5 - 8 - 16

As you can see, 12 of the 16 elements differ from the identity matrix by more than 1, so this test
also would have worked.

One drawback of this method is that it requires several additional matrices. If you are strapped
for memory, this method could be unsatisfactory.

A third technique is to take the inverse of the inverse and compare it to the original matrix. The
program below utilizes this method. Again, we are looking for differences greater than 0.001.

10 0 MAT A_ in!) = I Nt) (A)
120 MAT A_i nv _in v=I NV(Ainv)
130 MAT Diff er =(A_ inv_inv-A)
140 MA T C a III par e = D iff e r > (• 00 1)
150 MAT COMPare1=Differ« -. 00 1)
160 IF SUM (CoMPare)+SUM(CoMPare1 » 0 THEN I ll_con

Applying this technique to our ill-conditioned matrix, we find that all 16 elements of
A _ i n l) _ i n l) differ from A by more than .001 .

This technique will in general find more ill-conditioned matrices than the previous one. This is
because any round-off errors are exaggerated by the second inverse. By the same token, it will
occasionally detect an ill-conditioned matrix which might actually have been alright before the
second inverse.

As stated before, none of these methods alone is decisive. What it all comes down to is that the
precision of MAT INV falls off as a matrix approaches singularity. By using combinations of the
tests described above, it is possible to determine how much precision has been lost, and then
compare it to the precision actually required by your application.

Numeric Computation 117

Miscellaneous Matrix Functions
There are a few matrix functions that we haven't discussed yet. One of these is the transpose
function (TRN). The transpose of a matrix is derived by exchanging rows for columns and
columns for rows. If A is the matrix below,

A

[1 2 3]
456
789

then,

MAT B=TRN(A)

would result in:

B

Un]
A matrix does not have to be square to have a transpose. If A is ,

then,

MAT B=TRN(A)

would result in:

B

[i j]
The result array cannot be the same as the array being transposed. For example,

MAT A=TRN(A)

is an illegal statement and will cause an error.

The transpose function is useful for manipulating tables of data. It also has special significance
for a small set of matrices called "orthogonal" matrices. An orthogonal matrix is defined as one
whose transpose and inverse are the same.

Numeric Computation 117

Miscellaneous Matrix Functions
There are a few matrix functions that we haven't discussed yet. One of these is the transpose
function (TRN). The transpose of a matrix is derived by exchanging rows for columns and
columns for rows. If A is the matrix below,

A

[1 2 3]
456
789

then,

MAT B=TRN(A)

would result in:

B

Un]
A matrix does not have to be square to have a transpose. If A is ,

then,

MAT B=TRN(A)

would result in:

B

[i j]
The result array cannot be the same as the array being transposed. For example,

MAT A=TRN(A)

is an illegal statement and will cause an error.

The transpose function is useful for manipulating tables of data. It also has special significance
for a small set of matrices called "orthogonal" matrices. An orthogonal matrix is defined as one
whose transpose and inverse are the same.

118 Numeric Computation

Summing Rows and Columns
BASIC has two functions that return the sum of all rows and columns in an array. The totals are
stored in a vector which you must dimension beforehand. Let A be the matrix shown below.

A

[
3
41

6 18 7]

~ i~ Ii
If we execute:

10 OPTION BASE 1

20 DIM ROIAI_SUfl)(3) ,COl_SUfl)(4)

30 MAT Row_sum=RSUM(A)

40 MAT Col_sum=CSUM(A)

50 PRINT "The SUfll of rOIAIS is" jRoIAI_SUfll(*);

GO PRINT "The SUfll of Colufllns is" iCol_sUfll(*);

70 END

The system will display:

The sum of rows is 34 44 30

The sum of columns is 8 8 71 20

Using Arrays for Code Conversion
Suppose you have an input device that provides information in 8-bit ASCII code. On the other
hand, an output device in the same system uses a non-ASCII specialized 8-bit code. Examples
might include specialized instrumentation, typesetting equipment, or a multitude of other de­
vices. For each ASCII character, there is a corresponding code for the output device. There may
be some ASCII characters (such as control characters) that are not to be converted. Let us
assume that a null character (all bits set to zero) is used for those special characters. Here is how
a conversion array is set up:

1. First, an array is created with 256 elements (0 thru 255). Each element address corres­
ponds to the 8-bit INTEGER numeric equivalent of the ASCII character code. The
contents of a given array element contains the output code for the corresponding ASCII
input code. The array can be REAL or INTEGER. Usually, it is more efficient to use
INTEGER arrays for converting 16-bit or shorter codes. The array must be filled by
individual program statements (assignments or DATA and READ statements), or it can be
filled from a mass storage file . If a file is used, the data must be created by some prior
means. Fixed conversion codes can sometimes be generated by an algorithm in the
introductory part of the program that performs the conversions.

2. Input data is placed in a string variable (see Chapter 5 for string variables techniques).
Characters are then picked off, one character at a time, for conversion. Refer to BASIC
Interfacing Techniques for more information about output operations.

118 Numeric Computation

Summing Rows and Columns
BASIC has two functions that return the sum of all rows and columns in an array. The totals are
stored in a vector which you must dimension beforehand. Let A be the matrix shown below.

A

[
3
41

6 18 7]

~ i~ Ii
If we execute:

10 OPTION BASE 1

20 DIM ROIAI_SUfl)(3) ,COl_SUfl)(4)

30 MAT Row_sum=RSUM(A)

40 MAT Col_sum=CSUM(A)

50 PRINT "The SUfll of rOIAIS is" jRoIAI_SUfll(*);

GO PRINT "The SUfll of Colufllns is" iCol_sUfll(*);

70 END

The system will display:

The sum of rows is 34 44 30

The sum of columns is 8 8 71 20

Using Arrays for Code Conversion
Suppose you have an input device that provides information in 8-bit ASCII code. On the other
hand, an output device in the same system uses a non-ASCII specialized 8-bit code. Examples
might include specialized instrumentation, typesetting equipment, or a multitude of other de­
vices. For each ASCII character, there is a corresponding code for the output device. There may
be some ASCII characters (such as control characters) that are not to be converted. Let us
assume that a null character (all bits set to zero) is used for those special characters. Here is how
a conversion array is set up:

1. First, an array is created with 256 elements (0 thru 255). Each element address corres­
ponds to the 8-bit INTEGER numeric equivalent of the ASCII character code. The
contents of a given array element contains the output code for the corresponding ASCII
input code. The array can be REAL or INTEGER. Usually, it is more efficient to use
INTEGER arrays for converting 16-bit or shorter codes. The array must be filled by
individual program statements (assignments or DATA and READ statements), or it can be
filled from a mass storage file . If a file is used, the data must be created by some prior
means. Fixed conversion codes can sometimes be generated by an algorithm in the
introductory part of the program that performs the conversions.

2. Input data is placed in a string variable (see Chapter 5 for string variables techniques).
Characters are then picked off, one character at a time, for conversion. Refer to BASIC
Interfacing Techniques for more information about output operations.

Here is an example of how such an operation could be implemented:

1000
10 10
1020
1030

INTEGER Con vertI0:255)
DIM In$[80]
Source=18
Dest=22

Source device selector
Destination device selector

Initialize the conversion array here.

2470
2480
2480
2500

ENTER Source;Input$ Input line of ASCII
FOR 1=1 TO LEN l In$) Send converted b yte s

OUTPUT Dest ;CHR$IConl)ert IN UMI In$[I II]»);
NE)<T I

Numeric Computation 119

Note that the semicolon in line 2490 prevents sending a carriage-return and line-feed character
pair at the end of each output line. This is usually necessary to prevent unwanted behavior
when using ASCII strings to output non-ASCII data. This technique can be applied to arbitrary
data conversions with virtually no limitations.

It is also possible to handle code conversions automatically in OUTPUT statements with the
CONVERT options of the ASSIGN statement. See the ASSIGN Attributes discussion in BASIC
Interfacing Techniques.

For further information about the topics in this chapter, see:

1 Coonen , Jerome T. ; "An Implementation Guide to the Proposed Floating Point Standard", Computer Magazine , Jan. 1980.

2 Cody, William J . Jr. and William Waite: Software Manual for the Elementary Functions, Prentice Hall , 1980.

3 Sterbenz, Pat H.; Floating Point Computation , Prentice Hall , 1974.

4 Signum Newsletter, Oct. 1979.

Here is an example of how such an operation could be implemented:

1000
10 10
1020
1030

INTEGER Con vertI0:255)
DIM In$[80]
Source=18
Dest=22

Source device selector
Destination device selector

Initialize the conversion array here.

2470
2480
2480
2500

ENTER Source;Input$ Input line of ASCII
FOR 1=1 TO LEN l In$) Send converted b yte s

OUTPUT Dest ;CHR$IConl)ert IN UMI In$[I II]»);
NE)<T I

Numeric Computation 119

Note that the semicolon in line 2490 prevents sending a carriage-return and line-feed character
pair at the end of each output line. This is usually necessary to prevent unwanted behavior
when using ASCII strings to output non-ASCII data. This technique can be applied to arbitrary
data conversions with virtually no limitations.

It is also possible to handle code conversions automatically in OUTPUT statements with the
CONVERT options of the ASSIGN statement. See the ASSIGN Attributes discussion in BASIC
Interfacing Techniques.

For further information about the topics in this chapter, see:

1 Coonen , Jerome T. ; "An Implementation Guide to the Proposed Floating Point Standard", Computer Magazine , Jan. 1980.

2 Cody, William J . Jr. and William Waite: Software Manual for the Elementary Functions, Prentice Hall , 1980.

3 Sterbenz, Pat H.; Floating Point Computation , Prentice Hall , 1974.

4 Signum Newsletter, Oct. 1979.

120 Numeric Computation

Notes

120 Numeric Computation

Notes

String Manipulation
Chapter

5

Introduction
It is often desirable to store non-numerical information in the computer. A word, a name or a
message can be stored in the computer as a string. Any sequence of characters may be used in a
string. Quotation marks are used to delimit the beginning and ending of the string. The following
are valid string assignments.

LET A$="COMPUTER"
Fail$="The test has faile d, "
F i 1 e _ 1"1 a III e $ = " I N t,J E N TOR Y "
Test$=Fail$[5tB]
Null$=""

The left-hand side of the assignment (the variable name) is equated to the right-hand side of the
assignment (the literal) .

String variable names are identical to numeric variable names with the exception of a dollar sign ($)
appended to the end of the name.

The length of a string is the number of characters in the string. In the previous example, the length
of A$ is 8 since there are eight characters in the literal "COMPUTER". A string with length 0 (Le.,
that contains no characters) is known as a "null" string.

BASIC allows the dimensioned length of a string to range from 1 to 32 767 characters and the
current length (number of characters in the string) to range from zero to the dimensioned
length. A string of zero characters is often called a null string or an empty string.

The default dimensioned length of a string is 18 characters. The DIM, COM, and ALLOCATE
statements are used to define string lengths up to the maximum length of 32 767 characters. An
error results whenever a string variable is assigned more characters than its dimensioned length.

A string may contain any character. The only special case is when a quotation mark needs to be
in a string. Two quotes, in succession, will embed a quote within a string.

10 Ouote$="The tillle is ""NOW"","
20 PRINT Ouote$
30 END

Produces: The tillle is "NOW" ,

121

String Manipulation
Chapter

5

Introduction
It is often desirable to store non-numerical information in the computer. A word, a name or a
message can be stored in the computer as a string. Any sequence of characters may be used in a
string. Quotation marks are used to delimit the beginning and ending of the string. The following
are valid string assignments.

LET A$="COMPUTER"
Fail$="The test has faile d, "
F i 1 e _ 1"1 a III e $ = " I N t,J E N TOR Y "
Test$=Fail$[5tB]
Null$=""

The left-hand side of the assignment (the variable name) is equated to the right-hand side of the
assignment (the literal) .

String variable names are identical to numeric variable names with the exception of a dollar sign ($)
appended to the end of the name.

The length of a string is the number of characters in the string. In the previous example, the length
of A$ is 8 since there are eight characters in the literal "COMPUTER". A string with length 0 (Le.,
that contains no characters) is known as a "null" string.

BASIC allows the dimensioned length of a string to range from 1 to 32 767 characters and the
current length (number of characters in the string) to range from zero to the dimensioned
length. A string of zero characters is often called a null string or an empty string.

The default dimensioned length of a string is 18 characters. The DIM, COM, and ALLOCATE
statements are used to define string lengths up to the maximum length of 32 767 characters. An
error results whenever a string variable is assigned more characters than its dimensioned length.

A string may contain any character. The only special case is when a quotation mark needs to be
in a string. Two quotes, in succession, will embed a quote within a string.

10 Ouote$="The tillle is ""NOW"","
20 PRINT Ouote$
30 END

Produces: The tillle is "NOW" ,

121

122 String Manipulation

String Storage
Strings whose length exceeds the default length of 18 characters must have space reserved
before assignment. The following statements may be used.

• DIM L 0 1"1 g $ [400 J Reserve space for a 400 character string.

• COM Lin e $ [B 0 J Reserve an 80 character common variable.

• ALLOCATE Sea r c h $[Len H h J Dynamic length allocation.

The maximum length of any string must not exceed 32 767 characters. A string may also be
dimensioned to a length less than the default length of 18 characters.

The DIM statement reserves storage for strings.

DIM Part_1HlfTlber$[10J ,Decription$[B4J ,Cost$[5J

The COM statement defines common variables that can be used by subprograms.

COM NafTle$[40J ,Phone$[14J

The ALLOCATE statement allows dynamic allocation of string storage. When the maximum
length of a string cannot be determined ahead of time, the ALLOCATE statement can be used
to reserve enough memory space for the string without wasting space.

ALLOCATE Line$[LengthJ

Strings that have been dimensioned but not assigned return the null string.

String Arrays
Large amounts of text are easily handled in arrays. For example:

DIM File$(1000)[BOJ

This statement reserves storage for 1000 lines of 80 characters per line. Do not confuse the
brackets, which define the length of the string, with the parentheses which define the number of
strings in the array. Each string in the array can be accessed by an index. For example:

PRINT File$(271

Prints the 27th element in the array. Since each character in a string uses one byte of memory
and each string in the array requires as many bytes as the length of the string, string arrays can
quickly use a lot of memory.

A program saved on a disc as an ASCII type file can be entered into a string array, manipulated,
and written back out to disc.

122 String Manipulation

String Storage
Strings whose length exceeds the default length of 18 characters must have space reserved
before assignment. The following statements may be used.

• DIM L 0 1"1 g $ [400 J Reserve space for a 400 character string.

• COM Lin e $ [B 0 J Reserve an 80 character common variable.

• ALLOCATE Sea r c h $[Len H h J Dynamic length allocation.

The maximum length of any string must not exceed 32 767 characters. A string may also be
dimensioned to a length less than the default length of 18 characters.

The DIM statement reserves storage for strings.

DIM Part_1HlfTlber$[10J ,Decription$[B4J ,Cost$[5J

The COM statement defines common variables that can be used by subprograms.

COM NafTle$[40J ,Phone$[14J

The ALLOCATE statement allows dynamic allocation of string storage. When the maximum
length of a string cannot be determined ahead of time, the ALLOCATE statement can be used
to reserve enough memory space for the string without wasting space.

ALLOCATE Line$[LengthJ

Strings that have been dimensioned but not assigned return the null string.

String Arrays
Large amounts of text are easily handled in arrays. For example:

DIM File$(1000)[BOJ

This statement reserves storage for 1000 lines of 80 characters per line. Do not confuse the
brackets, which define the length of the string, with the parentheses which define the number of
strings in the array. Each string in the array can be accessed by an index. For example:

PRINT File$(271

Prints the 27th element in the array. Since each character in a string uses one byte of memory
and each string in the array requires as many bytes as the length of the string, string arrays can
quickly use a lot of memory.

A program saved on a disc as an ASCII type file can be entered into a string array, manipulated,
and written back out to disc.

String Manipulation 123

Evaluating Expressions Containing Strings
Evaluation Hierarchy
Evaluation of string expressions is simpler than evaluation of numerical expressions. The three
allowed operations are extracting a substring, concatenation, and parenthesization. The evalua­
tion hierarchy is presented in the following table.

Order
High

Low

String Concatenation

Operation
Parentheses
Substrings and Functions
Concatenation

Two separate strings are joined together by using the concatenation operator "~:" . The follow­
ing program combines two strings into one.

10 One$="WRIST"
20 TIAlo$="WATCH"
30 Concat$=One$&Two$
40 PRINT One$,Two$,Concat$
50 END

Prints:

WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second string to the end of the first string.
The result is assigned to a third string. An error results if the concatenation operation produces a
string that is longer than the dimensioned length of the string being assigned.

Relational Operations
Most of the relational operators used for numeric expression evaluation can also be used for the
evaluation of strings.

The following examples show some of the possible tests.

"ABC" = "ABC"
"ABC" = " ABC"

"ABC" < "AbC"
II G II ':. "7"
11211 <: II 12 II

"long" <= "longer"
"RE-SAt,JE" >= "RESAI,JE"

True
False

True
False
False

True
False

Any of these relational operators may be used: <, >, < =, > = , = , < > .

Testing begins with the first character in the string and proceeds, character by character, until
the relationship has been determined.

String Manipulation 123

Evaluating Expressions Containing Strings
Evaluation Hierarchy
Evaluation of string expressions is simpler than evaluation of numerical expressions. The three
allowed operations are extracting a substring, concatenation, and parenthesization. The evalua­
tion hierarchy is presented in the following table.

Order
High

Low

String Concatenation

Operation
Parentheses
Substrings and Functions
Concatenation

Two separate strings are joined together by using the concatenation operator "~:" . The follow­
ing program combines two strings into one.

10 One$="WRIST"
20 TIAlo$="WATCH"
30 Concat$=One$&Two$
40 PRINT One$,Two$,Concat$
50 END

Prints:

WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second string to the end of the first string.
The result is assigned to a third string. An error results if the concatenation operation produces a
string that is longer than the dimensioned length of the string being assigned.

Relational Operations
Most of the relational operators used for numeric expression evaluation can also be used for the
evaluation of strings.

The following examples show some of the possible tests.

"ABC" = "ABC"
"ABC" = " ABC"

"ABC" < "AbC"
II G II ':. "7"
11211 <: II 12 II

"long" <= "longer"
"RE-SAt,JE" >= "RESAI,JE"

True
False

True
False
False

True
False

Any of these relational operators may be used: <, >, < =, > = , = , < > .

Testing begins with the first character in the string and proceeds, character by character, until
the relationship has been determined.

124 String Manipulation

The outcome of a relational test is based on the characters in the strings not on the length of the
strings. For example:

"BRONTOSAURUS " <: "CAT"

This relationship is true since the letter "C" is higher in ASCII value than the letter " B" .

Note
When LEX is loaded, the outcome of a string comparison is based on
the character's lexical value rather than the character's ASCII value. See
the LEXICAL ORDER IS statement later in this chapter for more details.

Substrings
A subscript can be appended to a string variable name to define a substring. A substring may
comprise all or just part of the original string. Brackets enclose the subscript which can be a
constant, variable, or numeric expression. For instance:

String$[4] Specifies a substring starting with the fourth character of the ori­
ginal string.

The subscript must be in the range: 1 to the dimensioned length of the string plus 1. Note that
the brackets now indicate the substring's starting position instead of the total length of the string
as when reserving storage for a string.

Subscripted strings may appear on either side of the assignment.

Single-Subscript Substrings
When a substring is specified with only one numerical expression, enclosed with brackets, the
expression is evaluated and rounded to an integer indicating the position of the first character of
the substring within the string.

The following examples use the variable A$ which has been assigned the literal "DIC­
TIONARY".

Statement

PRINT A$
PRINT A$[O]
PRINT A$[l]
PRINT A$[5]
PRINT A$[lO]
PRINT A$[11]
PRINT A$[12]

Output

DICTIONARY
(error)
DICTIONARY
IONARY
Y
(null string)
(error)

When a single subscript is used it specifies the starting character position, within the string, of
the substring. An error results when the subscript evaluates to zero or greater than the current
length of the string plus 1. A subscript that evaluates to 1 plus the length of the string returns the
null string (" ,,) but does not produce an error.

124 String Manipulation

The outcome of a relational test is based on the characters in the strings not on the length of the
strings. For example:

"BRONTOSAURUS " <: "CAT"

This relationship is true since the letter "C" is higher in ASCII value than the letter " B" .

Note
When LEX is loaded, the outcome of a string comparison is based on
the character's lexical value rather than the character's ASCII value. See
the LEXICAL ORDER IS statement later in this chapter for more details.

Substrings
A subscript can be appended to a string variable name to define a substring. A substring may
comprise all or just part of the original string. Brackets enclose the subscript which can be a
constant, variable, or numeric expression. For instance:

String$[4] Specifies a substring starting with the fourth character of the ori­
ginal string.

The subscript must be in the range: 1 to the dimensioned length of the string plus 1. Note that
the brackets now indicate the substring's starting position instead of the total length of the string
as when reserving storage for a string.

Subscripted strings may appear on either side of the assignment.

Single-Subscript Substrings
When a substring is specified with only one numerical expression, enclosed with brackets, the
expression is evaluated and rounded to an integer indicating the position of the first character of
the substring within the string.

The following examples use the variable A$ which has been assigned the literal "DIC­
TIONARY".

Statement

PRINT A$
PRINT A$[O]
PRINT A$[l]
PRINT A$[5]
PRINT A$[lO]
PRINT A$[11]
PRINT A$[12]

Output

DICTIONARY
(error)
DICTIONARY
IONARY
Y
(null string)
(error)

When a single subscript is used it specifies the starting character position, within the string, of
the substring. An error results when the subscript evaluates to zero or greater than the current
length of the string plus 1. A subscript that evaluates to 1 plus the length of the string returns the
null string (" ,,) but does not produce an error.

String Manipulation 125

Double-Subscript Substrings
A substring may have two subscripts, within brackets, to specify a range of characters. When a
comma is used to separate the items within brackets, the first subscript marks the beginning
position of the substring, while the second subscript is the ending position of the substring. The
form is: A$[Start,End]

"JABBERWOCKY" [4,6] Specifies the substring: "BER"

When a semicolon is used in place of a comma, the first subscript again marks the beginning
position of the substring, while the second subscript is now the length of the substring. The form
is: A$[Start;Length]

"JABBERWOCKY" [4; 6] Specifies the substring: "BERWOC"

In the following examples the variable B$ has been assigned to the literal "ENLIGHTEN­
MENT":

Statement

PRINT B$
PRINT B$[1,13]
PRINT B$[1 ;13]
PRINT B$[1 ,9]
PRINT B$[1;9]
PRINT B$[3,7]
PRINT B$[3;7]
PRINT B$[13,13]
PRINT B$[13;1]
PRINT B$[13,26]
PRINT B$[13;13]
PRINT B$[14;1]

Output

ENLIGHTENMENT
ENLIGHTENMENT
ENLIGHTENMENT
ENLIGHTEN
ENLIGHTEN
LIGHT
LIGHTEN
N
N
(error)
(error)
(null string)

An error results if the second subscript in a comma separated pair is greater than the current
string length plus 1 or if the sum of the subscripts in a semicolon separated pair is greater than
the current string length plus 1.

Specifying the position just past the end of a string returns the null string.

Special Considerations
All substring operations allow a subscript to specify the first position past the end of a string.
This allows strings to be concatenated without the concatenation operator. For instance:

10 A$="CONCAT"
2 0 A$[7]="ENATION"
30 PRINT A$
40 END

Produces: CONCATENAT I ON

String Manipulation 125

Double-Subscript Substrings
A substring may have two subscripts, within brackets, to specify a range of characters. When a
comma is used to separate the items within brackets, the first subscript marks the beginning
position of the substring, while the second subscript is the ending position of the substring. The
form is: A$[Start,End]

"JABBERWOCKY" [4,6] Specifies the substring: "BER"

When a semicolon is used in place of a comma, the first subscript again marks the beginning
position of the substring, while the second subscript is now the length of the substring. The form
is: A$[Start;Length]

"JABBERWOCKY" [4; 6] Specifies the substring: "BERWOC"

In the following examples the variable B$ has been assigned to the literal "ENLIGHTEN­
MENT":

Statement

PRINT B$
PRINT B$[1,13]
PRINT B$[1 ;13]
PRINT B$[1 ,9]
PRINT B$[1;9]
PRINT B$[3,7]
PRINT B$[3;7]
PRINT B$[13,13]
PRINT B$[13;1]
PRINT B$[13,26]
PRINT B$[13;13]
PRINT B$[14;1]

Output

ENLIGHTENMENT
ENLIGHTENMENT
ENLIGHTENMENT
ENLIGHTEN
ENLIGHTEN
LIGHT
LIGHTEN
N
N
(error)
(error)
(null string)

An error results if the second subscript in a comma separated pair is greater than the current
string length plus 1 or if the sum of the subscripts in a semicolon separated pair is greater than
the current string length plus 1.

Specifying the position just past the end of a string returns the null string.

Special Considerations
All substring operations allow a subscript to specify the first position past the end of a string.
This allows strings to be concatenated without the concatenation operator. For instance:

10 A$="CONCAT"
2 0 A$[7]="ENATION"
30 PRINT A$
40 END

Produces: CONCATENAT I ON

126 String Manipulation

The substring assignment is only valid if the substring already has characters up to the specified
position. Access beyond the first position past the end of a string results in the error:

ERROR 18 Strin~ oufl. or substrin~ err

A good practice is to dimension all strings including those shorter than the default length of
eighteen characters.

Some very interesting assignments can be attempted. For example, a 14-character string can be
assigned to a 3-character substring.

10 Big$="Too big to fit"
20 Small$="Little string"
30
lIO S,.lall$[1,3J=Big$
50
GO PRINT SmallS
70 END

Prints: Too tIe 5 t r i n ~

When a substring assignment specifies fewer characters than are available, any extra trailing
characters are truncated.

The alternate assignment is shown in the next example. Here a 4-character string is assigned to
a 8-character substring.

10 Big$="A large string"
20 Small$="tiny"
30 !
lIO Big$[3,10J=Small$
50
GO DISP Big$
70 END

Prints: A tin)' r i n ~

Since the subscripted length of the substring is greater than the length of the replacement string,
enough blanks (ASCII spaces) are added to the end of the replacement string to fill the entire
specified substring.

126 String Manipulation

The substring assignment is only valid if the substring already has characters up to the specified
position. Access beyond the first position past the end of a string results in the error:

ERROR 18 Strin~ oufl. or substrin~ err

A good practice is to dimension all strings including those shorter than the default length of
eighteen characters.

Some very interesting assignments can be attempted. For example, a 14-character string can be
assigned to a 3-character substring.

10 Big$="Too big to fit"
20 Small$="Little string"
30
lIO S,.lall$[1,3J=Big$
50
GO PRINT SmallS
70 END

Prints: Too tIe 5 t r i n ~

When a substring assignment specifies fewer characters than are available, any extra trailing
characters are truncated.

The alternate assignment is shown in the next example. Here a 4-character string is assigned to
a 8-character substring.

10 Big$="A large string"
20 Small$="tiny"
30 !
lIO Big$[3,10J=Small$
50
GO DISP Big$
70 END

Prints: A tin)' r i n ~

Since the subscripted length of the substring is greater than the length of the replacement string,
enough blanks (ASCII spaces) are added to the end of the replacement string to fill the entire
specified substring.

String Manipulation 127

String-Related Functions
Several intrinsic functions are available in BASIC for the manipulation of strings. These func­
tions include conversions between string and numeric values.

String Length
The "length" of a string is the number of characters in the string. The LEN function returns an
integer whose value is equal to the string length. The range is from 0 (null string) thru 32 767.
For example:

PRINT LEN("HELP ME")

Prints: 7

The following example program prints the length of a string that is typed on the keyboard.

10 DIM InS[160]
20 INPUT InS
30 Length=LENCInS)
a 0 0 I S P Len 9 t h ; II c h a rae t e r sin II II II ; I 1"1 $; II II II II

50 END

Try finding the length of a string containing only spaces. When the INPUT statement is used,
any leading or trailing spaces are removed from items typed on the keyboard. Change INPUT
to LlNPUT in line 20 to allow leading and trailing spaces to be entered.

Substring Position
The "position" of a substring within a string is determined by the POS function. The function
returns the value of the starting position of the substring or zero if the entire substring was not
found. For instance:

PRINT POS("DISAPPEARANCE" ,"APPEAR")

Prints: a

The following example prints the pOSitions of substrings found within a string.

10 DIM SentenceS[L10] tWO rdSC 1 :6) [8]
20 DATA CAT.ON.A.HOT.TIN.NATION
30 READ WordSC.)
L10 SentenceS="WHERE IS THE CAT IN CONCATENATION"
50
60 FOR 1=1 TO 6
70 Position=POSCSentenceS.WordSCI)) I (- POS function
80 IF Position THEN
90 PRINT SentenceS
100 PRINT TABCPosition) ;WordSCI) ;TAB(35) ;"is at ";Position
110 PRINT
120 ELSE
130 PRINT "''';WordSCI) ;". was not found"
lL10 PRINT
150 END IF
160 NE>(T I
170 END

If POS returns a non-zero value, the entire substring occurs in the first string and the value
specifies the starting position of the substring.

String Manipulation 127

String-Related Functions
Several intrinsic functions are available in BASIC for the manipulation of strings. These func­
tions include conversions between string and numeric values.

String Length
The "length" of a string is the number of characters in the string. The LEN function returns an
integer whose value is equal to the string length. The range is from 0 (null string) thru 32 767.
For example:

PRINT LEN("HELP ME")

Prints: 7

The following example program prints the length of a string that is typed on the keyboard.

10 DIM InS[160]
20 INPUT InS
30 Length=LENCInS)
a 0 0 I S P Len 9 t h ; II c h a rae t e r sin II II II ; I 1"1 $; II II II II

50 END

Try finding the length of a string containing only spaces. When the INPUT statement is used,
any leading or trailing spaces are removed from items typed on the keyboard. Change INPUT
to LlNPUT in line 20 to allow leading and trailing spaces to be entered.

Substring Position
The "position" of a substring within a string is determined by the POS function. The function
returns the value of the starting position of the substring or zero if the entire substring was not
found. For instance:

PRINT POS("DISAPPEARANCE" ,"APPEAR")

Prints: a

The following example prints the pOSitions of substrings found within a string.

10 DIM SentenceS[L10] tWO rdSC 1 :6) [8]
20 DATA CAT.ON.A.HOT.TIN.NATION
30 READ WordSC.)
L10 SentenceS="WHERE IS THE CAT IN CONCATENATION"
50
60 FOR 1=1 TO 6
70 Position=POSCSentenceS.WordSCI)) I (- POS function
80 IF Position THEN
90 PRINT SentenceS
100 PRINT TABCPosition) ;WordSCI) ;TAB(35) ;"is at ";Position
110 PRINT
120 ELSE
130 PRINT "''';WordSCI) ;". was not found"
lL10 PRINT
150 END IF
160 NE>(T I
170 END

If POS returns a non-zero value, the entire substring occurs in the first string and the value
specifies the starting position of the substring.

128 String Manipulation

Note that pas returns the first occurrence of a substring within a string. By adding a subscript, and
indexing through the string, the POS function can be used to find all occurrences of a substring. The
following program uses this technique to extract each word from a sentence.

10 DIM A$[SOJ
20 A$="I f~no'" }'ou thin f~ }' OU understand '.,hat I said, but YOU don ' t."
30 INTEGER Scan,Found
1I 0
50
80
7 0
SO
90
100
110
120
130
1110
150

Scan=l
PRINT A$
REPEAT

Found=PDS(A$[ScanJ," ")
IF Found THEN

PRINT A$[Scan ,Scan+Found-l J
Scan=Scan+Found

ELSE
PRINT A$[Scan J

END IF
UNTIL NOT Found
END

! Current substrin. position

! Find the ne x t ASCII space

! Prin t the ,.'ord
I Adjust "Scan" past last ",atch

! Prin t last word in strin.

As each occurrence is found, the new subscript specifies the remaining portion of the string to
be searched.

String-to-Numeric Conversion
The VAL function converts a string expression into a numeric value. The string must evaluate to
a valid number or error 32 will result.

ERROR 32 Strin~ is not a valid n UMber

The number returned by the VAL function will be converted to and from scientific notation
when necessary. For example:

PR I NT I.JAL (" 123 t LlE3")

Prints: 12 3L100

The following program converts a fraction into its equivalent decimal value.

10 INPUT "Enter a fraction (i.e.3 / 1I)",Fraction$
2 0
30 ON ERROR GOTO Err
1I0 Numerator= VAL(Fraction$)
50
80 IF POS(Fraction$,"/") THEN
70 Delimiter=POS(Fraction$," / ")
SO Denominator=VAL(Fraction$[Delimiter+1J)
90 ELSE
100 PRINT "In valid fraction "
110 GOTO Quit
120 END IF
130 !
1110 PRINT Fraction$;" = " ; Numerator / Denominator
150 GOTO Qui t
180 Err : PRINT "ERROR Invalid fraction"
170 OFF ERROR
lS0 Quit: END

Similar techniques can be used for converting: feet and inches to decimal feet or hours and
minutes to decimal hours.

128 String Manipulation

Note that pas returns the first occurrence of a substring within a string. By adding a subscript, and
indexing through the string, the POS function can be used to find all occurrences of a substring. The
following program uses this technique to extract each word from a sentence.

10 DIM A$[SOJ
20 A$="I f~no'" }'ou thin f~ }' OU understand '.,hat I said, but YOU don ' t."
30 INTEGER Scan,Found
1I 0
50
80
7 0
SO
90
100
110
120
130
1110
150

Scan=l
PRINT A$
REPEAT

Found=PDS(A$[ScanJ," ")
IF Found THEN

PRINT A$[Scan ,Scan+Found-l J
Scan=Scan+Found

ELSE
PRINT A$[Scan J

END IF
UNTIL NOT Found
END

! Current substrin. position

! Find the ne x t ASCII space

! Prin t the ,.'ord
I Adjust "Scan" past last ",atch

! Prin t last word in strin.

As each occurrence is found, the new subscript specifies the remaining portion of the string to
be searched.

String-to-Numeric Conversion
The VAL function converts a string expression into a numeric value. The string must evaluate to
a valid number or error 32 will result.

ERROR 32 Strin~ is not a valid n UMber

The number returned by the VAL function will be converted to and from scientific notation
when necessary. For example:

PR I NT I.JAL (" 123 t LlE3")

Prints: 12 3L100

The following program converts a fraction into its equivalent decimal value.

10 INPUT "Enter a fraction (i.e.3 / 1I)",Fraction$
2 0
30 ON ERROR GOTO Err
1I0 Numerator= VAL(Fraction$)
50
80 IF POS(Fraction$,"/") THEN
70 Delimiter=POS(Fraction$," / ")
SO Denominator=VAL(Fraction$[Delimiter+1J)
90 ELSE
100 PRINT "In valid fraction "
110 GOTO Quit
120 END IF
130 !
1110 PRINT Fraction$;" = " ; Numerator / Denominator
150 GOTO Qui t
180 Err : PRINT "ERROR Invalid fraction"
170 OFF ERROR
lS0 Quit: END

Similar techniques can be used for converting: feet and inches to decimal feet or hours and
minutes to decimal hours.

String Manipulation 129

The NUM function converts a single character into its equivalent numeric value. The number
returned is in the range: 0 to 255. For example:

PRINT NUM(" A")

Prints: 85

The next program prints the value of each character in a name.

10 INPUT "Ente r your fi rst nafrle" , Nafrle$
20
30 PRINT Name$
40 PRINT
50 FOR 1=1 TO LENCName$)
GO
70
80
90

PRINT NUMCName$[IJ1;
NE~<T I
PRINT
END

~
! Print va lue of each character

Entering the name: JOHN will produce the following.

74 78 72 78

Numeric-to-String Conversion
The VAL$ function converts the value of a numeric expression into a character string. The
string contains the same characters (digits) that appear when the numeric variable is printed.
For example:

PRINT 1000000,VAL$(1000000)

Prints: 1. E +8 1.E+8

The next program converts a number into a string so the POS function can be used to seperate
the mantissa from the exponent.

10 CONTROL 2,0;1 I CAPS LOCK ON
20 INPUT "Enter a number r,rith an exponent" ,Nufrlb er
30 !
40 Number$=VAL$CNumber)
50
GO PRINT Number$
70 E=poSCNumber$,"E")
80 IF E THEN
90 PRINT "Mantissa is" ,Nufrlbe r$[1 ;E -1J
100 PRINT "Exponent is" ,NUfllber$[E+1J
110 ELSE
120 PRINT "No e x ponent"
130 END IF
140 END

The CHR$ function converts a number into an ASCII character. The number can be of type
INTEGER or REAL since the value is rounded, and a modulo 255 is performed. For example:

PRINT CHR$(87) iCHR$(88) iCHR$(88)

Prints: abc

String Manipulation 129

The NUM function converts a single character into its equivalent numeric value. The number
returned is in the range: 0 to 255. For example:

PRINT NUM(" A")

Prints: 85

The next program prints the value of each character in a name.

10 INPUT "Ente r your fi rst nafrle" , Nafrle$
20
30 PRINT Name$
40 PRINT
50 FOR 1=1 TO LENCName$)
GO
70
80
90

PRINT NUMCName$[IJ1;
NE~<T I
PRINT
END

~
! Print va lue of each character

Entering the name: JOHN will produce the following.

74 78 72 78

Numeric-to-String Conversion
The VAL$ function converts the value of a numeric expression into a character string. The
string contains the same characters (digits) that appear when the numeric variable is printed.
For example:

PRINT 1000000,VAL$(1000000)

Prints: 1. E +8 1.E+8

The next program converts a number into a string so the POS function can be used to seperate
the mantissa from the exponent.

10 CONTROL 2,0;1 I CAPS LOCK ON
20 INPUT "Enter a number r,rith an exponent" ,Nufrlb er
30 !
40 Number$=VAL$CNumber)
50
GO PRINT Number$
70 E=poSCNumber$,"E")
80 IF E THEN
90 PRINT "Mantissa is" ,Nufrlbe r$[1 ;E -1J
100 PRINT "Exponent is" ,NUfllber$[E+1J
110 ELSE
120 PRINT "No e x ponent"
130 END IF
140 END

The CHR$ function converts a number into an ASCII character. The number can be of type
INTEGER or REAL since the value is rounded, and a modulo 255 is performed. For example:

PRINT CHR$(87) iCHR$(88) iCHR$(88)

Prints: abc

130 String Manipulation

The next program prints the values in the data statement as characters.

10 PRINT CHR$(12) ! CLEAR SCREEN
PRINT CHR$(7) ! RING THE BELL
!

20
30
40
50
GO
70
80
90
100
110

DATA 34.130,89.111.117,32.103.111.11G,32.105.11G,33.128,34
INTEGER Nll:15)
READ NI*)
FOR 1=1 TO 15

PRINT CHR$INII)) j
NE>(T I
PRINT CHR$(7)
END

CRT Character Set
The following program prints the character set on the screen of the CRT.

10 I PrograM : CRT Character Set.
20
30 PRINT CHR$(12) j"CRT Character Set"
40 STATUS 1,9jLine_length ! 50 or 80 ColuMn
50 Left=Line_length / 2-1G
GO
70 FOR 1=0 TO 255
80 Col=I MOD lG*2+Left
90 Row=I DIU lG+3
100 IF Col=Left THEN
110 PRINT TAB XYILeft-5,Row) j
120 PRINT USING "3D" j I
130 END IF
140 PRINT TAB)-~ YICol ,Ro'A') j
150 CONTROL 1,4jl I Display Functions on
lGO PRINT CHR$II) j I PRINT the Character
170 CONTROL 1,4jO ! Display Functions off
180 NEXT I
190 PRINT
200 1=127
210 ON KNOB .08 GOSUB Change
220 DISP USING "5A,5D,){,2A,B,B"j"ASCII",I,"=",128,I
230 GOTO 220
240 Change:
250
2GO
270
280 END

I = I -KN05)-(f 1 0
IF 1<0 THEN 1=0
IF 1 >2 55 THEN 1=255
RETURN

ASCII character values from 128 to 159 are treated differently by different systems. Refer to the
section "The Extended Character Set" found later in this chapter.

130 String Manipulation

The next program prints the values in the data statement as characters.

10 PRINT CHR$(12) ! CLEAR SCREEN
PRINT CHR$(7) ! RING THE BELL
!

20
30
40
50
GO
70
80
90
100
110

DATA 34.130,89.111.117,32.103.111.11G,32.105.11G,33.128,34
INTEGER Nll:15)
READ NI*)
FOR 1=1 TO 15

PRINT CHR$INII)) j
NE>(T I
PRINT CHR$(7)
END

CRT Character Set
The following program prints the character set on the screen of the CRT.

10 I PrograM : CRT Character Set.
20
30 PRINT CHR$(12) j"CRT Character Set"
40 STATUS 1,9jLine_length ! 50 or 80 ColuMn
50 Left=Line_length / 2-1G
GO
70 FOR 1=0 TO 255
80 Col=I MOD lG*2+Left
90 Row=I DIU lG+3
100 IF Col=Left THEN
110 PRINT TAB XYILeft-5,Row) j
120 PRINT USING "3D" j I
130 END IF
140 PRINT TAB)-~ YICol ,Ro'A') j
150 CONTROL 1,4jl I Display Functions on
lGO PRINT CHR$II) j I PRINT the Character
170 CONTROL 1,4jO ! Display Functions off
180 NEXT I
190 PRINT
200 1=127
210 ON KNOB .08 GOSUB Change
220 DISP USING "5A,5D,){,2A,B,B"j"ASCII",I,"=",128,I
230 GOTO 220
240 Change:
250
2GO
270
280 END

I = I -KN05)-(f 1 0
IF 1<0 THEN 1=0
IF 1 >2 55 THEN 1=255
RETURN

ASCII character values from 128 to 159 are treated differently by different systems. Refer to the
section "The Extended Character Set" found later in this chapter.

String Manipulation 131

String Functions

String Reverse
The REV$ function returns a string created by reversing the sequence of characters in the given
string.

PRINT REl.)$("Snacf, cans")

Prints: s n a c f, can S

A common use for the REV$ function is to find the last occurrence of an item in a string.

10 DIM List$[30l
20 List$="3.22 4.33 1.10 8.55 12.20 1.77"
30 Len.th=LENIList$)
40 Last_space=PDSIREI,i$IList$)."") I "SPACE" is delirTliter
50 DISP "The last iteM is:";List$[I+Len.th-Last_spacel
GO END

Displays: The 1 as tit e III is: 1. 77

String Repeat
The RPT$ function returns a string created by repeating the specified string, a given number of
times.

PRINT RPT$("* *" ,10)

Prin~: * ** ** ** ** ** ** ** ** ** *

Here is a short program that uses RPT$ to create an image for a formatted print statement.

10 IterTls=7
20 DATA 50.800.2.444.37.2001.32768
30 ALLOCATE Arravll:IteMs)
40 READ Arrayl*)
50 FOR 1=1 TO IteMs
GO Di.its=INT(I+LGTIArrayII»)
70 IF Di.its>MaKdi.its THEN Maxdi.its=Di.its
80 NE)<T I
80 FOrfTl$=")-(){."&,RPT$("D" .Maxdi.its)&,".DD"
100 PRINT "Usin. the irTla.e: ";ForrTI$
110 PRINT USING ForM$;Arrayl*)
120 END

Trimming a String
The TRIM$ function returns a string with all leading and trailing blanks (ASCII spaces) re­
moved.

PRINT "*" iTRIM$ (" 1. 23 II) ; 11 *"

Prints: * 1 • 23*

String Manipulation 131

String Functions

String Reverse
The REV$ function returns a string created by reversing the sequence of characters in the given
string.

PRINT REl.)$("Snacf, cans")

Prints: s n a c f, can S

A common use for the REV$ function is to find the last occurrence of an item in a string.

10 DIM List$[30l
20 List$="3.22 4.33 1.10 8.55 12.20 1.77"
30 Len.th=LENIList$)
40 Last_space=PDSIREI,i$IList$)."") I "SPACE" is delirTliter
50 DISP "The last iteM is:";List$[I+Len.th-Last_spacel
GO END

Displays: The 1 as tit e III is: 1. 77

String Repeat
The RPT$ function returns a string created by repeating the specified string, a given number of
times.

PRINT RPT$("* *" ,10)

Prin~: * ** ** ** ** ** ** ** ** ** *

Here is a short program that uses RPT$ to create an image for a formatted print statement.

10 IterTls=7
20 DATA 50.800.2.444.37.2001.32768
30 ALLOCATE Arravll:IteMs)
40 READ Arrayl*)
50 FOR 1=1 TO IteMs
GO Di.its=INT(I+LGTIArrayII»)
70 IF Di.its>MaKdi.its THEN Maxdi.its=Di.its
80 NE)<T I
80 FOrfTl$=")-(){."&,RPT$("D" .Maxdi.its)&,".DD"
100 PRINT "Usin. the irTla.e: ";ForrTI$
110 PRINT USING ForM$;Arrayl*)
120 END

Trimming a String
The TRIM$ function returns a string with all leading and trailing blanks (ASCII spaces) re­
moved.

PRINT "*" iTRIM$ (" 1. 23 II) ; 11 *"

Prints: * 1 • 23*

132 String Manipulation

TRIM$ is often used to extract fields from data statements or keyboard input.

10 INPUT "Enter)' our fu ll naf,le" , Naf,le$
20 First$=TRIM$(Naf,le$[l,POS(Naflle$," ")])
30 Last$=TRIM$(Naflle$[l+LEN(Naf,le$)-POS(REI,f$(Naflle$)," ")])
ao PRINT Naflle$,LEN(Naflle$)
50 PRINT Last$,LEN(Last$)
60 PRINT First$,LEN(First$)
70 END

Note that the INPUT statement trims leading and trailing blanks from whatever is typed. If you
need to enter leading or trailing spaces, use the LINPUT statement.

Case Conversion
The case conversion functions , UPC$ and LWC$, return strings with all characters converted to
the proper case. UPC$ converts all lowercase characters to their corresponding uppercase
characters and LWC$ converts any uppercase characters to their corresponding lowercase
characters. Roman Extension characters will be converted according to the current lexical
order. See the LEXICAL ORDER IS statement later in this chapter for the case conversion
listings.

10 DIM Word$[160]
20 LINPU T "Ente r a fe',' characte rs" , Wo rd$
30 PRIN T
ao PRINT "You t)' ped: "jWo rd$
50 PRINT "Uppercase: "jUPC$(Word$)
60 PRINT " Lol,ler case: "jL WC $(Word$)
70 END

A more general character replacement method is obtained by using a buffer that was assigned
an indexed conversion. Indexed conversion uses the incoming character's ASCII value as an
index into a string of characters and returns the character in that position. In the following
program, the conversion string is created in lines 30 and 50. The conversion string specifies all
lowercase characters are to be replaced by their corresponding uppercase character.

10
20

DIM Ci phe r$[256] ,A$[SO]
FOR I=l TO 255

30 Cipher$=Cipher$&UPC$(CHR$(I))
ao NE){T I
50 Ciph er$=Cipher$&UPC$(CHR$(O))

! Create conversion string

60 ASSIGN @F TO BUFFER [160]jCONVERT OUT BY INDEX Cipher$
70 LOOP
SO INPUT A$
90 OUTPUT @FjA$ I Conversion occurs
100 ENTER @FjA$
110 PRINT A$
120 END LOOP
130 END

132 String Manipulation

TRIM$ is often used to extract fields from data statements or keyboard input.

10 INPUT "Enter)' our fu ll naf,le" , Naf,le$
20 First$=TRIM$(Naf,le$[l,POS(Naflle$," ")])
30 Last$=TRIM$(Naflle$[l+LEN(Naf,le$)-POS(REI,f$(Naflle$)," ")])
ao PRINT Naflle$,LEN(Naflle$)
50 PRINT Last$,LEN(Last$)
60 PRINT First$,LEN(First$)
70 END

Note that the INPUT statement trims leading and trailing blanks from whatever is typed. If you
need to enter leading or trailing spaces, use the LINPUT statement.

Case Conversion
The case conversion functions , UPC$ and LWC$, return strings with all characters converted to
the proper case. UPC$ converts all lowercase characters to their corresponding uppercase
characters and LWC$ converts any uppercase characters to their corresponding lowercase
characters. Roman Extension characters will be converted according to the current lexical
order. See the LEXICAL ORDER IS statement later in this chapter for the case conversion
listings.

10 DIM Word$[160]
20 LINPU T "Ente r a fe',' characte rs" , Wo rd$
30 PRIN T
ao PRINT "You t)' ped: "jWo rd$
50 PRINT "Uppercase: "jUPC$(Word$)
60 PRINT " Lol,ler case: "jL WC $(Word$)
70 END

A more general character replacement method is obtained by using a buffer that was assigned
an indexed conversion. Indexed conversion uses the incoming character's ASCII value as an
index into a string of characters and returns the character in that position. In the following
program, the conversion string is created in lines 30 and 50. The conversion string specifies all
lowercase characters are to be replaced by their corresponding uppercase character.

10
20

DIM Ci phe r$[256] ,A$[SO]
FOR I=l TO 255

30 Cipher$=Cipher$&UPC$(CHR$(I))
ao NE){T I
50 Ciph er$=Cipher$&UPC$(CHR$(O))

! Create conversion string

60 ASSIGN @F TO BUFFER [160]jCONVERT OUT BY INDEX Cipher$
70 LOOP
SO INPUT A$
90 OUTPUT @FjA$ I Conversion occurs
100 ENTER @FjA$
110 PRINT A$
120 END LOOP
130 END

String Manipulation 133

Searching and Sorting
Information stored in a string array often requires sorting. There are over a dozen common
algorithms that may be used. Each alogrithm has certain advantages depending on the number
of items to be sorted, the current order of the items, the time allowed to sort the items, and the
complexity of the algorithm. One of the simplest (and most inefficient) sorts to implement is the
"bubble" sort. The following program is a slight variation of the bubble sort.

10 ! PrograM : SORT
20
30 READ N
40 DATA 10 ! NUMBER OF ITEMS TO SORT
SO ALLOCATE Word$(N)[SJ ,T efT1P$[SJ
GO READ Word$(*) 1 READ ENTIRE ARRAY
70 D A T A ;:: era. a 1"1 e ,t ", a • t h r e e • f our. f i '! e • six. s e '.J e 1"1 ,e i g h t .1"1 i 1"1 e • t e 1"1

80 PRINT Word$(*)
90 PRINT
100 Sort:FOR 1=0 TO N-l
110 IF Word$ (Il> Word$(I+1) THEN
120 TeMP$=Word$ (I)
130 Word$(I) =Word$(I+l)
140 Word$(I+l)=TeMP$
ISO GoTo Sort
lGO END IF
170 NE)-(T I
180 PRINT Word$(*)
190 END

This example prints the contents of the array before and after sorting.

Before sorting:

z e r 0

six

After sorting:

eight
six

one
s e t.J en

f i t.J e

ten

eight

four
t h r e e

t h r e e

nine
four
ten

one
z e r 0

five

The strings are sorted in ascending order. If the relational operator in line 11 0 is changed from
the greater than sign ">" to the less than sign "<", the strings will be sorted in descending
order.

String Manipulation 133

Searching and Sorting
Information stored in a string array often requires sorting. There are over a dozen common
algorithms that may be used. Each alogrithm has certain advantages depending on the number
of items to be sorted, the current order of the items, the time allowed to sort the items, and the
complexity of the algorithm. One of the simplest (and most inefficient) sorts to implement is the
"bubble" sort. The following program is a slight variation of the bubble sort.

10 ! PrograM : SORT
20
30 READ N
40 DATA 10 ! NUMBER OF ITEMS TO SORT
SO ALLOCATE Word$(N)[SJ ,T efT1P$[SJ
GO READ Word$(*) 1 READ ENTIRE ARRAY
70 D A T A ;:: era. a 1"1 e ,t ", a • t h r e e • f our. f i '! e • six. s e '.J e 1"1 ,e i g h t .1"1 i 1"1 e • t e 1"1

80 PRINT Word$(*)
90 PRINT
100 Sort:FOR 1=0 TO N-l
110 IF Word$ (Il> Word$(I+1) THEN
120 TeMP$=Word$ (I)
130 Word$(I) =Word$(I+l)
140 Word$(I+l)=TeMP$
ISO GoTo Sort
lGO END IF
170 NE)-(T I
180 PRINT Word$(*)
190 END

This example prints the contents of the array before and after sorting.

Before sorting:

z e r 0

six

After sorting:

eight
six

one
s e t.J en

f i t.J e

ten

eight

four
t h r e e

t h r e e

nine
four
ten

one
z e r 0

five

The strings are sorted in ascending order. If the relational operator in line 11 0 is changed from
the greater than sign ">" to the less than sign "<", the strings will be sorted in descending
order.

134 String Manipulation

MAT Functions and String Arrays
MAT functions (available with MAT) are commonly used to manipulate data in numeric arrays.
However, several of these functions can be used with string arrays. For example, a string array is
copied into another string array by the following.

MAT COpy$ = Ori~inal$

Note that only the variable name is necessary. The array specifier" (*) " need not be included
when using the MAT statement.

Every element in a string array will be initialized to a constant value by the following statement.

MAT Array$ = (Null$)

The constant value can be a literal or a string expression and is enclosed in parentheses to
distinguish it from being an array name.

A list of items can be sorted very qUickly by the MAT SORT statement.

10 ! PrograM: SORT_LIST
20 DIM ListSC1:S)[6J
30 DATA Bread .Mi If, .Eggs .Bacon .Coffee
ao READ ListSC*)
SO
60 PRINT "original order"
70 PRINT ListSC*)
80
90 PRINT "ascending order"
100 MAT SDRT ListSC*)
110 PRINT ListSC*)
120 I

130 PRINT "descending order"
laO MAT SORT ListSC*) DES
ISO PRINT ListSC*)
160 END

Running this program produces:

ori~inal or de r
Bread M i If\ E ~ ~s Bacon Coffee

ascendin~ or de r
Bacon B re ad Coffee E~~s M i If\

descendin~ or de r
M i If, E~~s Coffee Bread Bacon

134 String Manipulation

MAT Functions and String Arrays
MAT functions (available with MAT) are commonly used to manipulate data in numeric arrays.
However, several of these functions can be used with string arrays. For example, a string array is
copied into another string array by the following.

MAT COpy$ = Ori~inal$

Note that only the variable name is necessary. The array specifier" (*) " need not be included
when using the MAT statement.

Every element in a string array will be initialized to a constant value by the following statement.

MAT Array$ = (Null$)

The constant value can be a literal or a string expression and is enclosed in parentheses to
distinguish it from being an array name.

A list of items can be sorted very qUickly by the MAT SORT statement.

10 ! PrograM: SORT_LIST
20 DIM ListSC1:S)[6J
30 DATA Bread .Mi If, .Eggs .Bacon .Coffee
ao READ ListSC*)
SO
60 PRINT "original order"
70 PRINT ListSC*)
80
90 PRINT "ascending order"
100 MAT SDRT ListSC*)
110 PRINT ListSC*)
120 I

130 PRINT "descending order"
laO MAT SORT ListSC*) DES
ISO PRINT ListSC*)
160 END

Running this program produces:

ori~inal or de r
Bread M i If\ E ~ ~s Bacon Coffee

ascendin~ or de r
Bacon B re ad Coffee E~~s M i If\

descendin~ or de r
M i If, E~~s Coffee Bread Bacon

String Manipulation 135

Sorting by Substrings
A substring range can be appended to the end of a MAT SORT statement. Items will then be
sorted by the characters within the substring specified, No error results from specifying a
substring position beyond the current length of the string,

10 PRINT CHRSCI2) ! Prograffi: SUBSoRT
20 DATA 1 OLD oRANGE,2 TINY ToADS,3 TALL TREEs,a FAT FOWLS,S FRIED FISH
30 DATA G SLOW SNAILS,7 SLIMY SLUGS,S AWFUL HOURS,S NASTY KNIVES
ao DIM ThingSC1:S)[3SJ
50 READ ThingSC*)
GO First=1
70 Length=1
SO DISP "Use KNOB and SHIFT-KNOB to change sort field."
SO ON KNOB .15 GOTo Slide
100 Go:MAT SORT ThingSC*) [First;LengthJ
110 FOR 1=1 TO S
120 PRINT TAB){YC10tI)nhingSCI);"
130 NE){T I
laO W:GoTO W
150 !
lGO Slide: 1 ChecK for SHIFT or CTRL
170 S=SGNCKNoBY)
ISO H=SGNCKNoBX)
ISO IF S THEN
200 Length=Length+S*CS>O AND Length (IG)+S*CS <O AND Length>l)
210 END IF
220 IF H THEN
230 First=First+H* CH) O AND First < IS)+H*CH <O AND First >l)
2aO END IF
250 DISP "MAT SORT ThingSC*)[";First;";";Lenlth;"J"
2GO PRINT TAB){,{CS,10) ;RPTSC" ",First) ;RPTSC" "'" ,Lenlth) ;RPTSC" ",10)
270 GoTo Go
2S0 END

Adding Items to a Sorted List
Lists of strings can be maintained in sorted order. Every time a new item is added to the list, the
list is sorted by the MAT SORT statement. To prevent overwriting any of the items already in
the list, items should be added to the top (first array element) of a list sorted in ascending order
and to the bottom (last array element) of a list sorted in descending order.

10 PRINT CHRSCI2)
20 ! Since arra)'s are in COM, the >' "reITleffiber" old vall.les.
30 1 After running, execute SCRATCH C to clear the arrays.
ao
50 COM AscendSC1: 1S) [ISJ ,oe scendS C1:1S) [ISJ
GO Again:I=I+l
70
SO
SO
100
110
120
130

INPUT " Ente r a 'A'O rd" ,Wo rdS
Asc endS C 1) =Wo rdS
oescendSC1S)=WordS
CALL See
IF I (IS THEN Again
BEEP
END

! Fill arra y at top
! Fill array at bOttOffi

lao 1 __ _

150 SUB See 1 DISPLAY THE ARRAYS
lGO COM AscendSC*) ,DescendSC*)
170 MAT SORT AscendS <- ascending sort
ISO MAT SORT DescendS DES <- desce nding sort
ISO FOR J=1 TO IS
200 PRINT TAB }(YC ltJ);RPTS C" ",as)
210 PRINT TAB){YC 1 ,J) ;JnAB){YC 11 ,J) ;AscendSCJ) nAB){YC31 ,J) ;DescendSCJ)
220 NEHT J
230 SUB END

String Manipulation 135

Sorting by Substrings
A substring range can be appended to the end of a MAT SORT statement. Items will then be
sorted by the characters within the substring specified, No error results from specifying a
substring position beyond the current length of the string,

10 PRINT CHRSCI2) ! Prograffi: SUBSoRT
20 DATA 1 OLD oRANGE,2 TINY ToADS,3 TALL TREEs,a FAT FOWLS,S FRIED FISH
30 DATA G SLOW SNAILS,7 SLIMY SLUGS,S AWFUL HOURS,S NASTY KNIVES
ao DIM ThingSC1:S)[3SJ
50 READ ThingSC*)
GO First=1
70 Length=1
SO DISP "Use KNOB and SHIFT-KNOB to change sort field."
SO ON KNOB .15 GOTo Slide
100 Go:MAT SORT ThingSC*) [First;LengthJ
110 FOR 1=1 TO S
120 PRINT TAB){YC10tI)nhingSCI);"
130 NE){T I
laO W:GoTO W
150 !
lGO Slide: 1 ChecK for SHIFT or CTRL
170 S=SGNCKNoBY)
ISO H=SGNCKNoBX)
ISO IF S THEN
200 Length=Length+S*CS>O AND Length (IG)+S*CS <O AND Length>l)
210 END IF
220 IF H THEN
230 First=First+H* CH) O AND First < IS)+H*CH <O AND First >l)
2aO END IF
250 DISP "MAT SORT ThingSC*)[";First;";";Lenlth;"J"
2GO PRINT TAB){,{CS,10) ;RPTSC" ",First) ;RPTSC" "'" ,Lenlth) ;RPTSC" ",10)
270 GoTo Go
2S0 END

Adding Items to a Sorted List
Lists of strings can be maintained in sorted order. Every time a new item is added to the list, the
list is sorted by the MAT SORT statement. To prevent overwriting any of the items already in
the list, items should be added to the top (first array element) of a list sorted in ascending order
and to the bottom (last array element) of a list sorted in descending order.

10 PRINT CHRSCI2)
20 ! Since arra)'s are in COM, the >' "reITleffiber" old vall.les.
30 1 After running, execute SCRATCH C to clear the arrays.
ao
50 COM AscendSC1: 1S) [ISJ ,oe scendS C1:1S) [ISJ
GO Again:I=I+l
70
SO
SO
100
110
120
130

INPUT " Ente r a 'A'O rd" ,Wo rdS
Asc endS C 1) =Wo rdS
oescendSC1S)=WordS
CALL See
IF I (IS THEN Again
BEEP
END

! Fill arra y at top
! Fill array at bOttOffi

lao 1 __ _

150 SUB See 1 DISPLAY THE ARRAYS
lGO COM AscendSC*) ,DescendSC*)
170 MAT SORT AscendS <- ascending sort
ISO MAT SORT DescendS DES <- desce nding sort
ISO FOR J=1 TO IS
200 PRINT TAB }(YC ltJ);RPTS C" ",as)
210 PRINT TAB){YC 1 ,J) ;JnAB){YC 11 ,J) ;AscendSCJ) nAB){YC31 ,J) ;DescendSCJ)
220 NEHT J
230 SUB END

136 String Manipulation

Sorting by Multiple Keys
When sorting a multi-dimension array, it is possible to specify more than one key. The array will
be sorted by the first key then the second key and so on until the key specifiers are exhausted.
Once the first key sorts items into similar groups, the items within a group can be arranged in
any order you choose.

10 COM Too1$(1 :8.1:3) [10]
20 DATA PENCIL,RED,35,PENCIL,BLUE,12,PENCIL,GREEN,0,PENCIL,BLACK, 17
30 DATA PEN,BLACK,17,PEN,BLUE,127,PEN,RED,55,PEN,GREEN,a3
ao READ Tool$(*)
50 PRINT
60 PRINT "*** UNSORTED LIST ***"
70 Display
80 PRINT "*** SORT BY COLOR ***"
90 MAT SORT Tool$(*,2)[1,3] ! Sort co lo r b}' first three letters.

Displa }' 10 0
110
120

PRINT "*** SORT BY COLOR THEN BY NAME ***"
! TIAIO ~\e,' so rt.

130 Displa }'
laO PRINT "*** SORT BY NAME THEN BY COLOR ***"
150 MAT SORT Too1$(*d),(*,2)[1;3] DES
160 Display
170 END
180 !--------- --------- -- --
190 SUB Display
200 COM Tool$(*)
210 K=K+l
220 FOR 1=1 TO 8
230 FOR J=l TO 3
2aO PRINT Tool$(I,J),
250 ND(T J
260 PRINT
270 NE)<T I
280 SUBEND

Sorting to a Vector
It is possible to determine the sorting order of items in an array without disturbing the array.
This is accomplished by "sorting" to a single-dimensioned numeric array (vector). The vector
will then contain the subscripts of the items in the order that the items would have been
arranged.

10
20
30
ao
50
60
70
80
90
100

DIM Month$(1:12)[3] ,Fix(1:12)
DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
READ Month$(*)
MAT SORT Month$ TO Fix
PRINT Month$(*)
PRINT Fix(*)
FOR 1=1 TO 12

PRINT Month$(Fix(I»,
NE)<T I
ENO

I So rt to ' .. ecto r

! Print Months alphabetically

Running this program produces:

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

LI 8 12 2 1 7 G 3 5 11 10 9

APR AUG DEC FEB JAN JUL JUN MAR MAY NOV OCT SEP

The first element of the vector contains a four (4), indicating the fourth element in the array
would be the first element if the array were actually sorted.

136 String Manipulation

Sorting by Multiple Keys
When sorting a multi-dimension array, it is possible to specify more than one key. The array will
be sorted by the first key then the second key and so on until the key specifiers are exhausted.
Once the first key sorts items into similar groups, the items within a group can be arranged in
any order you choose.

10 COM Too1$(1 :8.1:3) [10]
20 DATA PENCIL,RED,35,PENCIL,BLUE,12,PENCIL,GREEN,0,PENCIL,BLACK, 17
30 DATA PEN,BLACK,17,PEN,BLUE,127,PEN,RED,55,PEN,GREEN,a3
ao READ Tool$(*)
50 PRINT
60 PRINT "*** UNSORTED LIST ***"
70 Display
80 PRINT "*** SORT BY COLOR ***"
90 MAT SORT Tool$(*,2)[1,3] ! Sort co lo r b}' first three letters.

Displa }' 10 0
110
120

PRINT "*** SORT BY COLOR THEN BY NAME ***"
! TIAIO ~\e,' so rt.

130 Displa }'
laO PRINT "*** SORT BY NAME THEN BY COLOR ***"
150 MAT SORT Too1$(*d),(*,2)[1;3] DES
160 Display
170 END
180 !--------- --------- -- --
190 SUB Display
200 COM Tool$(*)
210 K=K+l
220 FOR 1=1 TO 8
230 FOR J=l TO 3
2aO PRINT Tool$(I,J),
250 ND(T J
260 PRINT
270 NE)<T I
280 SUBEND

Sorting to a Vector
It is possible to determine the sorting order of items in an array without disturbing the array.
This is accomplished by "sorting" to a single-dimensioned numeric array (vector). The vector
will then contain the subscripts of the items in the order that the items would have been
arranged.

10
20
30
ao
50
60
70
80
90
100

DIM Month$(1:12)[3] ,Fix(1:12)
DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
READ Month$(*)
MAT SORT Month$ TO Fix
PRINT Month$(*)
PRINT Fix(*)
FOR 1=1 TO 12

PRINT Month$(Fix(I»,
NE)<T I
ENO

I So rt to ' .. ecto r

! Print Months alphabetically

Running this program produces:

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

LI 8 12 2 1 7 G 3 5 11 10 9

APR AUG DEC FEB JAN JUL JUN MAR MAY NOV OCT SEP

The first element of the vector contains a four (4), indicating the fourth element in the array
would be the first element if the array were actually sorted.

String Manipulation 137

Reordering an Array
The rows and columns of multiple dimension arrays can be reordered. Reordering is made
according to a reorder vector (single dimension array). The vector contains the values of the
subscripts of the array. When the array is reordered, the columns (or rows) are arranged
according to the the order of the subscripts in the reorder vector. See the following program for
an example of reordering.

10 PRINT CHR$ (12) i ! SORT_DEMO
20 DIM Size$(0:1)[5] ,Color$(0:2)[5] ,Shape$(0:1)[5]
30 COM Ident$(0 :3) [5],Array$(0 : 3,0 : 11)[G],Order (0 :3) ,Field,Dol.ln
ao DATA COUNT,SIZE ,C DLOR,SHAPE
50 DATA sfTlal1 >large , bllJe ,red ,green , cu be ,ball t1 ,2,3,0
GO READ Ident$(*) ,Size$(*) ,Color$(*) ,Sh ape$ (*) ,Order(*)
70 FOR 1=0 TD 11
80 Arra)' $(Otl)=RPT$(" "tl (8)&,l.J AL$(I+l)
8 0 A r r a)' $ (1 tl) = S i z e $ (I D It.l G)
1 00 Array$(2,I)=Color$(I DIU 2 MDD 3)
110 Array$(3,I)=Shape$(I MOD 2)
120 NE)<T I
130 ON KBD CALL Do_Ke y
la O Again:D$=" Ascending"
150 IF DOI.ln THEN D$="Descending"
lG O DISP D$i" sort on field #"iField+l
170 Sort
180 Displa)'
180 GDTO Again
200 END 210 1 ___ __ _ _

22 0 SUB Displa y
230 CO M Ident$(*) ,Arr a)' $ (*) , Drder (*) ,F ield ,Dol"ln
2aO PRINT TAB){Y(l , l)i
250 PRINT "Press : A for ascending sort"
2GO PRINT" D for descending sort"
27 0 PRINT" R to reorder arra y"
280 PRINT" l-a fo r sort fi eld"iTAB){Y(1,5)
280 PRINT USING "#,3 X, 5A "i Ident$ (*)
300 FOR 1=0 TO 11
310 PRINT TAB }<Y(ltl +7)i
320 FOR J =O TO 3
330 PRINT USING "#,3){,5A"iArra)'$(Jtl)
3aO NE}<T J
350 NE)<T I
3G O SUB END

370 !----------- --------------------------------- -
38 0 SUB Sort
380 COM Ident$ (*) ,Array$(*) ,Order(*) , Field ,DOIMI
ao o IF Down THE N
a l0 MAT SORT Arra y$(Field, *) DES
a20 ELSE
a30 MAT SORT Array$(Field ,*)
aao END IF
a50 SUBEND
aG O !---

a80 COM Ident$(*) ,Arra)'$(*) ,Order(*) , Field ,Dol.ln
a80 Key$=KBD$
5 00 SELECT Key$
510 CASE" 1" TO "a"
520 Field=UAL(Ke y $) -l
530 CASE "A " ,"a"
5a O Do'.'n =O
550 CA SE "D" ,"d"
5G O DOI.'n =l

String Manipulation 137

Reordering an Array
The rows and columns of multiple dimension arrays can be reordered. Reordering is made
according to a reorder vector (single dimension array). The vector contains the values of the
subscripts of the array. When the array is reordered, the columns (or rows) are arranged
according to the the order of the subscripts in the reorder vector. See the following program for
an example of reordering.

10 PRINT CHR$ (12) i ! SORT_DEMO
20 DIM Size$(0:1)[5] ,Color$(0:2)[5] ,Shape$(0:1)[5]
30 COM Ident$(0 :3) [5],Array$(0 : 3,0 : 11)[G],Order (0 :3) ,Field,Dol.ln
ao DATA COUNT,SIZE ,C DLOR,SHAPE
50 DATA sfTlal1 >large , bllJe ,red ,green , cu be ,ball t1 ,2,3,0
GO READ Ident$(*) ,Size$(*) ,Color$(*) ,Sh ape$ (*) ,Order(*)
70 FOR 1=0 TD 11
80 Arra)' $(Otl)=RPT$(" "tl (8)&,l.J AL$(I+l)
8 0 A r r a)' $ (1 tl) = S i z e $ (I D It.l G)
1 00 Array$(2,I)=Color$(I DIU 2 MDD 3)
110 Array$(3,I)=Shape$(I MOD 2)
120 NE)<T I
130 ON KBD CALL Do_Ke y
la O Again:D$=" Ascending"
150 IF DOI.ln THEN D$="Descending"
lG O DISP D$i" sort on field #"iField+l
170 Sort
180 Displa)'
180 GDTO Again
200 END 210 1 ___ __ _ _

22 0 SUB Displa y
230 CO M Ident$(*) ,Arr a)' $ (*) , Drder (*) ,F ield ,Dol"ln
2aO PRINT TAB){Y(l , l)i
250 PRINT "Press : A for ascending sort"
2GO PRINT" D for descending sort"
27 0 PRINT" R to reorder arra y"
280 PRINT" l-a fo r sort fi eld"iTAB){Y(1,5)
280 PRINT USING "#,3 X, 5A "i Ident$ (*)
300 FOR 1=0 TO 11
310 PRINT TAB }<Y(ltl +7)i
320 FOR J =O TO 3
330 PRINT USING "#,3){,5A"iArra)'$(Jtl)
3aO NE}<T J
350 NE)<T I
3G O SUB END

370 !----------- --------------------------------- -
38 0 SUB Sort
380 COM Ident$ (*) ,Array$(*) ,Order(*) , Field ,DOIMI
ao o IF Down THE N
a l0 MAT SORT Arra y$(Field, *) DES
a20 ELSE
a30 MAT SORT Array$(Field ,*)
aao END IF
a50 SUBEND
aG O !---

a80 COM Ident$(*) ,Arra)'$(*) ,Order(*) , Field ,Dol.ln
a80 Key$=KBD$
5 00 SELECT Key$
510 CASE" 1" TO "a"
520 Field=UAL(Ke y $) -l
530 CASE "A " ,"a"
5a O Do'.'n =O
550 CA SE "D" ,"d"
5G O DOI.'n =l

138 String Manipulation

570 CASE II R II f II r II

580 MAT REORDER Ar r,l)'$ BY o rd e r
59 0 MAT REORDER Ident$ BY Or d e r
600 CASE EL SE
610 BEEP
620 END SELECT
630 SUBENo

Searching for Strings
The following program outlines a method for replacing a word in a string.

10 ! PrograM : Word - Replace
20
30 DIM Te xt$[80l
40
50 Search$="bad"
60 Replace$="good"
70 Text$="I aM a bad string."
80
90 PRINT Te x t$
100 S_length=LEN(Search$)
110 Position=poS(Te x t$,Search$)
120 IF NOT Position THEN Quit
130 !
140 Text$=Te xt$[l ,Position-ll&Replace$&Text$[Position+S_lengthl
150
160 PRINT Te x t$
170 Quit: END

Prints: afTI a bad string.

am a good string.

Large groups of strings are usually maintained in arrays. Searching an array for a particular
value is shown in the following example.

10 OPTION BASE 1
20 DIM List$ (4)[20l
30 INTEGER I
40 DATA BLACK BILL $100.00
50 DATA BROWN JEFF $150.00
60 DATA GREEN JIM $200.00
70 DATA WHITE WILL $1 25.00
80 READ List$ (*)
90 PRINT USING "20A, / "iLi s t$(*)
100 I=l
11 0 LOOP
120 EXIT IF I >4
130 E){IT IF List$(I)[l,5l="BRoWN"
140 I=I+l
150 END LOOP
160
170 IF I <=4 THEN PRINT List$(I)[1,5];": "iList$(I)[14t17l
180 END

Results:

BLACK BILL $100.0 0
BROWN JEFF $150.00
GREEN JIM $200.00
WHITE WILL $125.00

BROWN $150

138 String Manipulation

570 CASE II R II f II r II

580 MAT REORDER Ar r,l)'$ BY o rd e r
59 0 MAT REORDER Ident$ BY Or d e r
600 CASE EL SE
610 BEEP
620 END SELECT
630 SUBENo

Searching for Strings
The following program outlines a method for replacing a word in a string.

10 ! PrograM : Word - Replace
20
30 DIM Te xt$[80l
40
50 Search$="bad"
60 Replace$="good"
70 Text$="I aM a bad string."
80
90 PRINT Te x t$
100 S_length=LEN(Search$)
110 Position=poS(Te x t$,Search$)
120 IF NOT Position THEN Quit
130 !
140 Text$=Te xt$[l ,Position-ll&Replace$&Text$[Position+S_lengthl
150
160 PRINT Te x t$
170 Quit: END

Prints: afTI a bad string.

am a good string.

Large groups of strings are usually maintained in arrays. Searching an array for a particular
value is shown in the following example.

10 OPTION BASE 1
20 DIM List$ (4)[20l
30 INTEGER I
40 DATA BLACK BILL $100.00
50 DATA BROWN JEFF $150.00
60 DATA GREEN JIM $200.00
70 DATA WHITE WILL $1 25.00
80 READ List$ (*)
90 PRINT USING "20A, / "iLi s t$(*)
100 I=l
11 0 LOOP
120 EXIT IF I >4
130 E){IT IF List$(I)[l,5l="BRoWN"
140 I=I+l
150 END LOOP
160
170 IF I <=4 THEN PRINT List$(I)[1,5];": "iList$(I)[14t17l
180 END

Results:

BLACK BILL $100.0 0
BROWN JEFF $150.00
GREEN JIM $200.00
WHITE WILL $125.00

BROWN $150

String Manipulation 139

It is often necessary to find the minimum and maximum values in a string array. The following
program illustrates one method.

10 OPTION BASE 1
20 INTEGER ItI t erlls
30 Iterlls=5
40 ALLOCATE Stringsearch$(IteMs)[3J
50 DATA ABC.BCD.CDE.DEF.EFG
GO READ Stringsearch$(*)
70
80
90

PRINT Stringsearch$(*)
Max$=Stringsearch$(I)
Min$=Max$

100 FOR 1=2 TO IteMS

I Start with first iteM for Max.
! AssuMe saMe iteM is Mint

110 IF Max$(Strin!search$(I) THEN Max$=Stringsearch$(I)
120 IF Min$) Stringsearch$ (I) THEN Min$=Strin!search$(I)
130 NEXT I
140 DISP "MA)<IMUM = "jMax$."MINIMUM = "jMin$
150 END

Results: MA)-(I MUM = FGH MINIMUM = ABC

String Manipulation 139

It is often necessary to find the minimum and maximum values in a string array. The following
program illustrates one method.

10 OPTION BASE 1
20 INTEGER ItI t erlls
30 Iterlls=5
40 ALLOCATE Stringsearch$(IteMs)[3J
50 DATA ABC.BCD.CDE.DEF.EFG
GO READ Stringsearch$(*)
70
80
90

PRINT Stringsearch$(*)
Max$=Stringsearch$(I)
Min$=Max$

100 FOR 1=2 TO IteMS

I Start with first iteM for Max.
! AssuMe saMe iteM is Mint

110 IF Max$(Strin!search$(I) THEN Max$=Stringsearch$(I)
120 IF Min$) Stringsearch$ (I) THEN Min$=Strin!search$(I)
130 NEXT I
140 DISP "MA)<IMUM = "jMax$."MINIMUM = "jMin$
150 END

Results: MA)-(I MUM = FGH MINIMUM = ABC

140 String Manipulation

Number-Base Conversion
Utility functions are available to simplify the calculations between different number bases. The two
functions IVAL and OVAL convert a binary, octal, decimal, or hexadecimal string value into a
decimal number. The IVAL$ and OVAL$ functions convert a decimal number into a binary, octal,
decimal, or hexadecimal string value. The IVAL and IVAL$ functions are restricted to the range of
INTEGER variables (- 32768 thru 32 767). The OVAL and OVAL$ functions allow "double
length" integers and thus allow larger numbers to be converted (- 2 147 483 648 thru
2147483647).

If you are familiar with binary notation, you will probably recognize the fact that IVAL and
IVAL$ operate on 16-bit values while OVAL and OVAL$ operate on 32-bit values.

10 PRINT CHR$(12)
20 DIM Radix$(1 : 4)[7] ,Radix(1:4) ,1.1$[33]
30 DATA Binan' ,Octal ,Deci',lal ,Hex ,2 ,S .10 dG
40 READ Radix$(*) ,Radix(*)
50 R=3 ! Default to deciMal Mode
GO ON KEY 5 LABEL "NEW RADI){" GOTO Radix
70 ON KBD GDTO Key
SO Erase:I.J$=""
80 1.1=0
100 See:FOR 1=1 TO 4
110 PRINT TAB){Y(l ,10+1) jRadix$(I) ,DI.JAL$(I,I,Radix(I» iTAB){Y(48,10+I)
120 NE){T I
130 DISP "Enter a " j Radix$(R) j" nUMber"jTAB(2S) j"(press SPACE to clear)"
140 W:GOTO W
150 Key:ON ERROR GOTO Bad
lGO Key$=UPC$(KBD$)
170 Test=POS("012345G7S8ABCDEF" ,Key$)
lS0 IF Test AND Test(=Radix(R) THEN
180 V$=V$&Key$
200 V=DVAL(V$,Radix(R»
210 ELSE
220 IF Key$="-" THEN Toggle
230
240

BEEP 800,.02
END IF

250 IF Key$=" " THEN Erase
2GO GOTO See
270 Bad:DISP ERRM$
2S0 BEEP
280 WAIT 1.5
300 GOTO Erase
310 Radix : R=l+R MOD 4
320 GOTO Erase
330 To 9 gl e : IF 1,1$ [1 j 1] =" -" THEN
340 1.1$[1,1]="0"
350 ELSE
3GO 1.1$="_"&,1.1$
370 END IF
3S0 V=DVAL(V$,Radix(R»
380 GOTO See
400 END

I Trap o!}errange

I Not a digit key

The program starts by prompting for a decimal number to be entered. As the digits are typed, the
number is displayed in each of the possible number bases. The softkey OQ or 00 lets you
select the different number bases. Pressing the spacebar will clear the display.

140 String Manipulation

Number-Base Conversion
Utility functions are available to simplify the calculations between different number bases. The two
functions IVAL and OVAL convert a binary, octal, decimal, or hexadecimal string value into a
decimal number. The IVAL$ and OVAL$ functions convert a decimal number into a binary, octal,
decimal, or hexadecimal string value. The IVAL and IVAL$ functions are restricted to the range of
INTEGER variables (- 32768 thru 32 767). The OVAL and OVAL$ functions allow "double
length" integers and thus allow larger numbers to be converted (- 2 147 483 648 thru
2147483647).

If you are familiar with binary notation, you will probably recognize the fact that IVAL and
IVAL$ operate on 16-bit values while OVAL and OVAL$ operate on 32-bit values.

10 PRINT CHR$(12)
20 DIM Radix$(1 : 4)[7] ,Radix(1:4) ,1.1$[33]
30 DATA Binan' ,Octal ,Deci',lal ,Hex ,2 ,S .10 dG
40 READ Radix$(*) ,Radix(*)
50 R=3 ! Default to deciMal Mode
GO ON KEY 5 LABEL "NEW RADI){" GOTO Radix
70 ON KBD GDTO Key
SO Erase:I.J$=""
80 1.1=0
100 See:FOR 1=1 TO 4
110 PRINT TAB){Y(l ,10+1) jRadix$(I) ,DI.JAL$(I,I,Radix(I» iTAB){Y(48,10+I)
120 NE){T I
130 DISP "Enter a " j Radix$(R) j" nUMber"jTAB(2S) j"(press SPACE to clear)"
140 W:GOTO W
150 Key:ON ERROR GOTO Bad
lGO Key$=UPC$(KBD$)
170 Test=POS("012345G7S8ABCDEF" ,Key$)
lS0 IF Test AND Test(=Radix(R) THEN
180 V$=V$&Key$
200 V=DVAL(V$,Radix(R»
210 ELSE
220 IF Key$="-" THEN Toggle
230
240

BEEP 800,.02
END IF

250 IF Key$=" " THEN Erase
2GO GOTO See
270 Bad:DISP ERRM$
2S0 BEEP
280 WAIT 1.5
300 GOTO Erase
310 Radix : R=l+R MOD 4
320 GOTO Erase
330 To 9 gl e : IF 1,1$ [1 j 1] =" -" THEN
340 1.1$[1,1]="0"
350 ELSE
3GO 1.1$="_"&,1.1$
370 END IF
3S0 V=DVAL(V$,Radix(R»
380 GOTO See
400 END

I Trap o!}errange

I Not a digit key

The program starts by prompting for a decimal number to be entered. As the digits are typed, the
number is displayed in each of the possible number bases. The softkey OQ or 00 lets you
select the different number bases. Pressing the spacebar will clear the display.

String Manipulation 141

Introduction to Lexical Order
The LEXICAL ORDER IS statement l lets you change the collating sequence (sorting order) of
the character set. Changing the lexical order will affect the results of all string relational oper­
ators and operations, including the MAT SORT and CASE statements. In addition to redefining
the collating sequence, the case conversion functions, UPC$ and LWC$, are adjusted to reflect
the current lexical order.

Predefined lexical orders include: ASCII, FRENCH, GERMAN, SPANISH, SWEDISH, and
STANDARD. You can create lexical orders for special applications. The STANDARD lexical
m:der is determined by an internal keyboard jumper, set at the factory to correspond to the
keyboard supplied with the computer. The setting can be determined by examining the proper
keyboard status register (STATUS 1,4;Language) . Thus, the STANDARD lexical order on a
computer equipped with a French keyboard will actually invoke the FRENCH lexical order.

Why Lexical Order?
A common task for computers is to arrange (sort) a group of items in alphabetical order.
However, " alphabetical order" for a computer is normally based on the character sequence of
the ASCIF character set. While the ASCII character sequence is adequate for many English
Language applications , most foreign language alphabets include accented characters which are
not part of the standard ASCII character set but must be included in the sequence to correctly
sort the characters used in the language.

Since special character combinations often appear in some languages, these combinations and
other special cases can be included in the lexical table to simplify working in other languages.

How It Works
The LEXICAL ORDER IS statement modifies the collating sequence by assigning a new value
to each character. The new value, called a sequence number, is used in place of the character's
ASCII value whenever characters are compared. Internally the characters retain their ASCII
value; however, the outcome of a comparison will be based on the sequence number assigned
to the character instead of the character's ASCII value. In the process of comparing two strings,
each of the strings is converted to a series of sequence numbers and the test is determined by
the greater sequence numbers rather than the greater ASCII values.

1 Available with LEX.

2 ASCII stands for " Ameri can Standard Code fo r Information Interchange".

String Manipulation 141

Introduction to Lexical Order
The LEXICAL ORDER IS statement l lets you change the collating sequence (sorting order) of
the character set. Changing the lexical order will affect the results of all string relational oper­
ators and operations, including the MAT SORT and CASE statements. In addition to redefining
the collating sequence, the case conversion functions, UPC$ and LWC$, are adjusted to reflect
the current lexical order.

Predefined lexical orders include: ASCII, FRENCH, GERMAN, SPANISH, SWEDISH, and
STANDARD. You can create lexical orders for special applications. The STANDARD lexical
m:der is determined by an internal keyboard jumper, set at the factory to correspond to the
keyboard supplied with the computer. The setting can be determined by examining the proper
keyboard status register (STATUS 1,4;Language) . Thus, the STANDARD lexical order on a
computer equipped with a French keyboard will actually invoke the FRENCH lexical order.

Why Lexical Order?
A common task for computers is to arrange (sort) a group of items in alphabetical order.
However, " alphabetical order" for a computer is normally based on the character sequence of
the ASCIF character set. While the ASCII character sequence is adequate for many English
Language applications , most foreign language alphabets include accented characters which are
not part of the standard ASCII character set but must be included in the sequence to correctly
sort the characters used in the language.

Since special character combinations often appear in some languages, these combinations and
other special cases can be included in the lexical table to simplify working in other languages.

How It Works
The LEXICAL ORDER IS statement modifies the collating sequence by assigning a new value
to each character. The new value, called a sequence number, is used in place of the character's
ASCII value whenever characters are compared. Internally the characters retain their ASCII
value; however, the outcome of a comparison will be based on the sequence number assigned
to the character instead of the character's ASCII value. In the process of comparing two strings,
each of the strings is converted to a series of sequence numbers and the test is determined by
the greater sequence numbers rather than the greater ASCII values.

1 Available with LEX.

2 ASCII stands for " Ameri can Standard Code fo r Information Interchange".

142 String Manipulation

The ASCII Character Set
The ASCII set consists of 128 distinct characters including uppercase and lowercase alpha,
numeric, punctuation, and control characters.

The table to the right shows the complete ASCII character set, as displayed on the CRT. Each
character is preceded by its ASCII value. The character's value is actually the decimal repre­
sentation of the binary value (bit pattern) used internally, by the computer, to represent the
character.

The characters are arranged in ascending value, which is to say, in ascending lexical order. A
character is " less than" another character if its ASCII value is smaller. From the table it can be
seen that "A" is less than "B" since the value of the letter "A" (65) is less than the value of the
letter "B" (66) .

If you have experimented with string comparisons based on the ASCII collating sequence, you
may have noticed a few shortcomings. Consider the following words.

RESTORE, RE-STORE, and RE_STORE

Sorting these items according to the ASCII collating sequence will arrange them in the following
order.

RE-STORE < RESTORE < RE_STORE

This points out a limitation of string comparisons based on ASCII sequence. Since the hyphen's
value (45) is less than any alpha-numeric character, and the underbar's value (95) is greater
than all uppercase alpha characters, a word containing a hyphen will be less than the same
word without the hyphen, and a word containing an underbar will be greater than the same
word without the underbar. The LEXICAL ORDER IS statement lets you overcome these
limitations by changing the sorting order of the character set.

Displaying Control Characters

Several special display features are available through the use of STATUS and CONTROL
registers. Normally, ASCII characters 0 through 31 (control characters) are not displayed on the
CRT. To enable the display of control characters, execute the following statement.

CONT ROL 1, LI ; 1

Printing a line of text to the CRT will now show the trailing carriage-return and linefeed.
Although this mode is useful for some applicataions, control characters are usually not display­
ed on the CRT.

CON TROL 1 ,LI ,0

Turns off the special display functions mode.

142 String Manipulation

The ASCII Character Set
The ASCII set consists of 128 distinct characters including uppercase and lowercase alpha,
numeric, punctuation, and control characters.

The table to the right shows the complete ASCII character set, as displayed on the CRT. Each
character is preceded by its ASCII value. The character's value is actually the decimal repre­
sentation of the binary value (bit pattern) used internally, by the computer, to represent the
character.

The characters are arranged in ascending value, which is to say, in ascending lexical order. A
character is " less than" another character if its ASCII value is smaller. From the table it can be
seen that "A" is less than "B" since the value of the letter "A" (65) is less than the value of the
letter "B" (66) .

If you have experimented with string comparisons based on the ASCII collating sequence, you
may have noticed a few shortcomings. Consider the following words.

RESTORE, RE-STORE, and RE_STORE

Sorting these items according to the ASCII collating sequence will arrange them in the following
order.

RE-STORE < RESTORE < RE_STORE

This points out a limitation of string comparisons based on ASCII sequence. Since the hyphen's
value (45) is less than any alpha-numeric character, and the underbar's value (95) is greater
than all uppercase alpha characters, a word containing a hyphen will be less than the same
word without the hyphen, and a word containing an underbar will be greater than the same
word without the underbar. The LEXICAL ORDER IS statement lets you overcome these
limitations by changing the sorting order of the character set.

Displaying Control Characters

Several special display features are available through the use of STATUS and CONTROL
registers. Normally, ASCII characters 0 through 31 (control characters) are not displayed on the
CRT. To enable the display of control characters, execute the following statement.

CONT ROL 1, LI ; 1

Printing a line of text to the CRT will now show the trailing carriage-return and linefeed.
Although this mode is useful for some applicataions, control characters are usually not display­
ed on the CRT.

CON TROL 1 ,LI ,0

Turns off the special display functions mode.

String Manipulation 143

ASCII Character Set for CRT

Hum " 1.-\.,,,r , Nurn . Ghr . Num. Chr . Num. Ghr .

0 N 32 64 @ 96 u
1 5 33 65 A 97 a H

2 5 34 " 66 B 98 b :x:
3 E 35 # 67 C 99 c x

4 i- 36 $ 68 D 100 d
5 E 37 % 69 E 101 e Q

6 FI 38 & 70 F 102 f K

7 0. 39 71 G 103 9
8 e 40 72 H 104 h 5

9 H 41 73 I 105 i T

10 L 42 * 74 J 106 j F

11 \} 43 + 75 K 107 k T

12 ff 44 76 L 108 1
13 c 45 77 M 109 m R

14 !i 46 78 N 110 n 0

15 5 47 / 79 0 111 0 I

16 0 48 0 80 P 112 P L

17 0, 49 1 81 Q 113 q
18 ~ 50 2 82 R 114 r
19 '1 51 3 83 S 115 s
20 'a 52 4 84 T 116 t
21 N 53 5 85 U 117 u K

22 5 54 6 86 V 118 v y

23 E 55 7 87 W 119 w e
24 c 56 8 88 X 120 x N

25 E 57 9 89 Y 121 Y M

26 5 58 90 Z 122 z e
27 'l: 59 91 [123 {

28 ~ 60 < 92 \ 124 I
29 co 61 93] 125 } 5

30 R 62 > 94 126 5

31 u 63 ? 95 127 ~ 5

String Manipulation 143

ASCII Character Set for CRT

Hum " 1.-\.,,,r , Nurn . Ghr . Num. Chr . Num. Ghr .

0 N 32 64 @ 96 u
1 5 33 65 A 97 a H

2 5 34 " 66 B 98 b :x:
3 E 35 # 67 C 99 c x

4 i- 36 $ 68 D 100 d
5 E 37 % 69 E 101 e Q

6 FI 38 & 70 F 102 f K

7 0. 39 71 G 103 9
8 e 40 72 H 104 h 5

9 H 41 73 I 105 i T

10 L 42 * 74 J 106 j F

11 \} 43 + 75 K 107 k T

12 ff 44 76 L 108 1
13 c 45 77 M 109 m R

14 !i 46 78 N 110 n 0

15 5 47 / 79 0 111 0 I

16 0 48 0 80 P 112 P L

17 0, 49 1 81 Q 113 q
18 ~ 50 2 82 R 114 r
19 '1 51 3 83 S 115 s
20 'a 52 4 84 T 116 t
21 N 53 5 85 U 117 u K

22 5 54 6 86 V 118 v y

23 E 55 7 87 W 119 w e
24 c 56 8 88 X 120 x N

25 E 57 9 89 Y 121 Y M

26 5 58 90 Z 122 z e
27 'l: 59 91 [123 {

28 ~ 60 < 92 \ 124 I
29 co 61 93] 125 } 5

30 R 62 > 94 126 5

31 u 63 ? 95 127 ~ 5

144 String Manipulation

NlJiI! Chr.

128 c
L

129 I
'J

130 B
G

131 I
B

132 u
J..

133 I
..'.!

134 B ...
135 I

..'.!

136 w
H

137 R
D

138 y
E

139 G
R

140 c
y

141 B
u

142 M
G

143 B
K

144 9
0

145 9
1

146 9
2

147 9
3

148 9
1I

149 9
5

150 9
G

151 9
7

152 9
8

153 9
9

154 9
A

155 9
B

156 9
c

157 9
D

158 9
E

159 9
F

Extended Character Set For CRT
(Models 217 and 2371

)

Num . Chr . Num. Chr.

160 192 &
161 A 193 ~

162 A 194 I)

163 E 195 0.
164 ~ 196 a
165 it 197 e
166 :t 198 6
167 :t 199 U
168 200 a
169 201 e
170 202 0
171 203 U
172 204 a
173 U 205 e
174 0 206 b
175 (207 U.
176 208 A
177 B 209 1 1

178 B 210 0 2

179 211 A
180 <; 212 a
181 9 213 f
182 ~ 214 (lJ

183 l'l 215 as
184 216 A
185 (. 217 1
186 ~ 218 d
187 £ 219 0
188 ¥ 220 E
189 § 221 i
190 f 222 /3
191 ¢ 223 0

Num. Chr .

224 A
225 .i.
226 ~

227 D
228 d
229 1:
230 ±
231 6
232 0
233 0
234 es
235 S
236 5
237 u
238 Y
239 Y
240 P
241 P
242 F

2

243 F
3

244 F
1I

245 I
0

246
247 t
248 t
249 a
250 2

251 «
252 •
253 »
254 ±
255 ~

1 For the "extended" character sets available with other Series 200/300 computers, see the table in the appendix of the BASIC Language
Reference.

144 String Manipulation

NlJiI! Chr.

128 c
L

129 I
'J

130 B
G

131 I
B

132 u
J..

133 I
..'.!

134 B ...
135 I

..'.!

136 w
H

137 R
D

138 y
E

139 G
R

140 c
y

141 B
u

142 M
G

143 B
K

144 9
0

145 9
1

146 9
2

147 9
3

148 9
1I

149 9
5

150 9
G

151 9
7

152 9
8

153 9
9

154 9
A

155 9
B

156 9
c

157 9
D

158 9
E

159 9
F

Extended Character Set For CRT
(Models 217 and 2371

)

Num . Chr . Num. Chr.

160 192 &
161 A 193 ~

162 A 194 I)

163 E 195 0.
164 ~ 196 a
165 it 197 e
166 :t 198 6
167 :t 199 U
168 200 a
169 201 e
170 202 0
171 203 U
172 204 a
173 U 205 e
174 0 206 b
175 (207 U.
176 208 A
177 B 209 1 1

178 B 210 0 2

179 211 A
180 <; 212 a
181 9 213 f
182 ~ 214 (lJ

183 l'l 215 as
184 216 A
185 (. 217 1
186 ~ 218 d
187 £ 219 0
188 ¥ 220 E
189 § 221 i
190 f 222 /3
191 ¢ 223 0

Num. Chr .

224 A
225 .i.
226 ~

227 D
228 d
229 1:
230 ±
231 6
232 0
233 0
234 es
235 S
236 5
237 u
238 Y
239 Y
240 P
241 P
242 F

2

243 F
3

244 F
1I

245 I
0

246
247 t
248 t
249 a
250 2

251 «
252 •
253 »
254 ±
255 ~

1 For the "extended" character sets available with other Series 200/300 computers, see the table in the appendix of the BASIC Language
Reference.

String Manipulation 145

The Extended Character Set
Only 128 characters are defined in the ASCII character set. An additional 128 characters are
available in the extended character set. The extended set includes CRT enhancement control,
special symbols, and Roman Extension characters (accented vowels and other characters used
in many non-English languages).

Note
Some printers produce different extended characters than those dis­
played on the CRT. Check the printer manual for details on alternate
character sets.

Highlight Characters
The first 32 characters in the extended character set are reserved for controlling various aspects
of the CRT. The definition of these characters has been evolving with upgrades to both hard­
ware and system software. Therefore, the action of these characters depends upon your model
of computer and the level of BASIC (and Extensions) you have loaded.

With the BASIC system and Series 200/300 hardware, there is a possibility of having CRT high­
lights such as inverse video and blinking. The first eight characters (ASCII values 128 thru 135) are
used to control these highlights, if the hardware supports this feature. The Model 236 is an example
of a display that has highlights, while the Model 226 is an example of a display without highlights.
See the "Highlight Characters" tables in the appendix of the BASIC Language Reference.

The SYSTEMS function is available and can be used to determine what CRT highlights are present.
The expression S Y S T E M $ (" CRT I D") returns a string containing the information such as the
CRT width and available highlights. The string returned by this expression is of the following
general form.

S: 80H G

The "80" is the width of the CRT in characters and the "H" indicates that monochrome highlights
are available. If there were a space instead of the "H", then the CRT does not have highlights.

You can also determine if you have CRT highlights by sending a highlight control to the CRT and
see if anything happens.

For example:

PRINT CHR$(13Z);"This is ifT1Portant."iCHR$(lZ8)

On a display with highlights, this produces:

This is iMPortant.

On a display without highlights, the control characters are ignored and the line is displayed as
normal text. Note that these control characters produce an action only in PRINT and DISP state­
ments. When viewed in EDIT mode or on the system message line, these control characters appear
as h p .

String Manipulation 145

The Extended Character Set
Only 128 characters are defined in the ASCII character set. An additional 128 characters are
available in the extended character set. The extended set includes CRT enhancement control,
special symbols, and Roman Extension characters (accented vowels and other characters used
in many non-English languages).

Note
Some printers produce different extended characters than those dis­
played on the CRT. Check the printer manual for details on alternate
character sets.

Highlight Characters
The first 32 characters in the extended character set are reserved for controlling various aspects
of the CRT. The definition of these characters has been evolving with upgrades to both hard­
ware and system software. Therefore, the action of these characters depends upon your model
of computer and the level of BASIC (and Extensions) you have loaded.

With the BASIC system and Series 200/300 hardware, there is a possibility of having CRT high­
lights such as inverse video and blinking. The first eight characters (ASCII values 128 thru 135) are
used to control these highlights, if the hardware supports this feature. The Model 236 is an example
of a display that has highlights, while the Model 226 is an example of a display without highlights.
See the "Highlight Characters" tables in the appendix of the BASIC Language Reference.

The SYSTEMS function is available and can be used to determine what CRT highlights are present.
The expression S Y S T E M $ (" CRT I D") returns a string containing the information such as the
CRT width and available highlights. The string returned by this expression is of the following
general form.

S: 80H G

The "80" is the width of the CRT in characters and the "H" indicates that monochrome highlights
are available. If there were a space instead of the "H", then the CRT does not have highlights.

You can also determine if you have CRT highlights by sending a highlight control to the CRT and
see if anything happens.

For example:

PRINT CHR$(13Z);"This is ifT1Portant."iCHR$(lZ8)

On a display with highlights, this produces:

This is iMPortant.

On a display without highlights, the control characters are ignored and the line is displayed as
normal text. Note that these control characters produce an action only in PRINT and DISP state­
ments. When viewed in EDIT mode or on the system message line, these control characters appear
as h p .

146 String Manipulation

Alternate CRT Characters
There is a keyboard control register for the CRT mapping of character codes. Changing the
contents of the register may cause different characters to be displayed.

Try the following.

PRINT CHR$(2L17)

CONTROL 1,11; 1
PRINT CHR$ (2L17l

CONTROL 1,11;0

The first print statement will produce the character expected from the character tables. The
second print statement should show a character (double arrow) from an alternate character set.
Note that the alternate character set changes some of the characters in the extended character
set.

Finding Missing Characters

By now, you may have noticed that there are more possible CRT characters than keys on the
keyboard. If your particular keyboard does not have a key for the character you need, locate
the (ANY CHAR) key (every keyboard has this key).

When you press the (ANY CHAR) key, the message, "Enter 3 digits, 000 to 255" appears in the
lower left corner of the CRT. Enter the three digits: 065 and the character whose value is 65
(the letter "A") will be placed on the screen. Any character can be input by this method.
Pressing a non-digit key or entering a value outside the range will cancel the function.

146 String Manipulation

Alternate CRT Characters
There is a keyboard control register for the CRT mapping of character codes. Changing the
contents of the register may cause different characters to be displayed.

Try the following.

PRINT CHR$(2L17)

CONTROL 1,11; 1
PRINT CHR$ (2L17l

CONTROL 1,11;0

The first print statement will produce the character expected from the character tables. The
second print statement should show a character (double arrow) from an alternate character set.
Note that the alternate character set changes some of the characters in the extended character
set.

Finding Missing Characters

By now, you may have noticed that there are more possible CRT characters than keys on the
keyboard. If your particular keyboard does not have a key for the character you need, locate
the (ANY CHAR) key (every keyboard has this key).

When you press the (ANY CHAR) key, the message, "Enter 3 digits, 000 to 255" appears in the
lower left corner of the CRT. Enter the three digits: 065 and the character whose value is 65
(the letter "A") will be placed on the screen. Any character can be input by this method.
Pressing a non-digit key or entering a value outside the range will cancel the function.

String Manipulation 147

Predefined Lexical Order
When BASIC is first loaded or after a SCRATCH A, the computer executes a LEXICAL ORDER IS
STANDARD statement. This will be the correct lexical order for the language on the keyboard. This
can be checked by examining the keyboard status register (STATUS 2,8;Language) or by either of
the folloWing statements.

SYSTEM$ ("LE>(I CAL ORDER IS")
SYSTEM$("KEYBOARD LANGUAGE")

The table below shows the language indicated by the value returned by the STATUS statement.
Thus, if the value returned indicates a French keyboard, the STANDARD lexical order will be the
same as the FRENCH lexical order. The STANDARD lexical order for the Katakana keyboard is
ASCII.

Value Keyboard Language Lexical Order

0 ASCII ASCII
1 FRENCH FRENCH
2 GERMAN GERMAN
3 SWEDISH SWEDISH
4 SPANISH1 SPANISH
5 KATAKANA ASCII
6 CANADIAN ENGLISH ASCII
7 UNITED KINGDOM ASCII
8 CANADIAN FRENCH FRENCH
9 SWISS FRENCH FRENCH
10 ITALIAN FRENCH
11 BELGIAN GERMAN
12 DUTCH GERMAN
13 SWISS GERMAN GERMAN
14 LATIN2 SPANISH
15 DANISH SWEDISH
16 FINNISH SWEDISH
17 NORWEGIAN SWEDISH
18 SWISS FRENCH* FRENCH
19 SWISS GERMAN* GERMAN

Either the CHR$ function or (ANY CHAR) may be used to produce characters not readily available
on the keyboard.

1 Th is is the European Spanish keyboard.

2 This is the Latin Spanish keyboard.

String Manipulation 147

Predefined Lexical Order
When BASIC is first loaded or after a SCRATCH A, the computer executes a LEXICAL ORDER IS
STANDARD statement. This will be the correct lexical order for the language on the keyboard. This
can be checked by examining the keyboard status register (STATUS 2,8;Language) or by either of
the folloWing statements.

SYSTEM$ ("LE>(I CAL ORDER IS")
SYSTEM$("KEYBOARD LANGUAGE")

The table below shows the language indicated by the value returned by the STATUS statement.
Thus, if the value returned indicates a French keyboard, the STANDARD lexical order will be the
same as the FRENCH lexical order. The STANDARD lexical order for the Katakana keyboard is
ASCII.

Value Keyboard Language Lexical Order

0 ASCII ASCII
1 FRENCH FRENCH
2 GERMAN GERMAN
3 SWEDISH SWEDISH
4 SPANISH1 SPANISH
5 KATAKANA ASCII
6 CANADIAN ENGLISH ASCII
7 UNITED KINGDOM ASCII
8 CANADIAN FRENCH FRENCH
9 SWISS FRENCH FRENCH
10 ITALIAN FRENCH
11 BELGIAN GERMAN
12 DUTCH GERMAN
13 SWISS GERMAN GERMAN
14 LATIN2 SPANISH
15 DANISH SWEDISH
16 FINNISH SWEDISH
17 NORWEGIAN SWEDISH
18 SWISS FRENCH* FRENCH
19 SWISS GERMAN* GERMAN

Either the CHR$ function or (ANY CHAR) may be used to produce characters not readily available
on the keyboard.

1 Th is is the European Spanish keyboard.

2 This is the Latin Spanish keyboard.

148 String Manipulation

Lexical Tables
The following tables show the five predefined lexical orders available with the LEXICAL
ORDER IS statement.

Notation
All of the lexical tables use the following notation.

sequence number -?> 113
character displayed -?> a

ASCII value -?> (97)

Characters not available on the keyboard can be entered by pressing the (ANY CHAR) key and
typing the value enclosed in parentheses (with leading zeros, if needed) . The character will be
collated according to the sequence number shown above the character.

ASCII Lexical Order
The ASCII lexical order uses the character' s ASCII value as the sequence number. There are no
special cases (mode table entries) used in the ASCII lexical order.

Case Conversions
The folloWing lists show the UPC$ and LWC$ transformations for the ASCII lexical order.

UPC$

abcdefghijklmnopqr~tuvwxyzyq~aeouae6uae6uaeouia(_mlladosyp
RBCDEFGHIJKLHNOPQRSTUUWXYZV~NA~6uA~6uAt6uA~60iAf9~iiAOO~Y~

LWC$

RBCDEFGHIJKLHNOPQRSTUUWXYZAAt~EiiuuV~NA9~A60~6AAoii660SUY~
abcdefghijklmnopqr~tuvwxyzaaeeeiiuuyq~a_maoueoaad()660suyp

Note
There are slight variations in the operation of the UPC$ and L WC$
functions depending on the lexical order in effect. In other words, the
lexical order determines which character will be returned by the
UPC$ and L WC$ functions . The case conversion lists show which
characters should be expected for each lexical order. To simplify the
lists, characters not affected have been excluded.

148 String Manipulation

Lexical Tables
The following tables show the five predefined lexical orders available with the LEXICAL
ORDER IS statement.

Notation
All of the lexical tables use the following notation.

sequence number -?> 113
character displayed -?> a

ASCII value -?> (97)

Characters not available on the keyboard can be entered by pressing the (ANY CHAR) key and
typing the value enclosed in parentheses (with leading zeros, if needed) . The character will be
collated according to the sequence number shown above the character.

ASCII Lexical Order
The ASCII lexical order uses the character' s ASCII value as the sequence number. There are no
special cases (mode table entries) used in the ASCII lexical order.

Case Conversions
The folloWing lists show the UPC$ and LWC$ transformations for the ASCII lexical order.

UPC$

abcdefghijklmnopqr~tuvwxyzyq~aeouae6uae6uaeouia(_mlladosyp
RBCDEFGHIJKLHNOPQRSTUUWXYZV~NA~6uA~6uAt6uA~60iAf9~iiAOO~Y~

LWC$

RBCDEFGHIJKLHNOPQRSTUUWXYZAAt~EiiuuV~NA9~A60~6AAoii660SUY~
abcdefghijklmnopqr~tuvwxyzaaeeeiiuuyq~a_maoueoaad()660suyp

Note
There are slight variations in the operation of the UPC$ and L WC$
functions depending on the lexical order in effect. In other words, the
lexical order determines which character will be returned by the
UPC$ and L WC$ functions . The case conversion lists show which
characters should be expected for each lexical order. To simplify the
lists, characters not affected have been excluded.

(

Seq, Chr . N'lm.

o ~~,

1 ~

2 ~:
3 3.:
4 1-
5 'b
6 ~:
7 I)

8 ~
9 't

10 LF

11 ~
12 ff

13 1,
14 ~
15 51

16 '1.
17 [,

18 ~

19 ~

20 'a
21 ~:
22 ~(

23 ~

24 ~
25 T,
26 ~
27 Et
28 ~
29 ~

30 ~

31 ~
32
33
34 "
35 #
36 $
37 %
38 &
39
40
41
42 *
43 +
44
45
46
47 I
48 0
49 1
50 2
51 3

(0)
(1)

(2)

(3)
(4)
(5)

(6)
(7)
(8)

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)

LEXICAL ORDER IS ASCII

Seq, Chr. Num,

52 4
53 5
54 6
55 7
56 8
57 9
58
59
60 <
61
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J

(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)

(71)
(72)
(73)
(74)

75 K (75)
76 L (76)
77 M (77)
78 N (78)
79 0
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ~

(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)

95 _ (95)
96 ' (96)
97 a
98 b
99 c

100 d
101 e
102 f
103 9

(97)
(98)
(99)

(100)
(101)
(102)
(103)

Seq. Chr. Num,

104 h (104)
105 i (105)
106 j (106)
107 k (107)
108 1 (108)
109 m (109)
110 n (110)
111 0 (111)
112 P (112)
113 q (113)
114 r (114)
115 s (115)
116 t (116)
117 u (117)
118 v (118)
119 IN (119)
120 X (120)
121 Y (121)
122 z (122)
123 {(123)
124 I (124)
125 } (125)
126 ~ (126)
127 1M (127)
128 ~ (128)
129 t, (129)
130 6G (130)
131 ~ (131)
132 ':L (132)
133 L (133)
134 ~ (134)
135 h (135)
136 ~ (136)
137 RD (137)
138 l (138)
139 ~ (139)
140 ~ (140)
141 ~ (141)
142 11; (142)
143 'k (143)
144 1> (144)
145 81 (145)
146 82 (146)
147 ~ (147)
148 ~ (148)
149 ~ (149)
150 1, (150)
151 E!, (151)
152 ~ (152)
153 '§ (153)
154 ~ (154)
155 ~ (155)

Seq, Chr. Num,

156 1: (156)
157 1> (157)
158 1: (158)
159 8F (159)
160 (160)
161 A (161)
162 A (162)
163 E (163)
164 ~ (164)
165 E: (165)
166 :t (166)
167 :t (167)
168 ' (168)
169 (169)
170 - (170)
171 (171)
172 - (172)
173 U (173)
174 0 (174)
175 f (175)
176 - (176)
177 61 (177)
178 62 (178)
179 (179)
180 C; (180)
181 C; (181)
182 f.l (182)
183 i'i (183)
184 (184)
185 <- (185)
186 ~ (186)
187 £ (187)
188 ¥ (188)
189 § (189)
190 f (190)
191 ¢ (191)
192 ~ (192)
193 e (193)
194 6 (194)
195 a (195)
196 a (196)
197 e (197)
198 6 (198)
199 U (199)
200 a (200)
201 e (201)
202 0 (202)
203 U (203)
204 a (204)
205 e (205)
206 6 (206)
207 u (207)

String Manipulation 149

Seq, Chr, Num,

208 A (208)
209 1 (209)
210 0 (210)
211 A (211)
212 a (212)
213 f (213)
214 0 (214)
215 a: (215)
216 A (216)
217 1 (217)
218 0 (218)
219 0 (219)
220 E (220)
221 i (221)
222 f3 (222)
223 0 (223)
224 A (224)
225 J. (225)
226 ~ (226)
227 D (227)
228 d (228)
229 f (229)
230 :t (230)
231 0 (231)
232 0 (232)
233 el (233)
234 es (234)
235 S (235)
236 S (236)
237 U (237)
238 Y (238)
239 Y (239)
240 P (240)
241 I:> (241)
242 F2 (242)
243 F3 (243)
244 Fa (244)
245 Jo (245)
246 (246)
247 1- (247)
248 t (248)
249 .2. (249)
250 Q (250)
251 «(251)
252 • (252)
253 »(253)
254 ± (254)
255 ~ (255)

(

Seq, Chr . N'lm.

o ~~,

1 ~

2 ~:
3 3.:
4 1-
5 'b
6 ~:
7 I)

8 ~
9 't

10 LF

11 ~
12 ff

13 1,
14 ~
15 51

16 '1.
17 [,

18 ~

19 ~

20 'a
21 ~:
22 ~(

23 ~

24 ~
25 T,
26 ~
27 Et
28 ~
29 ~

30 ~

31 ~
32
33
34 "
35 #
36 $
37 %
38 &
39
40
41
42 *
43 +
44
45
46
47 I
48 0
49 1
50 2
51 3

(0)
(1)

(2)

(3)
(4)
(5)

(6)
(7)
(8)

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)

LEXICAL ORDER IS ASCII

Seq, Chr. Num,

52 4
53 5
54 6
55 7
56 8
57 9
58
59
60 <
61
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J

(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)

(71)
(72)
(73)
(74)

75 K (75)
76 L (76)
77 M (77)
78 N (78)
79 0
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ~

(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)

95 _ (95)
96 ' (96)
97 a
98 b
99 c

100 d
101 e
102 f
103 9

(97)
(98)
(99)

(100)
(101)
(102)
(103)

Seq. Chr. Num,

104 h (104)
105 i (105)
106 j (106)
107 k (107)
108 1 (108)
109 m (109)
110 n (110)
111 0 (111)
112 P (112)
113 q (113)
114 r (114)
115 s (115)
116 t (116)
117 u (117)
118 v (118)
119 IN (119)
120 X (120)
121 Y (121)
122 z (122)
123 {(123)
124 I (124)
125 } (125)
126 ~ (126)
127 1M (127)
128 ~ (128)
129 t, (129)
130 6G (130)
131 ~ (131)
132 ':L (132)
133 L (133)
134 ~ (134)
135 h (135)
136 ~ (136)
137 RD (137)
138 l (138)
139 ~ (139)
140 ~ (140)
141 ~ (141)
142 11; (142)
143 'k (143)
144 1> (144)
145 81 (145)
146 82 (146)
147 ~ (147)
148 ~ (148)
149 ~ (149)
150 1, (150)
151 E!, (151)
152 ~ (152)
153 '§ (153)
154 ~ (154)
155 ~ (155)

Seq, Chr. Num,

156 1: (156)
157 1> (157)
158 1: (158)
159 8F (159)
160 (160)
161 A (161)
162 A (162)
163 E (163)
164 ~ (164)
165 E: (165)
166 :t (166)
167 :t (167)
168 ' (168)
169 (169)
170 - (170)
171 (171)
172 - (172)
173 U (173)
174 0 (174)
175 f (175)
176 - (176)
177 61 (177)
178 62 (178)
179 (179)
180 C; (180)
181 C; (181)
182 f.l (182)
183 i'i (183)
184 (184)
185 <- (185)
186 ~ (186)
187 £ (187)
188 ¥ (188)
189 § (189)
190 f (190)
191 ¢ (191)
192 ~ (192)
193 e (193)
194 6 (194)
195 a (195)
196 a (196)
197 e (197)
198 6 (198)
199 U (199)
200 a (200)
201 e (201)
202 0 (202)
203 U (203)
204 a (204)
205 e (205)
206 6 (206)
207 u (207)

String Manipulation 149

Seq, Chr, Num,

208 A (208)
209 1 (209)
210 0 (210)
211 A (211)
212 a (212)
213 f (213)
214 0 (214)
215 a: (215)
216 A (216)
217 1 (217)
218 0 (218)
219 0 (219)
220 E (220)
221 i (221)
222 f3 (222)
223 0 (223)
224 A (224)
225 J. (225)
226 ~ (226)
227 D (227)
228 d (228)
229 f (229)
230 :t (230)
231 0 (231)
232 0 (232)
233 el (233)
234 es (234)
235 S (235)
236 S (236)
237 U (237)
238 Y (238)
239 Y (239)
240 P (240)
241 I:> (241)
242 F2 (242)
243 F3 (243)
244 Fa (244)
245 Jo (245)
246 (246)
247 1- (247)
248 t (248)
249 .2. (249)
250 Q (250)
251 «(251)
252 • (252)
253 »(253)
254 ± (254)
255 ~ (255)

150 String Manipulation

FRENCH Lexical Order
The FRENCH lexical order table contains two special entries. The hyphen character (-) is
assigned as a "don't care" character and a "2 for I" character replacement is made for the "[3"

character.

!3 = 55

A string containing the hyphen will match the same string without the hyphen and a string
containing only a hyphen will match the null string. For example:

LEXICAL ORDER IS FRENCH
IF "RE-STORE"="RESTORE" THEN PRINT "TRUE"

Prints: TRUE

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the FRENCH lexical order.

UPC$

aAaa&a~abc9ddeeee6fghii(iijklmnno66oo_opqrsstuuuuuvwxy9zpy
AAAAAA~ABCCDoEEEEEFGHIIIIIJKLHNNOOOOOBoPQRS~TUUUUUVWXYYZpY

LWC$

AAAA~AAABCGDoE~~!~FGHlitfiJKLHNNOB006ooPQRSsTUuuuuVWXYvZpY
aaAa~&aabc9ddeeeeefghiii(ijklmnno_066oopqr5stuuuuuvwxy9zpy

150 String Manipulation

FRENCH Lexical Order
The FRENCH lexical order table contains two special entries. The hyphen character (-) is
assigned as a "don't care" character and a "2 for I" character replacement is made for the "[3"

character.

!3 = 55

A string containing the hyphen will match the same string without the hyphen and a string
containing only a hyphen will match the null string. For example:

LEXICAL ORDER IS FRENCH
IF "RE-STORE"="RESTORE" THEN PRINT "TRUE"

Prints: TRUE

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the FRENCH lexical order.

UPC$

aAaa&a~abc9ddeeee6fghii(iijklmnno66oo_opqrsstuuuuuvwxy9zpy
AAAAAA~ABCCDoEEEEEFGHIIIIIJKLHNNOOOOOBoPQRS~TUUUUUVWXYYZpY

LWC$

AAAA~AAABCGDoE~~!~FGHlitfiJKLHNNOB006ooPQRSsTUuuuuVWXYvZpY
aaAa~&aabc9ddeeeeefghiii(ijklmnno_066oopqr5stuuuuuvwxy9zpy

Seq . Chr . Num .

o ~~

1 ~
2 s,~

3 ~
4 ~
5 'b
6 ~.
7 0,
8 ~
9 tt

10 LF

11 '.;.
12 FF

13 'k
14 ~
15 sr

16 rr.

17 °1

18 ~

19 ~

20 ~

21 ~(
22 ~.

23 ~

24 ~!

25 ~

26 ~

27 1:
28 ~
29 ~
30 ~

31 ~
32
33
34
35 #
36 $
37 %
38 &
39
40
41
42 *
43 +
44
45
46 I
47 0
48 1
49 2
50 3

(45)
(0)
(1)
(2)
(3)
(4)

(5)
(6)
(7)
(8)

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(46)
(47)
(48)
(49)
(50)
(51)

LEXICAL ORDER IS FRENCH

Seq . Chr . Num .

51 4
52 5
53 6
54 7
55 8
56 9
57
58
59 <
60
61 >
62 ?
63 @
64 A
64 A
64 Po.
64 A
64 A
64 A
64 A
64 $.
65 B
66 C
66 ~
67 D
68 D
69 E
69 E
69 ~

69 it
69 It
70 F
71 G
72 H
73 I
73 t
73 :t
73 ±
73 t
74 J
75 K
76 L
77 M
78 N
79 ~

80 0
80 (/)
80 0
80 {J

80 6
80 0
80 eJ

(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)

(161)
(162)
(208)
(211)
(216)
(224)
(225)

(66)
(67)

(180)
(68)

(227)
(69)

(163)
(164)
(165)
(220)

(70)
(71)
(72)
(73)

(166)
(167)
(229)
(230)

(74)
(75)
(76)
(77)
(78)

(182)
(79)

(210)
(218)
(223)
(231)
(232)
(233)

Seq . Chr . Num .

81 P (80)
82 Q (81)
83 R (82)
84 S (83)
85 S (235)
86 T (84)
87 U (85)
87 U (173)
87 0 (174)
87 D (219)
87 U (237)
88 V (86)
89 \<i (87)
90 X (88)
91 Y (89)
91 Y (238)
92 Z (90)
93 P (240)
94 [(91)
95 " (92)
96] (93)
97 A (94)
98 _ (95)
99 ' (96)

100 a (97)
100 ~ (192)
100 a (196)
100 a (200)
100 a (204)
100 a (212)
100 IE (215)
100 ii (226)
101 b (98)
102 c (99)
103 C; (181)
104 d (100)
105 d (228)
106 e (101)
106 ~ (193)
106 e (197)
106 e (201)
106 e (205)
107 f (102)
108 g (103)
109 h (104)
110 i (105)
110 1 (209)
110 i (213)
110 1 (217)
110 i (221)
111 j (106)
112 k (107)

Seq . Chr . ~jum.

113 1 (108)
114 m (109)
115 n (110)
116 Pi (183)
117 0 (111)
117 6 (194)
117 6 (198)
117 0 (202)
117 6 (206)
117 ,,(214)
117 0 (234)
118 P (112)
119 q (113)
120 r (114)
121 s (115)
121 f3 (222)
122 S (236)
123 t (116)
124 u (117)
124 0. (195)
124 U (199)
124 D. (203)
124 u (207)
125 v (118)
126 w (119)
127 x (120)
128 Y (121)
128 Y (239)
129 z (122)
130 P (241)
131 {(123)
132 I (124)
133 } (125)
134 ~ (126)
135 (168)
136 (169)
137 ., (170)
138 (171)
139 - (172)
140 f (175)
141 - (176)
142 (179)
143 (184)
144 (. (185)
145 ~ (186)
146 £ (187)
147 ¥ (188)
148 § (189)
149 f (190)
150 ¢ (191)
151 - (246)
152 t (247)

String Manipulation 151

Seq . Chr . Num.

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

t (248)
~ (249)
Q (250)
« (251)
• (252)
» (253)
± (254)
'~l (127)

(160)
~ (177)
62 (178)
~ (242)
F3 (243)
~ (244)
b (245)
1 (128)
1; (129)
6G (130)
b (131)
I((132)
1 (133)
'h (134)
b (135)

~ (136)
'b (137)
1: (138)
~ (139)
~ (140)
Et (141)
't (142)
~ (143)
1, (144)
91 (145)
!'!.z (146)
93 (147)
~ (148)
f!, (149)
1, (150)
97 (151)
~ (152)
~ (153)
9A (154)
~ (155)
1: (156)
1> (157)
9E (158)
~ (159)
~ (255)

Seq . Chr . Num .

o ~~

1 ~
2 s,~

3 ~
4 ~
5 'b
6 ~.
7 0,
8 ~
9 tt

10 LF

11 '.;.
12 FF

13 'k
14 ~
15 sr

16 rr.

17 °1

18 ~

19 ~

20 ~

21 ~(
22 ~.

23 ~

24 ~!

25 ~

26 ~

27 1:
28 ~
29 ~
30 ~

31 ~
32
33
34
35 #
36 $
37 %
38 &
39
40
41
42 *
43 +
44
45
46 I
47 0
48 1
49 2
50 3

(45)
(0)
(1)
(2)
(3)
(4)

(5)
(6)
(7)
(8)

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(46)
(47)
(48)
(49)
(50)
(51)

LEXICAL ORDER IS FRENCH

Seq . Chr . Num .

51 4
52 5
53 6
54 7
55 8
56 9
57
58
59 <
60
61 >
62 ?
63 @
64 A
64 A
64 Po.
64 A
64 A
64 A
64 A
64 $.
65 B
66 C
66 ~
67 D
68 D
69 E
69 E
69 ~

69 it
69 It
70 F
71 G
72 H
73 I
73 t
73 :t
73 ±
73 t
74 J
75 K
76 L
77 M
78 N
79 ~

80 0
80 (/)
80 0
80 {J

80 6
80 0
80 eJ

(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)

(161)
(162)
(208)
(211)
(216)
(224)
(225)

(66)
(67)

(180)
(68)

(227)
(69)

(163)
(164)
(165)
(220)

(70)
(71)
(72)
(73)

(166)
(167)
(229)
(230)

(74)
(75)
(76)
(77)
(78)

(182)
(79)

(210)
(218)
(223)
(231)
(232)
(233)

Seq . Chr . Num .

81 P (80)
82 Q (81)
83 R (82)
84 S (83)
85 S (235)
86 T (84)
87 U (85)
87 U (173)
87 0 (174)
87 D (219)
87 U (237)
88 V (86)
89 \<i (87)
90 X (88)
91 Y (89)
91 Y (238)
92 Z (90)
93 P (240)
94 [(91)
95 " (92)
96] (93)
97 A (94)
98 _ (95)
99 ' (96)

100 a (97)
100 ~ (192)
100 a (196)
100 a (200)
100 a (204)
100 a (212)
100 IE (215)
100 ii (226)
101 b (98)
102 c (99)
103 C; (181)
104 d (100)
105 d (228)
106 e (101)
106 ~ (193)
106 e (197)
106 e (201)
106 e (205)
107 f (102)
108 g (103)
109 h (104)
110 i (105)
110 1 (209)
110 i (213)
110 1 (217)
110 i (221)
111 j (106)
112 k (107)

Seq . Chr . ~jum.

113 1 (108)
114 m (109)
115 n (110)
116 Pi (183)
117 0 (111)
117 6 (194)
117 6 (198)
117 0 (202)
117 6 (206)
117 ,,(214)
117 0 (234)
118 P (112)
119 q (113)
120 r (114)
121 s (115)
121 f3 (222)
122 S (236)
123 t (116)
124 u (117)
124 0. (195)
124 U (199)
124 D. (203)
124 u (207)
125 v (118)
126 w (119)
127 x (120)
128 Y (121)
128 Y (239)
129 z (122)
130 P (241)
131 {(123)
132 I (124)
133 } (125)
134 ~ (126)
135 (168)
136 (169)
137 ., (170)
138 (171)
139 - (172)
140 f (175)
141 - (176)
142 (179)
143 (184)
144 (. (185)
145 ~ (186)
146 £ (187)
147 ¥ (188)
148 § (189)
149 f (190)
150 ¢ (191)
151 - (246)
152 t (247)

String Manipulation 151

Seq . Chr . Num.

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

t (248)
~ (249)
Q (250)
« (251)
• (252)
» (253)
± (254)
'~l (127)

(160)
~ (177)
62 (178)
~ (242)
F3 (243)
~ (244)
b (245)
1 (128)
1; (129)
6G (130)
b (131)
I((132)
1 (133)
'h (134)
b (135)

~ (136)
'b (137)
1: (138)
~ (139)
~ (140)
Et (141)
't (142)
~ (143)
1, (144)
91 (145)
!'!.z (146)
93 (147)
~ (148)
f!, (149)
1, (150)
97 (151)
~ (152)
~ (153)
9A (154)
~ (155)
1: (156)
1> (157)
9E (158)
~ (159)
~ (255)

152 String Manipulation

GERMAN Lexical Order
The GERMAN lexical order table contains seven "2 for 1" character replacements. When the
following individual characters are found in a string, two sequence numbers are generated, as if
two characters were found in the string.

a = ae

a = oe

u = ue

A = AE or Ae

0 = DE or De

0 = UE or Ue

(1 = 55

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the GERMAN lexical order.

UPC$

aa~aaaaabcqddeeee6fghiiliijklmnnoo600o_pqr~~tuuuuuvwxy9z~y
AA~AAAAABCCDDE~~~EFGHlftiiJKLHNN00606o8PQRS5TUuuuuUWXYvZpy

LWC$

AA~AAAAABC~DDEE~~EFGHlitiiJKLHNN00606o8PQRS5TUuuuuUWXYvZPy
aa~aaaaabcqddeeeeefghiiliijklmnnoo6oo5_pqr~5tuuuuuvwxy9z~y

152 String Manipulation

GERMAN Lexical Order
The GERMAN lexical order table contains seven "2 for 1" character replacements. When the
following individual characters are found in a string, two sequence numbers are generated, as if
two characters were found in the string.

a = ae

a = oe

u = ue

A = AE or Ae

0 = DE or De

0 = UE or Ue

(1 = 55

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the GERMAN lexical order.

UPC$

aa~aaaaabcqddeeee6fghiiliijklmnnoo600o_pqr~~tuuuuuvwxy9z~y
AA~AAAAABCCDDE~~~EFGHlftiiJKLHNN00606o8PQRS5TUuuuuUWXYvZpy

LWC$

AA~AAAAABC~DDEE~~EFGHlitiiJKLHNN00606o8PQRS5TUuuuuUWXYvZPy
aa~aaaaabcqddeeeeefghiiliijklmnnoo6oo5_pqr~5tuuuuuvwxy9z~y

(

Seq . Chr. Num .

1 ~
2 5 x
3 ~.

4 ~

5 ~
6 ~,

7 ()
8 ~
9 if

13 1,
14 ~
15 51

16 DL

17 °1

19 ~
20 '?!

21 ~(
22 ~,

23 ~

(0)
(1)

(2)
(3)
(4)
(5)
(6)
(7)

(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

24 T, (24)
25 ~1 (25)
26 ~ (26)
27 't (27)
28 ~ (28)
29 ~

30 ~

(29)
(30)

31 ~ (31)
32 (32)
33 (33)
34 (34)
35 # (35)
36 $ (36)
37 %
38 &
39
40
41
42 *
43 +
44
45
46
47 /
48 0
49 1
50 2
51 3

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)

LEXICAL ORDER IS GERMAN

Seq , Chr, Num.

52 4
53 5
54 6
55 7
56 8
57 9
58
59
60 <
61
62 >
63 ?
64 @
65 A

(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)

65 A
66 A

(216)
(211)

67 A (208)
68 A (224)
69 A (161)
70 A (162)
71 A (225)
72 B (66)
73 C (67)
74 C; (180)
75 D (68)
76 D (227)
77 E (69)
78 E (220)
79 E (163)
80 it (164)
81 it (165)
82 F (70)
83 G (71)
84 H
85 I
86 :t
87 :t
88 1:
89 :t
90 J
91 K
92 L
93 M

(72)
(73)

(229)
(230)
(166)
(167)

(74)
(75)
(76)
(77)
(78)

(182)
94 N
95 N
96 0 (79)
96 0 (218)
97 6 (231)
98 0 (232)
99 6 (223)

100
101

ei (233)
(/) (210)

Seq. Chr. Num .

102 P (80)
103 Q (81)
104 R (82)
105 S (83)
106 S (235)
107 T (84)
108 U (85)
108 0 (219)
109 U (237)
110 U (173)
111 0 (174)
112 V (86)
113 vv (87)
114 X (88)
115 Y (89)
116 Y (238)
117 Z (90)
118 P (240)
119 [(91)
120 '\ (92)
121] (93)
122 (94)
123 _ (95)
124 ' (96)
125 a (97)
125 a (204)
126 a: (215)
127 a (212)
128 a (196)
129 a (200)
130 A (192)
131 a (226)
132 b (98)
133 c (99)
134 9 (181)
135 d (100)
136 d (228)
137 e (101)
138 e (197)
139 e (201)
140 e (193)
141 e (205)
142 f (102)
143 9 (103)
144 h (104)
145 i (105)
146 i (213)
147 1 (217)
148 1 (209)
149 i (221)
150 j (106)
151 k (107)

Seq. Chr, Num.

152 1 (108)
153 m (109)
154 n (110)
155 n (183)
156 0 (111)
156 6 (206)
157 6 (198)
158 0 (202)
159 6 (194)
160 CS (234)
161 (3 (214)
162 P (112)
163 q (113)
164 r (114)
165 s (115)
165 J3 (222)
166 s (236)
167 t (116)
168 u (117)
168 U (207)
169 U (199)
170 U (203)
171 il (195)
172 V (118)
173 w (119)
174 X (120)
175 Y (121)
176 Y (239)
177 z (122)
178 P (241)
179 { (123)
180 I (124)
181 } (125)
182 - (126)
183 ' (168)
184 (169)
185 ~ (170)
186 (171)
187 - (172)
188 f (175)
189 - (176)
190 (179)
191 (184)
192 G (185)
193 ~ (186)
194 £ (187)
195 ¥ (188)
196 9 (189)
197 f (190)
198 ¢ (191)
199 - (246)

. 200 * (247)

String Manipulation 153

Seq . Chr. Num.

201 t (248)
202 i. (249)
203 Q (250)
204 «(251)
205 • (252)
206 »(253)
207 ± (254)
208 ill (127)
209 (160)
210 51 (177)
211 ~ (178)
212 F2 (242)
213 ~ (243)
214 Fa (244)
215 b (245)
216 1. (128)
217 1) (129)
218 5G (130)
219 15 (131)
220 ~ (132)
221 1 (133)
222 'h (134)
223 b (135)
224 ~ (136)
225 It, (137)
226 10 (138)
227 1, (139)
228 ~,(140)
229 "L (141)
230 't (142)
231 ~ (143)
232 80 (144)
233 '1. (145)
234 !'!z (146)
235 ~ (147)
236 'b (148)
237 S§ (149)
238 1, (150)
239 <!, (151)
240 ~ (152)
241 !§ (153)
242 ~ (154)
243 1J (155)
244 8e (156)
245 b (157)
246 8E (158)
247 8F (159)
248 ~ (255)

(

Seq . Chr. Num .

1 ~
2 5 x
3 ~.

4 ~

5 ~
6 ~,

7 ()
8 ~
9 if

13 1,
14 ~
15 51

16 DL

17 °1

19 ~
20 '?!

21 ~(
22 ~,

23 ~

(0)
(1)

(2)
(3)
(4)
(5)
(6)
(7)

(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

24 T, (24)
25 ~1 (25)
26 ~ (26)
27 't (27)
28 ~ (28)
29 ~

30 ~

(29)
(30)

31 ~ (31)
32 (32)
33 (33)
34 (34)
35 # (35)
36 $ (36)
37 %
38 &
39
40
41
42 *
43 +
44
45
46
47 /
48 0
49 1
50 2
51 3

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)

LEXICAL ORDER IS GERMAN

Seq , Chr, Num.

52 4
53 5
54 6
55 7
56 8
57 9
58
59
60 <
61
62 >
63 ?
64 @
65 A

(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)

65 A
66 A

(216)
(211)

67 A (208)
68 A (224)
69 A (161)
70 A (162)
71 A (225)
72 B (66)
73 C (67)
74 C; (180)
75 D (68)
76 D (227)
77 E (69)
78 E (220)
79 E (163)
80 it (164)
81 it (165)
82 F (70)
83 G (71)
84 H
85 I
86 :t
87 :t
88 1:
89 :t
90 J
91 K
92 L
93 M

(72)
(73)

(229)
(230)
(166)
(167)

(74)
(75)
(76)
(77)
(78)

(182)
94 N
95 N
96 0 (79)
96 0 (218)
97 6 (231)
98 0 (232)
99 6 (223)

100
101

ei (233)
(/) (210)

Seq. Chr. Num .

102 P (80)
103 Q (81)
104 R (82)
105 S (83)
106 S (235)
107 T (84)
108 U (85)
108 0 (219)
109 U (237)
110 U (173)
111 0 (174)
112 V (86)
113 vv (87)
114 X (88)
115 Y (89)
116 Y (238)
117 Z (90)
118 P (240)
119 [(91)
120 '\ (92)
121] (93)
122 (94)
123 _ (95)
124 ' (96)
125 a (97)
125 a (204)
126 a: (215)
127 a (212)
128 a (196)
129 a (200)
130 A (192)
131 a (226)
132 b (98)
133 c (99)
134 9 (181)
135 d (100)
136 d (228)
137 e (101)
138 e (197)
139 e (201)
140 e (193)
141 e (205)
142 f (102)
143 9 (103)
144 h (104)
145 i (105)
146 i (213)
147 1 (217)
148 1 (209)
149 i (221)
150 j (106)
151 k (107)

Seq. Chr, Num.

152 1 (108)
153 m (109)
154 n (110)
155 n (183)
156 0 (111)
156 6 (206)
157 6 (198)
158 0 (202)
159 6 (194)
160 CS (234)
161 (3 (214)
162 P (112)
163 q (113)
164 r (114)
165 s (115)
165 J3 (222)
166 s (236)
167 t (116)
168 u (117)
168 U (207)
169 U (199)
170 U (203)
171 il (195)
172 V (118)
173 w (119)
174 X (120)
175 Y (121)
176 Y (239)
177 z (122)
178 P (241)
179 { (123)
180 I (124)
181 } (125)
182 - (126)
183 ' (168)
184 (169)
185 ~ (170)
186 (171)
187 - (172)
188 f (175)
189 - (176)
190 (179)
191 (184)
192 G (185)
193 ~ (186)
194 £ (187)
195 ¥ (188)
196 9 (189)
197 f (190)
198 ¢ (191)
199 - (246)

. 200 * (247)

String Manipulation 153

Seq . Chr. Num.

201 t (248)
202 i. (249)
203 Q (250)
204 «(251)
205 • (252)
206 »(253)
207 ± (254)
208 ill (127)
209 (160)
210 51 (177)
211 ~ (178)
212 F2 (242)
213 ~ (243)
214 Fa (244)
215 b (245)
216 1. (128)
217 1) (129)
218 5G (130)
219 15 (131)
220 ~ (132)
221 1 (133)
222 'h (134)
223 b (135)
224 ~ (136)
225 It, (137)
226 10 (138)
227 1, (139)
228 ~,(140)
229 "L (141)
230 't (142)
231 ~ (143)
232 80 (144)
233 '1. (145)
234 !'!z (146)
235 ~ (147)
236 'b (148)
237 S§ (149)
238 1, (150)
239 <!, (151)
240 ~ (152)
241 !§ (153)
242 ~ (154)
243 1J (155)
244 8e (156)
245 b (157)
246 8E (158)
247 8F (159)
248 ~ (255)

154 String Manipulation

SPANISH Lexical Order
The SPANISH lexical order table contains five special entries. Four of these entries are " 1 for
2" character replacements. When the following character pairs are found in a string, a single
sequence number is used to represent the pair.

CH

Ch

LL
Ll

88

88

78

78

cH

ch

l L
1 1

108

108

11 7

11 7

The remaining special case is a " 2 for 1" entry for the " [3" character.

[3 = ss

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the SPANISH lexical order.

UPC$

aaaaaamabc9ddeeeeefghii(iijklmnnoo665_5pqr~5tuuuuuvwxyyzpy
AAAAAA~ABCCDDEEEEEFGHIIIIIJKLHNNOOOOoBoPQRS5TUUUUOUWXYvZpY

LWC$

AAAA~AAABC~DDEE~~~FGHliiftJKLHNNOBo666oPQRS5TUuuOuUWXYvZpY
aaAamaaabc9ddeeeeefghiii(ijklmnno_oo605pqr~5tuuuuuvwxyyzpy

154 String Manipulation

SPANISH Lexical Order
The SPANISH lexical order table contains five special entries. Four of these entries are " 1 for
2" character replacements. When the following character pairs are found in a string, a single
sequence number is used to represent the pair.

CH

Ch

LL
Ll

88

88

78

78

cH

ch

l L
1 1

108

108

11 7

11 7

The remaining special case is a " 2 for 1" entry for the " [3" character.

[3 = ss

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the SPANISH lexical order.

UPC$

aaaaaamabc9ddeeeeefghii(iijklmnnoo665_5pqr~5tuuuuuvwxyyzpy
AAAAAA~ABCCDDEEEEEFGHIIIIIJKLHNNOOOOoBoPQRS5TUUUUOUWXYvZpY

LWC$

AAAA~AAABC~DDEE~~~FGHliiftJKLHNNOBo666oPQRS5TUuuOuUWXYvZpY
aaAamaaabc9ddeeeeefghiii(ijklmnno_oo605pqr~5tuuuuuvwxyyzpy

String Manipulation 155

LEXICAL ORDER IS SPANISH

Seq . Chr. Num. Seq. Chr. Num. Seq. Chr. Num. Seq . Chr. Num. Seq . Chr. Num.

0 N (0) 52 4 (52) 84 P (80) 116 1 (108) 157 1 (248) u '2
1 5 (1) 53 5 (53) 85 Q (81) 118 m (109) 158 A. (249) H

2 5 (2) 54 6 (54) 86 R (82) 119 n (110) 159 Q (250) x
3 E (3) 55 7 (55) 87 S (83) 120 Pi (183) 160 « (251))(

4 E (4) 56 8 (56) 88 S (235) 121 0 (111) 161 • (252) T

5 E (5) 57 9 (57) 89 T (84) 121 () (194) 162 » (253) Q

6 A (6) 58 (58) 90 U (85) 121 6 (198) 163 ± (254) f~

7 [;, (7) 59 (59) 90 U (173) 121 0 (202) 164 W (127)
8 B (8) 60 < (60) 90 0 (174) 121 6 (206) 165 (160) 5

9 H (9) 61 (61) 90 (j (219) 121 '" (214) 166 B (177) T 1

10 L (10) 62 > (62) 90 U (237) 121 CS (234) 167 B (178) F z
11 v (11) 63 ? (63) 91 V (86) 122 P (112) 168 F (242) T z
12 F

f (12) 64 @ (64) 92 w (87) 123 q (113) 169 F (243) 3

13 c (13) 65 A (65) 93 X (88) 124 r (114) 170 F (244) R ~

14 5 (14) 65 A (161) 94 Y (89) 125 s (115) 171 I (245) 0 0

15 5 (15) 65 A (162) 94 Y (238) 125 f3 (222) 172 c (128) I L

16 0 (16) 65 A (208) 95 Z (90) 126 S (236) 173 I (129) L v
17 0

1 (17) 65 It (211) 96 P (240) 127 t (116) 174 B (130) G

18 ~ (18) 65 A (216) 97 [(91) 128 u (117) 175 I (131) B

19 ~ (19) 65 A (224) 98 \ (92) 128 0. (195) 176 u (132) .L

20 ~ (20) 65 ~ (225) 99] (93) 128 U (199) 177 I (133) .II

21 N (21) 66 B (66) 100 A (94) 128 U (203) 178 B (134) H J;;

22 5 (22) 67 c (67) 101 (95) 128 u (207) 179 I (135) y - .B

23 E (23) 67 C; (180) 102
, (96) 129 v (118) 180 w (136) B H

24 c (24) 69 D (68) 103 a (97) 130 w (119) 181 R (137) N D

25 E (25) 70 D (227) 103 a. (192) 131 x (120) 182 'I (138) M E

26 5 (26) 71 E (69) 103 a (196) 132 Y (121) 183 G (139)
'" R

27 E (27) 71 :E: (163) 103 a (200) 132 if (239) 184 c (140) c: y

28 ~ (28) 71 ~ (164) 103 a (204) 133 z (122) 185 B (141) u
29 G (29) 71 it (165) 103 a (212) 134 P (241) 186 M (142) 5 G

30 R (30) 71 It (220) 103 ;E (215) 135 { (123) 187 B (143) 5 K

31 L' (31) 72 F (70) 103 ~ (226) 136 I (124) 188 8 (144) 5 0

32 (32) 73 G (71) 104 b (98) 137 } (125) 189 8 (145) 1

33 (33) 74 H (72) 105 c (99) 138 ~ (126) 190 8 (146) z
34 " (34) 75 I (73) 105 9 (181) 139 (168) 191 8 (147) 3

35 # (35) 75 f (166) 107 d (100) 140 (169) 192 8 (148) ~

36 $ (36) 75 :t (167) 108 <1 (228) 141 - (170) 193 8 (149) 5

37 % (37) 75 f (229) 109 e (101) 142 (171) 194 8 (150) G

38 & (38) 75 t (230) 109 ~ (193) 143 - (172) 195 8 (151) 7

39 (39) 76 J (74) 109 e (197) 144 f (175) 196 8 (152) B

40 (40) 77 K (75) 109 e (201) 145 - (176) 197 8 (153) 9

41 (41) 78 L (76) 109 e (205) 146 (179) 198 9 (154) A

42 * (42) 80 M (77) 110 f (102) 147 (184) 199 9 (155) B

43 + (43) 81 N (78) 111 9 (103) 148 ~ (185) 200 8 (156) c
44 (44) 82 f:l (182) 112 h (104) 149 ~ (186) 201 9 (157) D

45 (45) 83 0 (79) 113 i (105) 150 £ (187) 202 8 (158) E

46 (46) 83 (]) (210) 113 1 (209) 151 ¥ (188) 203 8 (159) F

47 / (47) 83 b (218) 113 i (213) 152 § (189) 204 [;i (255)
48 0 (48) 83 () (223) 113 1 (217) 153 f (190)
49 1 (49) 83 6 (231) 113 i (221) 154 ¢ (191)
50 2 (50) 83 0 (232) 114 j (106) 155 - (246)
51 3 (51) 83 13 (233) 115 k (107) 156 1 (247) 4'

String Manipulation 155

LEXICAL ORDER IS SPANISH

Seq . Chr. Num. Seq. Chr. Num. Seq. Chr. Num. Seq . Chr. Num. Seq . Chr. Num.

0 N (0) 52 4 (52) 84 P (80) 116 1 (108) 157 1 (248) u '2
1 5 (1) 53 5 (53) 85 Q (81) 118 m (109) 158 A. (249) H

2 5 (2) 54 6 (54) 86 R (82) 119 n (110) 159 Q (250) x
3 E (3) 55 7 (55) 87 S (83) 120 Pi (183) 160 « (251))(

4 E (4) 56 8 (56) 88 S (235) 121 0 (111) 161 • (252) T

5 E (5) 57 9 (57) 89 T (84) 121 () (194) 162 » (253) Q

6 A (6) 58 (58) 90 U (85) 121 6 (198) 163 ± (254) f~

7 [;, (7) 59 (59) 90 U (173) 121 0 (202) 164 W (127)
8 B (8) 60 < (60) 90 0 (174) 121 6 (206) 165 (160) 5

9 H (9) 61 (61) 90 (j (219) 121 '" (214) 166 B (177) T 1

10 L (10) 62 > (62) 90 U (237) 121 CS (234) 167 B (178) F z
11 v (11) 63 ? (63) 91 V (86) 122 P (112) 168 F (242) T z
12 F

f (12) 64 @ (64) 92 w (87) 123 q (113) 169 F (243) 3

13 c (13) 65 A (65) 93 X (88) 124 r (114) 170 F (244) R ~

14 5 (14) 65 A (161) 94 Y (89) 125 s (115) 171 I (245) 0 0

15 5 (15) 65 A (162) 94 Y (238) 125 f3 (222) 172 c (128) I L

16 0 (16) 65 A (208) 95 Z (90) 126 S (236) 173 I (129) L v
17 0

1 (17) 65 It (211) 96 P (240) 127 t (116) 174 B (130) G

18 ~ (18) 65 A (216) 97 [(91) 128 u (117) 175 I (131) B

19 ~ (19) 65 A (224) 98 \ (92) 128 0. (195) 176 u (132) .L

20 ~ (20) 65 ~ (225) 99] (93) 128 U (199) 177 I (133) .II

21 N (21) 66 B (66) 100 A (94) 128 U (203) 178 B (134) H J;;

22 5 (22) 67 c (67) 101 (95) 128 u (207) 179 I (135) y - .B

23 E (23) 67 C; (180) 102
, (96) 129 v (118) 180 w (136) B H

24 c (24) 69 D (68) 103 a (97) 130 w (119) 181 R (137) N D

25 E (25) 70 D (227) 103 a. (192) 131 x (120) 182 'I (138) M E

26 5 (26) 71 E (69) 103 a (196) 132 Y (121) 183 G (139)
'" R

27 E (27) 71 :E: (163) 103 a (200) 132 if (239) 184 c (140) c: y

28 ~ (28) 71 ~ (164) 103 a (204) 133 z (122) 185 B (141) u
29 G (29) 71 it (165) 103 a (212) 134 P (241) 186 M (142) 5 G

30 R (30) 71 It (220) 103 ;E (215) 135 { (123) 187 B (143) 5 K

31 L' (31) 72 F (70) 103 ~ (226) 136 I (124) 188 8 (144) 5 0

32 (32) 73 G (71) 104 b (98) 137 } (125) 189 8 (145) 1

33 (33) 74 H (72) 105 c (99) 138 ~ (126) 190 8 (146) z
34 " (34) 75 I (73) 105 9 (181) 139 (168) 191 8 (147) 3

35 # (35) 75 f (166) 107 d (100) 140 (169) 192 8 (148) ~

36 $ (36) 75 :t (167) 108 <1 (228) 141 - (170) 193 8 (149) 5

37 % (37) 75 f (229) 109 e (101) 142 (171) 194 8 (150) G

38 & (38) 75 t (230) 109 ~ (193) 143 - (172) 195 8 (151) 7

39 (39) 76 J (74) 109 e (197) 144 f (175) 196 8 (152) B

40 (40) 77 K (75) 109 e (201) 145 - (176) 197 8 (153) 9

41 (41) 78 L (76) 109 e (205) 146 (179) 198 9 (154) A

42 * (42) 80 M (77) 110 f (102) 147 (184) 199 9 (155) B

43 + (43) 81 N (78) 111 9 (103) 148 ~ (185) 200 8 (156) c
44 (44) 82 f:l (182) 112 h (104) 149 ~ (186) 201 9 (157) D

45 (45) 83 0 (79) 113 i (105) 150 £ (187) 202 8 (158) E

46 (46) 83 (]) (210) 113 1 (209) 151 ¥ (188) 203 8 (159) F

47 / (47) 83 b (218) 113 i (213) 152 § (189) 204 [;i (255)
48 0 (48) 83 () (223) 113 1 (217) 153 f (190)
49 1 (49) 83 6 (231) 113 i (221) 154 ¢ (191)
50 2 (50) 83 0 (232) 114 j (106) 155 - (246)
51 3 (51) 83 13 (233) 115 k (107) 156 1 (247) 4'

156 String Manipulation

SWEDISH Lexical Order
The SWEDISH lexical order table includes one "2 for I" character replacement entry. When
the "8" character is found in a string, two sequence numbers are generated, as if two charac­
ters were found in the string.

8 = ss

Case Conversions
The following lists show the UPC$ and L WC$ transformations for the SWEDISH lexical order.

UPC$

abcdeefghijklmnopqrstuvwxyzzaaaaaaqdeee(liin66ooo.suuuuypy
R8CDEEFGHIJKLHNOPQRSTUUWXYZ~AAAAAACDE~~fiiiN666ooB5uuuuVPY

LWC$

R8CDEFGHIJKLHNOPQRSTUUWXYZ~AAAAAA~DEEE!fiiiN666ooB5uuuuvpY
abcdefghijklmnopqrstuvwxyzmaaaa~aqdeeee(liin66ooo_5uuuuypy

156 String Manipulation

SWEDISH Lexical Order
The SWEDISH lexical order table includes one "2 for I" character replacement entry. When
the "8" character is found in a string, two sequence numbers are generated, as if two charac­
ters were found in the string.

8 = ss

Case Conversions
The following lists show the UPC$ and L WC$ transformations for the SWEDISH lexical order.

UPC$

abcdeefghijklmnopqrstuvwxyzzaaaaaaqdeee(liin66ooo.suuuuypy
R8CDEEFGHIJKLHNOPQRSTUUWXYZ~AAAAAACDE~~fiiiN666ooB5uuuuVPY

LWC$

R8CDEFGHIJKLHNOPQRSTUUWXYZ~AAAAAA~DEEE!fiiiN666ooB5uuuuvpY
abcdefghijklmnopqrstuvwxyzmaaaa~aqdeeee(liin66ooo_5uuuuypy

Seq. Chr . Num .

o ~J
1 ~
2 ~(

3 ~~
4 1-
5 ~
6 ~
7 f,l
8 ~
9 If

10 LF

V
T 11

12 fF

13 1<
14 1,

17 0,
18 "2
19 ~

20 ~

21 ~
22 ~ ..
23 ~

26 ~

27 7:
28 ~

29 ~

30 ~
31 \§
32
33
34

(0)
(1)

(2)
(3)
(4)

(5)

(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

35 # (35)
36 $ (36)
37 %
38 &
39
40
41
42 *
43 +
44
45 -
46
47 /
48 0
49 1
50 2
51 3

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)

LEXICAL ORDER IS SWEDISH

Seq. Chr . Num.

52 4 (52)
53 5 (53)
54 6 (54)
55 7 (55)
56 8 (56)
57 9 (57)
58 (58)
59 (59)
60 < (60)
61 (61)
62 > (62)
63 ? (63)
64 @ (64)
65 A (65)
66 B (66)
67 C (67)
68 D (68)
69 E (69)
70 F (70)
71 G (71)

72 H (72)
73 I (73)
74 J (74)
75 K (75)
76 L (76)
77 M (77)
78 N (78)
79 0 (79)
80 P (80)
81 Q (81)
82 R (82)
83 S (83)
84 T (84)
85 U (85)
86 V (86)
87 \4i (87)
88 x (88)
89 Y (89)
90 Z (90)
91 A (211)
92 A (208)
93 A (224)
94 A (161)
95 A (162)
96 A (216)
97 A (225)
98 C; (180)
99 D (227)

100 It (220)
101 E (163)
102 ~ (164)
103 E (165)

Seq. Chr . Num .

104 f (229)
105 :t (230)
106 ::t (166)
107 :t (167)
108 N (182)
109 6 (231)
110 0 (232)
111 6 (223)
112 b (218)
113 f3 (233)
114 0 (210)
115 S (235)
116 U (237)
117 U (173)
118 0 (174)
119 u (219)
120 Y (238)
121 1> (240)
122 [(91)
123 \. (92)
124] (93)
125 ~ (94)
126 _ (95)
127 ' (96)
128 a (97)
129 b (98)
130 c (99)
131 d (100)
132 e (101)
132 e (197)
133 f (102)
134 9 (103)
135 h (104)
136 i (105)
137 j (106)
138 k (107)
139 1 (108)
140 m (109)
141 n (110)
142 0 (111)
143 P (112)
144 q (113)
145 r (114)
146 s (115)
146 (3 (222)
147 t (116)
148 u (117)
149 v (118)
150 w (119)
151 x (120)
152 Y (121)
153 z (122)

Seq . Chr. Num .

154 a: (215)
155 a (212)
156 a (196)
157 a (200)
158 ~ (192)
159 a (204)
160 a (226)
161 9 (181)
162 d (228)
163 e (201)
164 e (193)
165 e (205)
166 1 (213)
167 1 (217)
168 i (209)
169 i (221)
170 i'I (183)
171 6 (198)
172 0 (202)
173 6 (194)
174 6 (206)
175 es (234)
176 0 (214)
177 S (236)
178 U (199)
179 U (203)
180 Q (195)
181 U (207)
182 Y (239)
183 P (241)
184 { (123)
185 I (124)
186 } (125)
187 (126)
188 (168)
189 (169)
190 - (170)
191 (171)
192 - (172)
193 f (175)
194 - (176)
195 (179)
196 (184)
197 G (185)
198 t:l (186)
199 £ (187)
200 ¥ (188)
201 § (189)
202 f (190)
203 ¢ (191)
204 - (246)
205 t (247)

String Manipulation 157

Seq. Chr . Num .

206 t (248)
207 .i. (249)
208 J2. (250)
209 «(251)
210 • (252)
211 »(253)
212 ± (254)
213 W (127)
214 (160)
215 51 (177)
216 52 (178)
217 '; (242)
218 F3 (243)
219 Fa (244)
220 b (245)
221 ~ (128)
222 1., (129)
223 Ei; (130)
224 b (131)
225 if.. (132)
226 1 (133)
227 ~ (134)
228 b (135)
229 ~ (136)
230 ~ (137)
231 10 (138)
232 ~ (139)
233 "I (140)
234 5U (141)
235 't (142)
236 ~ (143)
237 ~ (144)
238 81 (145)
239 "z (146)
240 ~ (147)
241 8a (148)
242 ~ (149)
243 1; (150)
244 ~ (151)
245 ~ (152)
246 !§ (153)
247 ~ (154)
248 ~ (155)
249 1: (156)
250 8D (157)
251 1: (158)
252 ~ (159)
253 ~ (255)

Seq. Chr . Num .

o ~J
1 ~
2 ~(

3 ~~
4 1-
5 ~
6 ~
7 f,l
8 ~
9 If

10 LF

V
T 11

12 fF

13 1<
14 1,

17 0,
18 "2
19 ~

20 ~

21 ~
22 ~ ..
23 ~

26 ~

27 7:
28 ~

29 ~

30 ~
31 \§
32
33
34

(0)
(1)

(2)
(3)
(4)

(5)

(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

35 # (35)
36 $ (36)
37 %
38 &
39
40
41
42 *
43 +
44
45 -
46
47 /
48 0
49 1
50 2
51 3

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)

LEXICAL ORDER IS SWEDISH

Seq. Chr . Num.

52 4 (52)
53 5 (53)
54 6 (54)
55 7 (55)
56 8 (56)
57 9 (57)
58 (58)
59 (59)
60 < (60)
61 (61)
62 > (62)
63 ? (63)
64 @ (64)
65 A (65)
66 B (66)
67 C (67)
68 D (68)
69 E (69)
70 F (70)
71 G (71)

72 H (72)
73 I (73)
74 J (74)
75 K (75)
76 L (76)
77 M (77)
78 N (78)
79 0 (79)
80 P (80)
81 Q (81)
82 R (82)
83 S (83)
84 T (84)
85 U (85)
86 V (86)
87 \4i (87)
88 x (88)
89 Y (89)
90 Z (90)
91 A (211)
92 A (208)
93 A (224)
94 A (161)
95 A (162)
96 A (216)
97 A (225)
98 C; (180)
99 D (227)

100 It (220)
101 E (163)
102 ~ (164)
103 E (165)

Seq. Chr . Num .

104 f (229)
105 :t (230)
106 ::t (166)
107 :t (167)
108 N (182)
109 6 (231)
110 0 (232)
111 6 (223)
112 b (218)
113 f3 (233)
114 0 (210)
115 S (235)
116 U (237)
117 U (173)
118 0 (174)
119 u (219)
120 Y (238)
121 1> (240)
122 [(91)
123 \. (92)
124] (93)
125 ~ (94)
126 _ (95)
127 ' (96)
128 a (97)
129 b (98)
130 c (99)
131 d (100)
132 e (101)
132 e (197)
133 f (102)
134 9 (103)
135 h (104)
136 i (105)
137 j (106)
138 k (107)
139 1 (108)
140 m (109)
141 n (110)
142 0 (111)
143 P (112)
144 q (113)
145 r (114)
146 s (115)
146 (3 (222)
147 t (116)
148 u (117)
149 v (118)
150 w (119)
151 x (120)
152 Y (121)
153 z (122)

Seq . Chr. Num .

154 a: (215)
155 a (212)
156 a (196)
157 a (200)
158 ~ (192)
159 a (204)
160 a (226)
161 9 (181)
162 d (228)
163 e (201)
164 e (193)
165 e (205)
166 1 (213)
167 1 (217)
168 i (209)
169 i (221)
170 i'I (183)
171 6 (198)
172 0 (202)
173 6 (194)
174 6 (206)
175 es (234)
176 0 (214)
177 S (236)
178 U (199)
179 U (203)
180 Q (195)
181 U (207)
182 Y (239)
183 P (241)
184 { (123)
185 I (124)
186 } (125)
187 (126)
188 (168)
189 (169)
190 - (170)
191 (171)
192 - (172)
193 f (175)
194 - (176)
195 (179)
196 (184)
197 G (185)
198 t:l (186)
199 £ (187)
200 ¥ (188)
201 § (189)
202 f (190)
203 ¢ (191)
204 - (246)
205 t (247)

String Manipulation 157

Seq. Chr . Num .

206 t (248)
207 .i. (249)
208 J2. (250)
209 «(251)
210 • (252)
211 »(253)
212 ± (254)
213 W (127)
214 (160)
215 51 (177)
216 52 (178)
217 '; (242)
218 F3 (243)
219 Fa (244)
220 b (245)
221 ~ (128)
222 1., (129)
223 Ei; (130)
224 b (131)
225 if.. (132)
226 1 (133)
227 ~ (134)
228 b (135)
229 ~ (136)
230 ~ (137)
231 10 (138)
232 ~ (139)
233 "I (140)
234 5U (141)
235 't (142)
236 ~ (143)
237 ~ (144)
238 81 (145)
239 "z (146)
240 ~ (147)
241 8a (148)
242 ~ (149)
243 1; (150)
244 ~ (151)
245 ~ (152)
246 !§ (153)
247 ~ (154)
248 ~ (155)
249 1: (156)
250 8D (157)
251 1: (158)
252 ~ (159)
253 ~ (255)

158 String Manipulation

User-defined LEXICAL ORDER
The following program will generate the worksheet on the next page. The worksheet is handy
when creating a user-defined lexical order.

10 DIM Lb$[1J ,Fl$[23J ,F2$[23J ,F3$[14J ,F4$[20J ,Falt$[86J ,Flp$[22J ,F2p$[22J
20 INTEGER I
30 OUTPUT PRTl"LE X ICAL ORDER TABLE WORKSHEET :se9-num:mode-t y pe.mode-entr
y :n

40 OUTPUT PRT
50 Lb$="#"

Flp$=11 tDDtXt llll
:

Fl$=11 tDDD,}{,"II:
F2p$=11 ,}{ fA ,}{ ,1111:
F2$= II ,X}{ fA IX t 1111 :

F 4 $ = II , DDt X , II II :

F3$=" ,""Mode Lensth"""
Falt$=Flp$&F2$&Fl$&F2$
FOR 1=0 TO 63

SELECT I
CASE 0

I 1111111 , ,
I 11111 II , ,
I 1111111 , ,
I 111 11 11 , ,

I 1 111111 , ,

60
70
80
80
100
110
120
130
140
150
160
170
180
180
200

OUTPUT PRT USING Lb$&Falt$I\,F3lI ,CHR(I+64) d+128,CHR$(I+182)
CASE < 32

OUTPUT PRT USING LbnFalt$&,F4$lI ,CHR$(I+64) d+128,CHR$(I+182) d-l
CASE ELSE

OUTPUT PRT USING Lb$I\,F2p$I\,RPT$ (F2$,3) I\,F4$ lCHR$ (1) , CHR$ (1+64) ,CHR$ (1+12
8) ,CHR$(I+182) d-l
210 END SELECT
220 OUTPUT PRT
230 NEXT I
240 END

158 String Manipulation

User-defined LEXICAL ORDER
The following program will generate the worksheet on the next page. The worksheet is handy
when creating a user-defined lexical order.

10 DIM Lb$[1J ,Fl$[23J ,F2$[23J ,F3$[14J ,F4$[20J ,Falt$[86J ,Flp$[22J ,F2p$[22J
20 INTEGER I
30 OUTPUT PRTl"LE X ICAL ORDER TABLE WORKSHEET :se9-num:mode-t y pe.mode-entr
y :n

40 OUTPUT PRT
50 Lb$="#"

Flp$=11 tDDtXt llll
:

Fl$=11 tDDD,}{,"II:
F2p$=11 ,}{ fA ,}{ ,1111:
F2$= II ,X}{ fA IX t 1111 :

F 4 $ = II , DDt X , II II :

F3$=" ,""Mode Lensth"""
Falt$=Flp$&F2$&Fl$&F2$
FOR 1=0 TO 63

SELECT I
CASE 0

I 1111111 , ,
I 11111 II , ,
I 1111111 , ,
I 111 11 11 , ,

I 1 111111 , ,

60
70
80
80
100
110
120
130
140
150
160
170
180
180
200

OUTPUT PRT USING Lb$&Falt$I\,F3lI ,CHR(I+64) d+128,CHR$(I+182)
CASE < 32

OUTPUT PRT USING LbnFalt$&,F4$lI ,CHR$(I+64) d+128,CHR$(I+182) d-l
CASE ELSE

OUTPUT PRT USING Lb$I\,F2p$I\,RPT$ (F2$,3) I\,F4$ lCHR$ (1) , CHR$ (1+64) ,CHR$ (1+12
8) ,CHR$(I+182) d-l
210 END SELECT
220 OUTPUT PRT
230 NEXT I
240 END

String Manipulation 159

LDnCAL ORDER TABLE ~WF: f< ~;HEET Is~q-num:mod~-t y p~.mod~-~n t r Y I

0 @ 1·-,e-'"-" t1od~ L~ngt. h
1 A 129 e 0
2 B 1 :30 I) 1
3 C 131 (l 2
4 D 1'" .-,

'-' .::. a 3
5 E 133 e 4
6 F 1 :34 .:. 5
7 G 135 U 6
8 H 1 ::::6 .iii 7
9 I 1 ':'., ,_ , I E' 8

10 J 1::::8 .5 9
11 K 139 l.:l 10
1 ~,

'"- L 14 ~3 a 11
13 M 141 i? 12
14 N 142 I:' 13
15 0 14:3 (l 14
16 P 144 A 15
17 Q 145 i 16
18 R 146 f1 17
19 S 147 1£ 18
20 T 148 .3. 19
21 U 149 i 20
22 V 150 0 21
23 W 151 ~

'-J .-.
<-'"-

24 X 152 A 23
25 '(153 l' 24
26 Z 154 b 25
27 [155 0 26
28 '. 156 E 27
29 157 i' 28
30 158 B 29
31 159 30

-:::- 31
a A 32
b i 33

c 6 34
$ d r) 35
% e A 36
8.: f E 37

0;1 0 38
h 39

40

* j 41
+ k 42

1 43
m ~ 44
n 6 45

/ 0 t 46
0 p 47
1 q A 48
2 r ' a 4'~
~,

.~ s- o 50
4 t ~ 51
" l~ S. 52 .~

6 v t·l 5 :3
7 'A' Pi 54
S ." i 55
") .1 .::.. 56

z !=! ".., ,_I t

£ 58
<' 2 5';t

§ 60
:> i,., n 61
? ~* fF• 62

String Manipulation 159

LDnCAL ORDER TABLE ~WF: f< ~;HEET Is~q-num:mod~-t y p~.mod~-~n t r Y I

0 @ 1·-,e-'"-" t1od~ L~ngt. h
1 A 129 e 0
2 B 1 :30 I) 1
3 C 131 (l 2
4 D 1'" .-,

'-' .::. a 3
5 E 133 e 4
6 F 1 :34 .:. 5
7 G 135 U 6
8 H 1 ::::6 .iii 7
9 I 1 ':'., ,_ , I E' 8

10 J 1::::8 .5 9
11 K 139 l.:l 10
1 ~,

'"- L 14 ~3 a 11
13 M 141 i? 12
14 N 142 I:' 13
15 0 14:3 (l 14
16 P 144 A 15
17 Q 145 i 16
18 R 146 f1 17
19 S 147 1£ 18
20 T 148 .3. 19
21 U 149 i 20
22 V 150 0 21
23 W 151 ~

'-J .-.
<-'"-

24 X 152 A 23
25 '(153 l' 24
26 Z 154 b 25
27 [155 0 26
28 '. 156 E 27
29 157 i' 28
30 158 B 29
31 159 30

-:::- 31
a A 32
b i 33

c 6 34
$ d r) 35
% e A 36
8.: f E 37

0;1 0 38
h 39

40

* j 41
+ k 42

1 43
m ~ 44
n 6 45

/ 0 t 46
0 p 47
1 q A 48
2 r ' a 4'~
~,

.~ s- o 50
4 t ~ 51
" l~ S. 52 .~

6 v t·l 5 :3
7 'A' Pi 54
S ." i 55
") .1 .::.. 56

z !=! ".., ,_I t

£ 58
<' 2 5';t

§ 60
:> i,., n 61
? ~* fF• 62

160 String Manipulation

User-Defined Lexical Orders
A lexical order can be created for applications that require special collating sequences. If you
can use one of the predefined lexical orders, you may wish to only skim this section.

A program called LEx...AID has been supplied (on the BASIC Utilities Library disc) to simplify the
creation of user-defined lexical orders. Before running the program it will be neccessary to have an
understanding of the terms used in this section. Using the LEx...AID program is described in the
BASIC Utilities Library manual.

Basically, a 321 element (0 thru 320) INTEGER array is dimensioned, filled with sequence
numbers and mode entries, and the new lexical order is established by the following statement.

LEXICAL ORDER IS Table(*)

Where Table (*) is any valid INTEGER array name.

The following illustration shows the general construction of a user-defined lexical table created
in an INTEGER array.

o
1
2

255

256

257

COLLATING
SECTION

OF MODE ENTRIES

MODE TABLE
SECTION

320 '---_____________ --'

The first 256 elements (0 through 255) contain the sequence number to be used in place of the
character's ASCII value. For special characters, a mode type and mode table pointer are also
stored in these elements.

The next element (256) contains the number of entries in the mode table. This value can range
from 0 (no mode table) thru 64 (a full mode table).

The remaining 64 elements (257 thru 320) contain the optional mode table entries assigned to
special characters.

160 String Manipulation

User-Defined Lexical Orders
A lexical order can be created for applications that require special collating sequences. If you
can use one of the predefined lexical orders, you may wish to only skim this section.

A program called LEx...AID has been supplied (on the BASIC Utilities Library disc) to simplify the
creation of user-defined lexical orders. Before running the program it will be neccessary to have an
understanding of the terms used in this section. Using the LEx...AID program is described in the
BASIC Utilities Library manual.

Basically, a 321 element (0 thru 320) INTEGER array is dimensioned, filled with sequence
numbers and mode entries, and the new lexical order is established by the following statement.

LEXICAL ORDER IS Table(*)

Where Table (*) is any valid INTEGER array name.

The following illustration shows the general construction of a user-defined lexical table created
in an INTEGER array.

o
1
2

255

256

257

COLLATING
SECTION

OF MODE ENTRIES

MODE TABLE
SECTION

320 '---_____________ --'

The first 256 elements (0 through 255) contain the sequence number to be used in place of the
character's ASCII value. For special characters, a mode type and mode table pointer are also
stored in these elements.

The next element (256) contains the number of entries in the mode table. This value can range
from 0 (no mode table) thru 64 (a full mode table).

The remaining 64 elements (257 thru 320) contain the optional mode table entries assigned to
special characters.

(

String Manipulation 161

Sequence Numbers
Normally, comparing two strings results in the computer comparing the ASCII values of the
characters. When the computer makes the string comparison "A" < "8 ", the ASCII value of
" A" (65) is compared to the ASCII value of the letter "8" (66) resulting in the
comparison: 65<66, which is true.

Now suppose that a new value (sequence number) could be assigned to each of the ASCII
characters. We might wish to assign the letter "A" a sequence number greater than the sequ­
ence number assigned to the letter "8 ". If such an assignment were made, the comparison
"A" < "8 ", would now be false .

Once a lexical order is invoked, if two strings are compared, the strings are first converted into
two series of sequence numbers and the comparison is then based on the sequence numbers.

The LEXICAL ORDER IS statement's primary purpose is to assign a sequence number to each
character. However, this is not always enough to handle certain character combinations and
special cases encountered in other languages. Special characters have a mode entry included
with the sequence number.

Mode Entries
Each of the first 256 array elements (0 thru 255) contains the sequence number to be used in
place of the character's ASCII value. Optionally, a mode entry can be included.

Internally, an integer array element uses two bytes (16 bits) of memory. In the following
diagram, the array element is divided into its upper, and lower bytes. The upper byte contains
the sequence number and the lower byte is used if the character has a mode entry.

upper byte lower byte

array element sequence number optional mode entry

The lower byte is further divided into two parts. The upper-most 2-bits are used to represent
one of the four mode types. The remaining 6-bits store an index (pointer) to the actual mode
table entries. This method allows all the necessary information, for each character, to be stored
as a single element in the INTEGER array.

lower byte

Imode type I mode table index

Mode Type
Anyone of the following mode types can be assigned to a character.

• Don't Care Characters (Mode type: 0)

• "1 for 2" Character Replacements (Mode type: 1)

• "2 for 1" Character Replacements (Mode type: 2)

• Accent Priority (Mode type: 3)

(

String Manipulation 161

Sequence Numbers
Normally, comparing two strings results in the computer comparing the ASCII values of the
characters. When the computer makes the string comparison "A" < "8 ", the ASCII value of
" A" (65) is compared to the ASCII value of the letter "8" (66) resulting in the
comparison: 65<66, which is true.

Now suppose that a new value (sequence number) could be assigned to each of the ASCII
characters. We might wish to assign the letter "A" a sequence number greater than the sequ­
ence number assigned to the letter "8 ". If such an assignment were made, the comparison
"A" < "8 ", would now be false .

Once a lexical order is invoked, if two strings are compared, the strings are first converted into
two series of sequence numbers and the comparison is then based on the sequence numbers.

The LEXICAL ORDER IS statement's primary purpose is to assign a sequence number to each
character. However, this is not always enough to handle certain character combinations and
special cases encountered in other languages. Special characters have a mode entry included
with the sequence number.

Mode Entries
Each of the first 256 array elements (0 thru 255) contains the sequence number to be used in
place of the character's ASCII value. Optionally, a mode entry can be included.

Internally, an integer array element uses two bytes (16 bits) of memory. In the following
diagram, the array element is divided into its upper, and lower bytes. The upper byte contains
the sequence number and the lower byte is used if the character has a mode entry.

upper byte lower byte

array element sequence number optional mode entry

The lower byte is further divided into two parts. The upper-most 2-bits are used to represent
one of the four mode types. The remaining 6-bits store an index (pointer) to the actual mode
table entries. This method allows all the necessary information, for each character, to be stored
as a single element in the INTEGER array.

lower byte

Imode type I mode table index

Mode Type
Anyone of the following mode types can be assigned to a character.

• Don't Care Characters (Mode type: 0)

• "1 for 2" Character Replacements (Mode type: 1)

• "2 for 1" Character Replacements (Mode type: 2)

• Accent Priority (Mode type: 3)

162 String Manipulation

Mode Index
The mode index points to the actual mode table entry associated with the particular character.
Up to 64 indexes are allowed (0 thru 63); however, some mode types use more than one table
entry.

Bits, Bytes, and Mode Types
Each INTEGER array element stores a signed-integer in the range: - 32768 thru 32767.
Internally, the number is stored as a 16-bit 2's complement value.

Bits are usually numbered in descending order and include bit 0, so 16 bits are numbered as
follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

16-bit 2's complement value

However, we want to store one of 256 possible sequence numbers and optionally, a mode type
and mode table index. Since there are 256 characters used with the LEXICAL ORDER IS
statement, and 8 bits are needed to store one of 256 possible values (2"8 = 256), it is
convenient to think of the bits arranged as two bytes (a byte contains 8 bits).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

upper byte lower byte

The upper byte is used to hold the sequence number and the lower byte contains the mode
entry information. The algorithm below will produce a signed 16-bit integer from two unsigned
8-bit bytes.

Inte~er = (256*Upper + Lower) - (Upper)127)*65536

The process can be reversed.

IF Inte~er<O THEN Inte~er=Inte~er+65536

Upper=Inte~er DIV 256
Lower=Inte~er MOD 256

The lower byte is further divided into two groups. Two bits hold one of four mode types
(2"2 = 4) and the remaining six bits are for one of 64 mode indexes (2"6 = 64).

7 6 5 4 3 2 0
sequence number type index

A "1 for 2" entry is signified by bit-6 being set. Therefore the value of the lower byte can range
from 64 thru 126. (a "1 for 2" requires at least 2 entries.)

A "2 for I" entry has bit-7 set. The value of the lower byte can range from 128 thru 191.

An "Accent priority" entry has both bit-6 and bit-7 set. The value of the lower byte ranges from
192 thru 255.

162 String Manipulation

Mode Index
The mode index points to the actual mode table entry associated with the particular character.
Up to 64 indexes are allowed (0 thru 63); however, some mode types use more than one table
entry.

Bits, Bytes, and Mode Types
Each INTEGER array element stores a signed-integer in the range: - 32768 thru 32767.
Internally, the number is stored as a 16-bit 2's complement value.

Bits are usually numbered in descending order and include bit 0, so 16 bits are numbered as
follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

16-bit 2's complement value

However, we want to store one of 256 possible sequence numbers and optionally, a mode type
and mode table index. Since there are 256 characters used with the LEXICAL ORDER IS
statement, and 8 bits are needed to store one of 256 possible values (2"8 = 256), it is
convenient to think of the bits arranged as two bytes (a byte contains 8 bits).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

upper byte lower byte

The upper byte is used to hold the sequence number and the lower byte contains the mode
entry information. The algorithm below will produce a signed 16-bit integer from two unsigned
8-bit bytes.

Inte~er = (256*Upper + Lower) - (Upper)127)*65536

The process can be reversed.

IF Inte~er<O THEN Inte~er=Inte~er+65536

Upper=Inte~er DIV 256
Lower=Inte~er MOD 256

The lower byte is further divided into two groups. Two bits hold one of four mode types
(2"2 = 4) and the remaining six bits are for one of 64 mode indexes (2"6 = 64).

7 6 5 4 3 2 0
sequence number type index

A "1 for 2" entry is signified by bit-6 being set. Therefore the value of the lower byte can range
from 64 thru 126. (a "1 for 2" requires at least 2 entries.)

A "2 for I" entry has bit-7 set. The value of the lower byte can range from 128 thru 191.

An "Accent priority" entry has both bit-6 and bit-7 set. The value of the lower byte ranges from
192 thru 255.

(

String Manipulation 163

"Don't Care" Characters
A character can be removed from the collation sequence. To mark a character as a "don't
care" , the mode type is 0 (the same as a regular character) but the mode table index is set to 1.

sequence number type index

any value o

The mode index need not point to a valid table entry, but must be a "1" to indicate a "don't
care" character.

For example, the FRENCH lexical table lists the hyphen (-) as a "don' t care" character. Thus,
the hyphen is ignored when a string comparison is being made. The entry appears:

sequence number type index

(45) 45 o

You may wish to include "don't care" characters in your own lexical tables. A string containing
only " don't care" characters will match the null string.

The following short program illustrates the operation of a "don't care" character.

10 Return$="RESTORE"
20 Asain$="RE-STORE"
30
40 LEXICAL ORDER IS ASCII
50 IF Restore$=Asain$ THEN PRINT "True for ASCII"
GO LEXICAL ORDER IS FRENCH
70 IF Restore$=Asain$ THEN PRINT "True for FRENCH"
80 END

Results:

True for FRENCH

"1 for 2" Character Replacement
This type of mode table entry indicates that one sequence number is to be used for two
consecutive characters. It should be remembered that no characters are actually replaced by
this operation, only that a single sequence number is to be used when the two characters are
found adjacent to each other.

The following entry is placed in the collating section of the lexical table.

sequence number type mode index

normal sequence number index

(

String Manipulation 163

"Don't Care" Characters
A character can be removed from the collation sequence. To mark a character as a "don't
care" , the mode type is 0 (the same as a regular character) but the mode table index is set to 1.

sequence number type index

any value o

The mode index need not point to a valid table entry, but must be a "1" to indicate a "don't
care" character.

For example, the FRENCH lexical table lists the hyphen (-) as a "don' t care" character. Thus,
the hyphen is ignored when a string comparison is being made. The entry appears:

sequence number type index

(45) 45 o

You may wish to include "don't care" characters in your own lexical tables. A string containing
only " don't care" characters will match the null string.

The following short program illustrates the operation of a "don't care" character.

10 Return$="RESTORE"
20 Asain$="RE-STORE"
30
40 LEXICAL ORDER IS ASCII
50 IF Restore$=Asain$ THEN PRINT "True for ASCII"
GO LEXICAL ORDER IS FRENCH
70 IF Restore$=Asain$ THEN PRINT "True for FRENCH"
80 END

Results:

True for FRENCH

"1 for 2" Character Replacement
This type of mode table entry indicates that one sequence number is to be used for two
consecutive characters. It should be remembered that no characters are actually replaced by
this operation, only that a single sequence number is to be used when the two characters are
found adjacent to each other.

The following entry is placed in the collating section of the lexical table.

sequence number type mode index

normal sequence number index

164 String Manipulation

If a character marked as a "1 for 2" is found in a string, the next character is accessed and
compared to the list of possible secondary characters in the mode table section.

(257 + index) number of entries to check

second character I sequence number for this pair

second character I sequence number for this pair

If the character does not match any of the secondary characters in the mode table, the original
character's sequence number is used and processing continues. If a match is found, the sequ­
ence number for the pair is used and processing continues with the character following the
secondary character.

For example, the SPANISH collating sequence has a "1 for 2" replacement for the letters
"CH" or "Ch" . The letter "c" is marked as a "1 for 2" character. When the letter is encoun­
tered in a string, the next character is accessed and compared to the list of possible secondary
characters (uppercase H and lowercase h). The appropriate sequence number is then used for
the pair. If the character following the letter "c" is not found in the list of possible secondary
characters, the sequence number for "c" is used and processing continues with the next
character.

You can override a "1 for 2" character replacement by inserting a "Don't Care" character
between the two characters that would otherwise be replaced by a single sequence number.

The SPANISH table entry for the character sequence "CH" is below. In the collating section,
the first letter of the sequence has the following entry:

(67)

(68)

(257 + 1)

(257 + 2)

(257 + 3)

sequence number type mode index

67 (C)

69 (0) o o

number of entries to check (2)

second character (H) I sequence number for pair (68)

second character (h) I sequence number for pair (68)

The sequence number assigned to the two-character combination is greater than the sequence
number for the letter "c" and less than the sequence number for the letter "0". Therefore, a
word beginning with the characters "CH" will collate after all words starting with the letter "c"
followed by any other character.

164 String Manipulation

If a character marked as a "1 for 2" is found in a string, the next character is accessed and
compared to the list of possible secondary characters in the mode table section.

(257 + index) number of entries to check

second character I sequence number for this pair

second character I sequence number for this pair

If the character does not match any of the secondary characters in the mode table, the original
character's sequence number is used and processing continues. If a match is found, the sequ­
ence number for the pair is used and processing continues with the character following the
secondary character.

For example, the SPANISH collating sequence has a "1 for 2" replacement for the letters
"CH" or "Ch" . The letter "c" is marked as a "1 for 2" character. When the letter is encoun­
tered in a string, the next character is accessed and compared to the list of possible secondary
characters (uppercase H and lowercase h). The appropriate sequence number is then used for
the pair. If the character following the letter "c" is not found in the list of possible secondary
characters, the sequence number for "c" is used and processing continues with the next
character.

You can override a "1 for 2" character replacement by inserting a "Don't Care" character
between the two characters that would otherwise be replaced by a single sequence number.

The SPANISH table entry for the character sequence "CH" is below. In the collating section,
the first letter of the sequence has the following entry:

(67)

(68)

(257 + 1)

(257 + 2)

(257 + 3)

sequence number type mode index

67 (C)

69 (0) o o

number of entries to check (2)

second character (H) I sequence number for pair (68)

second character (h) I sequence number for pair (68)

The sequence number assigned to the two-character combination is greater than the sequence
number for the letter "c" and less than the sequence number for the letter "0". Therefore, a
word beginning with the characters "CH" will collate after all words starting with the letter "c"
followed by any other character.

String Manipulation 165

The following program shows the sorting order for the letters "CH" in the SPANISH lexical
order.

5 DIM A$(3)[3J
10 A$(1) ="CGA"
20 A$(2)="CHA"
30 A$(3) =" CIA"
40 LE>< I CAL ORDER IS SPANISH
50 MAT SORT A$(*)
GO PRINT A$ (*)
70 END

Produces:

CGA CIA CHA

It should be noted that a character may have more than one secondary character combination.
This is demonstrated by having both upper and lower case entries. Other secondary characters
could have been included in the same manner. The first mode table entry contains the number
of secondary characters to check and must be in the range: 0 thru 63.

"2 for 1" Character Replacement
When a "2 for 1" mode entry is specified, it indicates that the character should be represented
by two sequence numbers (as if there were two characters in the string) . The first sequence
number is stored with the character as usual. The mode index points to the mode table entry
that contains the second sequence number to be used for that character.

sequence number type mode index

1 st sequence number 2 index

The mode table entry actually contains two sequence numbers. If the original character was
upper case, the next character in the string will determine whether the upper or the lower
sequence number is used. If the original character was a lower case letter, the lower sequence
number is always used.

upper lower

(257 + index) 2nd sequence number (UPC) 2nd sequence number (LWC)

Several "2 for 1" characters are in the GERMAN lexical order. For instance, the character "A."
is equivalent to "AE" and has the following entry in the collating section.

sequence number type mode index

(216) 65 (A) 2 index

String Manipulation 165

The following program shows the sorting order for the letters "CH" in the SPANISH lexical
order.

5 DIM A$(3)[3J
10 A$(1) ="CGA"
20 A$(2)="CHA"
30 A$(3) =" CIA"
40 LE>< I CAL ORDER IS SPANISH
50 MAT SORT A$(*)
GO PRINT A$ (*)
70 END

Produces:

CGA CIA CHA

It should be noted that a character may have more than one secondary character combination.
This is demonstrated by having both upper and lower case entries. Other secondary characters
could have been included in the same manner. The first mode table entry contains the number
of secondary characters to check and must be in the range: 0 thru 63.

"2 for 1" Character Replacement
When a "2 for 1" mode entry is specified, it indicates that the character should be represented
by two sequence numbers (as if there were two characters in the string) . The first sequence
number is stored with the character as usual. The mode index points to the mode table entry
that contains the second sequence number to be used for that character.

sequence number type mode index

1 st sequence number 2 index

The mode table entry actually contains two sequence numbers. If the original character was
upper case, the next character in the string will determine whether the upper or the lower
sequence number is used. If the original character was a lower case letter, the lower sequence
number is always used.

upper lower

(257 + index) 2nd sequence number (UPC) 2nd sequence number (LWC)

Several "2 for 1" characters are in the GERMAN lexical order. For instance, the character "A."
is equivalent to "AE" and has the following entry in the collating section.

sequence number type mode index

(216) 65 (A) 2 index

166 String Manipulation

The index points to the following entry in the mode table.

upper lower

(257 + index) 75 (E) 124 (e)

In some cases, such as the character " 13", both upper and lower bytes contain the sequence
number for the same character(s} . This results in the same sequence numbers being generated
regardless of the case of the next character.

Accent Priority
Accent Priority can be used as the final arbitrator of string comparisons. If you examine the
lexical tables you will often find the same sequence number assigned to more than one charac­
ter. Therefore, it is possible for two different strings to produce identical series of sequence
numbers. The two strings will be considered equal unless at least one character, in each string,
has been assigned different accent priorities.

Accent priority is established by assigning a value, in the range: 0 thru 63, to the character. Any
character not already assigned a mode type may be assigned a priority. A priority of zero is
assumed for all characters that haven't been assigned a priority.

sequence number type mode index

normal sequence number 3 priority

In the FRENCH lexical order, the characters: A, A, and A have been assigned the same
sequence number (64) . Assume the characters were assigned the following priorities.

Character

A
A
A

Priority

o
1
2

(default priority)

The characters can now be distinguished from one another and will collate in the following
order.

When two strings are compared, each string is first converted into a series of sequence num­
bers. The comparison is then determined {in most cases} by the greater sequence numbers or
the longer series of sequence numbers.

In the event both strings produce identical series of sequence numbers, the series of priorities
are checked. The string containing the characters with the higher priority is the greater string.

166 String Manipulation

The index points to the following entry in the mode table.

upper lower

(257 + index) 75 (E) 124 (e)

In some cases, such as the character " 13", both upper and lower bytes contain the sequence
number for the same character(s} . This results in the same sequence numbers being generated
regardless of the case of the next character.

Accent Priority
Accent Priority can be used as the final arbitrator of string comparisons. If you examine the
lexical tables you will often find the same sequence number assigned to more than one charac­
ter. Therefore, it is possible for two different strings to produce identical series of sequence
numbers. The two strings will be considered equal unless at least one character, in each string,
has been assigned different accent priorities.

Accent priority is established by assigning a value, in the range: 0 thru 63, to the character. Any
character not already assigned a mode type may be assigned a priority. A priority of zero is
assumed for all characters that haven't been assigned a priority.

sequence number type mode index

normal sequence number 3 priority

In the FRENCH lexical order, the characters: A, A, and A have been assigned the same
sequence number (64) . Assume the characters were assigned the following priorities.

Character

A
A
A

Priority

o
1
2

(default priority)

The characters can now be distinguished from one another and will collate in the following
order.

When two strings are compared, each string is first converted into a series of sequence num­
bers. The comparison is then determined {in most cases} by the greater sequence numbers or
the longer series of sequence numbers.

In the event both strings produce identical series of sequence numbers, the series of priorities
are checked. The string containing the characters with the higher priority is the greater string.

User-Defined Functions
and Subprograms

Introduction

Chapter

6

One of the most powerful constructs available in any language is the subprogram (a user­
defined function is a special form of subprogram). A subprogram can do everything a main
program can do except that it must be invoked or "called" before it is executed, whereas a
main program is executed by pressing the RUN key. In a sense, pressing the RUN key is how
you "call" a main program.

A subprogram has its own " context" or state as distinct from a main program and all other
subprograms. This means that every subprogram has its own set of variables, its own softkey
definitions, its own DATA blocks, and its own line labels. There are several benefits to be
realized by taking advantage of subprograms:

• The subprogram allows the programmer to take advantage of the "Top-Down" method of
designing programs. In this technique, the problem to be solved is broken up into a set of
smaller and more easily solvable problems. These smaller problems can in turn be broken
up into smaller problems yet, and so on. This technique has been shown to greatly improve
the design , coding, and testing of programs, and will be discussed further at the end of the
chapter.

• By separating all the details of performing the subtasks from the overall logic flow of the
main program, the program is much easier to read from the subprogram calls. The pro­
grammer can see at a high level what he 's trying to accomplish, rather than immediately
getting lost in the details of each little sub-task.

• One of the most time-consuming parts of writing a program is debugging it, or forcing it to
run correctly. The time consuming part of fixing bugs in a program is finding where the bug
is in the first place. By using subprograms and testing each one independently of the
others, it is easier to locate problems, and hence to fix them.

• Often, a programmer may want to perform the same task from several different areas of his
program. For example, a set.of readings may need to be taken from a voltmeter after each
of four different input signals are fed through a circuit being tested. The same subprogram
may be used to set up the voltmeter and take the readings, while different pieces of code
would have to be used to set up the differing input conditions. Thus, subprograms can be
used to economize on the overall size of the program.

• Finally, libraries of commonly used subprograms can be assembled for widespread use.
Many different users doing diverse types of problems still may require some identical
subprograms. For instance, an engineer may be using a subprogram to plot an array of data
that he gathered from a spectrum analyzer, while the marketing person down the hall may
be using the same subprogram to plot an array of data representing next year's sales
forecast.

167

User-Defined Functions
and Subprograms

Introduction

Chapter

6

One of the most powerful constructs available in any language is the subprogram (a user­
defined function is a special form of subprogram). A subprogram can do everything a main
program can do except that it must be invoked or "called" before it is executed, whereas a
main program is executed by pressing the RUN key. In a sense, pressing the RUN key is how
you "call" a main program.

A subprogram has its own " context" or state as distinct from a main program and all other
subprograms. This means that every subprogram has its own set of variables, its own softkey
definitions, its own DATA blocks, and its own line labels. There are several benefits to be
realized by taking advantage of subprograms:

• The subprogram allows the programmer to take advantage of the "Top-Down" method of
designing programs. In this technique, the problem to be solved is broken up into a set of
smaller and more easily solvable problems. These smaller problems can in turn be broken
up into smaller problems yet, and so on. This technique has been shown to greatly improve
the design , coding, and testing of programs, and will be discussed further at the end of the
chapter.

• By separating all the details of performing the subtasks from the overall logic flow of the
main program, the program is much easier to read from the subprogram calls. The pro­
grammer can see at a high level what he 's trying to accomplish, rather than immediately
getting lost in the details of each little sub-task.

• One of the most time-consuming parts of writing a program is debugging it, or forcing it to
run correctly. The time consuming part of fixing bugs in a program is finding where the bug
is in the first place. By using subprograms and testing each one independently of the
others, it is easier to locate problems, and hence to fix them.

• Often, a programmer may want to perform the same task from several different areas of his
program. For example, a set.of readings may need to be taken from a voltmeter after each
of four different input signals are fed through a circuit being tested. The same subprogram
may be used to set up the voltmeter and take the readings, while different pieces of code
would have to be used to set up the differing input conditions. Thus, subprograms can be
used to economize on the overall size of the program.

• Finally, libraries of commonly used subprograms can be assembled for widespread use.
Many different users doing diverse types of problems still may require some identical
subprograms. For instance, an engineer may be using a subprogram to plot an array of data
that he gathered from a spectrum analyzer, while the marketing person down the hall may
be using the same subprogram to plot an array of data representing next year's sales
forecast.

167

168 User-Defined Functions and Subprograms

Some Startup Details
Location
A subprogram is located after the body of the main program, following the main program's
END statement. (The END statement must be the last statement in the main program except for
comments.) Subprograms may not be nested with other subprograms, but are physically delim­
ited from each other with their heading statements (SUB or DEF) and ending statements
(SUBEND or FNEND).

Naming
A subprogram has a name which may be up to fifteen characters long, just as with line labels
and variable names. Here are some legal subprogram names:

Initialize
Read_dvm
SorL2_d_array
PloLdata
(Katakana name)

Because up to 15 characters are allowed for naming subprograms, it is easy and convenient to
name subprograms in such a way as to reflect the purpose for which the subprogram was
written.

For Example
The following example shows a program which uses subprograms.

10 OPTION BASE 1
20 DIM Numbers(20)
30 CALL B'.lild_arra)'INur,1bersl*) ,20)
40 CALL Sort_arra)'INufllbersl*) ,20)
50 PRINT FNSl.lf,1_arra)'IN'.lr,1bersl*) ,20)
60 END
70 SUB Buil,Larra)'I}(I*) ,N)
80 ! XI*) is the arraY to be defined
80 ! N tells how many elements are in the array
100 II is assumed to be the lower index)
110 FOR 1=1 TO N
120 OISP "ELEMENT #" ;1;
130 INPUT "?",){II)
140 NE){T I
150 SUBENO

170 AI*) is array to be sorted
180 I N tells how many elements are in the arra Y II is assumed
180 to be the lower bound)
200 Sort the array l elements l-N) in increasing order
210 I Algorithm used: Shell sort or Diminishing increment sort
220 ! Ref: Knuth, Donald E., The Art of COll1Puter Prografllflling,
230 Vol. 3 ISorting and Searching), IAddison-Wesley 1873)
240 PP. 84-85
250 INTEGER T,S,HtI,J
260 REAL Terl1P
270 T=INTILOGIN)/LOGI2»
280 FOR S=T TO 1 STEP - 1
280 H=2 "'IS- l)
300 FOR J=H+l TO N
310 I=J-H
320 Temp=AIJ)

I # of diminshing increments

! ... 16,8,4,2.1

330 Decide : IF TerIlP>=AIl) THEN Insert

168 User-Defined Functions and Subprograms

Some Startup Details
Location
A subprogram is located after the body of the main program, following the main program's
END statement. (The END statement must be the last statement in the main program except for
comments.) Subprograms may not be nested with other subprograms, but are physically delim­
ited from each other with their heading statements (SUB or DEF) and ending statements
(SUBEND or FNEND).

Naming
A subprogram has a name which may be up to fifteen characters long, just as with line labels
and variable names. Here are some legal subprogram names:

Initialize
Read_dvm
SorL2_d_array
PloLdata
(Katakana name)

Because up to 15 characters are allowed for naming subprograms, it is easy and convenient to
name subprograms in such a way as to reflect the purpose for which the subprogram was
written.

For Example
The following example shows a program which uses subprograms.

10 OPTION BASE 1
20 DIM Numbers(20)
30 CALL B'.lild_arra)'INur,1bersl*) ,20)
40 CALL Sort_arra)'INufllbersl*) ,20)
50 PRINT FNSl.lf,1_arra)'IN'.lr,1bersl*) ,20)
60 END
70 SUB Buil,Larra)'I}(I*) ,N)
80 ! XI*) is the arraY to be defined
80 ! N tells how many elements are in the array
100 II is assumed to be the lower index)
110 FOR 1=1 TO N
120 OISP "ELEMENT #" ;1;
130 INPUT "?",){II)
140 NE){T I
150 SUBENO

170 AI*) is array to be sorted
180 I N tells how many elements are in the arra Y II is assumed
180 to be the lower bound)
200 Sort the array l elements l-N) in increasing order
210 I Algorithm used: Shell sort or Diminishing increment sort
220 ! Ref: Knuth, Donald E., The Art of COll1Puter Prografllflling,
230 Vol. 3 ISorting and Searching), IAddison-Wesley 1873)
240 PP. 84-85
250 INTEGER T,S,HtI,J
260 REAL Terl1P
270 T=INTILOGIN)/LOGI2»
280 FOR S=T TO 1 STEP - 1
280 H=2 "'IS- l)
300 FOR J=H+l TO N
310 I=J-H
320 Temp=AIJ)

I # of diminshing increments

! ... 16,8,4,2.1

330 Decide : IF TerIlP>=AIl) THEN Insert

User-Defined Functions and Subprograms 169

340 Switch: AII+H) =AII)
350 I=I- H
360 IF 1) =1 THEN Dec ide
370 I n ser t: AI I +H) =TeMP
380 ND (T J
390 ND(T S
400 SUBEND
410 DEF FNSlj fTl_ a r ri!}' I A I *) ,N)
420 ! Ad d All' ••• AINl
430 INT EGER I
440 REAL Arra y_ total
450 FOR 1 =1 TO N
46 0 Ar ra y_t ot a l= Array _ t o t a l +AI I l
470 NE;<T I
480 RETU RN Ar ra y _ tot a l
49 0 FN END

Lines 10 through 60 are the main program. As you can see, it does nothing but call subpro­
grams, which in turn do all the work. Line 70 is the header for the subprogram which asks the
user to enter the values stored in his array. Notice that the main program has declared the
array's name to be Numbers(*), but the subprogram uses the name X(*) to deal with the same
array. The subprogram can name its variables whatever it wants without interfering with vari­
ables used outside the subprogram's context. The only variables that can be affected outside
the subprogram's context are those passed through the parameter list (as shown here) or
through COM (discussed later) . In both cases, the matching between the subprogram and the
outside world is done through the position of the variable(s) in the parameter list or COM block,
not the actual name of the variable(s).

Starting at line 160 is the next subprogram which sorts the array into ascending order. The
comments at the front of the subprogram serve to discuss the definition of the parameters used,
and what effect the subprogram has on them. Also, the algorithm used is given, along with the
proper reference material. It is an excellent idea to give a list of such pertinent details at the front
of all subprograms. This makes debugging, modifying, optimizing, and re-using the subprogram
much easier.

Starting at line 410 we see an example of a function subprogram. Functions are similar to SUB
subprograms in concept. This particular example just adds the elements of the array together
and returns the final value to the main program, which prints it.

The Difference Between a Function and a Subprogram
A SUB subprogram (as opposed to a function subprogram) is invoked explicitly using the CALL
statement. A function subprogram is called implicitly by using the function name in an expres­
sion. It can be used in a numeric or string expression the same way a constant would be used, or
it can be invoked from the keyboard. A function 's purpose is to return a single value (either a
real number or a string) .

There are several functions that are built into the BASIC language which can be used to return
values, such as SIN, SQR, EXP, etc.

Y=SIN(><)+P hase
Rootl=(-B +SQR (B*B-4 * A*C)) / (2 * A)

User-Defined Functions and Subprograms 169

340 Switch: AII+H) =AII)
350 I=I- H
360 IF 1) =1 THEN Dec ide
370 I n ser t: AI I +H) =TeMP
380 ND (T J
390 ND(T S
400 SUBEND
410 DEF FNSlj fTl_ a r ri!}' I A I *) ,N)
420 ! Ad d All' ••• AINl
430 INT EGER I
440 REAL Arra y_ total
450 FOR 1 =1 TO N
46 0 Ar ra y_t ot a l= Array _ t o t a l +AI I l
470 NE;<T I
480 RETU RN Ar ra y _ tot a l
49 0 FN END

Lines 10 through 60 are the main program. As you can see, it does nothing but call subpro­
grams, which in turn do all the work. Line 70 is the header for the subprogram which asks the
user to enter the values stored in his array. Notice that the main program has declared the
array's name to be Numbers(*), but the subprogram uses the name X(*) to deal with the same
array. The subprogram can name its variables whatever it wants without interfering with vari­
ables used outside the subprogram's context. The only variables that can be affected outside
the subprogram's context are those passed through the parameter list (as shown here) or
through COM (discussed later) . In both cases, the matching between the subprogram and the
outside world is done through the position of the variable(s) in the parameter list or COM block,
not the actual name of the variable(s).

Starting at line 160 is the next subprogram which sorts the array into ascending order. The
comments at the front of the subprogram serve to discuss the definition of the parameters used,
and what effect the subprogram has on them. Also, the algorithm used is given, along with the
proper reference material. It is an excellent idea to give a list of such pertinent details at the front
of all subprograms. This makes debugging, modifying, optimizing, and re-using the subprogram
much easier.

Starting at line 410 we see an example of a function subprogram. Functions are similar to SUB
subprograms in concept. This particular example just adds the elements of the array together
and returns the final value to the main program, which prints it.

The Difference Between a Function and a Subprogram
A SUB subprogram (as opposed to a function subprogram) is invoked explicitly using the CALL
statement. A function subprogram is called implicitly by using the function name in an expres­
sion. It can be used in a numeric or string expression the same way a constant would be used, or
it can be invoked from the keyboard. A function 's purpose is to return a single value (either a
real number or a string) .

There are several functions that are built into the BASIC language which can be used to return
values, such as SIN, SQR, EXP, etc.

Y=SIN(><)+P hase
Rootl=(-B +SQR (B*B-4 * A*C)) / (2 * A)

170 User-Defined Functions and Subprograms

Using the capability of defining your own function subprograms, you can essentially extend the
language if you need a feature not provided in BASIC.

){=l/FNSinh (Y"' a)
An~le=FNAtn2(Y t X)

A general rule of thumb for using subprograms is that if you want to take a set of data and
analyze it to generate a single value, then you probably want to implement the subprogram as a:
function . On the other hand, if you want to actually change the data itself, generate more than
one value as a result of the subprogram, or perform any sort of I/O activity, it is better to use a
SUB subprogram.

REAL Precision Functions and String Functions
A function is allowed to return either a REAL value or a string value. Above, we saw some
examples of functions returning real numbers. Let's examine one which returns a string. There
are two primary differences: The first is that a $ must be added to the name of a function which
is to return a string. This is used both in the definition of the function (the DEF statement) and
when the function is invoked. The second difference is that the RETURN statement in the
function returns a string instead of a number.

200 PRINT FNAscii_to_hex$(A$)

1550 DEF FNAscii_to_hex$(A$)
15GO I Each ASCII byte consists of two hex
1570 digits; pretty formatting dictates that
1580 a space be inserted between every pair
1580 of hex digits, Thus. the output string
lGOO will be three times as long as the input
lGl0 string,
lG20
lG30 I upper four bits
lG40 ! UUUU LLLL

101,ler four bits
UUUU LLLL

lG50
lGGO
lG70
lG80
lG80
1700
1710
1720
1730
1740
1750
17GO
1770
1780
1780
1800
1810
1820
1830
1840
1850

! shift 4 bits
! 0000 UUUU
!

0000 1111 mask (15)
0000 LLLL final

INTEGER I .Length .Hexupper.Hexlol,ler
Lensth=LEN(A$)
ALLOCATE Temp$[3*Length]
FOR 1=1 TO Length

Hexupper=SHIFT(NUM(A$[I]) .4)
Hexlower=BINAND(NUM(A$[I]) .15)
Temp$[3*I-2;1]=FNHex$(Hexupper)
Temp$[3*I-l;I]=FNHex$(Hexlower)
T e ,., p$ [3* I ; 1] =" "

NEHT I
RETURN Tel.1P$
FNEND
DEF FNHex$(INTEGER H)
! Assume 0(=H(=15)
I Return ASCII representation of the

hex digit represented by the four
bits of){t

! If H is between 0 and 8. return

170 User-Defined Functions and Subprograms

Using the capability of defining your own function subprograms, you can essentially extend the
language if you need a feature not provided in BASIC.

){=l/FNSinh (Y"' a)
An~le=FNAtn2(Y t X)

A general rule of thumb for using subprograms is that if you want to take a set of data and
analyze it to generate a single value, then you probably want to implement the subprogram as a:
function . On the other hand, if you want to actually change the data itself, generate more than
one value as a result of the subprogram, or perform any sort of I/O activity, it is better to use a
SUB subprogram.

REAL Precision Functions and String Functions
A function is allowed to return either a REAL value or a string value. Above, we saw some
examples of functions returning real numbers. Let's examine one which returns a string. There
are two primary differences: The first is that a $ must be added to the name of a function which
is to return a string. This is used both in the definition of the function (the DEF statement) and
when the function is invoked. The second difference is that the RETURN statement in the
function returns a string instead of a number.

200 PRINT FNAscii_to_hex$(A$)

1550 DEF FNAscii_to_hex$(A$)
15GO I Each ASCII byte consists of two hex
1570 digits; pretty formatting dictates that
1580 a space be inserted between every pair
1580 of hex digits, Thus. the output string
lGOO will be three times as long as the input
lGl0 string,
lG20
lG30 I upper four bits
lG40 ! UUUU LLLL

101,ler four bits
UUUU LLLL

lG50
lGGO
lG70
lG80
lG80
1700
1710
1720
1730
1740
1750
17GO
1770
1780
1780
1800
1810
1820
1830
1840
1850

! shift 4 bits
! 0000 UUUU
!

0000 1111 mask (15)
0000 LLLL final

INTEGER I .Length .Hexupper.Hexlol,ler
Lensth=LEN(A$)
ALLOCATE Temp$[3*Length]
FOR 1=1 TO Length

Hexupper=SHIFT(NUM(A$[I]) .4)
Hexlower=BINAND(NUM(A$[I]) .15)
Temp$[3*I-2;1]=FNHex$(Hexupper)
Temp$[3*I-l;I]=FNHex$(Hexlower)
T e ,., p$ [3* I ; 1] =" "

NEHT I
RETURN Tel.1P$
FNEND
DEF FNHex$(INTEGER H)
! Assume 0(=H(=15)
I Return ASCII representation of the

hex digit represented by the four
bits of){t

! If H is between 0 and 8. return

User-Defined Functions and Subprograms 171

1 860 II 0 11 • t t II 9 \I

1 870 ! I f){ :> 9 t re t urn 11 A II f • f II F 1/

1880 IF X(=9 THEN
1890 RETURN CHR$(48+ X) ! ASCII 48 through 57
1900 represent " 0 " - "9"
1910 ELSE
1920 RETURN CHR$ (55+ X) I ASCII 65 through 70
1 930 rep res en t II A I I _ I I F II
194 0 END IF
1950 FNEND

Lines 200, 1740, and 1750 show examples of how to call a string function. Lines 1550 and
1800 show where the two string function subprograms begin. Notice that the program could be
optimized slightly by deleting lines 1720 and 1730 and modifying lines 1740 and 1750:

1740
17S0

T e III P $ [3 * I - 2 ; 1] = F N Hex $ (S H I F T (N U M (A $ [I]) ,4))
TelllP$[3*I-1 ;1J=FNHex$(BINAND(NUM(A$[IJ I1S))

Thus it is perfectly legal to use expressions in the pass parameter list of a subprogram. (By the
way, such expressions may also invoke function subprograms.)

Calling and Executing a Subprogram
We have seen in the above examples how the two types of subprograms are called - SUBs are
invoked explicitly using the CALL statement, while functions are invoked implicitly just by using
the name in an expression, an output list, etc. A nuance of SUB subprograms is that the CALL
keyword is optional when invoking a SUB subprogram. Thus our example of the main program
which causes an array of numbers to be sorted could look like this:

10 DPTIDN BASE 1
20 DIM Numbers (20)
30 Build_arra y (Numbers(*) ,20)
40 Sort_array(NUfTlbers(*) ,20)
SO PRINT FNSuIILarra y (NufTlbers(*) ,20)
GO END

The omission of the CALL keyword when invoking a SUB subprogram is left solely to the
discretion of the programmer; some will find it more aesthetic to omit CALL, others will prefer
its inclusion. There are, however, three instances which require the use of CALL when invoking
a subprogram:

CALL is required:

1. If the subprogram is called from the keyboard,

2. If the subprogram is called after the THEN keyword in an IF statement

3. In an ON < event> CALL statement

User-Defined Functions and Subprograms 171

1 860 II 0 11 • t t II 9 \I

1 870 ! I f){ :> 9 t re t urn 11 A II f • f II F 1/

1880 IF X(=9 THEN
1890 RETURN CHR$(48+ X) ! ASCII 48 through 57
1900 represent " 0 " - "9"
1910 ELSE
1920 RETURN CHR$ (55+ X) I ASCII 65 through 70
1 930 rep res en t II A I I _ I I F II
194 0 END IF
1950 FNEND

Lines 200, 1740, and 1750 show examples of how to call a string function. Lines 1550 and
1800 show where the two string function subprograms begin. Notice that the program could be
optimized slightly by deleting lines 1720 and 1730 and modifying lines 1740 and 1750:

1740
17S0

T e III P $ [3 * I - 2 ; 1] = F N Hex $ (S H I F T (N U M (A $ [I]) ,4))
TelllP$[3*I-1 ;1J=FNHex$(BINAND(NUM(A$[IJ I1S))

Thus it is perfectly legal to use expressions in the pass parameter list of a subprogram. (By the
way, such expressions may also invoke function subprograms.)

Calling and Executing a Subprogram
We have seen in the above examples how the two types of subprograms are called - SUBs are
invoked explicitly using the CALL statement, while functions are invoked implicitly just by using
the name in an expression, an output list, etc. A nuance of SUB subprograms is that the CALL
keyword is optional when invoking a SUB subprogram. Thus our example of the main program
which causes an array of numbers to be sorted could look like this:

10 DPTIDN BASE 1
20 DIM Numbers (20)
30 Build_arra y (Numbers(*) ,20)
40 Sort_array(NUfTlbers(*) ,20)
SO PRINT FNSuIILarra y (NufTlbers(*) ,20)
GO END

The omission of the CALL keyword when invoking a SUB subprogram is left solely to the
discretion of the programmer; some will find it more aesthetic to omit CALL, others will prefer
its inclusion. There are, however, three instances which require the use of CALL when invoking
a subprogram:

CALL is required:

1. If the subprogram is called from the keyboard,

2. If the subprogram is called after the THEN keyword in an IF statement

3. In an ON < event> CALL statement

172 User-Defined Functions and Subprograms

Communication
As mentioned earlier, there are two ways for a subprogram to communicate with the main
program or with other subprograms: parameter lists, and COM (blank and labeled) .

Parameter Lists
The formal parameter list is part of the subprogram's definition, just like the subprogram's
name. The formal parameter list tells how many values may be passed to a subprogram, the
types of those values (string, INTEGER, REAL, array, I/O path name) , and the names the
subprogram will use to refer to those values. The subprogram has the power to demand that the
calling context match the types declared in the formal parameter list exactly - otherwise an
error results. The calling context provides a pass parameter list which corresponds with the
formal parameter list provided by the subprogram. The pass parameter list provides the values
for those inputs required by the subprogram, and also provides the storage for the output
values. It is perfectly legal for both the formal and pass parameter lists to be null , or nonexistent.

Here is a sample formal parameter list showing which types each parameter demands:

SUB Read_(:I!.I(T)(@Dl)fTI ,A <*) !INTEGER LOIAte r , Uppe r ,Status$,Errfla9')

@D l) hI is an I/O path name which may refer to either an I/O device or a mass storage file . Its
name here implies that it is a voltmeter, but it is perfectly legal to redirect I/O to a file just
by using a different ASSIGN with @Dvm.

A (*) is a REAL array. Its size is declared by the calling context. Without MAT, there is no way to
find the size of the array except through information supplied explicitly by the calling
context; hence the parameters Lower and Upper.

L 0 1,,1 e r and Up per are declared here to be INTEGERs. Thus, when the calling program
invokes this subprogram, it must supply either INTEGER variables or INTEGER ex­
pressions, or an error will occur.

S t a t us $ is a simple string which presumably could be used to return the status of the
voltmeter to the main program. The length of the string is defined by the calling context.

Err f 1 a 9' is a REAL number. The declaration of the string Status$ has limited the scope of the
INTEGER keyword which caused Lower and Upper to require INTEGER pass parame­
ters.

There are two ways for the calling context to send values to a subprogram - pass by value, and
pass by reference. Using pass by value, the calling context supplies a value and nothing more.
Using pass by reference, the calling context actually gives the subprogram access to the calling
context's value area. The distinction is that a subprogram can not alter the value of data in the
calling context if the data is passed by value, while the subprogram can alter the value of data in
the calling context if the data is passed by reference.

172 User-Defined Functions and Subprograms

Communication
As mentioned earlier, there are two ways for a subprogram to communicate with the main
program or with other subprograms: parameter lists, and COM (blank and labeled) .

Parameter Lists
The formal parameter list is part of the subprogram's definition, just like the subprogram's
name. The formal parameter list tells how many values may be passed to a subprogram, the
types of those values (string, INTEGER, REAL, array, I/O path name) , and the names the
subprogram will use to refer to those values. The subprogram has the power to demand that the
calling context match the types declared in the formal parameter list exactly - otherwise an
error results. The calling context provides a pass parameter list which corresponds with the
formal parameter list provided by the subprogram. The pass parameter list provides the values
for those inputs required by the subprogram, and also provides the storage for the output
values. It is perfectly legal for both the formal and pass parameter lists to be null , or nonexistent.

Here is a sample formal parameter list showing which types each parameter demands:

SUB Read_(:I!.I(T)(@Dl)fTI ,A <*) !INTEGER LOIAte r , Uppe r ,Status$,Errfla9')

@D l) hI is an I/O path name which may refer to either an I/O device or a mass storage file . Its
name here implies that it is a voltmeter, but it is perfectly legal to redirect I/O to a file just
by using a different ASSIGN with @Dvm.

A (*) is a REAL array. Its size is declared by the calling context. Without MAT, there is no way to
find the size of the array except through information supplied explicitly by the calling
context; hence the parameters Lower and Upper.

L 0 1,,1 e r and Up per are declared here to be INTEGERs. Thus, when the calling program
invokes this subprogram, it must supply either INTEGER variables or INTEGER ex­
pressions, or an error will occur.

S t a t us $ is a simple string which presumably could be used to return the status of the
voltmeter to the main program. The length of the string is defined by the calling context.

Err f 1 a 9' is a REAL number. The declaration of the string Status$ has limited the scope of the
INTEGER keyword which caused Lower and Upper to require INTEGER pass parame­
ters.

There are two ways for the calling context to send values to a subprogram - pass by value, and
pass by reference. Using pass by value, the calling context supplies a value and nothing more.
Using pass by reference, the calling context actually gives the subprogram access to the calling
context's value area. The distinction is that a subprogram can not alter the value of data in the
calling context if the data is passed by value, while the subprogram can alter the value of data in
the calling context if the data is passed by reference.

User-Defined Functions and Subprograms 173

The subprogram has no control over whether its parameters are sent using pass by value or
pass by reference. That is determined by the calling context's pass parameter list. In order for a
parameter to be passed by reference, the pass parameter list (in the calling context) must use a
variable for that parameter. In order for a parameter to be passed by value, the pass parameter
list must use an expression for that parameter. Note that enclosing a variable in parentheses is
sufficient to create an expression. Using pass by value, it is possible to pass an integer expres­
sion to a REAL formal parameter (the INTEGER is converted to its REAL representation)
without causing a type mismatch error. Likewise, it is possible to pass a REAL expression to an
INTEGER formal parameter (the value of the expression is rounded to the nearest INTEGER)
without causing a type mismatch error (an integer overflow error is generated if the expression
is out of range for an INTEGER) . Let's look at our previous example from the calling side:

CALL Read_d\)(ll(@I,lolt(llete r ,Readings(*) Ii ,400 ,Status$, Errflag)

@I,IO 1 t (Il e t e r is the pass parameter which matches the formal parameter @Dvm in the
subprogram. 110 path names are always passed by reference, which means the subpro­
gram can close the 110 path or assign it to a different file or device.

Rea din g s (*) matches the array A (*) in the subprogram's formal parameter list. Arrays
too, are always passed by reference.

1, 400 are the values passed to the formal parameters Lower and Upper. Since constants are
classified as expressions rather than variables , these parameters have been passed by
value. Thus, if the subprogram used either Lower or Upper on the left hand side of an
assignment operator, no change would take place in the calling context's value area.

S tat u s $ is passed by reference here. If it were enclosed in parentheses, it would be passed by
value. Notice that if it were passed by value, it would be totally useless as a method for
returning' the status of the voltmeter to the calling context.

Err f 1 a g is passed by reference.

OPTIONAL Parameters
Another important feature of formal parameter lists is the OPTIONAL keyword. Any formal
parameter list (the one defining the subprogram) may contain the keyword OPTIONAL some­
where, although it isn 't required to. The OPTIONAL keyword indicates that any parameters
that follow it are not required in the pass parameter list of a calling context - they are optional.
On the other hand, all parameters preceding the OPTIONAL keyword are required. If no
OPTIONAL appears in the subprogram's parameter list, then all the parameters must be speci­
fied , or an error will be generated. The rules requiring matching of parameter types apply to
OPTIONAL parameters as well as to ordinary parameters. There is a standard function called
NPAR which can be used inside the subprogram to find out how many pass parameters the
calling context actually did use. (NPAR will return 0 if used inside the main program, or if no
parameters were passed to a subprogram.)

The OPTIONAUNPAR combination is very effectively used in situations requiring external
instrument setups. Most instruments have several different ranges, modes, settings, etc. , which
can be used depending upon the requirements of the user. Often, the user doesn't require the
entire flexibility the instrument has to offer, and would rather use some reasonable defaults.

User-Defined Functions and Subprograms 173

The subprogram has no control over whether its parameters are sent using pass by value or
pass by reference. That is determined by the calling context's pass parameter list. In order for a
parameter to be passed by reference, the pass parameter list (in the calling context) must use a
variable for that parameter. In order for a parameter to be passed by value, the pass parameter
list must use an expression for that parameter. Note that enclosing a variable in parentheses is
sufficient to create an expression. Using pass by value, it is possible to pass an integer expres­
sion to a REAL formal parameter (the INTEGER is converted to its REAL representation)
without causing a type mismatch error. Likewise, it is possible to pass a REAL expression to an
INTEGER formal parameter (the value of the expression is rounded to the nearest INTEGER)
without causing a type mismatch error (an integer overflow error is generated if the expression
is out of range for an INTEGER) . Let's look at our previous example from the calling side:

CALL Read_d\)(ll(@I,lolt(llete r ,Readings(*) Ii ,400 ,Status$, Errflag)

@I,IO 1 t (Il e t e r is the pass parameter which matches the formal parameter @Dvm in the
subprogram. 110 path names are always passed by reference, which means the subpro­
gram can close the 110 path or assign it to a different file or device.

Rea din g s (*) matches the array A (*) in the subprogram's formal parameter list. Arrays
too, are always passed by reference.

1, 400 are the values passed to the formal parameters Lower and Upper. Since constants are
classified as expressions rather than variables , these parameters have been passed by
value. Thus, if the subprogram used either Lower or Upper on the left hand side of an
assignment operator, no change would take place in the calling context's value area.

S tat u s $ is passed by reference here. If it were enclosed in parentheses, it would be passed by
value. Notice that if it were passed by value, it would be totally useless as a method for
returning' the status of the voltmeter to the calling context.

Err f 1 a g is passed by reference.

OPTIONAL Parameters
Another important feature of formal parameter lists is the OPTIONAL keyword. Any formal
parameter list (the one defining the subprogram) may contain the keyword OPTIONAL some­
where, although it isn 't required to. The OPTIONAL keyword indicates that any parameters
that follow it are not required in the pass parameter list of a calling context - they are optional.
On the other hand, all parameters preceding the OPTIONAL keyword are required. If no
OPTIONAL appears in the subprogram's parameter list, then all the parameters must be speci­
fied , or an error will be generated. The rules requiring matching of parameter types apply to
OPTIONAL parameters as well as to ordinary parameters. There is a standard function called
NPAR which can be used inside the subprogram to find out how many pass parameters the
calling context actually did use. (NPAR will return 0 if used inside the main program, or if no
parameters were passed to a subprogram.)

The OPTIONAUNPAR combination is very effectively used in situations requiring external
instrument setups. Most instruments have several different ranges, modes, settings, etc. , which
can be used depending upon the requirements of the user. Often, the user doesn't require the
entire flexibility the instrument has to offer, and would rather use some reasonable defaults.

174 User-Defined Functions and Subprograms

Consider the HP 3437 A Digital Voltmeter. Among other things, this device has two data
formats (packed and ASCII), three trigger modes (internal, external, and hold/manua!), three
voltage ranges (0.1 V, lV, and 10V), and also has programmable values for delay between
readings, and numbers of readings taken. Naturally, the values used for the various settings will
depend entirely upon the application for which the voltmeter is being used, but let's make some
assumptions:

• The values for delay and number of readings are going to be changed frequently, so they
will not be OPTIONAL parameters .

• Of the remaining OPTIONAL parameters, the range is most likely to be altered.

A reasonable setup routine for the voltmeter might look like this:

2010 SUB Setup_dvM(@DVM . INTEGER Readin~s.REAL Delay.OPTIONAL INTEGER Pran~e.Ptr

i ~~e r .Pfo rlllat)
2020 SELECT NPAR
2030 CASE 3
20110
2050

ForMat=1
Tri~~er=1

2060 Ran~e=2

2070 CASE II
2080 Forlllat=1
2090 Tri.~er=1

2100 Ran~e=Pran~e

2110 CASE 5
2120 Forlllat=1
2130 Tri~~er=Ptri~~er

21110 Ran~e=Pran~e

2150 CASE 6
2160 ForMat=PforMat
2170 Tri~~er=Ptri~~er

2180 Ran~e=Pran~e

2190 END SELECT

! Default ASCII forMat
! Default internal tri~~er

! Default 1 volt ran~e

2200 0 UT PU T @D v M j " N" j 1.1 A L $ (Rea din ~ s) j " S D" j 1.1 A L $ (Del a)') j " SR" j 1.1 A L $ (Ran ~ e) j " T" j 1.1 AL $ (
Tri~~er) j"F" jl.IAL$(Forlllat)
2210 SUBEND

Legal invocations of the Setup_dvm subprogram are:

570
630

Setup_dvM(@DvM.l00 •• 00l)
Setup_dvM(@DvM.500 •• 05.3)

! Default Ran~e.Tri9'~er.Forlllat

I Default Tri9'9'er.ForMat
850 Setup_dl.llIIl@DvlIl.50 •• 005t1.2) ! Default Forlliat
1010 Setup_d,.IIII(@Dvlll.70 •• 075.2t1.2) ! Explicit!>' declare all values

Notice in the example above that local variables are used instead of the formal parameters. This
is because it is illegal to use an OPTIONAL parameter variable if that variable was not passed
from the calling context.

Other applications of the OPTIONALINPAR feature are limited only by the imagination, but
here are a few ideas:

Write a subprogram which sorts an array in ascending order unless an OPTIONAL parameter
tells it to sort in descending order.

Write a rootfinder routine which has an acceptance tolerance of ± 10-6 unless overridden with
an OPTIONAL parameter.

174 User-Defined Functions and Subprograms

Consider the HP 3437 A Digital Voltmeter. Among other things, this device has two data
formats (packed and ASCII), three trigger modes (internal, external, and hold/manua!), three
voltage ranges (0.1 V, lV, and 10V), and also has programmable values for delay between
readings, and numbers of readings taken. Naturally, the values used for the various settings will
depend entirely upon the application for which the voltmeter is being used, but let's make some
assumptions:

• The values for delay and number of readings are going to be changed frequently, so they
will not be OPTIONAL parameters .

• Of the remaining OPTIONAL parameters, the range is most likely to be altered.

A reasonable setup routine for the voltmeter might look like this:

2010 SUB Setup_dvM(@DVM . INTEGER Readin~s.REAL Delay.OPTIONAL INTEGER Pran~e.Ptr

i ~~e r .Pfo rlllat)
2020 SELECT NPAR
2030 CASE 3
20110
2050

ForMat=1
Tri~~er=1

2060 Ran~e=2

2070 CASE II
2080 Forlllat=1
2090 Tri.~er=1

2100 Ran~e=Pran~e

2110 CASE 5
2120 Forlllat=1
2130 Tri~~er=Ptri~~er

21110 Ran~e=Pran~e

2150 CASE 6
2160 ForMat=PforMat
2170 Tri~~er=Ptri~~er

2180 Ran~e=Pran~e

2190 END SELECT

! Default ASCII forMat
! Default internal tri~~er

! Default 1 volt ran~e

2200 0 UT PU T @D v M j " N" j 1.1 A L $ (Rea din ~ s) j " S D" j 1.1 A L $ (Del a)') j " SR" j 1.1 A L $ (Ran ~ e) j " T" j 1.1 AL $ (
Tri~~er) j"F" jl.IAL$(Forlllat)
2210 SUBEND

Legal invocations of the Setup_dvm subprogram are:

570
630

Setup_dvM(@DvM.l00 •• 00l)
Setup_dvM(@DvM.500 •• 05.3)

! Default Ran~e.Tri9'~er.Forlllat

I Default Tri9'9'er.ForMat
850 Setup_dl.llIIl@DvlIl.50 •• 005t1.2) ! Default Forlliat
1010 Setup_d,.IIII(@Dvlll.70 •• 075.2t1.2) ! Explicit!>' declare all values

Notice in the example above that local variables are used instead of the formal parameters. This
is because it is illegal to use an OPTIONAL parameter variable if that variable was not passed
from the calling context.

Other applications of the OPTIONALINPAR feature are limited only by the imagination, but
here are a few ideas:

Write a subprogram which sorts an array in ascending order unless an OPTIONAL parameter
tells it to sort in descending order.

Write a rootfinder routine which has an acceptance tolerance of ± 10-6 unless overridden with
an OPTIONAL parameter.

User-Defined Functions and Subprograms 175

Write a program which keeps track of departmental expenses, including the account billed, the
item or service purchased, the person incurring the expense, and optionally, the person author­
izing the expense.

COM Blocks
Since we've discussed parameter lists in detail , let's turn now to the other method a subpro­
gram has of communicating with the main program or with other subprograms, the COM block.

There are two types of COM (or common) blocks, blank and labeled. Blank COM is simply a
special case of labeled COM (it is the COM whose name is nothing) with the exception that
blank COM must be declared in the main program, while labeled COM blocks don' t have to be
declared in the main program. Both types of COM blocks simply declare blocks of data which
are accessible to any context having matching COM declarations.

A blank COM block might look like this:

10 OPTION BASE 1
20 COM Condit i ons (15) tINTEGER , CfTlin ,CfTlax ,@NucleaLP il e t

Pile_status$[20J ,Tolerance

A labeled COM might look like this:

A COM block's name, if it has one, will immediately follow the COM keyword, and will be set
off with slashes, as shown above. The same rules used for naming variables and subprograms
are used for naming COM blocks.

Any context need only declare those COM blocks which it needs to have access to. If there are
150 variables declared in 10 COM blocks, it isn't necessary for every context to declare the
entire set - only those blocks that are necessary to each context need to be declared. COM
blocks with matching names must have matching definitions. As in parameter lists, matching
COM blocks is done by position and type, not by name.

There are several characteristics of COM blocks which distinguish them from parameter lists as
a means of communications between contexts .

• COM survives pre-run - In general, any numeric variable is set to 0, strings are set to the
null string, and I/O path names are set to undefined after pushing the RUN key, or upon
entering a subprogram. This is true of COM the first time the RUN key is pressed, but after
COM block variables are defined, they retain their values until:

1. SCRATCH A or SCRATCH C is executed,

2. A statement declaring a COM block is modified by the user,

3. A new program is brought into memory using the GET or LOAD commands which
doesn't match the declaration of a given COM block, or which doesn' t declare a
given COM block at all.

• COM blocks can be arbitrarily large - One limitation on parameter lists (both pass and
formal parameter lists) is that they must fit into a single program line along with the line's
number, possibly a label, the invocation or subprogram header, and possibly (in the case of

User-Defined Functions and Subprograms 175

Write a program which keeps track of departmental expenses, including the account billed, the
item or service purchased, the person incurring the expense, and optionally, the person author­
izing the expense.

COM Blocks
Since we've discussed parameter lists in detail , let's turn now to the other method a subpro­
gram has of communicating with the main program or with other subprograms, the COM block.

There are two types of COM (or common) blocks, blank and labeled. Blank COM is simply a
special case of labeled COM (it is the COM whose name is nothing) with the exception that
blank COM must be declared in the main program, while labeled COM blocks don' t have to be
declared in the main program. Both types of COM blocks simply declare blocks of data which
are accessible to any context having matching COM declarations.

A blank COM block might look like this:

10 OPTION BASE 1
20 COM Condit i ons (15) tINTEGER , CfTlin ,CfTlax ,@NucleaLP il e t

Pile_status$[20J ,Tolerance

A labeled COM might look like this:

A COM block's name, if it has one, will immediately follow the COM keyword, and will be set
off with slashes, as shown above. The same rules used for naming variables and subprograms
are used for naming COM blocks.

Any context need only declare those COM blocks which it needs to have access to. If there are
150 variables declared in 10 COM blocks, it isn't necessary for every context to declare the
entire set - only those blocks that are necessary to each context need to be declared. COM
blocks with matching names must have matching definitions. As in parameter lists, matching
COM blocks is done by position and type, not by name.

There are several characteristics of COM blocks which distinguish them from parameter lists as
a means of communications between contexts .

• COM survives pre-run - In general, any numeric variable is set to 0, strings are set to the
null string, and I/O path names are set to undefined after pushing the RUN key, or upon
entering a subprogram. This is true of COM the first time the RUN key is pressed, but after
COM block variables are defined, they retain their values until:

1. SCRATCH A or SCRATCH C is executed,

2. A statement declaring a COM block is modified by the user,

3. A new program is brought into memory using the GET or LOAD commands which
doesn't match the declaration of a given COM block, or which doesn' t declare a
given COM block at all.

• COM blocks can be arbitrarily large - One limitation on parameter lists (both pass and
formal parameter lists) is that they must fit into a single program line along with the line's
number, possibly a label, the invocation or subprogram header, and possibly (in the case of

176 User-Defined Functions and Subprograms

a function) a string or numeric expression. Depending upon the situation, this can impose a
restriction on the size of your parameter lists.

COM blocks can take as many statements as necessary. COM statements can be inter­
woven with other statements (though this is considered a poor practice) . All COM state­
ments within a context which hav~ the same name will be part of the definition of that COM
block.

• COM blocks can be used for communicating between contexts that do not invoke each
other - Information such as modes and states can be an integral part of communicating
between contexts, even though those contexts don't explicitly call each other. For instance,
one routine might be responsible for setting the voltage range on a voltmeter, while
another routine which may need to know what the current voltage range is in order to set
up the scale on a graph properly.

• COM blocks can be used to communicate between subprograms that are not in memory
simultaneously - Similar to the case above, subprograms can communicate with each
other through COM blocks even though combinations of LOADSUB/DELSUB may pre­
clude their simultaneous presence in memory.

• COM blocks can be used to retain the value of " local" variables between subprogram calls
- In general, the variables used by a subprogram are discarded when the subprogram is
exited. However, there are situations where it might be useful for a subprogram to "re­
member" a value. A machine which tests capacitors in an incoming inspection department
may require calibration after every 100 tests ~1re performed. If the subprogram which does
the testing has a way to count how many tests it has already performed (using a labeled
COM block) , then this task can be left to the testing routine, simplifying the rest of the
system.

• COM blocks allow subprograms to share data without the intervention of the main program
- Subprogram libraries may consist of elaborate relationships of both programs and data
structures. In many cases, a major portion of the data structures are only used for support
of the task being performed, rather than being integral to the task itself. Thus the main
program does not need to declare the supportive data structures.

Examples of this situation might include data base management libraries (hashing tables
may need to be maintained for accessing data quickly) or three dimensional graphics
libraries (window, viewport~ and clip information need to be kept, as well as object defini­
tions and related transformations) .

Hints for Using COM Blocks
Any COM blocks needed by your program must be resident in memory at prerun time (prerun
is caused by pressing ~, executing a RUN command, executing LOAD or GET from the
progam, or executing a LOAD or GET from the keyboard and specifying a run line.) Thus if you
want to create libraries of subprograms which share their own labeled COM blocks, it is wise to
collect all the COM declarations together in one subprogram to make it easy to append them to
the rest of the program for inclusion at prerun time. (The subprogram need not contain any­
thing but the COM declarations.)

176 User-Defined Functions and Subprograms

a function) a string or numeric expression. Depending upon the situation, this can impose a
restriction on the size of your parameter lists.

COM blocks can take as many statements as necessary. COM statements can be inter­
woven with other statements (though this is considered a poor practice) . All COM state­
ments within a context which hav~ the same name will be part of the definition of that COM
block.

• COM blocks can be used for communicating between contexts that do not invoke each
other - Information such as modes and states can be an integral part of communicating
between contexts, even though those contexts don't explicitly call each other. For instance,
one routine might be responsible for setting the voltage range on a voltmeter, while
another routine which may need to know what the current voltage range is in order to set
up the scale on a graph properly.

• COM blocks can be used to communicate between subprograms that are not in memory
simultaneously - Similar to the case above, subprograms can communicate with each
other through COM blocks even though combinations of LOADSUB/DELSUB may pre­
clude their simultaneous presence in memory.

• COM blocks can be used to retain the value of " local" variables between subprogram calls
- In general, the variables used by a subprogram are discarded when the subprogram is
exited. However, there are situations where it might be useful for a subprogram to "re­
member" a value. A machine which tests capacitors in an incoming inspection department
may require calibration after every 100 tests ~1re performed. If the subprogram which does
the testing has a way to count how many tests it has already performed (using a labeled
COM block) , then this task can be left to the testing routine, simplifying the rest of the
system.

• COM blocks allow subprograms to share data without the intervention of the main program
- Subprogram libraries may consist of elaborate relationships of both programs and data
structures. In many cases, a major portion of the data structures are only used for support
of the task being performed, rather than being integral to the task itself. Thus the main
program does not need to declare the supportive data structures.

Examples of this situation might include data base management libraries (hashing tables
may need to be maintained for accessing data quickly) or three dimensional graphics
libraries (window, viewport~ and clip information need to be kept, as well as object defini­
tions and related transformations) .

Hints for Using COM Blocks
Any COM blocks needed by your program must be resident in memory at prerun time (prerun
is caused by pressing ~, executing a RUN command, executing LOAD or GET from the
progam, or executing a LOAD or GET from the keyboard and specifying a run line.) Thus if you
want to create libraries of subprograms which share their own labeled COM blocks, it is wise to
collect all the COM declarations together in one subprogram to make it easy to append them to
the rest of the program for inclusion at prerun time. (The subprogram need not contain any­
thing but the COM declarations.)

User-Defined Functions and Subprograms 177

COM can be used to communicate between programs which overlay each other using LOAD or
GET statements, if you remember a few rules.

1. COM blocks which match each other exactly between the two programs will be preserved
intact. "Matching" requires that the COM blocks are named identically (except blank
COM), and that corresponding blocks have exactly the same number of variables de­
clared, and that the types and sizes of these variables match.

2. Any COM blocks existing in the old program which are not declared in the new program
(the one being brought in with the LOAD or GET) are destroyed.

3. Any COM blocks which are named identically, but which do not match variables and
types identically, are defined to match the definition of the new program. All values
stored in that COM block under the old program are destroyed.

4 . Any new COM blocks declared by the new program (including those mentioned above in
#3 are initialized implicitly. Numeric variables and arrays are set to zero , strings are set to
the null string, and I/O path names are set to undefined.

The first occurrence in memory of a COM block is used to define or set up the block. Subse­
quent occurrences of the COM block must match the defining block, both in the number of
items, and the types of the items. In the case of strings and arrays, the actual sizes need be
specified only in the defining COM blocks. Subsequent occurrences of the COM blocks may
either explicitly match the size specifications by re-declaring the same size, or they may implicit­
ly match the size specifications. In the case of strings, this is done by not declaring any size, just
declaring the string name. In the case of arrays, this is done by using the (*) specifier for the
dimensions of the array instead of explicitly re-declaring the dimensions.

Consider the following COM block definition:

10 COM IO''}fILstatel INTEGER Range ,Foffllat tN I REAL
Delay tLastdata(1 :40) tStatus$[20J

The following occurrence of the same COM block within a subprogram matches the COM block
explicitly and is legal:

2000 COM IDvM_state ! INTEGER Range l FofMat l NtREAL
Delay ,Lastdata (1 :40) tStatus$[20J

The following block within a different subprogram uses implicit matching and is also legal:

4010 COM IDt.lfTl_state! INTEGER Range t FofftlattNIREAL
Delay ILastdata(*) t Status$

The following declaration is illegal, since it uses explicit size specifications on the array and
string which do not match the original definition from line 10.

5020 COM IDvM_statel INTEGER Range , FofMat , N , REAL
DelaYILastdata(1:30) t Status$[15J

The following declaration is also illegal, since it violates the types set forth by the defining block.

8010 COM ID t.!ftl_state! RangetFofftlattNtREAL
Dela)' t Lastdata(*) tStatus$

User-Defined Functions and Subprograms 177

COM can be used to communicate between programs which overlay each other using LOAD or
GET statements, if you remember a few rules.

1. COM blocks which match each other exactly between the two programs will be preserved
intact. "Matching" requires that the COM blocks are named identically (except blank
COM), and that corresponding blocks have exactly the same number of variables de­
clared, and that the types and sizes of these variables match.

2. Any COM blocks existing in the old program which are not declared in the new program
(the one being brought in with the LOAD or GET) are destroyed.

3. Any COM blocks which are named identically, but which do not match variables and
types identically, are defined to match the definition of the new program. All values
stored in that COM block under the old program are destroyed.

4 . Any new COM blocks declared by the new program (including those mentioned above in
#3 are initialized implicitly. Numeric variables and arrays are set to zero , strings are set to
the null string, and I/O path names are set to undefined.

The first occurrence in memory of a COM block is used to define or set up the block. Subse­
quent occurrences of the COM block must match the defining block, both in the number of
items, and the types of the items. In the case of strings and arrays, the actual sizes need be
specified only in the defining COM blocks. Subsequent occurrences of the COM blocks may
either explicitly match the size specifications by re-declaring the same size, or they may implicit­
ly match the size specifications. In the case of strings, this is done by not declaring any size, just
declaring the string name. In the case of arrays, this is done by using the (*) specifier for the
dimensions of the array instead of explicitly re-declaring the dimensions.

Consider the following COM block definition:

10 COM IO''}fILstatel INTEGER Range ,Foffllat tN I REAL
Delay tLastdata(1 :40) tStatus$[20J

The following occurrence of the same COM block within a subprogram matches the COM block
explicitly and is legal:

2000 COM IDvM_state ! INTEGER Range l FofMat l NtREAL
Delay ,Lastdata (1 :40) tStatus$[20J

The following block within a different subprogram uses implicit matching and is also legal:

4010 COM IDt.lfTl_state! INTEGER Range t FofftlattNIREAL
Delay ILastdata(*) t Status$

The following declaration is illegal, since it uses explicit size specifications on the array and
string which do not match the original definition from line 10.

5020 COM IDvM_statel INTEGER Range , FofMat , N , REAL
DelaYILastdata(1:30) t Status$[15J

The following declaration is also illegal, since it violates the types set forth by the defining block.

8010 COM ID t.!ftl_state! RangetFofftlattNtREAL
Dela)' t Lastdata(*) tStatus$

178 User-Defined Functions and Subprograms

In general, the implicit size matching on arrays and strings is preferable to the explicit matching
because it makes programs easier to modify. If it becomes necessary to change the size of an
array or string in a COM block, it only needs to be changed in one statement, the one which
defines the COM block. If all other occurrences of the COM block use the (*) specifier for
arrays, and omit the length field in strings, none of those statements will have to be changed as
a result of changing an array or string size.

Context Switching
As mentioned in the introduction to this chapter, a subprogram has its own context or state as
distinct from a main program and all other subprograms. In between the time that a CALL
statement is executed (or an FN name is used) and the time that the first statement in the subpro­
gram gets executed, the computer performs a "prerun" on the subprogram. This "entry" phase is
what defines the context of the subprogram. The actions performed at subprogram entry are
Similar, but not identical, to the actual prerun performed at the beginning of a program. Here is a
summary:

• The calling context has a DATA pointer which points to the next item in the current DATA
block which will be used the next time a READ is executed (assuming of course that a DATA
block even exists in the calling program). This pointer is saved whenever a subprogram is
called, and then the DATA pointer is reset to the first DATA statement in the new subprogram
context.

• The RETURN stack for any GOSUBs in the current context is saved and set to the empty stack
in the new context.

• The system priority of the current context is saved, and the called subprogram inherits this
value. Any change to the system priority which takes place within the subprogram (or any of
the subprograms which it calls in turn) is purely local, since the system priority is restored to its
original value upon subprogram exit. This is an important consideration: If the subprogram is
called as a result of an event-initiated GOSUB/CALL statement, any ON < event> GOTOI
GOSUB/CALL/RECOVER condition set up in the called subprogram must have a higher
priority assigned to it than the event responsible for the subprogram's invocation. Otherwise,
the event is guaranteed not to cause an end of line branch. See the "Events" chapter of
BASIC Interfacing Techniques for a description of system priority.

• Any event-initiated GOTOIGOSUB statements are disabled for the duration of the subpro­
gram. If any of the specified events occur, this will be logged, but no action will be taken. (The
fact that an event did occur will be logged, but only once - multiple occurrences of the same
event will not be serviced.) Upon exiting the subprogram, these event-initiated conditions will
be restored to active status, and if any of these events occurred while the subprogram was
being executed, the proper branches will be taken.

• Any event-initiated CALL/RECOVER statements are saved upon entering a subprogram, but
the subprogram still inherits these ON conditions since CALL/RECOVER are global in scope.
However, it is legal for the subprogram to redefine these conditions, in which case the original
definitions are restored upon subprogram exit.

• The current value of OPTION BASE is saved, and the value for the subprogram (0 or 1,
explicitly declared or defaulted) is used.

• The current DEG or RAD mode for trigonometric operations and graphics rotations is saved.
The subprogram will inherit the current DEG or RAD setting, but if it gets changed within the
subprogram, the original setting will be restored when the subprogram is exited.

178 User-Defined Functions and Subprograms

In general, the implicit size matching on arrays and strings is preferable to the explicit matching
because it makes programs easier to modify. If it becomes necessary to change the size of an
array or string in a COM block, it only needs to be changed in one statement, the one which
defines the COM block. If all other occurrences of the COM block use the (*) specifier for
arrays, and omit the length field in strings, none of those statements will have to be changed as
a result of changing an array or string size.

Context Switching
As mentioned in the introduction to this chapter, a subprogram has its own context or state as
distinct from a main program and all other subprograms. In between the time that a CALL
statement is executed (or an FN name is used) and the time that the first statement in the subpro­
gram gets executed, the computer performs a "prerun" on the subprogram. This "entry" phase is
what defines the context of the subprogram. The actions performed at subprogram entry are
Similar, but not identical, to the actual prerun performed at the beginning of a program. Here is a
summary:

• The calling context has a DATA pointer which points to the next item in the current DATA
block which will be used the next time a READ is executed (assuming of course that a DATA
block even exists in the calling program). This pointer is saved whenever a subprogram is
called, and then the DATA pointer is reset to the first DATA statement in the new subprogram
context.

• The RETURN stack for any GOSUBs in the current context is saved and set to the empty stack
in the new context.

• The system priority of the current context is saved, and the called subprogram inherits this
value. Any change to the system priority which takes place within the subprogram (or any of
the subprograms which it calls in turn) is purely local, since the system priority is restored to its
original value upon subprogram exit. This is an important consideration: If the subprogram is
called as a result of an event-initiated GOSUB/CALL statement, any ON < event> GOTOI
GOSUB/CALL/RECOVER condition set up in the called subprogram must have a higher
priority assigned to it than the event responsible for the subprogram's invocation. Otherwise,
the event is guaranteed not to cause an end of line branch. See the "Events" chapter of
BASIC Interfacing Techniques for a description of system priority.

• Any event-initiated GOTOIGOSUB statements are disabled for the duration of the subpro­
gram. If any of the specified events occur, this will be logged, but no action will be taken. (The
fact that an event did occur will be logged, but only once - multiple occurrences of the same
event will not be serviced.) Upon exiting the subprogram, these event-initiated conditions will
be restored to active status, and if any of these events occurred while the subprogram was
being executed, the proper branches will be taken.

• Any event-initiated CALL/RECOVER statements are saved upon entering a subprogram, but
the subprogram still inherits these ON conditions since CALL/RECOVER are global in scope.
However, it is legal for the subprogram to redefine these conditions, in which case the original
definitions are restored upon subprogram exit.

• The current value of OPTION BASE is saved, and the value for the subprogram (0 or 1,
explicitly declared or defaulted) is used.

• The current DEG or RAD mode for trigonometric operations and graphics rotations is saved.
The subprogram will inherit the current DEG or RAD setting, but if it gets changed within the
subprogram, the original setting will be restored when the subprogram is exited.

User-Defined Functions and Subprograms 179

Variable Initialization
Space for all arrays and variables declared is set aside, whether they are declared explicitly with
DIM, REAL, or INTEGER, or implicitly just by using the variable. The entire value area is
initialized as part of the subprogram's prerun. All numeric values are set to zero, all strings are
set to the null string, and all I/O path names are set to undefined.

Subprograms and Softkeys
ON KEYs are a special case of the event-initiated conditions that are part of context switching.
They are special because they are the only < event> conditions which give visible evidence of
their existence to the user through the softkeys labels at the bottom of the CRT. These key
labels are saved just as the event conditions are, and the labels get restored to their original state
when the subprogram is exited, regardless of any changes the subprogram made in the softkey
definitions. This means the programmer doesn't have to make any special allowances for
re-enabling his keys and their associated labels after calling a subprogram which changes them
- the language system handles this automatically.

It is important to remember that the called subprogram inherits the softkey labels. All the keys
are still active in some sense; ON KEY ... CALLIRECOVER will cause their original program
branches to take place immediately if the proper key is pressed, and ON KEY. .. GOTOIGOSUB
will log the fact that a key is pressed until the subprogram is exited, at which time the proper
branch will occur. This latter case may cause some consternation on the part of the user if he
presses a softkey expecting immediate action and nothing happens since the key was tempor­
arily disabled due to a called subprogram. If the called subprogram is expected to take a
noticeably long time to execute, it might be a good idea to explicitly remove the labels from the
disabled softkeys using the OFF KEY statement. Thus, the user won't expect anything to
happen as a result of pressing a softkey. This technique is also useful for guaranteeing that a
given subprogram is not interrupted prematurely. (The DISABLE statement is useful for pre­
venting program branches as a result of an event-initiated happening, although it will not turn
off the softkey labels.)

Subprograms and the RECOVER Statement
The event-initiated RECOVER statement allows the programmer to cause the program to
resume execution at any given place in the context defining the ON .. . RECOVER as a result of a
specified event occurring, regardless of subprogram nesting.

Thus, if a main program executes an ON ... RECOVER statement (for example a softkey or an
external interrupt from the SRQ line on an HP-IB), and then calls a subprogram, which calls a
subprogram, which calls a subprogram, etc., program execution can be caused to immediately
resume within the main program as a result of the specified event happening.

User-Defined Functions and Subprograms 179

Variable Initialization
Space for all arrays and variables declared is set aside, whether they are declared explicitly with
DIM, REAL, or INTEGER, or implicitly just by using the variable. The entire value area is
initialized as part of the subprogram's prerun. All numeric values are set to zero, all strings are
set to the null string, and all I/O path names are set to undefined.

Subprograms and Softkeys
ON KEYs are a special case of the event-initiated conditions that are part of context switching.
They are special because they are the only < event> conditions which give visible evidence of
their existence to the user through the softkeys labels at the bottom of the CRT. These key
labels are saved just as the event conditions are, and the labels get restored to their original state
when the subprogram is exited, regardless of any changes the subprogram made in the softkey
definitions. This means the programmer doesn't have to make any special allowances for
re-enabling his keys and their associated labels after calling a subprogram which changes them
- the language system handles this automatically.

It is important to remember that the called subprogram inherits the softkey labels. All the keys
are still active in some sense; ON KEY ... CALLIRECOVER will cause their original program
branches to take place immediately if the proper key is pressed, and ON KEY. .. GOTOIGOSUB
will log the fact that a key is pressed until the subprogram is exited, at which time the proper
branch will occur. This latter case may cause some consternation on the part of the user if he
presses a softkey expecting immediate action and nothing happens since the key was tempor­
arily disabled due to a called subprogram. If the called subprogram is expected to take a
noticeably long time to execute, it might be a good idea to explicitly remove the labels from the
disabled softkeys using the OFF KEY statement. Thus, the user won't expect anything to
happen as a result of pressing a softkey. This technique is also useful for guaranteeing that a
given subprogram is not interrupted prematurely. (The DISABLE statement is useful for pre­
venting program branches as a result of an event-initiated happening, although it will not turn
off the softkey labels.)

Subprograms and the RECOVER Statement
The event-initiated RECOVER statement allows the programmer to cause the program to
resume execution at any given place in the context defining the ON .. . RECOVER as a result of a
specified event occurring, regardless of subprogram nesting.

Thus, if a main program executes an ON ... RECOVER statement (for example a softkey or an
external interrupt from the SRQ line on an HP-IB), and then calls a subprogram, which calls a
subprogram, which calls a subprogram, etc., program execution can be caused to immediately
resume within the main program as a result of the specified event happening.

180 User-Defined Functions and Subprograms

By way of illustration, consider the following example:

Suppose you are performing an exhaustive component test on a circuit board. The program
may be designed like so:

INSTALL
PROBES

SUB ASSEMBLY
B1

CAPACITOR A

SUB ASSEMBLY
A

SUB ASSEMBLY
B2

CAPACITOR B

MAIN

SUB ASSEMBLY
B

SUB ASSEMBLY
B3

RESISTOR A

SUB ASSEMBLY
C

SUB ASSEMBLY
B4

RESISTOR C

SUB ASSEMBLY
D

SUB ASSEMBLY
B5

When lunch break comes around, you may want to halt the current test so you can use the
computer to play chess, or your boss might wander by and want to see the results of the rest of
the tests performed this week. In either case, if the test program is nested three or four levels
deep in subprograms, it might take a while for the test to complete. By defining a softkey to
RECOVER to the main program, you can instantly terminate the test at any time, and make the
computer available for something else. The RECOVER will discard anything being done in any
of the subprograms between the context declaring the event-initiated RECOVER, and the
subprogam being executed when the specified event occurs.

Again, the DISABLE statement can be used within any subprograms in which it is critical not to
allow interruptions.

Live Keyboard
Functions and subprograms can be called from live keyboard by the user. There are some
restrictions:

• Since variables cannot be created by the user from the keyboard (variables can only be
defined by the program), it is legal to use only parameters that already exist in the current
context.

• Constants may be used in the pass parameter list.

• When calling a SUB subprogram from the keyboard, the CALL keyword is not optional.

Speed Considerations
In some programs, speed is of the essence. In these cases, programmers will be reluctant to
incur any unnecessary overhead in executing their task. There is a certain amount of overhead
incurred in calling subprograms, although the overhead is fairly small, and shouldn't be an
impediment to the use of subprograms. (' 'Overhead" is loosely defined to be the time it takes to
perform those activities which aren't explicitly asked for by the user's program, but which are
still necessary to keep the user's program running in a correct manner. The tasks discussed
earlier under context switching are an excellent example of such overhead.)

180 User-Defined Functions and Subprograms

By way of illustration, consider the following example:

Suppose you are performing an exhaustive component test on a circuit board. The program
may be designed like so:

INSTALL
PROBES

SUB ASSEMBLY
B1

CAPACITOR A

SUB ASSEMBLY
A

SUB ASSEMBLY
B2

CAPACITOR B

MAIN

SUB ASSEMBLY
B

SUB ASSEMBLY
B3

RESISTOR A

SUB ASSEMBLY
C

SUB ASSEMBLY
B4

RESISTOR C

SUB ASSEMBLY
D

SUB ASSEMBLY
B5

When lunch break comes around, you may want to halt the current test so you can use the
computer to play chess, or your boss might wander by and want to see the results of the rest of
the tests performed this week. In either case, if the test program is nested three or four levels
deep in subprograms, it might take a while for the test to complete. By defining a softkey to
RECOVER to the main program, you can instantly terminate the test at any time, and make the
computer available for something else. The RECOVER will discard anything being done in any
of the subprograms between the context declaring the event-initiated RECOVER, and the
subprogam being executed when the specified event occurs.

Again, the DISABLE statement can be used within any subprograms in which it is critical not to
allow interruptions.

Live Keyboard
Functions and subprograms can be called from live keyboard by the user. There are some
restrictions:

• Since variables cannot be created by the user from the keyboard (variables can only be
defined by the program), it is legal to use only parameters that already exist in the current
context.

• Constants may be used in the pass parameter list.

• When calling a SUB subprogram from the keyboard, the CALL keyword is not optional.

Speed Considerations
In some programs, speed is of the essence. In these cases, programmers will be reluctant to
incur any unnecessary overhead in executing their task. There is a certain amount of overhead
incurred in calling subprograms, although the overhead is fairly small, and shouldn't be an
impediment to the use of subprograms. (' 'Overhead" is loosely defined to be the time it takes to
perform those activities which aren't explicitly asked for by the user's program, but which are
still necessary to keep the user's program running in a correct manner. The tasks discussed
earlier under context switching are an excellent example of such overhead.)

User-Defined Functions and Subprograms 181

Let's look at how much time it takes just to get in and out of the subprogram regardless of the task
being performed by the subprogram. (The times in this discussion are approximate and apply to
Series 200 computers with an 8 MHz MC68000 processor.)

The time it takes to enter a subprogram depends upon the number of parameters being passed,
the types of parameters being passed, and the number of variables declared local to the
subprogram itself. To get in and out of a subprogram which has no parameters and which does
nothing (in other words, a SUB followed by a SUBEND) takes 572 microseconds, meaning if
you call it 1748 times, you'll lose about a second. (By way of comparison, 572 microseconds is
about what it takes to perform four floating point additions. To perform four floating point
additions and store the result from each one in a variable will take about 1080 microseconds, or
just over a millisecond.)

Entry conditions

No parameters
1 simple numeric
1 simple string
1 numeric array
1 string array
1 I/O path name

OPTION BASE in sub
REAL or INTEGER in sub
1st numeric array declaration
other numeric array declarations
1st string array declaration
other string array declarations

Approximate execution speed l

572 f.Lsec.
+ 105 f.Lsec .
+ 128 f.Lsec.
+ 141 f.Lsec.
+ 141 f.Lsec.
+ 123 f.Lsec .
+ 31 f.Lsec .
+ 32 f.Lsec.
+ 18 f.Lsec.
+ 11 f.Lsec.
+ 21 f.Lsec.
+ 12 f.Lsec.

As you can see from the table, subprograms are a bargain in terms of speed. The relatively small
amount of overhead required for invoking a subprogram is more than made up for by the
benefits to be derived.

1 These speeds apply to computers without an HP 98635A fl oating-point math card or MC68881 co-processor.

User-Defined Functions and Subprograms 181

Let's look at how much time it takes just to get in and out of the subprogram regardless of the task
being performed by the subprogram. (The times in this discussion are approximate and apply to
Series 200 computers with an 8 MHz MC68000 processor.)

The time it takes to enter a subprogram depends upon the number of parameters being passed,
the types of parameters being passed, and the number of variables declared local to the
subprogram itself. To get in and out of a subprogram which has no parameters and which does
nothing (in other words, a SUB followed by a SUBEND) takes 572 microseconds, meaning if
you call it 1748 times, you'll lose about a second. (By way of comparison, 572 microseconds is
about what it takes to perform four floating point additions. To perform four floating point
additions and store the result from each one in a variable will take about 1080 microseconds, or
just over a millisecond.)

Entry conditions

No parameters
1 simple numeric
1 simple string
1 numeric array
1 string array
1 I/O path name

OPTION BASE in sub
REAL or INTEGER in sub
1st numeric array declaration
other numeric array declarations
1st string array declaration
other string array declarations

Approximate execution speed l

572 f.Lsec.
+ 105 f.Lsec .
+ 128 f.Lsec.
+ 141 f.Lsec.
+ 141 f.Lsec.
+ 123 f.Lsec .
+ 31 f.Lsec .
+ 32 f.Lsec.
+ 18 f.Lsec.
+ 11 f.Lsec.
+ 21 f.Lsec.
+ 12 f.Lsec.

As you can see from the table, subprograms are a bargain in terms of speed. The relatively small
amount of overhead required for invoking a subprogram is more than made up for by the
benefits to be derived.

1 These speeds apply to computers without an HP 98635A fl oating-point math card or MC68881 co-processor.

182 User-Defined Functions and Subprograms

Using Subprogram Libraries
If you have a program which is quite large, along with sizable data arrays, you could run out of
memory in your computer. But the program you' re working on just has to remain one program,
and external factors prevent your redUcing data array size. What to do? There are several
options which address this problem.

If you want to load a specific subprogram from a PROG file, you would use the
LOADSUB <subprogram name > FROM statement. If you want to load all the subprograms
from a specific PROG file, you would use the LOA D SUB ALL FRO M statement. And, if you
wanted to see which subprograms are still misSing or load all those still needed, you would use
the LOADSUB FROM command. Note that this is a command, and not a statement. Therefore
LOADSUB FROM cannot be invoked programmatically.

Loading Subprograms One at a Time
Suppose your program has several options to select from, and each one needs many subpro­
grams and much data. All the options, however, are mutually exclusive; that is, whichever
option you choose, it does not need anything that the other options use. This means that you
can clean up everything you've used when you are through with that option.

If all of your subprograms can be put onto one file , you can selectively retrieve them as needed
with this sort of statement:

LOADSUB Subpro9_1 FROM "SUBFILE"

LOADSUB SubproL2 FROM "SUBFILE"

LOADSUB FNNufTleric_fn FROM "SUBF I LE "

LOADSUB FNStr i n9 _f unction$ FROM "SUBFILE"

Note that only one subprogram per line can be loaded with this form of LOADSUB. If, for any
program option, you need so many subprograms that this method would be cumbersome, you
could use the following form of the command.

Loading Several Subprograms at Once
For this method, you store all the subprograms needed for each option on its own file. Then,
when the program's user selects Program Option 1, you could have this line of code execute:

LOADSUB ALL FROM "OPT1 SUBFL "

and if the user selects Option 2 ,

LOADSUB ALL FROM "OPT2SUBFL"

and so forth .

There is one other form of LOADSUB, but it cannot be used programmatically. This is covered
next.

Loading Subprograms Prior to Execution
In the LOADSUB FROM form, for which you need PDEV, neither ALL nor a subprogram name is
specified in the command. This is used prior to program execution. It looks through the program in
memory, notes which subprograms are needed (referenced) but not loaded, goes to the specified
file and attempts to load all such subprograms. If the subprograms are found on the file , they are
loaded into memory; if they are not, an error message is displayed and a list of the subprograms still
needed but not found in the file is printed.

182 User-Defined Functions and Subprograms

Using Subprogram Libraries
If you have a program which is quite large, along with sizable data arrays, you could run out of
memory in your computer. But the program you' re working on just has to remain one program,
and external factors prevent your redUcing data array size. What to do? There are several
options which address this problem.

If you want to load a specific subprogram from a PROG file, you would use the
LOADSUB <subprogram name > FROM statement. If you want to load all the subprograms
from a specific PROG file, you would use the LOA D SUB ALL FRO M statement. And, if you
wanted to see which subprograms are still misSing or load all those still needed, you would use
the LOADSUB FROM command. Note that this is a command, and not a statement. Therefore
LOADSUB FROM cannot be invoked programmatically.

Loading Subprograms One at a Time
Suppose your program has several options to select from, and each one needs many subpro­
grams and much data. All the options, however, are mutually exclusive; that is, whichever
option you choose, it does not need anything that the other options use. This means that you
can clean up everything you've used when you are through with that option.

If all of your subprograms can be put onto one file , you can selectively retrieve them as needed
with this sort of statement:

LOADSUB Subpro9_1 FROM "SUBFILE"

LOADSUB SubproL2 FROM "SUBFILE"

LOADSUB FNNufTleric_fn FROM "SUBF I LE "

LOADSUB FNStr i n9 _f unction$ FROM "SUBFILE"

Note that only one subprogram per line can be loaded with this form of LOADSUB. If, for any
program option, you need so many subprograms that this method would be cumbersome, you
could use the following form of the command.

Loading Several Subprograms at Once
For this method, you store all the subprograms needed for each option on its own file. Then,
when the program's user selects Program Option 1, you could have this line of code execute:

LOADSUB ALL FROM "OPT1 SUBFL "

and if the user selects Option 2 ,

LOADSUB ALL FROM "OPT2SUBFL"

and so forth .

There is one other form of LOADSUB, but it cannot be used programmatically. This is covered
next.

Loading Subprograms Prior to Execution
In the LOADSUB FROM form, for which you need PDEV, neither ALL nor a subprogram name is
specified in the command. This is used prior to program execution. It looks through the program in
memory, notes which subprograms are needed (referenced) but not loaded, goes to the specified
file and attempts to load all such subprograms. If the subprograms are found on the file , they are
loaded into memory; if they are not, an error message is displayed and a list of the subprograms still
needed but not found in the file is printed.

User-Defined Functions and Subprograms 183

This can be handy in two ways. The first and obvious way is that subprograms can be loaded
qUickly. The other way is this: suppose that you are developing a program and as you are
coding, you realize you need a subprogram that does such-and-such. But your train of thought
is chugging along so smoothly, you do not want to interrupt your coding of the routine you are
working on to do the other little subprogram. But when the big one is done, you have forgotten
all about coding the little one. If you suspect you've done this, the LOADSUB FROM command
is very useful. Type a LOADSUB FROM command where the file name is a file on which you
know there are none of the subprograms you need (perhaps a null PROG file). Of course, no
subprograms will be loaded, but a list of those yet undefined will be printed. These are the ones
you still need to code. Naturally, if you have already coded them and stored them somewhere,
go get them. But if you haven' t, this is a simple way of listing those still to be entered.

Any COM blocks declared in subprograms brought into memory with a LOADSUB by a
running program must already have been declared. LOADSUB does not allow new COM
blocks to be added to the ones already in memory. Furthermore, any COM blocks in the
subprograms brought in must match a COM block in memory in both the number and type of
the variables . Otherwise, an error occurs.

Note
If a main program is in a file referenced by a LOADSUB, it will not be
loaded; only subprograms can be loaded with LOADSUB. Main
programs are loaded with the LOAD command.

With all this talk of loading subprograms from files, one question arises: How do you get the
subprograms on the file? Easily: type in the subprograms you want to be on one file , and then
STORE them onto the desired file name. You must use STORE and not SAVE, because the
LOADSUB looks for a PROG-type file. If you can't type in your subprograms error-free the first
time (and who can?), what you can do is this: type in your program with all the subprograms it
needs, and debug them. After storing everything on a file for safekeeping, delete what you
do not want on the file , and STORE everything else on the subprogram file from which you will
later do a LOADSUB. In this way, you know the subprograms will work when you load them.

Deleting Subprograms Programmatically

The utility of the LOADSUB commands would be greatly reduced if one could not delete subprog­
rams from memory at will. So, there is a way to delete subprograms during execution of a
program: DELSUB. If you want to delete only selected ones, you could type something like:

If you are sure of the positioning of the subprograms in memory, here is a method of deleting
whole groups of subprograms:

DELSUB Print_report TO END

You can combine these methods:

DELSUB Sort_data,Print_report , FNGet_name$ TO END

User-Defined Functions and Subprograms 183

This can be handy in two ways. The first and obvious way is that subprograms can be loaded
qUickly. The other way is this: suppose that you are developing a program and as you are
coding, you realize you need a subprogram that does such-and-such. But your train of thought
is chugging along so smoothly, you do not want to interrupt your coding of the routine you are
working on to do the other little subprogram. But when the big one is done, you have forgotten
all about coding the little one. If you suspect you've done this, the LOADSUB FROM command
is very useful. Type a LOADSUB FROM command where the file name is a file on which you
know there are none of the subprograms you need (perhaps a null PROG file). Of course, no
subprograms will be loaded, but a list of those yet undefined will be printed. These are the ones
you still need to code. Naturally, if you have already coded them and stored them somewhere,
go get them. But if you haven' t, this is a simple way of listing those still to be entered.

Any COM blocks declared in subprograms brought into memory with a LOADSUB by a
running program must already have been declared. LOADSUB does not allow new COM
blocks to be added to the ones already in memory. Furthermore, any COM blocks in the
subprograms brought in must match a COM block in memory in both the number and type of
the variables . Otherwise, an error occurs.

Note
If a main program is in a file referenced by a LOADSUB, it will not be
loaded; only subprograms can be loaded with LOADSUB. Main
programs are loaded with the LOAD command.

With all this talk of loading subprograms from files, one question arises: How do you get the
subprograms on the file? Easily: type in the subprograms you want to be on one file , and then
STORE them onto the desired file name. You must use STORE and not SAVE, because the
LOADSUB looks for a PROG-type file. If you can't type in your subprograms error-free the first
time (and who can?), what you can do is this: type in your program with all the subprograms it
needs, and debug them. After storing everything on a file for safekeeping, delete what you
do not want on the file , and STORE everything else on the subprogram file from which you will
later do a LOADSUB. In this way, you know the subprograms will work when you load them.

Deleting Subprograms Programmatically

The utility of the LOADSUB commands would be greatly reduced if one could not delete subprog­
rams from memory at will. So, there is a way to delete subprograms during execution of a
program: DELSUB. If you want to delete only selected ones, you could type something like:

If you are sure of the positioning of the subprograms in memory, here is a method of deleting
whole groups of subprograms:

DELSUB Print_report TO END

You can combine these methods:

DELSUB Sort_data,Print_report , FNGet_name$ TO END

184 User-Defined Functions and Subprograms

The subprograms to be deleted do not have to be contiguous in memory, nor does the order in
which you specify the subprograms in a DELSUB statement have to be the order in which they
occur in memory. The computer deletes each subprogram before moving on to the next name.

If there are any comments after a FNEND or SUBEND, but before the next SUB or DEF FN,
these will be deleted as well as the rest of the subprogram body.

If the computer attempts to delete a nonexistent subprogram, an error occurs, and the DELSUB
statement is terminated. This means that subprograms whose names occur after the error­
causing one will not be deleted.

A subprogram can be deleted only if it is not currently active and if it is not referenced by a
currently active ON RECOVER/CALL statement. This means:

1. A subprogram cannot delete itself.

2. A subprogram cannot delete a subprogram that called it, either directly or indirectly.
(Otherwise it wouldn't have anywhere to return to when it finished!)

Between the time that a subprogram is entered and the time it is exited, the computer keeps
track of an activation record for that subprogram. Thus, if a subprogram calls a subprogram that
calls a subprogram, etc. , none of the subsequently-called subprograms can delete the original
one or any of the ones in between because the system knows from the activation record that
control will eventually need to return to the original calling context. A similar situation exists
with active event-initiated CALL/RECOVER statements. As long as the possibility of the speci­
fied event occurring exists, the system will not let the subprogram be deleted. In essence, the
system will not let you execute two mutually-exclusive contradictory commands simul­
taneously.

Editing Subprograms
Inserting Subprograms
There are some rules to remember when inserting SUB and DEF FN statements:

It is not possible to insert a DEF FN or SUB statement in the middle of the program. All DEF FN
and SUB statements must be appended to the end of the program. If you want to insert a
subprogram in the middle of your program because your prefer to see it listed in a given order,
you must perform the following sequence:

1. STORE the program.

2. Delete all lines above the point where you want to insert your subprogram (refer to the
DEL statement).

3. STORE the remaining segment of the program in a new file.

4. LOAD the original program stored in step 1.

5. Delete all lines below the point where you want to insert your subprogram.

6. Type in the new subprogram.

7. Do a LOADSUB ALL from the new file in step 3.

184 User-Defined Functions and Subprograms

The subprograms to be deleted do not have to be contiguous in memory, nor does the order in
which you specify the subprograms in a DELSUB statement have to be the order in which they
occur in memory. The computer deletes each subprogram before moving on to the next name.

If there are any comments after a FNEND or SUBEND, but before the next SUB or DEF FN,
these will be deleted as well as the rest of the subprogram body.

If the computer attempts to delete a nonexistent subprogram, an error occurs, and the DELSUB
statement is terminated. This means that subprograms whose names occur after the error­
causing one will not be deleted.

A subprogram can be deleted only if it is not currently active and if it is not referenced by a
currently active ON RECOVER/CALL statement. This means:

1. A subprogram cannot delete itself.

2. A subprogram cannot delete a subprogram that called it, either directly or indirectly.
(Otherwise it wouldn't have anywhere to return to when it finished!)

Between the time that a subprogram is entered and the time it is exited, the computer keeps
track of an activation record for that subprogram. Thus, if a subprogram calls a subprogram that
calls a subprogram, etc. , none of the subsequently-called subprograms can delete the original
one or any of the ones in between because the system knows from the activation record that
control will eventually need to return to the original calling context. A similar situation exists
with active event-initiated CALL/RECOVER statements. As long as the possibility of the speci­
fied event occurring exists, the system will not let the subprogram be deleted. In essence, the
system will not let you execute two mutually-exclusive contradictory commands simul­
taneously.

Editing Subprograms
Inserting Subprograms
There are some rules to remember when inserting SUB and DEF FN statements:

It is not possible to insert a DEF FN or SUB statement in the middle of the program. All DEF FN
and SUB statements must be appended to the end of the program. If you want to insert a
subprogram in the middle of your program because your prefer to see it listed in a given order,
you must perform the following sequence:

1. STORE the program.

2. Delete all lines above the point where you want to insert your subprogram (refer to the
DEL statement).

3. STORE the remaining segment of the program in a new file.

4. LOAD the original program stored in step 1.

5. Delete all lines below the point where you want to insert your subprogram.

6. Type in the new subprogram.

7. Do a LOADSUB ALL from the new file in step 3.

User-Defined Functions and Subprograms 185

With PDEV, the job is much easier:

1. Write your new subprogram at the end of the program.

2. Perform a MOVELINES command where:

a. the Starting Line in the MOVELINES command is the line which you want to im­
mediately follow your new subprogram,

b. the Ending Line in the MOVELINES command is the line immediately prior to the
SUB or DEF FN of the new subprogram, and

c. The destination line is any line number greater than the highest line number current-
ly in memory.

In either case there is an optional final step. It is not required that you do a REN to renumber the
program at this point, but often it is desirable to close up the void left in the program line
numbering which resulted from the block of subprograms being moved to the end of memory.

Deleting Subprograms
It is not possible to delete either DEF FN or SUB statements with the delete line key unless you first
delete all the other lines in the subprogram. This includes any comments after the SUBEND or
FNEND. Another way to delete DEF FN and SUB statements is to delete the entire subprogram, up
to, but not including, the next SUB or DEF FN line (if any). This can be done either with the DEL
command, or with the DELSUB command.

Merging Subprograms
If you want to merge two subprograms together, first examine the two subprograms carefully to
insure that you don't introduce conflicts with variable usage and logic flow. If you've convinced
yourself that merging the two subprograms is really necessary, here's how you go about it:

1. SAVE everything in your program after the SUB or DEF statement you want to delete.

2. Delete everything in your program from the unwanted SUB statement to the end.

3. GET the program segment you saved away in step 1 back into memory, taking care to
number the segment in such a way as not to overlay the part of the program already in
memory.

Once again, with PDEV, your job is greatly simplified:

Execute a MOVELINES command in which you move everything from one subprogram­
excluding the SUB/DEF FN and SUBEND/FNEND statements-into the desired position in
the other subprogram. If there are any declarative statements in the moved code, you will
probably want to move those up next to the declarative statements in the receiving code. Don't
forget to go back to the place where the code came from and delete the SUB/DEF FN statement
and the SUBEND/FNEND statements.

SUBEND and FNEND
The SUBEND and FNEND statements must be the last statements in a SUB or function sub­
program, respectively. These statements don't ever have to be executed; SUBEXIT and RE­
TURN are sufficient for exiting the subprogram. (If SUBEND is executed, it will behave like a
SUBEXIT. If FNEND is executed, it will cause an error.) Rather, SUBEND and FNEND are
delimiter statements that indicate to the language system the boundaries between subprog­
rams. The only exception to this rule is the comment statements (either REM or !) , which are
allowed after SUBEND and FNEND.

User-Defined Functions and Subprograms 185

With PDEV, the job is much easier:

1. Write your new subprogram at the end of the program.

2. Perform a MOVELINES command where:

a. the Starting Line in the MOVELINES command is the line which you want to im­
mediately follow your new subprogram,

b. the Ending Line in the MOVELINES command is the line immediately prior to the
SUB or DEF FN of the new subprogram, and

c. The destination line is any line number greater than the highest line number current-
ly in memory.

In either case there is an optional final step. It is not required that you do a REN to renumber the
program at this point, but often it is desirable to close up the void left in the program line
numbering which resulted from the block of subprograms being moved to the end of memory.

Deleting Subprograms
It is not possible to delete either DEF FN or SUB statements with the delete line key unless you first
delete all the other lines in the subprogram. This includes any comments after the SUBEND or
FNEND. Another way to delete DEF FN and SUB statements is to delete the entire subprogram, up
to, but not including, the next SUB or DEF FN line (if any). This can be done either with the DEL
command, or with the DELSUB command.

Merging Subprograms
If you want to merge two subprograms together, first examine the two subprograms carefully to
insure that you don't introduce conflicts with variable usage and logic flow. If you've convinced
yourself that merging the two subprograms is really necessary, here's how you go about it:

1. SAVE everything in your program after the SUB or DEF statement you want to delete.

2. Delete everything in your program from the unwanted SUB statement to the end.

3. GET the program segment you saved away in step 1 back into memory, taking care to
number the segment in such a way as not to overlay the part of the program already in
memory.

Once again, with PDEV, your job is greatly simplified:

Execute a MOVELINES command in which you move everything from one subprogram­
excluding the SUB/DEF FN and SUBEND/FNEND statements-into the desired position in
the other subprogram. If there are any declarative statements in the moved code, you will
probably want to move those up next to the declarative statements in the receiving code. Don't
forget to go back to the place where the code came from and delete the SUB/DEF FN statement
and the SUBEND/FNEND statements.

SUBEND and FNEND
The SUBEND and FNEND statements must be the last statements in a SUB or function sub­
program, respectively. These statements don't ever have to be executed; SUBEXIT and RE­
TURN are sufficient for exiting the subprogram. (If SUBEND is executed, it will behave like a
SUBEXIT. If FNEND is executed, it will cause an error.) Rather, SUBEND and FNEND are
delimiter statements that indicate to the language system the boundaries between subprog­
rams. The only exception to this rule is the comment statements (either REM or !) , which are
allowed after SUBEND and FNEND.

186 User-Defined Functions and Subprograms

Recursion
Both function subprograms and SUB subprograms are allowed to call themselves. This is
known as recursion. Recursion is a useful technique in several applications.

The simplest example of recursion is the computatation of the factorial function. The factorial of
a number N is denoted by N! and is defined to be N x (N-l)! where O! = 1 by definition. Thus
N! is simply the product of all the whole numbers from 1 through N inclusive. A recursive
function which computes N factorial is:

DEF FNFactorial(N)
IF N=O THEN RETURN 1
RETURN N*FNFactorial(N-l)
FNEND

Consider also the example of nested multiplication when evaluating a polynomial. A polyno­
mial has the form:

ANXN + AN _ 1XN- 1 + ... + AzXz + A1X + Ao

One way to evaluate a polynomial is to use the technique of nested multiplication:

Ao + XX(Al + XX(Az + XX(..... (AN_1 +XX(AN))"')))

If the polynomial is evaluated the way it is written, there are N multiplications, N additions, and
N-l exponentiations performed. Using the nested multiplication technique, there are still N
multiplications and N additions, but no exponentiations.

The following function implements the nested multiplication recursively:

1000 DEF FNPolY_el,laluate(A(*) tNt)O
1010 A(*) is the coefficient arraYt
1020 with N the order of the polynomial.
1030 X is the value at which the polynomial
1040 is being evaluated.
1050 RETURN FNPolY(A(*) tOtNt}<)
1060 FNEND

1120 DEF FNPolY(A(*) tMtNt)O
1130 A(*) is the coefficient array of order N
1140 M is the outside coefficient
1150 X is the value at which the polynomial
1160 is being evaluated.
1170 IF M=N THEN RETURN A(N)
1180 RETURN A(M)+}<*FNPolY(A(*) tM+l tNt}O
1180 FNEND

The above examples are cited because they are easily understood, not because they are elegant
ways to compute factorials or evaluate polynomials (both are performed much faster, and use
much less memory, in a FOR/NEXT loop). They are included here because they are easy to
understand. We'll consider a more useful application of recursion in the following section on
Top-Down Design.

186 User-Defined Functions and Subprograms

Recursion
Both function subprograms and SUB subprograms are allowed to call themselves. This is
known as recursion. Recursion is a useful technique in several applications.

The simplest example of recursion is the computatation of the factorial function. The factorial of
a number N is denoted by N! and is defined to be N x (N-l)! where O! = 1 by definition. Thus
N! is simply the product of all the whole numbers from 1 through N inclusive. A recursive
function which computes N factorial is:

DEF FNFactorial(N)
IF N=O THEN RETURN 1
RETURN N*FNFactorial(N-l)
FNEND

Consider also the example of nested multiplication when evaluating a polynomial. A polyno­
mial has the form:

ANXN + AN _ 1XN- 1 + ... + AzXz + A1X + Ao

One way to evaluate a polynomial is to use the technique of nested multiplication:

Ao + XX(Al + XX(Az + XX(..... (AN_1 +XX(AN))"')))

If the polynomial is evaluated the way it is written, there are N multiplications, N additions, and
N-l exponentiations performed. Using the nested multiplication technique, there are still N
multiplications and N additions, but no exponentiations.

The following function implements the nested multiplication recursively:

1000 DEF FNPolY_el,laluate(A(*) tNt)O
1010 A(*) is the coefficient arraYt
1020 with N the order of the polynomial.
1030 X is the value at which the polynomial
1040 is being evaluated.
1050 RETURN FNPolY(A(*) tOtNt}<)
1060 FNEND

1120 DEF FNPolY(A(*) tMtNt)O
1130 A(*) is the coefficient array of order N
1140 M is the outside coefficient
1150 X is the value at which the polynomial
1160 is being evaluated.
1170 IF M=N THEN RETURN A(N)
1180 RETURN A(M)+}<*FNPolY(A(*) tM+l tNt}O
1180 FNEND

The above examples are cited because they are easily understood, not because they are elegant
ways to compute factorials or evaluate polynomials (both are performed much faster, and use
much less memory, in a FOR/NEXT loop). They are included here because they are easy to
understand. We'll consider a more useful application of recursion in the following section on
Top-Down Design.

(

User-Defined Functions and Subprograms 187

Top-Down Design
A major problem that every programmer faces is designing programs that can be easily im­
plemented and tested. A lot has been written on this subject over the past 15 years or so, and
several references are cited at the end of the chapter. A method of program design that has
become widely recommended is Top-Down Design, also known as Stepwise Refinement.

The general approach is to consider a problem at its highest level, and break it down into a
small number of identifiable subtasks. Each subtask is in turn considered as a large problem
which is to be broken down into smaller problems, and so on until the "smaller problems"
which have to be solved turn out to be lines of code, which the computer knows how to solve!
At the higher levels of this process, the various subtasks are implemented as subprogram calls. It
is best to define exactly what each subprogram is supposed to do long before the subprogram is
actually written. Furthermore, this should be done at each level of refinement. By considering
what each subprogram requires as input and what it returns as output from the topmost levels,
the most serious problems of programming (namely defining your data structures and the
communications paths between subprograms) are attacked at the beginning of the problem
solVing process, rather than at the end when all the small pieces are trying to jumble together. It
is best to tackle these questions at the beginning because then you have the most flexibility -
no code has been written and it's not necessary to try and save any investment in programming
time.

Let's look at a simple example and apply these techniques.

The Problem
In a certain production department in a large manufacturing facility, there are eighty people
who build and test widgets. The manager of this department has asked you to write a program
to keep track of the total number of widgets each person builds each week. Furthermore it is
also necessary to track failure rates during the production process for each person. The mana­
ger wants to be able to ask for reports sorted either by employee name, number of units built, or
failure rate.

A Data Structure
Before proceeding any further, we need to come up with a data structure which will support the
stated requirements.

EMPLOYEE NAME UNITS BUILT FAILURE RATE

80 CHARACTERS INTEGER REAL

2

3

4

• • • • • • • • •

~: I I I I I

(

User-Defined Functions and Subprograms 187

Top-Down Design
A major problem that every programmer faces is designing programs that can be easily im­
plemented and tested. A lot has been written on this subject over the past 15 years or so, and
several references are cited at the end of the chapter. A method of program design that has
become widely recommended is Top-Down Design, also known as Stepwise Refinement.

The general approach is to consider a problem at its highest level, and break it down into a
small number of identifiable subtasks. Each subtask is in turn considered as a large problem
which is to be broken down into smaller problems, and so on until the "smaller problems"
which have to be solved turn out to be lines of code, which the computer knows how to solve!
At the higher levels of this process, the various subtasks are implemented as subprogram calls. It
is best to define exactly what each subprogram is supposed to do long before the subprogram is
actually written. Furthermore, this should be done at each level of refinement. By considering
what each subprogram requires as input and what it returns as output from the topmost levels,
the most serious problems of programming (namely defining your data structures and the
communications paths between subprograms) are attacked at the beginning of the problem
solVing process, rather than at the end when all the small pieces are trying to jumble together. It
is best to tackle these questions at the beginning because then you have the most flexibility -
no code has been written and it's not necessary to try and save any investment in programming
time.

Let's look at a simple example and apply these techniques.

The Problem
In a certain production department in a large manufacturing facility, there are eighty people
who build and test widgets. The manager of this department has asked you to write a program
to keep track of the total number of widgets each person builds each week. Furthermore it is
also necessary to track failure rates during the production process for each person. The mana­
ger wants to be able to ask for reports sorted either by employee name, number of units built, or
failure rate.

A Data Structure
Before proceeding any further, we need to come up with a data structure which will support the
stated requirements.

EMPLOYEE NAME UNITS BUILT FAILURE RATE

80 CHARACTERS INTEGER REAL

2

3

4

• • • • • • • • •

~: I I I I I

· 188 User-Defined Functions and Subprograms

The above structure is simple and holds all the necessary information. The Jth entry in the Units
Built array tells how many units were built by the employee whose name is given by the Jth
entry in the Employee Name array, and the Jth entry in the Failure Rate array gives the failure
rate that the Jth employee experienced in building the given number of units.

The only problem unsolved by the given data structure is that of ordering. The manager wants
to be able to see a report sorted by anyone of the three arrays. One way to solve this problem is
to provide a sort subprogram as part of the package, but you would have to remember to carry
along the other two fields associated with the one on which you are sorting whenever you
switch the elements in the array. An alternate way is simply to leave all the data in place and
construct a pointer array associated with whichever array you elect to do the report with. A very
handy way to construct this pointer array in such a way as to be conducive to printing sorted
results is to construct a binary tree.

The binary tree is a simple data structure used for a variety of applications from data manage­
ment to parsing computer languages. Knuth4 defines a binary tree as " a finite set of nodes
which either is empty, or consists of a root and two disjoint binary trees called the left and right
subtrees of the root. " Note that this definition is recursive - it uses the term being defined
(binary tree) in its own definition. Thus, a binary tree either consists of two subtrees (which in
turn can have two subtrees, etc.), or it is empty. Consider the following illustration of a binary
tree:

Every node (represented here by a letter) has at most two subtrees. The subtrees are ordered
on a lexical basis. Every letter belonging to any node's left subtree will be lexically " less" than
the node itself, which in turn will be leXically " less" than the letters in that node's right subtree.
Because the binary tree is defined recursively, this relationship will hold true at all levels of the
tree. Furthermore, there are extremely simple recursive algorithms for traversing (or in our case
printing) a binary tree which is organized lexically in sorted order.

Graphically, the tree is easy to understand. You have a piece of data (or a "node") and you
have a couple of little arrows which point to the next nodes. Inside a computer, these little

· 188 User-Defined Functions and Subprograms

The above structure is simple and holds all the necessary information. The Jth entry in the Units
Built array tells how many units were built by the employee whose name is given by the Jth
entry in the Employee Name array, and the Jth entry in the Failure Rate array gives the failure
rate that the Jth employee experienced in building the given number of units.

The only problem unsolved by the given data structure is that of ordering. The manager wants
to be able to see a report sorted by anyone of the three arrays. One way to solve this problem is
to provide a sort subprogram as part of the package, but you would have to remember to carry
along the other two fields associated with the one on which you are sorting whenever you
switch the elements in the array. An alternate way is simply to leave all the data in place and
construct a pointer array associated with whichever array you elect to do the report with. A very
handy way to construct this pointer array in such a way as to be conducive to printing sorted
results is to construct a binary tree.

The binary tree is a simple data structure used for a variety of applications from data manage­
ment to parsing computer languages. Knuth4 defines a binary tree as " a finite set of nodes
which either is empty, or consists of a root and two disjoint binary trees called the left and right
subtrees of the root. " Note that this definition is recursive - it uses the term being defined
(binary tree) in its own definition. Thus, a binary tree either consists of two subtrees (which in
turn can have two subtrees, etc.), or it is empty. Consider the following illustration of a binary
tree:

Every node (represented here by a letter) has at most two subtrees. The subtrees are ordered
on a lexical basis. Every letter belonging to any node's left subtree will be lexically " less" than
the node itself, which in turn will be leXically " less" than the letters in that node's right subtree.
Because the binary tree is defined recursively, this relationship will hold true at all levels of the
tree. Furthermore, there are extremely simple recursive algorithms for traversing (or in our case
printing) a binary tree which is organized lexically in sorted order.

Graphically, the tree is easy to understand. You have a piece of data (or a "node") and you
have a couple of little arrows which point to the next nodes. Inside a computer, these little

(

User-Defined Functions and Subprograms 189

arrows are called " pointers" because they point to a location in memory where the next node is
to be found.

Our binary tree is going to be implemented as an 80 by 2 integer array. Any element of this
array A(I, 1) will be a pointer to the left subtree, while A(I,2) will be a pointer to the right subtree.
I is simply the location within the other three arrays of the pertinent data. The first item in each
array is defined to be the root of the tree.

Thus our data structure will now look like so:

ROOT r-_T....,R E_E----.
L R

2
t---If----I

3
t---It-----I

4

· • ·

2

EMPLOYEE NAME

80 CHARACTERS

1-------1
3
1-------1

4

· • •

UNITS BUILT

INTEGER

• • •

FAILURE RATE

REAL

· • ·
I :: t±j ::11-------ill I-------i I

The manager can choose which field to sort on when
Poi 1"1 t e r s (*) array will be constructed accordingly.

the report is printed, and the

The amount of detail we've spent studying and understanding the data structure emphasizes
the importance of this phase of the design.

Let's proceed now with designing our program. At the highest level, what we would really like
to have is a command which does everything at one fell swoop:

10 Do_it
20 END

Top-Down design calls for breaking this massive task down into a set of smaller problems. First
we'll declare the data structure and define what actions we want to take on the data. Note that
in an actual application , there would be some sort of menu to let the user choose the action he
desired. The human interface has been left off this example for the sake of simplicity.

10 OPTION BASE 1
20 DIM NafTle$ (SO)[SO] ,Faill.lre_rate (SO)
30 INTEGER Units_bl.lilt (BO) ,M a x ,HOI,llrlan)'
1I0 Ma x =SO
50 Inpl.lt_data(Nalrle$(*) ,Units_bl.lilt(*) ,Fail'.lre_rate(*) ,Max ,HOI,llrlan)')
GO Store_data(Nalrle$(*) ,Units_bl.lilt(*) ,Faill.lre_rate(*) ,Max ,HOI,llrlan)')
70 Report(NafTle$ (*) ,Units_bl.lilt(*) ,Faill.lre_rate(*) ,Max ,HOI,llrlan)')
SO END
80 SUB Inpl.lt_data(Nalrle$(*) .INTEGER Units(*) ,REAL Faill.lres(*) .INTEGER Max,Hol,lirla
n}')

100 SUB END
110 SUB Store_data(Nalrle$(*) .INTEGER Units(*) ,REAL Fail'.lres (*) .INTEGER Max ,Hol,Jltla

120 SUBEND
130 SUB Report(Nalrle$(*) .INTEGER Units(*) ,REAL Faill.lres(*) .INTEGER Max,Hol,llrlan)')
1110 SUB END

(

User-Defined Functions and Subprograms 189

arrows are called " pointers" because they point to a location in memory where the next node is
to be found.

Our binary tree is going to be implemented as an 80 by 2 integer array. Any element of this
array A(I, 1) will be a pointer to the left subtree, while A(I,2) will be a pointer to the right subtree.
I is simply the location within the other three arrays of the pertinent data. The first item in each
array is defined to be the root of the tree.

Thus our data structure will now look like so:

ROOT r-_T....,R E_E----.
L R

2
t---If----I

3
t---It-----I

4

· • ·

2

EMPLOYEE NAME

80 CHARACTERS

1-------1
3
1-------1

4

· • •

UNITS BUILT

INTEGER

• • •

FAILURE RATE

REAL

· • ·
I :: t±j ::11-------ill I-------i I

The manager can choose which field to sort on when
Poi 1"1 t e r s (*) array will be constructed accordingly.

the report is printed, and the

The amount of detail we've spent studying and understanding the data structure emphasizes
the importance of this phase of the design.

Let's proceed now with designing our program. At the highest level, what we would really like
to have is a command which does everything at one fell swoop:

10 Do_it
20 END

Top-Down design calls for breaking this massive task down into a set of smaller problems. First
we'll declare the data structure and define what actions we want to take on the data. Note that
in an actual application , there would be some sort of menu to let the user choose the action he
desired. The human interface has been left off this example for the sake of simplicity.

10 OPTION BASE 1
20 DIM NafTle$ (SO)[SO] ,Faill.lre_rate (SO)
30 INTEGER Units_bl.lilt (BO) ,M a x ,HOI,llrlan)'
1I0 Ma x =SO
50 Inpl.lt_data(Nalrle$(*) ,Units_bl.lilt(*) ,Fail'.lre_rate(*) ,Max ,HOI,llrlan)')
GO Store_data(Nalrle$(*) ,Units_bl.lilt(*) ,Faill.lre_rate(*) ,Max ,HOI,llrlan)')
70 Report(NafTle$ (*) ,Units_bl.lilt(*) ,Faill.lre_rate(*) ,Max ,HOI,llrlan)')
SO END
80 SUB Inpl.lt_data(Nalrle$(*) .INTEGER Units(*) ,REAL Faill.lres(*) .INTEGER Max,Hol,lirla
n}')

100 SUB END
110 SUB Store_data(Nalrle$(*) .INTEGER Units(*) ,REAL Fail'.lres (*) .INTEGER Max ,Hol,Jltla

120 SUBEND
130 SUB Report(Nalrle$(*) .INTEGER Units(*) ,REAL Faill.lres(*) .INTEGER Max,Hol,llrlan)')
1110 SUB END

190 User-Defined Functions and Subprograms

Notice that we haven' t worried about the tree structure yet. This is because the tree is only used
to provide ordering information to be used in printing out the report. Since the tree is not
necessary except for the report, we'll let the report subprogram worry about it. The variables
Max and Howmany are introduced for the sake of flexibility. It is possible that the department
may have to hire more people at some time in the future , or that some people may leave the
company or accept jobs in other departments. In this case, the program will have to be changed
to allow for a different number of people. By making the maximum number of people, and the
actual number of people, variables instead of constants, modifying the program becomes very
easy.

Also, notice that each of the subprograms has been "stubbed in". The reason for doing this is
that you can immediately run the program to test the communications between modules. So
far, the program will not do anything, but it does allow you to make sure that your pass
parameter lists match the formal parameter lists in the number and types of parameters. Furth­
ermore, this process can be repeated every step of the way. As each subprogram is designed,
the modules called by it can he "stubbed in" in a similar fashion, insuring that the parameter
lists and communications paths are well defined and properly implemented at every level of
your design. The most difficult part of testing your program is done as the program is being
designed.

Let's step down to the next level of the design and consider each of the subprograms men­
tioned above:

90 SUB Input_data(Nallle$ (*) .INTEGER Units (*) ,REAL Failures(*) .INTEGER Ma x ,H 0 '.'111 a
n)')

91 DIM Which$[3]
92 INPUT "Ne'.' Data or DId?" ,Which$
93 IF Which$="New" THEN
911 Enter_ne,.dNaflle$ (*) ,Units(*) ,Failures (*) ,Ma x ,HO'," llan)')
95 ELSE
98 Edit_old(Nallle$(·)f) ,Units(*) ,Failures(*) ,Max ,Ho',Jlllaln')
97 END IF
100 SUBEND
101

111 Setup_file(@File)
112 DUTPUT @File ; Nallle$ (*) ,Units(*) ,Failures (*)
113 ASSIGN @File TO *
120 SUBEND
121
130 SUB Repor t (Nallle$(*) .INTEGER Units (*) ,REAL Failures(*) .INTEGER Ma x ,Ho "'fllan)')
132 OPTION BASE 1
133 INTEGER Root.I ,Whichfield
1311 ALLOCATE INTEGER Tree(HowMan)',2)
135 Init_tree(Root,Tree(*»
138 A s f~: INPUT "Which f ield (l=Nallle , 2 =Units ,3=Failures) ?" ,Whichfield
137 IF Whichfield < l OR Whichfield>3 THEN Ask
138 FOR 1=2 TO HowMan)'
1 3 9 SELECT Which_field
1110 CASE 1
1111 Bu i Ids t r i n g (R 00 t ,T r e e (*) .I , N alII e $ (*))
1112 CASE 2
1113 Buildnulll(Root ,Tree(*) .I ,Units(*»
11111 CASE 3
1115 BuildnuM(Root ,Tree(*) .I ,Failures (* »
1118 END SELECT
1118 NEn I
1119 Inorder(Root , Tree(*) ,Nallle$(*) ,Units(*) ,Fa i lures(*»
150 SUB END

190 User-Defined Functions and Subprograms

Notice that we haven' t worried about the tree structure yet. This is because the tree is only used
to provide ordering information to be used in printing out the report. Since the tree is not
necessary except for the report, we'll let the report subprogram worry about it. The variables
Max and Howmany are introduced for the sake of flexibility. It is possible that the department
may have to hire more people at some time in the future , or that some people may leave the
company or accept jobs in other departments. In this case, the program will have to be changed
to allow for a different number of people. By making the maximum number of people, and the
actual number of people, variables instead of constants, modifying the program becomes very
easy.

Also, notice that each of the subprograms has been "stubbed in". The reason for doing this is
that you can immediately run the program to test the communications between modules. So
far, the program will not do anything, but it does allow you to make sure that your pass
parameter lists match the formal parameter lists in the number and types of parameters. Furth­
ermore, this process can be repeated every step of the way. As each subprogram is designed,
the modules called by it can he "stubbed in" in a similar fashion, insuring that the parameter
lists and communications paths are well defined and properly implemented at every level of
your design. The most difficult part of testing your program is done as the program is being
designed.

Let's step down to the next level of the design and consider each of the subprograms men­
tioned above:

90 SUB Input_data(Nallle$ (*) .INTEGER Units (*) ,REAL Failures(*) .INTEGER Ma x ,H 0 '.'111 a
n)')

91 DIM Which$[3]
92 INPUT "Ne'.' Data or DId?" ,Which$
93 IF Which$="New" THEN
911 Enter_ne,.dNaflle$ (*) ,Units(*) ,Failures (*) ,Ma x ,HO'," llan)')
95 ELSE
98 Edit_old(Nallle$(·)f) ,Units(*) ,Failures(*) ,Max ,Ho',Jlllaln')
97 END IF
100 SUBEND
101

111 Setup_file(@File)
112 DUTPUT @File ; Nallle$ (*) ,Units(*) ,Failures (*)
113 ASSIGN @File TO *
120 SUBEND
121
130 SUB Repor t (Nallle$(*) .INTEGER Units (*) ,REAL Failures(*) .INTEGER Ma x ,Ho "'fllan)')
132 OPTION BASE 1
133 INTEGER Root.I ,Whichfield
1311 ALLOCATE INTEGER Tree(HowMan)',2)
135 Init_tree(Root,Tree(*»
138 A s f~: INPUT "Which f ield (l=Nallle , 2 =Units ,3=Failures) ?" ,Whichfield
137 IF Whichfield < l OR Whichfield>3 THEN Ask
138 FOR 1=2 TO HowMan)'
1 3 9 SELECT Which_field
1110 CASE 1
1111 Bu i Ids t r i n g (R 00 t ,T r e e (*) .I , N alII e $ (*))
1112 CASE 2
1113 Buildnulll(Root ,Tree(*) .I ,Units(*»
11111 CASE 3
1115 BuildnuM(Root ,Tree(*) .I ,Failures (* »
1118 END SELECT
1118 NEn I
1119 Inorder(Root , Tree(*) ,Nallle$(*) ,Units(*) ,Fa i lures(*»
150 SUB END

User-Defined Functions and Subprograms 191

Here we haven't gone through the exercise of providing the dummy subprograms, though in
actual practice we would. In lines 94 and 96 of the data entry program, we see two more
subprograms that need to be designed. The module for entering new data from the keyboard
will be straightforward and need not be considered in further detail for this example. The
module for editing old data will involve loading a set of data from the diskette and then allowing
the user to modify those values. This will involve a little more detail and perhaps another level
of subprograms, but the techniques to be used are still straightforward enough not to demand
further attention here.

Line 111 calls for a module to setup a data file to store the data on, and passes an I/O path
name back out that's ready for use. This means that the subprogram must:

1. Ask the user for a file

2. Create the file if necessary

3. ASSIGN it for use

The Report subprogram is by far the most interesting one in this example, since it deals with the
initialization, construction, and traversal of a binary tree, as discussed above. The IniLtree
subprogram called in line 135 simply initializes the root node's (first element, remember)
subtrees to be empty. Subsequently, the Buildstring subprogram called in line 140 simply
enters the Ith string in the N a frl e $ (*) array into the structure of T r e e (*) , assuming that the
user asked for the report to be sorted by N a ITl e $ (*). Similarly, if the user wanted either
Un its (*) or Fa i 1u res (*) to be the sort key, then the Buildnum subprogram (called in
lines 143 and 145) would be used to construct the tree.

Finally, the Inorder subprogram traverses the structure in "inorder" once the tree has been
built. "Inorder" simply means that every node is printed in between that node's subtrees. This
traversal mechanism, as you will see, is quite short, and is a truly elegant expression of the task
being performed.

User-Defined Functions and Subprograms 191

Here we haven't gone through the exercise of providing the dummy subprograms, though in
actual practice we would. In lines 94 and 96 of the data entry program, we see two more
subprograms that need to be designed. The module for entering new data from the keyboard
will be straightforward and need not be considered in further detail for this example. The
module for editing old data will involve loading a set of data from the diskette and then allowing
the user to modify those values. This will involve a little more detail and perhaps another level
of subprograms, but the techniques to be used are still straightforward enough not to demand
further attention here.

Line 111 calls for a module to setup a data file to store the data on, and passes an I/O path
name back out that's ready for use. This means that the subprogram must:

1. Ask the user for a file

2. Create the file if necessary

3. ASSIGN it for use

The Report subprogram is by far the most interesting one in this example, since it deals with the
initialization, construction, and traversal of a binary tree, as discussed above. The IniLtree
subprogram called in line 135 simply initializes the root node's (first element, remember)
subtrees to be empty. Subsequently, the Buildstring subprogram called in line 140 simply
enters the Ith string in the N a frl e $ (*) array into the structure of T r e e (*) , assuming that the
user asked for the report to be sorted by N a ITl e $ (*). Similarly, if the user wanted either
Un its (*) or Fa i 1u res (*) to be the sort key, then the Buildnum subprogram (called in
lines 143 and 145) would be used to construct the tree.

Finally, the Inorder subprogram traverses the structure in "inorder" once the tree has been
built. "Inorder" simply means that every node is printed in between that node's subtrees. This
traversal mechanism, as you will see, is quite short, and is a truly elegant expression of the task
being performed.

192 User-Defined Functions and Subprograms

Here are the IniLtree, Buildstring, and Inorder subprograms (Buildnum is so similar to Build­
string that it isn't necessary to list it too):

200
210
220
230
240
250
260
270
280
281
280
300
310
320
330
340
350
351
360
370
380
380
400
410
420
430
440
450
460
470
480
481
480
)

500
510
520
530
540
550
560

SUB Init_tree(INTEGER Root,Tree(*»
COM ITreel INTEGER Ni 1 ,Left ,Ri ght
Nil=O
Left=l
Right=2
Root=l
Tree(Root ,Left)=Nil
Tree (Root ,Ri ght) =Ni 1
SUBENo

SUB Buildstring(INTEGER Root ,Tree(*) .Index ,A$(*»
COM IT reel INTEGER Ni 1 ,Left ,Ri ght
IF A$(Index)(=A$(Root) THEN I Search the left subtree

IF Tree(Root,Left)=Nil THEN I Once a leaf is found (link is
Tree(Root ,Left)=Index
Tree(Index ,Left)=Nil
Tree (Index ,Ri ght) =Ni 1

ELSE

nil) point to the new node
(Index) with the leaf's left
pointer and set UP the new
node as a leaf.

Buildstring(Tree(Root ,Left) ,Tree(*) ,Index ,A$(*»
END IF

ELSE ! Search the right subtree
IF Tree(Root ,Right)=Nil THEN! Once a leaf is found (link is

Tree(Root ,Right)=Index
Tree(Index ,Left)=Nil
Tree (Index ,Ri ght) =Ni 1

ELSE

nil) point to the new node
froM the right pointer instead
of the left.

Buildstring(Tree(Root ,Right) ,Tree(*) .Index ,A$(*»
END IF

END IF
SUB END

SUB Inorder(INTEGER Root ,Tree(*) , Naftle$(*) .INTEGER Units(*) ,REAL Failures(*)

COM ITreel INTEGER Ni 1 ,Left ,Ri ght
IF Root()Nil THEN

Inorder(Tree(Root ,Left) ,Tree(*) ,Naftle$(*) ,Units(*) ,Failures(*»
PRINT NaMe$(Root) ,Units(Root) ,Failures(Root)
Inorder(Tree(Root ,Right) ,Tree(*) ,Naltle$(*) ,Units(*) ,Failures(*»

END IF
SUBENQ

Let's step through a sample input stream and see how the tree is constructed using the Build­
string subprogram:

NafTle$ (*)

1. Perriwinkle
2. Jones
3. Smith
4. Snodgrass
5. Figby
6. Brown
7. Thompson
8. Richards
9. Hughes
10. Davenport

192 User-Defined Functions and Subprograms

Here are the IniLtree, Buildstring, and Inorder subprograms (Buildnum is so similar to Build­
string that it isn't necessary to list it too):

200
210
220
230
240
250
260
270
280
281
280
300
310
320
330
340
350
351
360
370
380
380
400
410
420
430
440
450
460
470
480
481
480
)

500
510
520
530
540
550
560

SUB Init_tree(INTEGER Root,Tree(*»
COM ITreel INTEGER Ni 1 ,Left ,Ri ght
Nil=O
Left=l
Right=2
Root=l
Tree(Root ,Left)=Nil
Tree (Root ,Ri ght) =Ni 1
SUBENo

SUB Buildstring(INTEGER Root ,Tree(*) .Index ,A$(*»
COM IT reel INTEGER Ni 1 ,Left ,Ri ght
IF A$(Index)(=A$(Root) THEN I Search the left subtree

IF Tree(Root,Left)=Nil THEN I Once a leaf is found (link is
Tree(Root ,Left)=Index
Tree(Index ,Left)=Nil
Tree (Index ,Ri ght) =Ni 1

ELSE

nil) point to the new node
(Index) with the leaf's left
pointer and set UP the new
node as a leaf.

Buildstring(Tree(Root ,Left) ,Tree(*) ,Index ,A$(*»
END IF

ELSE ! Search the right subtree
IF Tree(Root ,Right)=Nil THEN! Once a leaf is found (link is

Tree(Root ,Right)=Index
Tree(Index ,Left)=Nil
Tree (Index ,Ri ght) =Ni 1

ELSE

nil) point to the new node
froM the right pointer instead
of the left.

Buildstring(Tree(Root ,Right) ,Tree(*) .Index ,A$(*»
END IF

END IF
SUB END

SUB Inorder(INTEGER Root ,Tree(*) , Naftle$(*) .INTEGER Units(*) ,REAL Failures(*)

COM ITreel INTEGER Ni 1 ,Left ,Ri ght
IF Root()Nil THEN

Inorder(Tree(Root ,Left) ,Tree(*) ,Naftle$(*) ,Units(*) ,Failures(*»
PRINT NaMe$(Root) ,Units(Root) ,Failures(Root)
Inorder(Tree(Root ,Right) ,Tree(*) ,Naltle$(*) ,Units(*) ,Failures(*»

END IF
SUBENQ

Let's step through a sample input stream and see how the tree is constructed using the Build­
string subprogram:

NafTle$ (*)

1. Perriwinkle
2. Jones
3. Smith
4. Snodgrass
5. Figby
6. Brown
7. Thompson
8. Richards
9. Hughes
10. Davenport

(

User-Defined Functions and Subprograms 193

Tree structure after IniLtree is executed

(1) perriwinklel Nil 1 Nil 1

Tree structure after subsequent insertions into the tree by the BUildstring
subprogram:

(1) Periwinkle 1 2 1 Nil 1

I
Nil 1 Nil 1 (2) Jonesl

(1) perriwinklel 2 1 3 1

! ~
(2) Jonesl Nil Nil 1 (3) Smithl Nil 1 Nil 1

(1) perriwinklel 2 1 3 1

~\
(2) Jonesl 5 1 Nil 1 (3) Smith 1 8 1 4 1

I / ~
(5) Fi9byl 6 1 9 1 (8) RiChardsl Nil 1 Nil 1 (4) Snodgrass 1 Nil 1 7 1

I ~ \
(6) Brownl Nil 110 1 (9) HUghesl Nil Nil (7) Thompsonl Nil 1 Nil 1

\
(10) Davenportl Nil 1 Nil 1

(

User-Defined Functions and Subprograms 193

Tree structure after IniLtree is executed

(1) perriwinklel Nil 1 Nil 1

Tree structure after subsequent insertions into the tree by the BUildstring
subprogram:

(1) Periwinkle 1 2 1 Nil 1

I
Nil 1 Nil 1 (2) Jonesl

(1) perriwinklel 2 1 3 1

! ~
(2) Jonesl Nil Nil 1 (3) Smithl Nil 1 Nil 1

(1) perriwinklel 2 1 3 1

~\
(2) Jonesl 5 1 Nil 1 (3) Smith 1 8 1 4 1

I / ~
(5) Fi9byl 6 1 9 1 (8) RiChardsl Nil 1 Nil 1 (4) Snodgrass 1 Nil 1 7 1

I ~ \
(6) Brownl Nil 110 1 (9) HUghesl Nil Nil (7) Thompsonl Nil 1 Nil 1

\
(10) Davenportl Nil 1 Nil 1

194 User-Defined Functions and Subprograms

These three subprograms illustrate several points that were discussed in this chapter:

They share a labeled COM block which is not declared in the main program, nor in the Report
program. The information in the COM block was only relevant to the the three subprograms,
yet the programs never called each other - they were all called from Report.

Both the Inorder and Buildstring subprograms are recursive - they call themselves. This
technique was an appealing way to solve the problem because of the recursive nature of the
data structure. (Many types of data structures are recursively defined.)

The use of subprograms to build and traverse the data structure turned out to execute faster
than a sort subprogram which physically moved the items in the three fields into a given order
based on sorting one of the arrays. (The difference was about 40% using Donald Shell's
algorithmS.)

The method of Top-Down Design led to the orderly design, creation, and testing of each
subprogram, module by module, layer by layer. Communication paths and data structures/
types were forced to be clearly defined at each step of the way.

References:
1 Wirth , Niklaus, " Program Development by Stepwise Refinement" , Communications of th e A CM, April 197 1, Vol. 14, No.4, pp. 221-227

2 Yourdan , Edward, Techniq ues of Program Structure and Design , (Prentice-Hall , Englewood Cli ffs , NJ , 1975)

3 Dahl , Dijkstra , & Hoare, Structured Programming (AcademiC Press, New York , 1972)

4 Knu th , Donald E., Th e Art of Computer Programming, Vol. 1, Fundamental Algorithms (Addison-Wesley , Reading , Mass, 1973) , pp.
308-309,3 16-317

5 Knuth , Donald E., Th e Art o f Computer Programming, Vol. 3 , Sorting and Searching (Addison-Wesley, Reading, Mass, 1973) , pp. 84-85

194 User-Defined Functions and Subprograms

These three subprograms illustrate several points that were discussed in this chapter:

They share a labeled COM block which is not declared in the main program, nor in the Report
program. The information in the COM block was only relevant to the the three subprograms,
yet the programs never called each other - they were all called from Report.

Both the Inorder and Buildstring subprograms are recursive - they call themselves. This
technique was an appealing way to solve the problem because of the recursive nature of the
data structure. (Many types of data structures are recursively defined.)

The use of subprograms to build and traverse the data structure turned out to execute faster
than a sort subprogram which physically moved the items in the three fields into a given order
based on sorting one of the arrays. (The difference was about 40% using Donald Shell's
algorithmS.)

The method of Top-Down Design led to the orderly design, creation, and testing of each
subprogram, module by module, layer by layer. Communication paths and data structures/
types were forced to be clearly defined at each step of the way.

References:
1 Wirth , Niklaus, " Program Development by Stepwise Refinement" , Communications of th e A CM, April 197 1, Vol. 14, No.4, pp. 221-227

2 Yourdan , Edward, Techniq ues of Program Structure and Design , (Prentice-Hall , Englewood Cli ffs , NJ , 1975)

3 Dahl , Dijkstra , & Hoare, Structured Programming (AcademiC Press, New York , 1972)

4 Knu th , Donald E., Th e Art of Computer Programming, Vol. 1, Fundamental Algorithms (Addison-Wesley , Reading , Mass, 1973) , pp.
308-309,3 16-317

5 Knuth , Donald E., Th e Art o f Computer Programming, Vol. 3 , Sorting and Searching (Addison-Wesley, Reading, Mass, 1973) , pp. 84-85

(

Data Storage and Retrieval
Chapter

7

This chapter describes some useful techniques for storing and retrieving data. First we describe
how to store and retrieve data that is part of the BASIC program. With this method, OA TA
statements specify data to be stored in the memory area used by BASIC programs; thus, the
data is always kept with the program, even when the program is stored in a mass storage file.
The data items can be retrieved by using READ statements to assign the values to variables.
This is a particularly effective technique for small amounts of data that you want to maintain in a
program file .

For larger amounts of data, mass storage files are more appropriate. Files provide means of storing
data on mass storage devices. The two types of data files available with this BASIC system - ASCII
and BOAT files - are described in this chapter. A number of different techniques for accessing data
in BOAT files are described in detail. General disc structure is also described.

This BASIC system can use a number of different mass storage devices, including internal disc
drives, external disc drives, and SRM systems. This chapter gives guidelines for accessing many
kinds of devices.

195

(

Data Storage and Retrieval
Chapter

7

This chapter describes some useful techniques for storing and retrieving data. First we describe
how to store and retrieve data that is part of the BASIC program. With this method, OA TA
statements specify data to be stored in the memory area used by BASIC programs; thus, the
data is always kept with the program, even when the program is stored in a mass storage file.
The data items can be retrieved by using READ statements to assign the values to variables.
This is a particularly effective technique for small amounts of data that you want to maintain in a
program file .

For larger amounts of data, mass storage files are more appropriate. Files provide means of storing
data on mass storage devices. The two types of data files available with this BASIC system - ASCII
and BOAT files - are described in this chapter. A number of different techniques for accessing data
in BOAT files are described in detail. General disc structure is also described.

This BASIC system can use a number of different mass storage devices, including internal disc
drives, external disc drives, and SRM systems. This chapter gives guidelines for accessing many
kinds of devices.

195

196 Data Storage and Retrieval

Storing Data in Programs
This section describes a number of ways to store values in memory. In general, these techni­
ques involve using program variables to store data. The data are kept with the program when it
is stored on a mass storage device (with STORE and SAVE). These techniques allow extremely
fast access of the data. They provide good use of the computer's memory for storing relatively
small amounts of data.

Storing Data in Variables
Probably the simplest method of storing data is to use a simple assignment, such as the
following LET statements:

100 LET Cm _ per_inch=2.54
110 Inch_per _ cm=l/Cm_per_inch

The data stored in each variable can then be retrieved simply by specifying the variable's name.
This technique works well when there are only a relatively few items to be stored or when
several data values are to be computed from the value of a few items. The program will execute
faster when variables are used than when expressions containing constants are used; for inst­
ance, using the variable Inc h _ per _ c ITl in the preceding example would be faster than using
the constant expression 1/2.54. In addition, it is easier to modify the value of an item when it
appears in only one place (Le. , in the LET statement) .

Data Input by the User
You also can assign values to variables at run-time with the INPUT and LINPUT statements as
shown in the following examples.

1 0 0 INPUT " T ~'pe in the !'!alue of){ , please." t Id

2 0 0 DISP " Ent e r the value of >(, y , and Z . "
10 LINPUT Respo ns eS

Note that with this type of storage, the values assigned to the corresponding variables are not
kept with the program when it is stored; they must be entered each time the program is run.
This type of data storage can be used when the data are to be checked or modified by the user
each time the program is run. As with the preceding example, the data stored in each variable
can then be retrieved simply by specifying the variable's name.

Using DATA and READ Statements
The DATA and READ statements provide another technique for storing and retrieving data
from the computer's read/write (R/W) memory. The DATA statement allows you to store a
stream of data items in memory, and the READ statement allows you retrieve data items from
the stream.

196 Data Storage and Retrieval

Storing Data in Programs
This section describes a number of ways to store values in memory. In general, these techni­
ques involve using program variables to store data. The data are kept with the program when it
is stored on a mass storage device (with STORE and SAVE). These techniques allow extremely
fast access of the data. They provide good use of the computer's memory for storing relatively
small amounts of data.

Storing Data in Variables
Probably the simplest method of storing data is to use a simple assignment, such as the
following LET statements:

100 LET Cm _ per_inch=2.54
110 Inch_per _ cm=l/Cm_per_inch

The data stored in each variable can then be retrieved simply by specifying the variable's name.
This technique works well when there are only a relatively few items to be stored or when
several data values are to be computed from the value of a few items. The program will execute
faster when variables are used than when expressions containing constants are used; for inst­
ance, using the variable Inc h _ per _ c ITl in the preceding example would be faster than using
the constant expression 1/2.54. In addition, it is easier to modify the value of an item when it
appears in only one place (Le. , in the LET statement) .

Data Input by the User
You also can assign values to variables at run-time with the INPUT and LINPUT statements as
shown in the following examples.

1 0 0 INPUT " T ~'pe in the !'!alue of){ , please." t Id

2 0 0 DISP " Ent e r the value of >(, y , and Z . "
10 LINPUT Respo ns eS

Note that with this type of storage, the values assigned to the corresponding variables are not
kept with the program when it is stored; they must be entered each time the program is run.
This type of data storage can be used when the data are to be checked or modified by the user
each time the program is run. As with the preceding example, the data stored in each variable
can then be retrieved simply by specifying the variable's name.

Using DATA and READ Statements
The DATA and READ statements provide another technique for storing and retrieving data
from the computer's read/write (R/W) memory. The DATA statement allows you to store a
stream of data items in memory, and the READ statement allows you retrieve data items from
the stream.

Data Storage and Retrieval 197

You can have any number of READ and DATA statements in a program in any order you want.
When you RUN a program, the system concatenates all DATA statements in the same context
into a single "data stream." Each subprogram has its own data stream. The following DATA
statements distributed in a program would produce the following data stream.

100 DATA 1 t A t 50

200 DATA "55" t 20 t45

300 DATA)-(t Y t 77

DATA STREAM : 11 1 Also Iss l20 1451 X I y 1771

As you can see from the example above, a data stream can contain both numeric and string
data items; however, each item is stored as if it were a string.

Each data item must be separated by a comma and can be enclosed in optional quotes. Strings
that contain a comma, exclamation mark, or quote mark must be enclosed in quotes. In
addition, you must enter two quote marks for everyone you want in the string. For example, to
enter the string QUOTE" QUO" TE into a data stream, you would write:

10 0 DATA "QUOTE""QUO""TE"

To retrieve a data item, assign it to a variable with the READ statement. Syntactically, READ is
analogous to DATA; but instead of a data list, you use a variable list. For instance, the state­
ment:

100 READ ;-(t Y t2$

would read three data items from the data stream into the three variables. Note that the first two
items are numeric and the third is a string variable.

Numeric data items can be READ into either numeric or string variables. If the numeric data
item is of a different type than the numeric variable, the item is converted (i.e., REALs are
converted to INTEGERs, and INTEGERs to REALs). If the conversion cannot be made, an
error is returned. Strings that contain non-numeric characters must be READ into string vari­
ables. If the string variable has not been dimensioned to a size large enough to hold the entire
data item, the data item is truncated.

Data Storage and Retrieval 197

You can have any number of READ and DATA statements in a program in any order you want.
When you RUN a program, the system concatenates all DATA statements in the same context
into a single "data stream." Each subprogram has its own data stream. The following DATA
statements distributed in a program would produce the following data stream.

100 DATA 1 t A t 50

200 DATA "55" t 20 t45

300 DATA)-(t Y t 77

DATA STREAM : 11 1 Also Iss l20 1451 X I y 1771

As you can see from the example above, a data stream can contain both numeric and string
data items; however, each item is stored as if it were a string.

Each data item must be separated by a comma and can be enclosed in optional quotes. Strings
that contain a comma, exclamation mark, or quote mark must be enclosed in quotes. In
addition, you must enter two quote marks for everyone you want in the string. For example, to
enter the string QUOTE" QUO" TE into a data stream, you would write:

10 0 DATA "QUOTE""QUO""TE"

To retrieve a data item, assign it to a variable with the READ statement. Syntactically, READ is
analogous to DATA; but instead of a data list, you use a variable list. For instance, the state­
ment:

100 READ ;-(t Y t2$

would read three data items from the data stream into the three variables. Note that the first two
items are numeric and the third is a string variable.

Numeric data items can be READ into either numeric or string variables. If the numeric data
item is of a different type than the numeric variable, the item is converted (i.e., REALs are
converted to INTEGERs, and INTEGERs to REALs). If the conversion cannot be made, an
error is returned. Strings that contain non-numeric characters must be READ into string vari­
ables. If the string variable has not been dimensioned to a size large enough to hold the entire
data item, the data item is truncated.

198 Data Storage and Retrieval

The system keeps track of which data item to READ next by using a "data pointer" . Every data
stream has its own data pointer which points to the next data item to be assigned to the next
variable in a READ statement. When you run a program segment, the data pointer is placed
initially at the first item of the data stream. Every time you READ an item from the stream, the
pointer is moved to the next data item. If a subprogram is called by a context, the position of the
data pointer is recorded and then restored when you return to the calling context.

Starting from the position of the data pointer, data items are assigned to variables one by one
until all variables in a READ statement have been given values. If there are more variables than
data items, the system returns an error, and the data pointer is moved back to the position it
occupied before the READ statement was executed.

Examples
The following example shows how data is stored in a data stream and then retrieved. Note that
DATA statements can come after READ statements even though they contain the data being
READ. This is because DATA statements are linked during program pre-run, whereas READ
statements aren't executed until the program actually runs.

10 DATA Novetrlbe r ,26
20 READ MonthS,Day,YearS
30 DATA 1881,"The date is"
40 READ StrS
50 Print S t rS i M 0 nth S ,D a}' ,Ye a rS
60 END

The date is NoveMber 26 1881

Storage and Retrieval of Arrays
In addition to using READ to assign values to string and numeric variables, you can also READ
data into arrays. The system will match data items with variables one at a time until it has filled a
row. The next data item then becomes the first element in the next row. You must have enough
data items to fill the array or you will get an error. In the example below, we show how DATA
values can be assigned to elements of a 3-by-3 numeric array.

10 OPTION BASE 1
20 DIM ExaMPle(3,3)
30 DATA 1,2,3,4,5,6,7,8,8110111
40 READ ExaMPle(*)
50 PRINT USING "3(K ,)() ,I" iExafrlPle(*)
60 END

123
456
788

The data pointer is left at item 10; thus, items 10 and 11 are saved for the next READ
statement.

198 Data Storage and Retrieval

The system keeps track of which data item to READ next by using a "data pointer" . Every data
stream has its own data pointer which points to the next data item to be assigned to the next
variable in a READ statement. When you run a program segment, the data pointer is placed
initially at the first item of the data stream. Every time you READ an item from the stream, the
pointer is moved to the next data item. If a subprogram is called by a context, the position of the
data pointer is recorded and then restored when you return to the calling context.

Starting from the position of the data pointer, data items are assigned to variables one by one
until all variables in a READ statement have been given values. If there are more variables than
data items, the system returns an error, and the data pointer is moved back to the position it
occupied before the READ statement was executed.

Examples
The following example shows how data is stored in a data stream and then retrieved. Note that
DATA statements can come after READ statements even though they contain the data being
READ. This is because DATA statements are linked during program pre-run, whereas READ
statements aren't executed until the program actually runs.

10 DATA Novetrlbe r ,26
20 READ MonthS,Day,YearS
30 DATA 1881,"The date is"
40 READ StrS
50 Print S t rS i M 0 nth S ,D a}' ,Ye a rS
60 END

The date is NoveMber 26 1881

Storage and Retrieval of Arrays
In addition to using READ to assign values to string and numeric variables, you can also READ
data into arrays. The system will match data items with variables one at a time until it has filled a
row. The next data item then becomes the first element in the next row. You must have enough
data items to fill the array or you will get an error. In the example below, we show how DATA
values can be assigned to elements of a 3-by-3 numeric array.

10 OPTION BASE 1
20 DIM ExaMPle(3,3)
30 DATA 1,2,3,4,5,6,7,8,8110111
40 READ ExaMPle(*)
50 PRINT USING "3(K ,)() ,I" iExafrlPle(*)
60 END

123
456
788

The data pointer is left at item 10; thus, items 10 and 11 are saved for the next READ
statement.

Data Storage and Retrieval 199

Moving the Data Pointer
In some programs, you will want to assign the same data items to different variables. To do this,
you have to move the data pointer so that it is pointing at the desired data item. You can
accomplish this with the RESTORE statement. If you don't specify a line number or label,
RESTORE returns the data pointer to the first data item in the data stream. If you do include a
line identifier in the RESTORE statement, the data pointer is moved to the first data item in the
first DATA statement at or after the identified line. The example below illustrates how to use the
RESTORE statement.

100
110
120
130
140
150
180
170
180
190
200
210
220

DIM Arrad(1:3)
DIM Arra}'2(0:4)
DATA 1 t2 t3 t4
DATA 5t8t7
READ AtBtC
READ Arra}'2(*)
DATA 8t9

RESTORE
READ Arrad(*)
RESTORE 140
READ D

Dimensions a 3-element array.
Dimensions a 5-element array.
Places 4 items in stream.
Places 3 items in stream.
Reads first 3 items in stream.

I Reads next 5 iteMs in stream.
Places 2 items in stream.

Re-positions pointer to 1st item.
Reads first 3 items in streaM.
MO\,Ies data pointer to itelTl "8".
Reads "8".

230 PRINT "Arra}'l contains:"iArra}'l(*)i""
240 PRINT "Array2 contains:"iArra}' 2(*)i""
250 PRINT "AtBtCtD e"lual:"iAiBiCiD
280 END

Arrayl contains: 1 2 3
Array2 contains: 4 5 8 7 8
AtBtCtD e"lual: 1 2 3 8

Data Storage and Retrieval 199

Moving the Data Pointer
In some programs, you will want to assign the same data items to different variables. To do this,
you have to move the data pointer so that it is pointing at the desired data item. You can
accomplish this with the RESTORE statement. If you don't specify a line number or label,
RESTORE returns the data pointer to the first data item in the data stream. If you do include a
line identifier in the RESTORE statement, the data pointer is moved to the first data item in the
first DATA statement at or after the identified line. The example below illustrates how to use the
RESTORE statement.

100
110
120
130
140
150
180
170
180
190
200
210
220

DIM Arrad(1:3)
DIM Arra}'2(0:4)
DATA 1 t2 t3 t4
DATA 5t8t7
READ AtBtC
READ Arra}'2(*)
DATA 8t9

RESTORE
READ Arrad(*)
RESTORE 140
READ D

Dimensions a 3-element array.
Dimensions a 5-element array.
Places 4 items in stream.
Places 3 items in stream.
Reads first 3 items in stream.

I Reads next 5 iteMs in stream.
Places 2 items in stream.

Re-positions pointer to 1st item.
Reads first 3 items in streaM.
MO\,Ies data pointer to itelTl "8".
Reads "8".

230 PRINT "Arra}'l contains:"iArra}'l(*)i""
240 PRINT "Array2 contains:"iArra}' 2(*)i""
250 PRINT "AtBtCtD e"lual:"iAiBiCiD
280 END

Arrayl contains: 1 2 3
Array2 contains: 4 5 8 7 8
AtBtCtD e"lual: 1 2 3 8

200 Data Storage and Retrieval

Mass Storage Tutorial

The rest of this chapter describes the second general class of data storage and retrieval methods
- that of using mass storage devices. This material is broken up into two main parts. The first
part presents a general tutorial regarding disc and file structures. The second part presents
techniques for accessing mass storage devices and files with BASIC statements. If you are
anxious to "get going," turn to "Mass Storage Techniques" (about 10 pages ahead) and refer
back to the tutorial as needed.

What Is Mass Storage?
As the adjective "mass" suggests, mass storage devices are data-storage devices which are
generally capable of storing "large" amounts of data. Just how much data constitutes a large
amount depends on the device itself. Most mass storage devices are capable of storing on the
order of hundreds of thousands to several million items.

Besides having the ability to store data, mass storage devices are capable of providing means for
keeping data organized so that logical groups may be accessed systematically and efficiently. Data
items are organized into logical groups of data known as files; a file is merely a collection of data
items. Mass storage volumes are composed of one or more files. On most HP mass storage devices,
a volume consists of all files on the mass storage media; mass storage media are the actual physical
means by which data are stored. For instance, the media used by the internal drives of the Model
226 and Model 236 consist of magnetic particles on a plastic disc which can be magnetized to store
data.

The Structure of Model 226/236 Discs
This section describes the specific structure of discs used with built-in Model 226/236 drives. This
specific structure is similar to the general structure of all HP discs. Some of the information in this
section (directory format and disc interleave) is useful to the advanced programmer; however, it is
not a prerequisite for general mass storage usage.

Most HP mass storage devices use magnetic discs as their storage media. Magnetic discs possess
features of both records and recording tape. Like a record, it is circular, has tracks (most have tracks
on both sides), and rotates. Like a tape, data is written and read by an electromagnetic head.

The internal disc drive(s) of the Model 226 and 236 use 5.25-inch diameter, flexible disc media.
These flexible discs have two usable sides with 33 tracks on each side. Each track is further divided
into sixteen sectors, each of which contain 256 contiguous bytes of data. A track, therefore,
contains 4096 bytes, and an entire disc is capable of holding over 270,000 bytes of information.
However, some of this space is reserved for system use and cannot be used for data storage.

In addition to the internal disc drive(s), you can also use external drives with your computer. There
are several types of drives that are compatible with this BASIC system. Some mass storage devices
use the same 5.25-inch diameter flexible discs as the internal drives, while others use 3.5-inch or
8-inch flexible discs and/or hard discs. We describe how to access external drives later in this
chapter.

200 Data Storage and Retrieval

Mass Storage Tutorial

The rest of this chapter describes the second general class of data storage and retrieval methods
- that of using mass storage devices. This material is broken up into two main parts. The first
part presents a general tutorial regarding disc and file structures. The second part presents
techniques for accessing mass storage devices and files with BASIC statements. If you are
anxious to "get going," turn to "Mass Storage Techniques" (about 10 pages ahead) and refer
back to the tutorial as needed.

What Is Mass Storage?
As the adjective "mass" suggests, mass storage devices are data-storage devices which are
generally capable of storing "large" amounts of data. Just how much data constitutes a large
amount depends on the device itself. Most mass storage devices are capable of storing on the
order of hundreds of thousands to several million items.

Besides having the ability to store data, mass storage devices are capable of providing means for
keeping data organized so that logical groups may be accessed systematically and efficiently. Data
items are organized into logical groups of data known as files; a file is merely a collection of data
items. Mass storage volumes are composed of one or more files. On most HP mass storage devices,
a volume consists of all files on the mass storage media; mass storage media are the actual physical
means by which data are stored. For instance, the media used by the internal drives of the Model
226 and Model 236 consist of magnetic particles on a plastic disc which can be magnetized to store
data.

The Structure of Model 226/236 Discs
This section describes the specific structure of discs used with built-in Model 226/236 drives. This
specific structure is similar to the general structure of all HP discs. Some of the information in this
section (directory format and disc interleave) is useful to the advanced programmer; however, it is
not a prerequisite for general mass storage usage.

Most HP mass storage devices use magnetic discs as their storage media. Magnetic discs possess
features of both records and recording tape. Like a record, it is circular, has tracks (most have tracks
on both sides), and rotates. Like a tape, data is written and read by an electromagnetic head.

The internal disc drive(s) of the Model 226 and 236 use 5.25-inch diameter, flexible disc media.
These flexible discs have two usable sides with 33 tracks on each side. Each track is further divided
into sixteen sectors, each of which contain 256 contiguous bytes of data. A track, therefore,
contains 4096 bytes, and an entire disc is capable of holding over 270,000 bytes of information.
However, some of this space is reserved for system use and cannot be used for data storage.

In addition to the internal disc drive(s), you can also use external drives with your computer. There
are several types of drives that are compatible with this BASIC system. Some mass storage devices
use the same 5.25-inch diameter flexible discs as the internal drives, while others use 3.5-inch or
8-inch flexible discs and/or hard discs. We describe how to access external drives later in this
chapter.

Data Storage and Retrieval 201

As previously mentioned, information is stored on a disc by placing it in a file. A file is a logical
unit that occupies a certain number of sectors on the storage media. Files can be used to store
either programs or data. In this chapter, we are concerned primarily with data files , although
parts of the discussion relate to program files as well.

When you SAVE a program, the system automatically creates an ASCII file of sufficient size to
store the program in its "source form" - as ASCII characters. When you create a data file with
the CREATE ASCII or CREATE BOAT statements, you give it a name and specify how much
disc space should be reserved for it. In general, the only limit to the size of a file is the amount of
contiguous, unreserved space left on the media, since files cannot span disc volumes.

Let's take a brief look at how the the system accesses the information in the file. (More
complete details of file access will be described later.) In order to access the information in a file ,
you assign an I/O path name to the file's name. When this I/O path is used to send and receive
information to and from the file , the system handles the details of the access operation. The
important point here is that the system always reads and/or writes an entire sector of data
whenever a disc is accessed. For instance, if only one byte of data is to be written in a file, an
entire sector must be read, the single byte changed, and the (modified) sector re-written.

Data Storage and Retrieval 201

As previously mentioned, information is stored on a disc by placing it in a file. A file is a logical
unit that occupies a certain number of sectors on the storage media. Files can be used to store
either programs or data. In this chapter, we are concerned primarily with data files , although
parts of the discussion relate to program files as well.

When you SAVE a program, the system automatically creates an ASCII file of sufficient size to
store the program in its "source form" - as ASCII characters. When you create a data file with
the CREATE ASCII or CREATE BOAT statements, you give it a name and specify how much
disc space should be reserved for it. In general, the only limit to the size of a file is the amount of
contiguous, unreserved space left on the media, since files cannot span disc volumes.

Let's take a brief look at how the the system accesses the information in the file. (More
complete details of file access will be described later.) In order to access the information in a file ,
you assign an I/O path name to the file's name. When this I/O path is used to send and receive
information to and from the file , the system handles the details of the access operation. The
important point here is that the system always reads and/or writes an entire sector of data
whenever a disc is accessed. For instance, if only one byte of data is to be written in a file, an
entire sector must be read, the single byte changed, and the (modified) sector re-written.

202 Data Storage and Retrieval

Disc Interleave
The INITIALIZE statement allows you to specify an interleave factor. Interleaving a disc causes the
sectors on each track to be numbered according to a specified interval. An interleave factor of 1
causes sectors to be numbered consecutively. A factor of 2, on the other hand, tells the system to
skip every other sector. The following drawing shows how these interleaves are implemented on
the 5.25-inch flexible discs used by the Model 226 and Model 236 internal drives.

A track of a disc with
interleave factor of 1.

A track of a disc with
interleave factor of 2.

The system numbers each sector on each track according to the pattern specified by the
interleave factor. All tracks on a disc have the same interleave factor.

The purpose of disc interleave is to increase data-transfer rates, as demonstrated in the following
example. Suppose that we are entering data from a spinning disc; suppose also that the data have
formats which are different from the computer's internal data formats. Consequently, after each
item is read, the computer must change the data from the disc's data format to the computer's
internal data format. Note that during this processing time the disc is still spinning.

If the processing of all items in a sector takes more time than the disc drive takes to reach the next
sector, the computer must wait (one full revolution of the disc) until the next sector again comes
under the head. By interleaving a disc, you can allow for this processing time, which results in faster
transfer rates.

The default interleave factor for each type of drive is designed to give maximum transfer rates for
LOAD and STORE operations (and for OUTPUT and ENTER of numeric arrays using BOAT files
with the FORMAT OFF attribute). The default interleave factor is 1 for internal drives of the Model
226 and Model 236. For other HP drives, the optimum interleave may differ. All default interleave
factors are shown later in this chapter.

202 Data Storage and Retrieval

Disc Interleave
The INITIALIZE statement allows you to specify an interleave factor. Interleaving a disc causes the
sectors on each track to be numbered according to a specified interval. An interleave factor of 1
causes sectors to be numbered consecutively. A factor of 2, on the other hand, tells the system to
skip every other sector. The following drawing shows how these interleaves are implemented on
the 5.25-inch flexible discs used by the Model 226 and Model 236 internal drives.

A track of a disc with
interleave factor of 1.

A track of a disc with
interleave factor of 2.

The system numbers each sector on each track according to the pattern specified by the
interleave factor. All tracks on a disc have the same interleave factor.

The purpose of disc interleave is to increase data-transfer rates, as demonstrated in the following
example. Suppose that we are entering data from a spinning disc; suppose also that the data have
formats which are different from the computer's internal data formats. Consequently, after each
item is read, the computer must change the data from the disc's data format to the computer's
internal data format. Note that during this processing time the disc is still spinning.

If the processing of all items in a sector takes more time than the disc drive takes to reach the next
sector, the computer must wait (one full revolution of the disc) until the next sector again comes
under the head. By interleaving a disc, you can allow for this processing time, which results in faster
transfer rates.

The default interleave factor for each type of drive is designed to give maximum transfer rates for
LOAD and STORE operations (and for OUTPUT and ENTER of numeric arrays using BOAT files
with the FORMAT OFF attribute). The default interleave factor is 1 for internal drives of the Model
226 and Model 236. For other HP drives, the optimum interleave may differ. All default interleave
factors are shown later in this chapter.

Data Storage and Retrieval 203

If you use the default interleave factors, you should be aware that discs initialized on one drive may
show a performance degradation if used on another drive. For instance, suppose you INITIALIZE a
disc on the internal drive (default interleave factor is 1) and then use that disc in an HP 82901 drive
(default interleave factor of 4) . You probably will get slower transfer rates than if the default
interleave for the HP 82901 had been used. In summary, if you need maximum transfer rates,
experiment to determine the optimal interleave for your particular application.

When estimating optimal interleave factors, it is better to use a factor too large than one too
small. For instance, suppose that an interleave of 2 is optimal for a particular operation. If an
interleave of 1 is improperly chosen, the operation is slowed down approximately by a factor of
eight. On the other hand, using an interleave of 3 only slows the operation approximately by a
factor of two. If in doubt about which of two interleave factors is optimal for a particular
situation, it is generally better to choose the larger.

Volume Label
The first sector on every disc contains information about the disc volume. It contains the name
of the volume, the starting address of the directory, and the length of the directory. The figure
below shows the values and locations of this information for LIF-compatible discs.

WORD: 0 2 3 4 5 6 7 8 9 10 • 127

I I I I I I I I I I I I I I I

1
\ VOL~ME ~\IRECTo~Y11 D:RE~TO~~ DECIMAL

LABEL START LENGTH = 0 's
ADDRESS = 14

SECTOR 2

DECIMAL DECIMAL DECIMAL
- 32768 4096 0

Directory
A directory is an index of all files on the disc. Every disc volume has a directory. On Model 226/236
internal disc volumes initialized with BASIC, the directory occupies sectors 2 thru 15. Other discs or
discs initialized in other languages may have a different directory size. However, the general
structure of the directory entries is the same. In this directory, there is a 16-word entry for every file;
each directory sector can thus hold 8 entries. Since this directory contains 14 sectors, it can hold up
to 112 entries; therefore, the limit on the number of files in a volume is 112. The figure below shows
the format of a directory entry.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1\ CREATION '/
TIME

FILE VOLUME PROTECT
LENGTH NUMBER CODE

DEFINED
RECORD
LENGTH

Data Storage and Retrieval 203

If you use the default interleave factors, you should be aware that discs initialized on one drive may
show a performance degradation if used on another drive. For instance, suppose you INITIALIZE a
disc on the internal drive (default interleave factor is 1) and then use that disc in an HP 82901 drive
(default interleave factor of 4) . You probably will get slower transfer rates than if the default
interleave for the HP 82901 had been used. In summary, if you need maximum transfer rates,
experiment to determine the optimal interleave for your particular application.

When estimating optimal interleave factors, it is better to use a factor too large than one too
small. For instance, suppose that an interleave of 2 is optimal for a particular operation. If an
interleave of 1 is improperly chosen, the operation is slowed down approximately by a factor of
eight. On the other hand, using an interleave of 3 only slows the operation approximately by a
factor of two. If in doubt about which of two interleave factors is optimal for a particular
situation, it is generally better to choose the larger.

Volume Label
The first sector on every disc contains information about the disc volume. It contains the name
of the volume, the starting address of the directory, and the length of the directory. The figure
below shows the values and locations of this information for LIF-compatible discs.

WORD: 0 2 3 4 5 6 7 8 9 10 • 127

I I I I I I I I I I I I I I I

1
\ VOL~ME ~\IRECTo~Y11 D:RE~TO~~ DECIMAL

LABEL START LENGTH = 0 's
ADDRESS = 14

SECTOR 2

DECIMAL DECIMAL DECIMAL
- 32768 4096 0

Directory
A directory is an index of all files on the disc. Every disc volume has a directory. On Model 226/236
internal disc volumes initialized with BASIC, the directory occupies sectors 2 thru 15. Other discs or
discs initialized in other languages may have a different directory size. However, the general
structure of the directory entries is the same. In this directory, there is a 16-word entry for every file;
each directory sector can thus hold 8 entries. Since this directory contains 14 sectors, it can hold up
to 112 entries; therefore, the limit on the number of files in a volume is 112. The figure below shows
the format of a directory entry.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1\ CREATION '/
TIME

FILE VOLUME PROTECT
LENGTH NUMBER CODE

DEFINED
RECORD
LENGTH

204 Data Storage and Retrieval

File Name - Every file is given a name when it is created. File names can be up to 10
characters long.

File Type - BASIC supports five file types: ASCII, BOAT, BIN, PROG and SYSTM. We
discuss BOAT and ASCII data type files later in this chapter.

Starting Sector - The address of the file's first sector. Files always start at the beginning of a
sector.

Length of File - Length is given in sectors. If a file ends in the middle of a sector, the whole
sector is counted.

Time of Creation - Not used by BASIC. Entry is filled with zeros.

Volume Number - The least significant 15 bits give the volume number, which is always 1 on
Series 200 computers. The most significant bit tells whether the file is continued in another
volume (0 for yes, 1 for no). Since files on these computers cannot span volumes, this bit is
always set to 1.

Protect Code - Any BOAT, BIN or PROG type file can be given a two-character protect code
with the PROTECT statement. ASCII and SYSTM type files cannot be protected. This word is
always 0 with ASCII files; it has a different use with SYSTM files. Protect codes are discussed
later in this chapter.

Defined-Record Length - If a file is of BOAT type , it can have defined records from 1 thru
65 534 bytes long. This is described in detail later in this chapter. Defined records in all other
file types are always one sector (256 bytes) long. The defined record length is encoded into
word 15 as length/2 . (If length = 1, then word 15 = 0.) This word is always 0 with ASCII files ; it
has a different use with SYSTM files .

204 Data Storage and Retrieval

File Name - Every file is given a name when it is created. File names can be up to 10
characters long.

File Type - BASIC supports five file types: ASCII, BOAT, BIN, PROG and SYSTM. We
discuss BOAT and ASCII data type files later in this chapter.

Starting Sector - The address of the file's first sector. Files always start at the beginning of a
sector.

Length of File - Length is given in sectors. If a file ends in the middle of a sector, the whole
sector is counted.

Time of Creation - Not used by BASIC. Entry is filled with zeros.

Volume Number - The least significant 15 bits give the volume number, which is always 1 on
Series 200 computers. The most significant bit tells whether the file is continued in another
volume (0 for yes, 1 for no). Since files on these computers cannot span volumes, this bit is
always set to 1.

Protect Code - Any BOAT, BIN or PROG type file can be given a two-character protect code
with the PROTECT statement. ASCII and SYSTM type files cannot be protected. This word is
always 0 with ASCII files; it has a different use with SYSTM files. Protect codes are discussed
later in this chapter.

Defined-Record Length - If a file is of BOAT type , it can have defined records from 1 thru
65 534 bytes long. This is described in detail later in this chapter. Defined records in all other
file types are always one sector (256 bytes) long. The defined record length is encoded into
word 15 as length/2 . (If length = 1, then word 15 = 0.) This word is always 0 with ASCII files ; it
has a different use with SYSTM files .

(

Data Storage and Retrieval 205

The Structure of Data Files
There are two file types that you can use to store data: BOAT and ASCII. BOAT files have
several advantages: they allow more flexibility in data formats and access methods, allow faster
transfer rates, and are generally more space-efficient than ASCII data files. They can be ran­
domly or serially accessed, and they allow data to be stored in either ASCII format, internal
format, or a specialized format (defined by the user with IMAGE statements).

ASCII files allow only serial access and only ASCII format. They have these advantages: the files
are compatible with other HP computers that support this file type, the format provides very
compact storage for string data, and there is no chance of reading the contents into the wrong data
type (a problem for BOAT files). The full name of ASCII files is "LIF ASCII". LIF stands for Logical
Interchange Format, a directory and data storage format that is used by many HP computer
divisions. Understanding the characteristics of each file type will help you choose the best one for
your specific application.

BDAT Files
BOAT files are designed to be storage-space efficient, have high data-transfer rates, and allow
both random and serial access. Random access means that you can directly read from and write
to any record within the file, while serial access only permits you to access the file from the
beginning. Serial access can waste a lot of time if you're trying to access data at the end of a file.
On the other hand, if you want to access the entire file sequentially, you are better off using
serial access than random access. BOAT files can be accessed both randomly and serially, while
ASCII files can only be accessed serially.

BOAT files allow you to store and retrieve data using internal format, ASCII format, or user­
defined formats. With internal format, items are represented with the same format the system
uses to store data in internal computer memoryl . With ASCII format, items are represented by
ASCII characters. User-defined formats are implemented with programs that employ OUTPUT
and ENTER statements that reference IMAGE specifiers. Complete descriptions of ASCII and
user-defined formats are given in Chapters 4, 5, and 10 of BASIC Interfacing Techniques.

In most applications, you will use internal format for BOAT files. Unless we specify otherwise,
you can assume that when we talk about retrieving and storing data in BOAT files, we are also
talking about internal format. This format is synonymous with the FORMAT OFF attribute,
which is described later in this chapter.

Because BOAT files use almost the same format as internal memory, very little interpretation is
needed to transfer data from the computer to a BOAT file, or vice versa. BOAT files, therefore,
not only save space but also time.

Oata stored in internal format in BOAT files require the following number of bytes per item:

INTEGER

REAL

String

2 bytes

8 bytes

1 byte per character (plus 1 pad byte if the string length is an
odd number) , plus a 4-byte length header

1 Actually , the format for BDAT files is slightly different than internal forma t. Instead of using a 2·byte length header for strings, BDAT files use
a 4·byte length header. Besides this, the two formats are identical, so we refer to both as " internal".

(

Data Storage and Retrieval 205

The Structure of Data Files
There are two file types that you can use to store data: BOAT and ASCII. BOAT files have
several advantages: they allow more flexibility in data formats and access methods, allow faster
transfer rates, and are generally more space-efficient than ASCII data files. They can be ran­
domly or serially accessed, and they allow data to be stored in either ASCII format, internal
format, or a specialized format (defined by the user with IMAGE statements).

ASCII files allow only serial access and only ASCII format. They have these advantages: the files
are compatible with other HP computers that support this file type, the format provides very
compact storage for string data, and there is no chance of reading the contents into the wrong data
type (a problem for BOAT files). The full name of ASCII files is "LIF ASCII". LIF stands for Logical
Interchange Format, a directory and data storage format that is used by many HP computer
divisions. Understanding the characteristics of each file type will help you choose the best one for
your specific application.

BDAT Files
BOAT files are designed to be storage-space efficient, have high data-transfer rates, and allow
both random and serial access. Random access means that you can directly read from and write
to any record within the file, while serial access only permits you to access the file from the
beginning. Serial access can waste a lot of time if you're trying to access data at the end of a file.
On the other hand, if you want to access the entire file sequentially, you are better off using
serial access than random access. BOAT files can be accessed both randomly and serially, while
ASCII files can only be accessed serially.

BOAT files allow you to store and retrieve data using internal format, ASCII format, or user­
defined formats. With internal format, items are represented with the same format the system
uses to store data in internal computer memoryl . With ASCII format, items are represented by
ASCII characters. User-defined formats are implemented with programs that employ OUTPUT
and ENTER statements that reference IMAGE specifiers. Complete descriptions of ASCII and
user-defined formats are given in Chapters 4, 5, and 10 of BASIC Interfacing Techniques.

In most applications, you will use internal format for BOAT files. Unless we specify otherwise,
you can assume that when we talk about retrieving and storing data in BOAT files, we are also
talking about internal format. This format is synonymous with the FORMAT OFF attribute,
which is described later in this chapter.

Because BOAT files use almost the same format as internal memory, very little interpretation is
needed to transfer data from the computer to a BOAT file, or vice versa. BOAT files, therefore,
not only save space but also time.

Oata stored in internal format in BOAT files require the following number of bytes per item:

INTEGER

REAL

String

2 bytes

8 bytes

1 byte per character (plus 1 pad byte if the string length is an
odd number) , plus a 4-byte length header

1 Actually , the format for BDAT files is slightly different than internal forma t. Instead of using a 2·byte length header for strings, BDAT files use
a 4·byte length header. Besides this, the two formats are identical, so we refer to both as " internal".

206 Data Storage and Retrieval

INTEGER numbers are represented in BOAT files by using a 16-bit, two's-complement nota­
tion, which provides a range - 32768 thru 32767. If bit 15 (the MSB) is 0, the number is
positive. If bit 15 equals 1, the number is negative; the value of the negative number is obtained
by changing all ones to zeros, and all zeros to ones, and then adding one to the resulting value.

Examples

Binary Representation

00000000 00010111
11111111 11101000
1000000000000000
0111111111111111
1111111111111111
0000000000000001
00100011 01000111
1101110010111001

Decimal Equivalent

23
-24

-32768
32767

-1
1

9031
-9031

REAL numbers are stored in BOAT files by using their internal format: the IEEE-standard,
64-bit, floating-point notation. Each REAL number is comprised of two parts: an exponent (11
bits), and a mantissa (53 bits) . The mantissa uses a sign-and-magnitude notation. The sign bit
for the mantissa is not contiguous with the rest of the mantissa bits; it is the most significant bit
(MSB) of the entire eight bytes. The ll-bit exponent is offset by 1 023 and occupies the 2nd
through the 12th MSB's. Every REAL number is internally represented by the following equa­
tion. (Note that the mantissa is in binary notation):

1
mantissa sign 2 exponent - 1023

- X X 1. mantissa

The figure below shows how the real number "1/3" would be stored in a BOAT file .

Byte

Decimal value
of character

Binary value
of characters

1

63

Z0111111

I'

2

213

1101 0101

"

mantissa sign exponent

3 4 ... 8

85 85 85

01010101 01010101 .. . 01010101

.
mantissa

206 Data Storage and Retrieval

INTEGER numbers are represented in BOAT files by using a 16-bit, two's-complement nota­
tion, which provides a range - 32768 thru 32767. If bit 15 (the MSB) is 0, the number is
positive. If bit 15 equals 1, the number is negative; the value of the negative number is obtained
by changing all ones to zeros, and all zeros to ones, and then adding one to the resulting value.

Examples

Binary Representation

00000000 00010111
11111111 11101000
1000000000000000
0111111111111111
1111111111111111
0000000000000001
00100011 01000111
1101110010111001

Decimal Equivalent

23
-24

-32768
32767

-1
1

9031
-9031

REAL numbers are stored in BOAT files by using their internal format: the IEEE-standard,
64-bit, floating-point notation. Each REAL number is comprised of two parts: an exponent (11
bits), and a mantissa (53 bits) . The mantissa uses a sign-and-magnitude notation. The sign bit
for the mantissa is not contiguous with the rest of the mantissa bits; it is the most significant bit
(MSB) of the entire eight bytes. The ll-bit exponent is offset by 1 023 and occupies the 2nd
through the 12th MSB's. Every REAL number is internally represented by the following equa­
tion. (Note that the mantissa is in binary notation):

1
mantissa sign 2 exponent - 1023

- X X 1. mantissa

The figure below shows how the real number "1/3" would be stored in a BOAT file .

Byte

Decimal value
of character

Binary value
of characters

1

63

Z0111111

I'

2

213

1101 0101

"

mantissa sign exponent

3 4 ... 8

85 85 85

01010101 01010101 .. . 01010101

.
mantissa

Data Storage and Retrieval 207

String data are stored in BOAT files in their internal format (plus two additional, leading bytes
of length header, which are always 0 for Series 200 computers) . Every character in a string is
represented by one byte which contains the character's ASCII code. The four-byte length
header contains a value that specifies the length of the string. If the length of the string is odd, a
pad character is appended to the string to get an even number of characters; however, the
length header does not include this pad character.

Examples
If stored as a string value, the number "45" would be:

000000000000000000000000000000100011010000110101
~ ______________ ~ ____________ ~" I

Length = 0002 (binary) ACSII 52 ASCII 53

The string "A" would be stored:

00000000000000000000000000000001 01000001 00100000
• I L J

Length = 0001 (binary) ASCII 65 ASCII 32

In this case, the space character (ASCII code 32) is used as the pad character; however, not all
operations use the space as the pad character.

When using the ASCII data format for BOAT files , all data items are represented with ASCII
characters. With user-defined formats , the image specifiers referenced by the OUTPUT or
ENTER statement are used to determine the data representation. Using both of these formats
with BOAT files produce results identical to using them with devices. The entire subject is
described fully in Chapters 4, 5, and 10 of BASIC Interfacing Techniques. The topic of adv­
anced transfer techniques for BOAT files is described in Chapter 11 of the same manual. Refer
to this material after reading "Mass Storage Techniques" later in this chapter.

Data Storage and Retrieval 207

String data are stored in BOAT files in their internal format (plus two additional, leading bytes
of length header, which are always 0 for Series 200 computers) . Every character in a string is
represented by one byte which contains the character's ASCII code. The four-byte length
header contains a value that specifies the length of the string. If the length of the string is odd, a
pad character is appended to the string to get an even number of characters; however, the
length header does not include this pad character.

Examples
If stored as a string value, the number "45" would be:

000000000000000000000000000000100011010000110101
~ ______________ ~ ____________ ~" I

Length = 0002 (binary) ACSII 52 ASCII 53

The string "A" would be stored:

00000000000000000000000000000001 01000001 00100000
• I L J

Length = 0001 (binary) ASCII 65 ASCII 32

In this case, the space character (ASCII code 32) is used as the pad character; however, not all
operations use the space as the pad character.

When using the ASCII data format for BOAT files , all data items are represented with ASCII
characters. With user-defined formats , the image specifiers referenced by the OUTPUT or
ENTER statement are used to determine the data representation. Using both of these formats
with BOAT files produce results identical to using them with devices. The entire subject is
described fully in Chapters 4, 5, and 10 of BASIC Interfacing Techniques. The topic of adv­
anced transfer techniques for BOAT files is described in Chapter 11 of the same manual. Refer
to this material after reading "Mass Storage Techniques" later in this chapter.

208 Data Storage and Retrieval

ASCII Files
You have already been introduced to ASCII files as a way to SAVE programs. ASCII files can
also be used to store data. In an ASCII file , every data item, whether string or numeric, is
represented by ASCII characters; one byte represents one ASCII character. Each data item is
preceded by a two-byte length header which indicates how many ASCII characters are in the
item. However, there is no " type" field for each item; data items contain no indication (in the
file) as to whether the item was stored as string or numeric data. For instance, the number 456
would be stored as follows in an ASCII file:

LENGTH
HEADER =
BINARY 4

ASCII
CODES

Note that there is a space at the beginning of the data item. This signifies that the number is
positive. If a number is negative, a minus sign precedes the number. For instance, the number
- 456, would be stored as follows:

LENGTH
HEADER =
BINARY 4

,
ASCII

CODES

If the length of the data item is an odd number, the system "pads" the item with a space to
make it come out even. The string "ABC", for example, would be stored as follows:

1 0 1 3 1 A I B I c I (pad) I

LENGTH
HEADER =
BINARY 3

ASCII
CODES

There is often a relatively large amount of overhead for numeric data items. For instance, to
store the integer 12 in an ASCII file requires the following six bytes:

,
LENGTH

HEADER =
BINARY 3

,
ASCII

CODES

208 Data Storage and Retrieval

ASCII Files
You have already been introduced to ASCII files as a way to SAVE programs. ASCII files can
also be used to store data. In an ASCII file , every data item, whether string or numeric, is
represented by ASCII characters; one byte represents one ASCII character. Each data item is
preceded by a two-byte length header which indicates how many ASCII characters are in the
item. However, there is no " type" field for each item; data items contain no indication (in the
file) as to whether the item was stored as string or numeric data. For instance, the number 456
would be stored as follows in an ASCII file:

LENGTH
HEADER =
BINARY 4

ASCII
CODES

Note that there is a space at the beginning of the data item. This signifies that the number is
positive. If a number is negative, a minus sign precedes the number. For instance, the number
- 456, would be stored as follows:

LENGTH
HEADER =
BINARY 4

,
ASCII

CODES

If the length of the data item is an odd number, the system "pads" the item with a space to
make it come out even. The string "ABC", for example, would be stored as follows:

1 0 1 3 1 A I B I c I (pad) I

LENGTH
HEADER =
BINARY 3

ASCII
CODES

There is often a relatively large amount of overhead for numeric data items. For instance, to
store the integer 12 in an ASCII file requires the following six bytes:

,
LENGTH

HEADER =
BINARY 3

,
ASCII

CODES

Data Storage and Retrieval 209

Similarly, reading numeric data from an ASCII file can be a complex and relatively slow
operation. The numeric characters in an item must be entered and evaluated individually by the
system's "number builder" routine, which derives the number's internal representation. (Keep
in mind that this routine is called automatically when data are entered into a numeric variable.)
For example, suppose that the following item is stored in an ASCII file:

LENGTH
HEADER =
BINARY 10

.
ASCII

CODES

Although it may seem obvious that this is not a numeric data item, the system has no way of
knowing this since there is no type-field stored with the item. Therefore, if you attempt to enter
this item into a numeric variable, the system uses the number-builder routine to strip away all
non-numeric characters and spaces and assign the value 123 to the numeric variable. When
you add to this the intricacies of real numbers and exponential notation, the situation becomes
more complex. For more information about how the number builder works, see Chapter 5 of
BASIC Interfacing Techniques.

Because ASCII files require so much overhead (for storage of "small" items), and because
retrieving numeric data from ASCII files is sometimes a complex process, they are not the
preferred file type. However, as we mentioned before, ASCII files are interchangeable with
many other HP products.

In this chapter, we refer to the data representation described above as ASCII-file format. As
mentioned earlier, you can also store data in BOAT files in ASCII format (by using the FORMAT
ON attribute). However, be careful not to confuse ASCII-file format with the ASCII data format.

In general, you should only use ASCII files when you want to transport data between this system
and other HP machine(s). There may be other instances where you will want to use ASCII files , but
you should be aware that they cause a noticable performance degradation compared to BOAT files.

Data Storage and Retrieval 209

Similarly, reading numeric data from an ASCII file can be a complex and relatively slow
operation. The numeric characters in an item must be entered and evaluated individually by the
system's "number builder" routine, which derives the number's internal representation. (Keep
in mind that this routine is called automatically when data are entered into a numeric variable.)
For example, suppose that the following item is stored in an ASCII file:

LENGTH
HEADER =
BINARY 10

.
ASCII

CODES

Although it may seem obvious that this is not a numeric data item, the system has no way of
knowing this since there is no type-field stored with the item. Therefore, if you attempt to enter
this item into a numeric variable, the system uses the number-builder routine to strip away all
non-numeric characters and spaces and assign the value 123 to the numeric variable. When
you add to this the intricacies of real numbers and exponential notation, the situation becomes
more complex. For more information about how the number builder works, see Chapter 5 of
BASIC Interfacing Techniques.

Because ASCII files require so much overhead (for storage of "small" items), and because
retrieving numeric data from ASCII files is sometimes a complex process, they are not the
preferred file type. However, as we mentioned before, ASCII files are interchangeable with
many other HP products.

In this chapter, we refer to the data representation described above as ASCII-file format. As
mentioned earlier, you can also store data in BOAT files in ASCII format (by using the FORMAT
ON attribute). However, be careful not to confuse ASCII-file format with the ASCII data format.

In general, you should only use ASCII files when you want to transport data between this system
and other HP machine(s). There may be other instances where you will want to use ASCII files , but
you should be aware that they cause a noticable performance degradation compared to BOAT files.

210 Data Storage and Retrieval

Mass Storage Techniques
This section presents BASIC programming techniques useful for accessing mass storage devices
and files . The first section gives a brief introduction to the steps you might take to store data in a
file . Subsequent sections describe further details of these steps. If you feel that you need
additional background information while reading this material, refer to the preceding tutorial
section.

Initializing a Disc
Before a disc is used for the first time, it must be initialized. If the disc has already been initialized on
a LIF-compatible device, and it contains data you wish to retain, then it can be used On this BASIC
system without initialization. However, if a previously initialized disc does not have any data on it
(or you don't need the data on it), it might be advantageous to re-initialize it on your computer to
get maximum performance. The point is this: a disc must be properly initialized before your
computer can use it, but initializing a disc destroys all the data on the disc.

The following steps show a typical initialization process using an internal disc drive of a Model 226
or 236 as an example. The procedure for initializing external discs is very similar, but specific details
will change. For example, an external disc drive will have a different specifier (not :INTERNAL),
may have a different write-protect convention, and will probably take a different length of time to
initialize. For other examples, look in your operating manual or check the BASIC Language
Reference under "MASS STORAGE IS" and "INITIALIZE".

To initialize a 5.25-inch disc on an internal disc drive, follow these steps:

1. Make sure that the disc does not contain any important data or programs. Many types of
computers and word processors use similar discs. When a disc is initialized, all the data on
it is destroyed!

2. Ensure that the disc is not "write protected". The disc envelope has a small notch on one
side. When this notch is open, the computer is allowed to write On the disc. If this notch is
covered, data may be read from the disc, but recording is not allowed. Trying to initialize
a write-protected disc results in error number 83.

3. Be sure the disc is properly inserted in the right-hand disc drive.
4. Execute I NIT I A LIZ E ": I NT ERN A L " . This command tells the computer to erase all data

from the disc, format it for use in your computer, check the quality of the media, and create
the directory area.

An initialize operation takes about three minutes. The CRT displays the system's progress
during this operation. When the initialization is complete, the run light turns off and a message
similar to the following is displayed.

INITIALIZE : TRACK 32 t SIDE 1 t SPARED 0

210 Data Storage and Retrieval

Mass Storage Techniques
This section presents BASIC programming techniques useful for accessing mass storage devices
and files . The first section gives a brief introduction to the steps you might take to store data in a
file . Subsequent sections describe further details of these steps. If you feel that you need
additional background information while reading this material, refer to the preceding tutorial
section.

Initializing a Disc
Before a disc is used for the first time, it must be initialized. If the disc has already been initialized on
a LIF-compatible device, and it contains data you wish to retain, then it can be used On this BASIC
system without initialization. However, if a previously initialized disc does not have any data on it
(or you don't need the data on it), it might be advantageous to re-initialize it on your computer to
get maximum performance. The point is this: a disc must be properly initialized before your
computer can use it, but initializing a disc destroys all the data on the disc.

The following steps show a typical initialization process using an internal disc drive of a Model 226
or 236 as an example. The procedure for initializing external discs is very similar, but specific details
will change. For example, an external disc drive will have a different specifier (not :INTERNAL),
may have a different write-protect convention, and will probably take a different length of time to
initialize. For other examples, look in your operating manual or check the BASIC Language
Reference under "MASS STORAGE IS" and "INITIALIZE".

To initialize a 5.25-inch disc on an internal disc drive, follow these steps:

1. Make sure that the disc does not contain any important data or programs. Many types of
computers and word processors use similar discs. When a disc is initialized, all the data on
it is destroyed!

2. Ensure that the disc is not "write protected". The disc envelope has a small notch on one
side. When this notch is open, the computer is allowed to write On the disc. If this notch is
covered, data may be read from the disc, but recording is not allowed. Trying to initialize
a write-protected disc results in error number 83.

3. Be sure the disc is properly inserted in the right-hand disc drive.
4. Execute I NIT I A LIZ E ": I NT ERN A L " . This command tells the computer to erase all data

from the disc, format it for use in your computer, check the quality of the media, and create
the directory area.

An initialize operation takes about three minutes. The CRT displays the system's progress
during this operation. When the initialization is complete, the run light turns off and a message
similar to the following is displayed.

INITIALIZE : TRACK 32 t SIDE 1 t SPARED 0

Data Storage and Retrieval 211

During initialization, the disc is checked for bad areas on the tracks. If a bad spot is found, that
particular track is rejected (or "spared"). If track 0 is bad or more than four tracks are spared,
the initialize operation fails and error number 66 is issued. Although a disc with less than 5
rejected tracks can be used, rejected tracks are an indication that the magnetic surface is not in
very good condition.

After the initialization has completed successfully, the disc is ready for storing programs and
data.

Disc Labels
After you initialize the disc, you may want to give it a label. The PRINT lABEL statement prints the
label in the disc directory. Once the label is there, a READ LABEL statement can retrieve it. The
disc label is included in a CATalog of the disc.

For example, to give the disc in the INTERNAL disc drive the label VOll, execute the following:

PRINT LABEL "I,'OLl " TO " : INTERNAL"

To read the label, enter:

10 READ LABEL Nalrle$ FROM" : INTERNAL"

Disc labels are useful in many cases. When a program asks the operator to insert a particular disc in
the disc drive, the program can read the label to insure the correct disc was inserted.

1000 Insert: !Insert disc
1010 DISP " Inser t disc VOL1 in the INTERNAL disc drive t hen press CONT"
1020 PAUSE
1030 READ LABEL LabelS FROM " : INTERNAL"
1040 IF LabelS <>"I,'OLl" THEN
1050 DISP "You have inserted an incorrect disc"
lOGO BEEP
1070 WAIT 3
1080 GOTO Insert
1090 END IF
1100 RETURN

If several disc drives are connected to the computer, a program can read the label of each disc to
find the disc it needs to access.

2000
2010
2020
2040
2050
2080
2070
2080
2080
2100
2110

!Read the disc labels
READ LABEL Dri!)eO$ FROM" : INTERNAL "
READ LABEL Dri!)e1$ FROM " : INTERNAL,4,1"
SELECT 1
CASE DriveO$="I,' OL1"

! Access files frolrl " : INTERNAL"
CASE Dri!)e1$="I,'OL1"

! Access files frolrl " : INTERNAL,4 ,1"
CASE ELSE

! Disc not in drive
END SELECT

Data Storage and Retrieval 211

During initialization, the disc is checked for bad areas on the tracks. If a bad spot is found, that
particular track is rejected (or "spared"). If track 0 is bad or more than four tracks are spared,
the initialize operation fails and error number 66 is issued. Although a disc with less than 5
rejected tracks can be used, rejected tracks are an indication that the magnetic surface is not in
very good condition.

After the initialization has completed successfully, the disc is ready for storing programs and
data.

Disc Labels
After you initialize the disc, you may want to give it a label. The PRINT lABEL statement prints the
label in the disc directory. Once the label is there, a READ LABEL statement can retrieve it. The
disc label is included in a CATalog of the disc.

For example, to give the disc in the INTERNAL disc drive the label VOll, execute the following:

PRINT LABEL "I,'OLl " TO " : INTERNAL"

To read the label, enter:

10 READ LABEL Nalrle$ FROM" : INTERNAL"

Disc labels are useful in many cases. When a program asks the operator to insert a particular disc in
the disc drive, the program can read the label to insure the correct disc was inserted.

1000 Insert: !Insert disc
1010 DISP " Inser t disc VOL1 in the INTERNAL disc drive t hen press CONT"
1020 PAUSE
1030 READ LABEL LabelS FROM " : INTERNAL"
1040 IF LabelS <>"I,'OLl" THEN
1050 DISP "You have inserted an incorrect disc"
lOGO BEEP
1070 WAIT 3
1080 GOTO Insert
1090 END IF
1100 RETURN

If several disc drives are connected to the computer, a program can read the label of each disc to
find the disc it needs to access.

2000
2010
2020
2040
2050
2080
2070
2080
2080
2100
2110

!Read the disc labels
READ LABEL Dri!)eO$ FROM" : INTERNAL "
READ LABEL Dri!)e1$ FROM " : INTERNAL,4,1"
SELECT 1
CASE DriveO$="I,' OL1"

! Access files frolrl " : INTERNAL"
CASE Dri!)e1$="I,'OL1"

! Access files frolrl " : INTERNAL,4 ,1"
CASE ELSE

! Disc not in drive
END SELECT

212 Data Storage and Retrieval

Overview of Mass Storage Access
Storing data in files requires a few simple steps. The following program segment shows a simplistic
example of placing several items in a data file. Assume that this program is run on a Model 236.

380 ! Specify left dril,le as "s}'stefTl" fTlass storage.
400 MASS STORAGE IS ":INTERNAL,4,1"
410 !
420 ! Create BDAT data file with ten (25G -b yte) records
430 ! on the sYstem mass storage (left drive).
440 CREATE BDAT "Fil e_l" ,10
450 !
4GO ! Assign (open) an I/O path to the fi le.
470 ASSIGN @Path_l TO "File_l"
480
480 ! Send an array of numeric values.
500 OUTPUT @Path_l;Arrayl(*)
510
520 ! Close the I/O path (may be optional).
530 ASSIGN @Path_l TO *

780 ! Open another I/O path to the file.
800 ASSIGN @F_l TO "File_l :I NTERNAL,4,1"
810 !
820 f Read data into another array (same size and type).
830 ENTER @F_l;Array2(*)
840
850 ! Close I/O path.
8GO ASSIGN @F_l TO *

line 400 specifies the "system mass storage device," or the "default" device which is to to be
used whenever a mass storage device is not explicitly specified during subsequent mass storage
operations. The term mass storage unit specifier (msus) describes the string expression used to
uniquely identify which device is to be the mass storage. In this case, ":INTERNAL,4,1" is the
msus.

In order to store data in mass storage, a data file must be created (or already exist) on the mass
storage media. In this case, line 440 creates a BOAT file for data storage; the file created
contains 10 defined records of 256 bytes each. (Defined records and record size are discussed
later in this chapter.)

The term "file specifier" describes the string expression used to uniquely identify the file. In this
example, the file specifier is simply "File_I," which is the file's name. If the file is to be created
(or already exists) on a mass storage device other than the system mass storage, the appropriate
msus must be appended to the file name.

Then, in order to store data in (or retrieve data from) the file, you must assign an 110 path name
to the file. line 470 shows an example of assigning an 110 path name to the file (also called
opening an I/O path to the file) . line 500 shows an array of numeric data being sent to the file
through the 110 path.

212 Data Storage and Retrieval

Overview of Mass Storage Access
Storing data in files requires a few simple steps. The following program segment shows a simplistic
example of placing several items in a data file. Assume that this program is run on a Model 236.

380 ! Specify left dril,le as "s}'stefTl" fTlass storage.
400 MASS STORAGE IS ":INTERNAL,4,1"
410 !
420 ! Create BDAT data file with ten (25G -b yte) records
430 ! on the sYstem mass storage (left drive).
440 CREATE BDAT "Fil e_l" ,10
450 !
4GO ! Assign (open) an I/O path to the fi le.
470 ASSIGN @Path_l TO "File_l"
480
480 ! Send an array of numeric values.
500 OUTPUT @Path_l;Arrayl(*)
510
520 ! Close the I/O path (may be optional).
530 ASSIGN @Path_l TO *

780 ! Open another I/O path to the file.
800 ASSIGN @F_l TO "File_l :I NTERNAL,4,1"
810 !
820 f Read data into another array (same size and type).
830 ENTER @F_l;Array2(*)
840
850 ! Close I/O path.
8GO ASSIGN @F_l TO *

line 400 specifies the "system mass storage device," or the "default" device which is to to be
used whenever a mass storage device is not explicitly specified during subsequent mass storage
operations. The term mass storage unit specifier (msus) describes the string expression used to
uniquely identify which device is to be the mass storage. In this case, ":INTERNAL,4,1" is the
msus.

In order to store data in mass storage, a data file must be created (or already exist) on the mass
storage media. In this case, line 440 creates a BOAT file for data storage; the file created
contains 10 defined records of 256 bytes each. (Defined records and record size are discussed
later in this chapter.)

The term "file specifier" describes the string expression used to uniquely identify the file. In this
example, the file specifier is simply "File_I," which is the file's name. If the file is to be created
(or already exists) on a mass storage device other than the system mass storage, the appropriate
msus must be appended to the file name.

Then, in order to store data in (or retrieve data from) the file, you must assign an 110 path name
to the file. line 470 shows an example of assigning an 110 path name to the file (also called
opening an I/O path to the file) . line 500 shows an array of numeric data being sent to the file
through the 110 path.

Data Storage and Retrieval 213

The I/O path is closed after all data have been sent to the file. In this instance, closing the I/O
path may have been optional, because another I/O path name is assigned to the file later in the
program. (All I/O path names are automatically closed by the system at the end of the pro­
gram.) Closing an I/O path to a file updates the file pointers.

If this array of data is to be retrieved from the file , another ASSIGN statement is executed (line
800) . Notice that a different I/O path name has been used; this is an arbitrary choice of names.
Opening this I/O path name to the file sets the file pointer to the beginning of the file . (Re­
opening the I/O path name @File_l would have also reset the file pointer.)

Notice also that the msus is included with the file name. This shows that the mass storage device,
here the left drive of the Model 236, does not have to be the current system mass storage in order to
be accessed. The subsequent ENTER statement reads the data into another numeric array (which
must be of the same data type when a BOAT file is used in this manner) .

As you can see, this is a very simplistic example, in which several assumptions have been made.
However, it shows the general steps you must take to access files. The rest of this section expands
on these basic steps.

Media Specifiers
Once the mass storage is connected, you need a way of specifying which mass storage device to be
accessed. This is done with a media specifier. The syntax for a media specifier is illustrated below.
Each component is discussed both in this section and in the BASIC Language Reference.

ms us

--;-I'; INTERNAL l-r------- - - ----- -.---------,.-

MEMORY

Device type - effectively describes the mass storage device to the system. The system then knows
the capacity of the device, the directory structure, and other information required to determine the
access method for the device. Examples are I NT ERN A L , C S 8 0 , and H P 8 2 8 0 1 .

Data Storage and Retrieval 213

The I/O path is closed after all data have been sent to the file. In this instance, closing the I/O
path may have been optional, because another I/O path name is assigned to the file later in the
program. (All I/O path names are automatically closed by the system at the end of the pro­
gram.) Closing an I/O path to a file updates the file pointers.

If this array of data is to be retrieved from the file , another ASSIGN statement is executed (line
800) . Notice that a different I/O path name has been used; this is an arbitrary choice of names.
Opening this I/O path name to the file sets the file pointer to the beginning of the file . (Re­
opening the I/O path name @File_l would have also reset the file pointer.)

Notice also that the msus is included with the file name. This shows that the mass storage device,
here the left drive of the Model 236, does not have to be the current system mass storage in order to
be accessed. The subsequent ENTER statement reads the data into another numeric array (which
must be of the same data type when a BOAT file is used in this manner) .

As you can see, this is a very simplistic example, in which several assumptions have been made.
However, it shows the general steps you must take to access files. The rest of this section expands
on these basic steps.

Media Specifiers
Once the mass storage is connected, you need a way of specifying which mass storage device to be
accessed. This is done with a media specifier. The syntax for a media specifier is illustrated below.
Each component is discussed both in this section and in the BASIC Language Reference.

ms us

--;-I'; INTERNAL l-r------- - - ----- -.---------,.-

MEMORY

Device type - effectively describes the mass storage device to the system. The system then knows
the capacity of the device, the directory structure, and other information required to determine the
access method for the device. Examples are I NT ERN A L , C S 8 0 , and H P 8 2 8 0 1 .

214 Data Storage and Retrieval

If the device type specified is not valid, the system tests the device to determine its type. There are
two exceptions to this.

1. If the device selector is 0 and the device type is invalid, the device type is assumed to be
MEMORY.

2. If the device type is valid and the driver BIN for the device is not loaded, the system considers
the device an invalid device type.

Device selector - tells the system the select code of the interface connected to the device; if
the interface is an HP-IB, it also tells the system the device's primary address. The system then
knows which interface connects the device to the computer (and the device's address, if an
HP-IB is used).

A device selector can be just an interface select code or a combination of select code and
primary address. To derive a device selector with a primary address, multiply the interface
select code by 100 and then add the address. For instance, the device selector 703 would select
the device with primary address 3 which is connected to the interface at select code 7. Note that
interface select code 7 is the built-in HP-IB interface; this is the interface you will probably use
to attach external disc drives.

The device selector for the internal drive(s) is 4. Note that there is no default device selector for
external drives; in other words, you could not use just the device type to specify an external
drive.

Unit number - tells the system additional information about the device's unit-number setting.
Many devices have hard-wired unit numbers, while others use the unit number to identify different
portions of one disc. For instance, the unit number of the right drive of a Model 236 is 0, while it is 1
for the left drive.

Volume number - a volume is a subdivision of a unit if the device supports volumes. If the volume
number is not given, the default 0 is used.

214 Data Storage and Retrieval

If the device type specified is not valid, the system tests the device to determine its type. There are
two exceptions to this.

1. If the device selector is 0 and the device type is invalid, the device type is assumed to be
MEMORY.

2. If the device type is valid and the driver BIN for the device is not loaded, the system considers
the device an invalid device type.

Device selector - tells the system the select code of the interface connected to the device; if
the interface is an HP-IB, it also tells the system the device's primary address. The system then
knows which interface connects the device to the computer (and the device's address, if an
HP-IB is used).

A device selector can be just an interface select code or a combination of select code and
primary address. To derive a device selector with a primary address, multiply the interface
select code by 100 and then add the address. For instance, the device selector 703 would select
the device with primary address 3 which is connected to the interface at select code 7. Note that
interface select code 7 is the built-in HP-IB interface; this is the interface you will probably use
to attach external disc drives.

The device selector for the internal drive(s) is 4. Note that there is no default device selector for
external drives; in other words, you could not use just the device type to specify an external
drive.

Unit number - tells the system additional information about the device's unit-number setting.
Many devices have hard-wired unit numbers, while others use the unit number to identify different
portions of one disc. For instance, the unit number of the right drive of a Model 236 is 0, while it is 1
for the left drive.

Volume number - a volume is a subdivision of a unit if the device supports volumes. If the volume
number is not given, the default 0 is used.

Data Storage and Retrieval 215

Examples
The following statements set the system mass storage to an HP 82901 drive at interface select code
7; the HP 82901 is set to primary address 0 and has a unit number of 1.

MASS STORAGE IS" : HP8280 1 t 700 t 1 "
or
MASS STORAGE IS " :HP t 700tl "

Executing the following statements catalog the disc in the HP 9121 drive at interface select code 8
with primary address 2 and unit number O.

CAT " : HP8121 t 702"
CAT": t702"

Again, note that there is no default device selector for external drives; in other words, you cannot
use just the device type to specify an external drive.

The following statement creates an ASCII file named "Fred" on the disc in unit 3 of an HP 9134
drive, connected through interface select code 7; the device has a primary address of O.

CREATE ASCII "F r ed : HP81 3 L1 t 700 t 3"

See the BASIC User's Guide for a more complete description of various supported discs and
related information.

Data Storage and Retrieval 215

Examples
The following statements set the system mass storage to an HP 82901 drive at interface select code
7; the HP 82901 is set to primary address 0 and has a unit number of 1.

MASS STORAGE IS" : HP8280 1 t 700 t 1 "
or
MASS STORAGE IS " :HP t 700tl "

Executing the following statements catalog the disc in the HP 9121 drive at interface select code 8
with primary address 2 and unit number O.

CAT " : HP8121 t 702"
CAT": t702"

Again, note that there is no default device selector for external drives; in other words, you cannot
use just the device type to specify an external drive.

The following statement creates an ASCII file named "Fred" on the disc in unit 3 of an HP 9134
drive, connected through interface select code 7; the device has a primary address of O.

CREATE ASCII "F r ed : HP81 3 L1 t 700 t 3"

See the BASIC User's Guide for a more complete description of various supported discs and
related information.

216 Data Storage and Retrieval

Non-Disc Mass Storage
Although mass storage is traditionally implemented using a magnetic surface such as a disc or drum,
the protocols of file management can be applied to any device which stores data. Here is a
summary.

• EPROM (Erasable, Programmable Read-Only Memory) cards. Although EPROMs store user­
supplied data, they are much harder to write than to read. This, combined with their rugged­
ness and non-volatile storage, makes them well suited to read-only applications in environ­
ments too harsh for a disc. Because of their specialized nature, EPROMs are not discussed in
this chapter on generalized mass storage. They are covered in their own chapter of BASIC
Interfacing Techniques.

• Magnetic Bubble Memory cards. Like EPROMs, these devices provide non-volatile storage
that is more rugged than a disc. Unlike EPROMs, bubble memory can be written to just as
easily as it can be read.

• RAM Memory Volumes. Areas of the computer's RAM can be treated as though they were
mass storage devices. Obviously, a RAM volume is volatile. However, they can be accessed
faster than any other mass storage device. Some special tasks can benefit from this increased
speed for intermediate operations and then copy the RAM volume to a non-volatile volume at
the end of the job.

The next two sections describe some of the programming techniques needed to access bubble
memory and RAM volumes.

Bubble memory
The Bubble Memory Card is very similar to an interface card. It has interface select code switches
and installs in an accessory slot. The Installation Note for this card shows how to set the switches.
Note that hardware interrupt level of 6 is recommended. The BUBBLE BIN is required to use this
card.

The follow example show typical mass storage unit specifiers for a bubble memory card set to
interface select code 30.

MASS STORAGE I S I : BUBBLEt30"
ASSIGN @File TO Idatal : BUBBLEt30"

A bubble memory card always has only one unit (unit 0). This could be specified in the media
specifier, such as : BUBBLE t 28 to. However, zero is the default unit number in a media speci­
fier , so there is really no point in specifying it.

All mass storage operations work with the bubble memory card. Just use the card's interface
select code in the BUBBLE media specifier. There are very rare instances when hardware
conflicts might occur during a bubble memory access. These pertain to hardware interrupt
levels, which are described in BASIC Interfacing Techniques. Essentially, if an interrupt (at the
same or higher priority) occurs during a bubble memory access, BASIC might not be able to
service the bubble memory card qUickly enough. If this happens, error 314 is reported. The
cure is to lower the hardware interrupt level of the cards in conflict with the bubble card or
restructure the program so that the conflicting operations (e.g. TRANSFER) do not occur at the
same time.

216 Data Storage and Retrieval

Non-Disc Mass Storage
Although mass storage is traditionally implemented using a magnetic surface such as a disc or drum,
the protocols of file management can be applied to any device which stores data. Here is a
summary.

• EPROM (Erasable, Programmable Read-Only Memory) cards. Although EPROMs store user­
supplied data, they are much harder to write than to read. This, combined with their rugged­
ness and non-volatile storage, makes them well suited to read-only applications in environ­
ments too harsh for a disc. Because of their specialized nature, EPROMs are not discussed in
this chapter on generalized mass storage. They are covered in their own chapter of BASIC
Interfacing Techniques.

• Magnetic Bubble Memory cards. Like EPROMs, these devices provide non-volatile storage
that is more rugged than a disc. Unlike EPROMs, bubble memory can be written to just as
easily as it can be read.

• RAM Memory Volumes. Areas of the computer's RAM can be treated as though they were
mass storage devices. Obviously, a RAM volume is volatile. However, they can be accessed
faster than any other mass storage device. Some special tasks can benefit from this increased
speed for intermediate operations and then copy the RAM volume to a non-volatile volume at
the end of the job.

The next two sections describe some of the programming techniques needed to access bubble
memory and RAM volumes.

Bubble memory
The Bubble Memory Card is very similar to an interface card. It has interface select code switches
and installs in an accessory slot. The Installation Note for this card shows how to set the switches.
Note that hardware interrupt level of 6 is recommended. The BUBBLE BIN is required to use this
card.

The follow example show typical mass storage unit specifiers for a bubble memory card set to
interface select code 30.

MASS STORAGE I S I : BUBBLEt30"
ASSIGN @File TO Idatal : BUBBLEt30"

A bubble memory card always has only one unit (unit 0). This could be specified in the media
specifier, such as : BUBBLE t 28 to. However, zero is the default unit number in a media speci­
fier , so there is really no point in specifying it.

All mass storage operations work with the bubble memory card. Just use the card's interface
select code in the BUBBLE media specifier. There are very rare instances when hardware
conflicts might occur during a bubble memory access. These pertain to hardware interrupt
levels, which are described in BASIC Interfacing Techniques. Essentially, if an interrupt (at the
same or higher priority) occurs during a bubble memory access, BASIC might not be able to
service the bubble memory card qUickly enough. If this happens, error 314 is reported. The
cure is to lower the hardware interrupt level of the cards in conflict with the bubble card or
restructure the program so that the conflicting operations (e.g. TRANSFER) do not occur at the
same time.

Data Storage and Retrieval 217

When the bubble memory device was first initialized at the factory, any bad loops (memory
locations) were logged and this information, called the Boot Loop, was stored in the bubble
memory device itself. If you obtain repeated "read" errors or "buffer overflow" errors from the
bubble memory card, try to re-initialize the volume. If the initialization fails , it is likely the Boot
Loop information has been lost and the card should be returned to re-establish the Boot Loop.

RAM Volumes
Areas of the computers RAM may be treated as mass storage devices. These "memory volumes" or
"RAM volumes" are volatile (all information is lost when the power goes off) , but high speed. A
typical use for RAM volumes is to copy a disc volume into memory, perform all necessary man­
ipulations using the RAM volume, then copy the new information back to disc. ObViously, there are
only certain applications which would benefit from this technique.

All mass storage operations work with RAM volumes. After they are created (described next) , RAM
volumes are accessed by using their unit number in a MEMORY media specifier. The following
examples show typical mass storage unit specifiers for a RAM volume with unit number 7.

MASS STORAGE IS " : MEMORY,0,7"

ASSIGN @Ralll TO "TEMP : MEMORY ,0 , 7"

RAM volumes are created by the INITIALIZE statement. A special form of this statement is used,
with a unit size parameter is the pOSition normally occupied by the interleave factor. The device
type is always MEMORY, and the device selector is always O. Unit numbers 0 thru 31 may be used.
Here are some examples.

INITIALIZE " : MEMORY ,0,1" ,220

This creates a RAM volume that is 220 sectors long and is given unit number 1. Note that the unit
size parameter is in 256-byte sectors, just like LIF file sizes.

If the unit size parameter is omitted, the result is a RAM volume that is the same size as a 5.25-inch
or 3.5-inch disc. This a 1056 sectors, or 270 336 bytes. Although the default size RAM volume
provides only 80 directory entries while the discs may contain up to 112 directory entries, if a disc is
copied into the RAM volume, the entire directory will be copied.

The unit size of a RAM volume must be at least 4 sectors and can be as large as available memory
permits. Two sectors are taken for system use, and about 1 sector of directory is created for each
100 sectors of unit size. The following table shows examples of size data for RAM volumes.

SpeCified Unit Total Overhead Maximum Number of
Size (sectors) (sectors) Files in Directory

4 3 8
200 3 8
201 4 16
300 4 16
512 7 40

1000 11 72
1056 12 80
2000 21 152
2048 22 160

Data Storage and Retrieval 217

When the bubble memory device was first initialized at the factory, any bad loops (memory
locations) were logged and this information, called the Boot Loop, was stored in the bubble
memory device itself. If you obtain repeated "read" errors or "buffer overflow" errors from the
bubble memory card, try to re-initialize the volume. If the initialization fails , it is likely the Boot
Loop information has been lost and the card should be returned to re-establish the Boot Loop.

RAM Volumes
Areas of the computers RAM may be treated as mass storage devices. These "memory volumes" or
"RAM volumes" are volatile (all information is lost when the power goes off) , but high speed. A
typical use for RAM volumes is to copy a disc volume into memory, perform all necessary man­
ipulations using the RAM volume, then copy the new information back to disc. ObViously, there are
only certain applications which would benefit from this technique.

All mass storage operations work with RAM volumes. After they are created (described next) , RAM
volumes are accessed by using their unit number in a MEMORY media specifier. The following
examples show typical mass storage unit specifiers for a RAM volume with unit number 7.

MASS STORAGE IS " : MEMORY,0,7"

ASSIGN @Ralll TO "TEMP : MEMORY ,0 , 7"

RAM volumes are created by the INITIALIZE statement. A special form of this statement is used,
with a unit size parameter is the pOSition normally occupied by the interleave factor. The device
type is always MEMORY, and the device selector is always O. Unit numbers 0 thru 31 may be used.
Here are some examples.

INITIALIZE " : MEMORY ,0,1" ,220

This creates a RAM volume that is 220 sectors long and is given unit number 1. Note that the unit
size parameter is in 256-byte sectors, just like LIF file sizes.

If the unit size parameter is omitted, the result is a RAM volume that is the same size as a 5.25-inch
or 3.5-inch disc. This a 1056 sectors, or 270 336 bytes. Although the default size RAM volume
provides only 80 directory entries while the discs may contain up to 112 directory entries, if a disc is
copied into the RAM volume, the entire directory will be copied.

The unit size of a RAM volume must be at least 4 sectors and can be as large as available memory
permits. Two sectors are taken for system use, and about 1 sector of directory is created for each
100 sectors of unit size. The following table shows examples of size data for RAM volumes.

SpeCified Unit Total Overhead Maximum Number of
Size (sectors) (sectors) Files in Directory

4 3 8
200 3 8
201 4 16
300 4 16
512 7 40

1000 11 72
1056 12 80
2000 21 152
2048 22 160

218 Data Storage and Retrieval

With BASIC 3.0 and later versions, RAM volumes can be initialized while a program is running.

No RAM volumes exist at power-up or after a SCRATCH A. It is recommended that all BIN
programs be loaded before RAM volumes are initialized. If a BIN program is loaded after a RAM
volume is initialized, the memory used for the RAM volume cannot be recovered until the computer
is turned off and back on again.

A RAM volume can be reinitialized to the same or different size. If the size is different, memory
space may be lost until the next SCRATCH A.

Accessing Files
Before you can access a data file , you must assign an I/O path name to the file . Assigning an I/O
path name to the file sets up a table in computer memory that contains various information
describing the file , such as its type, which mass storage device it is stored on, and its location on the
media. The I/O path name is then used in I/O statements (OUTPUT, ENTER, and TRANSFER)
which move the data to and from the file. I/O path names are also used to transfer data to and from
devices. Chapters 4, 5, 10, and 11 of BASIC Interfacing Techniques explain data transfers with
devices and provide several relevant insights into data representations. However, in this chapter we
deal only with I/O paths to files.

Every I/O path to a file maintains the following information:

Validity Flag - Tells whether the path is currently opened (assigned) or closed (not assigned).

Type of Resource - Holds the file type (ASCII or BOAT) .

Device Selector - Stores the device selector of the drive. (I/O paths can also be associated with
devices and buffers. See BASIC Interfacing Techniques for further details.)

Attributes - Such as FORMAT OFF and FORMAT ON.

File Pointer - There is a file pointer that points to the place in the file where the next data item will
be read or written. The file pointer is updated whenever the file is accessed.

End-Of-File Pointer - An I/O path has an EOF pointer that points to the byte that follows the last
byte of the file.

Opening an I/O Path
I/O path names are similar to other variable names, except that I/O path names are preceded by the
" @" character. When an I/O path name is used in a statement, the system looks up the contents of
the I/O path name and uses them as required by the situation.

218 Data Storage and Retrieval

With BASIC 3.0 and later versions, RAM volumes can be initialized while a program is running.

No RAM volumes exist at power-up or after a SCRATCH A. It is recommended that all BIN
programs be loaded before RAM volumes are initialized. If a BIN program is loaded after a RAM
volume is initialized, the memory used for the RAM volume cannot be recovered until the computer
is turned off and back on again.

A RAM volume can be reinitialized to the same or different size. If the size is different, memory
space may be lost until the next SCRATCH A.

Accessing Files
Before you can access a data file , you must assign an I/O path name to the file . Assigning an I/O
path name to the file sets up a table in computer memory that contains various information
describing the file , such as its type, which mass storage device it is stored on, and its location on the
media. The I/O path name is then used in I/O statements (OUTPUT, ENTER, and TRANSFER)
which move the data to and from the file. I/O path names are also used to transfer data to and from
devices. Chapters 4, 5, 10, and 11 of BASIC Interfacing Techniques explain data transfers with
devices and provide several relevant insights into data representations. However, in this chapter we
deal only with I/O paths to files.

Every I/O path to a file maintains the following information:

Validity Flag - Tells whether the path is currently opened (assigned) or closed (not assigned).

Type of Resource - Holds the file type (ASCII or BOAT) .

Device Selector - Stores the device selector of the drive. (I/O paths can also be associated with
devices and buffers. See BASIC Interfacing Techniques for further details.)

Attributes - Such as FORMAT OFF and FORMAT ON.

File Pointer - There is a file pointer that points to the place in the file where the next data item will
be read or written. The file pointer is updated whenever the file is accessed.

End-Of-File Pointer - An I/O path has an EOF pointer that points to the byte that follows the last
byte of the file.

Opening an I/O Path
I/O path names are similar to other variable names, except that I/O path names are preceded by the
" @" character. When an I/O path name is used in a statement, the system looks up the contents of
the I/O path name and uses them as required by the situation.

Data Storage and Retrieval 219

To open an 110 path to a file (to set the validity flag to Open), assign the 110 path name to a file
specifier by using an ASSIGN statement. For example, executing the following statement:

ASSIGN @Path1 TO IExarrlPle"

assigns an 110 path name called @Path1 to the file "Example". The file that you open must already
exist and must be a data file. If the file does not satisfy One of these requirements, the system will
return an error. If you do not use an msus in the file specifier, the system will look for the file on the
current MASS STORAGE IS device. If you want to access a different device, use the msus syntax
described earlier. For instance, the statement:

ASSIGN @Path2 TO IExarrIPle:HP8885,707"

opens an 110 path to the file "Example" on an HP 9895 disc drive, interface select code 7 and
primary address 7. You must include the protect code if the file has one.

ASSIGNing an 110 path name to a file has the following effect on the 110 path table:

• If the 110 path is currently open, the system closes the 110 path and then re-opens it. If the 110
path is not currently open, it is opened. In both cases, the system sets the validity flag to Open.

• The file type (ASCII or BOAT) and its msus are recorded.

• The specified attributes are assigned to the 110 path name. If an attribute is not specified, the
appropriate default attribute is assigned.

• The file pointer is positioned to the beginning of the file.

• If the path name is associated with a BOAT file, the EOF pointer from the system sector is
copied to the 1/0 path table.

Once an 1/0 path has been opened to a file, you always use the path name to access the file. An 1/0
path name is only valid in the context in which it is opened, unless you pass it as a parameter or put
it in the COM area. To place a path name in the COM area, simply specify the path name in a COM
statement before you ASSIGN it. For instance the two statements below would declare an 110 path
name in an unnamed COM area and then open it:

100 COM @Path3
110 ASSIGN @Path3 TO IFile1"

Assigning Attributes
When you open an 1/0 path, certain attributes are assigned to it which define the way data is to be
read and written. There are two attributes which control how data items are represented: FORMAT
ON and FORMAT OFF. With FORMATON, ASCII data representations are used; with FORMAT
OFF, the system's internal data representations are used. Additional attributes are available, which
provide control of such functions as parity generation and checking, converting characters, and
changing end-of-line (EOL) sequences. See the BASIC Language Reference or Chapter 10 of
BASIC Interfacing Techniques for further details.

As mentioned in the tutorial section, BOAT files can use either data representation; however, ASCII
files only permit ASCII-file format. Therefore, if you specify FORMAT OFF for an 110 path to an
ASCII file, the system ignores it. The folloWing two examples of ASSIGN statements specify a
FORMAT attribute.

ASSIGN @Path1 TO IFilel"iFORMAT OFF

Data Storage and Retrieval 219

To open an 110 path to a file (to set the validity flag to Open), assign the 110 path name to a file
specifier by using an ASSIGN statement. For example, executing the following statement:

ASSIGN @Path1 TO IExarrlPle"

assigns an 110 path name called @Path1 to the file "Example". The file that you open must already
exist and must be a data file. If the file does not satisfy One of these requirements, the system will
return an error. If you do not use an msus in the file specifier, the system will look for the file on the
current MASS STORAGE IS device. If you want to access a different device, use the msus syntax
described earlier. For instance, the statement:

ASSIGN @Path2 TO IExarrIPle:HP8885,707"

opens an 110 path to the file "Example" on an HP 9895 disc drive, interface select code 7 and
primary address 7. You must include the protect code if the file has one.

ASSIGNing an 110 path name to a file has the following effect on the 110 path table:

• If the 110 path is currently open, the system closes the 110 path and then re-opens it. If the 110
path is not currently open, it is opened. In both cases, the system sets the validity flag to Open.

• The file type (ASCII or BOAT) and its msus are recorded.

• The specified attributes are assigned to the 110 path name. If an attribute is not specified, the
appropriate default attribute is assigned.

• The file pointer is positioned to the beginning of the file.

• If the path name is associated with a BOAT file, the EOF pointer from the system sector is
copied to the 1/0 path table.

Once an 1/0 path has been opened to a file, you always use the path name to access the file. An 1/0
path name is only valid in the context in which it is opened, unless you pass it as a parameter or put
it in the COM area. To place a path name in the COM area, simply specify the path name in a COM
statement before you ASSIGN it. For instance the two statements below would declare an 110 path
name in an unnamed COM area and then open it:

100 COM @Path3
110 ASSIGN @Path3 TO IFile1"

Assigning Attributes
When you open an 1/0 path, certain attributes are assigned to it which define the way data is to be
read and written. There are two attributes which control how data items are represented: FORMAT
ON and FORMAT OFF. With FORMATON, ASCII data representations are used; with FORMAT
OFF, the system's internal data representations are used. Additional attributes are available, which
provide control of such functions as parity generation and checking, converting characters, and
changing end-of-line (EOL) sequences. See the BASIC Language Reference or Chapter 10 of
BASIC Interfacing Techniques for further details.

As mentioned in the tutorial section, BOAT files can use either data representation; however, ASCII
files only permit ASCII-file format. Therefore, if you specify FORMAT OFF for an 110 path to an
ASCII file, the system ignores it. The folloWing two examples of ASSIGN statements specify a
FORMAT attribute.

ASSIGN @Path1 TO IFilel"iFORMAT OFF

220 Data Storage and Retrieval

If "Filel" is a BOAT file, the FORMAT OFF attribute specifies that the internal data formats are to
be used when sending and receiving data through the I/O path. If the file is of type ASCII, the
attribute will be ignored. Note that FORMA T OFF is the default FORMA T attribute for BDA T files.

Executing the following statement directs the system to use the ASCII data representation (if
possible) when sending and receiving data through the 1/0 path.

ASSIGN @Path2 TO "File2 "iF ORMAT ON

If "File2" is a BOAT file, data will be written using ASCII format, and data read from it will be
interpreted as being in ASCII format. For an ASCII file, this attribute is redundant since ASCII-file
format is the only data representation allowed anyway.

If you want to change the attribute of an I/O path, you can do so by specifying the I/O path name
and attribute in an ASSIGN statement while excluding the file specifier. For instance, if you wanted
to change the attribute of @Path2 to FORMAT OFF, you could execute:

ASSIGN @Path2iFORMAT OFF

Alternatively, you could re-enter the entire statement:

ASSIG N @Path2 TO "F i le 2 "iFORMAT OFF

These two statements, however, are not identical. The first one only changes the FORMAT attri­
bute. The second statement resets the entire I/O path table (e.g., resets the file pointer to the
beginning of the file) .

It is important to note that once a file is written, changing the FORMAT attribute of an I/O path to
the file should only be attempted by experienced programmers. In general, data should always be
read in the same manner as it was written. For instance, data written to a BOAT file with FORMAT
OFF should also be read with FORMAT OFF, and vice versa. In addition, the same data types
should be used to write the file as to read the file. For instance, if data items were written as
INTEGERs, they should also be read as INTEGERs.

In theory, there is no limit to the number of I/O paths you can ASSIGN to the same file. Each I/O
path, however, has its own file pointer and EOF pointer, so that in practice it can become ex­
ceedingly difficult to keep track of where you are in a file if you use more than one I/O path. We
recommend that you use only one I/O path for each file.

Closing I/O Paths
I/O path names not in the COM area are closed whenever the system moves into a stopped state
(e.g., STOP, END, SCRATCH, EDIT, etc.) . I/O path names local to a context are closed when
control is returned to the calling context. Re-ASSIGNing an I/O path name will also cancel its
previous association.

You can also explicitly cancel an I/O path by ASSIGNing the path name to an * (asterisk). For
instance, the statement:

ASSIGN @Path 2 TO *
closes @Path2 (sets the validity flag to Closed). @Path2 cannot be used again until it is Re­
ASSIGNed. You can Re-ASSIGN a path name to the same file or to a different file.

220 Data Storage and Retrieval

If "Filel" is a BOAT file, the FORMAT OFF attribute specifies that the internal data formats are to
be used when sending and receiving data through the I/O path. If the file is of type ASCII, the
attribute will be ignored. Note that FORMA T OFF is the default FORMA T attribute for BDA T files.

Executing the following statement directs the system to use the ASCII data representation (if
possible) when sending and receiving data through the 1/0 path.

ASSIGN @Path2 TO "File2 "iF ORMAT ON

If "File2" is a BOAT file, data will be written using ASCII format, and data read from it will be
interpreted as being in ASCII format. For an ASCII file, this attribute is redundant since ASCII-file
format is the only data representation allowed anyway.

If you want to change the attribute of an I/O path, you can do so by specifying the I/O path name
and attribute in an ASSIGN statement while excluding the file specifier. For instance, if you wanted
to change the attribute of @Path2 to FORMAT OFF, you could execute:

ASSIGN @Path2iFORMAT OFF

Alternatively, you could re-enter the entire statement:

ASSIG N @Path2 TO "F i le 2 "iFORMAT OFF

These two statements, however, are not identical. The first one only changes the FORMAT attri­
bute. The second statement resets the entire I/O path table (e.g., resets the file pointer to the
beginning of the file) .

It is important to note that once a file is written, changing the FORMAT attribute of an I/O path to
the file should only be attempted by experienced programmers. In general, data should always be
read in the same manner as it was written. For instance, data written to a BOAT file with FORMAT
OFF should also be read with FORMAT OFF, and vice versa. In addition, the same data types
should be used to write the file as to read the file. For instance, if data items were written as
INTEGERs, they should also be read as INTEGERs.

In theory, there is no limit to the number of I/O paths you can ASSIGN to the same file. Each I/O
path, however, has its own file pointer and EOF pointer, so that in practice it can become ex­
ceedingly difficult to keep track of where you are in a file if you use more than one I/O path. We
recommend that you use only one I/O path for each file.

Closing I/O Paths
I/O path names not in the COM area are closed whenever the system moves into a stopped state
(e.g., STOP, END, SCRATCH, EDIT, etc.) . I/O path names local to a context are closed when
control is returned to the calling context. Re-ASSIGNing an I/O path name will also cancel its
previous association.

You can also explicitly cancel an I/O path by ASSIGNing the path name to an * (asterisk). For
instance, the statement:

ASSIGN @Path 2 TO *
closes @Path2 (sets the validity flag to Closed). @Path2 cannot be used again until it is Re­
ASSIGNed. You can Re-ASSIGN a path name to the same file or to a different file.

(

Data Storage and Retrieval 221

Reading and Writing BDAT Files
There are many alternatives for storing and retrieving data when using BOAT files. You can choose
internal ASCII or user-defined formats, and serial or random access. The following descriptions of
OUTPlJTing and ENTERing data apply only to BOAT files using FORMAT OFF. For more informa­
tion about ASCII files, OUTPUT, ENTER, IMAGE specifiers, and additional attributes, see the
BASIC Interfacing Techniques manual.

System S ector
On the disc, every BOAT file is preceded by a system sector that contains an End-Of-File
pointer and the number of defined records in the file . All data is placed in succeeding sectors.
You cannot directly access the system sector. However, as you shall see later, it is possible to
indirectly change the value of an EOF pointer.

SECTOR: J 0 1 2
I

: NUMBER .
EOF OF

POINTER: DEFINED
RECORDS .

SYSTEM SECTOR DATA

EOF Pointer: • number of sectors from beginning of file
(32-bit binary number)

• number of bytes from beginning of sector
(32-bit binary number)

Number of defined records: See description below
(32-bit binary number)

Defined Records

3

) ...)

To access a BOAT file randomly, you specify a particular defined record. Records are the
smallest units in a file directly addressable by a random OUTPUT or ENTER. They can be
anywhere from 1 through 65 534 bytes long. Both the length of the file and the length of the
defined records in it are specified when you create the file. For example, the statement:

CR EATE BOAT "E x afTlple" /71128

would create a file called "Example" with 7 defined records, each record being 128 bytes long.
If you don't specify a record length in the CREATE BOAT statement, the system will set each
record to the default length of 256 bytes.

Both the record length and the number of records are rounded to the nearest integer. Further,
the record length is rounded up to the nearest even integer. For example, the statement:

CREATE BOAT "Odd"/ 3. 5/28.7

would create a file with 4 records, each 30 bytes long. On the other hand, the statement:

CREATE BOAT"Odder" / 3 . 48 /2 8 . 3

would create a file with three records, each 28 bytes long.

Once a file is created, you cannot change its length or the length of its records. You must
therefore calculate the record size and file size required before you create a file.

(

Data Storage and Retrieval 221

Reading and Writing BDAT Files
There are many alternatives for storing and retrieving data when using BOAT files. You can choose
internal ASCII or user-defined formats, and serial or random access. The following descriptions of
OUTPlJTing and ENTERing data apply only to BOAT files using FORMAT OFF. For more informa­
tion about ASCII files, OUTPUT, ENTER, IMAGE specifiers, and additional attributes, see the
BASIC Interfacing Techniques manual.

System S ector
On the disc, every BOAT file is preceded by a system sector that contains an End-Of-File
pointer and the number of defined records in the file . All data is placed in succeeding sectors.
You cannot directly access the system sector. However, as you shall see later, it is possible to
indirectly change the value of an EOF pointer.

SECTOR: J 0 1 2
I

: NUMBER .
EOF OF

POINTER: DEFINED
RECORDS .

SYSTEM SECTOR DATA

EOF Pointer: • number of sectors from beginning of file
(32-bit binary number)

• number of bytes from beginning of sector
(32-bit binary number)

Number of defined records: See description below
(32-bit binary number)

Defined Records

3

) ...)

To access a BOAT file randomly, you specify a particular defined record. Records are the
smallest units in a file directly addressable by a random OUTPUT or ENTER. They can be
anywhere from 1 through 65 534 bytes long. Both the length of the file and the length of the
defined records in it are specified when you create the file. For example, the statement:

CR EATE BOAT "E x afTlple" /71128

would create a file called "Example" with 7 defined records, each record being 128 bytes long.
If you don't specify a record length in the CREATE BOAT statement, the system will set each
record to the default length of 256 bytes.

Both the record length and the number of records are rounded to the nearest integer. Further,
the record length is rounded up to the nearest even integer. For example, the statement:

CREATE BOAT "Odd"/ 3. 5/28.7

would create a file with 4 records, each 30 bytes long. On the other hand, the statement:

CREATE BOAT"Odder" / 3 . 48 /2 8 . 3

would create a file with three records, each 28 bytes long.

Once a file is created, you cannot change its length or the length of its records. You must
therefore calculate the record size and file size required before you create a file.

222 Data Storage and Retrieval

Choosing A Record Length
The most important consideration in selecting of a proper record length is the type of data being
stored and the way you want to retrieve it. Suppose, for instance, that you want to store 100
real numbers in a file , and be able to access each number individually. Since each REAL
number uses 8 bytes, the data itself will take up 800 bytes of storage.

SYSTEM SECTOR

.
800 BYTES OF DATA

The question is how to divide this data into records. If you define the record length to be 8
bytes, then each REAL number will fill a record. To access the 15th number, you would specify
the 15th record. If the data is organized so that you are always accessing two data items at a
time, you would want to set the record length to 16 bytes.

The worst thing you can do with data of this type is to define a record length that is not evenly
divisible by eight. If, for example, you set the record length to four, you would only be able to
randomly access half of each real number at a time. In fact, the system will return an End-Of­
Record condition if you try to randomly read data into REAL variables from records that are less
than 8 bytes long.

So far, we have been talking about a file that contains only REAL numbers. For files that
contain only INTEGERs, you would want to define the record length to be a multiple of two. To
access each INTEGER individually, you would use a record length of two; to access two
INTEGERs at a time, you would use a record length of four, and so on.

Files that contain string data present a slightly more difficult situation since strings can be of
variable length. If you have three strings in a row that are 5, 12, and 18 bytes long, respectively,
there is no record length less than 22 that will permit you to randomly access each string. If you
select a record length of 10, for instance, you will be able to randomly access the first string but
not the second and third.

If you want to access strings randomly, therefore, you should make your records long enough
to hold the largest string. Once you've done this, there are two ways to write string data to a
BOA T file . The first, and easiest, is to output each string in random mode. In other words, select
a record length that will hold the longest string and then write each string into its own record.
Suppose, for example, that you wanted to OUTPUT the following 5 names into a BOAT file and
be able to access each one individually by specifying a record number.

John Smith
Steve Anderson
Mary Martin
Bob Jones
Beth Robinson

222 Data Storage and Retrieval

Choosing A Record Length
The most important consideration in selecting of a proper record length is the type of data being
stored and the way you want to retrieve it. Suppose, for instance, that you want to store 100
real numbers in a file , and be able to access each number individually. Since each REAL
number uses 8 bytes, the data itself will take up 800 bytes of storage.

SYSTEM SECTOR

.
800 BYTES OF DATA

The question is how to divide this data into records. If you define the record length to be 8
bytes, then each REAL number will fill a record. To access the 15th number, you would specify
the 15th record. If the data is organized so that you are always accessing two data items at a
time, you would want to set the record length to 16 bytes.

The worst thing you can do with data of this type is to define a record length that is not evenly
divisible by eight. If, for example, you set the record length to four, you would only be able to
randomly access half of each real number at a time. In fact, the system will return an End-Of­
Record condition if you try to randomly read data into REAL variables from records that are less
than 8 bytes long.

So far, we have been talking about a file that contains only REAL numbers. For files that
contain only INTEGERs, you would want to define the record length to be a multiple of two. To
access each INTEGER individually, you would use a record length of two; to access two
INTEGERs at a time, you would use a record length of four, and so on.

Files that contain string data present a slightly more difficult situation since strings can be of
variable length. If you have three strings in a row that are 5, 12, and 18 bytes long, respectively,
there is no record length less than 22 that will permit you to randomly access each string. If you
select a record length of 10, for instance, you will be able to randomly access the first string but
not the second and third.

If you want to access strings randomly, therefore, you should make your records long enough
to hold the largest string. Once you've done this, there are two ways to write string data to a
BOA T file . The first, and easiest, is to output each string in random mode. In other words, select
a record length that will hold the longest string and then write each string into its own record.
Suppose, for example, that you wanted to OUTPUT the following 5 names into a BOAT file and
be able to access each one individually by specifying a record number.

John Smith
Steve Anderson
Mary Martin
Bob Jones
Beth Robinson

Data Storage and Retrieval 223

The longest name, "Steve Anderson", is 14 characters. To store it in a BOAT file would require
18 bytes (four bytes for the length header) . So you could create a file with record length of 18
and then OUTPUT each item into a different record:

100 CREATE BOAT "Nal,les".5.18 I Create a f i 1 e •
110 ASSIGN @File TO IJ NafTle 5 II ! Open an liD path
120 OUTPUT @File.lj"John Sill i t h " W r it e names to
130 OUTPUT @File.2j"StelJe Anderson" slJccessive reco rds
140 OUTPUT @File.3j"Mar }· MartinI! in f i 1 e
150 OUTPUT @File.4j"Bob Jon e s II

160 OUTPUT @File.5j"Beth Robinson"

On the disc, the file "Names" would look like the figure below. The four-byte length headers
show the decimal value of the bytes in the header. The data are shown as ASCII characters.

[0 I 0 I 0 1101 J I 0 I h I n I I s I m I i I t I h I x I x I x I x I 0 I 0 I 0 1141 Sit I e I v I e I I A I n I die I
I r I s 10 I n 10 10 10 1111 M I a I r I y I 1M I a I r I t I i In I@I x I x 10 10 10 I 9 I s 10 I b I I J 10 I
I n I e Is I@ I x I x I x I x 10 10 10 1131 s I e I t I h I I Rio I b I i I n I s 10 I n I@ I x I x I x I x I x I x I

1 = length header x = whatever data previously resided in that space @ = pad character

The unused portions of each record contain whatever data previously occupied that physical
space on the disc.

The other method for writing strings to a BOAT file is to pad each entry so that they are all of
uniform length. While this method involves more programming, it allows you to pad the unused
portions of each record with whatever characters you choose. It also permits you to read and
write the data serially as well as randomly. The program below shows how you might enter the
five names into a file by padding each name with spaces.

100 CREATE BOAT "Nal,les " .5 .18
110 ASSIGN @Pathl TO "Names"
120 FOR Entry=l TO 5
130 LINPUT Name$[lj14J
140 OUTPUT @Pathl jNarlle$
150 NE)-n Entn'

I Create file.
r Open l i D path to file.

I Get names from keyboard
! Write name to file

In this program, we input each name from the keyboard and so that it is padded with spaces to a
length of 14 bytes. With the length header, each entry is 18 bytes, or one record. In line 140, we
write the name serially to the file. Since every data item is 18 bytes, there is no need to write
randomly, although we could if we wanted to. Since the LINPUT statement is limited to 14
bytes, any names that are longer than 14 characters are automatically truncated.

If we had used the second program to enter the names, file "Names" would look like the figure
below:

loiolol141Jlolhlni Islmliltlhl I I I lololol14ISltlelvlel IAlnldlel
Irisloinioiolol141Mlairlyi IMlalrltlilnl I I lololol141slolbl IJlol
Inlelsl I I I I lololol141sleltlhl IRlolblilnlslolnl Ixlxlxlxlxlxl

Data Storage and Retrieval 223

The longest name, "Steve Anderson", is 14 characters. To store it in a BOAT file would require
18 bytes (four bytes for the length header) . So you could create a file with record length of 18
and then OUTPUT each item into a different record:

100 CREATE BOAT "Nal,les".5.18 I Create a f i 1 e •
110 ASSIGN @File TO IJ NafTle 5 II ! Open an liD path
120 OUTPUT @File.lj"John Sill i t h " W r it e names to
130 OUTPUT @File.2j"StelJe Anderson" slJccessive reco rds
140 OUTPUT @File.3j"Mar }· MartinI! in f i 1 e
150 OUTPUT @File.4j"Bob Jon e s II

160 OUTPUT @File.5j"Beth Robinson"

On the disc, the file "Names" would look like the figure below. The four-byte length headers
show the decimal value of the bytes in the header. The data are shown as ASCII characters.

[0 I 0 I 0 1101 J I 0 I h I n I I s I m I i I t I h I x I x I x I x I 0 I 0 I 0 1141 Sit I e I v I e I I A I n I die I
I r I s 10 I n 10 10 10 1111 M I a I r I y I 1M I a I r I t I i In I@I x I x 10 10 10 I 9 I s 10 I b I I J 10 I
I n I e Is I@ I x I x I x I x 10 10 10 1131 s I e I t I h I I Rio I b I i I n I s 10 I n I@ I x I x I x I x I x I x I

1 = length header x = whatever data previously resided in that space @ = pad character

The unused portions of each record contain whatever data previously occupied that physical
space on the disc.

The other method for writing strings to a BOAT file is to pad each entry so that they are all of
uniform length. While this method involves more programming, it allows you to pad the unused
portions of each record with whatever characters you choose. It also permits you to read and
write the data serially as well as randomly. The program below shows how you might enter the
five names into a file by padding each name with spaces.

100 CREATE BOAT "Nal,les " .5 .18
110 ASSIGN @Pathl TO "Names"
120 FOR Entry=l TO 5
130 LINPUT Name$[lj14J
140 OUTPUT @Pathl jNarlle$
150 NE)-n Entn'

I Create file.
r Open l i D path to file.

I Get names from keyboard
! Write name to file

In this program, we input each name from the keyboard and so that it is padded with spaces to a
length of 14 bytes. With the length header, each entry is 18 bytes, or one record. In line 140, we
write the name serially to the file. Since every data item is 18 bytes, there is no need to write
randomly, although we could if we wanted to. Since the LINPUT statement is limited to 14
bytes, any names that are longer than 14 characters are automatically truncated.

If we had used the second program to enter the names, file "Names" would look like the figure
below:

loiolol141Jlolhlni Islmliltlhl I I I lololol14ISltlelvlel IAlnldlel
Irisloinioiolol141Mlairlyi IMlalrltlilnl I I lololol141slolbl IJlol
Inlelsl I I I I lololol141sleltlhl IRlolblilnlslolnl Ixlxlxlxlxlxl

224 Data Storage and Retrieval

EOF Pointers
There are two types of End-Of-File pointers. One is maintained internally in the 110 path table
and the other resides in the system sector. The two pointers are always updated at the same
time so that they always agree with one another. (This may not be true if you use more than one
110 path to OUTPUT data to one file .) The two pointers are updated when either of the two
conditions below occur.

• If, after an OUTPUT statement has been executed, the file pointer value is greater than the
EOF pointers, the EOF pointers are moved to the file pointer position .

• If an OUTPUT statement contains the "END" secondary word, the EOF pointers are
moved to the file pointer position regardless of their current values.

The function of EOF pointers is to mark the logical end of a data file . Every file also has a
physical EOF - the last byte reserved for the file when you create it. The EOF pointers cannot
point beyond the physical EOF. The EOF pointer marks the point at which no more data can be
read. Also, you cannot randomly write data more than one record past the EOF position.

If you have a lOa-record file, and the EOF pointers point to the 50th record, records 50 through
100 cannot be read. If you attempt to read data beyond an EOF, an EOF condition occurs. EOF
conditions can be trapped with an ON END statement. If you do not trap it, an EOF condition
will cause Error 59. Attempting to read or write beyond the physical EOF will also result in an
EOF condition. EOF conditions are described in more detail. later in this chapter.

Moving EOF Pointers
When you first create a file , the EOF pointer in the system sector points to the first byte in the
file . When you ASSIGN an 110 path to a file, the pointer in the system sector is copied to the 110
path table. As you OUTPUT data items to the file, both EOF pointers are changed so that they
point to the next byte. This is also where the file pointer is positioned.

If you overwrite a file , however, the EOF pointers will not necessarily agree with the file pointer.
For example, suppose you write 100 bytes to a file , and then re-ASSIGN the 110 path. By
re-ASSIGNing, you move the file pointer back to the first byte in the file . The EOF markers,
though, still point to the 101st byte. They will not be changed until the file pointer value is
greater than 101 , or until you specify an "END" in an OUTPUT statement.

The secondary word "END" is used to move the EOF pointers backwards. It forces the EOF
pointers to be re-positioned to the file pointer byte, even if the new position is "earlier" in the
file than their current position. In effect, this "shrinks" the file, causing data that lies past the
new EOF position to become inaccessible.

224 Data Storage and Retrieval

EOF Pointers
There are two types of End-Of-File pointers. One is maintained internally in the 110 path table
and the other resides in the system sector. The two pointers are always updated at the same
time so that they always agree with one another. (This may not be true if you use more than one
110 path to OUTPUT data to one file .) The two pointers are updated when either of the two
conditions below occur.

• If, after an OUTPUT statement has been executed, the file pointer value is greater than the
EOF pointers, the EOF pointers are moved to the file pointer position .

• If an OUTPUT statement contains the "END" secondary word, the EOF pointers are
moved to the file pointer position regardless of their current values.

The function of EOF pointers is to mark the logical end of a data file . Every file also has a
physical EOF - the last byte reserved for the file when you create it. The EOF pointers cannot
point beyond the physical EOF. The EOF pointer marks the point at which no more data can be
read. Also, you cannot randomly write data more than one record past the EOF position.

If you have a lOa-record file, and the EOF pointers point to the 50th record, records 50 through
100 cannot be read. If you attempt to read data beyond an EOF, an EOF condition occurs. EOF
conditions can be trapped with an ON END statement. If you do not trap it, an EOF condition
will cause Error 59. Attempting to read or write beyond the physical EOF will also result in an
EOF condition. EOF conditions are described in more detail. later in this chapter.

Moving EOF Pointers
When you first create a file , the EOF pointer in the system sector points to the first byte in the
file . When you ASSIGN an 110 path to a file, the pointer in the system sector is copied to the 110
path table. As you OUTPUT data items to the file, both EOF pointers are changed so that they
point to the next byte. This is also where the file pointer is positioned.

If you overwrite a file , however, the EOF pointers will not necessarily agree with the file pointer.
For example, suppose you write 100 bytes to a file , and then re-ASSIGN the 110 path. By
re-ASSIGNing, you move the file pointer back to the first byte in the file . The EOF markers,
though, still point to the 101st byte. They will not be changed until the file pointer value is
greater than 101 , or until you specify an "END" in an OUTPUT statement.

The secondary word "END" is used to move the EOF pointers backwards. It forces the EOF
pointers to be re-positioned to the file pointer byte, even if the new position is "earlier" in the
file than their current position. In effect, this "shrinks" the file, causing data that lies past the
new EOF position to become inaccessible.

Data Storage and Retrieval 225

Writing Data
Data is always written to a file with an OUTPUT statement via an 110 path. You can OUTPUT
numeric and string variables, numeric and string expressions, and arrays. When you OUTPUT
data with the FORMAT OFF, data items are written to the file in internal format (described
earlier).

There is no limit to the number of data items you can write in a single OUTPUT statement, except
that program statements are limited to two CRT lines. Also, if you try to OUTPUT more data than
the file can hold, or the record can hold (if you are using random access), the system will return an
EOF or EOR condition. If an EOF or EOR condition occurs, the file retains any data output ahead
of the end condition.

There is also no restriction on mixing different types of data in a single OUTPUT statement. The
system decides which data type each item is before it writes the item to the disc. Any item
enclosed in quotes is a string. Numeric variables and expressions are OUTPUT according to
their type (8 bytes for REALs and 2 bytes for INTEGERs) . Arrays are written to the file in row
major order (rightmost subscript varies quickest) .

Each data item in an OUTPUT statement should be separated by either a comma or semi-colon
(there is no operational difference between the two separators with FORMAT OFF). Punctua­
tion at the end of an OUTPUT statement is ignored with FORMAT OFF.

Serial OUTPUT
Data is written serially to BOAT files whenever you do not specify a record number in an
OUTPUT statement. When data is written serially, each data item is stored immediately after
the previous item without any type of separator. Sector and record boundaries are ignored.
Data items are written to the file one by one, starting at the current position of the file pointer.
As each item is written, the file pointer is moved to the next byte. After all of the data items have
been OUTPUT, the file pointer points to the first byte following the last byte just written.

There are a number of circumstances where it is faster and easier to use serial access instead of
random access. The most obvious case is when you want to access the entire file at once. If, for
example, you have a list of data items that you want to store in a file and you know that you will
never want to read any of the items indiVidually, you should write the data serially. The fastest
way to write data serially is to place the data in an array and then OUTPUT the entire array at
once.

Another situation where you might want to use serial access is if the file is so small that it can fit
entirely into internal memory at once. In this case, even if you want to change individual items,
it might be easier to treat the entire file as one or more arrays, manipulate as desired, and then
write the entire array(s) back to the file.

Data Storage and Retrieval 225

Writing Data
Data is always written to a file with an OUTPUT statement via an 110 path. You can OUTPUT
numeric and string variables, numeric and string expressions, and arrays. When you OUTPUT
data with the FORMAT OFF, data items are written to the file in internal format (described
earlier).

There is no limit to the number of data items you can write in a single OUTPUT statement, except
that program statements are limited to two CRT lines. Also, if you try to OUTPUT more data than
the file can hold, or the record can hold (if you are using random access), the system will return an
EOF or EOR condition. If an EOF or EOR condition occurs, the file retains any data output ahead
of the end condition.

There is also no restriction on mixing different types of data in a single OUTPUT statement. The
system decides which data type each item is before it writes the item to the disc. Any item
enclosed in quotes is a string. Numeric variables and expressions are OUTPUT according to
their type (8 bytes for REALs and 2 bytes for INTEGERs) . Arrays are written to the file in row
major order (rightmost subscript varies quickest) .

Each data item in an OUTPUT statement should be separated by either a comma or semi-colon
(there is no operational difference between the two separators with FORMAT OFF). Punctua­
tion at the end of an OUTPUT statement is ignored with FORMAT OFF.

Serial OUTPUT
Data is written serially to BOAT files whenever you do not specify a record number in an
OUTPUT statement. When data is written serially, each data item is stored immediately after
the previous item without any type of separator. Sector and record boundaries are ignored.
Data items are written to the file one by one, starting at the current position of the file pointer.
As each item is written, the file pointer is moved to the next byte. After all of the data items have
been OUTPUT, the file pointer points to the first byte following the last byte just written.

There are a number of circumstances where it is faster and easier to use serial access instead of
random access. The most obvious case is when you want to access the entire file at once. If, for
example, you have a list of data items that you want to store in a file and you know that you will
never want to read any of the items indiVidually, you should write the data serially. The fastest
way to write data serially is to place the data in an array and then OUTPUT the entire array at
once.

Another situation where you might want to use serial access is if the file is so small that it can fit
entirely into internal memory at once. In this case, even if you want to change individual items,
it might be easier to treat the entire file as one or more arrays, manipulate as desired, and then
write the entire array(s) back to the file.

226 Data Storage and Retrieval

The examples below illustrate how data is stored serially in a file. The statement:

OUTPUT @Pathli"First"t24i2.Gt

would result in the following storage format:

" "'------........ ------'
LENGTH

HEADER = 5
ASCII

CODES
INTEGER 24 REAL 2.6

Note that quotation marks around a string are not written to the file. To write quote marks to a
file, enter two quote marks for everyone you want to OUTPUT. Note also that separators are
not written to the file . To write a comma or semi-colon to a file , you must enclose it in quotes.
For instance, the statement:

OUTPUT @Pathl i """QUO""TES" t"Next"

would be stored:

11 01010lslllolulol"ITIEl slololol4lNl e lxl It
'--__ ~.----~" "" I

LENGTH
HEADER = 8

ASCII
CODES

LENGTH
HEADER = 4

ASCII
CODES

The follOWing sequence of serial OUTPUT statements show how data is written to a BOAT file
and how the file pointer and EOF pointers are updated.

CREATE BDAT "EXafrlPle" t4 t128

I/O PATH TABLE

FILE POINTER

EOF POINTER

)po~~f[III1111111111111111111111111111I .
SYSTEM
SECTOR

I

Creates a BOAT file with four 128-byte records. The EOF pointer in the system sector points to
the first byte in the file.

226 Data Storage and Retrieval

The examples below illustrate how data is stored serially in a file. The statement:

OUTPUT @Pathli"First"t24i2.Gt

would result in the following storage format:

" "'------........ ------'
LENGTH

HEADER = 5
ASCII

CODES
INTEGER 24 REAL 2.6

Note that quotation marks around a string are not written to the file. To write quote marks to a
file, enter two quote marks for everyone you want to OUTPUT. Note also that separators are
not written to the file . To write a comma or semi-colon to a file , you must enclose it in quotes.
For instance, the statement:

OUTPUT @Pathl i """QUO""TES" t"Next"

would be stored:

11 01010lslllolulol"ITIEl slololol4lNl e lxl It
'--__ ~.----~" "" I

LENGTH
HEADER = 8

ASCII
CODES

LENGTH
HEADER = 4

ASCII
CODES

The follOWing sequence of serial OUTPUT statements show how data is written to a BOAT file
and how the file pointer and EOF pointers are updated.

CREATE BDAT "EXafrlPle" t4 t128

I/O PATH TABLE

FILE POINTER

EOF POINTER

)po~~f[III1111111111111111111111111111I .
SYSTEM
SECTOR

I

Creates a BOAT file with four 128-byte records. The EOF pointer in the system sector points to
the first byte in the file.

ASSIGN @Pathl TO "ExafrlPle"

I
\
(EOF

POINTER

.
SYSTEM
SECTOR

t

.

Data Storage and Retrieval 227

I/O PATH TABLE

FILE POINTER

EOF POINTER

Opens an I/O path to "Example". The EOF marker in the system sector is copied to the I/O
path table. The file pointer is positioned to the beginning of the file.

OUTPUT @Pathl;"TEN CHARS."

I
\

EOF
POINTER

,
SYSTEM
SECTOR

. .

0 0 0 10 T

H ,
LENGTH

HEADER = 10

E N C H

.
ASCII

CODES

A R S

1/0 PATH TABLE

FILE POINTER

EOF POINTER

.

Fourteen bytes are written to the file. The EOF pointers are moved to the 15th byte. The file
pointer also points to the 15th byte.

ASSIGN @Pathl TO "ExafrlPle"

I
\
(EOF

POINTER

.
SYSTEM
SECTOR

t

.

Data Storage and Retrieval 227

I/O PATH TABLE

FILE POINTER

EOF POINTER

Opens an I/O path to "Example". The EOF marker in the system sector is copied to the I/O
path table. The file pointer is positioned to the beginning of the file.

OUTPUT @Pathl;"TEN CHARS."

I
\

EOF
POINTER

,
SYSTEM
SECTOR

. .

0 0 0 10 T

H ,
LENGTH

HEADER = 10

E N C H

.
ASCII

CODES

A R S

1/0 PATH TABLE

FILE POINTER

EOF POINTER

.

Fourteen bytes are written to the file. The EOF pointers are moved to the 15th byte. The file
pointer also points to the 15th byte.

228 Data Storage and Retrieval

OUTPUT @Pathl;12.5,END

I
\

EOF
1 POINTER

.
SYSTEM
SECTOR

0 0

I

0 10 T E N C H A

I/O PATH TABLE

r-- FILE POINTER

EOF POINTER r----

R S

\ I .
REAL 12.5

Eight more bytes are written to the file. The file pointer now points to the 23rd byte. Both the
EOF in the 110 path table and the EOF in the system sector are updated to 23.

OUTPUT @Pathl;IFOUR"

I
EOF

POINTER

.
SYSTEM
SECTOR

0 0

I

0 10 T E N C H A R S

\

I/O PATH TABLE

FILE POINTER

~/ EOF POINTER

\

0 0 0 4 F 0 U R

,. I. I . . .
REAL 12.5 LENGTH ASCII

HEADER = 4 CODES

Eight more bytes are written to the file. The file pointer now points to the 31st byte. The EOF
markers are updated to 31 because 31 is greater than 23, the current EOF value.

228 Data Storage and Retrieval

OUTPUT @Pathl;12.5,END

I
\

EOF
1 POINTER

.
SYSTEM
SECTOR

0 0

I

0 10 T E N C H A

I/O PATH TABLE

r-- FILE POINTER

EOF POINTER r----

R S

\ I .
REAL 12.5

Eight more bytes are written to the file. The file pointer now points to the 23rd byte. Both the
EOF in the 110 path table and the EOF in the system sector are updated to 23.

OUTPUT @Pathl;IFOUR"

I
EOF

POINTER

.
SYSTEM
SECTOR

0 0

I

0 10 T E N C H A R S

\

I/O PATH TABLE

FILE POINTER

~/ EOF POINTER

\

0 0 0 4 F 0 U R

,. I. I . . .
REAL 12.5 LENGTH ASCII

HEADER = 4 CODES

Eight more bytes are written to the file. The file pointer now points to the 31st byte. The EOF
markers are updated to 31 because 31 is greater than 23, the current EOF value.

ASSIGN @Pathl TO IE XafT1Ple"

I ,
EOF

)POINTER

.
SYSTEM
SECTOR

0 0 0

I

10 T E N C H A R S

Data Storage and Retrieval 229

I/O PATH TABLE

FILE POINTER

EOF POINTER t------

0 0 0 4 F 0 U R

, . ,
REAL 12.5

Re-ASSIGNs the I/O path name. The file pointer is positioned back to the beginning of the file.
The system sector EOF value is copied to the I/O path table.

OUTPUT @Pathl ; 13t7.GG5 t l / 3 t END

I
\
(EOF

POINTER

. ',"---,' . JL .
SYSTEM INTEGER REAL 7.665 REAL 1/3
SECTOR 13

f
h I .
LAST 4 BYTES
OF REAL 12.5

I/O PATH TABLE

FILE POINTER

EOF POINTER

0 0 0 4 F o U R

18 bytes (one INTEGER and two REALs) are OUTPUT, starting at the beginning of the file . The
original data, therefore, is overwritten. The file pointer points to the 19th byte. The EOIi'
markers are also positioned to 19 because the statement contains the "END" secondary word.

ASSIGN @Pathl TO IE XafT1Ple"

I ,
EOF

)POINTER

.
SYSTEM
SECTOR

0 0 0

I

10 T E N C H A R S

Data Storage and Retrieval 229

I/O PATH TABLE

FILE POINTER

EOF POINTER t------

0 0 0 4 F 0 U R

, . ,
REAL 12.5

Re-ASSIGNs the I/O path name. The file pointer is positioned back to the beginning of the file.
The system sector EOF value is copied to the I/O path table.

OUTPUT @Pathl ; 13t7.GG5 t l / 3 t END

I
\
(EOF

POINTER

. ',"---,' . JL .
SYSTEM INTEGER REAL 7.665 REAL 1/3
SECTOR 13

f
h I .
LAST 4 BYTES
OF REAL 12.5

I/O PATH TABLE

FILE POINTER

EOF POINTER

0 0 0 4 F o U R

18 bytes (one INTEGER and two REALs) are OUTPUT, starting at the beginning of the file . The
original data, therefore, is overwritten. The file pointer points to the 19th byte. The EOIi'
markers are also positioned to 19 because the statement contains the "END" secondary word.

230 Data Storage and Retrieval

Random OUTPUT
Random OUTPUT allows you to write to one record at a time. As with serial OUTPUT, there
are EOF and file pointers that are updated after every OUTPUT. The EOF pointers follow the
same rules as in serial access. The file pointer positioning is also the same, except that it is
moved to the beginning of the specified record before the data is OUTPUT. If you wish to write
randomly to a newly created file, either use a CONTROL statement to position the EOF in the
last record, or start at the beginning of the file and write some "dummy" data into every record.

If you attempt to write more data to a record than the record will hold, the system will return an
End-Of-Record (EOR) condition. An EOF condition will result if you try to write data more than
one record past the EOF position. EOR conditions are treated by the system just like EOF
conditions, except that they return Error 60 instead of 59 if they are not trapped by ON END.
Data already written to the file before an EOR condition arises will remain intact. The examples
below illustrate how data is stored randomly.

CREATE BDAT " Randolll" ,10,1 0
1/0 PATH TABLE

FILE POINTER

EOF POINTER

)po~~dlllllllllllllllllllllllllllllill .
SYSTEM
SECTOR

I

ASSIGN @Path? TO " Randolll" "-

I ,
EOF

) POINTER

.
SYSTEM
SECTOR

t

I

1/0 PATH TABLE

FILE POINTER

EOF POINTER

230 Data Storage and Retrieval

Random OUTPUT
Random OUTPUT allows you to write to one record at a time. As with serial OUTPUT, there
are EOF and file pointers that are updated after every OUTPUT. The EOF pointers follow the
same rules as in serial access. The file pointer positioning is also the same, except that it is
moved to the beginning of the specified record before the data is OUTPUT. If you wish to write
randomly to a newly created file, either use a CONTROL statement to position the EOF in the
last record, or start at the beginning of the file and write some "dummy" data into every record.

If you attempt to write more data to a record than the record will hold, the system will return an
End-Of-Record (EOR) condition. An EOF condition will result if you try to write data more than
one record past the EOF position. EOR conditions are treated by the system just like EOF
conditions, except that they return Error 60 instead of 59 if they are not trapped by ON END.
Data already written to the file before an EOR condition arises will remain intact. The examples
below illustrate how data is stored randomly.

CREATE BDAT " Randolll" ,10,1 0
1/0 PATH TABLE

FILE POINTER

EOF POINTER

)po~~dlllllllllllllllllllllllllllllill .
SYSTEM
SECTOR

I

ASSIGN @Path? TO " Randolll" "-

I ,
EOF

) POINTER

.
SYSTEM
SECTOR

t

I

1/0 PATH TABLE

FILE POINTER

EOF POINTER

Data Storage and Retrieval 231

OUTPUT @Path2tl;IITOO LONG TO FIT IN RECORD II

I
EOF

POINTER

.
SYSTEM
SECTOR

..

I/O PATH TABLE

FILE POINTER

EOF POINTER

0 0 0 25 T 0 0 L 0

H I . .
LENGTH ASCII

HEADER = 25 CODES

Even though this statement produces an EOR condition, the EOF markers and file pointer are
still updated. The ON END statement can be used to trap their error. Also, the length header
represents the length of the string characters sent to the file, since the whole string is not written
out.

OUTPUT @Path2t2;2

I
\

I EOF
POINTER

.
SYSTEM
SECTOR

0 0 o 25 T 0 0

I

I/O PATH TABLE

FILE POINTER

EOF POINTER

L 0

---...-.
INTEGER 2

Data Storage and Retrieval 231

OUTPUT @Path2tl;IITOO LONG TO FIT IN RECORD II

I
EOF

POINTER

.
SYSTEM
SECTOR

..

I/O PATH TABLE

FILE POINTER

EOF POINTER

0 0 0 25 T 0 0 L 0

H I . .
LENGTH ASCII

HEADER = 25 CODES

Even though this statement produces an EOR condition, the EOF markers and file pointer are
still updated. The ON END statement can be used to trap their error. Also, the length header
represents the length of the string characters sent to the file, since the whole string is not written
out.

OUTPUT @Path2t2;2

I
\

I EOF
POINTER

.
SYSTEM
SECTOR

0 0 o 25 T 0 0

I

I/O PATH TABLE

FILE POINTER

EOF POINTER

L 0

---...-.
INTEGER 2

232 Data Storage and Retrieval

OUTPUT @PathZ,3;ITHIRD"

I
\

EOF
) POINTER

.
SYSTEM
SECTOR

0 0

.
o 25 T 0 0 L 0

~

2

OUTPUT @path / ,Z;45.78

I
\

I EOF
POINTER

.
SYSTEM
SECTOR

0

.
0 o 25 T 0 0 L 0

, .
REAL 45.78

,

.

1/0 PATH TABLE

FILE POINTER

EOF POINTER

0 0 0 5 T H I R

Jl . .
LENGTH

HEADER = 5
ASCII

CODES

1/0 PATH TABLE

FILE POINTER

EOF POINTER

0 0 0 5 T H I R

~I/
\

13'
D cu

-3
l .

f--

13'
D cu

-3

232 Data Storage and Retrieval

OUTPUT @PathZ,3;ITHIRD"

I
\

EOF
) POINTER

.
SYSTEM
SECTOR

0 0

.
o 25 T 0 0 L 0

~

2

OUTPUT @path / ,Z;45.78

I
\

I EOF
POINTER

.
SYSTEM
SECTOR

0

.
0 o 25 T 0 0 L 0

, .
REAL 45.78

,

.

1/0 PATH TABLE

FILE POINTER

EOF POINTER

0 0 0 5 T H I R

Jl . .
LENGTH

HEADER = 5
ASCII

CODES

1/0 PATH TABLE

FILE POINTER

EOF POINTER

0 0 0 5 T H I R

~I/
\

13'
D cu

-3
l .

f--

13'
D cu

-3

(

Data Storage and Retrieval 233

Reading Data From BOAT Files
Data is read from files with the ENTER statement. As with OUTPUT, data is passed along an I/O
path. You can use the same 110 path you used to OUTPUT the data or you can use a different
I/O path.

You can have several variables in a single ENTER statement. Each variable must be separated
by either a comma or semi-colon. It is extremely important to make sure that your variable
types agree with the data types in the file . If you wrote a REAL number to a file , you should
ENTER it into a REAL variable; INTEGERs should be entered into INTEGER variables; and
strings into string variables. The rule to remember is: "Read it the way you wrote it. "

When reading data into a string variable, it is important to remember that the system will
interpret the first four bytes after the file pointer as a length header. It will then try to ENTER as
many characters as the length header indicates. If the string has been padded by the system to
make its length even, the pad character is not read into the variable.

After an ENTER statement has been executed, the file pOinter is positioned to the next unread
byte. If the last data item was a padded string, the file pointer is positioned after the pad. If you
use the same 110 path name to read and write data to a file , the file pointer will be updated after
every ENTER and OUTPUT statement. If you use different I/O path names, each will have its
own file pointer which is independent of the other. However, be aware that each also has its
own EOF pointer and that these pointers may not match, which causes problems.

Entering data does not affect the EOF pointers. However, you cannot read data at or beyond
the byte marked by the EOF pointers. If you attempt to read past an EOF marker, the system
will return an EOF condition.

In addition to making sure that data types agree, it is also advisable to make sure that access
modes agree. If you wrote data serially, you should read it serially; and if you wrote it randomly,
you should read it randomly. There are a few exceptions to this rule which we discuss later.
However, you should be aware that mixing access modes will often lead to erroneous results
unless you are aware of the precise mechanics of the file system.

Serial ENTER
When you read data serially, the system enters data into variables starting at the current
position of the file pointer and proceeds byte by byte until all of the variables in the ENTER
statement have been filled . If there is not enough data in the file to fill all of the variables, the
system returns an EOF condition. All variables that have already taken values before the
condition occurs retain their values.

(

Data Storage and Retrieval 233

Reading Data From BOAT Files
Data is read from files with the ENTER statement. As with OUTPUT, data is passed along an I/O
path. You can use the same 110 path you used to OUTPUT the data or you can use a different
I/O path.

You can have several variables in a single ENTER statement. Each variable must be separated
by either a comma or semi-colon. It is extremely important to make sure that your variable
types agree with the data types in the file . If you wrote a REAL number to a file , you should
ENTER it into a REAL variable; INTEGERs should be entered into INTEGER variables; and
strings into string variables. The rule to remember is: "Read it the way you wrote it. "

When reading data into a string variable, it is important to remember that the system will
interpret the first four bytes after the file pointer as a length header. It will then try to ENTER as
many characters as the length header indicates. If the string has been padded by the system to
make its length even, the pad character is not read into the variable.

After an ENTER statement has been executed, the file pOinter is positioned to the next unread
byte. If the last data item was a padded string, the file pointer is positioned after the pad. If you
use the same 110 path name to read and write data to a file , the file pointer will be updated after
every ENTER and OUTPUT statement. If you use different I/O path names, each will have its
own file pointer which is independent of the other. However, be aware that each also has its
own EOF pointer and that these pointers may not match, which causes problems.

Entering data does not affect the EOF pointers. However, you cannot read data at or beyond
the byte marked by the EOF pointers. If you attempt to read past an EOF marker, the system
will return an EOF condition.

In addition to making sure that data types agree, it is also advisable to make sure that access
modes agree. If you wrote data serially, you should read it serially; and if you wrote it randomly,
you should read it randomly. There are a few exceptions to this rule which we discuss later.
However, you should be aware that mixing access modes will often lead to erroneous results
unless you are aware of the precise mechanics of the file system.

Serial ENTER
When you read data serially, the system enters data into variables starting at the current
position of the file pointer and proceeds byte by byte until all of the variables in the ENTER
statement have been filled . If there is not enough data in the file to fill all of the variables, the
system returns an EOF condition. All variables that have already taken values before the
condition occurs retain their values.

234 Data Storage and Retrieval

In the program below, we OUTPUT five data items serially, and then retrieve the data items
with a serial ENTER statement.

10 CREATE BDAT "STDRAGE" tl
20 ASSIGN @Path TD "STDRAGE"
30 INTEGER NUMtFirsttFourth
40 NU(!l=5
80 OUTPUT @Path iNu(!l t"s9uared" t" e9uals" tNuM*NuM t"." tEND
70 ASSIGN @Path TO "STORAGE"
80 ENTER @Path iFi rst tSecond$ tThi rd$ tFourth tFifth$
80 PRINT FirstiSecond$iThird$tFourthtFifth$
100 END

5 s9uared e9uals 25.

Note that we re-ASSIGNed the 110 path in line 70. This was done to re-position the file pointer
to the beginning of the file. If we had omitted this statement, the ENTER would have produced
an EOF condition. Note also that the OUTPUT statement includes END, which specifies that
the EOF pointer is to be moved to match the file pointer at statement completion. In this case,
the END is redundant.

Random ENTER
When you ENTER data in random mode, the system starts reading data at the beginning of the
specified record and continues reading until either all of the variables are filled or the system
reaches the EOR or EOF. If the system comes to the end of the record before it has filled all of
the variables, an EOR condition is returned.

In the follOWing example, we randomly OUTPUT data to 10 successive records, and then
ENTER the data into an array in reverse order.

10 CREATE BDAT "SQ_ROOTSt5t2*8
20 ASSIGN @Path TO "SQ_ROOTS"
30 FOR Inc=l to 5
40 OUTPUT @Path tInc i Inc tSQR(Inc)
50 ND(T Inc
80 FOR Inc=5 TO 1 STEP - 1
70 ENTER @Path tInc iNufld Inc) tS9 root (Inc)
80 ND(T Inc
80 PRINT "Nufllber" t"S9uare Root"
100 FOR Inc=l TO 5
110 PRINT NU(!l (Inc) tS9 root (Inc)
120 ND(T Inc
130 END

NUfllber
1
2
3
4
5

S9uare Root
1
1.41421358237
1.73205080757
2
2.2380878775

234 Data Storage and Retrieval

In the program below, we OUTPUT five data items serially, and then retrieve the data items
with a serial ENTER statement.

10 CREATE BDAT "STDRAGE" tl
20 ASSIGN @Path TD "STDRAGE"
30 INTEGER NUMtFirsttFourth
40 NU(!l=5
80 OUTPUT @Path iNu(!l t"s9uared" t" e9uals" tNuM*NuM t"." tEND
70 ASSIGN @Path TO "STORAGE"
80 ENTER @Path iFi rst tSecond$ tThi rd$ tFourth tFifth$
80 PRINT FirstiSecond$iThird$tFourthtFifth$
100 END

5 s9uared e9uals 25.

Note that we re-ASSIGNed the 110 path in line 70. This was done to re-position the file pointer
to the beginning of the file. If we had omitted this statement, the ENTER would have produced
an EOF condition. Note also that the OUTPUT statement includes END, which specifies that
the EOF pointer is to be moved to match the file pointer at statement completion. In this case,
the END is redundant.

Random ENTER
When you ENTER data in random mode, the system starts reading data at the beginning of the
specified record and continues reading until either all of the variables are filled or the system
reaches the EOR or EOF. If the system comes to the end of the record before it has filled all of
the variables, an EOR condition is returned.

In the follOWing example, we randomly OUTPUT data to 10 successive records, and then
ENTER the data into an array in reverse order.

10 CREATE BDAT "SQ_ROOTSt5t2*8
20 ASSIGN @Path TO "SQ_ROOTS"
30 FOR Inc=l to 5
40 OUTPUT @Path tInc i Inc tSQR(Inc)
50 ND(T Inc
80 FOR Inc=5 TO 1 STEP - 1
70 ENTER @Path tInc iNufld Inc) tS9 root (Inc)
80 ND(T Inc
80 PRINT "Nufllber" t"S9uare Root"
100 FOR Inc=l TO 5
110 PRINT NU(!l (Inc) tS9 root (Inc)
120 ND(T Inc
130 END

NUfllber
1
2
3
4
5

S9uare Root
1
1.41421358237
1.73205080757
2
2.2380878775

Data Storage and Retrieval 235

In this example, there was no need to re-ASSIGN the I/O path because the random ENTER
automatically re-positions the file pointer.

Executing a random ENTER without a variable list has the effect of moving the file pointer to
the beginning of the specified record. This is useful if you want to serially access some data in
the middle of a file. Suppose, for instance, that you have a file containing 100 8-byte records,
and each record has a REAL number in it. If you want to read the last 50 data items, you can
position the file pointer to the 51st record and then serially read the remainder of the file into an
array.

100 REAL Array(1:50)
110 ENTER @Realpath,51
12 0 ENTER @Realpath; Array(*)

Single-Byte Access
You can define records to be just one byte long. In this case, it doesn't make sense to read or
write one record at a time since even the shortest data type require two bytes to store a number.

Random access to one-byte records, therefore, has its own set of rules. When you access a
one-byte record, the file pointer is positioned to the specified byte. From there, the access
proceeds in serial mode. Random OUTPUTs write as many bytes as the data item requires, and
random ENTERs read enough bytes to fill the variable. The example below illustrates how you
can read and write randomly to one-byte records.

10 INTEGER Int
20 CREATE BOAT "BYTE" , 100,1
30 ASSIGN @B}'tepath TO "BYTE"
40 OUTPUT @Bytepath,1;3.G7
50 OUTPUT @Bytepath,S;3
GO OUTPUT @B}'tepathtilj"string"
70 ENTER @Bytepath,S;Int
80 ENTER @Bytepath,l;Real
SO ENTER @Bytepath,11;Str$
100 PRINT Real
110 PRINT Int
120 PRINT Str$
130 END

3.G7
3
string

Note that we had to declare the variable "Int" as an INTEGER. If we hadn't, the system would
have given it the default type of REAL and would therefore have required 8 bytes (also 8
records).

Data Storage and Retrieval 235

In this example, there was no need to re-ASSIGN the I/O path because the random ENTER
automatically re-positions the file pointer.

Executing a random ENTER without a variable list has the effect of moving the file pointer to
the beginning of the specified record. This is useful if you want to serially access some data in
the middle of a file. Suppose, for instance, that you have a file containing 100 8-byte records,
and each record has a REAL number in it. If you want to read the last 50 data items, you can
position the file pointer to the 51st record and then serially read the remainder of the file into an
array.

100 REAL Array(1:50)
110 ENTER @Realpath,51
12 0 ENTER @Realpath; Array(*)

Single-Byte Access
You can define records to be just one byte long. In this case, it doesn't make sense to read or
write one record at a time since even the shortest data type require two bytes to store a number.

Random access to one-byte records, therefore, has its own set of rules. When you access a
one-byte record, the file pointer is positioned to the specified byte. From there, the access
proceeds in serial mode. Random OUTPUTs write as many bytes as the data item requires, and
random ENTERs read enough bytes to fill the variable. The example below illustrates how you
can read and write randomly to one-byte records.

10 INTEGER Int
20 CREATE BOAT "BYTE" , 100,1
30 ASSIGN @B}'tepath TO "BYTE"
40 OUTPUT @Bytepath,1;3.G7
50 OUTPUT @Bytepath,S;3
GO OUTPUT @B}'tepathtilj"string"
70 ENTER @Bytepath,S;Int
80 ENTER @Bytepath,l;Real
SO ENTER @Bytepath,11;Str$
100 PRINT Real
110 PRINT Int
120 PRINT Str$
130 END

3.G7
3
string

Note that we had to declare the variable "Int" as an INTEGER. If we hadn't, the system would
have given it the default type of REAL and would therefore have required 8 bytes (also 8
records).

236 Data Storage and Retrieval

General Mass Storage Operations
This section describes several different types of operations on mass storage volumes and files.

• Trapping EOR and EOF conditions while reading and writing data files

• Protecting files

• Copying files and volumes

• Purging files

• Accessing directories programmatically

Trapping EOF and EOR Conditions
An EOF condition exists whenever the system attempts to read data at, or beyond, the byte
marked by the EOF pointers. The EOR condition will arise if you attempt to randomly read or
write beyond the particular record specified. If, for example, you try to randomly OUTPUT a
20-character string into a 10-byte record, an EOR condition will occur. EOF conditions will also
result whenever you try to read or write beyond the physical end-of-file.

EOF and EOR conditions can be trapped with an ON END statement. ON END is similar to ON
ERROR except that it only traps EOF/EOR conditions and is only applicable to the specified I/O
path. If you do not have an ON END statement in a program, the EOF/EOR condition will
produce an error that is trappable by the ON ERROR statement. Encountering a logical or
physical end of file will produce Error 59. Encountering an end of record in random mode
produces Error 60.

You can have any number of ON END statements in a program context. ON END statements
that refer to different 110 paths will not interfere with each other, even if the paths go to the
same file. If you have more than one ON END to the same 110 path, the system will use
whichever one it most recently executes during program flow.

An ON END is cancelled by the OFF END statement. OFF END only cancels the ON END
branch for the specified 110 path. Re-ASSIGNing an 110 path will also cancel any existing ON
END branch for the particular path.

The example below illustrates some of the more common situations that cause an EOF condi­
tion.

100 CREATE BDAT "ONEND" .10.8
110 ASSIGN @Endpath TO "ONEND"
120 ON END @Endpath GOTO Eofl
130 FOR Inc=l TO 20
lao OUTPUT @Endpath . Inc;SORCInc)
150 NE){T Inc
160 Eofl: !
170 PRINT "EOF CONDITION -- ATTEMPT TO RANDOMLY WRITE BEYOND PHYSICAL END OF F
ILE . "
180 PRINT
190
20 0 ON END @Endpath GO TO Eof2
2 10 OUTPUT @Endpath.5;"THIS IS A STRING."
220 Eof2:
230 PRINT "EOR CONDITION -- ATTEMPT TO RANDOMLY WRITE DATA ITEM LONGER THAN
RECORD."
2aO PRINT
250

236 Data Storage and Retrieval

General Mass Storage Operations
This section describes several different types of operations on mass storage volumes and files.

• Trapping EOR and EOF conditions while reading and writing data files

• Protecting files

• Copying files and volumes

• Purging files

• Accessing directories programmatically

Trapping EOF and EOR Conditions
An EOF condition exists whenever the system attempts to read data at, or beyond, the byte
marked by the EOF pointers. The EOR condition will arise if you attempt to randomly read or
write beyond the particular record specified. If, for example, you try to randomly OUTPUT a
20-character string into a 10-byte record, an EOR condition will occur. EOF conditions will also
result whenever you try to read or write beyond the physical end-of-file.

EOF and EOR conditions can be trapped with an ON END statement. ON END is similar to ON
ERROR except that it only traps EOF/EOR conditions and is only applicable to the specified I/O
path. If you do not have an ON END statement in a program, the EOF/EOR condition will
produce an error that is trappable by the ON ERROR statement. Encountering a logical or
physical end of file will produce Error 59. Encountering an end of record in random mode
produces Error 60.

You can have any number of ON END statements in a program context. ON END statements
that refer to different 110 paths will not interfere with each other, even if the paths go to the
same file. If you have more than one ON END to the same 110 path, the system will use
whichever one it most recently executes during program flow.

An ON END is cancelled by the OFF END statement. OFF END only cancels the ON END
branch for the specified 110 path. Re-ASSIGNing an 110 path will also cancel any existing ON
END branch for the particular path.

The example below illustrates some of the more common situations that cause an EOF condi­
tion.

100 CREATE BDAT "ONEND" .10.8
110 ASSIGN @Endpath TO "ONEND"
120 ON END @Endpath GOTO Eofl
130 FOR Inc=l TO 20
lao OUTPUT @Endpath . Inc;SORCInc)
150 NE){T Inc
160 Eofl: !
170 PRINT "EOF CONDITION -- ATTEMPT TO RANDOMLY WRITE BEYOND PHYSICAL END OF F
ILE . "
180 PRINT
190
20 0 ON END @Endpath GO TO Eof2
2 10 OUTPUT @Endpath.5;"THIS IS A STRING."
220 Eof2:
230 PRINT "EOR CONDITION -- ATTEMPT TO RANDOMLY WRITE DATA ITEM LONGER THAN
RECORD."
2aO PRINT
250

Data Storage and Retrieval 237

2GO ON END @Endpath GDTO Eof3
270 ENTER @Endpath,5;Str$
2BO Eo f3:
290 PRINT "EOR CONDITION -- ATTEMPT TO READ DATA ITEM LONGER THAN RECORD. "
300 PRINT
310
320 ASSIGN @Endpath TO "ONEND"
330 ON END @Endpath GDTO Eofa
3ao FOR Inc=l TO 100
350 OUTPUT @Endpath;"A"
3GO NE){T Inc
370 Eofa: !
3BO PRINT "EOF CONDITION -- ATTEMPT TO SERIALLY WRITE BE YOND PHYSICAL END OF F
I LE. "
390 PRINT
aoo
al0 ASSIGN @Endpath TO "ONEND"
a20 ON END @Endpath GDTD Eof5
a30 FOR Inc=l TO 100
aao ENTER @Endpath;Str$
a50 NEXT Inc
aGO Eo f 5:
a70 PRINT "EoF CONDITION -- ATTEMPT TO SERIALLY READ BEYOND PHYSICAL END OF F
I LE. "
aBO PRINT
a90
500 ON END @Endpath GOTO EofG
510 OUTPUT @Endpath,5;5,ENo
520 ENTER @Endpath,G;X
530 EofG:
sao PRINT " EoF CONDITION -- ATTEMPT TO RANDOMLY READ BE YOND LOGICAL END OF FI
LE. "
550
5GO END

EOF CoND IT I ON - - ATTEMPT TO RANDOMLY WRITE BEYOND
PHYSICAL END OF FILE,

EDR CONDITION - - ATTEMPT TO RANDOMLY WRITE DATA
ITEM LONGER THAN RECORD,

EDR CONDITION ATTEMPT TO READ DATA ITEM LONGER
THAN RECORD,

EoF COND IT I ON - - ATTEMPT TO SERIALLY WRITE BEYOND
PHYSICAL END OF FILE,

EOF CONDITION - - ATTEMPT TO SERIALL Y READ BEYOND
PH YSICA L END OF FILE.

EDR CONDITION - - ATTEMPT TO RANDOMLY READ BEYOND
LOGICAL END OF FILE.

This example highlights a number of interesting points. First, in line 210 we try to randomly
write a 17 -byte string into an 8-byte record. The system returns an EOR condition. The length
header for the string, however, is still 17. So when we try to read the string in line 270, we again
receive an EOR condition.

In line 320 we re-ASSIGN the I/O path name in order to position the file pointer to byte 1. Then
we redefine the ON END branch. These two statements must appear in this order since re­
ASSIGNing an I/O path has the effect of canceling any ON END branch previously associated
with the path.

In line 510, we shrink the file by moving the EOF pointer to the end of record 5 with the "END"
secondary word. When we try to read record 6 in line 520 we get an EOF condition.

Data Storage and Retrieval 237

2GO ON END @Endpath GDTO Eof3
270 ENTER @Endpath,5;Str$
2BO Eo f3:
290 PRINT "EOR CONDITION -- ATTEMPT TO READ DATA ITEM LONGER THAN RECORD. "
300 PRINT
310
320 ASSIGN @Endpath TO "ONEND"
330 ON END @Endpath GDTO Eofa
3ao FOR Inc=l TO 100
350 OUTPUT @Endpath;"A"
3GO NE){T Inc
370 Eofa: !
3BO PRINT "EOF CONDITION -- ATTEMPT TO SERIALLY WRITE BE YOND PHYSICAL END OF F
I LE. "
390 PRINT
aoo
al0 ASSIGN @Endpath TO "ONEND"
a20 ON END @Endpath GDTD Eof5
a30 FOR Inc=l TO 100
aao ENTER @Endpath;Str$
a50 NEXT Inc
aGO Eo f 5:
a70 PRINT "EoF CONDITION -- ATTEMPT TO SERIALLY READ BEYOND PHYSICAL END OF F
I LE. "
aBO PRINT
a90
500 ON END @Endpath GOTO EofG
510 OUTPUT @Endpath,5;5,ENo
520 ENTER @Endpath,G;X
530 EofG:
sao PRINT " EoF CONDITION -- ATTEMPT TO RANDOMLY READ BE YOND LOGICAL END OF FI
LE. "
550
5GO END

EOF CoND IT I ON - - ATTEMPT TO RANDOMLY WRITE BEYOND
PHYSICAL END OF FILE,

EDR CONDITION - - ATTEMPT TO RANDOMLY WRITE DATA
ITEM LONGER THAN RECORD,

EDR CONDITION ATTEMPT TO READ DATA ITEM LONGER
THAN RECORD,

EoF COND IT I ON - - ATTEMPT TO SERIALLY WRITE BEYOND
PHYSICAL END OF FILE,

EOF CONDITION - - ATTEMPT TO SERIALL Y READ BEYOND
PH YSICA L END OF FILE.

EDR CONDITION - - ATTEMPT TO RANDOMLY READ BEYOND
LOGICAL END OF FILE.

This example highlights a number of interesting points. First, in line 210 we try to randomly
write a 17 -byte string into an 8-byte record. The system returns an EOR condition. The length
header for the string, however, is still 17. So when we try to read the string in line 270, we again
receive an EOR condition.

In line 320 we re-ASSIGN the I/O path name in order to position the file pointer to byte 1. Then
we redefine the ON END branch. These two statements must appear in this order since re­
ASSIGNing an I/O path has the effect of canceling any ON END branch previously associated
with the path.

In line 510, we shrink the file by moving the EOF pointer to the end of record 5 with the "END"
secondary word. When we try to read record 6 in line 520 we get an EOF condition.

238 Data Storage and Retrieval

Protecting Files!
Protect codes are two-character strings that can be assigned to any BOAT, BIN or PROG type
file with the PROTECT statement. Protect codes are not unbreakable; they are only intended to
prevent aCcidentally writing in files and directories.

For instance, the following statement assigns the protect code "AA" to the file named "FILE 1. "

PROTECT "FILE1" ,"AA"

File specifiers in mass storage statements that write to a file or directory must include the protect
code, if the file has one. Mass storage statements that read a file or directory do not require the
protect code (e.g., CAT, LOAD, LOAD BIN, LOAOSUB ALL FROM, GET and COPY). A
protect code is specified by placing it in brackets right after the file name. To assign an I/O path
name to the file named "FILE1," you would now have to include the protect code.

ASSIGN @Pathl TO "FILE1<AA>"

If you assign a protect code longer than two characters, the system will ignore everything after
the second (non-blank) character. For example, the protect codes LONGPASS, LOLLYPOP,
and LOST all result in the same protect code: LO. This rule holds both for PROTECTing a file
and for specifying the protect code in a file specifier. For instance:

PROTECT "FILE1" ,"Protectl"

would assign the protect code "Pr" to FILEl. To rename the file, we could write:

RENAME "FILE1<Prattle >" TO "FILE2"

"Prattle" is an acceptable protect code, since it starts with "Pr." Note that we do not include a
protect code in the new file name. If you do, the system ignores it since the old protect code is
passed to the new file name. FILE2 still has the protect code "Pr" . To rename the file again, we
might write:

RENAME "FILE2<Pr>" TO "FILE3"

Renaming a file has the effect of changing the file name in the directory and leaving everything
else intact.

In addition to using the PROTECT statement, you can also assign a protect code to a BOAT file
when you create it. For example:

CREATE BDAT "ExafTlple<xx>" ,10

creates a lO-record BOAT file called "Example" and gives it a protect code of "xx". You can
also do this to PROG files with the STORE and STORE BIN statements. However, since ASCII
files cannot be protected, a protect code cannot be included in any CREATE ASCII, SAVE, or
RE-SAVE statement.

1 This type of protect code applies only to LlF discs. For a description of SRM password protection, see the chapter called " Using SRM. "

238 Data Storage and Retrieval

Protecting Files!
Protect codes are two-character strings that can be assigned to any BOAT, BIN or PROG type
file with the PROTECT statement. Protect codes are not unbreakable; they are only intended to
prevent aCcidentally writing in files and directories.

For instance, the following statement assigns the protect code "AA" to the file named "FILE 1. "

PROTECT "FILE1" ,"AA"

File specifiers in mass storage statements that write to a file or directory must include the protect
code, if the file has one. Mass storage statements that read a file or directory do not require the
protect code (e.g., CAT, LOAD, LOAD BIN, LOAOSUB ALL FROM, GET and COPY). A
protect code is specified by placing it in brackets right after the file name. To assign an I/O path
name to the file named "FILE1," you would now have to include the protect code.

ASSIGN @Pathl TO "FILE1<AA>"

If you assign a protect code longer than two characters, the system will ignore everything after
the second (non-blank) character. For example, the protect codes LONGPASS, LOLLYPOP,
and LOST all result in the same protect code: LO. This rule holds both for PROTECTing a file
and for specifying the protect code in a file specifier. For instance:

PROTECT "FILE1" ,"Protectl"

would assign the protect code "Pr" to FILEl. To rename the file, we could write:

RENAME "FILE1<Prattle >" TO "FILE2"

"Prattle" is an acceptable protect code, since it starts with "Pr." Note that we do not include a
protect code in the new file name. If you do, the system ignores it since the old protect code is
passed to the new file name. FILE2 still has the protect code "Pr" . To rename the file again, we
might write:

RENAME "FILE2<Pr>" TO "FILE3"

Renaming a file has the effect of changing the file name in the directory and leaving everything
else intact.

In addition to using the PROTECT statement, you can also assign a protect code to a BOAT file
when you create it. For example:

CREATE BDAT "ExafTlple<xx>" ,10

creates a lO-record BOAT file called "Example" and gives it a protect code of "xx". You can
also do this to PROG files with the STORE and STORE BIN statements. However, since ASCII
files cannot be protected, a protect code cannot be included in any CREATE ASCII, SAVE, or
RE-SAVE statement.

1 This type of protect code applies only to LlF discs. For a description of SRM password protection, see the chapter called " Using SRM. "

Data Storage and Retrieval 239

To change a protect code, simply execute a new PROTECT statement. To change the protect
code of " Example" to "yy," execute:

PROTECT "ExafllPle<xx >" ,,,y},,,

Note that you must include the current protect code in the file specifier.

To completely remove a protect code from a file, PROTECT the file with a code consisting of
two blanks. For example, to remove the protect code from file "Example," execute:

PROTECT "ExafllPle < Y}' >" ," "

When specifying a file that does not have a protect code, you can either ignore the code entirely
or include a code of two spaces:

PURGE "ExafllPle"
or

PURGE " ExafllPle< >"

Data Storage and Retrieval 239

To change a protect code, simply execute a new PROTECT statement. To change the protect
code of " Example" to "yy," execute:

PROTECT "ExafllPle<xx >" ,,,y},,,

Note that you must include the current protect code in the file specifier.

To completely remove a protect code from a file, PROTECT the file with a code consisting of
two blanks. For example, to remove the protect code from file "Example," execute:

PROTECT "ExafllPle < Y}' >" ," "

When specifying a file that does not have a protect code, you can either ignore the code entirely
or include a code of two spaces:

PURGE "ExafllPle"
or

PURGE " ExafllPle< >"

240 Data Storage and Retrieval

Copying Files and Volumes
The COpy statement allows you to duplicate individual files or an entire disc volume. Any type
of file may be copied.

COPY of a file duplicates the existing file and places the new file name in the directory. A new
file can be created either on the same disc or on another disc. If you copy a file to the same disc,
the new file name must be different from the existing file name. If the file is of BDAT, BIN or
PROG type, you can also assign a protect code to the new file. If there is not enough room on
the disc for the file to be copied, the system cancels the statement and returns an error.

If the COpy statement specifies two mass storage volumes and no file names, a copy of the entire
source volume is created. The purpose of this COpy option is to duplicate discs or make back-up
copies. Note that you will lose any old information in the directory of the destination volume. A
volume copy does not append to the contents of the destination; when the copy is finished, the
source and destination volumes will be identical. You can copy a larger volume to a smaller
volume, only if the amount of data on the larger volume will fit on the smaller volume. You can
qUickly purge all the files on a volume by copying an empty disc onto a full disc.

Examples
The following statement copies ''Filel'' from the current system mass storage device to a new
file called "File2" on the same mass storage.

COPY "Filel" TO IFile2"

The following statement copies "Filel" from the current system mass storage to the drive at
interface select code 7, primary address 0, unit number 1. Note that both files can be named
"FILEI" if they are on different volumes.

I

COPY "Filel" TO IFilel:HPt700tl"

The following statement copies a file from an HP 82901 drive to the current system mass storage
device. The new file "DATA" is given the protect code "xx."

COPY IFilel:HP82801 t700tO" TO IDATA <xx >"

The following statement copies the entire disc from the right-hand internal drive to the left-hand
drive of a Model 236.

COpy ":INTERNAL " TO I:INTERNALtLltl"

240 Data Storage and Retrieval

Copying Files and Volumes
The COpy statement allows you to duplicate individual files or an entire disc volume. Any type
of file may be copied.

COPY of a file duplicates the existing file and places the new file name in the directory. A new
file can be created either on the same disc or on another disc. If you copy a file to the same disc,
the new file name must be different from the existing file name. If the file is of BDAT, BIN or
PROG type, you can also assign a protect code to the new file. If there is not enough room on
the disc for the file to be copied, the system cancels the statement and returns an error.

If the COpy statement specifies two mass storage volumes and no file names, a copy of the entire
source volume is created. The purpose of this COpy option is to duplicate discs or make back-up
copies. Note that you will lose any old information in the directory of the destination volume. A
volume copy does not append to the contents of the destination; when the copy is finished, the
source and destination volumes will be identical. You can copy a larger volume to a smaller
volume, only if the amount of data on the larger volume will fit on the smaller volume. You can
qUickly purge all the files on a volume by copying an empty disc onto a full disc.

Examples
The following statement copies ''Filel'' from the current system mass storage device to a new
file called "File2" on the same mass storage.

COPY "Filel" TO IFile2"

The following statement copies "Filel" from the current system mass storage to the drive at
interface select code 7, primary address 0, unit number 1. Note that both files can be named
"FILEI" if they are on different volumes.

I

COPY "Filel" TO IFilel:HPt700tl"

The following statement copies a file from an HP 82901 drive to the current system mass storage
device. The new file "DATA" is given the protect code "xx."

COPY IFilel:HP82801 t700tO" TO IDATA <xx >"

The following statement copies the entire disc from the right-hand internal drive to the left-hand
drive of a Model 236.

COpy ":INTERNAL " TO I:INTERNALtLltl"

Data Storage and Retrieval 241

Purging Files
You can purge a file from the directory by using the PURGE statement. Purging a file deletes
the directory entry for the file and releases the reserved space in the data area. Purging a file,
therefore, creates two " gaps" on the disc: one in the data area and one in the directory. When
you create a file, the system looks at all the gaps in the data area to see if the newly created file
will fit in any of them.

Directory entries must be in the same order as the files in the data area. The fourth directory
entry, for example, must correspond to the fourth file in the data area. Consequently, if you
PURGE a file , and then create a smaller file , you may lose disc space. The following examples
illustrate this principle.

Suppose that you have three consecutive files on a disc with the following names and sizes.

DIRECTORY DATA AREA ENTRY -FILE A FILE A

-2 FILE B - FILE B

3 FILE C

FILE C
4

5

6

Executing the following statement:

PURGE "FILEB"

creates a I-entry gap in the directory and a 4-sector gap in the data area.

DIRECTORY DATA AREA
ENTRY ...

FILE A FILE A

2

3 FILE C

FILE C
4

5

6

-

-
-
-

} 3 SECTORS

} 4 SECTORS

} 5 SECTORS

Data Storage and Retrieval 241

Purging Files
You can purge a file from the directory by using the PURGE statement. Purging a file deletes
the directory entry for the file and releases the reserved space in the data area. Purging a file,
therefore, creates two " gaps" on the disc: one in the data area and one in the directory. When
you create a file, the system looks at all the gaps in the data area to see if the newly created file
will fit in any of them.

Directory entries must be in the same order as the files in the data area. The fourth directory
entry, for example, must correspond to the fourth file in the data area. Consequently, if you
PURGE a file , and then create a smaller file , you may lose disc space. The following examples
illustrate this principle.

Suppose that you have three consecutive files on a disc with the following names and sizes.

DIRECTORY DATA AREA ENTRY -FILE A FILE A

-2 FILE B - FILE B

3 FILE C

FILE C
4

5

6

Executing the following statement:

PURGE "FILEB"

creates a I-entry gap in the directory and a 4-sector gap in the data area.

DIRECTORY DATA AREA
ENTRY ...

FILE A FILE A

2

3 FILE C

FILE C
4

5

6

-

-
-
-

} 3 SECTORS

} 4 SECTORS

} 5 SECTORS

242 Data Storage and Retrieval

Now, suppose you create a 2-sector file:

CREATE ASCI I "FILED" ,2

The system will place this file in the data-area gap and place the directory entry in the directory
gap.

DIRECTORY DATA AREA
ENTRY --FILE A - FILE A

2 - FILE D FILE D ,..-

3 FILE C

FILE C
4

5

~

6

-""'

You now have a 2-sector gap in the data area but no gaps in the directory. If you create another
file, the system will fill entry 4 in the directory and will reserve space in the data area past
FILEC. The two unused sectors will not be reclaimed unless you PURGE one of the adjacent
files, FILED or FILEC.

Accessing Directories
Disc structure and mass storage directories were briefly described earlier in this chapter. As you
may recall, a directory is merely an index to the files on a mass storage media. The BASIC
language has several features that allow you to obtain information from the directories of mass
storage media. This section presents several techniques that will help you access this informa­
tion.

To get a catalog listing of a directory, you will use the CAT statement. Executing CAT with no
media specifier directs the system to get a catalog of the current system mass storage directory.

CAT

Including a media specifier directs the system to get a catalog of the specified mass storage. For
instance, executing the following statement returns a catalog of the directory of the left drive of a
Model 236.

CAT " :INTERNAL,a,l"

Both of the preceding statements sent the catalog listings to the current system printer (the one
specified in the last PRINTER IS statement; the default system printing device is the CRT).

242 Data Storage and Retrieval

Now, suppose you create a 2-sector file:

CREATE ASCI I "FILED" ,2

The system will place this file in the data-area gap and place the directory entry in the directory
gap.

DIRECTORY DATA AREA
ENTRY --FILE A - FILE A

2 - FILE D FILE D ,..-

3 FILE C

FILE C
4

5

~

6

-""'

You now have a 2-sector gap in the data area but no gaps in the directory. If you create another
file, the system will fill entry 4 in the directory and will reserve space in the data area past
FILEC. The two unused sectors will not be reclaimed unless you PURGE one of the adjacent
files, FILED or FILEC.

Accessing Directories
Disc structure and mass storage directories were briefly described earlier in this chapter. As you
may recall, a directory is merely an index to the files on a mass storage media. The BASIC
language has several features that allow you to obtain information from the directories of mass
storage media. This section presents several techniques that will help you access this informa­
tion.

To get a catalog listing of a directory, you will use the CAT statement. Executing CAT with no
media specifier directs the system to get a catalog of the current system mass storage directory.

CAT

Including a media specifier directs the system to get a catalog of the specified mass storage. For
instance, executing the following statement returns a catalog of the directory of the left drive of a
Model 236.

CAT " :INTERNAL,a,l"

Both of the preceding statements sent the catalog listings to the current system printer (the one
specified in the last PRINTER IS statement; the default system printing device is the CRT).

Data Storage and Retrieval 243

Sending Catalogs to External Printers
The CAT statement normally directs its output to the current PRINTER IS device. The CAT
statement can also direct the catalog to a specified device, as shown in the following examples:

CAT TO #701
CAT TO #External_prtr
CAT TO #Deuice_selector

The parameter following the # is known as a device selector and is further described in Chapter
8, "Using a Printer," and in the Glossary of the BASIC Language Reference. ,

Extended Access of Directories
With MS, the CAT statement has the following additional capabilities:

• additional information about PROG files may be obtained

• the mass storage directory can be sent to a string array

• files to be cataloged may be selected by name or by beginning letter(s) of the file name

• the number of selected file entries may be counted

• the CAT operation may be directed to "skip" a specific number file entries before sending
entries to the destination

• the catalog header may be suppressed

Cataloging Individual PROG Files
Performing CAT operations on an individual PROG file returns additional information about
the file. A catalog of a PROG files yields the following information:

• a list of the binary program(s) contained in the program file and the size of each (in bytes)

• the size of the main program (in bytes).

• a list of contexts (SUB and FN subprograms) and their sizes (in bytes)

The following catalog listing is an example of a CAT performed on an individual PROG file.
Note that this catalog format only requires 45 columns.

NEW PAGER_A
NAME SIZE TYPE

MAIN
FNBar$
FNRolnan$
KilHeys
FNTril~$

FNUpc$
FNLINc$
Table_fo rll1atte r
Strip
AVAILABLE ENTRIES o

82002 BASIC
3880 BASIC

8S8 BASIC
1128 BASIC
lllll BASIC
31111 BASIC
1118 BASIC

8810 BASIC
1280 BASIC

The Al.JA I LABLE ENTR I ES table entry is not currently used.

Data Storage and Retrieval 243

Sending Catalogs to External Printers
The CAT statement normally directs its output to the current PRINTER IS device. The CAT
statement can also direct the catalog to a specified device, as shown in the following examples:

CAT TO #701
CAT TO #External_prtr
CAT TO #Deuice_selector

The parameter following the # is known as a device selector and is further described in Chapter
8, "Using a Printer," and in the Glossary of the BASIC Language Reference. ,

Extended Access of Directories
With MS, the CAT statement has the following additional capabilities:

• additional information about PROG files may be obtained

• the mass storage directory can be sent to a string array

• files to be cataloged may be selected by name or by beginning letter(s) of the file name

• the number of selected file entries may be counted

• the CAT operation may be directed to "skip" a specific number file entries before sending
entries to the destination

• the catalog header may be suppressed

Cataloging Individual PROG Files
Performing CAT operations on an individual PROG file returns additional information about
the file. A catalog of a PROG files yields the following information:

• a list of the binary program(s) contained in the program file and the size of each (in bytes)

• the size of the main program (in bytes).

• a list of contexts (SUB and FN subprograms) and their sizes (in bytes)

The following catalog listing is an example of a CAT performed on an individual PROG file.
Note that this catalog format only requires 45 columns.

NEW PAGER_A
NAME SIZE TYPE

MAIN
FNBar$
FNRolnan$
KilHeys
FNTril~$

FNUpc$
FNLINc$
Table_fo rll1atte r
Strip
AVAILABLE ENTRIES o

82002 BASIC
3880 BASIC

8S8 BASIC
1128 BASIC
lllll BASIC
31111 BASIC
1118 BASIC

8810 BASIC
1280 BASIC

The Al.JA I LABLE ENTR I ES table entry is not currently used.

244 Data Storage and Retrieval

If the program contains a binary or PHYREC program, a warning and the version codes of both the
BASIC system and the binary program are included in the catalog information. PHYREC programs
are not supported with BASIC 3. O. With BASIC 4.0, the PHYREC utility is a CSUB supplied on the
BASIC Utilities disc, and so will not be stored with BASIC programs. The following example shows
the format of the message returned.

Pro g_ph}'
NAME SIZE TYPE

PHYREC 2.0 173a BASIC BINARY
*** WARNING: SYstem level 3. Bin level 2.
MAIN 222 BASIC
AVAILABLE ENTRIES = 0

Cataloging to a String Array
The following example program segment shows an example of directing the catalog of mass
storage file entries to the CRT and then to a string array.

100
110
120
130
lao
150
160
170

PRINT " CAT to CRT."
PRINT "-----------------------------------,,
CAT TO #CRT;COUNT Files_and_headr I Includes 5- l ine header.
PRINT "Number of files=" ;Files_and_headr-5
PRINT

PRINT " CAT to a string array."
PRINT ,,-----------------------------------

lS0 Array_size=Files_and_headr+2 ! Allow for 7-line header.
180 ALLOCATE Catalog$(l:ArraY_size)[SO]
200 CAT TO Catalog$(*)
210 FOR Entry=l TO Array_size
220 PRINT Catalog$(EntrY)
230 NE)<T En t f}'

2aO PRINT "Number of files=";Array_size-7
250 PRINT
260
270 END

244 Data Storage and Retrieval

If the program contains a binary or PHYREC program, a warning and the version codes of both the
BASIC system and the binary program are included in the catalog information. PHYREC programs
are not supported with BASIC 3. O. With BASIC 4.0, the PHYREC utility is a CSUB supplied on the
BASIC Utilities disc, and so will not be stored with BASIC programs. The following example shows
the format of the message returned.

Pro g_ph}'
NAME SIZE TYPE

PHYREC 2.0 173a BASIC BINARY
*** WARNING: SYstem level 3. Bin level 2.
MAIN 222 BASIC
AVAILABLE ENTRIES = 0

Cataloging to a String Array
The following example program segment shows an example of directing the catalog of mass
storage file entries to the CRT and then to a string array.

100
110
120
130
lao
150
160
170

PRINT " CAT to CRT."
PRINT "-----------------------------------,,
CAT TO #CRT;COUNT Files_and_headr I Includes 5- l ine header.
PRINT "Number of files=" ;Files_and_headr-5
PRINT

PRINT " CAT to a string array."
PRINT ,,-----------------------------------

lS0 Array_size=Files_and_headr+2 ! Allow for 7-line header.
180 ALLOCATE Catalog$(l:ArraY_size)[SO]
200 CAT TO Catalog$(*)
210 FOR Entry=l TO Array_size
220 PRINT Catalog$(EntrY)
230 NE)<T En t f}'

2aO PRINT "Number of files=";Array_size-7
250 PRINT
260
270 END

The program produces the following output.

CAT to CRT.
-------------------- - --------------
:INTERNAL
l.IOLUME LABEL: B9826
FILE NAME PRO TYPE REC/FILE
Datal ASCII
Chapl BDAT
Pro 9' 1 PROG
Chap2 BDAT
Pro g2 PROG
Data2 ASCII
Chap3 BDAT
Data3 ASCII
BCD_INTR ASCII
BCD_CONFIG ASCII
BCD_ENTl ASCII
BCD_OUTl ASCII
BCD_ENTBIN ASCII
BCD_ENTFMT ASCII
NUlIlber of f iles= 111

CAT to a string arra y.

:INTERNAL, II
LABEL: B9826
FORMAT: LI F
AVAILABLE SPACE: 892

3
3
2
7
2
9
6
5
3
9
2

2
10

BYTE/R EC
256
256
256
256
256
256
256
256
256
256
256
256
256
256

ADDRESS
16
20
23
26
33
35
115
51
56
59
68
70
71
73

SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEV TYPE

Datal
Chapl
Pro 9 1
Chap2
Pro g2
Data2
Chap3
Data3
BCD_INTR
BCD_CONFIG
BCD_ENTl
BCD_OUTl
BCO_ENTBIN
BCD_ENTFMT
NUlIlber of files= 111

98l<6
98XG
98){6
98){6

98){6

TYPE

ASCII
BDAT
PROG
BDAT
PROG
ASC I I
BDAT
ASCII
ASCII
ASCII
ASCII
ASC I I
ASCII
ASCII

RECORDS LENGTH
======== ========

3 256
3 256
2 256
7 256
2 256
9 256
6 256
5 256
3 256
9 256
2 256

256
2 256

10 256

Data Storage and Retrieval 245

DATE TIME ACC STAT
================

MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW

Including the keyword COUNT followed by a numeric variable returns the total number of file
entries plus header lines to that variable; here, the variable F i 1 e 5 _ and _ he ad r is used. In this
example, a value of 2 is added to this variable to compensate for the 7 -line header which is sent
instead of the usual 5-line header. This new value, stored in A r r a }' _ 5 i z e, is then used to
direct the computer to ALLOCATE just enough space in a string-array variable to hold the
directory listing. The program can then search the directory listing for further information, if
desired.

The program produces the following output.

CAT to CRT.
-------------------- - --------------
:INTERNAL
l.IOLUME LABEL: B9826
FILE NAME PRO TYPE REC/FILE
Datal ASCII
Chapl BDAT
Pro 9' 1 PROG
Chap2 BDAT
Pro g2 PROG
Data2 ASCII
Chap3 BDAT
Data3 ASCII
BCD_INTR ASCII
BCD_CONFIG ASCII
BCD_ENTl ASCII
BCD_OUTl ASCII
BCD_ENTBIN ASCII
BCD_ENTFMT ASCII
NUlIlber of f iles= 111

CAT to a string arra y.

:INTERNAL, II
LABEL: B9826
FORMAT: LI F
AVAILABLE SPACE: 892

3
3
2
7
2
9
6
5
3
9
2

2
10

BYTE/R EC
256
256
256
256
256
256
256
256
256
256
256
256
256
256

ADDRESS
16
20
23
26
33
35
115
51
56
59
68
70
71
73

SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEV TYPE

Datal
Chapl
Pro 9 1
Chap2
Pro g2
Data2
Chap3
Data3
BCD_INTR
BCD_CONFIG
BCD_ENTl
BCD_OUTl
BCO_ENTBIN
BCD_ENTFMT
NUlIlber of files= 111

98l<6
98XG
98){6
98){6

98){6

TYPE

ASCII
BDAT
PROG
BDAT
PROG
ASC I I
BDAT
ASCII
ASCII
ASCII
ASCII
ASC I I
ASCII
ASCII

RECORDS LENGTH
======== ========

3 256
3 256
2 256
7 256
2 256
9 256
6 256
5 256
3 256
9 256
2 256

256
2 256

10 256

Data Storage and Retrieval 245

DATE TIME ACC STAT
================

MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW

Including the keyword COUNT followed by a numeric variable returns the total number of file
entries plus header lines to that variable; here, the variable F i 1 e 5 _ and _ he ad r is used. In this
example, a value of 2 is added to this variable to compensate for the 7 -line header which is sent
instead of the usual 5-line header. This new value, stored in A r r a }' _ 5 i z e, is then used to
direct the computer to ALLOCATE just enough space in a string-array variable to hold the
directory listing. The program can then search the directory listing for further information, if
desired.

246 Data Storage and Retrieval

You may have noticed that the format for catalogs sent to string arrays (the second catalog
listing) is different from catalogs sent to the PRINTER IS device. This catalog format requires
that each array element must be dimensioned to hold at least 80 characters with this type of
CAT operation. Again, the header contains 7 lines, not 5 as with catalogs sent to devices.

If the CAT operation would not have filled the string array, the unused array elements would
have been set to the null string (Le., strings of length 0) . If there are more catalog lines than
string-array elements, the operation stops when the array is filled. No indication of the "over­
flow" is reported; the count returned is equal to the number of array elements.

Suppressing the Catalog Header
To suppress the catalog header that would otherwise be sent automatically to the destination,
use the following syntax:

CATiNO HEADER
CAT TO StrinLarra}'$(*)iNO HEADER
CAT "P ro L2" i NO HEADER

Using NO HEADER suppresses the 5-line or 7 -line heading of each catalog format shown
above, respectively. The catalog listing of a PROG file would be 3 lines shorter. The first line of
each catalog listing contains the first directory entry, the second element contains the second
entry, and so forth.

Cataloging Selected Files
The directory entry of file(s) that begin with certain character(s) can be obtained by using the
secondary keyword SELECT. For this example, assume that the directory contains the follow­
ing entries:

:INTERNAL
1,'DLUME LABEL: B9826
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS
Datal ASCII 3 256 16
Chapl BDAT 3 256 20
Pro 9' 1 PRDG 2 256 23
Chap2 BDAT 7 256 26
Pro 9'2 PRDG 2 256 33
Data2 ASCII 9 256 35
Chap3 BDAT 6 256 lI5
Data3 ASCII 5 256 51
BCD_INTR ASCII 3 256 56
BCD_CDNFIG ASCII 9 256 59
BCD_ENTl ASCII 2 256 68
BCD_DUTl ASCII 256 70
BCD_ENTBIN ASCII 2 256 71
BCD_ENTFMT ASCII 10 256 73

Suppose that you want to catalog only files beginning with the letters "Prog". The following
examples show how this may be accomplished. Notice that this is not the same operation as
getting a catalog of a PROG file.

Be9innin9_chars$="Pr09"
CATiSELECT Be9innin9 _ chars$

CATiSELECT "Pro9" ,COUNT Files_and_headr

246 Data Storage and Retrieval

You may have noticed that the format for catalogs sent to string arrays (the second catalog
listing) is different from catalogs sent to the PRINTER IS device. This catalog format requires
that each array element must be dimensioned to hold at least 80 characters with this type of
CAT operation. Again, the header contains 7 lines, not 5 as with catalogs sent to devices.

If the CAT operation would not have filled the string array, the unused array elements would
have been set to the null string (Le., strings of length 0) . If there are more catalog lines than
string-array elements, the operation stops when the array is filled. No indication of the "over­
flow" is reported; the count returned is equal to the number of array elements.

Suppressing the Catalog Header
To suppress the catalog header that would otherwise be sent automatically to the destination,
use the following syntax:

CATiNO HEADER
CAT TO StrinLarra}'$(*)iNO HEADER
CAT "P ro L2" i NO HEADER

Using NO HEADER suppresses the 5-line or 7 -line heading of each catalog format shown
above, respectively. The catalog listing of a PROG file would be 3 lines shorter. The first line of
each catalog listing contains the first directory entry, the second element contains the second
entry, and so forth.

Cataloging Selected Files
The directory entry of file(s) that begin with certain character(s) can be obtained by using the
secondary keyword SELECT. For this example, assume that the directory contains the follow­
ing entries:

:INTERNAL
1,'DLUME LABEL: B9826
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS
Datal ASCII 3 256 16
Chapl BDAT 3 256 20
Pro 9' 1 PRDG 2 256 23
Chap2 BDAT 7 256 26
Pro 9'2 PRDG 2 256 33
Data2 ASCII 9 256 35
Chap3 BDAT 6 256 lI5
Data3 ASCII 5 256 51
BCD_INTR ASCII 3 256 56
BCD_CDNFIG ASCII 9 256 59
BCD_ENTl ASCII 2 256 68
BCD_DUTl ASCII 256 70
BCD_ENTBIN ASCII 2 256 71
BCD_ENTFMT ASCII 10 256 73

Suppose that you want to catalog only files beginning with the letters "Prog". The following
examples show how this may be accomplished. Notice that this is not the same operation as
getting a catalog of a PROG file.

Be9innin9_chars$="Pr09"
CATiSELECT Be9innin9 _ chars$

CATiSELECT "Pro9" ,COUNT Files_and_headr

Data Storage and Retrieval 247

The directory entries of the three files beginning with the letters "Prog" are sent to the PRIN­
TER IS device. In the second CAT statement above, the variable F i 1 e s _ and _ he ad r is filled
with the number of selected files found on the current default mass storage device (plus the 5
header lines). (Keep in mind that the variable F i 1 e s _ an d _ he a d r must be currently defined in
the current program context.)

The follOWing result would be sent to the system printing device.

: INTERNAL f a
I,IDLUME LABEL : B8826
FILE NAME PRO TY PE REC / FILE BYT E/ REC ADDRES S
P ra g 1 PRDG 2 256 23
Prag2 PRDG 2 256 33
Prag3 PRDG 2 256 533

SELECT may also be used to get the catalog of an individual file entry by selecting the entire file
name, as shown in the following statement:

CATiSE LECT "Chap3"

Getting a Count of Selected Files
It is often desirable to determine the total number of files on a disc, or the number that begin
with a certain character or group of characters. The COUNT option directs the computer to
return the number of selected files in the variable that follows the COUNT keyword.

CAT i COUNT F il es_a n d_headr
CATiSELECT "Data" ,COUNT Selected_files

The first CAT operation returns a count of all files in the directory (plus 5 header lines) , since
not including SELECT defaults to "select all files". The second operation returns a count of the
specifically selected files (plus 5).

Skipping Selected Files
If there are many files that begin with the same characters, it is often useful to be able to skip
some of the directory entries so that the catalog is not as long. This may be especially useful
when using a drive such as an HP 7912, which has the capability of storing more than 10000
files.

The following statement shows an example of skipping file entries before sending selected
entries to the destination.

CAT i SELECT "BCD" , SKIP 5

: INTERNAL, 4
VOLUME LABEL : B8826
FILE NAME PRO TYPE
BCD_ENTFMT ASCII

REC/F I LE BYTE/REC
10 256

ADDRESS
73

The first five "selected" files (that begin with the specified characters) are " skipped" (i.e., not
sent with the rest of the catalog information) .

Data Storage and Retrieval 247

The directory entries of the three files beginning with the letters "Prog" are sent to the PRIN­
TER IS device. In the second CAT statement above, the variable F i 1 e s _ and _ he ad r is filled
with the number of selected files found on the current default mass storage device (plus the 5
header lines). (Keep in mind that the variable F i 1 e s _ an d _ he a d r must be currently defined in
the current program context.)

The follOWing result would be sent to the system printing device.

: INTERNAL f a
I,IDLUME LABEL : B8826
FILE NAME PRO TY PE REC / FILE BYT E/ REC ADDRES S
P ra g 1 PRDG 2 256 23
Prag2 PRDG 2 256 33
Prag3 PRDG 2 256 533

SELECT may also be used to get the catalog of an individual file entry by selecting the entire file
name, as shown in the following statement:

CATiSE LECT "Chap3"

Getting a Count of Selected Files
It is often desirable to determine the total number of files on a disc, or the number that begin
with a certain character or group of characters. The COUNT option directs the computer to
return the number of selected files in the variable that follows the COUNT keyword.

CAT i COUNT F il es_a n d_headr
CATiSELECT "Data" ,COUNT Selected_files

The first CAT operation returns a count of all files in the directory (plus 5 header lines) , since
not including SELECT defaults to "select all files". The second operation returns a count of the
specifically selected files (plus 5).

Skipping Selected Files
If there are many files that begin with the same characters, it is often useful to be able to skip
some of the directory entries so that the catalog is not as long. This may be especially useful
when using a drive such as an HP 7912, which has the capability of storing more than 10000
files.

The following statement shows an example of skipping file entries before sending selected
entries to the destination.

CAT i SELECT "BCD" , SKIP 5

: INTERNAL, 4
VOLUME LABEL : B8826
FILE NAME PRO TYPE
BCD_ENTFMT ASCII

REC/F I LE BYTE/REC
10 256

ADDRESS
73

The first five "selected" files (that begin with the specified characters) are " skipped" (i.e., not
sent with the rest of the catalog information) .

248 Data Storage and Retrieval

Including COUNT in the previous CAT operation (as shown below) returns a count of the
selected files (plus header lines) , not just the catalog lines sent to the destination. Remember
that selected files includes all files skipped, if any. In this case, a value of 11 is returned, not 1 (or
6) as might be expected.

CATjSELECT "BCD",SKIP 5,COUNT Catalo!Llines

Note that if SKIP is included, the count remains the same (as long as at least one file is
cataloged). If the number of files to be skipped equals the number of files selected, COUNT
returns a value of zero.

CATjSELECT "BCD",SKIP G,COUNT Files_and_headr

The following program shows an example of looking at the files in a catalog by viewing a small
"window" of files at one time. The technique is useful for decreasing the amount of memory
required to hold a catalog listing in a string array.

100 ! Declare a small strinf array (7 elements).
110 DIM Array$(1:7)[80]
120
130 ! Send header to the array.
140 CAT TD Array$(*)
150 ! Print header .
160 FOR Eleme n t=1 TO 7
170 PRINT Arra)' $(Element)[1 ,45]
180 NE XT Element
190
200 ! Now fet 7-line "windows" and print files therein.
210 First_file=1 I Befin with first file in director Y.
220 REPEAT I S end file entries to Arra y$ until last file sent.
230 I

240 ! Send files to Array$; SKIP files already printed;
250 ! return index (with COUNT) of last file sent to Arra y$.
260 CAT TO Arra)' $(*) ;SKIP First_file-l ,COUNT Last_file ,NO HEADER
270 DISP "First file=" ; First_file;"; Last file=";Last_file
280 !
290 ! Print file entrie s (no entr Y printed when Last_file=O).
300 FOR Element=1 TO (La s t_file-First_file)+1 I (6 or less)+I.
310 PRINT Arra)' $(Element)[I,45]
320 NEXT Element
33 0
3 40 First_file=Last_file+l! Point to next "window."
350
360 UNTIL Last_file=O ! Until SKIP) = number of files.
370
380 END

It is also important to note the order of options in the CAT statement. This order is required
when several options are used. If the NO HEADER option is used, it must be the last option in
the list, as shown in the following example.

CATjSELECT "BCD",SKIP 5,COUNT Selected_f i les,NO HEADER

248 Data Storage and Retrieval

Including COUNT in the previous CAT operation (as shown below) returns a count of the
selected files (plus header lines) , not just the catalog lines sent to the destination. Remember
that selected files includes all files skipped, if any. In this case, a value of 11 is returned, not 1 (or
6) as might be expected.

CATjSELECT "BCD",SKIP 5,COUNT Catalo!Llines

Note that if SKIP is included, the count remains the same (as long as at least one file is
cataloged). If the number of files to be skipped equals the number of files selected, COUNT
returns a value of zero.

CATjSELECT "BCD",SKIP G,COUNT Files_and_headr

The following program shows an example of looking at the files in a catalog by viewing a small
"window" of files at one time. The technique is useful for decreasing the amount of memory
required to hold a catalog listing in a string array.

100 ! Declare a small strinf array (7 elements).
110 DIM Array$(1:7)[80]
120
130 ! Send header to the array.
140 CAT TD Array$(*)
150 ! Print header .
160 FOR Eleme n t=1 TO 7
170 PRINT Arra)' $(Element)[1 ,45]
180 NE XT Element
190
200 ! Now fet 7-line "windows" and print files therein.
210 First_file=1 I Befin with first file in director Y.
220 REPEAT I S end file entries to Arra y$ until last file sent.
230 I

240 ! Send files to Array$; SKIP files already printed;
250 ! return index (with COUNT) of last file sent to Arra y$.
260 CAT TO Arra)' $(*) ;SKIP First_file-l ,COUNT Last_file ,NO HEADER
270 DISP "First file=" ; First_file;"; Last file=";Last_file
280 !
290 ! Print file entrie s (no entr Y printed when Last_file=O).
300 FOR Element=1 TO (La s t_file-First_file)+1 I (6 or less)+I.
310 PRINT Arra)' $(Element)[I,45]
320 NEXT Element
33 0
3 40 First_file=Last_file+l! Point to next "window."
350
360 UNTIL Last_file=O ! Until SKIP) = number of files.
370
380 END

It is also important to note the order of options in the CAT statement. This order is required
when several options are used. If the NO HEADER option is used, it must be the last option in
the list, as shown in the following example.

CATjSELECT "BCD",SKIP 5,COUNT Selected_f i les,NO HEADER

(

Using a Printer
Chapter

8

Introduction
Sooner or later it needs to be printed. A wide range of printers, supported by BASIC, can be
connected to the Series 200/300 computers. This chapter covers the statements commonly used to
communicate with external printers. The following list names some of the printers that work with
Series 200 computers:

• HP 2225 Thinkjet Printer

• HP 2601 Daisy-Wheel Printer

• HP 2631 Dot Matrix Printer

• HP 2671 Thermal Printer

• HP 2688 Laser Printer

• HP 82906 Dot Matrix Printer

For a complete list of printers currently supported by this BASIC system, see the HP 9000 Series
2001300 Configuration Reference Manual.

Fundamentals
The PRINT statement normally directs text to the screen of the CRT. Text may be re-directed to
an external printer by using the PRINTER IS statement. The default system printer is the
screen of the CRT. The PRINTER IS statement is used to change the system printer.

Before a printer will print the first character, several steps are required to set up the printer.
These steps are fully documented in the appropiate printer installation manual.

After the printer is switched on and the computer and printer have been connected via an
interface cable, there is only one piece of information needed before printing can begin. The
computer needs to know the correct device selector for the printer. This is analogous to
knowing the correct telephone number before making a call.

249

(

Using a Printer
Chapter

8

Introduction
Sooner or later it needs to be printed. A wide range of printers, supported by BASIC, can be
connected to the Series 200/300 computers. This chapter covers the statements commonly used to
communicate with external printers. The following list names some of the printers that work with
Series 200 computers:

• HP 2225 Thinkjet Printer

• HP 2601 Daisy-Wheel Printer

• HP 2631 Dot Matrix Printer

• HP 2671 Thermal Printer

• HP 2688 Laser Printer

• HP 82906 Dot Matrix Printer

For a complete list of printers currently supported by this BASIC system, see the HP 9000 Series
2001300 Configuration Reference Manual.

Fundamentals
The PRINT statement normally directs text to the screen of the CRT. Text may be re-directed to
an external printer by using the PRINTER IS statement. The default system printer is the
screen of the CRT. The PRINTER IS statement is used to change the system printer.

Before a printer will print the first character, several steps are required to set up the printer.
These steps are fully documented in the appropiate printer installation manual.

After the printer is switched on and the computer and printer have been connected via an
interface cable, there is only one piece of information needed before printing can begin. The
computer needs to know the correct device selector for the printer. This is analogous to
knowing the correct telephone number before making a call.

249

250 Using a Printer

Device Selectors
A device selector is a number that uniquely identifies a particular device connected to the
computer. When only one device is allowed on a given interface, it is uniquely identified by the
interface select code. In this case, the device selector is the same as the interface select code.

For example, the internal CRT is the only device at the interface whose select code is 1. To
direct the output of PRINT statements to the CRT, use the following statement.

PRINTER IS 1

This statement defines the screen of the CRT to be the system printer. Until changed, the output
of PRINT statements will appear on the screen of the CRT.

When more than one device can be connected to an interface, such as the internal HP-IB
interface, (interface select code 7) the interface select code no longer uniquely identifies the
printer. Extra information is required. This extra information is the primary address.

Primary Addresses
Each printer has a set of switches, usually located on the back panel, which determine the
primary address of the printer.

The following photographs show the switch locations on various printers. In addition to the
primary address switch segments there are usually segments that control the printers response
to other signals on the HP-IB bus.

8 BIT ASCII 1 LISTEN
SH1AH1T6TE~~~~S!ll&f~0DT0C0 SRQ~ I r ALWAYS

" i: -~=:-::-:' .. -. ~ ~"- I liiiiiil
.r .~~J~ 1 0 • ..• i • •• •••••
~. J
- 7 BIT ASCII AS-A1

CAUTION: REFER SERVICING TO QUALIFIED PERSONNEl.

250 Using a Printer

Device Selectors
A device selector is a number that uniquely identifies a particular device connected to the
computer. When only one device is allowed on a given interface, it is uniquely identified by the
interface select code. In this case, the device selector is the same as the interface select code.

For example, the internal CRT is the only device at the interface whose select code is 1. To
direct the output of PRINT statements to the CRT, use the following statement.

PRINTER IS 1

This statement defines the screen of the CRT to be the system printer. Until changed, the output
of PRINT statements will appear on the screen of the CRT.

When more than one device can be connected to an interface, such as the internal HP-IB
interface, (interface select code 7) the interface select code no longer uniquely identifies the
printer. Extra information is required. This extra information is the primary address.

Primary Addresses
Each printer has a set of switches, usually located on the back panel, which determine the
primary address of the printer.

The following photographs show the switch locations on various printers. In addition to the
primary address switch segments there are usually segments that control the printers response
to other signals on the HP-IB bus.

8 BIT ASCII 1 LISTEN
SH1AH1T6TE~~~~S!ll&f~0DT0C0 SRQ~ I r ALWAYS

" i: -~=:-::-:' .. -. ~ ~"- I liiiiiil
.r .~~J~ 1 0 • ..• i • •• •••••
~. J
- 7 BIT ASCII AS-A1

CAUTION: REFER SERVICING TO QUALIFIED PERSONNEl.

.,:..--.... _ ,
~

-==-:---.>
~ a:=_,
~

Using a Printer 251

The primary address, determined by the switch settings, is combined with the interface select
code to make up the device selector. In the following example the primary address 01 is
appended to the interface select code 7 to produce the device selector 701.

PRINTER IS 701

This statement tells the computer to use a the internal HP-IB interface (select code 7) to
communicate with a printer whose switches are set to the primary address "01". If the printer's
primary address is set to "11", the device selector would be "711".

A device selector can be created mathematically by multiplying the interface select code by 100
and adding the primary address. For example, a printer on the internal HP-IB bus whose
primary address is set to 9 would have the device selector 709 (7 x 100 + 9 = 709).

Switch Settings
Five switch segments, dedicated to setting the primary address, allow thirty-two possible
addresses. In the following decimal-to-binary conversion table, each binary digit corresponds to
one of the switch segments. A ' l' indicates the switch segment is on, while a ' 0' indicates the
switch segment is off.

Decimal Binary Decimal Binary

0 00000 16 10000
1 00001 17 10001
2 00010 18 10010
3 00011 19 10011
4 00100 20 10100
5 00101 21 10101
6 00110 22 10110
7 00111 23 10111
8 01000 24 11000
9 01001 25 11001

10 01010 26 11010
11 01011 27 11011
12 01100 28 11100
13 01101 29 11101
14 01110 30 11110
15 01111 31 11111

A qUick glance at the switch segments lets you confirm the primary address.

.,:..--.... _ ,
~

-==-:---.>
~ a:=_,
~

Using a Printer 251

The primary address, determined by the switch settings, is combined with the interface select
code to make up the device selector. In the following example the primary address 01 is
appended to the interface select code 7 to produce the device selector 701.

PRINTER IS 701

This statement tells the computer to use a the internal HP-IB interface (select code 7) to
communicate with a printer whose switches are set to the primary address "01". If the printer's
primary address is set to "11", the device selector would be "711".

A device selector can be created mathematically by multiplying the interface select code by 100
and adding the primary address. For example, a printer on the internal HP-IB bus whose
primary address is set to 9 would have the device selector 709 (7 x 100 + 9 = 709).

Switch Settings
Five switch segments, dedicated to setting the primary address, allow thirty-two possible
addresses. In the following decimal-to-binary conversion table, each binary digit corresponds to
one of the switch segments. A ' l' indicates the switch segment is on, while a ' 0' indicates the
switch segment is off.

Decimal Binary Decimal Binary

0 00000 16 10000
1 00001 17 10001
2 00010 18 10010
3 00011 19 10011
4 00100 20 10100
5 00101 21 10101
6 00110 22 10110
7 00111 23 10111
8 01000 24 11000
9 01001 25 11001

10 01010 26 11010
11 01011 27 11011
12 01100 28 11100
13 01101 29 11101
14 01110 30 11110
15 01111 31 11111

A qUick glance at the switch segments lets you confirm the primary address.

252 Using a Printer

Using Device Selectors
A device selector is used by several different statements. In each of the following, the numeric
constant is a device selector.

PRINTER IS

PRINT ER IS

PRINTER IS

CAT TO #701

PRINTA LL IS

LIST #701

1

70 1

22

707

Specifies the internal CRT. (default)

Specifies a printer with interface select code 7 and switch selected to
primary address Ol.

Specifies a printer connected through interface select code 22.

Prints a disc directory at 701.

Logs information on a printer whose select code is 7 and whose
switches are set to primary address 07 (binary 00111) .

Lists the program in memory to a HP-IB printer set to primary
address 01.

Most statements allow a device selector to be assigned to a variable. Either INTEGER or REAL
variables may be used.

PR I NTER I S Hal
CAT TO #009

The following three-letter mnemonic functions have been assigned useful values.

Mnemonic
PRT
KBD
CRT

Value
701

2
1

For example, the following statements perform the same action.

PRINTER IS PRT
PRINTER IS 701

The mnemonic may be used anywhere the numeric device selector can be used.

Another method may be used to identify the printer within a program. An lIO path name may
be assigned to the printer; the printer is subsequently referenced by the lIO path name. This
technique is fully explained in the BASIC Interfacing Techniques manual.

252 Using a Printer

Using Device Selectors
A device selector is used by several different statements. In each of the following, the numeric
constant is a device selector.

PRINTER IS

PRINT ER IS

PRINTER IS

CAT TO #701

PRINTA LL IS

LIST #701

1

70 1

22

707

Specifies the internal CRT. (default)

Specifies a printer with interface select code 7 and switch selected to
primary address Ol.

Specifies a printer connected through interface select code 22.

Prints a disc directory at 701.

Logs information on a printer whose select code is 7 and whose
switches are set to primary address 07 (binary 00111) .

Lists the program in memory to a HP-IB printer set to primary
address 01.

Most statements allow a device selector to be assigned to a variable. Either INTEGER or REAL
variables may be used.

PR I NTER I S Hal
CAT TO #009

The following three-letter mnemonic functions have been assigned useful values.

Mnemonic
PRT
KBD
CRT

Value
701

2
1

For example, the following statements perform the same action.

PRINTER IS PRT
PRINTER IS 701

The mnemonic may be used anywhere the numeric device selector can be used.

Another method may be used to identify the printer within a program. An lIO path name may
be assigned to the printer; the printer is subsequently referenced by the lIO path name. This
technique is fully explained in the BASIC Interfacing Techniques manual.

Using a Printer 253

Using the External Printer
Most ASCII characters are printed on an external printer just as they appear on the screen of the
CRT. Depending on your printer, there will be exceptions. Several printers will also support an
alternate character set: either a foriegn character set, a graphics character set, or an enhanced
character set. If your printer supports an alternate character set, it usually is accessed by sending
a special command to the printer.

Control Characters
In addition to a "printable" character set, printers usually respond to control characters. These
non-printing characters generally produce a response from the printer. The following table
shows some of the control characters and their effect.

Printer's Response

ring printer' s bell
backspace one character
horizontal tab
line-feed
form-feed
carriage-return

Control Character

ctrl-G
ctrl-H
ctrl-I
ctrl-J
ctrl-L
ctrl-M

ASCII Value

7
8
9

10
12
13

One way to send control characters to the printer is the CHR$ function. Execute the following.

PRINTER IS 701
PRINT CHR$(12)

The printer responds with a formfeed. To resume printing on the internal CRT, execute the
following.

PRINTER IS 1
PRINT "Bad, to the CRT."

Other control characters may be valid for your printer. For example, sending a control-N to the HP
82905A printer changes the character size (font) of subsequent text.

10 PRINTER IS 701
20 Bi9'$=CHR$(14)
30 PRINT BIT$jIlDouble-Width Te xt"
40 PRINTER IS CRT
50 END

Refer to the appropriate printer manual for a complete listing of control characters and their
effect on your printer. Some control characters will only affect the current line of text.

Using a Printer 253

Using the External Printer
Most ASCII characters are printed on an external printer just as they appear on the screen of the
CRT. Depending on your printer, there will be exceptions. Several printers will also support an
alternate character set: either a foriegn character set, a graphics character set, or an enhanced
character set. If your printer supports an alternate character set, it usually is accessed by sending
a special command to the printer.

Control Characters
In addition to a "printable" character set, printers usually respond to control characters. These
non-printing characters generally produce a response from the printer. The following table
shows some of the control characters and their effect.

Printer's Response

ring printer' s bell
backspace one character
horizontal tab
line-feed
form-feed
carriage-return

Control Character

ctrl-G
ctrl-H
ctrl-I
ctrl-J
ctrl-L
ctrl-M

ASCII Value

7
8
9

10
12
13

One way to send control characters to the printer is the CHR$ function. Execute the following.

PRINTER IS 701
PRINT CHR$(12)

The printer responds with a formfeed. To resume printing on the internal CRT, execute the
following.

PRINTER IS 1
PRINT "Bad, to the CRT."

Other control characters may be valid for your printer. For example, sending a control-N to the HP
82905A printer changes the character size (font) of subsequent text.

10 PRINTER IS 701
20 Bi9'$=CHR$(14)
30 PRINT BIT$jIlDouble-Width Te xt"
40 PRINTER IS CRT
50 END

Refer to the appropriate printer manual for a complete listing of control characters and their
effect on your printer. Some control characters will only affect the current line of text.

254 Using a Printer

Escape-Code Sequences
Similar in use to control characters, escape-code sequences allow additional control over most
printers. These sequences consist of the escape character, CHR$(27), followed by one or more
characters.

For example, the HP 2631 printer is capable of printing characters in several different fonts. To
print extended characters on the HP 2631 an escape code sequence is sent to the printer before the
actual text to be printed is sent.

10 PRINTER IS 701
20 Esc$=CHR$(27)
30 Big$="E>:f, lS"
40 Regular$="E>:f,OS"
50 PRINT Esc$iBig$;"Extended-Font Text"
GO PRINT Esc$iRegular$i"Bacf, to norITlal."
70 PRINTER IS 1
80 END

Many escape code sequences can be used by more than one printer. For instance, the HP 2671
and the HP 2631 share the same escape code sequence for underlining text.

10 PRINTER IS PRT
20 Under$=CHR$(27)E>:"E>:dD"
30 NorlTlal$=CHR$(27)E>: "E>:d@"
40 PRINT "This is not underlined"
50 PRINT Under$E>:"This is underlined"E>:NorlTlal$
GO PRINT "Done."
70 PRINTER IS CRT
80 END

Since each printer may respond differently to control characters and escape code sequences,
check the manual that came with your printer for details concerning their use.

254 Using a Printer

Escape-Code Sequences
Similar in use to control characters, escape-code sequences allow additional control over most
printers. These sequences consist of the escape character, CHR$(27), followed by one or more
characters.

For example, the HP 2631 printer is capable of printing characters in several different fonts. To
print extended characters on the HP 2631 an escape code sequence is sent to the printer before the
actual text to be printed is sent.

10 PRINTER IS 701
20 Esc$=CHR$(27)
30 Big$="E>:f, lS"
40 Regular$="E>:f,OS"
50 PRINT Esc$iBig$;"Extended-Font Text"
GO PRINT Esc$iRegular$i"Bacf, to norITlal."
70 PRINTER IS 1
80 END

Many escape code sequences can be used by more than one printer. For instance, the HP 2671
and the HP 2631 share the same escape code sequence for underlining text.

10 PRINTER IS PRT
20 Under$=CHR$(27)E>:"E>:dD"
30 NorlTlal$=CHR$(27)E>: "E>:d@"
40 PRINT "This is not underlined"
50 PRINT Under$E>:"This is underlined"E>:NorlTlal$
GO PRINT "Done."
70 PRINTER IS CRT
80 END

Since each printer may respond differently to control characters and escape code sequences,
check the manual that came with your printer for details concerning their use.

Using a Printer 255

Formatted Printing
For many applications the PRINT statement provides adequate formatting. The simplest
method of print formatting is by specifying a comma or semicolon between printed items.

When the comma is used to seperate items the printer will print the items on field boundries.
Fields start in column one and occur every ten columns (columns 1,11,21,31 , ...). Using the
values: A= 1.1 B= -22.2 C =3E+5 D =4.4E +8

PRINT A,B,C,D

Produces:

123a5G7890123a5G7890123a5G7890123a5G789
1 • 1

,..,,.., ,..,
-':"'::'+L 300000 5.1E+8

Note the form of numbers in a normal PRINT statement. A positive number has a leading and a
trailing space printed with the number. A negative number uses the leading space position for
the "-" sign. This is why the positive numbers in the previous example appear to print one
column to the right of the field boundries. The next example shows how this form prevents
numeric values from running together.

PRINT A;B;C;D,E

123a5G789012345G7890123a5G7890123
1.1 -22.2 300000 5.1E+8

Using the semicolon as the separater caused the numbers to be printed as closely together as
the "compact" form allows. The compact form always uses one leading space (except when the
number is negative) and one trailing space.

The comma and semicolon are often all that is needed to print a simple table. By using the
ability of the PRINT statement to print the entire contents of of a array, the comma or semicolon
can be used to format the output.

If each array element contained the value of its subscript, the statement:

PRINT Array(*);

Produces:

o 1 2 3 a 5 G 7 8 9 10 11 12 13 la •••

Another method of aligning items is to use the tabbing ability of the PRINT statement.

PRINT TAB(25);-1.ala

123a5G7890123a5G7890123a5G7890123
-1.a1a

While PRINT TAB works with an external printer, PRINT TABXY will not. PRINT TABXY may
be used to specify both the horizontal and vertical position when printing to the internal CRT.

Using a Printer 255

Formatted Printing
For many applications the PRINT statement provides adequate formatting. The simplest
method of print formatting is by specifying a comma or semicolon between printed items.

When the comma is used to seperate items the printer will print the items on field boundries.
Fields start in column one and occur every ten columns (columns 1,11,21,31 , ...). Using the
values: A= 1.1 B= -22.2 C =3E+5 D =4.4E +8

PRINT A,B,C,D

Produces:

123a5G7890123a5G7890123a5G7890123a5G789
1 • 1

,..,,.., ,..,
-':"'::'+L 300000 5.1E+8

Note the form of numbers in a normal PRINT statement. A positive number has a leading and a
trailing space printed with the number. A negative number uses the leading space position for
the "-" sign. This is why the positive numbers in the previous example appear to print one
column to the right of the field boundries. The next example shows how this form prevents
numeric values from running together.

PRINT A;B;C;D,E

123a5G789012345G7890123a5G7890123
1.1 -22.2 300000 5.1E+8

Using the semicolon as the separater caused the numbers to be printed as closely together as
the "compact" form allows. The compact form always uses one leading space (except when the
number is negative) and one trailing space.

The comma and semicolon are often all that is needed to print a simple table. By using the
ability of the PRINT statement to print the entire contents of of a array, the comma or semicolon
can be used to format the output.

If each array element contained the value of its subscript, the statement:

PRINT Array(*);

Produces:

o 1 2 3 a 5 G 7 8 9 10 11 12 13 la •••

Another method of aligning items is to use the tabbing ability of the PRINT statement.

PRINT TAB(25);-1.ala

123a5G7890123a5G7890123a5G7890123
-1.a1a

While PRINT TAB works with an external printer, PRINT TABXY will not. PRINT TABXY may
be used to specify both the horizontal and vertical position when printing to the internal CRT.

256 Using a Printer

A more powerful formatting technique employs the ability of the PRINT statement to allow an
image to specify the format.

Using Images

Just as a mold is used for a casting, an image can be used to format printing. An image specifies
how the printed item should appear. The computer then attempts to print the item according to
the image.

One way to specify an image is to include it in the PRINT statement. The image specifier is
enclosed within quotes and consists of one or more field specifiers. A semicolon then separates
the image from the items to be printed.

PRINT USING "D.DDD";PI

This statement prints the value of pi (3.141592659 ...) rounded to three digits to the right of the
decimal point.

3.142

For each character "0" within the image, one digit is to be printed. Whenever the number
contains more non-zero digits to the right of the decimal than provided by the field specifier, the
last digit is rounded. If more precision is desired, more characters can be used within the image.

PRINT USING "D.l0D" ;PI

3.1415828538

Instead of typing ten "0" specifiers, one for each digit, a shorter notation is to specify a repeat
factor before each field specifier character. The image "000000" is the same as the image
"60" .

The image specifier can be included in the PRINT statement or on it's own line. When the
specifier is on a different line, the PRINT statement accesses the image by either the line
number or the line label.

100 ForfTlat: IMAGE "8Z.DD"
110 PRINT USING ForMatjA,B,C
120 PRINT USING 100;A,B,C

Both PRINT statements use the image in line 100.

256 Using a Printer

A more powerful formatting technique employs the ability of the PRINT statement to allow an
image to specify the format.

Using Images

Just as a mold is used for a casting, an image can be used to format printing. An image specifies
how the printed item should appear. The computer then attempts to print the item according to
the image.

One way to specify an image is to include it in the PRINT statement. The image specifier is
enclosed within quotes and consists of one or more field specifiers. A semicolon then separates
the image from the items to be printed.

PRINT USING "D.DDD";PI

This statement prints the value of pi (3.141592659 ...) rounded to three digits to the right of the
decimal point.

3.142

For each character "0" within the image, one digit is to be printed. Whenever the number
contains more non-zero digits to the right of the decimal than provided by the field specifier, the
last digit is rounded. If more precision is desired, more characters can be used within the image.

PRINT USING "D.l0D" ;PI

3.1415828538

Instead of typing ten "0" specifiers, one for each digit, a shorter notation is to specify a repeat
factor before each field specifier character. The image "000000" is the same as the image
"60" .

The image specifier can be included in the PRINT statement or on it's own line. When the
specifier is on a different line, the PRINT statement accesses the image by either the line
number or the line label.

100 ForfTlat: IMAGE "8Z.DD"
110 PRINT USING ForMatjA,B,C
120 PRINT USING 100;A,B,C

Both PRINT statements use the image in line 100.

Using a Printer 257

Numeric Image Specifiers
Several characters may be used within an image to specify the appearance of the printed value.

Image
Specifier

D

Z
E

K
S
M

H

R

*

Purpose

Replace this specifier with one digit of the number to be printed. If the digit is a leading zero,
print a space. if the value is negative, the position may be used by the negative sign.

Same as "D" except that leading zeros are printed.

Prints two digit of the exponent after printing the sequence "E + ". This specifier is equal to
"ESZZ" . See the Language Reference for more details.

Print the entire number without leading or trailing spaces.

Print the sign of the number: either a "+" or " - ".

Print the sign if the number is negative; if positive, print a space.

Print the decimal point.

Similar to K, except the number is printed using the European number format (comma
radix). (Requires 10)

Print the comma (European radix) (Requires 10)

Like Z, except that asterisks are printed instead of leading zeros. (Requires 10)

To better understand the operation of the image specifiers examine the following examples and
results.

Statement Output

PRINT USING "K" i33.888 33.888
PRINT USING "DD.DDD"i33.888 33.888
PRINT USING "DDD.DD"i33.888 33.87
PRINT USING "ZZZ.DD" ;33.888 033.87

PRINT USING "ZZZ" i .444 000
PRINT USING IIZZZ";.555 001

PRINT USING "SD.3DE"i8.023E+23 +8.023E+23
PRINT USING "S3D.3DE"i8.023E+23 +802.300E+21

PRINT USING "S5D.3d e"i8.023E+23 +80230.000E+18

PRINT USING "H" i3121. 55 3121 t55

PRINT USING "DDRDD"i18 . 85 18 t85

PRINT USING "***" i. 555 **1

To specify multiple fields within the image, the field specifiers are separated by commas.

Statement Output

PRINT USING "K t5D t5D" i 100 t200 t300 100 200 300

PRINT USING "DO tZZ tOO" i 1 t2 t3 102 3

Using a Printer 257

Numeric Image Specifiers
Several characters may be used within an image to specify the appearance of the printed value.

Image
Specifier

D

Z
E

K
S
M

H

R

*

Purpose

Replace this specifier with one digit of the number to be printed. If the digit is a leading zero,
print a space. if the value is negative, the position may be used by the negative sign.

Same as "D" except that leading zeros are printed.

Prints two digit of the exponent after printing the sequence "E + ". This specifier is equal to
"ESZZ" . See the Language Reference for more details.

Print the entire number without leading or trailing spaces.

Print the sign of the number: either a "+" or " - ".

Print the sign if the number is negative; if positive, print a space.

Print the decimal point.

Similar to K, except the number is printed using the European number format (comma
radix). (Requires 10)

Print the comma (European radix) (Requires 10)

Like Z, except that asterisks are printed instead of leading zeros. (Requires 10)

To better understand the operation of the image specifiers examine the following examples and
results.

Statement Output

PRINT USING "K" i33.888 33.888
PRINT USING "DD.DDD"i33.888 33.888
PRINT USING "DDD.DD"i33.888 33.87
PRINT USING "ZZZ.DD" ;33.888 033.87

PRINT USING "ZZZ" i .444 000
PRINT USING IIZZZ";.555 001

PRINT USING "SD.3DE"i8.023E+23 +8.023E+23
PRINT USING "S3D.3DE"i8.023E+23 +802.300E+21

PRINT USING "S5D.3d e"i8.023E+23 +80230.000E+18

PRINT USING "H" i3121. 55 3121 t55

PRINT USING "DDRDD"i18 . 85 18 t85

PRINT USING "***" i. 555 **1

To specify multiple fields within the image, the field specifiers are separated by commas.

Statement Output

PRINT USING "K t5D t5D" i 100 t200 t300 100 200 300

PRINT USING "DO tZZ tOO" i 1 t2 t3 102 3

258 Using a Printer

If the items to be printed can use the same image, the image need be listed only once. The
image will then be re-used for the subsequent items.

PRINT USING "5D.DD"i3.88,5.85,27.50,13'8.85

123456788012345678801234567880123
3.88 5.85 27.50 138.85

The image is re-used for each value. An error will result if the number cannot be accurately
printed by the field specifier.

String Image Specifiers
Similar to the numeric field image characters, several characters are provided for the formatting
of strings.

Image
Specifier Purpose

A Print one character of the string. If all characters of the string have been printed, print a
trailing blank.

K Print the entire string without leading or trailing blanks

X Print a space.

"literal" Print the characters between the quotes.

The following exampl:~ show various ways to use string specifiers.

PRINT USING "5 }(,10A,2}(,10A"j"Torll" ,"SfTlith"

12345678801234567880123456788
Tom Smith

PRINT USING "5}(,""John"",2}(,10A"j"Srllith"

123456788012345678801 2 3456788
John SrTlith

PRINT USING """PART NUMBER"" ,2x ,10d" ;80001234

12345678801234567880123456788
PART NUMBER 80001234

258 Using a Printer

If the items to be printed can use the same image, the image need be listed only once. The
image will then be re-used for the subsequent items.

PRINT USING "5D.DD"i3.88,5.85,27.50,13'8.85

123456788012345678801234567880123
3.88 5.85 27.50 138.85

The image is re-used for each value. An error will result if the number cannot be accurately
printed by the field specifier.

String Image Specifiers
Similar to the numeric field image characters, several characters are provided for the formatting
of strings.

Image
Specifier Purpose

A Print one character of the string. If all characters of the string have been printed, print a
trailing blank.

K Print the entire string without leading or trailing blanks

X Print a space.

"literal" Print the characters between the quotes.

The following exampl:~ show various ways to use string specifiers.

PRINT USING "5 }(,10A,2}(,10A"j"Torll" ,"SfTlith"

12345678801234567880123456788
Tom Smith

PRINT USING "5}(,""John"",2}(,10A"j"Srllith"

123456788012345678801 2 3456788
John SrTlith

PRINT USING """PART NUMBER"" ,2x ,10d" ;80001234

12345678801234567880123456788
PART NUMBER 80001234

Using a Printer 259

Additional Image Specifiers
The following image specifiers serve a special purpose.

Image
Specifier Purpose

B Print the corresponding ASCII character.
This is similar to the CHR$ function.

Suppress automatic end-of-line sequence.

l Send the current end-of-line (EOl) sequence; with ro, see the PRINTER rs statement in the
BASIC Language Reference manual for details on re-defining the EOl sequence.

Send a carriage-return and a linefeed.

@ Send a formfeed.

+ Send a carriage-return as the EOl sequence.
(Requires rO)

For example:

Send a linefeed as the EOl sequence.
(Requires rO)

PR I NT US I NG "@,#" outputs a formfeed.

PRINT USING "D ,)-(, 3A ," " OR NOT"" ,)-(,5 ,)-(,5 ,5" ; 2 ,"5E " ,5 0 ,GG , G8

Using a Printer 259

Additional Image Specifiers
The following image specifiers serve a special purpose.

Image
Specifier Purpose

B Print the corresponding ASCII character.
This is similar to the CHR$ function.

Suppress automatic end-of-line sequence.

l Send the current end-of-line (EOl) sequence; with ro, see the PRINTER rs statement in the
BASIC Language Reference manual for details on re-defining the EOl sequence.

Send a carriage-return and a linefeed.

@ Send a formfeed.

+ Send a carriage-return as the EOl sequence.
(Requires rO)

For example:

Send a linefeed as the EOl sequence.
(Requires rO)

PR I NT US I NG "@,#" outputs a formfeed.

PRINT USING "D ,)-(, 3A ," " OR NOT"" ,)-(,5 ,)-(,5 ,5" ; 2 ,"5E " ,5 0 ,GG , G8

260 Using a Printer

Special Considerations
If nothing prints, check if the printer is ON LINE. When the printer if OFF LINE the computer
and printer can communicate but no printing will occur.

Sending text to a non-existent printer will cause the computer to wait indefinitely for the printer
to respond. ON TIMEOUT may be used within a program to test for the printer. To clear the
error press (elR I/O), check the interface cable, and switch settings then try again.

Since the printer's device selector may change, keep track of the locations in the program
where a device selector is used. If most of the program's output is sent to a printer, you may
wish to use the PRINTER IS statement at the beginning of the program and then send messages
to the CRT screen by using the OUTPUT statement.

PRINTER IS 701
PRINT "Text to the printer."
OUTPUT 1;"Screen Message"
PRINT "Bad, to the printer."

If the program must use the PRINTER IS statement frequently, assign the device selector to a
variable; then if the device selector changes, only one program line will need to be changed.

260 Using a Printer

Special Considerations
If nothing prints, check if the printer is ON LINE. When the printer if OFF LINE the computer
and printer can communicate but no printing will occur.

Sending text to a non-existent printer will cause the computer to wait indefinitely for the printer
to respond. ON TIMEOUT may be used within a program to test for the printer. To clear the
error press (elR I/O), check the interface cable, and switch settings then try again.

Since the printer's device selector may change, keep track of the locations in the program
where a device selector is used. If most of the program's output is sent to a printer, you may
wish to use the PRINTER IS statement at the beginning of the program and then send messages
to the CRT screen by using the OUTPUT statement.

PRINTER IS 701
PRINT "Text to the printer."
OUTPUT 1;"Screen Message"
PRINT "Bad, to the printer."

If the program must use the PRINTER IS statement frequently, assign the device selector to a
variable; then if the device selector changes, only one program line will need to be changed.

The Real-Time Clock
Chapter

9

Introduction
All Series 200 and 300 computers have a real-time clock that you can set and read to monitor the
time of day and date. In addition, all Series 300 computers (and optionally some Series 200
computers) have a battery-backed ("non-volatile") clock that keeps time even when power is
removed from the computer. This chapter describes using the clock and related functions and
statements.

Language Option Required
Many of the statements described in this chapter require the CLOCK binary. Check the BASIC
Language Reference for specific requirements of each statement.

Clock Range and Accuracy
The range of Series 200 volatile and non-volatile clocks is March 1, 1900 through August 4, 2079.
The Series 300 volatile and non-volatile clocks both have a lower limit of March 1, 1900. However,
the upper limit of the volatile clock is August 4, 2079, while the of the upper limit non-volatile clock
is February 29, 2000.

The volatile real-time clocks provide an accuracy of ± 5 seconds per day. The battery-backed
"powerfail" (98270) clock maintains time to within ± 2.5 seconds per day. The Series 300
battery-backed clock maintains time to within ± 5 seconds per day.

Initial Clock Value
When you initially boot the BASIC system, the real-time clock is set to one of three values:

• With Series 300 computers, the clock value is read from the non-volatile clock and placed into
the volatile clock.

• With Series 200 computers which have the 98270 Powerfail Option installed, the volatile clock
time is set to the value of the non-volatile clock. If there is no non-volatile clock, the volatile
clock is set to 12:00:00 (midnight) March 1, 1900.

• With computers on the Shared Resource Management (SRM) system that don 't have a non­
volatile clock, the clock value is taken from the SRM system. (This occurs when the SRM and
DCOMM binaries are loaded.)

261

The Real-Time Clock
Chapter

9

Introduction
All Series 200 and 300 computers have a real-time clock that you can set and read to monitor the
time of day and date. In addition, all Series 300 computers (and optionally some Series 200
computers) have a battery-backed ("non-volatile") clock that keeps time even when power is
removed from the computer. This chapter describes using the clock and related functions and
statements.

Language Option Required
Many of the statements described in this chapter require the CLOCK binary. Check the BASIC
Language Reference for specific requirements of each statement.

Clock Range and Accuracy
The range of Series 200 volatile and non-volatile clocks is March 1, 1900 through August 4, 2079.
The Series 300 volatile and non-volatile clocks both have a lower limit of March 1, 1900. However,
the upper limit of the volatile clock is August 4, 2079, while the of the upper limit non-volatile clock
is February 29, 2000.

The volatile real-time clocks provide an accuracy of ± 5 seconds per day. The battery-backed
"powerfail" (98270) clock maintains time to within ± 2.5 seconds per day. The Series 300
battery-backed clock maintains time to within ± 5 seconds per day.

Initial Clock Value
When you initially boot the BASIC system, the real-time clock is set to one of three values:

• With Series 300 computers, the clock value is read from the non-volatile clock and placed into
the volatile clock.

• With Series 200 computers which have the 98270 Powerfail Option installed, the volatile clock
time is set to the value of the non-volatile clock. If there is no non-volatile clock, the volatile
clock is set to 12:00:00 (midnight) March 1, 1900.

• With computers on the Shared Resource Management (SRM) system that don 't have a non­
volatile clock, the clock value is taken from the SRM system. (This occurs when the SRM and
DCOMM binaries are loaded.)

261

262 The Real-Time Clock

Reading the Clock
Internally, the clock maintains the year, month, day, hour, minute, and second as a single real
number. This number is scaled to an arbitrary "dawn of time" thus allowing it to also represent the
Julian date. The current value of the clock is returned by the TIMEDATE function.

PRINT TIMEDATE

While the value returned contains all the information necessary to uniquely specify the date and
time to the nearest one-hundredth of a second, it needs to be "unpacked" to provide understand­
able information.

Determining Date and Time of Day
The following functions are available to extract the date and time of day from TIMEDATE.

The DATE$ function extracts the date from the value of TIMEDA TE.

PRINT DATE$(TIMEDATE)

Prints: 1 Mar 1800

This is the default power-up date for machines without a battery-backed real-time clock.

The TIME$ function returns the time of day.

PRINT TIME$(TIMEDATE)

Prints: 00: 05: 2 7

262 The Real-Time Clock

Reading the Clock
Internally, the clock maintains the year, month, day, hour, minute, and second as a single real
number. This number is scaled to an arbitrary "dawn of time" thus allowing it to also represent the
Julian date. The current value of the clock is returned by the TIMEDATE function.

PRINT TIMEDATE

While the value returned contains all the information necessary to uniquely specify the date and
time to the nearest one-hundredth of a second, it needs to be "unpacked" to provide understand­
able information.

Determining Date and Time of Day
The following functions are available to extract the date and time of day from TIMEDATE.

The DATE$ function extracts the date from the value of TIMEDA TE.

PRINT DATE$(TIMEDATE)

Prints: 1 Mar 1800

This is the default power-up date for machines without a battery-backed real-time clock.

The TIME$ function returns the time of day.

PRINT TIME$(TIMEDATE)

Prints: 00: 05: 2 7

The Real-Time Clock 263

Setting the Clock
The SET TIMEDA TE statement is used to set the clock

SET TIMEDATE DATE("l OCT 1882") + TIME ("8:37 : 30")

The time of day can be changed without affecting the date by the SET TIME statement.

SET TIME TIME("8 : 55")

Note that an error is reported if you try to set the clock to a value outside the range (stated on
the preceding page) .

Clock Time Format
To minimize the space required to store the date and time, and yet insure a unique value for each
point in time, both time and date are combined as a single real number. This value is the Julian date
multiplied by the number of seconds in a day. By recalling that there are 86400 seconds in a day,
the date and time of day can be extracted from TIMEDATE by the following simple alogrithms.

T I MEDATE MOD 86400 returns the time of day, and

TIMED ATE D I l.J 86400 returns the Julian date.

The time of day is expressed in seconds past midnight and is easily divided into hours, minutes,
and seconds. The Julian date requires a bit more processing to extract the month, day, and year
but this method insures a unique value for each day over the entire range of the clock (1 Mar
1900 through 4 Aug 2079) .See the diagrams on the next page.

The Real-Time Clock 263

Setting the Clock
The SET TIMEDA TE statement is used to set the clock

SET TIMEDATE DATE("l OCT 1882") + TIME ("8:37 : 30")

The time of day can be changed without affecting the date by the SET TIME statement.

SET TIME TIME("8 : 55")

Note that an error is reported if you try to set the clock to a value outside the range (stated on
the preceding page) .

Clock Time Format
To minimize the space required to store the date and time, and yet insure a unique value for each
point in time, both time and date are combined as a single real number. This value is the Julian date
multiplied by the number of seconds in a day. By recalling that there are 86400 seconds in a day,
the date and time of day can be extracted from TIMEDATE by the following simple alogrithms.

T I MEDATE MOD 86400 returns the time of day, and

TIMED ATE D I l.J 86400 returns the Julian date.

The time of day is expressed in seconds past midnight and is easily divided into hours, minutes,
and seconds. The Julian date requires a bit more processing to extract the month, day, and year
but this method insures a unique value for each day over the entire range of the clock (1 Mar
1900 through 4 Aug 2079) .See the diagrams on the next page.

264 The Real-Time Clock

Clock Time

Year Clock Value Hours Seconds

1900 2.086578144E+11 1 3600

1910 2.089733472E+11 2 7200

1920 2.092888800E+11 3 10800

1930 2.096044992E+11 4 14400

1940 2.099200320E+11 5 18000

1950 2.102356512E+11 6 21600

1960 2 . 105511840E+11 7 25200

1970 2.108668032E+11 8 28800

1980 2. 111823360E+11 9 32400

1990 2. 114979552E+11 10 36000

2000 2. 118134880E+11 11 39600

2010 2. 121291072E+11 12 43200

2020 2. 124446400E+11 13 46800

2030 2. 127602592E+11 14 50400

2040 2. 130757920E+11 15 54000

2050 2.133914112E+11 16 57600

2060 2. 137069440E+11 17 61200

2070 2. 140225632E+11 18 64800

2080 2. 143380960E+11 19 68400

20 72000

21 75600

22 79200

23 82800

24 86400

264 The Real-Time Clock

Clock Time

Year Clock Value Hours Seconds

1900 2.086578144E+11 1 3600

1910 2.089733472E+11 2 7200

1920 2.092888800E+11 3 10800

1930 2.096044992E+11 4 14400

1940 2.099200320E+11 5 18000

1950 2.102356512E+11 6 21600

1960 2 . 105511840E+11 7 25200

1970 2.108668032E+11 8 28800

1980 2. 111823360E+11 9 32400

1990 2. 114979552E+11 10 36000

2000 2. 118134880E+11 11 39600

2010 2. 121291072E+11 12 43200

2020 2. 124446400E+11 13 46800

2030 2. 127602592E+11 14 50400

2040 2. 130757920E+11 15 54000

2050 2.133914112E+11 16 57600

2060 2. 137069440E+11 17 61200

2070 2. 140225632E+11 18 64800

2080 2. 143380960E+11 19 68400

20 72000

21 75600

22 79200

23 82800

24 86400

The Real-Time Clock 265

Setting the Time
The time of day is changed by SET TIME X, where X is the number of seconds past midnight. The
value of X must be in the range: 0 through 86399.99 seconds. The TIME function will convert
twenty-four hour formatted time (HH:MM:SS) into the value needed to set the clock.

The TIME function converts an ASCII string representing a time of day, in twenty-four hour
format, into the number of seconds past midnight. For example:

SET TIME TIME(115:30:10")

Is equivalent to:

SET TIME 55810

Either of these statements will set the time of day without changing the date. Use the SET
TIMEDA TE statement to change the date.

To display the new time, the TIME$ function formats the clock's value (TIMEDATE) into hours,
minutes, and seconds.

PRINT TIME$(TIMEDATE)

Prints: 1 5 : 30 : 1 G

Even though TIMEDA TE returns a value containing both time of day and the Julian date,
TIME$ performs an internal modulo 86400 on the value passed to the function and will always
return a string in the range: 00: 00 : 00 thru 23: 58: 58.

The following program contains the routines to set and display the time of day. The routines are
written as user-defined functions that may be appended to a program. Once appended to a
program, the routines duplicate the TIME and TIME$ functions available with CLOCK. The format­
ted time can then be displayed by the following statement.

PRINT FNTime$(TIMEDATE)

Prints: 1 5 : 3 1 : 05

The Real-Time Clock 265

Setting the Time
The time of day is changed by SET TIME X, where X is the number of seconds past midnight. The
value of X must be in the range: 0 through 86399.99 seconds. The TIME function will convert
twenty-four hour formatted time (HH:MM:SS) into the value needed to set the clock.

The TIME function converts an ASCII string representing a time of day, in twenty-four hour
format, into the number of seconds past midnight. For example:

SET TIME TIME(115:30:10")

Is equivalent to:

SET TIME 55810

Either of these statements will set the time of day without changing the date. Use the SET
TIMEDA TE statement to change the date.

To display the new time, the TIME$ function formats the clock's value (TIMEDATE) into hours,
minutes, and seconds.

PRINT TIME$(TIMEDATE)

Prints: 1 5 : 30 : 1 G

Even though TIMEDA TE returns a value containing both time of day and the Julian date,
TIME$ performs an internal modulo 86400 on the value passed to the function and will always
return a string in the range: 00: 00 : 00 thru 23: 58: 58.

The following program contains the routines to set and display the time of day. The routines are
written as user-defined functions that may be appended to a program. Once appended to a
program, the routines duplicate the TIME and TIME$ functions available with CLOCK. The format­
ted time can then be displayed by the following statement.

PRINT FNTime$(TIMEDATE)

Prints: 1 5 : 3 1 : 05

266 The Real-Time Clock

Given the clock's value, the FNTime$ function returns the time of day in 24 hour format
(HHMM:SS). The FNTime function converts the time of day to seconds and is used to set the
clock.

10 Show_tiMe:DISP FNTiMe$ITIMEDATE)
20 GDTD Show_tiMe
30 END
40
50 While the pro.raM is runnin •• type:
80 ! SET TIME FNTIMEI"II:5:30")
70 ! then press <EXECUTE> to show the new tiMe.
80 !

80 !***
100
110 DEF FNTillle$INo'A') ! Gil)en 'SECDNDS' Return 'hh:MM:ss'
120
130 Now=INTINow) MOD 88400
140 H=Now oIV 3800
150 M=Now MOD 3800 DIV 80
180 S=Now MOD 80
170 OUTPUT T$ USING "#,ZZ.K";Ht":".Mt":".S
180 RETURN T$
180 FNEND
200
210 DEF FNTiMeIT$) ! Given 'hh:MM:ss' Return 'SECONDS'
220
230 ON ERROR GoTo Err
240 ENTER T$;HtM.S
250 RETURN 13800*H+80*M+S) MOD 88400
280 Err:oFF ERROR
270 RETURN TIMEDATE MOD 88400
280 FNEND

After entering the program, follow the instructions at the beginning of the program to verify
correct operation. Store this program in a file named "FUNTIME". The functions can be
extracted from this program and appended to other programs by the LOADSUB statement.

Note that the FNTime function requires hours, minutes, and seconds, while the TIME function
only requires hours and minutes.

266 The Real-Time Clock

Given the clock's value, the FNTime$ function returns the time of day in 24 hour format
(HHMM:SS). The FNTime function converts the time of day to seconds and is used to set the
clock.

10 Show_tiMe:DISP FNTiMe$ITIMEDATE)
20 GDTD Show_tiMe
30 END
40
50 While the pro.raM is runnin •• type:
80 ! SET TIME FNTIMEI"II:5:30")
70 ! then press <EXECUTE> to show the new tiMe.
80 !

80 !***
100
110 DEF FNTillle$INo'A') ! Gil)en 'SECDNDS' Return 'hh:MM:ss'
120
130 Now=INTINow) MOD 88400
140 H=Now oIV 3800
150 M=Now MOD 3800 DIV 80
180 S=Now MOD 80
170 OUTPUT T$ USING "#,ZZ.K";Ht":".Mt":".S
180 RETURN T$
180 FNEND
200
210 DEF FNTiMeIT$) ! Given 'hh:MM:ss' Return 'SECONDS'
220
230 ON ERROR GoTo Err
240 ENTER T$;HtM.S
250 RETURN 13800*H+80*M+S) MOD 88400
280 Err:oFF ERROR
270 RETURN TIMEDATE MOD 88400
280 FNEND

After entering the program, follow the instructions at the beginning of the program to verify
correct operation. Store this program in a file named "FUNTIME". The functions can be
extracted from this program and appended to other programs by the LOADSUB statement.

Note that the FNTime function requires hours, minutes, and seconds, while the TIME function
only requires hours and minutes.

(

The Real-Time Clock 267

Setting the Date
The date is changed by SET TIMEDA TE X, where X is the Julian date multiplied by the number of
seconds in a day (86400) . The DATE function converts a formatted date (DO MMM YVYY) into the
value needed to set the clock. Due to the wide range of values allowed by the DATE function,
negative years can be specified, but not when using the function to set the clock.

The following statement will set the clock to the proper date.

SET TIMEDATE DATE("l June 1884")

When programming without CLOCK, the user-defined function FNDate can be used.

SET TIMEDATE FNDate("l June 1884")

Both of these statements are equivalent to the following statement.

SET TIMEDATE 2.11321G882E+11

The DATE and FNDate functions convert the accompanying string (or string expression) into the
numeric value needed to set the clock. To read the clock, the DA TE$ and FNDate$ functions
forma-t the clock's value as the day, month, and year. For example, the following line will print the
date.

PRINT DATE$(TIMEDATE)

Prints: 1 J U 1"1 1 884

Programs that need to run without can use the following user-defined functions appended to the
end of the program. These functions simulate the DATE and DA TE$ keywords available in
CLOCK. The algorithm is valid over the entire range of the clock.

Note the following functions are restricted to values the clock will accept, the DATE and DA TE$
functions available with CLOCK allow a much wider range of values (including negative years).

10 ShoIAI_date:
20
30
40

DISP FNDate$(TIMEDATE)
GOTO Sh OIAI_d ate
END

50 ! While the pro.ram is runnin •• type:
60 I SET TIMEDATE FNDATE ("l JAN 82") <EXECUTE>
70
80 !**
90
100 DEF FNDate$(Seconds) I Given 'SECONDS' Return 'dd mmm vvvv'
110
120 DATA JAN.FEB.MAR.APR.MAY.JUN.JUL.AUG.SEP.OCT.NOU.DEC
130 DIM Month$ (1:12)[3l
140 READ Month$(*)
150
160 Julian=Seconds DIU 86400-1721119
170 Year=(4*Julian-l) DIU 146097
180 Julian=(4*Julian-l) MOD 146097
190 Da y =Julian DIU 4
200
210
220
230

Julian=(4*Da y+3) DIU 1461
Day=(4*Da v +3) MOD 1461
Dav=(Dav+4) DIU 4
Month=(5*Dav-3) DIU 153

240 Da y =(5*Dav-3) MOD 153
Month

(

The Real-Time Clock 267

Setting the Date
The date is changed by SET TIMEDA TE X, where X is the Julian date multiplied by the number of
seconds in a day (86400) . The DATE function converts a formatted date (DO MMM YVYY) into the
value needed to set the clock. Due to the wide range of values allowed by the DATE function,
negative years can be specified, but not when using the function to set the clock.

The following statement will set the clock to the proper date.

SET TIMEDATE DATE("l June 1884")

When programming without CLOCK, the user-defined function FNDate can be used.

SET TIMEDATE FNDate("l June 1884")

Both of these statements are equivalent to the following statement.

SET TIMEDATE 2.11321G882E+11

The DATE and FNDate functions convert the accompanying string (or string expression) into the
numeric value needed to set the clock. To read the clock, the DA TE$ and FNDate$ functions
forma-t the clock's value as the day, month, and year. For example, the following line will print the
date.

PRINT DATE$(TIMEDATE)

Prints: 1 J U 1"1 1 884

Programs that need to run without can use the following user-defined functions appended to the
end of the program. These functions simulate the DATE and DA TE$ keywords available in
CLOCK. The algorithm is valid over the entire range of the clock.

Note the following functions are restricted to values the clock will accept, the DATE and DA TE$
functions available with CLOCK allow a much wider range of values (including negative years).

10 ShoIAI_date:
20
30
40

DISP FNDate$(TIMEDATE)
GOTO Sh OIAI_d ate
END

50 ! While the pro.ram is runnin •• type:
60 I SET TIMEDATE FNDATE ("l JAN 82") <EXECUTE>
70
80 !**
90
100 DEF FNDate$(Seconds) I Given 'SECONDS' Return 'dd mmm vvvv'
110
120 DATA JAN.FEB.MAR.APR.MAY.JUN.JUL.AUG.SEP.OCT.NOU.DEC
130 DIM Month$ (1:12)[3l
140 READ Month$(*)
150
160 Julian=Seconds DIU 86400-1721119
170 Year=(4*Julian-l) DIU 146097
180 Julian=(4*Julian-l) MOD 146097
190 Da y =Julian DIU 4
200
210
220
230

Julian=(4*Da y+3) DIU 1461
Day=(4*Da v +3) MOD 1461
Dav=(Dav+4) DIU 4
Month=(5*Dav-3) DIU 153

240 Da y =(5*Dav-3) MOD 153
Month

268 The Real-Time Clock

250
260
270
280
290

Day=(Day+5) DIV 5
Year=100*Year+Julian
IF Month<10 THEN

Month=Month+3
ELSE

300 Month=Month-9
310 Year=Year+l
320 END IF

! Da}'
Year

330 OUTPUT 0$ USING "#,ZZ,}(,3A,){,aZ";Day,Month$(Month),Year
3aO RETURN 0$
350 FNEND
360
370 DEF FNDate(DMy$) ! Given 'dd MMM yyyy' Return 'SECONDS'
380
390 DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,DCT,NOV,DEC
aoo DIM Month$(1:12)[3J
410 READ Month$(*)
a20
a30 ON ERROR GOTO Err
aao I$=Dfll}'$B,"
450 ENTER 1$ USING "DD,aA,5D";Day,M$,Year
a60 IF Year <100 THEN Year=Year+1900
a70 FOR 1=1 TO 12
480 IF POS(M$,Month$(I» THEN Month=I
490 NDn I
500 IF Month=O THEN Err
510 IF Month >2 THEN
520 Month=Mont~-3
530 ELSE
5aO Month=Month+9
550 Year=Year-1
560 END IF
570 Century=Year DIV 100
580 ReMainder=Year MOD 100
590 Julian=la6097*Centur y OIV 4+1a61*ReMainder DIV a+(153*Month+2) DIV 5+Day
+1721119
600 Julian=Julian*86aOO
610 IF Julian <2.08662912E+l1 DR Julian)=2.14325222aE+ll THEN Err
620 RETURN Julian! Return Julian date in SECONDS
630 Err:OFF ERROR ! ERROR in input.
640 RETURN TIMEDATE ! Return current date.
650 FNEND

Store the program in a file named "FUNDA TE" . Later the functions can be appended to other
programs by the LOADSUB statement.

The functions FNDate$ and FNDate format the date as "DO MMM YYYY", where DO is the
day of the month, MMM is the first three letters of the month, and YYYY is the year. The
function FNDate will accept the last two digits of the year. See line 460. Note that the FNDate
function requires two digits for the day, while the DATE function does not.

Different formats require only slight modification. By changing the following lines, the date is
formatted as "MM/DDNYYY".

330 OUTPUT 0$ USING "#,2D,A,2D , A,2D"iMonth;"/";Da ~'i"/" i Year

450 ENTER 1$ USING "# ,ZZ ,K" iMonth ;Da~' iYear

European date format is obtained by swapping the month and day in the above statemems.
When changing the format, be sure to switch both functions.

If the all numeric format is chosen, delete the three lines in each function that load the array
with the month mnemonics.

268 The Real-Time Clock

250
260
270
280
290

Day=(Day+5) DIV 5
Year=100*Year+Julian
IF Month<10 THEN

Month=Month+3
ELSE

300 Month=Month-9
310 Year=Year+l
320 END IF

! Da}'
Year

330 OUTPUT 0$ USING "#,ZZ,}(,3A,){,aZ";Day,Month$(Month),Year
3aO RETURN 0$
350 FNEND
360
370 DEF FNDate(DMy$) ! Given 'dd MMM yyyy' Return 'SECONDS'
380
390 DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,DCT,NOV,DEC
aoo DIM Month$(1:12)[3J
410 READ Month$(*)
a20
a30 ON ERROR GOTO Err
aao I$=Dfll}'$B,"
450 ENTER 1$ USING "DD,aA,5D";Day,M$,Year
a60 IF Year <100 THEN Year=Year+1900
a70 FOR 1=1 TO 12
480 IF POS(M$,Month$(I» THEN Month=I
490 NDn I
500 IF Month=O THEN Err
510 IF Month >2 THEN
520 Month=Mont~-3
530 ELSE
5aO Month=Month+9
550 Year=Year-1
560 END IF
570 Century=Year DIV 100
580 ReMainder=Year MOD 100
590 Julian=la6097*Centur y OIV 4+1a61*ReMainder DIV a+(153*Month+2) DIV 5+Day
+1721119
600 Julian=Julian*86aOO
610 IF Julian <2.08662912E+l1 DR Julian)=2.14325222aE+ll THEN Err
620 RETURN Julian! Return Julian date in SECONDS
630 Err:OFF ERROR ! ERROR in input.
640 RETURN TIMEDATE ! Return current date.
650 FNEND

Store the program in a file named "FUNDA TE" . Later the functions can be appended to other
programs by the LOADSUB statement.

The functions FNDate$ and FNDate format the date as "DO MMM YYYY", where DO is the
day of the month, MMM is the first three letters of the month, and YYYY is the year. The
function FNDate will accept the last two digits of the year. See line 460. Note that the FNDate
function requires two digits for the day, while the DATE function does not.

Different formats require only slight modification. By changing the following lines, the date is
formatted as "MM/DDNYYY".

330 OUTPUT 0$ USING "#,2D,A,2D , A,2D"iMonth;"/";Da ~'i"/" i Year

450 ENTER 1$ USING "# ,ZZ ,K" iMonth ;Da~' iYear

European date format is obtained by swapping the month and day in the above statemems.
When changing the format, be sure to switch both functions.

If the all numeric format is chosen, delete the three lines in each function that load the array
with the month mnemonics.

The Real-Time Clock 269

Using the Routines
The following statements summarize setting and displaying the clock.

SET TIMEDATE FNDate("12 DEC 1881") + FNTi frle("13 : 44:15")

SET TIME FNTifrle ("8:30:00")

PRINT FNTime$(TIMEDATE)

DISP FNDate$(TIMEDATE)

It is important to note that SET TIM E D ATE expects a date and time while the DATE function
and the user-defined function FNDate return only a date. This effectively sets the clock to
midnight of the date specified.

To keep the functions short, minimal parameter checking is performed. Additional checking
may be incorporated within the functions or within the calling context. If FNDate or FNTime
cannot correctly decode the input, the current value of the clock is returned.

The date and time functions can be used with the following program shell to provide a "friend­
ly" interface to the clock.

10 I PROGRAM SHELL FOR SETTING TIME AND DATE.
20
30 REQUIRES THE TIME AND DATE FUNCTIDNS .
40
50 DIM Da y$(0 : 6) [9]
60 DATA Monda y ,Tuesda)' ,Wednesda)' ,Thursda y , Frida)' , Satl.lrda Y ,Sunda)'
70 READ Da y$ (*)
80
90 ON ERROR GOTO Nofun Test if functions
100 Dmy$=FNDate$(TIMEDATE) have been loaded
110 Hms$=FNTime$(TIMEDATE)
120 OFF ERROR
130 Main: ! Get NEW date
140 GOSU5 Clear_screen
150 F$=CHR$(255)&CHR$(72)
160
170 PRINT TA5){Y(I.14);"Enter t he date, and press CONTINUE."
180 OUTPUT 2 USING "#,IIA , 2A";Dm y$,F$
190
20 0
210

INPUT D!,n' $! WAIT for INPUT

220 ENTER Dm)' $ USING "2D,4A,5D";D,M$,Y
230 GOSU5 Clear_screen
240
250 PRINT TA5 ~{ Y (1 .14) ;"Enter the time of da y and press CONTINUE "
260 OUTPUT 2 USING "# .11A ,2A" ;Hms$,F$
270 INPUT Hms$
280 ENTER D!,n' $ USING "2D , 4A , 5D";D , M$,Y
290 !
300 SET TIMEDATE FNDate(Dmy$)+FNTime(Hms$)
310
320 GOSU5 Clear_screen
330 W= (TIMEDATE DIU 86400) MOD 7 ! Da y of weeK
340 PRINT TA5 ~{ Y (1.1);"The clod, has been set to:"
350 PRINT TA5){ Y(I , 3);Da y$(W) ; " " ; D!,\)'$;" ";FNTi!,\e$(TIMEDATE)
360 GOTO Ql.li t

The Real-Time Clock 269

Using the Routines
The following statements summarize setting and displaying the clock.

SET TIMEDATE FNDate("12 DEC 1881") + FNTi frle("13 : 44:15")

SET TIME FNTifrle ("8:30:00")

PRINT FNTime$(TIMEDATE)

DISP FNDate$(TIMEDATE)

It is important to note that SET TIM E D ATE expects a date and time while the DATE function
and the user-defined function FNDate return only a date. This effectively sets the clock to
midnight of the date specified.

To keep the functions short, minimal parameter checking is performed. Additional checking
may be incorporated within the functions or within the calling context. If FNDate or FNTime
cannot correctly decode the input, the current value of the clock is returned.

The date and time functions can be used with the following program shell to provide a "friend­
ly" interface to the clock.

10 I PROGRAM SHELL FOR SETTING TIME AND DATE.
20
30 REQUIRES THE TIME AND DATE FUNCTIDNS .
40
50 DIM Da y$(0 : 6) [9]
60 DATA Monda y ,Tuesda)' ,Wednesda)' ,Thursda y , Frida)' , Satl.lrda Y ,Sunda)'
70 READ Da y$ (*)
80
90 ON ERROR GOTO Nofun Test if functions
100 Dmy$=FNDate$(TIMEDATE) have been loaded
110 Hms$=FNTime$(TIMEDATE)
120 OFF ERROR
130 Main: ! Get NEW date
140 GOSU5 Clear_screen
150 F$=CHR$(255)&CHR$(72)
160
170 PRINT TA5){Y(I.14);"Enter t he date, and press CONTINUE."
180 OUTPUT 2 USING "#,IIA , 2A";Dm y$,F$
190
20 0
210

INPUT D!,n' $! WAIT for INPUT

220 ENTER Dm)' $ USING "2D,4A,5D";D,M$,Y
230 GOSU5 Clear_screen
240
250 PRINT TA5 ~{ Y (1 .14) ;"Enter the time of da y and press CONTINUE "
260 OUTPUT 2 USING "# .11A ,2A" ;Hms$,F$
270 INPUT Hms$
280 ENTER D!,n' $ USING "2D , 4A , 5D";D , M$,Y
290 !
300 SET TIMEDATE FNDate(Dmy$)+FNTime(Hms$)
310
320 GOSU5 Clear_screen
330 W= (TIMEDATE DIU 86400) MOD 7 ! Da y of weeK
340 PRINT TA5 ~{ Y (1.1);"The clod, has been set to:"
350 PRINT TA5){ Y(I , 3);Da y$(W) ; " " ; D!,\)'$;" ";FNTi!,\e$(TIMEDATE)
360 GOTO Ql.li t

270 The Real-Time Clock

370
380 ************ SUBROUTINES ************
380 !
400 Clear_screen:OUTPUT 2 USING "#.B";255.75
410 RETURN
420 Nofun:PRINT "The TIME & DATE FUNCTIONS Must be appended."
430 PRINT "Ivia LOADSUBI before prograM will worK."
440 Quit:END
450
4GO ************* FUNCTIONS **************
470
480 ! append tiMe and date functions here

The program tests to see if the functions have been loaded by trying to use them. If they are not
loaded the program ends with an error message. With CLOCK, this program can still be used.
Replace the calls to the user-defined functions with the appropriate keywords. The error trapping
can then be deleted.

To append the functions, execute the following statements while the demonstration program is
in memory.

LOADSUB ALL FROM "FUNDATE"

LOADSUB ALL FROM II FUNTI ME II

Examine the program to be sure the functions have been loaded.

The program will prompt for the date and time, then set the clock accordingly. A program such
as this may be used as the system start-up program for applications requiring the date or time.

Day of the Week
An advantage of Julian dates is the simplicity of finding the day of the week .
TI MEDATE D I l,J 88400 MOD 7 returns a number which represents the day of the week.
Monday is represented by zero (0), and the numbering continues through the week to Sunday
which is represented by six (6). See the previous program for an example of using this routine.

Days Between Two Dates
The number of days between two dates is easily calculated as the following program demons­
trates.

10 ! Days between two dates
20 INPUT "ENTER THE FIRST DATE 100 MMM '{'{'{'{I" .DU
30 INPUT "ENTER THE SECOND DATE IDD MMM '('{'{'{I" ,D2$
40 Days=IDATEID2$I-DATEID1$11 DIU 8G400
50 DIS P Day s ; " d a)' s bet 'AI e en' " ; D 1 $;'" and "'; D 2 $; " , "
GO END

270 The Real-Time Clock

370
380 ************ SUBROUTINES ************
380 !
400 Clear_screen:OUTPUT 2 USING "#.B";255.75
410 RETURN
420 Nofun:PRINT "The TIME & DATE FUNCTIONS Must be appended."
430 PRINT "Ivia LOADSUBI before prograM will worK."
440 Quit:END
450
4GO ************* FUNCTIONS **************
470
480 ! append tiMe and date functions here

The program tests to see if the functions have been loaded by trying to use them. If they are not
loaded the program ends with an error message. With CLOCK, this program can still be used.
Replace the calls to the user-defined functions with the appropriate keywords. The error trapping
can then be deleted.

To append the functions, execute the following statements while the demonstration program is
in memory.

LOADSUB ALL FROM "FUNDATE"

LOADSUB ALL FROM II FUNTI ME II

Examine the program to be sure the functions have been loaded.

The program will prompt for the date and time, then set the clock accordingly. A program such
as this may be used as the system start-up program for applications requiring the date or time.

Day of the Week
An advantage of Julian dates is the simplicity of finding the day of the week .
TI MEDATE D I l,J 88400 MOD 7 returns a number which represents the day of the week.
Monday is represented by zero (0), and the numbering continues through the week to Sunday
which is represented by six (6). See the previous program for an example of using this routine.

Days Between Two Dates
The number of days between two dates is easily calculated as the following program demons­
trates.

10 ! Days between two dates
20 INPUT "ENTER THE FIRST DATE 100 MMM '{'{'{'{I" .DU
30 INPUT "ENTER THE SECOND DATE IDD MMM '('{'{'{I" ,D2$
40 Days=IDATEID2$I-DATEID1$11 DIU 8G400
50 DIS P Day s ; " d a)' s bet 'AI e en' " ; D 1 $;'" and "'; D 2 $; " , "
GO END

(

Interval Timing
Timing a single event of short duration is quite simple.

10 TO=TIMEDATE
20 FDR J=l TO 5555
30
ao
50
60

NE)<T J
Tl=TIMEDATE

! Start

! Finish

70 PRINT "It took";oRoUND<Tl-TO,3);"seconds"
80 END

The Real-Time Clock 271

Programs can and should be written so that they do not change the setting of the clock. A short
program, which simulates a stopwatch, allows interval timing without changing the clock.

10 ! Pro!1rarll: STOPWATCH
20 I Inte rl)al tirnin!1 ",ithout chan!1in!1 the clocK
30
ao
50
60

ON
ON
ON
ON

70 !

KEY
KEY
KEY
KEY

5 LABEL "
6 LABEL "
7 LABEL "
8 LABEL "

80 Reset:PRINT CHR$(12)
90 H=O
100
110
120

M=O
s=o

START " GoTo
STOP " GoTo
RESET " GoTo

LAP " GoSUB

130 Hold:oISP TAB(9);H;":";M;":";S
lao GoTO Hold
150
160 Lap:PRINT H;":";M;":";S
170 RETURN
180
190 Start:Z=3600*H+60*M+S-TIMEDATE
200 Loop:T=ITIMEoATE+Z) MOD 86aOO
210 T=INTIT*1(0)/l00
220 H=T DIU 3600
230 M=T MOD 3600 DIU 60
2aO S=T MOO 60
250 DISP TAB(9);H;":";M;":";S
260 GoTo Loop
270 END

Start
Hold
Reset

Lap

! fo rrll-feed
! Set all

to
z e r 0 •

I Wait til
f,eypress

! Print lap

! Elapsed-

I .01 sec.
! Hours

Minutes
! Seconds
! Sho',' tirlle
! Do again

(

Interval Timing
Timing a single event of short duration is quite simple.

10 TO=TIMEDATE
20 FDR J=l TO 5555
30
ao
50
60

NE)<T J
Tl=TIMEDATE

! Start

! Finish

70 PRINT "It took";oRoUND<Tl-TO,3);"seconds"
80 END

The Real-Time Clock 271

Programs can and should be written so that they do not change the setting of the clock. A short
program, which simulates a stopwatch, allows interval timing without changing the clock.

10 ! Pro!1rarll: STOPWATCH
20 I Inte rl)al tirnin!1 ",ithout chan!1in!1 the clocK
30
ao
50
60

ON
ON
ON
ON

70 !

KEY
KEY
KEY
KEY

5 LABEL "
6 LABEL "
7 LABEL "
8 LABEL "

80 Reset:PRINT CHR$(12)
90 H=O
100
110
120

M=O
s=o

START " GoTo
STOP " GoTo
RESET " GoTo

LAP " GoSUB

130 Hold:oISP TAB(9);H;":";M;":";S
lao GoTO Hold
150
160 Lap:PRINT H;":";M;":";S
170 RETURN
180
190 Start:Z=3600*H+60*M+S-TIMEDATE
200 Loop:T=ITIMEoATE+Z) MOD 86aOO
210 T=INTIT*1(0)/l00
220 H=T DIU 3600
230 M=T MOD 3600 DIU 60
2aO S=T MOO 60
250 DISP TAB(9);H;":";M;":";S
260 GoTo Loop
270 END

Start
Hold
Reset

Lap

! fo rrll-feed
! Set all

to
z e r 0 •

I Wait til
f,eypress

! Print lap

! Elapsed-

I .01 sec.
! Hours

Minutes
! Seconds
! Sho',' tirlle
! Do again

272 The Real-Time Clock

Branching on Clock Events
Several additional branching statements, available with CLOCK, allow end-of-statement branches
to be triggered according to the real-time clock's value.

• ON TI ME enables a branch to be taken when the clock reaches a specified time of day.

• ON DELAY enables a branch to be taken after a specified number of seconds has elapsed.

• ON CYCLE enables a recurring branch to be taken with each passage of a specified
number of seconds.

The specified time can range from 0.01 thru 167772.15 seconds for the ON CYCLE and ON
DELAY statements and 0 thru 86399.99 seconds for ON TIME. The value specified with ON
TIME indicates the time of day (in seconds past midnight) for the branch to occur.

Each of these statements has a corresponding statement to cancel the branch (OFF TIME, OFF
DELAY, and OFF CYCLE). A statement is also canceled by executing another ON TIME, ON
DELAY, or ON CYCLE statement.

All of the statements use the internal real-time clock. Care should be taken to avoid writing
programs that could change the clock's setting during execution. Since only one resource is
dedicated to each statement, certain restrictions apply to the use of these statements.

Cycles and Delays
Both the ON CYCLE and ON DELAY statements enable a branch to be taken as soon as the
specified number of seconds has elapsed. ON CYCLE remains in effect, re-enabling a branch
with each passage of time. For example:

10 ON CYCLE 1 GoSUB Fiue ! Print 5 randoM nUMbers every second.
20 ON DELAY 6 GoTo Quit After 6 seconds quit.
30
40 T: DISP TIME$(TIMEDATE) Sho~1 the t if TIe •
50 GO TO T
60
70 Fiue:FoR 1=1 TO 5
80 PRINT RND;
90 NEXT I
100 PRINT
110 RETURN
120
130 Quit:END

The program will print five random numbers every second for six seconds and then stop.

Only one ON CYCLE and one ON DELAY statement can be active in a program context.
Executing a second ON CYCLE or ON DELAY statement in the same program context deacti­
vates the first ON CYCLE or ON DELAY statement. If a branch is missed, due to priority
restrictions or execution of a subprogram, the event is logged and the branch will be taken
when the restriction is removed or the original context is restored. If an active ON CYCLE or
ON DELAY statement gets canceled in an alternate context (subprogram) the branch is re­
stored when execution returns to the defining context. (See Branching Restrictions for more
information about this).

272 The Real-Time Clock

Branching on Clock Events
Several additional branching statements, available with CLOCK, allow end-of-statement branches
to be triggered according to the real-time clock's value.

• ON TI ME enables a branch to be taken when the clock reaches a specified time of day.

• ON DELAY enables a branch to be taken after a specified number of seconds has elapsed.

• ON CYCLE enables a recurring branch to be taken with each passage of a specified
number of seconds.

The specified time can range from 0.01 thru 167772.15 seconds for the ON CYCLE and ON
DELAY statements and 0 thru 86399.99 seconds for ON TIME. The value specified with ON
TIME indicates the time of day (in seconds past midnight) for the branch to occur.

Each of these statements has a corresponding statement to cancel the branch (OFF TIME, OFF
DELAY, and OFF CYCLE). A statement is also canceled by executing another ON TIME, ON
DELAY, or ON CYCLE statement.

All of the statements use the internal real-time clock. Care should be taken to avoid writing
programs that could change the clock's setting during execution. Since only one resource is
dedicated to each statement, certain restrictions apply to the use of these statements.

Cycles and Delays
Both the ON CYCLE and ON DELAY statements enable a branch to be taken as soon as the
specified number of seconds has elapsed. ON CYCLE remains in effect, re-enabling a branch
with each passage of time. For example:

10 ON CYCLE 1 GoSUB Fiue ! Print 5 randoM nUMbers every second.
20 ON DELAY 6 GoTo Quit After 6 seconds quit.
30
40 T: DISP TIME$(TIMEDATE) Sho~1 the t if TIe •
50 GO TO T
60
70 Fiue:FoR 1=1 TO 5
80 PRINT RND;
90 NEXT I
100 PRINT
110 RETURN
120
130 Quit:END

The program will print five random numbers every second for six seconds and then stop.

Only one ON CYCLE and one ON DELAY statement can be active in a program context.
Executing a second ON CYCLE or ON DELAY statement in the same program context deacti­
vates the first ON CYCLE or ON DELAY statement. If a branch is missed, due to priority
restrictions or execution of a subprogram, the event is logged and the branch will be taken
when the restriction is removed or the original context is restored. If an active ON CYCLE or
ON DELAY statement gets canceled in an alternate context (subprogram) the branch is re­
stored when execution returns to the defining context. (See Branching Restrictions for more
information about this).

The Real-Time Clock 273

Time of Day
The ON TIME statement allows you to define and enable a branch to be taken when the clock
reaches a specified time of day, where time of day is expressed as seconds past midnight. Using
the TIME function simplifies setting an ON TIME statement by allowing a formatted time of day
to be used. For example:

ON TIME TIME("11:30") GOTO Lunch

Typically, the ON TIME statement is used to cause a branch at a specified time of day. By
adding an offset to the current clock value, the ON TIME statement can be used as an interval
timer. In the following example, both ON DELAY and ON TIME are used as interval timers.

10 ON DELAY 5 GOSU5 Ta Keoff
20 ON TIME (TIMEDATE+I0 1 MOD 86aOO GOSU5 Touchdown
30 PRINT "STARTING ••• ".TIME$(TIMEDATE)
ao ClocK:D I SP TIME$(TIMEDATE)
50 GOTO Cloc K
60
70 TaKeoff:PRINT "TA KEOFF at ".TIME$(TIMEDATE)
80 RETURN
90 Touchdol.llnPRINT "TOUCHDOWN at ".TIME$ITIMEDATE I
100 RETURN
110 END

dela)' 5 seconds
dela)' 10 seconds

The starting time is printed when the program is executed. Five seconds later the first sub­
routine is executed. Ten seconds after the program starts, the second subroutine is executed.

Only one ON TIME statement can be active in a program context. If a branch is missed, due to
priority restrictions or execution of a subprogram, the event is logged and the branch will be
taken when the restriction is removed or the original context is restored. If an active ON TIME
statement gets canceled in an alternate context (subprogram) the branch is restored when
execution returns to the defining context. (See Branching Restrictions for more information
about this) .

Due to the "match an exact time" nature of the ON TIME statement, if the specified time occurs
when the statement is temporarily canceled (by an OFF TIME in an alternate context) , no
branch will be taken when the defining context is restored.

Priority Restrictions
A priority can be assigned to the branch defined by ON CYCLE, ON DELAY, and ON TIME.
For example:

ON CYCLE Seconds t Priority GOTO Label

The Real-Time Clock 273

Time of Day
The ON TIME statement allows you to define and enable a branch to be taken when the clock
reaches a specified time of day, where time of day is expressed as seconds past midnight. Using
the TIME function simplifies setting an ON TIME statement by allowing a formatted time of day
to be used. For example:

ON TIME TIME("11:30") GOTO Lunch

Typically, the ON TIME statement is used to cause a branch at a specified time of day. By
adding an offset to the current clock value, the ON TIME statement can be used as an interval
timer. In the following example, both ON DELAY and ON TIME are used as interval timers.

10 ON DELAY 5 GOSU5 Ta Keoff
20 ON TIME (TIMEDATE+I0 1 MOD 86aOO GOSU5 Touchdown
30 PRINT "STARTING ••• ".TIME$(TIMEDATE)
ao ClocK:D I SP TIME$(TIMEDATE)
50 GOTO Cloc K
60
70 TaKeoff:PRINT "TA KEOFF at ".TIME$(TIMEDATE)
80 RETURN
90 Touchdol.llnPRINT "TOUCHDOWN at ".TIME$ITIMEDATE I
100 RETURN
110 END

dela)' 5 seconds
dela)' 10 seconds

The starting time is printed when the program is executed. Five seconds later the first sub­
routine is executed. Ten seconds after the program starts, the second subroutine is executed.

Only one ON TIME statement can be active in a program context. If a branch is missed, due to
priority restrictions or execution of a subprogram, the event is logged and the branch will be
taken when the restriction is removed or the original context is restored. If an active ON TIME
statement gets canceled in an alternate context (subprogram) the branch is restored when
execution returns to the defining context. (See Branching Restrictions for more information
about this) .

Due to the "match an exact time" nature of the ON TIME statement, if the specified time occurs
when the statement is temporarily canceled (by an OFF TIME in an alternate context) , no
branch will be taken when the defining context is restored.

Priority Restrictions
A priority can be assigned to the branch defined by ON CYCLE, ON DELAY, and ON TIME.
For example:

ON CYCLE Seconds t Priority GOTO Label

274 The Real-Time Clock

If the system priority is higher than the branch priority at the time specified for the branch, the
event will be logged but the branch will not be taken until the system priority falls below the
branch priority. An example program follows.

10 COM Start
20 P=O
30 Up:P=P+l
ao IF P>15 THEN Quit
50 PRINT
80 PRINT "Priority:";P;
70 Start=TIMEDATE
80 ON CYCLE l,P RECOI.lER Up
90 ON DELAY .5,8 CALL Busy
100
110 W:GOTO W
120 Quit:END

! Priority from 1 thru 15

Save the start-time for subpro.ram.
New priority every second if not Busy.
DELAY overrides CYCLE until priority

(P) is .reater than 8.

130 !----------------- SUB has priority of 8 ---------------------
laO SUB Busy
150 COM Start
180 PRINT "SUB";
170 WHILE 1(10
180 IF TIMEDATE>Start+l THEN Has ON CYCLE time been exceeded?
190 PRINT "*"; I YES (only prints if Priority(7)
200 ELSE
210 PRINT "."; ! NO
220 END IF
230 1=1+1 Loop ten times
2aO WAIT .1
250 END WHILE
280 PRINT "DONE";
270 SUB END

Once the priority assigned to the ON CYCLE statement is greater than the priority assigned to
the ON DELAY statement (6) the subprogram will be interrupted. After running the program,
change line 80 in the above program to the following:

80 ON CYCLE 1 ,p GOTO Up

Running the new version of the program will show that GOTO (or GOSUB) will not interrupt a
subprogram regardless of the assigned priority. The branch will be logged but not taken until
execution returns to the main program. If you write a program that makes extensive use of
subprograms and branching statements, use CALL and RECOVER to insure proper operation.

274 The Real-Time Clock

If the system priority is higher than the branch priority at the time specified for the branch, the
event will be logged but the branch will not be taken until the system priority falls below the
branch priority. An example program follows.

10 COM Start
20 P=O
30 Up:P=P+l
ao IF P>15 THEN Quit
50 PRINT
80 PRINT "Priority:";P;
70 Start=TIMEDATE
80 ON CYCLE l,P RECOI.lER Up
90 ON DELAY .5,8 CALL Busy
100
110 W:GOTO W
120 Quit:END

! Priority from 1 thru 15

Save the start-time for subpro.ram.
New priority every second if not Busy.
DELAY overrides CYCLE until priority

(P) is .reater than 8.

130 !----------------- SUB has priority of 8 ---------------------
laO SUB Busy
150 COM Start
180 PRINT "SUB";
170 WHILE 1(10
180 IF TIMEDATE>Start+l THEN Has ON CYCLE time been exceeded?
190 PRINT "*"; I YES (only prints if Priority(7)
200 ELSE
210 PRINT "."; ! NO
220 END IF
230 1=1+1 Loop ten times
2aO WAIT .1
250 END WHILE
280 PRINT "DONE";
270 SUB END

Once the priority assigned to the ON CYCLE statement is greater than the priority assigned to
the ON DELAY statement (6) the subprogram will be interrupted. After running the program,
change line 80 in the above program to the following:

80 ON CYCLE 1 ,p GOTO Up

Running the new version of the program will show that GOTO (or GOSUB) will not interrupt a
subprogram regardless of the assigned priority. The branch will be logged but not taken until
execution returns to the main program. If you write a program that makes extensive use of
subprograms and branching statements, use CALL and RECOVER to insure proper operation.

The Real-Time Clock 275

Branching Restrictions
Certain restrictions apply to the use of ON TIME, ON CYCLE, and ON DELAY because only
one resource is dedicated to each statement. Assuming an active branch has been defined in
the main program, execution of a subprogram which sets up a new branch, will cause the loss of
the original time. When the main program context is restored, the original branch will be
restored, but at the time defined in the subprogram. The following program will illustrate this
effect.

10
20
30
40
50
60
70 W:
80
80
100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
250

COM COI.lnte r
Counter=O
GINIT
GRID 1 t1 Fill .raphics raster with .rid .
DISP Counter
ON CYCLE 2 CALL Flash ! Flash .raphics every 2 seconds .
GOTO W
END
!------ -------- --- SUB to f lash .raphics
SUB Flash

COM Counter
GRAPHICS ON
Counter=Counter+l
DISP Counter

raster

IF Counter=5 THEN ! Chan.e CYC LE value durin. fifth CALL.
ON CYCLE .1,2 CALL Quit I NelAI vallie (.1) IAli11 replace old (2).

END IF
GRAPHICS OFF

SUB END

! Flash will end before Quit .ets called.

!----------------- SUB tha t won ' t .et called -----------------
SUB Quit

PRINT "PROGRAM HAS STOPPED"
STOP

SUB END

The program starts out by flashing the graphics raster on and off every two seconds. When the
subprogram's ON CYCLE statement is activated during the fifth call to the subprogram, the
new value (0.1 second) replaces the old value (2.0 seconds) and the program begins flashing
the graphics raster at the new rate. Note that the branch to the second subprogram (Quit) is not
executed because the first subprogram is finished before the specified time. To see the second
subprogram execute, insert the following line.

191 WAIT 1

The delay caused by the WAIT statement allows the subprogram's ON CYCLE statement to
branch to the second subprogram and stop execution.

The Real-Time Clock 275

Branching Restrictions
Certain restrictions apply to the use of ON TIME, ON CYCLE, and ON DELAY because only
one resource is dedicated to each statement. Assuming an active branch has been defined in
the main program, execution of a subprogram which sets up a new branch, will cause the loss of
the original time. When the main program context is restored, the original branch will be
restored, but at the time defined in the subprogram. The following program will illustrate this
effect.

10
20
30
40
50
60
70 W:
80
80
100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
250

COM COI.lnte r
Counter=O
GINIT
GRID 1 t1 Fill .raphics raster with .rid .
DISP Counter
ON CYCLE 2 CALL Flash ! Flash .raphics every 2 seconds .
GOTO W
END
!------ -------- --- SUB to f lash .raphics
SUB Flash

COM Counter
GRAPHICS ON
Counter=Counter+l
DISP Counter

raster

IF Counter=5 THEN ! Chan.e CYC LE value durin. fifth CALL.
ON CYCLE .1,2 CALL Quit I NelAI vallie (.1) IAli11 replace old (2).

END IF
GRAPHICS OFF

SUB END

! Flash will end before Quit .ets called.

!----------------- SUB tha t won ' t .et called -----------------
SUB Quit

PRINT "PROGRAM HAS STOPPED"
STOP

SUB END

The program starts out by flashing the graphics raster on and off every two seconds. When the
subprogram's ON CYCLE statement is activated during the fifth call to the subprogram, the
new value (0.1 second) replaces the old value (2.0 seconds) and the program begins flashing
the graphics raster at the new rate. Note that the branch to the second subprogram (Quit) is not
executed because the first subprogram is finished before the specified time. To see the second
subprogram execute, insert the following line.

191 WAIT 1

The delay caused by the WAIT statement allows the subprogram's ON CYCLE statement to
branch to the second subprogram and stop execution.

276 The Real-Time Clock

If an active branch defined in the main program is canceled in a subprogram (by OFF TIME,
OFF DELAY, or OFF CYCLE) any branch missed during the execution of the subprogram will
be lost. When the context containing the original statement is restored, the branch will be
reactivated and processing will continue as if no branch was missed.

10
20
30

ON DELAY 1 GoTo Done
CALL Bus)'

GoTo "Done" in one s econd.
! Call to "Bus y" ta Kes two seconds.

ao PRINT "THIS WON ' T BE PRINTED UNLESS BRANCH IS CANCELED BY THE SUB"
50
60 Done : PRINT "THIS LINE WILL BE PRINTED EVERY TIME"
70 END
80
80
100
110
120

! ----------------- - ---------------------- -- -- - --------------
SUB Bus)'

WAIT 2
! OFF DELAY
SUBEND

RUN t hen relrlOlJe the "I" on this line and RUN a!lain .

By removing the comment symbol (!) from the beginning of line 110, the OFF DELAY state­
ment will be executed causing any branch that has already been logged to be canceled and
allow line 40 to be printed.

Since branches only occur at the end of a line, no branch can be taken during an INPUT or
LINPUT statement. The following program shows a method of monitoring the keyboard with­
out preventing branches to be taken.

10 ON KBD GoTo Yes If Ke y is pressed !lo !let new value.
20 ON DELAY 3 GoTo Gone If no keypress in 3 seconds use defaults
30 DISP "PRESS A KEY"
ao W: GoTo W ! Wait here until ke ypress or end of dela y .
50
60 Yes:oFF DELAY ! SOlrleone is there.
70 OFF KBD
80 LINPUT "NEW I.JALUE?" ,A$
80 DISP "USING" ,A$
100 GoTo More
110
120 Gone:DISP Nobody there.
130 DISP "USING DEFAULTS"
laO
150 More:WAIT 2
160 DISP "pro!lralrl continues •••• "
170 END

The program waits a few seconds for a response . Processing continues with default values if no
key is pressed. Pressing a key will cause the program to accept the new information.

276 The Real-Time Clock

If an active branch defined in the main program is canceled in a subprogram (by OFF TIME,
OFF DELAY, or OFF CYCLE) any branch missed during the execution of the subprogram will
be lost. When the context containing the original statement is restored, the branch will be
reactivated and processing will continue as if no branch was missed.

10
20
30

ON DELAY 1 GoTo Done
CALL Bus)'

GoTo "Done" in one s econd.
! Call to "Bus y" ta Kes two seconds.

ao PRINT "THIS WON ' T BE PRINTED UNLESS BRANCH IS CANCELED BY THE SUB"
50
60 Done : PRINT "THIS LINE WILL BE PRINTED EVERY TIME"
70 END
80
80
100
110
120

! ----------------- - ---------------------- -- -- - --------------
SUB Bus)'

WAIT 2
! OFF DELAY
SUBEND

RUN t hen relrlOlJe the "I" on this line and RUN a!lain .

By removing the comment symbol (!) from the beginning of line 110, the OFF DELAY state­
ment will be executed causing any branch that has already been logged to be canceled and
allow line 40 to be printed.

Since branches only occur at the end of a line, no branch can be taken during an INPUT or
LINPUT statement. The following program shows a method of monitoring the keyboard with­
out preventing branches to be taken.

10 ON KBD GoTo Yes If Ke y is pressed !lo !let new value.
20 ON DELAY 3 GoTo Gone If no keypress in 3 seconds use defaults
30 DISP "PRESS A KEY"
ao W: GoTo W ! Wait here until ke ypress or end of dela y .
50
60 Yes:oFF DELAY ! SOlrleone is there.
70 OFF KBD
80 LINPUT "NEW I.JALUE?" ,A$
80 DISP "USING" ,A$
100 GoTo More
110
120 Gone:DISP Nobody there.
130 DISP "USING DEFAULTS"
laO
150 More:WAIT 2
160 DISP "pro!lralrl continues •••• "
170 END

The program waits a few seconds for a response . Processing continues with default values if no
key is pressed. Pressing a key will cause the program to accept the new information.

Communicating with the Operator
Chapter

10

Introduction
It is very unlikely that a computer could perform useful work without receiving input. Much of that
input is from electronic devices: instruments, mass storage devices, other computers, and so on.
Because a computer is an electronic device, it is very good at these tasks. There are also times when
the computer's input must come from the human sitting in front of the computer.

Good human interfaces do not happen without some effort from the programmer. In many prog­
rams, at least one fourth of the code is dedicated to human interface. It is not unusual to use one
half of a good program for operator interaction, error trapping, explanatory messages, etc.
ObViously, these estimates depend upon many factors, like the task being performed and the
intended operators. If you are the only person who uses a program, that program may not need a
quality human interface. However, the demands for a good human interface rise greatly if a
program is used by many people with different backgrounds. When the intended users do not
understand computers, your program must be very skillfully written so that it does not intimidate
the operator or make great demands.

This chapter introduces two of the elements of a human interface: displaying text for the operator to
read and accepting operator input from the keyboard. These are certainly not the only elements in
a human interface. A good human interface can involve the placement of hardware, use of graphic
and voice communication, data base management, artificial intelligence theories, and much more.
However, you must begin somewhere. Despite the incredible technology growing up around them,
many programmers fail at the basic task of sending and receiving text. Hopefully, the hints in this
chapter will help your present programs and whet your appetite for more eleborate improvements
in future programs.

277

Communicating with the Operator
Chapter

10

Introduction
It is very unlikely that a computer could perform useful work without receiving input. Much of that
input is from electronic devices: instruments, mass storage devices, other computers, and so on.
Because a computer is an electronic device, it is very good at these tasks. There are also times when
the computer's input must come from the human sitting in front of the computer.

Good human interfaces do not happen without some effort from the programmer. In many prog­
rams, at least one fourth of the code is dedicated to human interface. It is not unusual to use one
half of a good program for operator interaction, error trapping, explanatory messages, etc.
ObViously, these estimates depend upon many factors, like the task being performed and the
intended operators. If you are the only person who uses a program, that program may not need a
quality human interface. However, the demands for a good human interface rise greatly if a
program is used by many people with different backgrounds. When the intended users do not
understand computers, your program must be very skillfully written so that it does not intimidate
the operator or make great demands.

This chapter introduces two of the elements of a human interface: displaying text for the operator to
read and accepting operator input from the keyboard. These are certainly not the only elements in
a human interface. A good human interface can involve the placement of hardware, use of graphic
and voice communication, data base management, artificial intelligence theories, and much more.
However, you must begin somewhere. Despite the incredible technology growing up around them,
many programmers fail at the basic task of sending and receiving text. Hopefully, the hints in this
chapter will help your present programs and whet your appetite for more eleborate improvements
in future programs.

277

278 Communicating with the Operator

Displaying and Prompting
One of the simpler things to do for the operator is to display an explanation of what is happening or
what is expected. In the early days of computers, memory was a scarce and expensive resource.
Old-time programmers were encouraged to use as little memory as possible. It seemed as though
there was a contest to see who could put the most information into a 32-character message. Please
realize that those days are over. For example, there is no significant restriction on program size: the
standard machine is shipped with over a half-million characters of memory, and there are usually at
least 18 lines of 80 characters visible at all times on the CRT. If you are sending your operator tiny,
cryptic messages, you are making an unnecessary mistake.

Giving instructions to the operator can be viewed as two basic steps:

1. Clear the CRT.

2. Use as much of the CRT as necessary to give readable instructions.

Clearing the CRT
It is embarassing to the programmer and confusing to the operator when two or more displays
combine in an unplanned manner. The culprits are "left-over" alpha and "left-over" graphics.
Left-over alpha can occur for a number of reasons:

• The operator may have used the knob or cursor-control keys to scroll text from the off-screen
buffer.

• With TABXY, the PRINT statement overwrites any old characters on a line with new charac­
ters. However, if the old text is longer than the new text, the end of the old line remains visible.
Therefore, the following sequence does not print three blank lines. It just moves the print
position. Any old lines will still be on the screen.

100 PRINT
110 PRINT
120 PRINT

• If the PRINTALL mode is on, all interactions on the display line and keyboard input line are
sent to the output area.

Turning Off Unwanted Modes
There are several modes that affect the appearance of the CRT. Each is very useful for certain
purposes; however, some are undesirable for the display of simple text. Graphics is an obvious
example. Left-over graphics can be removed by the following statement (on non-bit-mapped
displays).

GRAPHICS OFF

Series 300 color (multi-plane) displays may be configured to use different planes for alpha and
graphics, which you mayor may not want. For further information concerning this topic, see the
"Display Interfaces" chapter of BASIC Interfacing Techniques.

The PRINTALL mode is canceled by writing a zero in the PRINTALL control register. This is
keyboard register 1, so it has an interface select code of 2. The following statement turns off the
PRINT ALL mode.

CONTROL 2tl;0

278 Communicating with the Operator

Displaying and Prompting
One of the simpler things to do for the operator is to display an explanation of what is happening or
what is expected. In the early days of computers, memory was a scarce and expensive resource.
Old-time programmers were encouraged to use as little memory as possible. It seemed as though
there was a contest to see who could put the most information into a 32-character message. Please
realize that those days are over. For example, there is no significant restriction on program size: the
standard machine is shipped with over a half-million characters of memory, and there are usually at
least 18 lines of 80 characters visible at all times on the CRT. If you are sending your operator tiny,
cryptic messages, you are making an unnecessary mistake.

Giving instructions to the operator can be viewed as two basic steps:

1. Clear the CRT.

2. Use as much of the CRT as necessary to give readable instructions.

Clearing the CRT
It is embarassing to the programmer and confusing to the operator when two or more displays
combine in an unplanned manner. The culprits are "left-over" alpha and "left-over" graphics.
Left-over alpha can occur for a number of reasons:

• The operator may have used the knob or cursor-control keys to scroll text from the off-screen
buffer.

• With TABXY, the PRINT statement overwrites any old characters on a line with new charac­
ters. However, if the old text is longer than the new text, the end of the old line remains visible.
Therefore, the following sequence does not print three blank lines. It just moves the print
position. Any old lines will still be on the screen.

100 PRINT
110 PRINT
120 PRINT

• If the PRINTALL mode is on, all interactions on the display line and keyboard input line are
sent to the output area.

Turning Off Unwanted Modes
There are several modes that affect the appearance of the CRT. Each is very useful for certain
purposes; however, some are undesirable for the display of simple text. Graphics is an obvious
example. Left-over graphics can be removed by the following statement (on non-bit-mapped
displays).

GRAPHICS OFF

Series 300 color (multi-plane) displays may be configured to use different planes for alpha and
graphics, which you mayor may not want. For further information concerning this topic, see the
"Display Interfaces" chapter of BASIC Interfacing Techniques.

The PRINTALL mode is canceled by writing a zero in the PRINTALL control register. This is
keyboard register 1, so it has an interface select code of 2. The following statement turns off the
PRINT ALL mode.

CONTROL 2tl;0

Communicating with the Operator 279

The DISPLAY FUNCTIONS mode can make a display look sloppy. This is CRT register 4, so it has
an interface select code of 1. The following statement turns off the DISPLAY FUNCTIONS mode.

CONTROL 1 ,4;0

Printing Blank Lines
To print a line that is blank is a different operation from sending only an end-of-line sequence. A
PR I NT statement with no parameters simply sends an end-of-line sequence. If the print position is
at the start of a blank line when P R I NTis executed, that line remains blank. However, if there is text
on that line, the text remains. This is not to say that it is "wrong" to use P R I NT with no parameters.
It just means that you cannot guarantee the output of a blank line by using PR I NT with no
parameters.

To print a blank line, blanks must be printed. One of the most convenient ways to send a line full of
blanks is the TAB function. Here is a sequence that prints three blank lines:

100 STATUS 1 ,8 ;Sc reen
110 PRINT TAB(Screen)
120 PRINT TAB(Screen)
130 PRINT TAB(Screen)

Using OUTPUT KBD ...
The PRINT statement does not provide functions like "home" and "clear", but the keyboard
drivers do. Note that this is true even for keyboards which do not have a "home" key. These
functions are invoked by sending a "Non-ASCII Key Sequence" to interface select code 2 (KBD).
Sending characters with OUTPUT KBD is like telling the computer to press its own keys. Although
some techniques that use the keyboard buffer are very complex (see Chapter 9 of BASIC Interfac­
ing Techniques), controlling the CRT output area is simple.

To see how this technique works, let's use the (CLR SCR) Key ((Clear display) on HP 46020A) as an
example. Open your BASIC Language Reference to the end of the "Useful Tables" section. Find
the heading "Second Byte of Non-ASCII Key Sequences (Numeric)". Locate the (CLR SCR) key on
your computer. It is a shifted (CLR LN) (on non-HP 46020A keyboards). The number in that
position is 75. Like the heading says, that is the value of the second byte of a sequence. The first
byte always has a value of 255 for non-ASCII keys. Therefore, to "press" the (CLR SCR) key, send
the bytes 255 and 75 to the keyboard; interface select code 2.

You can store non-ASCII key sequences in your program without looking for them in the Language
Reference. Here is an example. Get into EDIT mode on your computer. Type the following:

10 OUTPUT KBD;"

Now hold down the (CTRL) key and press (CLR SCR) at the same time. The characters j!!K should
appear. Finish the statement with a closing quote and a trailing semicolon. Press (ENTER) or
(RETURN) to store the line. This should be the result:

1 0 0 U T PUT K B D i "j!!K " ;

Notice in the other Language Reference table that "K" corresponds to the (CLR SCR) key. An
"inverse video K" is the first byte of this sequence; it represents CHR$(255). The trailing semicolon
is used to prevent an end-of-line sequence from appearing in the keyboard buffer when this
statement is executed.

Communicating with the Operator 279

The DISPLAY FUNCTIONS mode can make a display look sloppy. This is CRT register 4, so it has
an interface select code of 1. The following statement turns off the DISPLAY FUNCTIONS mode.

CONTROL 1 ,4;0

Printing Blank Lines
To print a line that is blank is a different operation from sending only an end-of-line sequence. A
PR I NT statement with no parameters simply sends an end-of-line sequence. If the print position is
at the start of a blank line when P R I NTis executed, that line remains blank. However, if there is text
on that line, the text remains. This is not to say that it is "wrong" to use P R I NT with no parameters.
It just means that you cannot guarantee the output of a blank line by using PR I NT with no
parameters.

To print a blank line, blanks must be printed. One of the most convenient ways to send a line full of
blanks is the TAB function. Here is a sequence that prints three blank lines:

100 STATUS 1 ,8 ;Sc reen
110 PRINT TAB(Screen)
120 PRINT TAB(Screen)
130 PRINT TAB(Screen)

Using OUTPUT KBD ...
The PRINT statement does not provide functions like "home" and "clear", but the keyboard
drivers do. Note that this is true even for keyboards which do not have a "home" key. These
functions are invoked by sending a "Non-ASCII Key Sequence" to interface select code 2 (KBD).
Sending characters with OUTPUT KBD is like telling the computer to press its own keys. Although
some techniques that use the keyboard buffer are very complex (see Chapter 9 of BASIC Interfac­
ing Techniques), controlling the CRT output area is simple.

To see how this technique works, let's use the (CLR SCR) Key ((Clear display) on HP 46020A) as an
example. Open your BASIC Language Reference to the end of the "Useful Tables" section. Find
the heading "Second Byte of Non-ASCII Key Sequences (Numeric)". Locate the (CLR SCR) key on
your computer. It is a shifted (CLR LN) (on non-HP 46020A keyboards). The number in that
position is 75. Like the heading says, that is the value of the second byte of a sequence. The first
byte always has a value of 255 for non-ASCII keys. Therefore, to "press" the (CLR SCR) key, send
the bytes 255 and 75 to the keyboard; interface select code 2.

You can store non-ASCII key sequences in your program without looking for them in the Language
Reference. Here is an example. Get into EDIT mode on your computer. Type the following:

10 OUTPUT KBD;"

Now hold down the (CTRL) key and press (CLR SCR) at the same time. The characters j!!K should
appear. Finish the statement with a closing quote and a trailing semicolon. Press (ENTER) or
(RETURN) to store the line. This should be the result:

1 0 0 U T PUT K B D i "j!!K " ;

Notice in the other Language Reference table that "K" corresponds to the (CLR SCR) key. An
"inverse video K" is the first byte of this sequence; it represents CHR$(255). The trailing semicolon
is used to prevent an end-of-line sequence from appearing in the keyboard buffer when this
statement is executed.

280 Communicating with the Operator

There are advantages and disadvantages to this method. Two advantages are that no image
specifiers are needed in the OUTPUT statement and no reference tables are needed to look up the
byte values. Three disadvantages are:

• You need a reference table to "decode" your program when you try to read it back later.
Some of the one-letter codes for these keys are meaningless.

• Your printer may not be able to print an accurate listing of the program. Most printers have no
inverse-video K, and some printers completely ignore a CHR$(255).

• You are limited to the keys that can be generated by this method on your keyboard. For
example, it is impossible to use this method to generate a "home" key on the small keyboard
of the Model 216. Additionally, many of the "non-ASCII" keys on this keyboard generate
ASCII characters when pressed with (CTRL) .

You can overcome the last two problems with the 0 U T PUT K B D US I N G 11 # ,B 11 method, but the
result is still very cryptic to someone reading the program listing. The following technique uses the
best features of the other methods and provides readable code. Define a string variable for each
non-ASCII key you may need, and use that variable name each time you want to "press the key" .

20 DIM Clear-crt$[2J ,HOfrle$[2 J
30 Clear_crt$=CHR$(255)&CHR$(75)
40 Home$=CHR$(255)&CHR$(84)

350 OUTPUT KBD;Clear_crt$;

Now that you understand the general technique, let's look at some applications for non-ASCII
keystrokes. Although there are many keystrokes available for various applications, this section
focuses on the use of "clear" and "home". For a summary of all available non-ASCII
sequences, refer to the tables at the back of the BASIC Language Reference.

280 Communicating with the Operator

There are advantages and disadvantages to this method. Two advantages are that no image
specifiers are needed in the OUTPUT statement and no reference tables are needed to look up the
byte values. Three disadvantages are:

• You need a reference table to "decode" your program when you try to read it back later.
Some of the one-letter codes for these keys are meaningless.

• Your printer may not be able to print an accurate listing of the program. Most printers have no
inverse-video K, and some printers completely ignore a CHR$(255).

• You are limited to the keys that can be generated by this method on your keyboard. For
example, it is impossible to use this method to generate a "home" key on the small keyboard
of the Model 216. Additionally, many of the "non-ASCII" keys on this keyboard generate
ASCII characters when pressed with (CTRL) .

You can overcome the last two problems with the 0 U T PUT K B D US I N G 11 # ,B 11 method, but the
result is still very cryptic to someone reading the program listing. The following technique uses the
best features of the other methods and provides readable code. Define a string variable for each
non-ASCII key you may need, and use that variable name each time you want to "press the key" .

20 DIM Clear-crt$[2J ,HOfrle$[2 J
30 Clear_crt$=CHR$(255)&CHR$(75)
40 Home$=CHR$(255)&CHR$(84)

350 OUTPUT KBD;Clear_crt$;

Now that you understand the general technique, let's look at some applications for non-ASCII
keystrokes. Although there are many keystrokes available for various applications, this section
focuses on the use of "clear" and "home". For a summary of all available non-ASCII
sequences, refer to the tables at the back of the BASIC Language Reference.

(

Communicating with the Operator 281

Determining Sceen Width and Height
The first step in displaying information on the screen is to determine its size. Programs written in this
BASIC language can be used on either 50,80 or 128-column displays. The height of displays may
also vary. There are CRT status registers that contain the width and height of the screen.

If you are developing programs that will be transported between computers, status register 9 will be
very helpful to you. The screen width is useful in centering displays, labeling softkeys, formatting
tabular data, and other display tasks. The following statement places the screen width in a variable
called Crt _IAI i d t h.

STATUS 1 t9 i Crt_IAlidth

There is also a SYSTEM$ function that returns useful information about the CRT. The specifier
"CRT 10" returns a string containing (among other things) the screen width and availability of
highlights and graphics. The following example shows one method of determining the screen width
with SYSTEM$.

120 Test$=SYSTEM$("CRT ID")
130 Screen=VAL(Test$[3tG])

You can also determine the screen's "current height," which is the number of lines currently
enabled to display alpha information:

STATUS CRTt13;Hei~ht

You can also change its height by writing to CRT control register 13; the range is 8 lines through the
maximum for your particular display (25, 26, or 48) .

(

Communicating with the Operator 281

Determining Sceen Width and Height
The first step in displaying information on the screen is to determine its size. Programs written in this
BASIC language can be used on either 50,80 or 128-column displays. The height of displays may
also vary. There are CRT status registers that contain the width and height of the screen.

If you are developing programs that will be transported between computers, status register 9 will be
very helpful to you. The screen width is useful in centering displays, labeling softkeys, formatting
tabular data, and other display tasks. The following statement places the screen width in a variable
called Crt _IAI i d t h.

STATUS 1 t9 i Crt_IAlidth

There is also a SYSTEM$ function that returns useful information about the CRT. The specifier
"CRT 10" returns a string containing (among other things) the screen width and availability of
highlights and graphics. The following example shows one method of determining the screen width
with SYSTEM$.

120 Test$=SYSTEM$("CRT ID")
130 Screen=VAL(Test$[3tG])

You can also determine the screen's "current height," which is the number of lines currently
enabled to display alpha information:

STATUS CRTt13;Hei~ht

You can also change its height by writing to CRT control register 13; the range is 8 lines through the
maximum for your particular display (25, 26, or 48) .

282 Communicating with the Operator

An Expanded Softkey Menu
Input from the keyboard is discussed in the second half of this chapter. However, a good human
interface often involves the coordination of multiple resources. The softkeys are a very good tool for
accepting operator input. The biggest problem with using softkeys is the severe limitation on the
number of prompt characters associated with each key. Therefore, a softkey interface is an
appropriate task to demonstrate the increased use of CRT space.

The goal of this technique is to display a readable and informative menu that monitors the oper­
ator's input. The following program segment displays a summary of the parameters that are
controlled by softkeys. This summary is updated every time a softkey is pressed, providing immedi­
ate feedback to the operator. This example uses many of the CRT -control techniques already
presented. It also helps to show why the human interface of a program can require so much code.
This segment simply logs the operator's choice of a four items, and it is over 100 lines long. The
purpose of each section of code is explained after the listing.

1000 DIM Disc$[5J ,Clear$[2J ,HolTle$[2J ,CI,ld$[1 J
1010 INTEGER Std_fl'lt ,Rol,lan ,Sc reen , Cente r
1020

Clear$=CHR$(255)&CHR$C75)
HOMe$=CHR$(255)&CHR$C8a)
Disc$="RIGHT"
CI,ld$=" \"
Std_fMt=l
ROMan=O
STATUS 1,8;Screen
Center=CScreen-38)/ 2

! CLEAR SCR f(e}'
HOME f(e }'

! Default paraMeters

Get screen 'Alidth
! Leadin~ spaces for centerin~

1030
10aO
1050
1080
1070
1080
1080
1100
1110
1120
1130
llaO
1150
1180
1170

MASS STORAGE IS ": I NTERNAL"
PRINTER IS 1 ! Use CRT for displayin~ Menu
GRAPHICS OFF
CONTROL 2,1;0
CONTROL 1,a;0
OUTPUT 2;Clear$;

1180 Menu:
1180 OUTPUT KBD;HoMe$;
1200 PR I NT TAB)-(Y C 1 ,1)
1210 PRINT TABCCenter);"KEY

! PRT ALL off
! DISPLAY FCTNS off

Clear CRT

! HOlne displa}'
! Start at top with blanK line

PUR P 0 S E" ; TAB C C e n t e r +30) ; " 1,1 A L U E"
1220 PRINT TABCCenter) ;"--------------------------------- - -"
1230 PRINT
12ao
1250
128 0
1270
1280
1280
1300
1310
1320
1330

PRINT TABCCenter);" 5
PRINT
PRINT TAB CCenter);" 8
PRINT
PRINT TABCCenter);" 7
IF Std_fl'lt THEN

PRINT "YES"
ELSE

PRINT "NO "
END IF

13ao PRINT
1350
1380
1370
1380
1380
1aOO
1al0
la20
la30
laaO
la50
la80
la70

PRINT TABCCenter);" 8
IF ROMan THEN

PRINT "YES"
ELSE

PRINT "NO "
END IF
PRINT
PRINT TABCCenter);" 8

IF Screen=50 THEN
ON KEY 5 LABEL" DeliM
ON KEY 8 LABEL" Disc
ON KEY 7 LABEL" ForMat

COI,llTland oelir'liter" ;TABCCenter+31) ;CMd$

Source Disc Drive" HABCCenter+30) ;oisc$

Standard Forr,lat OK?" HABCCenter+30);

Use ROlTlan Nur,le rals?" ;TABCCente r+30);

START PRINTOUT"

I Use sho rt
" GoTo COIT11T1and
" GoTo DrilJe
" GoTo Standard

labels

282 Communicating with the Operator

An Expanded Softkey Menu
Input from the keyboard is discussed in the second half of this chapter. However, a good human
interface often involves the coordination of multiple resources. The softkeys are a very good tool for
accepting operator input. The biggest problem with using softkeys is the severe limitation on the
number of prompt characters associated with each key. Therefore, a softkey interface is an
appropriate task to demonstrate the increased use of CRT space.

The goal of this technique is to display a readable and informative menu that monitors the oper­
ator's input. The following program segment displays a summary of the parameters that are
controlled by softkeys. This summary is updated every time a softkey is pressed, providing immedi­
ate feedback to the operator. This example uses many of the CRT -control techniques already
presented. It also helps to show why the human interface of a program can require so much code.
This segment simply logs the operator's choice of a four items, and it is over 100 lines long. The
purpose of each section of code is explained after the listing.

1000 DIM Disc$[5J ,Clear$[2J ,HolTle$[2J ,CI,ld$[1 J
1010 INTEGER Std_fl'lt ,Rol,lan ,Sc reen , Cente r
1020

Clear$=CHR$(255)&CHR$C75)
HOMe$=CHR$(255)&CHR$C8a)
Disc$="RIGHT"
CI,ld$=" \"
Std_fMt=l
ROMan=O
STATUS 1,8;Screen
Center=CScreen-38)/ 2

! CLEAR SCR f(e}'
HOME f(e }'

! Default paraMeters

Get screen 'Alidth
! Leadin~ spaces for centerin~

1030
10aO
1050
1080
1070
1080
1080
1100
1110
1120
1130
llaO
1150
1180
1170

MASS STORAGE IS ": I NTERNAL"
PRINTER IS 1 ! Use CRT for displayin~ Menu
GRAPHICS OFF
CONTROL 2,1;0
CONTROL 1,a;0
OUTPUT 2;Clear$;

1180 Menu:
1180 OUTPUT KBD;HoMe$;
1200 PR I NT TAB)-(Y C 1 ,1)
1210 PRINT TABCCenter);"KEY

! PRT ALL off
! DISPLAY FCTNS off

Clear CRT

! HOlne displa}'
! Start at top with blanK line

PUR P 0 S E" ; TAB C C e n t e r +30) ; " 1,1 A L U E"
1220 PRINT TABCCenter) ;"--------------------------------- - -"
1230 PRINT
12ao
1250
128 0
1270
1280
1280
1300
1310
1320
1330

PRINT TABCCenter);" 5
PRINT
PRINT TAB CCenter);" 8
PRINT
PRINT TABCCenter);" 7
IF Std_fl'lt THEN

PRINT "YES"
ELSE

PRINT "NO "
END IF

13ao PRINT
1350
1380
1370
1380
1380
1aOO
1al0
la20
la30
laaO
la50
la80
la70

PRINT TABCCenter);" 8
IF ROMan THEN

PRINT "YES"
ELSE

PRINT "NO "
END IF
PRINT
PRINT TABCCenter);" 8

IF Screen=50 THEN
ON KEY 5 LABEL" DeliM
ON KEY 8 LABEL" Disc
ON KEY 7 LABEL" ForMat

COI,llTland oelir'liter" ;TABCCenter+31) ;CMd$

Source Disc Drive" HABCCenter+30) ;oisc$

Standard Forr,lat OK?" HABCCenter+30);

Use ROlTlan Nur,le rals?" ;TABCCente r+30);

START PRINTOUT"

I Use sho rt
" GoTo COIT11T1and
" GoTo DrilJe
" GoTo Standard

labels

Communicating with the Operator 283

ON KEY 8 LABEL " ROI~an " GOTO Nu~bers
ON KEY 8 LABEL " START " GOTD Begin

ELSE ! Use 1 on g labels
ON KEY 5 LABEL II C a 'Tl IT} and oeli~ " GDTD CO~I~and

ON KEY 6 LABEL " Select Drive " GOTD Drive
ON KEY 7 LABEL " Stand. F~t.7 " GOTO Standard

11180
11180
1500
1510
1520
1530
15110
1550
1560
1570
1580
1580
1600
1610
1620 !

ON KEY 8 LABEL "RolTlan NUITle ral 7" GOTO Nultlbers
ON KEY 8 LABEL " START

END IF
ON KEY 0 GOTD Not_used
ON KEY 1 GOTO Not_used
ON KEY 2 GOTo Not_used
ON KEY 3 GOTO Not_used
ON KEY 1I GOTD Not_used

1630 Spin: GoTo Spin
16110
1650 Not_used:
1660 BEEP 300 •• 1
1670 GoTo Spin
1680
1680 Co ItllTlan d : !
1700 IF C~d$="\" THEN
1710 CITld$="···"
1720 ELSE
1730 CITld$="\"
17110 END IF
1750 GoTo Menu
1760
1770 Drive:

PRINT " GDTO Begin

Tu rn off I.lnused ~\ e }' s

! Wait for softker interrupt

! Feedback for unused keys

! Choose co~~and deli~iter

1780 IF Disc$="RIGHT" THEN I Choose text source
1780 MASS STORAGE IS ":INTERNAL.1I.1"
1800 Disc$="LEFT"
1810 ELSE
1820 MASS STORAGE IS ":INTERNAL.1I.0"
1830 Disc$="RIGHT"
18110 END IF
1850 GDTo Menu
1860
1870 Standard:
1880 IF Std_f~t THEN
1880 Std_f~t=O

1800 ELSE
1810 Std_f~t=l

1820 END IF
1830 GOTO Menu
18110
1850 NI.lITlbers:
1860 IF Ro~an THEN
1870 Ro~an=O

1880 ELSE
1880 ROITlan=l
2000 END IF
2010 GOTO Menu
2020
2030 Begin:
20110 OUTPUT 2;Clear$;
2050 OFF KEY
2060

! Choose text for~at

! Choose nu~eral type

! Clear CRT
! Re~ove selection ~enu

2070 Progra~ continues here when user presses "START"
2080

The program uses softkeys 5 through 9. If you have an HP 46020A keyboard, your softkeys are
labeled 1 through 8. You can modify the program to use the softkeys most useful for your
applications.

Communicating with the Operator 283

ON KEY 8 LABEL " ROI~an " GOTO Nu~bers
ON KEY 8 LABEL " START " GOTD Begin

ELSE ! Use 1 on g labels
ON KEY 5 LABEL II C a 'Tl IT} and oeli~ " GDTD CO~I~and

ON KEY 6 LABEL " Select Drive " GOTD Drive
ON KEY 7 LABEL " Stand. F~t.7 " GOTO Standard

11180
11180
1500
1510
1520
1530
15110
1550
1560
1570
1580
1580
1600
1610
1620 !

ON KEY 8 LABEL "RolTlan NUITle ral 7" GOTO Nultlbers
ON KEY 8 LABEL " START

END IF
ON KEY 0 GOTD Not_used
ON KEY 1 GOTO Not_used
ON KEY 2 GOTo Not_used
ON KEY 3 GOTO Not_used
ON KEY 1I GOTD Not_used

1630 Spin: GoTo Spin
16110
1650 Not_used:
1660 BEEP 300 •• 1
1670 GoTo Spin
1680
1680 Co ItllTlan d : !
1700 IF C~d$="\" THEN
1710 CITld$="···"
1720 ELSE
1730 CITld$="\"
17110 END IF
1750 GoTo Menu
1760
1770 Drive:

PRINT " GDTO Begin

Tu rn off I.lnused ~\ e }' s

! Wait for softker interrupt

! Feedback for unused keys

! Choose co~~and deli~iter

1780 IF Disc$="RIGHT" THEN I Choose text source
1780 MASS STORAGE IS ":INTERNAL.1I.1"
1800 Disc$="LEFT"
1810 ELSE
1820 MASS STORAGE IS ":INTERNAL.1I.0"
1830 Disc$="RIGHT"
18110 END IF
1850 GDTo Menu
1860
1870 Standard:
1880 IF Std_f~t THEN
1880 Std_f~t=O

1800 ELSE
1810 Std_f~t=l

1820 END IF
1830 GOTO Menu
18110
1850 NI.lITlbers:
1860 IF Ro~an THEN
1870 Ro~an=O

1880 ELSE
1880 ROITlan=l
2000 END IF
2010 GOTO Menu
2020
2030 Begin:
20110 OUTPUT 2;Clear$;
2050 OFF KEY
2060

! Choose text for~at

! Choose nu~eral type

! Clear CRT
! Re~ove selection ~enu

2070 Progra~ continues here when user presses "START"
2080

The program uses softkeys 5 through 9. If you have an HP 46020A keyboard, your softkeys are
labeled 1 through 8. You can modify the program to use the softkeys most useful for your
applications.

284 Communicating with the Operator

It is always good programming practice to declare all variables. The first two lines do this. Next, the
variables are given their starting values. Initialization is completed by turning off unwanted modes
and clearing the CRT.

The section at "Menu" displays a description and current status for each menu item. This example
shows some of the parameters that might be used by a simple text-printing program. The items
used are representative only. A real text formatter would have many more parameters (all the more
reason to present them clearly). The operator can choose the following:

• Back-slash or up-caret as a command delimiter

• Right or left disc drive for the source of the text

• Standard or alternate format for the text

• Page numbering with Arabic or Roman numerals

Notice some important aspects of this menu. All items have default values and all defaults are visible
Simultaneously. This is very important. It is irritating and confusing when an operator must answer
question after question to get a program to begin. It is far better to show the default environment
and allow a single keypress to start the program if the defaults are acceptable. If any defaults need
to be changed, the operator changes only those items he wants to change. He can press "START"
at any time, and in this simple case, never answers any questions. The operator wants a printout,
not a game of "20 questions" .

The current state of all items is displayed in a form that is meaningful to the operator. It is
reasonably safe to assume that all operators know what "RIGHT" and "LEFT" mean. Very few
would have any idea what ": INTERNAL,4,1" means. Programmers need to learn about concepts
like "mass storage unit specifier" . Operators shouldn't be bothered by such things. Likewise, don't
expect anyone to answer "1" or "0" to a question that should be answered "YES" or "NO" .

A more technical aspect of this menu is the method used to update the display. Since the scrolling
keys are on one side of the softkeys and the knob is on the other side, it is reasonable to assume
that the operator might accidentally move the display out of place. One way to correct this would be
to start each display update with a "clear screen" sequence. This guarantees the state of the CRT
and the print position. Unfortunately, it also causes a very undesirable "blinking off" of the display
each time a key is pressed. A constantly disappearing menu is very distracting.

The objective is to give the impression that nothing changed except the selected item. Therefore,
the "clear" sequence is sent before the first display only. Subsequent updates use a "home"
sequence to ensure the position of the text, and a TABXY to set the print position. As a result, the
new menu is written on top of the old menu. (The same visual effect could be achieved by using
individual TABXY functions to access each item display, but that is a more difficult program to
write.)

Since the old display is overwritten each time, it is important to erase all unneeded characters.
Notice that the "NO" displays are padded with a trailing blank to erase the "S" left over from
"YES" . This technique can be extended to clear old displays of unknown length. The following
example displays a number and erases any remaining digits from the old number. The variable
S ere en contains the screen width.

130 0 PRINT Value ; TAB(Screen)

284 Communicating with the Operator

It is always good programming practice to declare all variables. The first two lines do this. Next, the
variables are given their starting values. Initialization is completed by turning off unwanted modes
and clearing the CRT.

The section at "Menu" displays a description and current status for each menu item. This example
shows some of the parameters that might be used by a simple text-printing program. The items
used are representative only. A real text formatter would have many more parameters (all the more
reason to present them clearly). The operator can choose the following:

• Back-slash or up-caret as a command delimiter

• Right or left disc drive for the source of the text

• Standard or alternate format for the text

• Page numbering with Arabic or Roman numerals

Notice some important aspects of this menu. All items have default values and all defaults are visible
Simultaneously. This is very important. It is irritating and confusing when an operator must answer
question after question to get a program to begin. It is far better to show the default environment
and allow a single keypress to start the program if the defaults are acceptable. If any defaults need
to be changed, the operator changes only those items he wants to change. He can press "START"
at any time, and in this simple case, never answers any questions. The operator wants a printout,
not a game of "20 questions" .

The current state of all items is displayed in a form that is meaningful to the operator. It is
reasonably safe to assume that all operators know what "RIGHT" and "LEFT" mean. Very few
would have any idea what ": INTERNAL,4,1" means. Programmers need to learn about concepts
like "mass storage unit specifier" . Operators shouldn't be bothered by such things. Likewise, don't
expect anyone to answer "1" or "0" to a question that should be answered "YES" or "NO" .

A more technical aspect of this menu is the method used to update the display. Since the scrolling
keys are on one side of the softkeys and the knob is on the other side, it is reasonable to assume
that the operator might accidentally move the display out of place. One way to correct this would be
to start each display update with a "clear screen" sequence. This guarantees the state of the CRT
and the print position. Unfortunately, it also causes a very undesirable "blinking off" of the display
each time a key is pressed. A constantly disappearing menu is very distracting.

The objective is to give the impression that nothing changed except the selected item. Therefore,
the "clear" sequence is sent before the first display only. Subsequent updates use a "home"
sequence to ensure the position of the text, and a TABXY to set the print position. As a result, the
new menu is written on top of the old menu. (The same visual effect could be achieved by using
individual TABXY functions to access each item display, but that is a more difficult program to
write.)

Since the old display is overwritten each time, it is important to erase all unneeded characters.
Notice that the "NO" displays are padded with a trailing blank to erase the "S" left over from
"YES" . This technique can be extended to clear old displays of unknown length. The following
example displays a number and erases any remaining digits from the old number. The variable
S ere en contains the screen width.

130 0 PRINT Value ; TAB(Screen)

Communicating with the Operator 285

The example also uses screen width for centering. Centering is not as important as keeping the
display properly updated, and centering slows down the update process slightly. However, the
technique is shown here in case you want to use it. During the initialization of variables, the current
screen width is determined. This might be 50, 80 or 128 characters if the program is used on
different models of computers. The width of the menu display is subtracted from the screen width to
determine the amount of left-over space. If half of this space is sent at the beginning of the line, the
remaining half will be at the end of the line. This produces a centered display. The amount to be
sent at the beginning of the line is placed in the variable C e n t e r. This value is used to position the
start of each line and is also used as a reference point to pOSition the second column.

Models with HP 46020A keyboards allow 16 characters (2 rows of 8) in a softkey label. Models with
80-column CRTs allow 14 characters in a softkey label. Models with 50-column CRTs allow only 8
characters for these labels. Therefore, the variable S ere en is also used to control the display of
softkey labels. This is the purpose of the segment at line 1440. The alternative is to restrict all
softkey labels to 8 characters. This is possible, but undesirable. It is difficult to say anything
meaningful in 8 characters. Users with 80-column CRTs will appreciate the extra meaning that is
available with longer labels. The 128 column CRT can use longer labels, but this program uses the
14 character labels.

The ON KEY statements for keys 0 through 4 are used to turn off any typing-aid definitions that
might exist for those keys. An ON KEY definition overrides a typing-aid definition when the
program is running. However, if no ON KEY definition is supplied, the typing-aid definition remains
active. This is not desirable when you are trying to achieve a program-controlled softkey menu.
Therefore, the unused keys are given a "dummy" ON KEY definition to keep the menu clean. For
HP 46020A keyboards, you should "turn off" all 24 softkeys.

Notice also that when five or less softkeys are used, keys 5 through 9 are defined. This is to
accommodate the Model 216. On its keyboard, those are the unshifted keys. Why make the
operator press the shift key? If you have an HP 46020A keyboard, use keys 1 through 5.

The softkeys are defined to send program execution to a parameter-changing routine. Each such
routine ends by sending program execution to the display-update routine. In this example, there is
no demonstrated reason for repeating the ON KEY definitions for every keypress. Those definitions
could have been placed above the "Menu" line and executed only once. However, some applica­
tions might need to change the key definitions in response to changes in program variables. For
example, a key that produces an "insert" operation would be disabled when enough inserts had
been performed to fill an array. Also, it is possible to include the value of a string variable in a key
label. Therefore, the key labels may need to be rewritten as new selections are made. In cases like
these, the ON KEY statements need to be in the update path.

The final "cleanup" action takes place when the operator presses "START". This is the signal that
the selection menu is no longer needed. The menu display is cleared to reflect the fact that it is no
longer in use. The OFF KEY statement performs two functions. It turns off the softkey label area,
which helps keep the CRT neat. More importantly, it cancels all the ON KEY branches. If this were
not done, the operator could cause the program to jump back to the selection menu at any time.
This is probably not desirable. You may want to define some sort of "Abort" key that lets the
operator stop a lengthy operation. But it is not likely that the selection menu would be the
destination of an abort operation. Remember, ON KEY definitions stay around forever unless you
turn them off or the program stops.

Communicating with the Operator 285

The example also uses screen width for centering. Centering is not as important as keeping the
display properly updated, and centering slows down the update process slightly. However, the
technique is shown here in case you want to use it. During the initialization of variables, the current
screen width is determined. This might be 50, 80 or 128 characters if the program is used on
different models of computers. The width of the menu display is subtracted from the screen width to
determine the amount of left-over space. If half of this space is sent at the beginning of the line, the
remaining half will be at the end of the line. This produces a centered display. The amount to be
sent at the beginning of the line is placed in the variable C e n t e r. This value is used to position the
start of each line and is also used as a reference point to pOSition the second column.

Models with HP 46020A keyboards allow 16 characters (2 rows of 8) in a softkey label. Models with
80-column CRTs allow 14 characters in a softkey label. Models with 50-column CRTs allow only 8
characters for these labels. Therefore, the variable S ere en is also used to control the display of
softkey labels. This is the purpose of the segment at line 1440. The alternative is to restrict all
softkey labels to 8 characters. This is possible, but undesirable. It is difficult to say anything
meaningful in 8 characters. Users with 80-column CRTs will appreciate the extra meaning that is
available with longer labels. The 128 column CRT can use longer labels, but this program uses the
14 character labels.

The ON KEY statements for keys 0 through 4 are used to turn off any typing-aid definitions that
might exist for those keys. An ON KEY definition overrides a typing-aid definition when the
program is running. However, if no ON KEY definition is supplied, the typing-aid definition remains
active. This is not desirable when you are trying to achieve a program-controlled softkey menu.
Therefore, the unused keys are given a "dummy" ON KEY definition to keep the menu clean. For
HP 46020A keyboards, you should "turn off" all 24 softkeys.

Notice also that when five or less softkeys are used, keys 5 through 9 are defined. This is to
accommodate the Model 216. On its keyboard, those are the unshifted keys. Why make the
operator press the shift key? If you have an HP 46020A keyboard, use keys 1 through 5.

The softkeys are defined to send program execution to a parameter-changing routine. Each such
routine ends by sending program execution to the display-update routine. In this example, there is
no demonstrated reason for repeating the ON KEY definitions for every keypress. Those definitions
could have been placed above the "Menu" line and executed only once. However, some applica­
tions might need to change the key definitions in response to changes in program variables. For
example, a key that produces an "insert" operation would be disabled when enough inserts had
been performed to fill an array. Also, it is possible to include the value of a string variable in a key
label. Therefore, the key labels may need to be rewritten as new selections are made. In cases like
these, the ON KEY statements need to be in the update path.

The final "cleanup" action takes place when the operator presses "START". This is the signal that
the selection menu is no longer needed. The menu display is cleared to reflect the fact that it is no
longer in use. The OFF KEY statement performs two functions. It turns off the softkey label area,
which helps keep the CRT neat. More importantly, it cancels all the ON KEY branches. If this were
not done, the operator could cause the program to jump back to the selection menu at any time.
This is probably not desirable. You may want to define some sort of "Abort" key that lets the
operator stop a lengthy operation. But it is not likely that the selection menu would be the
destination of an abort operation. Remember, ON KEY definitions stay around forever unless you
turn them off or the program stops.

286 Communicating with the Operator

Not much has been said about the parameter-changing routines. The examples shown use a simple
IF.. .THEN ... ELSE structure to select between two alternatives. This concept can be expanded to
allow selection of more than two choices. The MOD function is handy when you want to cycle
through several choices. The following example shows a routine that rotates through four choices.
This routine is intended to fit into our menu selection process. Accent protocols for different
languages are shown here, but the technique is applicable to any selection item.

1910 Accents :
1920 Lan9=(Lan9+1) MOO LI
1930 SELECT Lan9
19L10 CASE 0
1950 Lan 9I.lage$= "ENGLISH"
1980 CASE 1
1970 Lan9uage$="FRENCH"
1980 CASE 2
1990 Lan9uage$="SPANISH"
2000 CASE 3
2010 Lan9uage$="GERMAN"
2020 END SELECT
2030 GOTO Menu

Moving a Pointer

! Choose accent protocol

Many programs have a main menu from which the operator chooses a subtask. An example might
be an editing program that gives the choice of getting a file, storing a file, editing a file, merging files,
listing a file, protecting a file, deleting a file, etc. As with all other tasks, there are many ways to
present this choice to the operator. Each task might be assigned to a softkey. The ON KBD
statement might be used to equate individual keys to each task. For example, E for edit, M for
merge, G for get, and so on. Depending on the application, one of these methods may be good.
However, there are some considerations. There might be more choices than softkeys, or the
arrangement of the softkeys might be awkward. The Single-letter method is always just a little
"dangerous". What if the operator tries to type a word? Did "P" stand for "protect" or "purge"?

One alternative is to display all the choices, with a pointer to the current selection. When the
operator is sure that the selection is proper, a single press of a softkey tells the computer "Do it" .
The menu choices can be full phrases with no abbreviations, since the whole CRT is available for
the display. The pointer can be moved by softkeys or by the knob. Since we just discussed the
softkeys, let's use the knob for this example.

The following example clears the CRT, displays seven selections, and allows the knob to cycle a
pointer through the selections in either direction. In a real application, meaningful phrases would be
used to identify the selections, and a softkey would be defined to start the selected process.
Softkeys could also be used to move the pointer up and down. This could be in addition to the
knob or in place of it. A detailed discussion follows the listing.

286 Communicating with the Operator

Not much has been said about the parameter-changing routines. The examples shown use a simple
IF.. .THEN ... ELSE structure to select between two alternatives. This concept can be expanded to
allow selection of more than two choices. The MOD function is handy when you want to cycle
through several choices. The following example shows a routine that rotates through four choices.
This routine is intended to fit into our menu selection process. Accent protocols for different
languages are shown here, but the technique is applicable to any selection item.

1910 Accents :
1920 Lan9=(Lan9+1) MOO LI
1930 SELECT Lan9
19L10 CASE 0
1950 Lan 9I.lage$= "ENGLISH"
1980 CASE 1
1970 Lan9uage$="FRENCH"
1980 CASE 2
1990 Lan9uage$="SPANISH"
2000 CASE 3
2010 Lan9uage$="GERMAN"
2020 END SELECT
2030 GOTO Menu

Moving a Pointer

! Choose accent protocol

Many programs have a main menu from which the operator chooses a subtask. An example might
be an editing program that gives the choice of getting a file, storing a file, editing a file, merging files,
listing a file, protecting a file, deleting a file, etc. As with all other tasks, there are many ways to
present this choice to the operator. Each task might be assigned to a softkey. The ON KBD
statement might be used to equate individual keys to each task. For example, E for edit, M for
merge, G for get, and so on. Depending on the application, one of these methods may be good.
However, there are some considerations. There might be more choices than softkeys, or the
arrangement of the softkeys might be awkward. The Single-letter method is always just a little
"dangerous". What if the operator tries to type a word? Did "P" stand for "protect" or "purge"?

One alternative is to display all the choices, with a pointer to the current selection. When the
operator is sure that the selection is proper, a single press of a softkey tells the computer "Do it" .
The menu choices can be full phrases with no abbreviations, since the whole CRT is available for
the display. The pointer can be moved by softkeys or by the knob. Since we just discussed the
softkeys, let's use the knob for this example.

The following example clears the CRT, displays seven selections, and allows the knob to cycle a
pointer through the selections in either direction. In a real application, meaningful phrases would be
used to identify the selections, and a softkey would be defined to start the selected process.
Softkeys could also be used to move the pointer up and down. This could be in addition to the
knob or in place of it. A detailed discussion follows the listing.

(
100
110
120
130
1110
150
lGO
170
180
180
200
210
220
230
2110
250
2GO
270
280
280
300
310
320
330
3110
350
3GO
370
380
380
1I00
1I10
1I20
1I30
1I110
1I50
lIGO
1I70
1I80
1I80

Communicating with the Operator 287

DIM Marf,er$[lIJ .Horrle$[2J .Clear$[2J
INTEGER Point

Clear$=CHR$(255)&CHR$(75)
Home$=CHR$(255)&CHR$(811)
Marker$="=>"&CHR$(8)&CHR$(8)
Point=l
PRINTER IS 1
GRAPHICS OFF
CONTROL 2.1 jO
CONTROL 1.lIjO
OUTPUT KBDjClear$j

I CLEAR SCR k e,'
! HOME f,e,'
! Pointer arro','
I Default selection
! Use CRT for menu display

I PRT ALL off
! DISPLAY FCTNS off

! Clear CRT

PRINT "Us e shift and knob to move marKer"
PRINT Selection 1 ! Display menu
PRIN T Selection 2
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

Selection 3
Selection 1I
Selection 5
Selection G
Selection 7

ABXY(l.Point+l jMarker$j

ON KNOB .1 GOTO Move_pointer
Spin: GO TO Spin

MOI.Je_pointe r:
IF KNOBY>O THEN

Point=Point+l
ELSE

Point=Point-l
END IF
IF Point<l THEN Point=7
IF Point>7 THEN Point=l

! Display starting marKer

Enable Knob
Wait for knob interrupt

! Check knob dire ction

I Keep pointer within limits

OUTPUT 2jHome$j ! Home the display
PRINT" "j I Erase old marKer
PRINT TABXY(l.Point+l)jMarKer$j ! Displa,' ne',' rnarKer
GOTO Spin

END

The program starts by declaring and initializing the variables. The "clear" and "home" sequences
should look familiar to you by now. The Mar f, e r $ string is a contrived arrow followed by two
backspace characters. The backspace characters return the print position to the beginning of the
arrow each time it is displayed. This facilitates the erase operation that is part of moving the arrow.

After the display is cleared, the menu selections are printed. This is done only once, since the
choices do not include any changing parameters. The TABXY function is used to position a marker
to the left of the default selection. Then the knob is enabled, and the program sits in an idle loop
waiting for an interrupt from the knob.

When the knob is turned, program execution branches to the pointer-moving routine. In this
example, the amount of knob movement is not used, only its direction is extracted from the
KNOBY function. It is possible to add an algorithm that accumulates the counts from the knob so
that a fixed amount of rotation is needed to move the pointer. Such an improvement would give a
more positive "linkage" between the knob and the display, but is not necessary to this demonstra­
tion.

(
100
110
120
130
1110
150
lGO
170
180
180
200
210
220
230
2110
250
2GO
270
280
280
300
310
320
330
3110
350
3GO
370
380
380
1I00
1I10
1I20
1I30
1I110
1I50
lIGO
1I70
1I80
1I80

Communicating with the Operator 287

DIM Marf,er$[lIJ .Horrle$[2J .Clear$[2J
INTEGER Point

Clear$=CHR$(255)&CHR$(75)
Home$=CHR$(255)&CHR$(811)
Marker$="=>"&CHR$(8)&CHR$(8)
Point=l
PRINTER IS 1
GRAPHICS OFF
CONTROL 2.1 jO
CONTROL 1.lIjO
OUTPUT KBDjClear$j

I CLEAR SCR k e,'
! HOME f,e,'
! Pointer arro','
I Default selection
! Use CRT for menu display

I PRT ALL off
! DISPLAY FCTNS off

! Clear CRT

PRINT "Us e shift and knob to move marKer"
PRINT Selection 1 ! Display menu
PRIN T Selection 2
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

Selection 3
Selection 1I
Selection 5
Selection G
Selection 7

ABXY(l.Point+l jMarker$j

ON KNOB .1 GOTO Move_pointer
Spin: GO TO Spin

MOI.Je_pointe r:
IF KNOBY>O THEN

Point=Point+l
ELSE

Point=Point-l
END IF
IF Point<l THEN Point=7
IF Point>7 THEN Point=l

! Display starting marKer

Enable Knob
Wait for knob interrupt

! Check knob dire ction

I Keep pointer within limits

OUTPUT 2jHome$j ! Home the display
PRINT" "j I Erase old marKer
PRINT TABXY(l.Point+l)jMarKer$j ! Displa,' ne',' rnarKer
GOTO Spin

END

The program starts by declaring and initializing the variables. The "clear" and "home" sequences
should look familiar to you by now. The Mar f, e r $ string is a contrived arrow followed by two
backspace characters. The backspace characters return the print position to the beginning of the
arrow each time it is displayed. This facilitates the erase operation that is part of moving the arrow.

After the display is cleared, the menu selections are printed. This is done only once, since the
choices do not include any changing parameters. The TABXY function is used to position a marker
to the left of the default selection. Then the knob is enabled, and the program sits in an idle loop
waiting for an interrupt from the knob.

When the knob is turned, program execution branches to the pointer-moving routine. In this
example, the amount of knob movement is not used, only its direction is extracted from the
KNOBY function. It is possible to add an algorithm that accumulates the counts from the knob so
that a fixed amount of rotation is needed to move the pointer. Such an improvement would give a
more positive "linkage" between the knob and the display, but is not necessary to this demonstra­
tion.

288 Communicating with the Operator

The pointer value is stored in the variable Poi n t . This variable is increased or decreased depend­
ing upon the direction of knob rotation. After the variable is updated, it is necessary to keep it within
the limits of the available selections. The option used here was to "wrap around" when the pointer
reached either end of the list. Another option is to "freeze" the pointer when it reaches an end
position. To do this, lines 420 and 430 would be modified as follows:

420 IF Point<1 THEN Point=1
430 IF Point>7 THEN Point=7

After the pointer value is updated, the display must be changed to reflect the new value. First, the
display is returned to home position. Although the knob no longer scrolls the display, the scrolling
keys are still active. They may have been pressed (perhaps accidentally) and moved the display out
of position. Since the print position is always at the beginning of the old pointer, that pointer can be
erased by printing two blanks. The new pointer is then printed using a TABXY function. Notice that
end-of-line sequences are not needed or desired. All the PRINT statements used in this updating
process use a trailing semicolon to supress the EOL sequence.

In this example, the x-coordinate was always 1. If needed, the x-coordinate is available in the
TABXY function to work with multi-column displays.

Assumed, but not shown, is an ON KEY statement that would start the selected process. This key
would branch to a routine that cleared the display, turned off the knob, and used the variable
Poi n t in a SELECT or ON statement to access the chosen routine.

288 Communicating with the Operator

The pointer value is stored in the variable Poi n t . This variable is increased or decreased depend­
ing upon the direction of knob rotation. After the variable is updated, it is necessary to keep it within
the limits of the available selections. The option used here was to "wrap around" when the pointer
reached either end of the list. Another option is to "freeze" the pointer when it reaches an end
position. To do this, lines 420 and 430 would be modified as follows:

420 IF Point<1 THEN Point=1
430 IF Point>7 THEN Point=7

After the pointer value is updated, the display must be changed to reflect the new value. First, the
display is returned to home position. Although the knob no longer scrolls the display, the scrolling
keys are still active. They may have been pressed (perhaps accidentally) and moved the display out
of position. Since the print position is always at the beginning of the old pointer, that pointer can be
erased by printing two blanks. The new pointer is then printed using a TABXY function. Notice that
end-of-line sequences are not needed or desired. All the PRINT statements used in this updating
process use a trailing semicolon to supress the EOL sequence.

In this example, the x-coordinate was always 1. If needed, the x-coordinate is available in the
TABXY function to work with multi-column displays.

Assumed, but not shown, is an ON KEY statement that would start the selected process. This key
would branch to a routine that cleared the display, turned off the knob, and used the variable
Poi n t in a SELECT or ON statement to access the chosen routine.

Communicating with the Operator 289

Accepting Keyboard Input
The examples in the first half of the chapter used only softkeys to get input from the operator. When
possible, this is a very good choice. It eliminates the need for translating an endless variety of typing
mistakes that might be supplied as input to program variables. Softkey input is very tightly control­
led by the programmer. Unfortunately, it is often necessary to leave that comfortable, controlled
world. Suppose you need to get a device selector from the operator. You can't very well define a
softkey that increments a variable and expect the operator to press it 701 times!

The proper handling of keyboard input may be one of the most neglected areas of applications
programs. Programmers often fail to see the program as users see it, underestimate the potential for
operator error, and balk at the amount of code needed to skillfully handle incoming text. However,
you need not write input routines that can parse broken English with misspelled words. The
objective is simply to keep the program from terminating and to take some unnecessary pressure off
the operator. ObViously, a program can't tell if the operator misspelled a file name until it accesses
the disc. Therefore, error trapping is an important part of handling operator input.

One task that can be performed by the input routine is anticipating common problems. Many of
these are covered in this section's examples, but here is a preview. You know that exceeding the
dimensioned length of a string gives error 18. So don't use short strings in an INPUT statement.
You know that CAPS LOCK might be on or off when the operator starts typing. So use an
uppercase function to compare input with constants. You know that an operator is likely to just
press (CONTINUE) if he isn't sure how to respond. So use reasonable defaults and don't try to send a
null string to a NUM function .

Get Past the First Trap
Before you can do anything with a keyboard input, the computer must satisfy the items in the input
list and complete the input statement. There are two keywords available for accepting input from
the keyboard line: INPUT and LINPUT. Let's start by looking at the features of these two state­
ments.

The main advantages of INPUT are:

• Either numeric or string values can be input.

• If a variable does not receive a value from the keyboard, the value of that variable is left
unchanged.

• A single INPUT statement can process multiple fields, and those fields can be a mix of string
and numeric data.

The INPUT statement can be powerful and flexible. When you know the skill level of the person
running the program, INPUT can save some programming effort. However, this statement does
demand that the operator enter the requested fields properly. To find out the details of INPUT, see
the BASIC Language Reference. This section discusses an alternative to INPUT that can make
fewer demands on the operator. Some of the disadvantages of INPUT are:

• Improper entries to numeric variables can cause errors such as "string is not a valid number"
and overflows.

• Certain characters can cause problems. Commas and quote marks have special meanings and
are the primary offenders.

• If DISP is used to supply a prompt, and multiple values are entered separately, the prompt is
lost.

Communicating with the Operator 289

Accepting Keyboard Input
The examples in the first half of the chapter used only softkeys to get input from the operator. When
possible, this is a very good choice. It eliminates the need for translating an endless variety of typing
mistakes that might be supplied as input to program variables. Softkey input is very tightly control­
led by the programmer. Unfortunately, it is often necessary to leave that comfortable, controlled
world. Suppose you need to get a device selector from the operator. You can't very well define a
softkey that increments a variable and expect the operator to press it 701 times!

The proper handling of keyboard input may be one of the most neglected areas of applications
programs. Programmers often fail to see the program as users see it, underestimate the potential for
operator error, and balk at the amount of code needed to skillfully handle incoming text. However,
you need not write input routines that can parse broken English with misspelled words. The
objective is simply to keep the program from terminating and to take some unnecessary pressure off
the operator. ObViously, a program can't tell if the operator misspelled a file name until it accesses
the disc. Therefore, error trapping is an important part of handling operator input.

One task that can be performed by the input routine is anticipating common problems. Many of
these are covered in this section's examples, but here is a preview. You know that exceeding the
dimensioned length of a string gives error 18. So don't use short strings in an INPUT statement.
You know that CAPS LOCK might be on or off when the operator starts typing. So use an
uppercase function to compare input with constants. You know that an operator is likely to just
press (CONTINUE) if he isn't sure how to respond. So use reasonable defaults and don't try to send a
null string to a NUM function .

Get Past the First Trap
Before you can do anything with a keyboard input, the computer must satisfy the items in the input
list and complete the input statement. There are two keywords available for accepting input from
the keyboard line: INPUT and LINPUT. Let's start by looking at the features of these two state­
ments.

The main advantages of INPUT are:

• Either numeric or string values can be input.

• If a variable does not receive a value from the keyboard, the value of that variable is left
unchanged.

• A single INPUT statement can process multiple fields, and those fields can be a mix of string
and numeric data.

The INPUT statement can be powerful and flexible. When you know the skill level of the person
running the program, INPUT can save some programming effort. However, this statement does
demand that the operator enter the requested fields properly. To find out the details of INPUT, see
the BASIC Language Reference. This section discusses an alternative to INPUT that can make
fewer demands on the operator. Some of the disadvantages of INPUT are:

• Improper entries to numeric variables can cause errors such as "string is not a valid number"
and overflows.

• Certain characters can cause problems. Commas and quote marks have special meanings and
are the primary offenders.

• If DISP is used to supply a prompt, and multiple values are entered separately, the prompt is
lost.

290 Communicating with the Operator

The problem with INPUT is that the program is powerless to overcome the disadvantages. If you
are asking for a numeric quantity, and the operator keeps trying to enter a name, the program will
never leave the INPUT statement. The operating system will beep and display error 32 until the
operator gets tired or gets smart. In the event of an error, the computer automatically re-executes
the INPUT statement until the operator satisfies all the requirements. Your program never gets a
look at his input and you can't trap the errors.

The LINPUT statement can help with these potential problems. LINPUT stands for "Literal IN­
PUT". The result of any LIN PUT statement is a single string that contains an exact image of what
the operator typed. If (CONTINUE) is pressed with no entry, the result is the null string. (Nothing typed,
nothing returned.) If you need things like default values, numeric quantities, and multiple values,
you will need to process the string after you get it.

Since LINPUT accepts any characters without any special considerations, the only normal error
would be string overflow. If the string used to hold the LINPUT characters is dimensioned to 256
characters or more, it becomes impossible to overflow the string from the keyboard line. Therefore,
LINPUT is a very "safe" way to get data from the keyboard line. The folloWing example shows
some common techniques for accepting operator input.

Entering a Single Item
This program segment requests the current month for use later in the program. A detailed discus­
sion follows the listing. Note that the general techniques presented can be used to process many
kinds of input. Entering a month is merely a convenient example.

100 OPTION BASE 1
110 OIM In$[256] .Months$(12)[3]

INTEGER TeMP.Current_Month
OUTPUT KBO;"SCRATCH KEY~X";
FOR TefrlP=l TO 12

READ Months$(TeMP)
NE)-(T TefrlP

! Typing aids distracting if not needed

! String data for Month naMes

120
130
ll10
150
160
170
180
180

DATA JAN.FEB.MAR.APR.MAY.JUN.JUL.AUG.SEP.OCT.NOV.DEC
Cu r rent_frlont h=3 ! Default l.lalue

200 Try_nUMeric: !
210 DISP "Enter the Month. Default = ";Months$(Current_Month);
220 LINPUT ""tIn$! Asf, for operator input
230 IF NOT LEN(In$) THEN ! Check for no input
2110 TeMP=Current_Month ! Use default value
250 GOTO Found
260 END IF
270 ON ERROR GOTO String ! If no nUMerals. May be a string naMe
280 ENTER In$;TeMP ! Try to extract a nUMber
280 OFF ERROR ! ENTER worKed; change error trap
300 IF TeMP(l OR TeMP)12 THEN Not_valid ! ChecK for iMPossible Month value
310 GOTO Found Value is OK; use it
320 !
330 String:
3110 OFF ERROR ENTER error trap no longer needed
350 In$=UPC$(In$)
360 FOR TeMP=l TO 12 ! Search for 1st three letters of Month
370 IF POS(In$.Months$(TeMP» THEN Found ! Match found; use that value
380 ND(T TeMP ! If loop finishes. no frlatch 'Alas found
380 !
lIOO Not_valid:
lIl0 BEEP
lI20 DISP "Not a valid Month. Please trY again."
lI30 WAIT 2
lIliO GOTO Try_nUMeric
lI50
lI60 Found:
lI70 Current_Month=TeMP
lI80
lI80 ! PrograM execution continues here

290 Communicating with the Operator

The problem with INPUT is that the program is powerless to overcome the disadvantages. If you
are asking for a numeric quantity, and the operator keeps trying to enter a name, the program will
never leave the INPUT statement. The operating system will beep and display error 32 until the
operator gets tired or gets smart. In the event of an error, the computer automatically re-executes
the INPUT statement until the operator satisfies all the requirements. Your program never gets a
look at his input and you can't trap the errors.

The LINPUT statement can help with these potential problems. LINPUT stands for "Literal IN­
PUT". The result of any LIN PUT statement is a single string that contains an exact image of what
the operator typed. If (CONTINUE) is pressed with no entry, the result is the null string. (Nothing typed,
nothing returned.) If you need things like default values, numeric quantities, and multiple values,
you will need to process the string after you get it.

Since LINPUT accepts any characters without any special considerations, the only normal error
would be string overflow. If the string used to hold the LINPUT characters is dimensioned to 256
characters or more, it becomes impossible to overflow the string from the keyboard line. Therefore,
LINPUT is a very "safe" way to get data from the keyboard line. The folloWing example shows
some common techniques for accepting operator input.

Entering a Single Item
This program segment requests the current month for use later in the program. A detailed discus­
sion follows the listing. Note that the general techniques presented can be used to process many
kinds of input. Entering a month is merely a convenient example.

100 OPTION BASE 1
110 OIM In$[256] .Months$(12)[3]

INTEGER TeMP.Current_Month
OUTPUT KBO;"SCRATCH KEY~X";
FOR TefrlP=l TO 12

READ Months$(TeMP)
NE)-(T TefrlP

! Typing aids distracting if not needed

! String data for Month naMes

120
130
ll10
150
160
170
180
180

DATA JAN.FEB.MAR.APR.MAY.JUN.JUL.AUG.SEP.OCT.NOV.DEC
Cu r rent_frlont h=3 ! Default l.lalue

200 Try_nUMeric: !
210 DISP "Enter the Month. Default = ";Months$(Current_Month);
220 LINPUT ""tIn$! Asf, for operator input
230 IF NOT LEN(In$) THEN ! Check for no input
2110 TeMP=Current_Month ! Use default value
250 GOTO Found
260 END IF
270 ON ERROR GOTO String ! If no nUMerals. May be a string naMe
280 ENTER In$;TeMP ! Try to extract a nUMber
280 OFF ERROR ! ENTER worKed; change error trap
300 IF TeMP(l OR TeMP)12 THEN Not_valid ! ChecK for iMPossible Month value
310 GOTO Found Value is OK; use it
320 !
330 String:
3110 OFF ERROR ENTER error trap no longer needed
350 In$=UPC$(In$)
360 FOR TeMP=l TO 12 ! Search for 1st three letters of Month
370 IF POS(In$.Months$(TeMP» THEN Found ! Match found; use that value
380 ND(T TeMP ! If loop finishes. no frlatch 'Alas found
380 !
lIOO Not_valid:
lIl0 BEEP
lI20 DISP "Not a valid Month. Please trY again."
lI30 WAIT 2
lIliO GOTO Try_nUMeric
lI50
lI60 Found:
lI70 Current_Month=TeMP
lI80
lI80 ! PrograM execution continues here

Communicating with the Operator 291

The first statement after the variable declarations removes the typing-aid key definitions. This is
done with an OUTPUT to the keyboard because SCRATCH commands cannot be stored as a
program line. You mayor may not want to include this in your programs. If you are not using
softkeys, the presence of softkey labels may be distracting to the operator. They may indicate that
many response choices are available when the keys are actually unrelated to the current question.
On the other hand, your program may have loaded the typing aids with responses intended to help
the operator. This is possible, but was not done in the example. Obviously, if KBD is not present,
the SCRATCH KEY command will generate an error and shouldn't be included.

An interesting feature of this example is that the operator may respond with the number of the
month, the name of the month, or an abbreviation of the name of the month. The array M 0 nth s $

is loaded with the first three letters of each month name so that name responses can be identified.

The final initialization step is to provide a default for the current month. When possible, requests for
input should be accompanied by a default. If the default is well chosen, this increases the chances
that the operator will not have to do any typing. Even if the default will usually be changed, it can
help show the operator an acceptable format for the response.

The prompts available with INPUT and LINPUT statement must be literals and therefore cannot
shown any program variables. This restriction is easily overcome. Prompts appear in the same line
as DISP items. The DISP statement can contain variables. To use DISP items as a prompt, a trailing
semicolon is used in the DISP statements, and a null prompt is used in the LINPUT statement. This
is a very useful technique that is applicable to both LINPUT and single-prompt INPUT statements.

After the keyboard input is received, the first check determines if any data was entered. It is
reasonable to assume that the space bar might have been bumped aCcidentally during any
keyboard input. The TRIM$ function corrects this "problem". A null input indicates that the
operator wanted the default value, so no further processing is done.

The next check is to see if the number of the month was entered. Numerals can be converted to
numeric data with the VAL function , but this demands the same strict format as INPUT. A much
more powerful and flexible way to extract numeric data from a string is by using the ENTER
statement. Admittedly, it is not likely that an operator would enter extra text with the number - but
why generate an error if he does? The LINPUT/ENTER combination can extract the month from
responses like these:

4
114"
MONTH=4
4th frlonth

If a number is found, the error trap is disabled. In actual applications, the OFF ERROR statement
would be replaced by an ON ERROR statement that re-establishes the normal error trapping used
in the program. The final check ensures that the month is within a meaningful range. You want to
give the operator maximum flexibility, but accepting the 54th month is too flexible. Range checking
is a technique that should be used in all good operator interfaces.

Communicating with the Operator 291

The first statement after the variable declarations removes the typing-aid key definitions. This is
done with an OUTPUT to the keyboard because SCRATCH commands cannot be stored as a
program line. You mayor may not want to include this in your programs. If you are not using
softkeys, the presence of softkey labels may be distracting to the operator. They may indicate that
many response choices are available when the keys are actually unrelated to the current question.
On the other hand, your program may have loaded the typing aids with responses intended to help
the operator. This is possible, but was not done in the example. Obviously, if KBD is not present,
the SCRATCH KEY command will generate an error and shouldn't be included.

An interesting feature of this example is that the operator may respond with the number of the
month, the name of the month, or an abbreviation of the name of the month. The array M 0 nth s $

is loaded with the first three letters of each month name so that name responses can be identified.

The final initialization step is to provide a default for the current month. When possible, requests for
input should be accompanied by a default. If the default is well chosen, this increases the chances
that the operator will not have to do any typing. Even if the default will usually be changed, it can
help show the operator an acceptable format for the response.

The prompts available with INPUT and LINPUT statement must be literals and therefore cannot
shown any program variables. This restriction is easily overcome. Prompts appear in the same line
as DISP items. The DISP statement can contain variables. To use DISP items as a prompt, a trailing
semicolon is used in the DISP statements, and a null prompt is used in the LINPUT statement. This
is a very useful technique that is applicable to both LINPUT and single-prompt INPUT statements.

After the keyboard input is received, the first check determines if any data was entered. It is
reasonable to assume that the space bar might have been bumped aCcidentally during any
keyboard input. The TRIM$ function corrects this "problem". A null input indicates that the
operator wanted the default value, so no further processing is done.

The next check is to see if the number of the month was entered. Numerals can be converted to
numeric data with the VAL function , but this demands the same strict format as INPUT. A much
more powerful and flexible way to extract numeric data from a string is by using the ENTER
statement. Admittedly, it is not likely that an operator would enter extra text with the number - but
why generate an error if he does? The LINPUT/ENTER combination can extract the month from
responses like these:

4
114"
MONTH=4
4th frlonth

If a number is found, the error trap is disabled. In actual applications, the OFF ERROR statement
would be replaced by an ON ERROR statement that re-establishes the normal error trapping used
in the program. The final check ensures that the month is within a meaningful range. You want to
give the operator maximum flexibility, but accepting the 54th month is too flexible. Range checking
is a technique that should be used in all good operator interfaces.

292 Communicating with the Operator

Although ENTER can do a lot, it cannot extract a number from a string that has no numerals. Since
the operator is permitted (and encouraged) to use the name of the month, the program must
handle this case. That is the purpose of the ON ERROR statement before the ENTER. If the ENTER
cannot find any numeric value, the error trap directs program execution to the segment labeled
S t r i n 9. This segment changes the error trap, since it has served its purpose. Then the input data is
searched for the presence of a month name. A string comparison could be used, but that requires
that the month name be in a fixed location within the response. Again, there is no reason for such a
restriction. The POS function will find the desired letters anywhere in the line. The UPC$ function
eliminates any requirements about letter case. Thus, responses like the following would all be valid:

JAN
Januan'
MONTH=JAN
"january"

In any keyboard-input situation, there is always some possibility that the operator entered pure
garbage. If all the attempts to find a meaningful number or name fail, an error message is displayed,
and the entire process is repeated. Another programming choice is to assume the default if no
meaningful input is found. You must judge for yourself which choice is best. If an accurate operator
input is very important to the program, then the program should keep asking until the operator gets
smart. If the value in question is not important, it might be best to assume a default and move on to
the next stage of the program.

Note that the desired variable, Cur r e n t _ (lIOn t h , is not updated unless a valid input was re­
ceived. All the testing and searching is done using a temporary variable. This is done so that the
default value is not destroyed by an invalid input.

292 Communicating with the Operator

Although ENTER can do a lot, it cannot extract a number from a string that has no numerals. Since
the operator is permitted (and encouraged) to use the name of the month, the program must
handle this case. That is the purpose of the ON ERROR statement before the ENTER. If the ENTER
cannot find any numeric value, the error trap directs program execution to the segment labeled
S t r i n 9. This segment changes the error trap, since it has served its purpose. Then the input data is
searched for the presence of a month name. A string comparison could be used, but that requires
that the month name be in a fixed location within the response. Again, there is no reason for such a
restriction. The POS function will find the desired letters anywhere in the line. The UPC$ function
eliminates any requirements about letter case. Thus, responses like the following would all be valid:

JAN
Januan'
MONTH=JAN
"january"

In any keyboard-input situation, there is always some possibility that the operator entered pure
garbage. If all the attempts to find a meaningful number or name fail, an error message is displayed,
and the entire process is repeated. Another programming choice is to assume the default if no
meaningful input is found. You must judge for yourself which choice is best. If an accurate operator
input is very important to the program, then the program should keep asking until the operator gets
smart. If the value in question is not important, it might be best to assume a default and move on to
the next stage of the program.

Note that the desired variable, Cur r e n t _ (lIOn t h , is not updated unless a valid input was re­
ceived. All the testing and searching is done using a temporary variable. This is done so that the
default value is not destroyed by an invalid input.

Communicating with the Operator 293

LIN PUT with Multiple Fields
This example requests the entire date: day, month, and year. As in the previous example, there is
nothing special about dates. The techniques shown have general applications. A detailed discussion
follows the listing.

100 OPTION BASE 1
110 DIM 11'1$[256] ,Months$(12) [3] ,Left$[2]
120 INTEGER Temp ,Current_da}' ,Current_ITlonth ,C'.lrrent_ y ear
130 Fmt: IMAGE #,2D,",",3A,",",K,K ! Format of date input
140 FOR Temp=1 TO 12
150 READ Months$(Temp) ! String data for month names
160 NE>(T Temp
170 DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
180 Left$=CHR$(255)&CHR$(72) Moves cursor to beginning of line

Current_day=1
Cur r e n t _ ITI 0 nth = 11

Set UP default values •••
In real applications, these might

180
200
210
220
230
240
250
260

Current_year=1882 come from the clocK or a file.
r

Get_date:
OUT PUT K BD US I N G F ITI t ; Cur r e 1'1 t _ d a}' ,M 0 1'1 t h s $ (Cur r e 1'1 t _ ITI 0 1'1 t h) ,C 1.1 r r e 1'1 t _}' ear, L eft $
LINPUT "Enter the date, using this format." ,11'1$
ON ERRDR GOTO Not_valid ! No numerals = error for ENTER

270 ENTER In$;Temp ! Extract the day
280 OFF ERROR I ENTER worKed; change error trap
280 IF Temp(1 OR Temp;31 THEN Not_valid I ChecK for impossible daY-of-month
300 Current_day=Temp ! Value OK; use it
310 I
320
330

TeITIP=POS(11'1$," ,")
IF NOT Temp THEN Not_valid

I Look for first delimiter
! No delimiter = bad format

340 In$=UPC$(In$[Temp+l]) Remove date field; maKe uppercase
350 FOR Temp=1 TO 12 Try to find 1st three letters
360 IF POS(In$,Months$(Temp» THEN Found_month
370 NEXT TelTIP
380
380 Not_valid:
400 OFF ERROR ! Change ENTER error trapping
410 BEEP
420 DISP "Improper entrY. Please try again."
430 WAIT 2
440 GOTO Get_date ! Start over with this routine
450
460 Found_month:
470
480
480
500
510
520
530
540

Current_month=Temp
ON ERROR GOTO Not_valid
ENTER 11'1$;Temp
OFF ERROR
IF Temp(100 THEN Temp=Temp+1800
Current_year=Temp
!
! Program execution continues here

! Value OK; use it
! No numerals = error for ENTER

Extract the }'ear
I ENTER worked; change error trap
! Maybe there is no century?
! Value OK; use it

The first segment declares the variables, stores the month abbreviations, establishes some defaults,
and contains an IMAGE statement that specifies the desired date format. Although defaults are
important, program constants are not always the best way to supply defaults. Using the constant
"12" as a default for a GPIO interface select code makes sense. But the date will almost always be
different from a constant stored in the program. A real program should adopt some other method of
assuming the date. If your computer has a continuous clock provided by the Powerfail option, the
date might be extracted from the clock value. If the program uses a file with the date stored in it, the
last access date might be close to the current date.

Communicating with the Operator 293

LIN PUT with Multiple Fields
This example requests the entire date: day, month, and year. As in the previous example, there is
nothing special about dates. The techniques shown have general applications. A detailed discussion
follows the listing.

100 OPTION BASE 1
110 DIM 11'1$[256] ,Months$(12) [3] ,Left$[2]
120 INTEGER Temp ,Current_da}' ,Current_ITlonth ,C'.lrrent_ y ear
130 Fmt: IMAGE #,2D,",",3A,",",K,K ! Format of date input
140 FOR Temp=1 TO 12
150 READ Months$(Temp) ! String data for month names
160 NE>(T Temp
170 DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
180 Left$=CHR$(255)&CHR$(72) Moves cursor to beginning of line

Current_day=1
Cur r e n t _ ITI 0 nth = 11

Set UP default values •••
In real applications, these might

180
200
210
220
230
240
250
260

Current_year=1882 come from the clocK or a file.
r

Get_date:
OUT PUT K BD US I N G F ITI t ; Cur r e 1'1 t _ d a}' ,M 0 1'1 t h s $ (Cur r e 1'1 t _ ITI 0 1'1 t h) ,C 1.1 r r e 1'1 t _}' ear, L eft $
LINPUT "Enter the date, using this format." ,11'1$
ON ERRDR GOTO Not_valid ! No numerals = error for ENTER

270 ENTER In$;Temp ! Extract the day
280 OFF ERROR I ENTER worKed; change error trap
280 IF Temp(1 OR Temp;31 THEN Not_valid I ChecK for impossible daY-of-month
300 Current_day=Temp ! Value OK; use it
310 I
320
330

TeITIP=POS(11'1$," ,")
IF NOT Temp THEN Not_valid

I Look for first delimiter
! No delimiter = bad format

340 In$=UPC$(In$[Temp+l]) Remove date field; maKe uppercase
350 FOR Temp=1 TO 12 Try to find 1st three letters
360 IF POS(In$,Months$(Temp» THEN Found_month
370 NEXT TelTIP
380
380 Not_valid:
400 OFF ERROR ! Change ENTER error trapping
410 BEEP
420 DISP "Improper entrY. Please try again."
430 WAIT 2
440 GOTO Get_date ! Start over with this routine
450
460 Found_month:
470
480
480
500
510
520
530
540

Current_month=Temp
ON ERROR GOTO Not_valid
ENTER 11'1$;Temp
OFF ERROR
IF Temp(100 THEN Temp=Temp+1800
Current_year=Temp
!
! Program execution continues here

! Value OK; use it
! No numerals = error for ENTER

Extract the }'ear
I ENTER worked; change error trap
! Maybe there is no century?
! Value OK; use it

The first segment declares the variables, stores the month abbreviations, establishes some defaults,
and contains an IMAGE statement that specifies the desired date format. Although defaults are
important, program constants are not always the best way to supply defaults. Using the constant
"12" as a default for a GPIO interface select code makes sense. But the date will almost always be
different from a constant stored in the program. A real program should adopt some other method of
assuming the date. If your computer has a continuous clock provided by the Powerfail option, the
date might be extracted from the clock value. If the program uses a file with the date stored in it, the
last access date might be close to the current date.

294 Communicating with the Operator

A significant feature of this example is the handling of multiple fields. Multiple fields bring with them
two special considerations. First, there is the need to show the operator the proper format for the
fields. Second, there is the need to extract those fields from a single string, assuming that LINPUT is
used.

The proper format for the fields is shown to the operator by using an OUTPUT to the keyboard.
The default values are sent to the keyboard line, formatted by an IMAGE statement. This not only
gives the operator the choice of simply pressing (CONTINUE), but it also shows the appearance of a
correct response. If the default date is generated by a good source, it is reasonable to expect that the
"day" field will be changed more often than the month or year. Therefore, the OUTPUT to the
keyboard finishes by placing the cursor at the beginning of the line, in the day field.

The ON ERROR/ENTER technique is similar to the previous example. The ENTER statement
extracts only the day because the comma terminates that field. The day is checked against reason­
able limits and assigned to the actual variable if it is acceptable. This range checking could be
expanded to check for the maximum day allowed in a specific month.

After the day is extracted, the string is searched for the comma delimiter, and the day field is
removed. This is done to prevent the day number from interfering with the extraction of the year
number. The resulting string is searched for the month name using the same technique as the
previous example.

The year is extracted using the ENTER technique. If a valid number is found, one last test is
performed. The response might have contained only the last two digits of the year. This is not likely,
since the recommended format showed all four digits; but why complain if it happens? If only two
digits are found, the program supplies the 1900 automatically. By the way, this technique is not too
effective if the dates being entered might cross century boundaries.

Yes and No Questions
Frequently, all the computer needs from the operator is a simple "yes" or "no" . The "Expanded
Softkey Menu" example showed one way to handle yes/no states. However, that much processing
is not always desired. If you only need to ask a single question, why program 10 softkeys and 18
CRT lines? The following user-defined function shows some simple, but friendly, processing for
yes/no answers.

The objective of this routine is to provide as much flexibility as possible. This means that we don't
bother the operator about such things as bumping the space bar, pressing (CAPS LOCK), or responding
with a simple (CONTINUE). The main program provides a prompt or explanation and performs a
LINPUT with a 256-character string. It then passes that string to this function and tests the results.

294 Communicating with the Operator

A significant feature of this example is the handling of multiple fields. Multiple fields bring with them
two special considerations. First, there is the need to show the operator the proper format for the
fields. Second, there is the need to extract those fields from a single string, assuming that LINPUT is
used.

The proper format for the fields is shown to the operator by using an OUTPUT to the keyboard.
The default values are sent to the keyboard line, formatted by an IMAGE statement. This not only
gives the operator the choice of simply pressing (CONTINUE), but it also shows the appearance of a
correct response. If the default date is generated by a good source, it is reasonable to expect that the
"day" field will be changed more often than the month or year. Therefore, the OUTPUT to the
keyboard finishes by placing the cursor at the beginning of the line, in the day field.

The ON ERROR/ENTER technique is similar to the previous example. The ENTER statement
extracts only the day because the comma terminates that field. The day is checked against reason­
able limits and assigned to the actual variable if it is acceptable. This range checking could be
expanded to check for the maximum day allowed in a specific month.

After the day is extracted, the string is searched for the comma delimiter, and the day field is
removed. This is done to prevent the day number from interfering with the extraction of the year
number. The resulting string is searched for the month name using the same technique as the
previous example.

The year is extracted using the ENTER technique. If a valid number is found, one last test is
performed. The response might have contained only the last two digits of the year. This is not likely,
since the recommended format showed all four digits; but why complain if it happens? If only two
digits are found, the program supplies the 1900 automatically. By the way, this technique is not too
effective if the dates being entered might cross century boundaries.

Yes and No Questions
Frequently, all the computer needs from the operator is a simple "yes" or "no" . The "Expanded
Softkey Menu" example showed one way to handle yes/no states. However, that much processing
is not always desired. If you only need to ask a single question, why program 10 softkeys and 18
CRT lines? The following user-defined function shows some simple, but friendly, processing for
yes/no answers.

The objective of this routine is to provide as much flexibility as possible. This means that we don't
bother the operator about such things as bumping the space bar, pressing (CAPS LOCK), or responding
with a simple (CONTINUE). The main program provides a prompt or explanation and performs a
LINPUT with a 256-character string. It then passes that string to this function and tests the results.

Communicating with the Operator 295

The function uses a local copy of the string just in case you need the actual input for some other
purpose in the main program. The response is trimmed and placed in uppercase. Then the first
letter is tested. Four cases are identified: the answer was "Y" (for yes) , the answer was "N" (for no) ,
no answer was given, or the answer was not recognized.

2 000 DEF FN Yes(X $)
201 0 DI M TeMP$[l]
20 2 0 Tefrl p$[l tl]= TR I M$ D($)
20 3 0 SEL ECT TeMP$
2 0 40 CASE" Y" t " }' "

2 0 50 RE TURN 1
20 6 0 CASE" N" t" n"
2 0 70 RET URN 0
2 0 80 CASE " "
2 09 0 RET UR N - 1
2 10 0 CASE EL SE
21 10 RETURN -2
2 12 0 EN D SELECT
213 0 FNEND

As mentioned previously, every question should have a default answer. The default answer for a
yes/no question depends greatly upon the nature of the question. If you are asking the operator for
permission to use standard, reasonable parameters for an operation, then "yes" is a helpful default.
If you are asking for permission to initialize a disc and destroy all files, then the default answer had
better be "NO" ! When a question or choice occurs more than once in a program, it is usually a
good technique to use the operator's previous response as the default. Put yourself in the user's
place and think about how the program should run.

To use this function to best advantage, the result must be tested thoughtfully. If the operator simply
presses (CONTINUE), the result will be - 1. Therefore, the default should be assumed if FNY es = - 1.
A "yes" answer is indicated by FNY es = 1; whereas a non-negative answer can be tested simply as
IF FNYe s . A non-affirmative answer is FNYes< l . Any result less than zero is a noncommittal
reply. Perhaps the default could be assumed for any negative result, or perhaps a negative result
should cause the question to be repeated. The test IF NOT F N Ye s reveals a negative reply. As
you can see, many shades of interpretation are possible.

An Example Custom Keyboard Interface
A simple example program that implements a "custom" keyboard interface is proVided in the
"Manual Examples" disc file named " KBD_LN_ED" . It enables a branch to an interrupt service
routine for any keystroke using ON KBD. When a branch is initiated, it traps the key codes
(including " system key" codes) with the KBD$ function , and then initiates corresponding
actions. Note that the SYSTEM$(" KBD LINE") function allows you to use the BASIC system's
keyboard-input editing features with OUTPUT to the keyboard (select code 2) .

Communicating with the Operator 295

The function uses a local copy of the string just in case you need the actual input for some other
purpose in the main program. The response is trimmed and placed in uppercase. Then the first
letter is tested. Four cases are identified: the answer was "Y" (for yes) , the answer was "N" (for no) ,
no answer was given, or the answer was not recognized.

2 000 DEF FN Yes(X $)
201 0 DI M TeMP$[l]
20 2 0 Tefrl p$[l tl]= TR I M$ D($)
20 3 0 SEL ECT TeMP$
2 0 40 CASE" Y" t " }' "

2 0 50 RE TURN 1
20 6 0 CASE" N" t" n"
2 0 70 RET URN 0
2 0 80 CASE " "
2 09 0 RET UR N - 1
2 10 0 CASE EL SE
21 10 RETURN -2
2 12 0 EN D SELECT
213 0 FNEND

As mentioned previously, every question should have a default answer. The default answer for a
yes/no question depends greatly upon the nature of the question. If you are asking the operator for
permission to use standard, reasonable parameters for an operation, then "yes" is a helpful default.
If you are asking for permission to initialize a disc and destroy all files, then the default answer had
better be "NO" ! When a question or choice occurs more than once in a program, it is usually a
good technique to use the operator's previous response as the default. Put yourself in the user's
place and think about how the program should run.

To use this function to best advantage, the result must be tested thoughtfully. If the operator simply
presses (CONTINUE), the result will be - 1. Therefore, the default should be assumed if FNY es = - 1.
A "yes" answer is indicated by FNY es = 1; whereas a non-negative answer can be tested simply as
IF FNYe s . A non-affirmative answer is FNYes< l . Any result less than zero is a noncommittal
reply. Perhaps the default could be assumed for any negative result, or perhaps a negative result
should cause the question to be repeated. The test IF NOT F N Ye s reveals a negative reply. As
you can see, many shades of interpretation are possible.

An Example Custom Keyboard Interface
A simple example program that implements a "custom" keyboard interface is proVided in the
"Manual Examples" disc file named " KBD_LN_ED" . It enables a branch to an interrupt service
routine for any keystroke using ON KBD. When a branch is initiated, it traps the key codes
(including " system key" codes) with the KBD$ function , and then initiates corresponding
actions. Note that the SYSTEM$(" KBD LINE") function allows you to use the BASIC system's
keyboard-input editing features with OUTPUT to the keyboard (select code 2) .

296 Communicating with the Operator 296 Communicating with the Operator

Error Handling
Chapter

11

Introduction
Most programs are subject to errors happening at run time, even if all the typographical/syntactical
errors have been shaken out in the process of entering the program into the computer in the first
place. There are three courses of action to take with respect to errors:

1. Try to prevent the error from happening in the first place

2. Once an error occurs, try to recover from it and continue execution

3. Do nothing - let the program roll over and die if an error happens

The last alternative, which may seem frivolous at first glance, is certainly the easiest to implement,
and the nature of HP desktop computers is such that this is often a feasible choice. Upon en­
countering a run-time error, the computer will pause program execution, and display a message
giving the error number and the line in which the error happened, and the programmer can then
examine the program in light of this information and fix things up. The key word here is "pro­
grammer". If the person running the program is also the person who wrote the program, this
approach works fine. If the person running the program did not write it, or worse yet, does not
know how to program, some attempt should be made to prevent errors from happening in the first
place, or to recover from errors and continue running.

297

Error Handling
Chapter

11

Introduction
Most programs are subject to errors happening at run time, even if all the typographical/syntactical
errors have been shaken out in the process of entering the program into the computer in the first
place. There are three courses of action to take with respect to errors:

1. Try to prevent the error from happening in the first place

2. Once an error occurs, try to recover from it and continue execution

3. Do nothing - let the program roll over and die if an error happens

The last alternative, which may seem frivolous at first glance, is certainly the easiest to implement,
and the nature of HP desktop computers is such that this is often a feasible choice. Upon en­
countering a run-time error, the computer will pause program execution, and display a message
giving the error number and the line in which the error happened, and the programmer can then
examine the program in light of this information and fix things up. The key word here is "pro­
grammer". If the person running the program is also the person who wrote the program, this
approach works fine. If the person running the program did not write it, or worse yet, does not
know how to program, some attempt should be made to prevent errors from happening in the first
place, or to recover from errors and continue running.

297

298 Error Handling

Anticipating Operator Errors
When a programmer writes a program, he or she knows exactly what the program is expected to
do, and what kinds of inputs make sense for the problem. Given this viewpoint, there is a strong
tendency for the programmer not to take into account the possibility that other people using the
program might not understand the boundary conditions. A programmer has no choice but to
assume that every time a user has the opportunity to feed an input to a program, a mistake can be
made and an error can be caused. If the programmer's outlook is noble, he or she will try to save
the user from needless anguish and frustration. If the programmer's outlook is self-centered, he or
she will try to keep from getting involved in future support problems. In either case, an effort must
be made to make the program foolproof.

Boundary Conditions
A classic example of anticipating an operator error is the "division by zero" situation. An INPUT
statement is used to get the value for a variable, and the variable is used as a divisor later in the
program. If the operator should happen to enter a zero, aCcidentally or intentionally, the program
crashes with an error 31. It is far better to be watching for an out-of-range input and respond
gracefully. One method is shown in the following example.

100 INPU T "Miles tra l.leled and total hours" ,Miles ,Hours

110 IF Hours=O THEN

120 BEEP

130 PRINT "IfT1Proper I.lalue entered for hours. "

140 PRINT "Tr}' again!"

150 GoTo 100

160 END IF

170 Mph=Miles/Hour s

Consider another simple example of giving a user the choice of six colors for a certain bar graph. It
might be preferable to have the user pick a number corresponding to the color he wished to choose
instead of having to type in up to six characters. In this case, the program wouldn't have to check
for each. number, but rather it could use the logical comparators to check for an entire range:

4030 OUTPUT KBD;Clear$; ! Clear the screen

4040 DATA GREEN,BLUE,RED,YELLoW,PURPLE,PINK

4050 ALLOCATE Colors$(1 : 6)[6J

4060 READ Colors$(*)

4070 FOR 1=1 TO 6
4080 PRINT USING "DD,){,K"jI,Colors$(I)

4080 ND(T I

41 0 0 Asf, : INPUT " Picf, the nUfTlber of a color" ,I

4110 IF 1) =1 AND 1 (=6 THEN Valid_Color

4140 BEEP

4150 DISP "Inl.lalid anSIAler -- ";

4160 WAIT 1

4170 GoTo As f,

The above example needs a little extra safeguarding. I, the variable being input, should be declared
to be an integer, since the only valid inputs are 1, 2, 3, 4, 5, and 6. An answer like "pick the 3. 14th
color listed" does not make sense.

298 Error Handling

Anticipating Operator Errors
When a programmer writes a program, he or she knows exactly what the program is expected to
do, and what kinds of inputs make sense for the problem. Given this viewpoint, there is a strong
tendency for the programmer not to take into account the possibility that other people using the
program might not understand the boundary conditions. A programmer has no choice but to
assume that every time a user has the opportunity to feed an input to a program, a mistake can be
made and an error can be caused. If the programmer's outlook is noble, he or she will try to save
the user from needless anguish and frustration. If the programmer's outlook is self-centered, he or
she will try to keep from getting involved in future support problems. In either case, an effort must
be made to make the program foolproof.

Boundary Conditions
A classic example of anticipating an operator error is the "division by zero" situation. An INPUT
statement is used to get the value for a variable, and the variable is used as a divisor later in the
program. If the operator should happen to enter a zero, aCcidentally or intentionally, the program
crashes with an error 31. It is far better to be watching for an out-of-range input and respond
gracefully. One method is shown in the following example.

100 INPU T "Miles tra l.leled and total hours" ,Miles ,Hours

110 IF Hours=O THEN

120 BEEP

130 PRINT "IfT1Proper I.lalue entered for hours. "

140 PRINT "Tr}' again!"

150 GoTo 100

160 END IF

170 Mph=Miles/Hour s

Consider another simple example of giving a user the choice of six colors for a certain bar graph. It
might be preferable to have the user pick a number corresponding to the color he wished to choose
instead of having to type in up to six characters. In this case, the program wouldn't have to check
for each. number, but rather it could use the logical comparators to check for an entire range:

4030 OUTPUT KBD;Clear$; ! Clear the screen

4040 DATA GREEN,BLUE,RED,YELLoW,PURPLE,PINK

4050 ALLOCATE Colors$(1 : 6)[6J

4060 READ Colors$(*)

4070 FOR 1=1 TO 6
4080 PRINT USING "DD,){,K"jI,Colors$(I)

4080 ND(T I

41 0 0 Asf, : INPUT " Picf, the nUfTlber of a color" ,I

4110 IF 1) =1 AND 1 (=6 THEN Valid_Color

4140 BEEP

4150 DISP "Inl.lalid anSIAler -- ";

4160 WAIT 1

4170 GoTo As f,

The above example needs a little extra safeguarding. I, the variable being input, should be declared
to be an integer, since the only valid inputs are 1, 2, 3, 4, 5, and 6. An answer like "pick the 3. 14th
color listed" does not make sense.

Error Handling 299

Real number boundaries are tested for in a manner similar to that of integers:

7 0 10 I NPUT " Ent e r the r.r alJefOr lll ' s f re9 Ue nC}' (in KHz)" ,Fre9 uenc }'
7020 IF Fre9ue ncY: =0 THE N 70 10
7030 INPUT "Enter the amplitude (0-10 lJ olts)" , Amplitude
70aO IF Amplitude : O OR Amplit ude >10 THEN 70 3 0
7 0 5 0 INPUT "En t e r t h e phase a n ~le (in de~ r ee s) " ,An~ l e

7 0 60 IF An~le < O OR An~le > 180 THEN 7 0 5 0
7 070 An~le=An~le*PI / 180

REAL Numbers and Comparisons
A word of caution is in order about the use of the = comparator in conjunction with REAL (full
precision) numbers. Numbers on this computer are stored in a binary form, which means that the
information stored is not guaranteed to be an exact representation of a decimal number - but it
will be real close! What this means is that a program should not use the = comparator in an IF
statement where the comparison is being performed on REAL numbers. The comparison will yield
a 'false' or '0' value if the two are different by even one bit, even though the two numbers might
really be equal for all practical purposes.

There are two ways around this problem. The first is to try to state the comparison in terms of the
< = or > = comparators. However if it's absolutely necessary to do an equality comparison with a
pair of REAL numbers, then the second method must be used. This involves picking an error
tolerance for how close to being equal the two numbers can be to satisfy the test.

Real number line
Xl X2
~TO~

So if the difference between two REAL numbers Xl and X2 is less than or equal to a tolerance TO,
we'll say that Xl and X2 are "equal" to each other for all practical purposes. The value of TO will
depend upon the application, and must be chosen with care.

For an example, assume that we've picked a tolerance of 10 - 12 for comparing two REAL numbers
for equality. The proper way to compare the two numbers would be:

850 IF ABS(Xl -X 2' (=lE-1 2 THEN NU M bers_e~ u al

860 ! Otherwise the y' re not e~ual

Another technique for comparing REAL values is to use the DROUND function. This is especially
suited to applications where the data is known to have a certain number of significant digits. For
more details on binary representations of decimal numbers, refer to Chapter 4.

Error Handling 299

Real number boundaries are tested for in a manner similar to that of integers:

7 0 10 I NPUT " Ent e r the r.r alJefOr lll ' s f re9 Ue nC}' (in KHz)" ,Fre9 uenc }'
7020 IF Fre9ue ncY: =0 THE N 70 10
7030 INPUT "Enter the amplitude (0-10 lJ olts)" , Amplitude
70aO IF Amplitude : O OR Amplit ude >10 THEN 70 3 0
7 0 5 0 INPUT "En t e r t h e phase a n ~le (in de~ r ee s) " ,An~ l e

7 0 60 IF An~le < O OR An~le > 180 THEN 7 0 5 0
7 070 An~le=An~le*PI / 180

REAL Numbers and Comparisons
A word of caution is in order about the use of the = comparator in conjunction with REAL (full
precision) numbers. Numbers on this computer are stored in a binary form, which means that the
information stored is not guaranteed to be an exact representation of a decimal number - but it
will be real close! What this means is that a program should not use the = comparator in an IF
statement where the comparison is being performed on REAL numbers. The comparison will yield
a 'false' or '0' value if the two are different by even one bit, even though the two numbers might
really be equal for all practical purposes.

There are two ways around this problem. The first is to try to state the comparison in terms of the
< = or > = comparators. However if it's absolutely necessary to do an equality comparison with a
pair of REAL numbers, then the second method must be used. This involves picking an error
tolerance for how close to being equal the two numbers can be to satisfy the test.

Real number line
Xl X2
~TO~

So if the difference between two REAL numbers Xl and X2 is less than or equal to a tolerance TO,
we'll say that Xl and X2 are "equal" to each other for all practical purposes. The value of TO will
depend upon the application, and must be chosen with care.

For an example, assume that we've picked a tolerance of 10 - 12 for comparing two REAL numbers
for equality. The proper way to compare the two numbers would be:

850 IF ABS(Xl -X 2' (=lE-1 2 THEN NU M bers_e~ u al

860 ! Otherwise the y' re not e~ual

Another technique for comparing REAL values is to use the DROUND function. This is especially
suited to applications where the data is known to have a certain number of significant digits. For
more details on binary representations of decimal numbers, refer to Chapter 4.

300 Error Handling

Error Trapping
Despite the programmer's best efforts at screening the user's inputs in order to avoid errors,
sometimes an error will still happen. It is still possible to recover from run time errors, provided the
programmer predicts the places where errors are most likely to happen.

ON/OFF ERROR
The ON ERROR command sets up a branching condition which will be taken any time a recover­
able error is encountered at run time. The branching action taken may be either GOTO, GOSUB,
CALL, or RECOVER. GOTO and GOSUB are purely local in scope - that is, they are active only
within the context in which the ON ERROR is declared. CALL and RECOVER are global in scope
- after the ON ERROR is set up, the CALL or RECOVER will be executed any time an error
occurs, regardless of subprogram environment.

When an ON ERROR statement is executed, the language system will make sure that the specified
line or subprogram exists in memory before the program will proceed. If ON ERROR GOTOI
GOSUB/RECOVER are specified, then the line identifier must exist in the current context. If an ON
ERROR CALL is given, then the specified subprogram must currently be in memory. In either case,
if the system can't find the given line, an error 49 is issued.

If either ON ERROR GOSUB or ON ERROR CALL are used and an error occurs, the specified
branch will take place, and when the RETURN or SUBEXIT is executed, then program execution
will resume at the line which caused the error, and an attempt will be made to execute the line
again.
ON ERROR has a priority of 16, which means that it will always take priority over any other ON
< event> since the highest user-specifiable priority is 15.

The OFF ERROR statement will cancel the effects of the ON ERROR statement, and no branching
will take place if an error is encountered.

The DISABLE statement has no effect on ON ERROR branching.

ERRN/ERRL/ERRM$
ERRN is a function which returns the error number which caused the branch to be taken. ERRN is a
global function, meaning it can be used from the main program or from any subprogram, and it will
always return the number of the most recent error.

ERRM$ is a string function which returns the text of the error which caused the branch to be taken.

ERRL is a function which is used to find the line in which the error was encountered. ERRL is a
boolean function. The program feeds it a line identifier, and either a 1 or a 0 is returned, depending
upon whether or not the specified identifier indicates the line which caused the error. ERRL is a
local function, which means it can only be used in the same environment as the line which caused
the error. This implies that ERRL cannot be used in conjunction with ON ERROR CALL, and that it
can be used with ON ERROR GOTO and ON ERROR GOSUB. ERRL can be used with ON
ERROR RECOVER only if the error did not occur in a subprogram which was called by the
environment which set up the ON ERROR RECOVER.

300 Error Handling

Error Trapping
Despite the programmer's best efforts at screening the user's inputs in order to avoid errors,
sometimes an error will still happen. It is still possible to recover from run time errors, provided the
programmer predicts the places where errors are most likely to happen.

ON/OFF ERROR
The ON ERROR command sets up a branching condition which will be taken any time a recover­
able error is encountered at run time. The branching action taken may be either GOTO, GOSUB,
CALL, or RECOVER. GOTO and GOSUB are purely local in scope - that is, they are active only
within the context in which the ON ERROR is declared. CALL and RECOVER are global in scope
- after the ON ERROR is set up, the CALL or RECOVER will be executed any time an error
occurs, regardless of subprogram environment.

When an ON ERROR statement is executed, the language system will make sure that the specified
line or subprogram exists in memory before the program will proceed. If ON ERROR GOTOI
GOSUB/RECOVER are specified, then the line identifier must exist in the current context. If an ON
ERROR CALL is given, then the specified subprogram must currently be in memory. In either case,
if the system can't find the given line, an error 49 is issued.

If either ON ERROR GOSUB or ON ERROR CALL are used and an error occurs, the specified
branch will take place, and when the RETURN or SUBEXIT is executed, then program execution
will resume at the line which caused the error, and an attempt will be made to execute the line
again.
ON ERROR has a priority of 16, which means that it will always take priority over any other ON
< event> since the highest user-specifiable priority is 15.

The OFF ERROR statement will cancel the effects of the ON ERROR statement, and no branching
will take place if an error is encountered.

The DISABLE statement has no effect on ON ERROR branching.

ERRN/ERRL/ERRM$
ERRN is a function which returns the error number which caused the branch to be taken. ERRN is a
global function, meaning it can be used from the main program or from any subprogram, and it will
always return the number of the most recent error.

ERRM$ is a string function which returns the text of the error which caused the branch to be taken.

ERRL is a function which is used to find the line in which the error was encountered. ERRL is a
boolean function. The program feeds it a line identifier, and either a 1 or a 0 is returned, depending
upon whether or not the specified identifier indicates the line which caused the error. ERRL is a
local function, which means it can only be used in the same environment as the line which caused
the error. This implies that ERRL cannot be used in conjunction with ON ERROR CALL, and that it
can be used with ON ERROR GOTO and ON ERROR GOSUB. ERRL can be used with ON
ERROR RECOVER only if the error did not occur in a subprogram which was called by the
environment which set up the ON ERROR RECOVER.

The ERRL function will accept either a line number or a line label.

1140 DISP ERRL(710)

810 IF ERRL(CoMPute) THEN Fix_coMPute

ON ERROR GOSUB

Error Handling 301

The ON ERROR GOSUB statement should only be used when you can guarantee that the problem
causing the error can be fixed and the line can be re-executed safely. Remember that if the action
taken in the error service routine is not sufficient to correct the problem, the program will dive into
an infinite loop. Every time an error occurs, a GOSUB will cause a branch to the error service
routine which will RETURN execution to the line causing the error.

When an error triggers a branch as a result of an ON ERROR GOSUB statement being active,
system priority is set at the highest possible level (16) until the RETURN statement is executed, at
which point the system priority is restored to the value it was when the error happened.

100 Radical=B*B-4*A*C
110 IMaginarY=O
120 ON ERROR GOSUB Esr
130 Partial=SQR(Radical)
140 OFF ERROR

350 Esr: IF ERRN=30 THEN
360 IMag i nary=l
370 Radical=ABS(Radical)
380 ELSE
380 BEEP
400
410

DISP "Unexpected Error ("jERRNjl)"
PAUSE

420 END IF
430 RETURN

ON ERROR GOTO
The ON ERROR GOTO statement is generally more useful than ON ERROR GOSUB, especially if
you are trying to service more than one error condition. The only advantage that ON ERROR
GOSUB has over ON ERROR GOTO is that system priority is maintained at the highest possible
level until the error subroutine is finished.

By using the ON ERROR GOTO statement, the same error service routine can be used to service all
the error conditions in a given context. By testing both the ERRN (what went wrong) and the ERRL
(where it went wrong) functions, proper recovery procedures can be taken.

The ERRL function will accept either a line number or a line label.

1140 DISP ERRL(710)

810 IF ERRL(CoMPute) THEN Fix_coMPute

ON ERROR GOSUB

Error Handling 301

The ON ERROR GOSUB statement should only be used when you can guarantee that the problem
causing the error can be fixed and the line can be re-executed safely. Remember that if the action
taken in the error service routine is not sufficient to correct the problem, the program will dive into
an infinite loop. Every time an error occurs, a GOSUB will cause a branch to the error service
routine which will RETURN execution to the line causing the error.

When an error triggers a branch as a result of an ON ERROR GOSUB statement being active,
system priority is set at the highest possible level (16) until the RETURN statement is executed, at
which point the system priority is restored to the value it was when the error happened.

100 Radical=B*B-4*A*C
110 IMaginarY=O
120 ON ERROR GOSUB Esr
130 Partial=SQR(Radical)
140 OFF ERROR

350 Esr: IF ERRN=30 THEN
360 IMag i nary=l
370 Radical=ABS(Radical)
380 ELSE
380 BEEP
400
410

DISP "Unexpected Error ("jERRNjl)"
PAUSE

420 END IF
430 RETURN

ON ERROR GOTO
The ON ERROR GOTO statement is generally more useful than ON ERROR GOSUB, especially if
you are trying to service more than one error condition. The only advantage that ON ERROR
GOSUB has over ON ERROR GOTO is that system priority is maintained at the highest possible
level until the error subroutine is finished.

By using the ON ERROR GOTO statement, the same error service routine can be used to service all
the error conditions in a given context. By testing both the ERRN (what went wrong) and the ERRL
(where it went wrong) functions, proper recovery procedures can be taken.

302 Error Handling

10 RESTORE
20 PRINT
30 PRINT
40 PRINT "Coefficients of 9uadratic e9uation A"
50 DATA 0,0,0
60 READ A,B,C
70 Maxreal=1.797693134S6231E+30S
SO Dve rf 1 01.1=0
90 Coefficients :
100 INPUT "A?" ,A
110 IF A=O THEN
120 DISP "Must be 9uadratic"
130 WAIT 1.5
140 GOTO Coefficients
150 END IF
160
170
lS0
190
200

PRINT
INPUT
PRINT
INPUT
PRINT

II A= II; A
IIB?II tB
II B= II; B
IIC?II tC
II C= II; C

210 Compute_roots:
220 DN ERRDR GOTO Esr
230 ImaginarY=O
240 Partl=-B/12.*A)
250 Part2=SQR(B*B-4*A*C)/(2.*A)
260 IF NOT Imaginary THEN
270 Rootl=Partl+Part2
2S0 Root2=Partl-Part2
290 END IF
300 OFF ERROR
310 Print_roots:
320 IF ImaginarY=O THEN
330 PRINT "Root =" jRootl
340 PRINT "Root 2 =" jRoot2
350 ELSE
360 PRINT "Root ="jPartlj" +"jPart2j" i"
370 PRINT "Root 2 ="jPartl j " -"jPart2j" i"
3S0 END IF
390 IF Overflol.1 THEN PRINT "OI.!ERFLOW"
400 STOP
410 Esr :
420 IF ERRN=30 THEN ! SQR OF NEGATIVE NUMBER
430 Part2=SQRIABS(B*B-4*A*C» / 12*A)
440 Imaginary=l
450 Branch=l
460 GOTO 270
470 ELSE
4S0 IF ERRN=22 THEN I REAL OI.!ERFLOW
490 Overflow=l
500 SELECT 1
510 CASE ERRL(240)
520 Partl=SGN(B)*SGNIA)*Maxreal
530 Branch=2
540 CASE ERRL(250)
550 Part2=Maxreal
560 Branch=3
5S0 CASE ERRL(270)
590 Rootl=Maxreal*SGNIPartl)
600 Branch=4
620 CASE ERRLI2S0)
630 Root2=Maxreal*SGNIPartl)
640 Branch=5
660 PRINT "UNEXPECTED OVERFLOW"
670 Branch=6
6S0 CASE ELSE
690 DISP "UNEXPECTED ERROR"jERRN
700 Branch=6
710 END SELECT
720 END IF
730 END IF
740 ON Branch GOTO 270,250,260,2S0,290,10
750 END

302 Error Handling

10 RESTORE
20 PRINT
30 PRINT
40 PRINT "Coefficients of 9uadratic e9uation A"
50 DATA 0,0,0
60 READ A,B,C
70 Maxreal=1.797693134S6231E+30S
SO Dve rf 1 01.1=0
90 Coefficients :
100 INPUT "A?" ,A
110 IF A=O THEN
120 DISP "Must be 9uadratic"
130 WAIT 1.5
140 GOTO Coefficients
150 END IF
160
170
lS0
190
200

PRINT
INPUT
PRINT
INPUT
PRINT

II A= II; A
IIB?II tB
II B= II; B
IIC?II tC
II C= II; C

210 Compute_roots:
220 DN ERRDR GOTO Esr
230 ImaginarY=O
240 Partl=-B/12.*A)
250 Part2=SQR(B*B-4*A*C)/(2.*A)
260 IF NOT Imaginary THEN
270 Rootl=Partl+Part2
2S0 Root2=Partl-Part2
290 END IF
300 OFF ERROR
310 Print_roots:
320 IF ImaginarY=O THEN
330 PRINT "Root =" jRootl
340 PRINT "Root 2 =" jRoot2
350 ELSE
360 PRINT "Root ="jPartlj" +"jPart2j" i"
370 PRINT "Root 2 ="jPartl j " -"jPart2j" i"
3S0 END IF
390 IF Overflol.1 THEN PRINT "OI.!ERFLOW"
400 STOP
410 Esr :
420 IF ERRN=30 THEN ! SQR OF NEGATIVE NUMBER
430 Part2=SQRIABS(B*B-4*A*C» / 12*A)
440 Imaginary=l
450 Branch=l
460 GOTO 270
470 ELSE
4S0 IF ERRN=22 THEN I REAL OI.!ERFLOW
490 Overflow=l
500 SELECT 1
510 CASE ERRL(240)
520 Partl=SGN(B)*SGNIA)*Maxreal
530 Branch=2
540 CASE ERRL(250)
550 Part2=Maxreal
560 Branch=3
5S0 CASE ERRL(270)
590 Rootl=Maxreal*SGNIPartl)
600 Branch=4
620 CASE ERRLI2S0)
630 Root2=Maxreal*SGNIPartl)
640 Branch=5
660 PRINT "UNEXPECTED OVERFLOW"
670 Branch=6
6S0 CASE ELSE
690 DISP "UNEXPECTED ERROR"jERRN
700 Branch=6
710 END SELECT
720 END IF
730 END IF
740 ON Branch GOTO 270,250,260,2S0,290,10
750 END

Error Handling 303

ON ERROR CALL
ON ERROR CALL is global, meaning once it is activated, the specified subprogram will be
called immediately whenever an error is encountered regardless of the current context. System
priority is set to level 16 inside the subprogram, and remains that way until the SUBEXIT is
executed, at which time the system priority will be restored to the value it was when the error
happened.

The ON ERROR CALL statement should only be used when you can guarantee that the
problem causing the error can be fixed and the line can be re-executed safely. Remember that if
the action taken in the error service routine is not sufficient to correct the problem, the program
will dive into an infinite loop. Every time an error occurs, a CALL will cause a branch to the
error service routine which will return execution to the line causing the error when a SUBEXIT
statement is executed.

Bear in mind that an ON .. . CALL statement cannot pass parameters to the specified subpro­
gram, so the only way to communicate between the environment in which the error is declared
and the error service routine is through a COM block.

The ERRL function will not work in a different environment than the one in which the ON
ERROR statement is declared, so when using an ON ERROR CALL, you should set things up in
such a manner that the line number either doesn't matter, or can be guaranteed to always be
the same one when the error occurs. This can be accomplished by declaring the ON ERROR
immediately before the line in question, and immediately using OFF ERROR after it.

5010 ON ERROR CALL Fix_disc
5020 ASSIGN @File TO "Data_file"
5030 OFF ERROR
5040
5050
5060
7020 SUB Fix_disc
7030 SELECT ERRN
7040 CASE 80
7050 DISP "Door open -- shut it and press CoNT"
7060 PAUSE
7080 CASE 83
7080 DISP "Write protected -- fi x and press CoNT"
7100 PAUSE
7120 CASE 85
7130 DISP "Disc not initialized -- fi x and press CoNT"
7140 PAUSE
7160 CASE 56
7170 DISP "Creating Data_file"
7180 CREATE BDAT "Data_file",20
7180 CASE ELSE
7200 DISP "Unexpected error" jERRN
7210 PAUSE
7220 SUB END

Error Handling 303

ON ERROR CALL
ON ERROR CALL is global, meaning once it is activated, the specified subprogram will be
called immediately whenever an error is encountered regardless of the current context. System
priority is set to level 16 inside the subprogram, and remains that way until the SUBEXIT is
executed, at which time the system priority will be restored to the value it was when the error
happened.

The ON ERROR CALL statement should only be used when you can guarantee that the
problem causing the error can be fixed and the line can be re-executed safely. Remember that if
the action taken in the error service routine is not sufficient to correct the problem, the program
will dive into an infinite loop. Every time an error occurs, a CALL will cause a branch to the
error service routine which will return execution to the line causing the error when a SUBEXIT
statement is executed.

Bear in mind that an ON .. . CALL statement cannot pass parameters to the specified subpro­
gram, so the only way to communicate between the environment in which the error is declared
and the error service routine is through a COM block.

The ERRL function will not work in a different environment than the one in which the ON
ERROR statement is declared, so when using an ON ERROR CALL, you should set things up in
such a manner that the line number either doesn't matter, or can be guaranteed to always be
the same one when the error occurs. This can be accomplished by declaring the ON ERROR
immediately before the line in question, and immediately using OFF ERROR after it.

5010 ON ERROR CALL Fix_disc
5020 ASSIGN @File TO "Data_file"
5030 OFF ERROR
5040
5050
5060
7020 SUB Fix_disc
7030 SELECT ERRN
7040 CASE 80
7050 DISP "Door open -- shut it and press CoNT"
7060 PAUSE
7080 CASE 83
7080 DISP "Write protected -- fi x and press CoNT"
7100 PAUSE
7120 CASE 85
7130 DISP "Disc not initialized -- fi x and press CoNT"
7140 PAUSE
7160 CASE 56
7170 DISP "Creating Data_file"
7180 CREATE BDAT "Data_file",20
7180 CASE ELSE
7200 DISP "Unexpected error" jERRN
7210 PAUSE
7220 SUB END

304 Error Handling

ON ERROR RECOVER
The ON ERROR RECOVER statement sets up an immediate branch to the specified line
whenever an error occurs. The line specified must be in the context of the ON ... RECOVER
statement. ON ERROR RECOVER is global in scope - it is active not only in the environment
in which it is defined, but also in any subprograms called by the segment in which it is defined.

If an error is encountered while an ON ERROR RECOVER statement is active, the system will
restore the context of the program segment which actually set up the branch, including its
system priority, and will resume execution at the given line.

3250 ON ERROR RECOVER Gi v e _ up
3280 CALL Model_universe
3270 OISP "Successfully cOIT1Pleted"
3280 STOP
3280 Gil.le _ up: DISP "Failure" jERRN
3300 END

304 Error Handling

ON ERROR RECOVER
The ON ERROR RECOVER statement sets up an immediate branch to the specified line
whenever an error occurs. The line specified must be in the context of the ON ... RECOVER
statement. ON ERROR RECOVER is global in scope - it is active not only in the environment
in which it is defined, but also in any subprograms called by the segment in which it is defined.

If an error is encountered while an ON ERROR RECOVER statement is active, the system will
restore the context of the program segment which actually set up the branch, including its
system priority, and will resume execution at the given line.

3250 ON ERROR RECOVER Gi v e _ up
3280 CALL Model_universe
3270 OISP "Successfully cOIT1Pleted"
3280 STOP
3280 Gil.le _ up: DISP "Failure" jERRN
3300 END

12
Program Debugging

Chapter

Introduction
The problem of debugging a program is distinct from the issues raised in Chapter 11, Error
Handling. Chapter 11 is based on the premise that the programmer is satisfied that the program
works as it should, and that it then should be made as foolproof as possible. This could be
construed as putting the cart before the horse - before you can make a program foolproof, you
must get it to run correctly in the first place. One of the key characteristics of a "bug" is that it
doesn't necessarily have to cause an error condition to occur - it only has to cause your program
to give a wrong answer. This chapter deals with the methods available on this computer to diagnose
problems in logic and semantics.

Naturally, the ideal way to debug a program is to write it correctly the first time through, and all
programmers should strive constantly to achieve this state of nirvana. Hopefully, the techniques
that have been been discussed in this manual will help you get a little closer to this goal. The
practice of writing self documenting code and designing programs in a top down fashion should
help immensely.

Aside from recommended methods of writing software, the computer itself has several features
which aid in the process of debugging.

305

12
Program Debugging

Chapter

Introduction
The problem of debugging a program is distinct from the issues raised in Chapter 11, Error
Handling. Chapter 11 is based on the premise that the programmer is satisfied that the program
works as it should, and that it then should be made as foolproof as possible. This could be
construed as putting the cart before the horse - before you can make a program foolproof, you
must get it to run correctly in the first place. One of the key characteristics of a "bug" is that it
doesn't necessarily have to cause an error condition to occur - it only has to cause your program
to give a wrong answer. This chapter deals with the methods available on this computer to diagnose
problems in logic and semantics.

Naturally, the ideal way to debug a program is to write it correctly the first time through, and all
programmers should strive constantly to achieve this state of nirvana. Hopefully, the techniques
that have been been discussed in this manual will help you get a little closer to this goal. The
practice of writing self documenting code and designing programs in a top down fashion should
help immensely.

Aside from recommended methods of writing software, the computer itself has several features
which aid in the process of debugging.

305

306 Program Debugging

Using Live Keyboard
One of the pleasing characteristics of this computer is that its keyboard is "live" even during
program execution. That is, you can issue commands to the computer while it is running a program
the same way that you issue commands to it while it is idle. For instance, you can add two numbers
together, examine the catalogue of the disc currently installed in the drive, list the running program
to a printer, scroll the CRT alpha buffer up and down, enter and exit either the graphics or alpha
displays, or output a command to a function generator over HP-IB. Practically the only thing you
can't do from live keyboard while a program is running is write or modify program lines, or attempt
to alter the control structures of the program. (A complete list of illegal keyboard operations is given
a little later on.)

By way of illustration, key in the following program, press C@D, and then execute the commands
shown underneath the listing.

10 FOR 1=1 TO 1.E+5
20 ND(T

30 END

CAT
2+2
SQR (6 .'. 2+ 17.2 .'. 2)
PR 1 NT "THE QU 1 CK BROWN Fo){"
TI MEDATE

Now, this program will take a fair amount of time to complete (about 18 seconds), so to find out
how far the program has gone, merely type I and press (EXECUTE) or (RETURN) . The current value
of I will be displayed at the bottom orthe screen. Now if you don't want to wait for the program to
go through all one hundred thousand iterations, you can merely change the value of I by executing
the command

1=88888

Thus, we have seen that live keyboard can be used to examine and/or change the contents of the
program's variables.

One aspect of live keyboard to be aware of is that the computer will only recognize variables that
exist in the current program environment. For instance, suppose that we change our example
program to call a subprogram inside the loop.

10 FOR 1 = 1 TO 1. E+5
15 CALL DUfT!rl! }'
20 NE){T 1
30 END
40 SUB Durl!rl!}'
50 FOR J=l TO 10
60 NE)<T J
70 SUBEND

While this program is running and you test the variable I from the keyboard, chances are that you
will only get a message saying that I doesn't exist in the current context - most of the time will be
spent in the subprogram. On the other hand, if you test the value of J, it is highly likely that you will
get an answer.

306 Program Debugging

Using Live Keyboard
One of the pleasing characteristics of this computer is that its keyboard is "live" even during
program execution. That is, you can issue commands to the computer while it is running a program
the same way that you issue commands to it while it is idle. For instance, you can add two numbers
together, examine the catalogue of the disc currently installed in the drive, list the running program
to a printer, scroll the CRT alpha buffer up and down, enter and exit either the graphics or alpha
displays, or output a command to a function generator over HP-IB. Practically the only thing you
can't do from live keyboard while a program is running is write or modify program lines, or attempt
to alter the control structures of the program. (A complete list of illegal keyboard operations is given
a little later on.)

By way of illustration, key in the following program, press C@D, and then execute the commands
shown underneath the listing.

10 FOR 1=1 TO 1.E+5
20 ND(T

30 END

CAT
2+2
SQR (6 .'. 2+ 17.2 .'. 2)
PR 1 NT "THE QU 1 CK BROWN Fo){"
TI MEDATE

Now, this program will take a fair amount of time to complete (about 18 seconds), so to find out
how far the program has gone, merely type I and press (EXECUTE) or (RETURN) . The current value
of I will be displayed at the bottom orthe screen. Now if you don't want to wait for the program to
go through all one hundred thousand iterations, you can merely change the value of I by executing
the command

1=88888

Thus, we have seen that live keyboard can be used to examine and/or change the contents of the
program's variables.

One aspect of live keyboard to be aware of is that the computer will only recognize variables that
exist in the current program environment. For instance, suppose that we change our example
program to call a subprogram inside the loop.

10 FOR 1 = 1 TO 1. E+5
15 CALL DUfT!rl! }'
20 NE){T 1
30 END
40 SUB Durl!rl!}'
50 FOR J=l TO 10
60 NE)<T J
70 SUBEND

While this program is running and you test the variable I from the keyboard, chances are that you
will only get a message saying that I doesn't exist in the current context - most of the time will be
spent in the subprogram. On the other hand, if you test the value of J, it is highly likely that you will
get an answer.

Program Debugging 307

Similarly, operations like ASSIGN and ALLOCATE, which are declarative types of statements,
must use variables that are already known to the current environment when they are executed from
the keyboard. For example, in the following program, it is perfectly legal to perform the operation
ASS I G N @ D \) III TO * from the keyboard, although it is not legal to perform
ASS I G N @ F i 1 e TO" D A T A" from the keyboard.

1 ASSIGN @DVM TO 724
10 FOR 1=1 TO I.E+5
20 NE){T I

30 END

Live keyboard operations are allowed to use variables already known by the running program. Live
keyboard operations are not allowed to create variables.

Although the GOTO and GOSUB commands are illegal from the keyboard, it is perfectly legal to
call subprograms from the keyboard. The only restriction on using SUB and function subprograms
from the keyboard is that the parameters that are passed must either be constants or must be
variables that exist in the current context.

Here is an example:

10 FOR 1=1 TO 1.E+5
20 NE)<T I
30 END
31
40 SUB GatherllNTEGER X)
50 OPTION BASE 1
60 DIM A(32)
70 CREATE BDAT "File"&,I,'AL$O() d
80 ASSIGN @DUM TO 724
80 ASSIGN @File TO "File"&,I,lAL$I)<l
100 OUTPUT @Dl)f.I;"Nl00S"
110 ENTER @DuM;AI*)
120 OUTPUT @File;AI*)
130 PRINT AI*),
140 SUBEND
141 !
150 DEF FNPolyIX)
160 RETURN X"3+3*X"2+3*X+X
170 FNEND

By executing CALL Gather(1) from the keyboard, the main program will be suspended while the
subprogram is called, at which time a 1 record file will be opened, 32 readings will be taken from
the voltmeter and stored in the file, and the readings will be printed on the screen. Then main
program execution will resume where it left off.

Similarly, by typing FNPoly(l), the value of the polynomial will be computed for X= 1 and the
answer (8) will be displayed at the bottom of the screen.

Here is a list of commands which may not be executed from the keyboard while a program is
running, although they may be executed from the keyboard if the computer is idle:

RUN
CaNT
EDIT
DEL

SCRATCH
SCRATCH A
SCRATCHC
SCRATCH BIN

GET
LOAD
LOAD BIN
SYSBOOT

Program Debugging 307

Similarly, operations like ASSIGN and ALLOCATE, which are declarative types of statements,
must use variables that are already known to the current environment when they are executed from
the keyboard. For example, in the following program, it is perfectly legal to perform the operation
ASS I G N @ D \) III TO * from the keyboard, although it is not legal to perform
ASS I G N @ F i 1 e TO" D A T A" from the keyboard.

1 ASSIGN @DVM TO 724
10 FOR 1=1 TO I.E+5
20 NE){T I

30 END

Live keyboard operations are allowed to use variables already known by the running program. Live
keyboard operations are not allowed to create variables.

Although the GOTO and GOSUB commands are illegal from the keyboard, it is perfectly legal to
call subprograms from the keyboard. The only restriction on using SUB and function subprograms
from the keyboard is that the parameters that are passed must either be constants or must be
variables that exist in the current context.

Here is an example:

10 FOR 1=1 TO 1.E+5
20 NE)<T I
30 END
31
40 SUB GatherllNTEGER X)
50 OPTION BASE 1
60 DIM A(32)
70 CREATE BDAT "File"&,I,'AL$O() d
80 ASSIGN @DUM TO 724
80 ASSIGN @File TO "File"&,I,lAL$I)<l
100 OUTPUT @Dl)f.I;"Nl00S"
110 ENTER @DuM;AI*)
120 OUTPUT @File;AI*)
130 PRINT AI*),
140 SUBEND
141 !
150 DEF FNPolyIX)
160 RETURN X"3+3*X"2+3*X+X
170 FNEND

By executing CALL Gather(1) from the keyboard, the main program will be suspended while the
subprogram is called, at which time a 1 record file will be opened, 32 readings will be taken from
the voltmeter and stored in the file, and the readings will be printed on the screen. Then main
program execution will resume where it left off.

Similarly, by typing FNPoly(l), the value of the polynomial will be computed for X= 1 and the
answer (8) will be displayed at the bottom of the screen.

Here is a list of commands which may not be executed from the keyboard while a program is
running, although they may be executed from the keyboard if the computer is idle:

RUN
CaNT
EDIT
DEL

SCRATCH
SCRATCH A
SCRATCHC
SCRATCH BIN

GET
LOAD
LOAD BIN
SYSBOOT

308 Program Debugging

Stepping
One of the most powerful debugging tools available is the capability of single stepping a program,
one line at a time. This process allows the programmer to examine the values of his variables and
the sequence in which the program is running at each statement. This is done with the (STEP) key.

There are three ways to use the (STEP) key:

1. If the program is stopped (Le., a prerun has to be performed), pressing the (STEP) key will
cause the system to perform a prerun on the program, but no program lines will actually be
executed. The first line that will be executed will appear in the system message line at the
bottom of the screen. Pressing the (STEP) key again will cause that line to be executed, and
the next line after that to be executed will appear in the message line. If the (STEP) key is
pressed causing the next line to appear in the display, and a live keyboard operation (such as
examining the value of a variable) is performed, the contents of the message line will change.
Pressing the (STEP) key again will still cause the line to be executed, even though it is no
longer visible in the implied display line. After the statement has completed, the next line will
again appear.

2. If the program is in an INPUT or LINPUT statement, pressing the (STEP) key is sufficient to
terminate the operation. Any data entered from the keyboard will be entered into the correct
variables, just as though (CONTINUE) or (ENTER) had been pressed, but program execution will
be PAUSEd, and the statement immediately following the INPUT or LINPUT will appear in
the system message line.

3. If the program is in a PAUSEd state, pressing the ~ key will cause the next line to be
executed. The program counter will not be reset, nor will a prerun be performed. Again, the
next line to be executed will appear in the system message line after the last one has been
completed. A paused state is indicated by a dash in the run light in the lower right hand
comer of the screen.

Type in the following example and execute it by pressing the (STEP) key repeatedly.

10 DIM A (1 : 5)
20 ! This is an ex arl)p 1 e
30 8=0
40 FOR I = 1 TO 5
50 INPUT "Enter a n urI) be r" t A (I)
GO 8=8+A(I)
70 NE){T I
80 PRINT 8
80 PRINT A (*) ;

100 END

Notice that the (STEP) key caused every statement to appear in the system message line, one at a
time, even those statements that are not really executed, like DIM and comments.

308 Program Debugging

Stepping
One of the most powerful debugging tools available is the capability of single stepping a program,
one line at a time. This process allows the programmer to examine the values of his variables and
the sequence in which the program is running at each statement. This is done with the (STEP) key.

There are three ways to use the (STEP) key:

1. If the program is stopped (Le., a prerun has to be performed), pressing the (STEP) key will
cause the system to perform a prerun on the program, but no program lines will actually be
executed. The first line that will be executed will appear in the system message line at the
bottom of the screen. Pressing the (STEP) key again will cause that line to be executed, and
the next line after that to be executed will appear in the message line. If the (STEP) key is
pressed causing the next line to appear in the display, and a live keyboard operation (such as
examining the value of a variable) is performed, the contents of the message line will change.
Pressing the (STEP) key again will still cause the line to be executed, even though it is no
longer visible in the implied display line. After the statement has completed, the next line will
again appear.

2. If the program is in an INPUT or LINPUT statement, pressing the (STEP) key is sufficient to
terminate the operation. Any data entered from the keyboard will be entered into the correct
variables, just as though (CONTINUE) or (ENTER) had been pressed, but program execution will
be PAUSEd, and the statement immediately following the INPUT or LINPUT will appear in
the system message line.

3. If the program is in a PAUSEd state, pressing the ~ key will cause the next line to be
executed. The program counter will not be reset, nor will a prerun be performed. Again, the
next line to be executed will appear in the system message line after the last one has been
completed. A paused state is indicated by a dash in the run light in the lower right hand
comer of the screen.

Type in the following example and execute it by pressing the (STEP) key repeatedly.

10 DIM A (1 : 5)
20 ! This is an ex arl)p 1 e
30 8=0
40 FOR I = 1 TO 5
50 INPUT "Enter a n urI) be r" t A (I)
GO 8=8+A(I)
70 NE){T I
80 PRINT 8
80 PRINT A (*) ;

100 END

Notice that the (STEP) key caused every statement to appear in the system message line, one at a
time, even those statements that are not really executed, like DIM and comments.

Program Debugging 309

Tracing
The process of single stepping, wonderful though it is, can be quite slow, especially if the pro­
grammer has little or no idea which part of his program is causing the bug. An alternative way of
examining variable changes and program flow is available in the form of the TRACE ALL state­
ment.

TRACE ALL
When the TRACE ALL command is executed, it causes the system to issue a message prior to
executing every line (this shows the order in which the statements were executed) , and if the
statement caused any variables to change value, a message telling the variables involved and their
new values is also issued. The messages are issued to the system message line, and the most useful
way to use the TRACE ALL feature is to turn Print All On (use the (PRT ALL) key) , unless of course
you're a very fast reader. (The printall mode will cause all information from the DISP line, the
keyboard input line, and the system message line to be logged on the PRINTALL IS device.)

Turn Print All ON and key in the following example to see how TRACE ALL works:

10 TRACE ALL
20 FOR 1=1 TO 10
30 PRINT I i
40 IF I MOD 2 THE N
50 PRI NT" i s odd . "
GO ELSE
70 PRINT" is e t,Jen . "
80 END IF
90 NE)<T I
100 END

There are two optional parameters that can be used with TRACE ALL. Both parameters are line
identifiers (line numbers or line labels) . The first parameter tells the system when to start tracing,
and the second one (if it's specified) tells the system when to stop tracing. The following example
illustrates the use of one optional line specifier:

1 TRACE ALL 40
10 DIM A (1 : 10)
20 FO R 1=1 TO 100
30 NE)<T I
40 FOR J=l TO 10
50 A(J)=J
GO NE)<T J
70 END

It is usually more useful to use the TRACE ALL command from the keyboard rather than from the
program because a program modification is not necessary if you want to trace a different part of the
program. All that's necessary is to type in a new TRACE ALL command from the keyboard to
override the old one. In the above example, to trace the loop from 20 to 30 instead of the one from
40 to 60, simply delete line 1 and type in TRACE ALL 20,40 from the keyboard.

Program Debugging 309

Tracing
The process of single stepping, wonderful though it is, can be quite slow, especially if the pro­
grammer has little or no idea which part of his program is causing the bug. An alternative way of
examining variable changes and program flow is available in the form of the TRACE ALL state­
ment.

TRACE ALL
When the TRACE ALL command is executed, it causes the system to issue a message prior to
executing every line (this shows the order in which the statements were executed) , and if the
statement caused any variables to change value, a message telling the variables involved and their
new values is also issued. The messages are issued to the system message line, and the most useful
way to use the TRACE ALL feature is to turn Print All On (use the (PRT ALL) key) , unless of course
you're a very fast reader. (The printall mode will cause all information from the DISP line, the
keyboard input line, and the system message line to be logged on the PRINTALL IS device.)

Turn Print All ON and key in the following example to see how TRACE ALL works:

10 TRACE ALL
20 FOR 1=1 TO 10
30 PRINT I i
40 IF I MOD 2 THE N
50 PRI NT" i s odd . "
GO ELSE
70 PRINT" is e t,Jen . "
80 END IF
90 NE)<T I
100 END

There are two optional parameters that can be used with TRACE ALL. Both parameters are line
identifiers (line numbers or line labels) . The first parameter tells the system when to start tracing,
and the second one (if it's specified) tells the system when to stop tracing. The following example
illustrates the use of one optional line specifier:

1 TRACE ALL 40
10 DIM A (1 : 10)
20 FO R 1=1 TO 100
30 NE)<T I
40 FOR J=l TO 10
50 A(J)=J
GO NE)<T J
70 END

It is usually more useful to use the TRACE ALL command from the keyboard rather than from the
program because a program modification is not necessary if you want to trace a different part of the
program. All that's necessary is to type in a new TRACE ALL command from the keyboard to
override the old one. In the above example, to trace the loop from 20 to 30 instead of the one from
40 to 60, simply delete line 1 and type in TRACE ALL 20,40 from the keyboard.

310 Program Debugging

10 DIM A (1 : 10)
20 FOR 1=1 TO 100
30 NE)<T I
40 FOR J=l TO 10
50 A(J)=J
60 ND(T J
70 END

The program will begin tracing at line 20, and keep on tracing until it's ready to execute line 40, at
which time it will terminate the trace messages and will continue executing the program normally.

If the TRACE ALL statement uses a line label instead of a line number, be aware of what happens if
you have more than one occurence of a given line label in your program. For instance, it is perfectly
legal to have the same line label in two or more different program environments - line labels are
local to subprograms and branching operations addressing a given line label are treated separately
in different subprograms. However, when a TRACE ALL using a line label is executed, the first line
label in memory is the one that gets used, regardless of the environment the progam was in when
the TRACE ALL statement was executed. Thus in the following program, even though the TRACE
ALL Printout statement is executed inside the subprogram, tracing does not commence until the
subprogram has been exited and the Printout statement in the main program has been executed.

10 DIM A(1:10)
20 FOR 1=1 TO 10
30 CALL D U!llIl)}' (A (*) II)
40 GOSUB Printout
50 NE)<T I
60 STOP
70 Printout:
80 FOR J=l TO 10
80 PRINT A(J)j","j
100 ND(T J
105 PRINT
110 RETURN
120 END
130 SUB DU!llIll}, ()((*) ,Z)
140 TRACE ALL Printout
150 FOR 1=1 TO 10
160 X(I)=Z*100+I
170 NE)<T I
180 GOSUB Printout
180 SUBE){ I T
200 Printout: !

210 PRINT "DU!ll!ll}' routine executed" iZ
220 RETURN
230 SUBEND

If two line identifiers are used, their location with respect to each other does not matter. Tracing will
start when the line specified first is encountered, and it will stop when (or if) the second line is
encountered.

310 Program Debugging

10 DIM A (1 : 10)
20 FOR 1=1 TO 100
30 NE)<T I
40 FOR J=l TO 10
50 A(J)=J
60 ND(T J
70 END

The program will begin tracing at line 20, and keep on tracing until it's ready to execute line 40, at
which time it will terminate the trace messages and will continue executing the program normally.

If the TRACE ALL statement uses a line label instead of a line number, be aware of what happens if
you have more than one occurence of a given line label in your program. For instance, it is perfectly
legal to have the same line label in two or more different program environments - line labels are
local to subprograms and branching operations addressing a given line label are treated separately
in different subprograms. However, when a TRACE ALL using a line label is executed, the first line
label in memory is the one that gets used, regardless of the environment the progam was in when
the TRACE ALL statement was executed. Thus in the following program, even though the TRACE
ALL Printout statement is executed inside the subprogram, tracing does not commence until the
subprogram has been exited and the Printout statement in the main program has been executed.

10 DIM A(1:10)
20 FOR 1=1 TO 10
30 CALL D U!llIl)}' (A (*) II)
40 GOSUB Printout
50 NE)<T I
60 STOP
70 Printout:
80 FOR J=l TO 10
80 PRINT A(J)j","j
100 ND(T J
105 PRINT
110 RETURN
120 END
130 SUB DU!llIll}, ()((*) ,Z)
140 TRACE ALL Printout
150 FOR 1=1 TO 10
160 X(I)=Z*100+I
170 NE)<T I
180 GOSUB Printout
180 SUBE){ I T
200 Printout: !

210 PRINT "DU!ll!ll}' routine executed" iZ
220 RETURN
230 SUBEND

If two line identifiers are used, their location with respect to each other does not matter. Tracing will
start when the line specified first is encountered, and it will stop when (or if) the second line is
encountered.

(

Program Debugging 311

PRINTALL IS
The PRINT ALL IS command is useful for switching the tracing messages between the CRT and a
hardcopy printer. For instance, turning PRINTALL ON during pre-run will allow you to see which
array variable has not been dimensioned. (Again, to get any record at all of the trace messages,
Print All must be On.) To cause the trace messages to be logged on the CRT, execute PRINTALL
IS CRT. (The CRT is the default PRINTALL IS device that the system assumes when it wakes up.)
To cause the messages to be logged on a printer, merely change the device selector to the
appropriate value (PRINTALL IS 701).

TRACE PAUSE
The TRACE PAUSE command can be used to set a "break point" in the program. The program
will execute at a reduced speed until the specified line is reached, at which time the program will
pause, and the specified line will be shown in the implied display line, indicating that the program
will execute it when execution is resumed. Execution may be resumed with the (CONTINUE) key, the
(STEP) key (which will only cause one line to be executed) , or by executing CONT from the
keyboard (the specified line identifier must be located in the current environment).

By executing the command TRACE PAUSE Printout from the keyboard, the following program will
pause every time it reaches line 70.

10 DIM A (1 : 10)
20 FOR 1=1 TO 10
40 GOSU5 Printout
50 NE){T I
GO STOP
70 Printout:
80 FOR J=l TO 10
80 PRINT A (J) ;" t";
100 NE>(T J
110 PRINT
120 RETURN
130 END

Try the following ways of continuing execution:

press~
press (CONTINUE)
execute CONT 110

As with TRACE ALL, a new TRACE PAUSE statement overrides a previous one. The same rules
are applied when a line label is used in a TRACE PAUSE statement as are applied to the TRACE
ALL statement - the first line in memory having that label is used.

TRACE OFF
TRACE OFF cancels the effects of any active TRACE ALL or TRACE PAUSE statements. The
status of Print All and the PRINTALL IS device will be unchanged.

TRACE OFF may be executed either from the program, or from the keyboard.

(

Program Debugging 311

PRINTALL IS
The PRINT ALL IS command is useful for switching the tracing messages between the CRT and a
hardcopy printer. For instance, turning PRINTALL ON during pre-run will allow you to see which
array variable has not been dimensioned. (Again, to get any record at all of the trace messages,
Print All must be On.) To cause the trace messages to be logged on the CRT, execute PRINTALL
IS CRT. (The CRT is the default PRINTALL IS device that the system assumes when it wakes up.)
To cause the messages to be logged on a printer, merely change the device selector to the
appropriate value (PRINTALL IS 701).

TRACE PAUSE
The TRACE PAUSE command can be used to set a "break point" in the program. The program
will execute at a reduced speed until the specified line is reached, at which time the program will
pause, and the specified line will be shown in the implied display line, indicating that the program
will execute it when execution is resumed. Execution may be resumed with the (CONTINUE) key, the
(STEP) key (which will only cause one line to be executed) , or by executing CONT from the
keyboard (the specified line identifier must be located in the current environment).

By executing the command TRACE PAUSE Printout from the keyboard, the following program will
pause every time it reaches line 70.

10 DIM A (1 : 10)
20 FOR 1=1 TO 10
40 GOSU5 Printout
50 NE){T I
GO STOP
70 Printout:
80 FOR J=l TO 10
80 PRINT A (J) ;" t";
100 NE>(T J
110 PRINT
120 RETURN
130 END

Try the following ways of continuing execution:

press~
press (CONTINUE)
execute CONT 110

As with TRACE ALL, a new TRACE PAUSE statement overrides a previous one. The same rules
are applied when a line label is used in a TRACE PAUSE statement as are applied to the TRACE
ALL statement - the first line in memory having that label is used.

TRACE OFF
TRACE OFF cancels the effects of any active TRACE ALL or TRACE PAUSE statements. The
status of Print All and the PRINTALL IS device will be unchanged.

TRACE OFF may be executed either from the program, or from the keyboard.

312 Program Debugging

The CLR 1/0 Key
The (CLR I/O) key ((BREAK) on HP 46020A keyboards) suspends any active I/O operation and pauses
the program in such a way that the suspended statement will restart once (CONTINUE) or (STEP) is
pressed. This is useful for operations which appear to "hang" the machine, such as printing to a
printer which isn't turned on.

Most devices will not respond to ENTER requests unless they have first been instructed to respond.
If improper values are sent to a device, it may refuse to respond. Therefore, (CLR 1/0) can help in
debugging these situations.

Here are the operations that can be suspended with (CLR 1/0).

PRINT
LIST
CAT
OUTPUT
DUMP GRAPHICS
DUMP ALPHA

SEND
PRINTALL outputs
ENTER
INPUT
HP-IB commands
External plotter commands

ASSIGN
PURGE
CREATE
Some graphics commands

312 Program Debugging

The CLR 1/0 Key
The (CLR I/O) key ((BREAK) on HP 46020A keyboards) suspends any active I/O operation and pauses
the program in such a way that the suspended statement will restart once (CONTINUE) or (STEP) is
pressed. This is useful for operations which appear to "hang" the machine, such as printing to a
printer which isn't turned on.

Most devices will not respond to ENTER requests unless they have first been instructed to respond.
If improper values are sent to a device, it may refuse to respond. Therefore, (CLR 1/0) can help in
debugging these situations.

Here are the operations that can be suspended with (CLR 1/0).

PRINT
LIST
CAT
OUTPUT
DUMP GRAPHICS
DUMP ALPHA

SEND
PRINTALL outputs
ENTER
INPUT
HP-IB commands
External plotter commands

ASSIGN
PURGE
CREATE
Some graphics commands

Efficient Use Chapter

of the Computer's Resources 13

Introduction
Every model of computer has certain characteristics which can result in better performance, pro­
vided the programmer knows what those characteristics are and how he can take advantage of
them. This chapter consists of a potpourri of such items.

Data Storage

Data Storage in Read/Write Memory
There are four data types on this computer: REAL, INTEGER, strings, and I/O path names. The
RIW memory occupied by data is made up of two parts: the memory it actually takes to hold the
intended information, and the memory that the system uses to keep track of the information's
location and form (this is called overhead). Strings, INTEGERs, and REALs can be declared either
as simple variables or as arrays. Arrays take different amounts of overhead than simple variables,
but each element of an array uses the same amount of memory that a corresponding simple
variable uses to actually store information.

The overhead required for any given symbol is kept in three tables: the symbol table, the token
table and the dimension table. The symbol table contains pointers to the value area, where the
actual information is kept, and to the other two tables. The token table contains the names of the
various symbols. The dimension table contains length information for strings and arrays, and is not
used for numeric scalers. The tables are not constructed in single units as symbols are added and
deleted. Rather, as new space is required, the system will first look to see if there are any unused
entries in the tables - if new space is allocated, usually enough for several entries is allocated. For
instance, the symbol table is built in increments of five entries.

Symbol Table Overhead:

Token Table Overhead:

Dimension Table Overhead:

10 bytes per symbol

number of characters in the name + 1 (if the above number is
odd, it is rounded up to an even number). Note that the name for
I/O path names, strings, and functions includes the @, $, and FN,
respectively.

For arrays: 3 bytes (total size)
1 byte (number of dimensions)
4 bytes for each dimension (for the lower bound,

and the size of each dimension)

For strings: 2 bytes (maximum length)

For string arrays - all of the normal array overhead, plus two
bytes for the maximum allowed length of an element

313

Efficient Use Chapter

of the Computer's Resources 13

Introduction
Every model of computer has certain characteristics which can result in better performance, pro­
vided the programmer knows what those characteristics are and how he can take advantage of
them. This chapter consists of a potpourri of such items.

Data Storage

Data Storage in Read/Write Memory
There are four data types on this computer: REAL, INTEGER, strings, and I/O path names. The
RIW memory occupied by data is made up of two parts: the memory it actually takes to hold the
intended information, and the memory that the system uses to keep track of the information's
location and form (this is called overhead). Strings, INTEGERs, and REALs can be declared either
as simple variables or as arrays. Arrays take different amounts of overhead than simple variables,
but each element of an array uses the same amount of memory that a corresponding simple
variable uses to actually store information.

The overhead required for any given symbol is kept in three tables: the symbol table, the token
table and the dimension table. The symbol table contains pointers to the value area, where the
actual information is kept, and to the other two tables. The token table contains the names of the
various symbols. The dimension table contains length information for strings and arrays, and is not
used for numeric scalers. The tables are not constructed in single units as symbols are added and
deleted. Rather, as new space is required, the system will first look to see if there are any unused
entries in the tables - if new space is allocated, usually enough for several entries is allocated. For
instance, the symbol table is built in increments of five entries.

Symbol Table Overhead:

Token Table Overhead:

Dimension Table Overhead:

10 bytes per symbol

number of characters in the name + 1 (if the above number is
odd, it is rounded up to an even number). Note that the name for
I/O path names, strings, and functions includes the @, $, and FN,
respectively.

For arrays: 3 bytes (total size)
1 byte (number of dimensions)
4 bytes for each dimension (for the lower bound,

and the size of each dimension)

For strings: 2 bytes (maximum length)

For string arrays - all of the normal array overhead, plus two
bytes for the maximum allowed length of an element

313

314 Efficient Use of the Computer's Resources

Note that line labels, COM labels, and subprograms are considered as symbols, and occupy space
in both the symbol and token tables. Line numbers used in statements, like GOTO 20, also occupy
space in the symbol table.

Every subprogram (or context) has its own set of tables. In addition, there is a global set of COM
tables, where all information concerning COM blocks is kept. Symbols that belong to a COM block
will occur in both the COM tables and in any local tables in which that COM block is declared. Since
each context may define the names by which it refers to COM block variables, there will be no entry
in the COM token table for each variable, but an entry in the COM token table will occur for COM
labels.

ALLOCATEd variables require four bytes of overhead in addition to the overhead already discus­
sed for the symbol, token, and dimension tables.

The following table summarizes the storage requirements for various data types. This table does not
show the extra requirements just mentioned for ALLOCATEd and COM variables.

Type

Simple INTEGER
Simple REAL
Simple string

I/O path name
INTEGER array

REAL array

String array

Overhead

10 bytes + name overhead
10 bytes + name overhead
12 bytes + name overhead

10 bytes + name overhead
14 bytes + name overhead
+ 4 bytes per dimension
14 bytes + name overhead
+ 4 bytes per dimension
16 bytes + name overhead
+ 4 bytes per dimension

2 bytes
8 bytes

Information Storage

1 byte per char. up to declared length (padded
to even number of chars.) + 2 bytes (length
information)
100 bytes
2 bytes per element

8 bytes per element

1 byte per char. up to declared length (padded
to even number of chars.) + 2 bytes (length
information) per element

Data Storage on Mass Memory Devices
The amount of storage that data takes on mass storage media is similar to the amount of R!W
memory that data takes internally, except that no overhead is required (on BOAT files) . Arrays and
single values are interchangeable on mass storage - no distinguishing information is kept on the
media.

INTEGERs (and INTEGER arrays)
REALs (and REAL arrays)
Strings (and string arrays)

2 bytes (per element)
8 bytes (per element)
4 bytes + 1 byte per char
up to current length, pad­
ded to even number of
chars. (per element)

314 Efficient Use of the Computer's Resources

Note that line labels, COM labels, and subprograms are considered as symbols, and occupy space
in both the symbol and token tables. Line numbers used in statements, like GOTO 20, also occupy
space in the symbol table.

Every subprogram (or context) has its own set of tables. In addition, there is a global set of COM
tables, where all information concerning COM blocks is kept. Symbols that belong to a COM block
will occur in both the COM tables and in any local tables in which that COM block is declared. Since
each context may define the names by which it refers to COM block variables, there will be no entry
in the COM token table for each variable, but an entry in the COM token table will occur for COM
labels.

ALLOCATEd variables require four bytes of overhead in addition to the overhead already discus­
sed for the symbol, token, and dimension tables.

The following table summarizes the storage requirements for various data types. This table does not
show the extra requirements just mentioned for ALLOCATEd and COM variables.

Type

Simple INTEGER
Simple REAL
Simple string

I/O path name
INTEGER array

REAL array

String array

Overhead

10 bytes + name overhead
10 bytes + name overhead
12 bytes + name overhead

10 bytes + name overhead
14 bytes + name overhead
+ 4 bytes per dimension
14 bytes + name overhead
+ 4 bytes per dimension
16 bytes + name overhead
+ 4 bytes per dimension

2 bytes
8 bytes

Information Storage

1 byte per char. up to declared length (padded
to even number of chars.) + 2 bytes (length
information)
100 bytes
2 bytes per element

8 bytes per element

1 byte per char. up to declared length (padded
to even number of chars.) + 2 bytes (length
information) per element

Data Storage on Mass Memory Devices
The amount of storage that data takes on mass storage media is similar to the amount of R!W
memory that data takes internally, except that no overhead is required (on BOAT files) . Arrays and
single values are interchangeable on mass storage - no distinguishing information is kept on the
media.

INTEGERs (and INTEGER arrays)
REALs (and REAL arrays)
Strings (and string arrays)

2 bytes (per element)
8 bytes (per element)
4 bytes + 1 byte per char
up to current length, pad­
ded to even number of
chars. (per element)

Efficient Use of the Computer's Resources 315

For ASCII files, all information is converted to string (or ASCII) form, and a two-byte length field is
tacked onto the front of every field.

INTEGERs (and INTEGER arrays)
REALs (and REAL arrays)
Strings (and string arrays)

2 bytes + 1 byte per digit (per element)
2 bytes + 1 byte per digit (per element)
2 bytes + 1 byte per char (per element)

Comments and Multicharacter Identifiers
Self-documenting features such as in-line comments and multicharacter variables and line labels
are useful because of the benefits to be reaped in terms of developing, testing, debugging, and
maintaining programs. They do take extra memory, but this shouldn't be a problem if you keep the
following points in mind.

Comments take 1 byte of RIW memory for every character in the comment. If memory space
becomes a problem, many people resort to keeping two copies of their programs around - one
fully commented to use as reference material, and the other uncommented to use as the "produc­
tion version", which is the one that is actually used.

Multicharacter identifiers are only spelled out in their entirety once - not every time they are used.
The program actually stores pointers whenever a reference to the identifier is used, so using short
id~ntifiers won't result in any appreciable savings in memory used.

Variable and Array Initialization
Care should be taken to initialize any variables before using them in an expression (on the right
hand side of an =, as a left-hand subscript in a function or subprogram parameter list, as an
argument to a built-in function, or in a PRINTIOUTPUT/DISP list) . The system will set variables to
zero, strings to null, and I/O path names to undefined at program prerun, but depending upon
defaults like this is considered bad programming practice and could lead to subtle errors. For
instance, the first time a certain line is executed, the variables used may be assumed to be zero
because of the prerun operations. Once this assumption has been made, the danger is that the
programmer will branch back to the same section of code and forget that the zeroing process has
not been performed - an error may result that didn't occur preViously.

Efficient Use of the Computer's Resources 315

For ASCII files, all information is converted to string (or ASCII) form, and a two-byte length field is
tacked onto the front of every field.

INTEGERs (and INTEGER arrays)
REALs (and REAL arrays)
Strings (and string arrays)

2 bytes + 1 byte per digit (per element)
2 bytes + 1 byte per digit (per element)
2 bytes + 1 byte per char (per element)

Comments and Multicharacter Identifiers
Self-documenting features such as in-line comments and multicharacter variables and line labels
are useful because of the benefits to be reaped in terms of developing, testing, debugging, and
maintaining programs. They do take extra memory, but this shouldn't be a problem if you keep the
following points in mind.

Comments take 1 byte of RIW memory for every character in the comment. If memory space
becomes a problem, many people resort to keeping two copies of their programs around - one
fully commented to use as reference material, and the other uncommented to use as the "produc­
tion version", which is the one that is actually used.

Multicharacter identifiers are only spelled out in their entirety once - not every time they are used.
The program actually stores pointers whenever a reference to the identifier is used, so using short
id~ntifiers won't result in any appreciable savings in memory used.

Variable and Array Initialization
Care should be taken to initialize any variables before using them in an expression (on the right
hand side of an =, as a left-hand subscript in a function or subprogram parameter list, as an
argument to a built-in function, or in a PRINTIOUTPUT/DISP list) . The system will set variables to
zero, strings to null, and I/O path names to undefined at program prerun, but depending upon
defaults like this is considered bad programming practice and could lead to subtle errors. For
instance, the first time a certain line is executed, the variables used may be assumed to be zero
because of the prerun operations. Once this assumption has been made, the danger is that the
programmer will branch back to the same section of code and forget that the zeroing process has
not been performed - an error may result that didn't occur preViously.

316 Efficient Use of the Computer's Resources

Mass Memory Performance

Program Files
There are two ways to store programs - they can be saved either as ASCII source strings using the
SAVE command, or they can be stored in an intermediate form that the BASIC language system
understands using the STORE command.

If the time it takes to load the program is important, always use the STORE command to store the
program instead of the SAVE command. The LOAD command, which reads in files created by the
STORE command, will execute about fifty times faster than the GET command. This is because the
LOAD command does not require that the information on the file be processed in any way. Since
the program is already in the form the system needs it in, all that is necessary is to funnel the
program directly into memory as fast as the disc can spin (assuming an interleave of one).

SAVE files , on the other hand, require that the system parse and check the lines as they are read,
just the same as if a user had typed them in from the keyboard. Consequently, the speed at which
the program gets loaded into memory with the GET command will be drastically slower than the
LOAD command. Using the Models 226 and 236 internal drives as an example of the relative
speeds, a typical 8K byte program will take about 30 seconds to GET, but only about one second to
LOAD.

One advantage of the GET/SAVE commands is that it is possible to deal with programs as string
data.

Data Files
As with program files , there are two types of data files: ASCII and BOAT. ASCII files require that all
data be in string form, while BOAT files are interpreted as internal data representations.

When reading or writing data to an ASCII file , the number formatter is required to convert the data
in between its internal representation and its ASCII form. When reading or writing data to a BOAT
file the data may stream directly back and forth with no conversion required. Using the Models 226
and 236 internal drives as an example, an 8K element REAL array (64K bytes) may take around
200 seconds to write in an ASCII file , while the same array will only take about 5 seconds to write to
a BOAT file.

The primary benefit of the ASCII data file is the transportation of data between different models of
Hewlett-Packard computers and terminals and between discs used with different language systems.

316 Efficient Use of the Computer's Resources

Mass Memory Performance

Program Files
There are two ways to store programs - they can be saved either as ASCII source strings using the
SAVE command, or they can be stored in an intermediate form that the BASIC language system
understands using the STORE command.

If the time it takes to load the program is important, always use the STORE command to store the
program instead of the SAVE command. The LOAD command, which reads in files created by the
STORE command, will execute about fifty times faster than the GET command. This is because the
LOAD command does not require that the information on the file be processed in any way. Since
the program is already in the form the system needs it in, all that is necessary is to funnel the
program directly into memory as fast as the disc can spin (assuming an interleave of one).

SAVE files , on the other hand, require that the system parse and check the lines as they are read,
just the same as if a user had typed them in from the keyboard. Consequently, the speed at which
the program gets loaded into memory with the GET command will be drastically slower than the
LOAD command. Using the Models 226 and 236 internal drives as an example of the relative
speeds, a typical 8K byte program will take about 30 seconds to GET, but only about one second to
LOAD.

One advantage of the GET/SAVE commands is that it is possible to deal with programs as string
data.

Data Files
As with program files , there are two types of data files: ASCII and BOAT. ASCII files require that all
data be in string form, while BOAT files are interpreted as internal data representations.

When reading or writing data to an ASCII file , the number formatter is required to convert the data
in between its internal representation and its ASCII form. When reading or writing data to a BOAT
file the data may stream directly back and forth with no conversion required. Using the Models 226
and 236 internal drives as an example, an 8K element REAL array (64K bytes) may take around
200 seconds to write in an ASCII file , while the same array will only take about 5 seconds to write to
a BOAT file.

The primary benefit of the ASCII data file is the transportation of data between different models of
Hewlett-Packard computers and terminals and between discs used with different language systems.

Efficient Use of the Computer's Resources 317

Benchmarking Techniques.
This section discusses the techniques used to determine how fast various operations execute.
Ideally, you should separate the measurement time from elapsed time:

10 Tl=TIMEDATE
20 T2=TIMEDATE
30 PRINT Tl-T2i"seconds used to read clocf,"

40 END

In actuality, the clock only has a resolution of 10 ms, so you won't usually be able to time this
operation.

Next, most operations are performed inside a loop in order to be able to time operations that are
faster than the resolution of the clock (clock resolution is 10 ms.). This also tends to "smooth out"
varying system overhead characteristics.

10 INTEGER I
20 Tl=TIMEDATE
30 FOR I=l TO 10000
40 NE}(T I

50 T2=TIMEDATE
GO PRINT T2-Tl i"seconds of loop ol.lerhead"

70 END

A certain amount of time used in computational operations will involve moving information around.
The time will be different depending upon the type of the information being moved (string, REAL,
or INTEGER), and for strings, the length.

10 REAL AtBtC
20 INTEGER I
30 B=PI
40 Tl=TIMEDATE
50 FOR I=l TO 10000
GO A=B
70 NE){T I

80 T2=TIMEDATE
80 PRINT T2-Tli"seconds of loop ol.Jerhead"

100 END

Efficient Use of the Computer's Resources 317

Benchmarking Techniques.
This section discusses the techniques used to determine how fast various operations execute.
Ideally, you should separate the measurement time from elapsed time:

10 Tl=TIMEDATE
20 T2=TIMEDATE
30 PRINT Tl-T2i"seconds used to read clocf,"

40 END

In actuality, the clock only has a resolution of 10 ms, so you won't usually be able to time this
operation.

Next, most operations are performed inside a loop in order to be able to time operations that are
faster than the resolution of the clock (clock resolution is 10 ms.). This also tends to "smooth out"
varying system overhead characteristics.

10 INTEGER I
20 Tl=TIMEDATE
30 FOR I=l TO 10000
40 NE}(T I

50 T2=TIMEDATE
GO PRINT T2-Tl i"seconds of loop ol.lerhead"

70 END

A certain amount of time used in computational operations will involve moving information around.
The time will be different depending upon the type of the information being moved (string, REAL,
or INTEGER), and for strings, the length.

10 REAL AtBtC
20 INTEGER I
30 B=PI
40 Tl=TIMEDATE
50 FOR I=l TO 10000
GO A=B
70 NE){T I

80 T2=TIMEDATE
80 PRINT T2-Tli"seconds of loop ol.Jerhead"

100 END

318 Efficient Use of the Computer's Resources

The next step is to actually time the operation of interest. It should be noted that for arithmetic
operations, the time spent performing the operation will vary depending upon the two operands
(number of digits and relative magnitudes) .

10 REAL A,B,C

20 INTEGER I

30 B=PI*1.E+53
40 C=EXP(SQR(2)A13.S1)

50 PRINT "B=" iB , " C=" iC
80 Tl=TIMEDATE
70 FOR I=l TO 10000
SO A=B
80 NE>(T I

100 T2=TIMEDATE
110 FOR I=l TO 10000
120 A=B+C
130 NE>(T I

140 T3=TIMEDATE
150 Op_tifrl e=DROUND<T3-T2-T2+Tl,3)
180 PRINT OP_tiflle*100i"us. per operation"
170 END

The above program will show anywhere from 148 to 150 microseconds per operation for addition.

Here is a list of a few other operations:

Addition 150 f.LS
Subtraction 165 f.LS
Multiplication 301 f.LS
Division 460 f.LS
Exponentiation 7590 f.LS

These times vary for different processor boards. Use these times and others throughout this chapter
to compare the speeds of different operations.

318 Efficient Use of the Computer's Resources

The next step is to actually time the operation of interest. It should be noted that for arithmetic
operations, the time spent performing the operation will vary depending upon the two operands
(number of digits and relative magnitudes) .

10 REAL A,B,C

20 INTEGER I

30 B=PI*1.E+53
40 C=EXP(SQR(2)A13.S1)

50 PRINT "B=" iB , " C=" iC
80 Tl=TIMEDATE
70 FOR I=l TO 10000
SO A=B
80 NE>(T I

100 T2=TIMEDATE
110 FOR I=l TO 10000
120 A=B+C
130 NE>(T I

140 T3=TIMEDATE
150 Op_tifrl e=DROUND<T3-T2-T2+Tl,3)
180 PRINT OP_tiflle*100i"us. per operation"
170 END

The above program will show anywhere from 148 to 150 microseconds per operation for addition.

Here is a list of a few other operations:

Addition 150 f.LS
Subtraction 165 f.LS
Multiplication 301 f.LS
Division 460 f.LS
Exponentiation 7590 f.LS

These times vary for different processor boards. Use these times and others throughout this chapter
to compare the speeds of different operations.

Efficient Use of the Computer's Resources 319

INTEGER Variables
We have seen in the first section of this chapter that INTEGER variables don't take as much
memory as REAL variables (2 bytes instead of 8). Now we shall discover that some operations with
INTEGERs are much faster than the same operations with REALs.

Minimum and Maximum Values
The INTEGER variable type may store any whole number from - 32 768 to + 32 767 inclusive.

Mathematical Operations
There are two sets of math routines provided for the MOD, DIV, +, -, and * operations: REAL
and INTEGER. Depending upon the types of the operands used, the execution times for these
operations will vary widely. The tradeoffs are:

INTEGER math is the faster of the two, since it doesn't require as much "work" . This is because:

1. There are only two bytes of data to process instead of eight

2. Operations do not have to deal with a combination of mantissa and exponent.

3. The results don't have to be normalized.

4. INTEGER math can be done directly in the hardware.

REAL math, though slower, is generally more widely used because it allows numbers with fractional
parts to be analyzed. REAL numbers carry about 16 decimal digits of precision and have an
exponent range of - 308 to + 308.

Note
All times specified are without the floating point card. If you have this
card, your times will be faster for REAL math.

For instance, suppose you want to compute your monthly pay. Assume that you're making $5.17
an hour, that you work twenty four days per month and that you work 14 hours per day. The
calculation that you would use is 5.17*21:* 1 LI or $1737.12. In this problem, you definitely want
your computer to use REAL precision math (or you'll lose 17 cents per hour!) even though you're
only using 6 of the 16 digits available.

The computer will pick whatever math routines it needs to solve the current problem. However, the
programmer can exercise control over which math routines get executed if the following rules are
understood.

• INTEGER math is used if both arguments of a MOD, DIV, *, +, or - operation are of type
INTEGER. If the results of the operation cannot be stored in an INTEGER, then an error is
generated (INTEGER overflow).

• REAL math is used if either or both arguments of a MOD, DIV, *, +, or - operation is of type
REAL. If one of the arguments is of type INTEGER, then that argument is first converted to
REAL.

• REAL math is always used for exponentiation and division (slash) .

Efficient Use of the Computer's Resources 319

INTEGER Variables
We have seen in the first section of this chapter that INTEGER variables don't take as much
memory as REAL variables (2 bytes instead of 8). Now we shall discover that some operations with
INTEGERs are much faster than the same operations with REALs.

Minimum and Maximum Values
The INTEGER variable type may store any whole number from - 32 768 to + 32 767 inclusive.

Mathematical Operations
There are two sets of math routines provided for the MOD, DIV, +, -, and * operations: REAL
and INTEGER. Depending upon the types of the operands used, the execution times for these
operations will vary widely. The tradeoffs are:

INTEGER math is the faster of the two, since it doesn't require as much "work" . This is because:

1. There are only two bytes of data to process instead of eight

2. Operations do not have to deal with a combination of mantissa and exponent.

3. The results don't have to be normalized.

4. INTEGER math can be done directly in the hardware.

REAL math, though slower, is generally more widely used because it allows numbers with fractional
parts to be analyzed. REAL numbers carry about 16 decimal digits of precision and have an
exponent range of - 308 to + 308.

Note
All times specified are without the floating point card. If you have this
card, your times will be faster for REAL math.

For instance, suppose you want to compute your monthly pay. Assume that you're making $5.17
an hour, that you work twenty four days per month and that you work 14 hours per day. The
calculation that you would use is 5.17*21:* 1 LI or $1737.12. In this problem, you definitely want
your computer to use REAL precision math (or you'll lose 17 cents per hour!) even though you're
only using 6 of the 16 digits available.

The computer will pick whatever math routines it needs to solve the current problem. However, the
programmer can exercise control over which math routines get executed if the following rules are
understood.

• INTEGER math is used if both arguments of a MOD, DIV, *, +, or - operation are of type
INTEGER. If the results of the operation cannot be stored in an INTEGER, then an error is
generated (INTEGER overflow).

• REAL math is used if either or both arguments of a MOD, DIV, *, +, or - operation is of type
REAL. If one of the arguments is of type INTEGER, then that argument is first converted to
REAL.

• REAL math is always used for exponentiation and division (slash) .

320 Efficient Use of the Computer's Resources

The following table gives some approximate time comparisons! between INTEGER and REAL
operations for +, - , and *. The times are approximations because REAL math routines do
different things depending upon the values of the operands. All times shown here were found on
operations with numbers having no fractional parts. The multiplication times were found for oper­
ands in the range of - 200 to + 200.

REAL INTEGER

MOD 160/Ls 91 /LS
DIV 352 /LS 88/Ls
Addition 142 /LS 68/Ls
Subtraction 174 /LS 68/Ls
Multiplication 152 /LS 77 /LS

Multiplication, like most math operations, will execute faster on INTEGER values. However, bear in
mind that it's much easier to get an INTEGER overflow on multiplications than on additions and
subtractions. For instance, 20(H20 0 will give an INTEGER overflow. If you are performing multi­
plication on INTEGERs, you should carefully examine your program to ensure that the range of
your answers doesn't force you to use REALs, even if the requirement for fractional precision
doesn't.

Loops
In general, any FORINEXT loop using an index which has been declared to be an INTEGER will
execute about 2.4 times faster than a loop whose loop counter is a REAL. Type in the two
programs below and run them to see the difference.

10 REAL I
20 TO =TIMEDATE
30 FOR 1=1 TO 10000
40 NE>(T I
50 PRINT TIMEDATE-T Oi" secon ds "
GO END

Time is about 1.67 seconds.

10 INTEGER I
20 TO=TIMEDATE
30 FOR 1=1 TO 10000
40 NE){T I
50 PRINT TIMEDA TE- TOi"seconds"
GO END

Time is about .69 seconds.

1 These times are for a Series 200 computer with an MC68000 processor running at 8 MHz. They will be significantly decreased o n machines
with higher clock rates or floa ting-poin t math hardwa re (HP98635 math card or MC68881 co-processor) .

320 Efficient Use of the Computer's Resources

The following table gives some approximate time comparisons! between INTEGER and REAL
operations for +, - , and *. The times are approximations because REAL math routines do
different things depending upon the values of the operands. All times shown here were found on
operations with numbers having no fractional parts. The multiplication times were found for oper­
ands in the range of - 200 to + 200.

REAL INTEGER

MOD 160/Ls 91 /LS
DIV 352 /LS 88/Ls
Addition 142 /LS 68/Ls
Subtraction 174 /LS 68/Ls
Multiplication 152 /LS 77 /LS

Multiplication, like most math operations, will execute faster on INTEGER values. However, bear in
mind that it's much easier to get an INTEGER overflow on multiplications than on additions and
subtractions. For instance, 20(H20 0 will give an INTEGER overflow. If you are performing multi­
plication on INTEGERs, you should carefully examine your program to ensure that the range of
your answers doesn't force you to use REALs, even if the requirement for fractional precision
doesn't.

Loops
In general, any FORINEXT loop using an index which has been declared to be an INTEGER will
execute about 2.4 times faster than a loop whose loop counter is a REAL. Type in the two
programs below and run them to see the difference.

10 REAL I
20 TO =TIMEDATE
30 FOR 1=1 TO 10000
40 NE>(T I
50 PRINT TIMEDATE-T Oi" secon ds "
GO END

Time is about 1.67 seconds.

10 INTEGER I
20 TO=TIMEDATE
30 FOR 1=1 TO 10000
40 NE){T I
50 PRINT TIMEDA TE- TOi"seconds"
GO END

Time is about .69 seconds.

1 These times are for a Series 200 computer with an MC68000 processor running at 8 MHz. They will be significantly decreased o n machines
with higher clock rates or floa ting-poin t math hardwa re (HP98635 math card or MC68881 co-processor) .

(

Efficient Use of the Computer's Resources 321

Bear in mind that the 2.4 speed improvement is only on the time devoted to actually incrementing
and testing the loop variable (in these examples, 1). So, any loop that iterates for 10 000 times will
run about a second faster if the index is an INTEGER instead of a REAL. Now, saving a second on a
loop that executes 10 000 times may not sound like much by itself, and it's not. But what if that
loop is nested inside another one that executes 10 000 times? Now your time savings is 10 000
seconds, or two hours and forty-five minutes! Just for declaring the loop counters to be INTEGER.

Naturally, making a loop index into an INTEGER will only work if the loop is not stepping in
fractions, and if the minimum and maximum values of the loop index do not exceed the range of
- 32 768 thru + 32 767.

Array Indexing
Accessing individual array elements is faster if the variables or expressions giving the indices into the
array are INTEGER instead of REAL. This is because the system has to convert floating point
numbers into an INTEGER in order to find the offset from the beginning of the array. If the index is
already in INTEGER form, the conversion isn' t necessary. The following example illustrates this
point.

10 REAL I
20 DIM A(1 : 100 0)
30)(=17.5G8
ao TO=TIMEDATE
50 FOR 1=1 TO 1000
GO A(I) =){
70 ND(T I
80 PRINT TIMEDATE-TOj"second s"
80 END

10 INTEGER I
20 DIM A(1 : 1000)
30 }(=17 . 5G8
ao TO=TIMEDATE
50 FOR 1= 1 TO 1000
GO A(I)=){
70 NE){T I
80 PRINT TIMEDATE-TO j "seconds"
80 END

You will find a difference of .14 seconds between the two programs' execution times, due to a
combination of the loop counter being INTEGER and the INTEGER indexing of the array. Again, if
you're operating on a much larger array, or if you're working on a multi-dimensional array this
number can become noticeable.

(

Efficient Use of the Computer's Resources 321

Bear in mind that the 2.4 speed improvement is only on the time devoted to actually incrementing
and testing the loop variable (in these examples, 1). So, any loop that iterates for 10 000 times will
run about a second faster if the index is an INTEGER instead of a REAL. Now, saving a second on a
loop that executes 10 000 times may not sound like much by itself, and it's not. But what if that
loop is nested inside another one that executes 10 000 times? Now your time savings is 10 000
seconds, or two hours and forty-five minutes! Just for declaring the loop counters to be INTEGER.

Naturally, making a loop index into an INTEGER will only work if the loop is not stepping in
fractions, and if the minimum and maximum values of the loop index do not exceed the range of
- 32 768 thru + 32 767.

Array Indexing
Accessing individual array elements is faster if the variables or expressions giving the indices into the
array are INTEGER instead of REAL. This is because the system has to convert floating point
numbers into an INTEGER in order to find the offset from the beginning of the array. If the index is
already in INTEGER form, the conversion isn' t necessary. The following example illustrates this
point.

10 REAL I
20 DIM A(1 : 100 0)
30)(=17.5G8
ao TO=TIMEDATE
50 FOR 1=1 TO 1000
GO A(I) =){
70 ND(T I
80 PRINT TIMEDATE-TOj"second s"
80 END

10 INTEGER I
20 DIM A(1 : 1000)
30 }(=17 . 5G8
ao TO=TIMEDATE
50 FOR 1= 1 TO 1000
GO A(I)=){
70 NE){T I
80 PRINT TIMEDATE-TO j "seconds"
80 END

You will find a difference of .14 seconds between the two programs' execution times, due to a
combination of the loop counter being INTEGER and the INTEGER indexing of the array. Again, if
you're operating on a much larger array, or if you're working on a multi-dimensional array this
number can become noticeable.

322 Efficient Use of the Computer's Resources

REAL Numbers

Minimum and Maximum Values
The minimum REAL number that can be stored on this computer is approximately
± 2.225 073 858 507 202 x 10-308

The maximum REAL number that can be stored on this computer is approximately
± 1. 797693 134862315 x 10308

A REAL number can also have the value zero.

Type Conversions
Earlier, it was mentioned that any time a MOD, DlV, *, +, or - operation is performed on two
numbers of different type (one INTEGER, and one REAL), a type conversion has to take place to
convert the INTEGER to a REAL. This section will address other situations where type conversions
have to take place.

Any time an INTEGER is used in an exponentiation or division operation, it must first be converted
to a REAL.

All of the following functions require a REAL argument (with the exception of VAL and RND), and
all of them return a REAL value (with the exception of RANDOMIZE) . If an INTEGER is passed in,
or if the result is to be stored in an INTEGER, then the appropriate type conversion must be made:
EXP, LGT, LOG, RANDOMIZE, SQR, DROUND, RND, ACS, COS, ASN, SIN, ATN, TAN, VAL.

All of the comparison operators (=, <>, <, >, < =, > =) will return INTEGER values (0 or 1)
but will accept either INTEGERs or REALs as arguments. The logical operators AND, EXOR, OR,
and NOT will convert any arguments to the INTEGER values 0 or 1 before the operation is
performed, and an INTEGER 0 or 1 will be returned.

The binary bit functions (BINAND, SHIFT, ROTATE, BINIOR, BINCMP, BIT, BINEOR) require
INTEGER inputs and provide INTEGER outputs. Type conversions will be performed if REALs are
supplied as inputs, or if the results are to be stored in a REAL variable.

SGN returns an INTEGER (-1,0, 1) regardless of the type of the argument passed to it. ABS and
INT return the type of the argument that's passed to them.

If two INTEGERs are used to perform a MOD, DIV, *, +, or - operation, but the result is to be
stored in a REAL variable instead of an INTEGER, then the result must be converted from
INTEGER to REAL.

Here is how long each type conversion takes:

INTEGER to REAL: 42 microseconds
REAL to INTEGER: 34 microseconds

322 Efficient Use of the Computer's Resources

REAL Numbers

Minimum and Maximum Values
The minimum REAL number that can be stored on this computer is approximately
± 2.225 073 858 507 202 x 10-308

The maximum REAL number that can be stored on this computer is approximately
± 1. 797693 134862315 x 10308

A REAL number can also have the value zero.

Type Conversions
Earlier, it was mentioned that any time a MOD, DlV, *, +, or - operation is performed on two
numbers of different type (one INTEGER, and one REAL), a type conversion has to take place to
convert the INTEGER to a REAL. This section will address other situations where type conversions
have to take place.

Any time an INTEGER is used in an exponentiation or division operation, it must first be converted
to a REAL.

All of the following functions require a REAL argument (with the exception of VAL and RND), and
all of them return a REAL value (with the exception of RANDOMIZE) . If an INTEGER is passed in,
or if the result is to be stored in an INTEGER, then the appropriate type conversion must be made:
EXP, LGT, LOG, RANDOMIZE, SQR, DROUND, RND, ACS, COS, ASN, SIN, ATN, TAN, VAL.

All of the comparison operators (=, <>, <, >, < =, > =) will return INTEGER values (0 or 1)
but will accept either INTEGERs or REALs as arguments. The logical operators AND, EXOR, OR,
and NOT will convert any arguments to the INTEGER values 0 or 1 before the operation is
performed, and an INTEGER 0 or 1 will be returned.

The binary bit functions (BINAND, SHIFT, ROTATE, BINIOR, BINCMP, BIT, BINEOR) require
INTEGER inputs and provide INTEGER outputs. Type conversions will be performed if REALs are
supplied as inputs, or if the results are to be stored in a REAL variable.

SGN returns an INTEGER (-1,0, 1) regardless of the type of the argument passed to it. ABS and
INT return the type of the argument that's passed to them.

If two INTEGERs are used to perform a MOD, DIV, *, +, or - operation, but the result is to be
stored in a REAL variable instead of an INTEGER, then the result must be converted from
INTEGER to REAL.

Here is how long each type conversion takes:

INTEGER to REAL: 42 microseconds
REAL to INTEGER: 34 microseconds

Efficient Use of the Computer's Resources 323

Constants
All constants that are within the range of - 32 767 to 32 767 that aren't entered with a decimal
point or an "E" (for scientific notation) are stored in the machine as INTEGERs. Integer constants
should always be used with INTEGER variables, but if they are used with REAL variables they will
have to be converted to REAL first. This operation will slow down the execution of the program, as
shown in the previous section. Any numbers entered with decimal points (1.0,3., .7, etc.) , with an
E (lE - 304, .2E48, OEO, etc.), or outside the valid INTEGER range (40000, -75986, etc.) will be
stored as REAL constants.

Polynomial Evaluations
The polynomial can waste much of computer time because programmers tend to pick the most
obvious, and also the most time-consuming, method of evaluating them. Polynomials are usually
written mathematically as:

or
n

y= !. a/
i=O

hence the temptation is strong to evaluate a polynomial on a computer as:

2000 DEF FNPolY()-(,Coefficient(*) tINTEGER N)
2010 INTEGER I
2020 '1'=0
2030 FOR 1=0 TO N
2040 Y=Y+Coefficient(I)*(X"I)
2050 NE)<T I
2060 RETURN 'I'
2070 FNEND

In the above program, there are N + 1 additions, N + 1 multiplies, N + 1 exponentiations, and N + 1
INTEGER to REAL conversions (I is converted to a REAL when the exponentiation operation is
performed). Now suppose the polynomial is written in the equivalent form:

y=ao + x(al + x(a2 + ... + x(an } . . . } }

Then the corresponding program would be:

2000 DEF FNPolY(}(,Coefficient(*) tINTEGER N)
2010 INTEGER I
2020 Y=Coefficient(N)
2030 FOR I=N-1 TO 0 STEP -1
2040 Y=Coefficient(I)+X*Y
2050 ND(T I
2060 RETURN Y
2070 FNEND

Now there are only N additions and N multiplies, and NO exponentiations or INTEGER to REAL
conversions! The following chart shows the time savings as a function of the order of the polyno­
mial. For example, if the polynomial is of order 10, it is 70 milliseconds faster to use the nested
multiply method to evaluate the polynomial than to use exponentiation. If you' re plotting a
thousand points on a graph, nested multiplication will save you more than a minute!

Efficient Use of the Computer's Resources 323

Constants
All constants that are within the range of - 32 767 to 32 767 that aren't entered with a decimal
point or an "E" (for scientific notation) are stored in the machine as INTEGERs. Integer constants
should always be used with INTEGER variables, but if they are used with REAL variables they will
have to be converted to REAL first. This operation will slow down the execution of the program, as
shown in the previous section. Any numbers entered with decimal points (1.0,3., .7, etc.) , with an
E (lE - 304, .2E48, OEO, etc.), or outside the valid INTEGER range (40000, -75986, etc.) will be
stored as REAL constants.

Polynomial Evaluations
The polynomial can waste much of computer time because programmers tend to pick the most
obvious, and also the most time-consuming, method of evaluating them. Polynomials are usually
written mathematically as:

or
n

y= !. a/
i=O

hence the temptation is strong to evaluate a polynomial on a computer as:

2000 DEF FNPolY()-(,Coefficient(*) tINTEGER N)
2010 INTEGER I
2020 '1'=0
2030 FOR 1=0 TO N
2040 Y=Y+Coefficient(I)*(X"I)
2050 NE)<T I
2060 RETURN 'I'
2070 FNEND

In the above program, there are N + 1 additions, N + 1 multiplies, N + 1 exponentiations, and N + 1
INTEGER to REAL conversions (I is converted to a REAL when the exponentiation operation is
performed). Now suppose the polynomial is written in the equivalent form:

y=ao + x(al + x(a2 + ... + x(an } . . . } }

Then the corresponding program would be:

2000 DEF FNPolY(}(,Coefficient(*) tINTEGER N)
2010 INTEGER I
2020 Y=Coefficient(N)
2030 FOR I=N-1 TO 0 STEP -1
2040 Y=Coefficient(I)+X*Y
2050 ND(T I
2060 RETURN Y
2070 FNEND

Now there are only N additions and N multiplies, and NO exponentiations or INTEGER to REAL
conversions! The following chart shows the time savings as a function of the order of the polyno­
mial. For example, if the polynomial is of order 10, it is 70 milliseconds faster to use the nested
multiply method to evaluate the polynomial than to use exponentiation. If you' re plotting a
thousand points on a graph, nested multiplication will save you more than a minute!

324 Efficient Use of the Computer's Resources

DIFFERENCE BETWEEN NESTED MULTIPLICATION
.4 AND EXPONENTIATION ON POLYNOMIAL

EVALUATION

.3

(f)

~
Z . 2
o
u
w
(f)

. 1

0~---5~--~-----1~5----~---2~5----~----3~5----~----4~5--~

ORDER OF POLYNOMIAL

Logical Comparisons for Equality on REAL Numbers
Don't do it.

If you are performing mathematical operations on REAL numbers, and then comparing them for
equality, the chances are that they will never come up equal. For example, in the previous section
on polynomial evaluation, you can pass the same value for X and the same coefficient array to each
of the two functions, and although the results will look equal when you print them out, they won't
show equality if you compare them. (Try it and see.) A shorter example is to type out this
expression from the keyboard and press (EXECUTE):

The 0 at the bottom of the screen means that the machine doesn't consider the two numbers to be
equal. This is characteristic of the way that binary math works.

Any REAL numbers should be rounded first before being tested for equality. This is one of the
purposes of the DROUND function.

DROUND (• 1 +. 1 +. 1 +.1 +. 1 +.1 +.1 11 2) = DROUND (.7 112)

After rounding both numbers to 12 digits, the computer will now accept them as being equal. See
Chapter 4 for more discussion on the comparison of REAL numbers.

324 Efficient Use of the Computer's Resources

DIFFERENCE BETWEEN NESTED MULTIPLICATION
.4 AND EXPONENTIATION ON POLYNOMIAL

EVALUATION

.3

(f)

~
Z . 2
o
u
w
(f)

. 1

0~---5~--~-----1~5----~---2~5----~----3~5----~----4~5--~

ORDER OF POLYNOMIAL

Logical Comparisons for Equality on REAL Numbers
Don't do it.

If you are performing mathematical operations on REAL numbers, and then comparing them for
equality, the chances are that they will never come up equal. For example, in the previous section
on polynomial evaluation, you can pass the same value for X and the same coefficient array to each
of the two functions, and although the results will look equal when you print them out, they won't
show equality if you compare them. (Try it and see.) A shorter example is to type out this
expression from the keyboard and press (EXECUTE):

The 0 at the bottom of the screen means that the machine doesn't consider the two numbers to be
equal. This is characteristic of the way that binary math works.

Any REAL numbers should be rounded first before being tested for equality. This is one of the
purposes of the DROUND function.

DROUND (• 1 +. 1 +. 1 +.1 +. 1 +.1 +.1 11 2) = DROUND (.7 112)

After rounding both numbers to 12 digits, the computer will now accept them as being equal. See
Chapter 4 for more discussion on the comparison of REAL numbers.

Efficient Use of the Computer's Resources 325

Saving Time

Multiply vs. Add
It is always faster to add a number to itself than it is to multiply it by 2. For instance, to perform 2 * PI
a thousand times takes .22 seconds, while to perform PI + PI a thousand times takes .13 seconds.

However, if you want to multiply by 3, that is faster than adding the number three times. 3 *PI
executed a thousand times takes about the same as 2*PI (.22 seconds) , but adding PI + PI + PI a
thousand times takes about .28 seconds.

Exponentiation vs. Multiply and SQR
Exponentiation is very slow when compared to other mathematical operations. The results are
worth the wait when the exponent has a fractional part; raising a REAL number to a REAL power is
a complex operation. However, time can be saved if you are alert to some special cases. The most
common examples are squaring a number or finding a square root. Using S Q R ()-() takes only
about one-fourth the time required by the expression)-(.' . • 5. Even more dramatic savings can be
gained when raiSing numbers to an integer power. Using }(*}(yields a 22-to-1 time savings over the
expression }(.'. 2. When using powers greater than 2 or 3, the expressions needed to achieve the
repeated multiplication can be somewhat cumbersome, and may not even fit on a program line.
However, repeated multiplication is so much faster than exponentiation that time savings can be
realized (for powers up to 14) even if a FOR. .. NEXT loop has to be added to repeat the multiplica­
tion.

Array Fetches vs. Simple Variables
It takes more time to access an array element than it does a simple variable. This is because the
address of the array element has to be computed from the starting address of the array and the
offset within the array based on the specified indices. A simple variable's address does not require
this computation.

Thus, if you access a given array element often enough, especially within a loop, it will often be
faster to store the array element into a simple variable and then operate on the simple variable.

Time to fetch a simple variable and store it:
Time to fetch an array variable and store it:
Difference:

136 j.LS
260 j.LS
124 j.LS

This means that it is faster to fetch three simple variables than it is to fetch two array elements.

Concatenation vs. Substring Placement
The concatenation operator (PI:) allows you to combine two or more strings to construct another
string. This operation is discussed in Chapter 5. However, there is a special case that can be
accomplished faster without the concatenation operator. This is the case where the new string is
built by appending to the end of an existing string. For example, A $ = A $&: B $.

Efficient Use of the Computer's Resources 325

Saving Time

Multiply vs. Add
It is always faster to add a number to itself than it is to multiply it by 2. For instance, to perform 2 * PI
a thousand times takes .22 seconds, while to perform PI + PI a thousand times takes .13 seconds.

However, if you want to multiply by 3, that is faster than adding the number three times. 3 *PI
executed a thousand times takes about the same as 2*PI (.22 seconds) , but adding PI + PI + PI a
thousand times takes about .28 seconds.

Exponentiation vs. Multiply and SQR
Exponentiation is very slow when compared to other mathematical operations. The results are
worth the wait when the exponent has a fractional part; raising a REAL number to a REAL power is
a complex operation. However, time can be saved if you are alert to some special cases. The most
common examples are squaring a number or finding a square root. Using S Q R ()-() takes only
about one-fourth the time required by the expression)-(.' . • 5. Even more dramatic savings can be
gained when raiSing numbers to an integer power. Using }(*}(yields a 22-to-1 time savings over the
expression }(.'. 2. When using powers greater than 2 or 3, the expressions needed to achieve the
repeated multiplication can be somewhat cumbersome, and may not even fit on a program line.
However, repeated multiplication is so much faster than exponentiation that time savings can be
realized (for powers up to 14) even if a FOR. .. NEXT loop has to be added to repeat the multiplica­
tion.

Array Fetches vs. Simple Variables
It takes more time to access an array element than it does a simple variable. This is because the
address of the array element has to be computed from the starting address of the array and the
offset within the array based on the specified indices. A simple variable's address does not require
this computation.

Thus, if you access a given array element often enough, especially within a loop, it will often be
faster to store the array element into a simple variable and then operate on the simple variable.

Time to fetch a simple variable and store it:
Time to fetch an array variable and store it:
Difference:

136 j.LS
260 j.LS
124 j.LS

This means that it is faster to fetch three simple variables than it is to fetch two array elements.

Concatenation vs. Substring Placement
The concatenation operator (PI:) allows you to combine two or more strings to construct another
string. This operation is discussed in Chapter 5. However, there is a special case that can be
accomplished faster without the concatenation operator. This is the case where the new string is
built by appending to the end of an existing string. For example, A $ = A $&: B $.

326 Efficient Use of the Computer's Resources

Concatenation works by constructing a temporary workspace in which all the components are
assembled. Then the result is moved to its destination. In the example above, A$ is moved to a
temporary workspace, B$ is appended to it, and the result is moved back to A$. Thus, the original
contents of A$, which weren't changed, have been moved twice unnecessarily. A faster way to
accomplish the same thing is:

A$[LEN(A$)+lJ=B$

Another benefit of this approach is that the temporary workspace is not created. If memory is tight
and A$ is very large, concatenation could create a memory overflow.

The following chart shows the time savings that result from using substring placement instead of
concatenation.

15

14

13

z 12
0
H I 1
f-
er:
~ 10 w
n.
0 9
~
w 8
n.
UJ 7
Q
Z

6 0
u
w

5 UJ
H

--1
4 --1

H

I: 3

2

DIFFERENCE BETWEEN CONCATENTATION
AND SUBSTRING PLACEMENT

(* OF CHARACTERS IN FINAL STRING)

326 Efficient Use of the Computer's Resources

Concatenation works by constructing a temporary workspace in which all the components are
assembled. Then the result is moved to its destination. In the example above, A$ is moved to a
temporary workspace, B$ is appended to it, and the result is moved back to A$. Thus, the original
contents of A$, which weren't changed, have been moved twice unnecessarily. A faster way to
accomplish the same thing is:

A$[LEN(A$)+lJ=B$

Another benefit of this approach is that the temporary workspace is not created. If memory is tight
and A$ is very large, concatenation could create a memory overflow.

The following chart shows the time savings that result from using substring placement instead of
concatenation.

15

14

13

z 12
0
H I 1
f-
er:
~ 10 w
n.
0 9
~
w 8
n.
UJ 7
Q
Z

6 0
u
w

5 UJ
H

--1
4 --1

H

I: 3

2

DIFFERENCE BETWEEN CONCATENTATION
AND SUBSTRING PLACEMENT

(* OF CHARACTERS IN FINAL STRING)

Efficient Use of the Computer's Resources 327

HP 98635 Floating-Point Math Card
This card contains a special chip which performs floating-point math computations in hardware
rather than in software. It provides significant speed improvements over the "math library" (soft­
ware) computation method.

The BASIC system uses this card automatically, whenever installed. However, you can disable and
enable its use with CONTROL statements just like you can the MC68881 co-processor. See the
follOWing section for details.

MC68881 Floating-Point Math Co-Processor
Series 300 computers may optionally be equipped with MC68881 floating-point math co­
processors. Not only does the 68881 provide increased speed of floating-point math calculations,
but it also increases the accuracy of these calculations. The 68881 has 80-bit (binary) preciSion as
opposed to the 64-bit (binary) precision of the BASIC math library and HP 98635 Floating-Point
Math Card. In a series of standard math tests, the RMS (root mean square) error in the 10 worst
cases for the 68881 ranged from 0 to 0.37 bit error. For the software math library and Floating­
Point Math card, the RMS error in the worst 10 cases ranged from 0.33 to 4.2 bits of error.

While the BASIC math library and the HP 98635 Floating-Point Math card produce identical
results, these values may not agree with those obtained from using the MC68881. This may only be
noticeable when strict equality with the math library or Floating-Point Math card is required (which
is not recommended, by the way) . For strict compliance, disable the 68881.

Enabling and Disabling Floating-Point Math Hardware
You can determine whether the MC68881 floating-point math co-processor or HP 98635 Floating­
Point Math Card is currently enabled with the following statement:

If the variable called FloaLon is assigned a value of 1, then the floating-point hardware is currently
enabled (this is the default condition). If it is assigned a value of 0, then it is disabled.

If floating-point math hardware is enabled but you want to disable it, execute this statement:

CONTROL 32.2;0

If you want to re-enable this feature, you can do so with this statement:

CONTROL 32.2;1

Efficient Use of the Computer's Resources 327

HP 98635 Floating-Point Math Card
This card contains a special chip which performs floating-point math computations in hardware
rather than in software. It provides significant speed improvements over the "math library" (soft­
ware) computation method.

The BASIC system uses this card automatically, whenever installed. However, you can disable and
enable its use with CONTROL statements just like you can the MC68881 co-processor. See the
follOWing section for details.

MC68881 Floating-Point Math Co-Processor
Series 300 computers may optionally be equipped with MC68881 floating-point math co­
processors. Not only does the 68881 provide increased speed of floating-point math calculations,
but it also increases the accuracy of these calculations. The 68881 has 80-bit (binary) preciSion as
opposed to the 64-bit (binary) precision of the BASIC math library and HP 98635 Floating-Point
Math Card. In a series of standard math tests, the RMS (root mean square) error in the 10 worst
cases for the 68881 ranged from 0 to 0.37 bit error. For the software math library and Floating­
Point Math card, the RMS error in the worst 10 cases ranged from 0.33 to 4.2 bits of error.

While the BASIC math library and the HP 98635 Floating-Point Math card produce identical
results, these values may not agree with those obtained from using the MC68881. This may only be
noticeable when strict equality with the math library or Floating-Point Math card is required (which
is not recommended, by the way) . For strict compliance, disable the 68881.

Enabling and Disabling Floating-Point Math Hardware
You can determine whether the MC68881 floating-point math co-processor or HP 98635 Floating­
Point Math Card is currently enabled with the following statement:

If the variable called FloaLon is assigned a value of 1, then the floating-point hardware is currently
enabled (this is the default condition). If it is assigned a value of 0, then it is disabled.

If floating-point math hardware is enabled but you want to disable it, execute this statement:

CONTROL 32.2;0

If you want to re-enable this feature, you can do so with this statement:

CONTROL 32.2;1

328 Efficient Use of the Computer's Resources

MC68020 Internal Cache Memory
The MC68020 processors available on Series 300 computers have on-chip high-speed cache
memory. This memory serves as storage for machine instruction sequences, typically allowing the
processor to decrease the amount of off-chip memory accesses and thus speed program execution.

Enabling and Disabling Cache Memory
You can determine whether or not cache memory is currently enabled with this statement:

STATUS 32 ,3 ;Cache _on

If the variable called Cache_on is assigned a value of 1, then cache is currently enabled (this is the
default condition). If it is assigned a value of 0, then cache is disabled.

If the cache feature is enabled, but you want to disable it, you can do so with this statement:

CONTROL 32 ,3;0

If you want to re-enable this feature, execute this statement:

CONTROL 32,3;1

328 Efficient Use of the Computer's Resources

MC68020 Internal Cache Memory
The MC68020 processors available on Series 300 computers have on-chip high-speed cache
memory. This memory serves as storage for machine instruction sequences, typically allowing the
processor to decrease the amount of off-chip memory accesses and thus speed program execution.

Enabling and Disabling Cache Memory
You can determine whether or not cache memory is currently enabled with this statement:

STATUS 32 ,3 ;Cache _on

If the variable called Cache_on is assigned a value of 1, then cache is currently enabled (this is the
default condition). If it is assigned a value of 0, then cache is disabled.

If the cache feature is enabled, but you want to disable it, you can do so with this statement:

CONTROL 32 ,3;0

If you want to re-enable this feature, execute this statement:

CONTROL 32,3;1

Efficient Use of the Computer's Resources 329

Saving Memory

The ALLOCATE and DEALLOCATE statements can be used to make efficient use of memory
space in certain applications. They are useful in programs that contain a number of large
variables that are not all needed Simultaneously. For example: during data collection, a large
string array is needed; during data processing a large numeric look-up table is needed; and
during output formatting, a string array is needed again. Because a mass storage device is used
to hold the data between processes, the same memory area can be used for all these arrays.

To use ALLOCATE effectively, it is necessary to understand how the system reclaims areas that
have been DEALLOCATED. Space for allocated variables is built using a stack discipline. The
DEALLOCATE statement marks a space as unused. Unused space can be reclaimed only if it is
the last space on the stack. There are two operations that use space in this stack. One is
ALLOCATE, and the other is ON <event>.

Keeping other allocated variables from blocking deallocated space is relatively simple. If you
have only one allocated variable at any given time, this is not a problem. If you have allocated
variables in existence Simultaneously, ALLOCATE them in the opposite order of the DEALLO­
CATE statements. Think of this in the same way you would think about nesting FOR .. NEXT
loops.

Preventing blockage by ON conditions is more complicated. ON conditions, with one excep­
tion, create control blocks that are permanent entries on the stack. As soon as you declare an
ON (or OFF) condition, all the previous entries on the stack are "locked in" for the duration of
the context and cannot be reclaimed. Therefore, all the control blocks should be created before
any variables are allocated. Once a control block is created, it will be used by all subsequent ON
and OFF statements that refer to the same resource. A good technique is to include an OFF
statement for each desired event before allocating any variables.

The exception mentioned above is an ON condition declared for an lIO path name. This
includes ON END, ON EOT, and ON EOR For these, subsequent ON and OFF statements
behave as previously described. However, if the I/O path is closed, any control blocks associ­
ated with the path are marked as unused. This has two implications. One, the reclaiming of the
stack will not be blocked after the I/O path is closed. Two, you cannot force the system to leave
these control blocks at the beginning of the stack. Here is an example:

200 ASSIGN @File to " FRED"
210 DN END @F i le GDTD Labell
22 0 ALLDCATE Ar ra y (255.4)

8 00 ASSIGN @File TO "SUSA N"
810 ON END @File GOTO Label2
820 DEALLO CATE Arra y (*)

At first, the array and control block are allocated in the proper order. The ASSIGN statement in
line 600 closes the original path and opens a new path with the same name. When the ON END
control block for the new path is created, it is placed after the array on the stack. Therefore, no
memory space can be recovered by deallocating the array.

Efficient Use of the Computer's Resources 329

Saving Memory

The ALLOCATE and DEALLOCATE statements can be used to make efficient use of memory
space in certain applications. They are useful in programs that contain a number of large
variables that are not all needed Simultaneously. For example: during data collection, a large
string array is needed; during data processing a large numeric look-up table is needed; and
during output formatting, a string array is needed again. Because a mass storage device is used
to hold the data between processes, the same memory area can be used for all these arrays.

To use ALLOCATE effectively, it is necessary to understand how the system reclaims areas that
have been DEALLOCATED. Space for allocated variables is built using a stack discipline. The
DEALLOCATE statement marks a space as unused. Unused space can be reclaimed only if it is
the last space on the stack. There are two operations that use space in this stack. One is
ALLOCATE, and the other is ON <event>.

Keeping other allocated variables from blocking deallocated space is relatively simple. If you
have only one allocated variable at any given time, this is not a problem. If you have allocated
variables in existence Simultaneously, ALLOCATE them in the opposite order of the DEALLO­
CATE statements. Think of this in the same way you would think about nesting FOR .. NEXT
loops.

Preventing blockage by ON conditions is more complicated. ON conditions, with one excep­
tion, create control blocks that are permanent entries on the stack. As soon as you declare an
ON (or OFF) condition, all the previous entries on the stack are "locked in" for the duration of
the context and cannot be reclaimed. Therefore, all the control blocks should be created before
any variables are allocated. Once a control block is created, it will be used by all subsequent ON
and OFF statements that refer to the same resource. A good technique is to include an OFF
statement for each desired event before allocating any variables.

The exception mentioned above is an ON condition declared for an lIO path name. This
includes ON END, ON EOT, and ON EOR For these, subsequent ON and OFF statements
behave as previously described. However, if the I/O path is closed, any control blocks associ­
ated with the path are marked as unused. This has two implications. One, the reclaiming of the
stack will not be blocked after the I/O path is closed. Two, you cannot force the system to leave
these control blocks at the beginning of the stack. Here is an example:

200 ASSIGN @File to " FRED"
210 DN END @F i le GDTD Labell
22 0 ALLDCATE Ar ra y (255.4)

8 00 ASSIGN @File TO "SUSA N"
810 ON END @File GOTO Label2
820 DEALLO CATE Arra y (*)

At first, the array and control block are allocated in the proper order. The ASSIGN statement in
line 600 closes the original path and opens a new path with the same name. When the ON END
control block for the new path is created, it is placed after the array on the stack. Therefore, no
memory space can be recovered by deallocating the array.

330 Efficient Use of the Computer's Resources

Notes

330 Efficient Use of the Computer's Resources

Notes

UsingSRM
Chapter

14

This chapter describes the use1 of your HP Series 200/300 BASIC workstation with a Shared
Resource Management (SRM) system. The chapter is divided into four major sections:

• The System Concepts section is an overview to help you understand how the SRM system
works.

• The Using Your BASIC Workstation on SRM section demonstrates, through the use of an
example directory structure, some of the common operations involving shared resources.

• The Modifying Existing Programs section discusses ways to change existing BASIC programs
to make them work with SRM.

• The Summary of SRM Status Registers section defines register contents.

The BASIC Language Reference has an SRM section that describes the use of BASIC commands
and statements on SRM, including the special file and directory specification used with SRM.

System Concepts
This section presents a detailed look at some of the concepts of the SRM system, including
descriptions of the following topics:

• support of the BASIC language on SRM;

• SRM directory structure and capabilities;

• storing of remote directories and files;

• shared access to directories and files (including file locking and password protection) ;

• management of shared peripherals.

Shared Resource Support of the BASIC Language
With HP Series 200/300 workstations, you can use most BASIC statements that access local mass
storage devices to access shared mass storage devices on SRM as well. Any changes to BASIC mass
storage statements made by the SRM BIN file are described in the "SRM" section of the BASIC
Language Reference.

SRM adds three new commands to the BASIC mass storage statements used by HP Series 200/300
computers - CREATE DIR, LOCK, and UNLOCK - and adds the PROTECT option for use with
the CAT statement. In addition, the PROTECT statement's use on SRM is distinct from its use with
local files.

1 Installation of BASIC or an SRM system is described in the documentation proVided with the SRM controller system.

331

UsingSRM
Chapter

14

This chapter describes the use1 of your HP Series 200/300 BASIC workstation with a Shared
Resource Management (SRM) system. The chapter is divided into four major sections:

• The System Concepts section is an overview to help you understand how the SRM system
works.

• The Using Your BASIC Workstation on SRM section demonstrates, through the use of an
example directory structure, some of the common operations involving shared resources.

• The Modifying Existing Programs section discusses ways to change existing BASIC programs
to make them work with SRM.

• The Summary of SRM Status Registers section defines register contents.

The BASIC Language Reference has an SRM section that describes the use of BASIC commands
and statements on SRM, including the special file and directory specification used with SRM.

System Concepts
This section presents a detailed look at some of the concepts of the SRM system, including
descriptions of the following topics:

• support of the BASIC language on SRM;

• SRM directory structure and capabilities;

• storing of remote directories and files;

• shared access to directories and files (including file locking and password protection) ;

• management of shared peripherals.

Shared Resource Support of the BASIC Language
With HP Series 200/300 workstations, you can use most BASIC statements that access local mass
storage devices to access shared mass storage devices on SRM as well. Any changes to BASIC mass
storage statements made by the SRM BIN file are described in the "SRM" section of the BASIC
Language Reference.

SRM adds three new commands to the BASIC mass storage statements used by HP Series 200/300
computers - CREATE DIR, LOCK, and UNLOCK - and adds the PROTECT option for use with
the CAT statement. In addition, the PROTECT statement's use on SRM is distinct from its use with
local files.

1 Installation of BASIC or an SRM system is described in the documentation proVided with the SRM controller system.

331

332 Using SRM

SRM's Hierarchical Directory Structure
A directory is a file that is used to organize and control access to other files. The SRM operating
system uses a hierarchical directory structure to organize and control access to files on a shared
mass storage device.

As the word "hierarchy" suggests, directories are arranged in a series of "graded levels." Director­
ies may contain either files or other directories. A file or directory within a directory is said to be
"subordinate" to the containing directory. A directory is "superior" to the files and directories it
contains.

f 1

f2

ass ignments

schedule

budget

(root)

ass i gnments Test data

schedule

budget
Rpr i 1

May

In the illustration above, the directory named KA THY is subordinate to the directory named
ProjecLone, because ProjecLone contains the information describing KA THY The directory
named PROJECTS is at levell, the "root" level. You cannot create a directory at a higher level
than the root level.

Each directory keeps information, in 24-byte fixed format records, about each file or directory
immediately subordinate to it.

Uses of the Hierarchy: An Example
Suppose you're managing several projects, each of which needs to access a shared disc. To
organize the files for each project separately, you can create a directory for each project (as shown
in the illustration). Within each project directory, you can have a subordinate directory for each
person working on the project as well as files to be shared among all users. Each person may then
construct a directoryifile system for organizing their own files.

Because files at different locations in the directory structure can have the same file name, you can
use generic file names to identify similar project functions in the different projects. At the same time,
the division into separate directories isolates the projects, and thus their individual functions, from
one another. For example, ProjecLone's budget file is distinct from ProjecLtwo's budget file.

Directories also limit the number of files users must deal with at anyone time. For example, people
working on ProjecLone (see illustration) need never see the files in ProjecLtwo and may, in fact,
confine most of their activity to within their own directories.

332 Using SRM

SRM's Hierarchical Directory Structure
A directory is a file that is used to organize and control access to other files. The SRM operating
system uses a hierarchical directory structure to organize and control access to files on a shared
mass storage device.

As the word "hierarchy" suggests, directories are arranged in a series of "graded levels." Director­
ies may contain either files or other directories. A file or directory within a directory is said to be
"subordinate" to the containing directory. A directory is "superior" to the files and directories it
contains.

f 1

f2

ass ignments

schedule

budget

(root)

ass i gnments Test data

schedule

budget
Rpr i 1

May

In the illustration above, the directory named KA THY is subordinate to the directory named
ProjecLone, because ProjecLone contains the information describing KA THY The directory
named PROJECTS is at levell, the "root" level. You cannot create a directory at a higher level
than the root level.

Each directory keeps information, in 24-byte fixed format records, about each file or directory
immediately subordinate to it.

Uses of the Hierarchy: An Example
Suppose you're managing several projects, each of which needs to access a shared disc. To
organize the files for each project separately, you can create a directory for each project (as shown
in the illustration). Within each project directory, you can have a subordinate directory for each
person working on the project as well as files to be shared among all users. Each person may then
construct a directoryifile system for organizing their own files.

Because files at different locations in the directory structure can have the same file name, you can
use generic file names to identify similar project functions in the different projects. At the same time,
the division into separate directories isolates the projects, and thus their individual functions, from
one another. For example, ProjecLone's budget file is distinct from ProjecLtwo's budget file.

Directories also limit the number of files users must deal with at anyone time. For example, people
working on ProjecLone (see illustration) need never see the files in ProjecLtwo and may, in fact,
confine most of their activity to within their own directories.

Using SRM 333

To maintain security, SRM provides the capability to protect access to directories and files. For
example, you may wish to allow only members of a project team to read that project's files. Or, you
may wish to prevent other users from altering the contents of a personal file.

In the first situation, you would protect the project directory's READ capability. By protecting a
directory, you automatically restrict access to all directories and files subordinate to that directory. In
the second situation, you would protect the file 's WRITE capability. The section on "Shared Access
to Remote Directories and Files" discusses protection in more detail.

Capabilities of Directories
Directories are a type of file and, as such, can be:

• created with the CREATE DIR statement. When a directory is created, its location in the
hierarchical structure is fixed.

• cataloged with the CAT statement, renamed with the RENAME statement, and protected with
the PROTECT statement.

• "filled" with subordinate files and directories using the COPY, CREATE BDAT, CREATE
ASCII, CREATE DIR, SAVE, STORE, RENAME, RE-SAVE, and RE-STORE statements. Each
subordinate file or directory is described in a 24-byte record in its superior directory.

• opened and closed with the MASS STORAGE IS (MSI) statement. When a user's MSI state­
ment specifies a directory, any previously opened directory of that user is closed and the new
one is opened.

• "emptied" by removing all subordinate files and directories with the PURGE statement.

• purged with the PURGE statement. You must close and empty a directory before purging it.

Referring to Directories and Files in the Hierarchy
To access either a directory or a file , you must specify its location in the hierarchical directory
structure. This location is specified by a list of directories, called a directory path, that you must
follow to reach the desired file or directory. Directory names in the list are delimited by a slash (/).

For example, in the directory structure illustrated preViously, the remote file specifier:

"/ PROJECTS/ProJect_one /J OHN /f l "

defines the "path" tq the file , il , through its superior directories.

The path to a file begins either at the root level or at the current working directory. The working
directory is the directory specified by the most recent MASS STORAGE IS statement.

The "SRM" section in the BASIC Language Reference discusses the rules for specifying remote
files and directories.

Using SRM 333

To maintain security, SRM provides the capability to protect access to directories and files. For
example, you may wish to allow only members of a project team to read that project's files. Or, you
may wish to prevent other users from altering the contents of a personal file.

In the first situation, you would protect the project directory's READ capability. By protecting a
directory, you automatically restrict access to all directories and files subordinate to that directory. In
the second situation, you would protect the file 's WRITE capability. The section on "Shared Access
to Remote Directories and Files" discusses protection in more detail.

Capabilities of Directories
Directories are a type of file and, as such, can be:

• created with the CREATE DIR statement. When a directory is created, its location in the
hierarchical structure is fixed.

• cataloged with the CAT statement, renamed with the RENAME statement, and protected with
the PROTECT statement.

• "filled" with subordinate files and directories using the COPY, CREATE BDAT, CREATE
ASCII, CREATE DIR, SAVE, STORE, RENAME, RE-SAVE, and RE-STORE statements. Each
subordinate file or directory is described in a 24-byte record in its superior directory.

• opened and closed with the MASS STORAGE IS (MSI) statement. When a user's MSI state­
ment specifies a directory, any previously opened directory of that user is closed and the new
one is opened.

• "emptied" by removing all subordinate files and directories with the PURGE statement.

• purged with the PURGE statement. You must close and empty a directory before purging it.

Referring to Directories and Files in the Hierarchy
To access either a directory or a file , you must specify its location in the hierarchical directory
structure. This location is specified by a list of directories, called a directory path, that you must
follow to reach the desired file or directory. Directory names in the list are delimited by a slash (/).

For example, in the directory structure illustrated preViously, the remote file specifier:

"/ PROJECTS/ProJect_one /J OHN /f l "

defines the "path" tq the file , il , through its superior directories.

The path to a file begins either at the root level or at the current working directory. The working
directory is the directory specified by the most recent MASS STORAGE IS statement.

The "SRM" section in the BASIC Language Reference discusses the rules for specifying remote
files and directories.

334 Using SRM

How the SRM System Stores Remote Directories and Files
To most efficiently use the shared disc space, the SRM system stores files non-contiguously and
adds to space allocations for files as needed.

Non-Contiguous Storage of Remote Files
To avoid wasting disc space, the SRM system may fragment a file to fill unused disc sectors. This
process is transparent and cannot be externally controlled. By "filling the gaps" automatically, the
system eliminates the need to pack the shared disc's files.

Space Allocation for Remote Directories and Files
SRM files and directories grow dynamically as data is entered into them.

Rather than restricting a file's space to that allocated when the file is created (for example, with a
CREATE statement), the SRM system determines disc space requirements when data is sent to the
file (for example, by an OUTPUT statement). If additional data placed into a file would cause the
file to overflow its current space allocation, the system automatically allocates more space for the
file.

Similarly, directories grow only as entries are added. As a file or directory is created, another
24-byte record is added to the containing directory.

Files are extended as long as there is sufficient unused disc space on the same volume. Excess data
from a file will not be placed on any other disc (volume) on the SRM system.

Shared Access to Remote Directories And Files
Because the sharing of files is a consequence of shared mass storage, the SRM system provides
features for controlling access to shared information.

Controlled Access: Password Protection
The SRM system offers three kinds of access capability for files and directories: READ, WRITE, and
MANAGER. Capabilities are either public (available to all workstations on the SRM) or protected
(available only to users who know the appropriate pa'>sword).

Capabilities are protected with the PROTECT statement, which associates password(s} with one or
more access capabilities. One password can be used to protect one or more capabilities. Each file or
directory can have several password/capability pairs assigned to it.

Once assigned, the password protecting an access capability must be included with the file or
directory specifier to execute statements requiring that access. If you don't specify the correct
password when it is reqUired, the system will report an error and deny access to the file or directory.

READ access capability for a file allows you to execute statements that read the file. READ access
capability for a directory allows you to execute statements that read the file names in the directory,
and to "pass through" the directory when the directory's name is included in a directory path.

For example, in the remote file specifier

"/PROJECTS/ProJect_one (R EADpBss)/ JOHN/fl"

including the assigned password -(REA D PBS 5) allows passage through the directory ProjecLone to
allow access to its subordinate directories and files.

334 Using SRM

How the SRM System Stores Remote Directories and Files
To most efficiently use the shared disc space, the SRM system stores files non-contiguously and
adds to space allocations for files as needed.

Non-Contiguous Storage of Remote Files
To avoid wasting disc space, the SRM system may fragment a file to fill unused disc sectors. This
process is transparent and cannot be externally controlled. By "filling the gaps" automatically, the
system eliminates the need to pack the shared disc's files.

Space Allocation for Remote Directories and Files
SRM files and directories grow dynamically as data is entered into them.

Rather than restricting a file's space to that allocated when the file is created (for example, with a
CREATE statement), the SRM system determines disc space requirements when data is sent to the
file (for example, by an OUTPUT statement). If additional data placed into a file would cause the
file to overflow its current space allocation, the system automatically allocates more space for the
file.

Similarly, directories grow only as entries are added. As a file or directory is created, another
24-byte record is added to the containing directory.

Files are extended as long as there is sufficient unused disc space on the same volume. Excess data
from a file will not be placed on any other disc (volume) on the SRM system.

Shared Access to Remote Directories And Files
Because the sharing of files is a consequence of shared mass storage, the SRM system provides
features for controlling access to shared information.

Controlled Access: Password Protection
The SRM system offers three kinds of access capability for files and directories: READ, WRITE, and
MANAGER. Capabilities are either public (available to all workstations on the SRM) or protected
(available only to users who know the appropriate pa'>sword).

Capabilities are protected with the PROTECT statement, which associates password(s} with one or
more access capabilities. One password can be used to protect one or more capabilities. Each file or
directory can have several password/capability pairs assigned to it.

Once assigned, the password protecting an access capability must be included with the file or
directory specifier to execute statements requiring that access. If you don't specify the correct
password when it is reqUired, the system will report an error and deny access to the file or directory.

READ access capability for a file allows you to execute statements that read the file. READ access
capability for a directory allows you to execute statements that read the file names in the directory,
and to "pass through" the directory when the directory's name is included in a directory path.

For example, in the remote file specifier

"/PROJECTS/ProJect_one (R EADpBss)/ JOHN/fl"

including the assigned password -(REA D PBS 5) allows passage through the directory ProjecLone to
allow access to its subordinate directories and files.

Using SRM 335

WRITE access capability for a file permits you to execute statements that write to the file. WRITE
access capability for a directory allows you to execute statements that add to or delete from the
directory's contents.

With the MANAGER access capability, public capabilities for a file or directory differ slightiy from
password-protected capabilities. Public MANAGER capability allows any SRM user to PROTECT,
PURGE or RENAME the file . The pa.ssword-protected MANAGER capability provides MANAGER,
READ and WRITE access capabilities to users who include a valid password in the file or directory
specifier.

The "SRM" section in the BASIC Language Reference includes a table indicating the access
capabilities needed to use each of the supported BASIC keywords. The description of the PRO­
TECT keyword, also in that section, gives more details on protecting access to files and directories.

Exclusive Access: Locking Files
Although sharing files saves disc space, allowing several users access to one copy of a file introduces
the danger of users trying to access the file at the same time, which can cause unpredictable results.
For instance, if one user tries to read part of a file while another user is writing to it, the file's
contents may be inaccurate for the read.

To avoid problems, the SRM system adds two BASIC keywords, LOCK and UNLOCK, which you
can use to secure files during critical operations. LOCK establishes exclusive access to a file, which
means that the file can only be accessed from the workstation at which the LOCK was executed.
You may wish to LOCK a file , for example, during any procedure that writes new information to the
file .

To permit shared access to the file once again, UNLOCK must be executed from the same
workstation, or the file must be closed. Only ASCII or BOAT files that have been opened by a user
via ASSIGN may be locked explicitly by that user.

Locking and unlocking is usually done from within a program. For more information, refer to the
descriptions of the ASSIGN, LOCK and UNLOCK keywords in the "SRM" section of the BASIC
Language Reference.

How the SRM System Manages Shared Peripheral Use
The SRM system not only provides shared access to printers and plotters, but also manages their
use so that workstations never need to wait for output to be generated.

To use shared peripherals, you place files to be output into a special directory where they are held
until the printer or plotter is free. The system keeps track of the order in which files arrive from the
workstations, and outputs them in the same order. This method is called "spooling," and the
directory where the files are kept is called the "spooler directory. " Spooler directories are created
for the SRM controller's use when the shared peripherals are installed on the SRM system.

After a file is placed in a spooler directory, the workstation is free to do other processing. Please
note, however, that the SRM system manages output spooling only; you cannot input information
from a plotter, such as status codes or locations of the corners of paper, back to the workstation.

Using SRM 335

WRITE access capability for a file permits you to execute statements that write to the file. WRITE
access capability for a directory allows you to execute statements that add to or delete from the
directory's contents.

With the MANAGER access capability, public capabilities for a file or directory differ slightiy from
password-protected capabilities. Public MANAGER capability allows any SRM user to PROTECT,
PURGE or RENAME the file . The pa.ssword-protected MANAGER capability provides MANAGER,
READ and WRITE access capabilities to users who include a valid password in the file or directory
specifier.

The "SRM" section in the BASIC Language Reference includes a table indicating the access
capabilities needed to use each of the supported BASIC keywords. The description of the PRO­
TECT keyword, also in that section, gives more details on protecting access to files and directories.

Exclusive Access: Locking Files
Although sharing files saves disc space, allowing several users access to one copy of a file introduces
the danger of users trying to access the file at the same time, which can cause unpredictable results.
For instance, if one user tries to read part of a file while another user is writing to it, the file's
contents may be inaccurate for the read.

To avoid problems, the SRM system adds two BASIC keywords, LOCK and UNLOCK, which you
can use to secure files during critical operations. LOCK establishes exclusive access to a file, which
means that the file can only be accessed from the workstation at which the LOCK was executed.
You may wish to LOCK a file , for example, during any procedure that writes new information to the
file .

To permit shared access to the file once again, UNLOCK must be executed from the same
workstation, or the file must be closed. Only ASCII or BOAT files that have been opened by a user
via ASSIGN may be locked explicitly by that user.

Locking and unlocking is usually done from within a program. For more information, refer to the
descriptions of the ASSIGN, LOCK and UNLOCK keywords in the "SRM" section of the BASIC
Language Reference.

How the SRM System Manages Shared Peripheral Use
The SRM system not only provides shared access to printers and plotters, but also manages their
use so that workstations never need to wait for output to be generated.

To use shared peripherals, you place files to be output into a special directory where they are held
until the printer or plotter is free. The system keeps track of the order in which files arrive from the
workstations, and outputs them in the same order. This method is called "spooling," and the
directory where the files are kept is called the "spooler directory. " Spooler directories are created
for the SRM controller's use when the shared peripherals are installed on the SRM system.

After a file is placed in a spooler directory, the workstation is free to do other processing. Please
note, however, that the SRM system manages output spooling only; you cannot input information
from a plotter, such as status codes or locations of the corners of paper, back to the workstation.

336 Using SRM

Using Your BASIC Workstation on SRM
This section describes, through examples, some of the more common procedures you' ll use when
operating your BASIC workstation on the SRM, including:

• booting from the SRM;

• accessing the shared mass storage device;

• creating directories and files;

• listing a directory's contents;

• copying files;

• using shared printers and plotters;

• protecting files and directories;

• purging files and directories;
• accessing files created on non-Series 200/300 SRM workstations;

• locking and unlocking files;

• returning to local mass storage.

This section illustrates both operations executed from the keyboard, and those executed within
programs.

Note About Key References
Throughout this section, symbols for the keys used to execute state­
ments and commands are shown with each statement or command.

The (EXECUTE) symbol denotes the execution key on either the HP
98203A or HP 98203B keyboards (the keycap on the HP 98203A
keyboard is labeled (EXEC)). The (Return) symbol denotes the execution
key on the HP 46020A keyboard.

You may also use the (ENTER) key on these keyboards to execute
statements and commands.

Booting From the SRM
If your workstation has Boot ROM version 3.0 or later, you will be able to boot the BASIC language
system into your workstation from the SRM. Once your workstation has been installed on the SRM
system, the workstation powerup scheme your system manager has implemented on your SRM
determines the exact procedure you use. This section discusses some general aspects of booting
SRM workstations.

Note
Only HP Series 200/300 computers with Boot ROM version 3.0 or later
can boot automatically from SRM. Refer to the BASIC User's Guide for
more information on how to determine which boot ROM your compu­
ter has. Boot ROM 3.0L does not support automatic booting from
SRM.

336 Using SRM

Using Your BASIC Workstation on SRM
This section describes, through examples, some of the more common procedures you' ll use when
operating your BASIC workstation on the SRM, including:

• booting from the SRM;

• accessing the shared mass storage device;

• creating directories and files;

• listing a directory's contents;

• copying files;

• using shared printers and plotters;

• protecting files and directories;

• purging files and directories;
• accessing files created on non-Series 200/300 SRM workstations;

• locking and unlocking files;

• returning to local mass storage.

This section illustrates both operations executed from the keyboard, and those executed within
programs.

Note About Key References
Throughout this section, symbols for the keys used to execute state­
ments and commands are shown with each statement or command.

The (EXECUTE) symbol denotes the execution key on either the HP
98203A or HP 98203B keyboards (the keycap on the HP 98203A
keyboard is labeled (EXEC)). The (Return) symbol denotes the execution
key on the HP 46020A keyboard.

You may also use the (ENTER) key on these keyboards to execute
statements and commands.

Booting From the SRM
If your workstation has Boot ROM version 3.0 or later, you will be able to boot the BASIC language
system into your workstation from the SRM. Once your workstation has been installed on the SRM
system, the workstation powerup scheme your system manager has implemented on your SRM
determines the exact procedure you use. This section discusses some general aspects of booting
SRM workstations.

Note
Only HP Series 200/300 computers with Boot ROM version 3.0 or later
can boot automatically from SRM. Refer to the BASIC User's Guide for
more information on how to determine which boot ROM your compu­
ter has. Boot ROM 3.0L does not support automatic booting from
SRM.

Using SRM 337

If your workstation's boot ROM does not support booting from SRM, you must boot the BASIC
system from a local mass storage device and load the SRM and DCOMM BIN files to allow the
workstation to communicate with the SRM system. You may load these BIN files either from local
mass storage or, if your boot ROM supports automatic booting, from the SRM (even though the
SRM BIN file is not present in the workstation).

For example, assume the SRM and DCOMM BIN files are in the directory named SYSTEMS at the
root level of the SRM directory structure, and your workstation booted the BASIC system from the
SRM. To load the BIN files from the SRM, you would type:

LOAD BIN "/SYSTEMS/SRM"

then type:

LOAD BIN "/SYSTEMS/DCOMM"

(EXECUTE) or (Return)

(EXECUTE) or (Return)

If you load the SRM and DCOMM BIN files from the SRM, you must load SRM before
DCOMM.

Selecting an Operating System
In general, when you power your workstation ON or perform a SYSBOOT while the workstation is
powered (which returns control to the boot ROM to restart the system selection and configuration
process), you can either select the BASIC system explicitly or an operating system is loaded
automatically.

If your workstation is not set up to automatically boot the BASIC system, you must explicitly select a
system for the boot ROM to load into your workstation. Because explicit selection overrides any
other method of system selection, you may choose this method over automatic selection when you
wish to use an operating system other than the BASIC system.

To explicitly select an operating system for the boot ROM to load at powerup, follow these steps:

1. If your workstation's power is OFF, turn the power ON. To boot while the power is ON, use
the SYSBOOT command (described in the BASIC Language Reference).

Note

If your workstation is providing power to an SRM multiplexer, you
should avoid turning the power off to reboot.

2. Press any key within the first few seconds after the boot ROM's initial activity begins (the
workstation's display begins to list the various parts of the computer for example, K e)' b a a r d)

as each is recognized by the boot ROM). In response to the key press, the boot ROM then
lists all systems currently available for loading into the workstation and waits for you to select
a system.

3. To the left of each system name is a two-character identifier, such as lB. To select a system,
type the identifier and wait for the boot ROM to load the specified system.

Using SRM 337

If your workstation's boot ROM does not support booting from SRM, you must boot the BASIC
system from a local mass storage device and load the SRM and DCOMM BIN files to allow the
workstation to communicate with the SRM system. You may load these BIN files either from local
mass storage or, if your boot ROM supports automatic booting, from the SRM (even though the
SRM BIN file is not present in the workstation).

For example, assume the SRM and DCOMM BIN files are in the directory named SYSTEMS at the
root level of the SRM directory structure, and your workstation booted the BASIC system from the
SRM. To load the BIN files from the SRM, you would type:

LOAD BIN "/SYSTEMS/SRM"

then type:

LOAD BIN "/SYSTEMS/DCOMM"

(EXECUTE) or (Return)

(EXECUTE) or (Return)

If you load the SRM and DCOMM BIN files from the SRM, you must load SRM before
DCOMM.

Selecting an Operating System
In general, when you power your workstation ON or perform a SYSBOOT while the workstation is
powered (which returns control to the boot ROM to restart the system selection and configuration
process), you can either select the BASIC system explicitly or an operating system is loaded
automatically.

If your workstation is not set up to automatically boot the BASIC system, you must explicitly select a
system for the boot ROM to load into your workstation. Because explicit selection overrides any
other method of system selection, you may choose this method over automatic selection when you
wish to use an operating system other than the BASIC system.

To explicitly select an operating system for the boot ROM to load at powerup, follow these steps:

1. If your workstation's power is OFF, turn the power ON. To boot while the power is ON, use
the SYSBOOT command (described in the BASIC Language Reference).

Note

If your workstation is providing power to an SRM multiplexer, you
should avoid turning the power off to reboot.

2. Press any key within the first few seconds after the boot ROM's initial activity begins (the
workstation's display begins to list the various parts of the computer for example, K e)' b a a r d)

as each is recognized by the boot ROM). In response to the key press, the boot ROM then
lists all systems currently available for loading into the workstation and waits for you to select
a system.

3. To the left of each system name is a two-character identifier, such as lB. To select a system,
type the identifier and wait for the boot ROM to load the specified system.

338 Using SRM

Automatic Configuration
Besides automatic selection of the boot system, your workstation may have an automatic configura­
tion ("autostart") file , which specifies operations to be performed by the BASIC system immediate­
ly after it is loaded. For example, your workstation's autostart file may cause the system to load
certain BIN files and go directly into your directory each time you boot your system.

If an autostart file exists for your workstation, all initial configuration happens automatically, without
any extra effort from you. For information on setting up autostart files, refer to the BASIC User's
Guide and the "Entering, Running and Storing Programs" chapter of the BASIC Programming
Techniques manual.

Accessing the Shared Mass Storage Device
Your workstation accesses shared resources through the SRM controller, which is connected to the
workstation through an HP 98629A interface in the workstation. The remote (SRM) mass storage
device is identified by a remote mass storage unit specifier, or " remote msus" (similar to the local
msus) , which gives information about the SRM connection. The remote msus includes the following
required and optional information:

• the device type REMOTE, which specifies the SRM system;

Note
Instead of the REMOTE device type specifier, you may use the "gener­
ic" form of the remote msus. Refer to the deSCription of generic remote
msus in the "SRM" section of the BASIC Language Reference.

• (Optional) the interface select code of your workstation's SRM interface. The default is the
select code of the interface through which the boot ROM activates your workstation. (If you do
not boot from the SRM, the default is the lowest select code of those available among the SRM
interfaces in your workstation.)

• (Optional) the controller's node address;

• (Optional) the volume name and volume password.

The full syntax of the remote msus is described at the beginning of the "SRM" section of the BASIC
Language Reference.

In general, the first step in accessing a mass storage device is to make that device the MASS
STORAGE IS device. Typing:

MSI ":REMOTE " (EXECUTE) or (Return)

establishes the shared mass storage device as your workstation's mass storage and causes the root
to be the working directory. The working directory is the directory specified in the most recent MSI
statement. (Refer to the section on "System Concepts" earlier in this chapter for more information
about directories.)

The form of the MSI statement shown above assumes that you want remote mass storage estab­
lished according to the default values for your workstation's interface select code, the controller's
node address, and the SRM system volume.

338 Using SRM

Automatic Configuration
Besides automatic selection of the boot system, your workstation may have an automatic configura­
tion ("autostart") file , which specifies operations to be performed by the BASIC system immediate­
ly after it is loaded. For example, your workstation's autostart file may cause the system to load
certain BIN files and go directly into your directory each time you boot your system.

If an autostart file exists for your workstation, all initial configuration happens automatically, without
any extra effort from you. For information on setting up autostart files, refer to the BASIC User's
Guide and the "Entering, Running and Storing Programs" chapter of the BASIC Programming
Techniques manual.

Accessing the Shared Mass Storage Device
Your workstation accesses shared resources through the SRM controller, which is connected to the
workstation through an HP 98629A interface in the workstation. The remote (SRM) mass storage
device is identified by a remote mass storage unit specifier, or " remote msus" (similar to the local
msus) , which gives information about the SRM connection. The remote msus includes the following
required and optional information:

• the device type REMOTE, which specifies the SRM system;

Note
Instead of the REMOTE device type specifier, you may use the "gener­
ic" form of the remote msus. Refer to the deSCription of generic remote
msus in the "SRM" section of the BASIC Language Reference.

• (Optional) the interface select code of your workstation's SRM interface. The default is the
select code of the interface through which the boot ROM activates your workstation. (If you do
not boot from the SRM, the default is the lowest select code of those available among the SRM
interfaces in your workstation.)

• (Optional) the controller's node address;

• (Optional) the volume name and volume password.

The full syntax of the remote msus is described at the beginning of the "SRM" section of the BASIC
Language Reference.

In general, the first step in accessing a mass storage device is to make that device the MASS
STORAGE IS device. Typing:

MSI ":REMOTE " (EXECUTE) or (Return)

establishes the shared mass storage device as your workstation's mass storage and causes the root
to be the working directory. The working directory is the directory specified in the most recent MSI
statement. (Refer to the section on "System Concepts" earlier in this chapter for more information
about directories.)

The form of the MSI statement shown above assumes that you want remote mass storage estab­
lished according to the default values for your workstation's interface select code, the controller's
node address, and the SRM system volume.

Using SRM 339

To find out the default values for these items, and to verify that your workstation's mass storage is
the SRM mass storage device, you can use the CAT statement to list the contents of the working
directory. Your mass storage is the remote device if, when you type:

CAT (EXECUTE) or (Return)

the directory header includes the remote msus (for example, : REMO TE 21 , I)). Refer to the CAT
keyword entry in the ' 'SRM" section of the BASIC Language Reference for an example of a remote
directory catalog listing. If, as in this example, you do not specify the optional items in your remote
msus, the default values are assumed and listed.

To specify the remote mass storage when the SRM controller's node address is 4 and the select
code of your workstation's interface is 15, you would type:

MSI ":REMOTE 15,a " (EXECUTE) or (Return)

Creating Directories and Files
For the following examples, assume you are working with the directory structure shown in the
illustration below.

f 1

f2

a ssignmen ts

sc h edule

budget

Creating Directories

ass i g n ments

schedule

budget
Rpr i 1

May

To create a directory named CHARLIE in the directory, ProjecLone, you could type:

MS I ": REMOTE" (EXECUTE) or (Return)
CRE ATE OIR " / PRO J ECTS / ProjecLo ne/CHA RLIE " (EXECUTE) or (Return)

(root)

Te s t data

The leading slash indicates that the directory path begins at the root of the SRM directory structure.

You could accomplish the same thing by typing:

CREATE OIR "PROJECTS / ProjecLone /C HARLIE : REMOTE" (EXECUTE) or (Return)

Using SRM 339

To find out the default values for these items, and to verify that your workstation's mass storage is
the SRM mass storage device, you can use the CAT statement to list the contents of the working
directory. Your mass storage is the remote device if, when you type:

CAT (EXECUTE) or (Return)

the directory header includes the remote msus (for example, : REMO TE 21 , I)). Refer to the CAT
keyword entry in the ' 'SRM" section of the BASIC Language Reference for an example of a remote
directory catalog listing. If, as in this example, you do not specify the optional items in your remote
msus, the default values are assumed and listed.

To specify the remote mass storage when the SRM controller's node address is 4 and the select
code of your workstation's interface is 15, you would type:

MSI ":REMOTE 15,a " (EXECUTE) or (Return)

Creating Directories and Files
For the following examples, assume you are working with the directory structure shown in the
illustration below.

f 1

f2

a ssignmen ts

sc h edule

budget

Creating Directories

ass i g n ments

schedule

budget
Rpr i 1

May

To create a directory named CHARLIE in the directory, ProjecLone, you could type:

MS I ": REMOTE" (EXECUTE) or (Return)
CRE ATE OIR " / PRO J ECTS / ProjecLo ne/CHA RLIE " (EXECUTE) or (Return)

(root)

Te s t data

The leading slash indicates that the directory path begins at the root of the SRM directory structure.

You could accomplish the same thing by typing:

CREATE OIR "PROJECTS / ProjecLone /C HARLIE : REMOTE" (EXECUTE) or (Return)

340 Using SRM

Using the leading slash to begin the directory path at the root works only if you have previously
established the remote mass storage as your workstation's mass storage (with some form of the
MSI ": REMOTE" statement).

This statement would place your newly-created directory into the directory structure as shown
below.

(root)

Creating Files and Other Directories Under a Directory
To create files subordinate to a new directory, you may either establish the new directory as the
working directory or specify the directory path to that directory. Assuming your current working
directory is the root, you could type:

MSI "PROJECTS/ProjecLone/CHARLIE" (EXECUTE) or (Return)

to move into the directory, CHARLIE.

You could verify the new working directory with a catalog listing by typing:

CAT (EXECUTE) or (Return)

On a computer whose screen supports an 80-character line width, the resulting listing would look
something like this:

PROJECTS/Project_one/CHARLIE:REMOTE 21 t 0
LABEL: Disci
FORMAT: SDF
AI,'A I LABLE SPACE: 54098

SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT
=================== -- -- ======== ======== ================

To create an ASCII file within CHARLIE, which is named ASCILl and is initially to contain 100
records, you would type:

CREATE ASCII "ASCIL1"tlOO (EXECUTE}or[Return)

340 Using SRM

Using the leading slash to begin the directory path at the root works only if you have previously
established the remote mass storage as your workstation's mass storage (with some form of the
MSI ": REMOTE" statement).

This statement would place your newly-created directory into the directory structure as shown
below.

(root)

Creating Files and Other Directories Under a Directory
To create files subordinate to a new directory, you may either establish the new directory as the
working directory or specify the directory path to that directory. Assuming your current working
directory is the root, you could type:

MSI "PROJECTS/ProjecLone/CHARLIE" (EXECUTE) or (Return)

to move into the directory, CHARLIE.

You could verify the new working directory with a catalog listing by typing:

CAT (EXECUTE) or (Return)

On a computer whose screen supports an 80-character line width, the resulting listing would look
something like this:

PROJECTS/Project_one/CHARLIE:REMOTE 21 t 0
LABEL: Disci
FORMAT: SDF
AI,'A I LABLE SPACE: 54098

SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT
=================== -- -- ======== ======== ================

To create an ASCII file within CHARLIE, which is named ASCILl and is initially to contain 100
records, you would type:

CREATE ASCII "ASCIL1"tlOO (EXECUTE}or[Return)

Using SRM 341

To create a BOAT file within CHARLIE, which is named BDA Ll and is initially to contain 25
records, you would type:

CREATE BDAT "B OAT _1" t25 (EXECUTE) or (Return)

(When no record size is specified in the CREATE BOAT statement, the default 256-byte record size
is assumed.)

To create another directory within CHARLIE called MEMOS, you would type:

CR EATE OIR "MEMO S" (EXECUTE) or (Return)

The additions would make the directory structure look like this:

(root)

iffl@it~ .. ·.: .•. : .•. :.I.:.·.:· .•. L i .•..•.. i .. ~ .. ·.·.i .•..•..
~::~:;:;:::;:::::

The simplest form of the CAT statement:

CAT (EXECUTE) or(Return)

lists the contents of the current working directory because no directory is specifically identified. If no
directory name is shown in the directory header, the current working directory is the root.

If you wanted to list the contents of CHARLIE, but your current working directory was not
CHARLIE, you could:

• Designate CHARLIE as the working directory with the MSI statement, then use the CAT
statement's "short form. " For example:

MSI "PROJECTS/ ProJecLone /C HARLIE : REMOTE" (EXECUTE) or (Return)
CAT (EXECUTE) or (Return)

• In the CAT statement, specify the entire path to CHARLIE, starting at the root, by beginning
the path name with a slash (/). For example:

CAT "/ PROJECTS / ProJecLone / CHARLIE" (EXECUTE) or (Return)

Using SRM 341

To create a BOAT file within CHARLIE, which is named BDA Ll and is initially to contain 25
records, you would type:

CREATE BDAT "B OAT _1" t25 (EXECUTE) or (Return)

(When no record size is specified in the CREATE BOAT statement, the default 256-byte record size
is assumed.)

To create another directory within CHARLIE called MEMOS, you would type:

CR EATE OIR "MEMO S" (EXECUTE) or (Return)

The additions would make the directory structure look like this:

(root)

iffl@it~ .. ·.: .•. : .•. :.I.:.·.:· .•. L i .•..•.. i .. ~ .. ·.·.i .•..•..
~::~:;:;:::;:::::

The simplest form of the CAT statement:

CAT (EXECUTE) or(Return)

lists the contents of the current working directory because no directory is specifically identified. If no
directory name is shown in the directory header, the current working directory is the root.

If you wanted to list the contents of CHARLIE, but your current working directory was not
CHARLIE, you could:

• Designate CHARLIE as the working directory with the MSI statement, then use the CAT
statement's "short form. " For example:

MSI "PROJECTS/ ProJecLone /C HARLIE : REMOTE" (EXECUTE) or (Return)
CAT (EXECUTE) or (Return)

• In the CAT statement, specify the entire path to CHARLIE, starting at the root, by beginning
the path name with a slash (/). For example:

CAT "/ PROJECTS / ProJecLone / CHARLIE" (EXECUTE) or (Return)

342 Using SRM

This form assumes that you have already designated remote mass storage with some form of
the MS I ": REMOTE" statement. If you have not, use the form:

CAT "PRO J ECTS/PrajecLane/CHARLIE : REMOTE" (EXECUTE) or (Return)

The leading slash is not necessary, because including : REMOTE specifies the root as the begin­
ning of the path .

• If you were in MEMOS (the directory immediately subordinate to CHARLIE) , you could use
the " .. " notation (explained with directory path syntax in the "SRM" section of the BASIC
Language Reference. For example:

CAT " • • " (EXECUTE) or (Return)

For more details on specifying remote files and directories in BASIC statements, refer to the "SRM"
section of the BASIC Language Reference.

Copying Files
With SRM, you can copy files between local and remote mass storage devices by any of the
methods illustrated in the following examples. Again using the directory structure established for the
other examples in this section, assume that the current working directory is CHARLIE.

Using the COpy Statement
The most direct method of copying a file from local to remote mass storage is to use the COPY
statement. For example, to copy a PROG file named TesLprogthat is on a local disc drive into the
directory CHARLIE on the SRM system disc, you could type:

COpy "TesLprag: INTERN AL" TO "TesLnag" (EXECUTE) or (Return)

By including the : INTERNAL msus, you can access the local mass storage without changing the
current working directory (which is a remote directory). Refer to the "Data Storage and Retrieval"
chapter of the BASIC Programming Techniques manual for information on alternatives to the
: I NT ERNAL msus for specifying local mass storage.

RSC II 1

BDRT 1

11111:%11'1*1,1

(root)

ass ig n me nt s

342 Using SRM

This form assumes that you have already designated remote mass storage with some form of
the MS I ": REMOTE" statement. If you have not, use the form:

CAT "PRO J ECTS/PrajecLane/CHARLIE : REMOTE" (EXECUTE) or (Return)

The leading slash is not necessary, because including : REMOTE specifies the root as the begin­
ning of the path .

• If you were in MEMOS (the directory immediately subordinate to CHARLIE) , you could use
the " .. " notation (explained with directory path syntax in the "SRM" section of the BASIC
Language Reference. For example:

CAT " • • " (EXECUTE) or (Return)

For more details on specifying remote files and directories in BASIC statements, refer to the "SRM"
section of the BASIC Language Reference.

Copying Files
With SRM, you can copy files between local and remote mass storage devices by any of the
methods illustrated in the following examples. Again using the directory structure established for the
other examples in this section, assume that the current working directory is CHARLIE.

Using the COpy Statement
The most direct method of copying a file from local to remote mass storage is to use the COPY
statement. For example, to copy a PROG file named TesLprogthat is on a local disc drive into the
directory CHARLIE on the SRM system disc, you could type:

COpy "TesLprag: INTERN AL" TO "TesLnag" (EXECUTE) or (Return)

By including the : INTERNAL msus, you can access the local mass storage without changing the
current working directory (which is a remote directory). Refer to the "Data Storage and Retrieval"
chapter of the BASIC Programming Techniques manual for information on alternatives to the
: I NT ERNAL msus for specifying local mass storage.

RSC II 1

BDRT 1

11111:%11'1*1,1

(root)

ass ig n me nt s

Using SRM 343

Other Uses of COpy
The COpy statement can be used to copy files not only from local to remote mass storage but also
from remote to local mass storage and from one remote mass storage device to another. You
cannot copy directories, although you can copy files from one directory to another. Similarly, you
cannot copy an entire remote mass storage volume in a single COpy statement. (You must copy a
remote volume file by file .)

Suppose you want to copy the file BDA Ll from the directory CHARLIE into the directory AL (see
previous illustration).

Assuming the working directory is CHARLIE, you could type:

COPY "BoAT_1" TO " / PRoJECTS / Project-tIAl o/ALlBoAT_1" (EXECUTE) or (Return)

The effect of the copy on the directory structure is illustrated below:

Using LOAD and STORE

RSCII 1

BDRT 1

as signments

(root)

You may also copy files by loading the program into your workstation from local mass storage and
then storing it in remote mass storage. For example, to copy a PROG file named TesLprog that is
on a disc in your workstation's built-in disc drive into the directory CHARLIE on the SRM system
disc (as demonstrated earlier using COpy), you could type:

LOAD "Test-PrOS: INTERNAL" (EXECUTE) or (Return)

Once the file is in your workstation's memory, you may then store the file in the remote directory by
using a statement such as:

STORE "Test-pros" (EXECUTE) or (Return)

Copying Item-by-Item Using ENTER and OUTPUT
You may also copy a file from local to remote mass storage an item at a time, as illustrated in the
programs that follow. These programs use the ENTER and OUTPUT statements to copy data
item-by-item from a local BOAT file to remote mass storage.

Using SRM 343

Other Uses of COpy
The COpy statement can be used to copy files not only from local to remote mass storage but also
from remote to local mass storage and from one remote mass storage device to another. You
cannot copy directories, although you can copy files from one directory to another. Similarly, you
cannot copy an entire remote mass storage volume in a single COpy statement. (You must copy a
remote volume file by file .)

Suppose you want to copy the file BDA Ll from the directory CHARLIE into the directory AL (see
previous illustration).

Assuming the working directory is CHARLIE, you could type:

COPY "BoAT_1" TO " / PRoJECTS / Project-tIAl o/ALlBoAT_1" (EXECUTE) or (Return)

The effect of the copy on the directory structure is illustrated below:

Using LOAD and STORE

RSCII 1

BDRT 1

as signments

(root)

You may also copy files by loading the program into your workstation from local mass storage and
then storing it in remote mass storage. For example, to copy a PROG file named TesLprog that is
on a disc in your workstation's built-in disc drive into the directory CHARLIE on the SRM system
disc (as demonstrated earlier using COpy), you could type:

LOAD "Test-PrOS: INTERNAL" (EXECUTE) or (Return)

Once the file is in your workstation's memory, you may then store the file in the remote directory by
using a statement such as:

STORE "Test-pros" (EXECUTE) or (Return)

Copying Item-by-Item Using ENTER and OUTPUT
You may also copy a file from local to remote mass storage an item at a time, as illustrated in the
programs that follow. These programs use the ENTER and OUTPUT statements to copy data
item-by-item from a local BOAT file to remote mass storage.

344 Using SRM

The first program creates and fills a BOAT file named BDA T J'ILE.

10 CREATE BDAT "BDATJILE:INTERNAL"dO
20 ASSIGN @Local TO "BDAT_FILE : INTERNAL"
30
40 FOR IteM=1 TO 50
50 OUT PUT @Loc ali" S t r i n g d a t a it e Ill"
60 NE)<T It e 111
70 !
80 ASSIGN @Local TO *
90 END

The second program copies the contents of BDA T J'ILE item-by-item into a file (also called
BDATJ'ILE) in the SRM directory named General (shown in the previous illustration).

100 DIM String_iteM$[20]
110 CREATE BDAT "PROJECTS/General/BDAT_FILE : REMOTE" 110
120 ASSIGN @Local TO "BDAT_FILE:INTERNAL"
130 ASSIGN @ReMote TO "PROJECTS/General / BDAT_FILE:REMOTE"
140
150 FOR IteM=1 TO 50
160 ENTER @ LocaliString_iteM$
170 OUTPUT @ReMoteiString_iteM$
180 NE)<T Itell1
190
200 ASSIGN @Local TO *
210 ASSIGN @ReMote TO *
220 END

Using a Shared Printer or Plotter
Use of special SRM directories called "spooler directories" allows you to access a shared printer or
plotter. Setting up a spooler directory is explained in the "Interfaces and Peripherals" chapter of the
SRM Operating System Manual. The examples in this section assume that the spooler directories
LP (for "Line Printer") and PL (for "PLotter") have been created at the root of the SRM directory
structure.

Spooling Using PRINTER IS and PLOTTER IS
You can use the PRINTER IS and PLOTTER IS statements to send data to your shared printer or
plotter. The following command sequence illustrates this spooling method:

CREATE BDAT "/LP/PrinLfile"d
PRINTER IS "/LP/Print _file"
LIST
l<REF
PRINTER IS CRT

PRINTER IS and PLOTTER IS work only with BOAT files. Because the SRM 1. 0 operating
system's spooling works only with ASCII files, you cannot use PRINTER IS and PLOTTER IS for
spooling with that version of SRM.

344 Using SRM

The first program creates and fills a BOAT file named BDA T J'ILE.

10 CREATE BDAT "BDATJILE:INTERNAL"dO
20 ASSIGN @Local TO "BDAT_FILE : INTERNAL"
30
40 FOR IteM=1 TO 50
50 OUT PUT @Loc ali" S t r i n g d a t a it e Ill"
60 NE)<T It e 111
70 !
80 ASSIGN @Local TO *
90 END

The second program copies the contents of BDA T J'ILE item-by-item into a file (also called
BDATJ'ILE) in the SRM directory named General (shown in the previous illustration).

100 DIM String_iteM$[20]
110 CREATE BDAT "PROJECTS/General/BDAT_FILE : REMOTE" 110
120 ASSIGN @Local TO "BDAT_FILE:INTERNAL"
130 ASSIGN @ReMote TO "PROJECTS/General / BDAT_FILE:REMOTE"
140
150 FOR IteM=1 TO 50
160 ENTER @ LocaliString_iteM$
170 OUTPUT @ReMoteiString_iteM$
180 NE)<T Itell1
190
200 ASSIGN @Local TO *
210 ASSIGN @ReMote TO *
220 END

Using a Shared Printer or Plotter
Use of special SRM directories called "spooler directories" allows you to access a shared printer or
plotter. Setting up a spooler directory is explained in the "Interfaces and Peripherals" chapter of the
SRM Operating System Manual. The examples in this section assume that the spooler directories
LP (for "Line Printer") and PL (for "PLotter") have been created at the root of the SRM directory
structure.

Spooling Using PRINTER IS and PLOTTER IS
You can use the PRINTER IS and PLOTTER IS statements to send data to your shared printer or
plotter. The following command sequence illustrates this spooling method:

CREATE BDAT "/LP/PrinLfile"d
PRINTER IS "/LP/Print _file"
LIST
l<REF
PRINTER IS CRT

PRINTER IS and PLOTTER IS work only with BOAT files. Because the SRM 1. 0 operating
system's spooling works only with ASCII files, you cannot use PRINTER IS and PLOTTER IS for
spooling with that version of SRM.

Note

The DUMP DEVICE IS and PRINTALL IS statements do not support
files, so cannot be used for printer spooling.

Writing Files to the Spooler Directories

Using SRM 345

You may also access the printer associated with LP by placing the data to be printed in an ASCII or
BOAT file in that spooler directory. For example, to list a program currently in memory, you could
SAVE the program in LP as the file PLLISTING by typing either:

SAI,IE "LP / PLLISTlNG:REMOTE" (EXECUTE) or (Return)

or

SAI)E "I L PIP LLI STl NG" (EXECUTE) or(Return)

The SAVE statement creates an ASCII file . Although this is the same syntax used to save programs
on a shared disc, the SRM system knows that LP is a spooler directory and prints the file as soon as
possible.

Note
When used for spooling, SAVE places a file in the spooler directory. The
file is printed, then purged. You may wish to save or create the file first,
then use the COpy statement to place the file into the spooler directory.

Sending Program Output to a Shared Printer
To spool program output to a shared printer, create an ASCII or BOAT file, assign an I/O path
name to the file (which opens the file), and OUTPUT the data to that file. With BOAT files , you
should ASSIGN with FORMAT ON. When the file's contents are to be printed, close the file . The
following example program segment outputs the data stored in the string array called Data$ to an
ASCII file named PERFORMANCE.

760 CREATE ASCI I "/LP/PERFORMANCE" dOO
770 ASSIGN @Spool TO " / LP/PERFORMANCE"
780 OUTPUT @Spoolj"Perforfrlance SI.\ frlfrlan"
790 OUTPUT @SpooljData$(I)
800 ASSIGN @Spool TO I I Initiate printing,

The system waits until the file is non-empty and closed before sending its contents to the output
device. If your file is not printed or plotted within a reasonable amount of time, you may not have
closed it. You can verify that your file is ready to be printed or plotted by cataloging the spooler
directory:

CAT "/LP" (EXECUTE) or (Return)

The open status (OPEN STAT) of the file currently being printed or plotted is listed as locked (LOCK).

Files currently being written to the spooler directory (either printer or plotter) are listed as OPEN. Files
that do not have a status word in the catalog are ready for printing or plotting.

Note

The DUMP DEVICE IS and PRINTALL IS statements do not support
files, so cannot be used for printer spooling.

Writing Files to the Spooler Directories

Using SRM 345

You may also access the printer associated with LP by placing the data to be printed in an ASCII or
BOAT file in that spooler directory. For example, to list a program currently in memory, you could
SAVE the program in LP as the file PLLISTING by typing either:

SAI,IE "LP / PLLISTlNG:REMOTE" (EXECUTE) or (Return)

or

SAI)E "I L PIP LLI STl NG" (EXECUTE) or(Return)

The SAVE statement creates an ASCII file . Although this is the same syntax used to save programs
on a shared disc, the SRM system knows that LP is a spooler directory and prints the file as soon as
possible.

Note
When used for spooling, SAVE places a file in the spooler directory. The
file is printed, then purged. You may wish to save or create the file first,
then use the COpy statement to place the file into the spooler directory.

Sending Program Output to a Shared Printer
To spool program output to a shared printer, create an ASCII or BOAT file, assign an I/O path
name to the file (which opens the file), and OUTPUT the data to that file. With BOAT files , you
should ASSIGN with FORMAT ON. When the file's contents are to be printed, close the file . The
following example program segment outputs the data stored in the string array called Data$ to an
ASCII file named PERFORMANCE.

760 CREATE ASCI I "/LP/PERFORMANCE" dOO
770 ASSIGN @Spool TO " / LP/PERFORMANCE"
780 OUTPUT @Spoolj"Perforfrlance SI.\ frlfrlan"
790 OUTPUT @SpooljData$(I)
800 ASSIGN @Spool TO I I Initiate printing,

The system waits until the file is non-empty and closed before sending its contents to the output
device. If your file is not printed or plotted within a reasonable amount of time, you may not have
closed it. You can verify that your file is ready to be printed or plotted by cataloging the spooler
directory:

CAT "/LP" (EXECUTE) or (Return)

The open status (OPEN STAT) of the file currently being printed or plotted is listed as locked (LOCK).

Files currently being written to the spooler directory (either printer or plotter) are listed as OPEN. Files
that do not have a status word in the catalog are ready for printing or plotting.

346 Using SRM

The SRM 2.0 and newer operating systems allow BOAT files to be sent to the printing device as a
byte stream. (With SRM 1.0, only ASCII files can be used.)

Note

With the SRM 2.0 . and newer operating systems, a BOAT file sent to the
spooler is printed exactly as the byte stream sent. Unless you set up the
BOAT file correctly,improper printer output or operation could result.
Therefore, you should ASSIGN BOAT files with FORMAT ON before
outputting data.

The spooler prints each string and numeric item on a separate line by inserting a carriage return and
line feed after each item. To put several strings on one line, concatenate them into one string before
using OUTPUT to send them to the spooler file . You may insert ASCII control characters in the data
by using the CHR$ string function.

Appearance of Output
Printed output for each file includes a one-page header, which identifies the directory path to the
file, the file's name, and the date and time of the printing.

To cause the printer to skip the paper perforation after printing a page (60 lines) , prefix your file
name with "FF". For example:

SAI,JE " / L P / FF _M YT E)(T" (EXECUTE) or (Return)

Preparing Plotters
If your plotter does not feed its paper automatically, a message appears on the SRM controller
screen indicating that the plotter needs to be set up. After you have put paper on the plotter, you
may begin the plotting by using the server's SPOOL CONTINUE command (described in the SRM
Operating System Manual) . Plotters with automatic paper feed require no operator intervention.

Aborting Printing/Plotting in Progress
To abort an in-progress printing or plotting, use the SPOOL ABORT command from the SRM
server. The system stops sending data to the output device and closes, then purges the file . For
details on bringing the spooler UP and DOWN, see the description of the SPOOLER command in
the "Language Reference " section of the SRM Operating System Manual.

With SRM 2.0 and newer operating systems, if a printer is taken off-line while a file is being printed,
the printer stops and resumes when the printer is put back on-line. No data is lost during such an
interruption. The SRM 1.0 operating system also resumes printing, but from the beginning of the
file.

Protecting Files and Directories
When you create directories and files , their access capabilities are "public" (available to any user on
the SRM). You may subsequently protect a directory or file against certain types of access by other
SRM workstations, proVided:

• you have MANAGER access capability on the file or directory (MANAGER access to the file is
public or you know the password protecting the capability);

346 Using SRM

The SRM 2.0 and newer operating systems allow BOAT files to be sent to the printing device as a
byte stream. (With SRM 1.0, only ASCII files can be used.)

Note

With the SRM 2.0 . and newer operating systems, a BOAT file sent to the
spooler is printed exactly as the byte stream sent. Unless you set up the
BOAT file correctly,improper printer output or operation could result.
Therefore, you should ASSIGN BOAT files with FORMAT ON before
outputting data.

The spooler prints each string and numeric item on a separate line by inserting a carriage return and
line feed after each item. To put several strings on one line, concatenate them into one string before
using OUTPUT to send them to the spooler file . You may insert ASCII control characters in the data
by using the CHR$ string function.

Appearance of Output
Printed output for each file includes a one-page header, which identifies the directory path to the
file, the file's name, and the date and time of the printing.

To cause the printer to skip the paper perforation after printing a page (60 lines) , prefix your file
name with "FF". For example:

SAI,JE " / L P / FF _M YT E)(T" (EXECUTE) or (Return)

Preparing Plotters
If your plotter does not feed its paper automatically, a message appears on the SRM controller
screen indicating that the plotter needs to be set up. After you have put paper on the plotter, you
may begin the plotting by using the server's SPOOL CONTINUE command (described in the SRM
Operating System Manual) . Plotters with automatic paper feed require no operator intervention.

Aborting Printing/Plotting in Progress
To abort an in-progress printing or plotting, use the SPOOL ABORT command from the SRM
server. The system stops sending data to the output device and closes, then purges the file . For
details on bringing the spooler UP and DOWN, see the description of the SPOOLER command in
the "Language Reference " section of the SRM Operating System Manual.

With SRM 2.0 and newer operating systems, if a printer is taken off-line while a file is being printed,
the printer stops and resumes when the printer is put back on-line. No data is lost during such an
interruption. The SRM 1.0 operating system also resumes printing, but from the beginning of the
file.

Protecting Files and Directories
When you create directories and files , their access capabilities are "public" (available to any user on
the SRM). You may subsequently protect a directory or file against certain types of access by other
SRM workstations, proVided:

• you have MANAGER access capability on the file or directory (MANAGER access to the file is
public or you know the password protecting the capability);

(

Using SRM 347

• you have READ access capability on the directory immediately superior to the file or directory
you wish to protect;

• you protect the file or directory either while "in" its superior directory or by specifying the valid
directory path to its superior directory.

For example, using the directory structure established for other examples in this section (see
illustration) and assuming no passwords have been assigned to the files, you could:

RSCII 1

BDRT 1

Test_ prog

(root)

assignments

fl

BDRT 1

1. Assign the password passme to protect the MANAGER and WRITE access capabilities on the
directory CHARLIE with the sequence:

MSI "/PROJECTS/ProjecLone" (EXECUTE) or(Return)
PROTECT "CHARLI E" t ("p ass ITI e" : MANAGER t WR ITE) (rE=-X=-EC::-:-:U=TE--) or (Return)

which executes the PROTECT statement after moving to the directory ProjecLone (im­
mediately superior to CHARLIE). As a result of this PROTECT statement, the READ access
capability on CHARLIE is still public, but any operations that require MANAGER or WRITE
capabilities must include the password.

2. Remove all public access capabilities from the file ASCILl by assigning the password
no_pub, using:

PROTECT "CHARLIE/ASCI L1" ,("nD-pub": MANAGER tWRITE tREAD) (EXECUTE) or (Return)

or

MSI "CHARLIE" (EXECUTE) or (Return)
PROTECT "A SC I L 1" ,("n D- pub" : MANAGER t WR ITE tREAD) (EXECUTE) or (Return)

(

Using SRM 347

• you have READ access capability on the directory immediately superior to the file or directory
you wish to protect;

• you protect the file or directory either while "in" its superior directory or by specifying the valid
directory path to its superior directory.

For example, using the directory structure established for other examples in this section (see
illustration) and assuming no passwords have been assigned to the files, you could:

RSCII 1

BDRT 1

Test_ prog

(root)

assignments

fl

BDRT 1

1. Assign the password passme to protect the MANAGER and WRITE access capabilities on the
directory CHARLIE with the sequence:

MSI "/PROJECTS/ProjecLone" (EXECUTE) or(Return)
PROTECT "CHARLI E" t ("p ass ITI e" : MANAGER t WR ITE) (rE=-X=-EC::-:-:U=TE--) or (Return)

which executes the PROTECT statement after moving to the directory ProjecLone (im­
mediately superior to CHARLIE). As a result of this PROTECT statement, the READ access
capability on CHARLIE is still public, but any operations that require MANAGER or WRITE
capabilities must include the password.

2. Remove all public access capabilities from the file ASCILl by assigning the password
no_pub, using:

PROTECT "CHARLIE/ASCI L1" ,("nD-pub": MANAGER tWRITE tREAD) (EXECUTE) or (Return)

or

MSI "CHARLIE" (EXECUTE) or (Return)
PROTECT "A SC I L 1" ,("n D- pub" : MANAGER t WR ITE tREAD) (EXECUTE) or (Return)

348 Using SRM

These statements assume you are in the directory, ProjecLone, as if you had executed the
statements in the previous step.

The second sequence of statements makes CHARLIE the new working directory, whereas in
the first, you merely "pass through" CHARLIE to reach ASCIL1. With the READ access
capability on CHARLIE still public, you do not need a password.

3. Protect the file, BDA Ll, so that data can be read from it but not written into it without using
the password, write. If the current working directory were CHARLIE, you would type:

PROTECT "BDAL 1" d "IH it e" : MANAGER tWR ITE) (EXECUTE) or[Return)

4. Protect the MANAGER access capability of the directory MEMOS with the password,
mgLpass (so that everyone can read from and write to the directory, but a password is
required to purge the directory or its contents) by typing:

PROTECT "MEMOS" t< "fTl9r _pa s s" : MANAGER) (EXECUTE) or (Return)

If you protected the files and directory in CHARLIE as in the steps above, a catalog listing of
CHARLIE would look something like this:

PROJECTS/PrajecLane/CHARLIE : REMOTE 21 t 0
LABEL: Disc1
FORMAT: SDF
AI'!AILABLE SPACE:

FILE NAME
==== ===============
ASCI L1
BDAL1
MEMDS

54096
SYS

LEI,! TYPE

98){6

FILE NUMBER
TYPE RECORDS

========
ASCII 0

BDAT 0
DIR 0

RECORD MODIFIED PUB OPEN
LENGTH DATE TIME ACC STAT

======== ================ --- - ---
256 2-Dec-84 13:20
256 2- Dec-84 13:20 R

24 2-Dec-84 13:20 RW

The letters in the column labeled PUB ACC indicate access capabilities that are public (not protected
with a password). For example, only the MANAGER (M) access capability on the directory MEMOS
has been protected, leaving the READ (R) and WRITE (w) capabilities available to any SRM
workstation user.

Specifying Passwords
When a password is required, you must include the correct password as part of the file or directory
specifier in any command or statement that requires the protected access on the file or directory.
The password must be enclosed between " <: " and" :> " and must immediately follow the name of
the file or directory it protects.

For example, to get the file ASCIL1, you might type:

GET "I PROJECTSI Pro j e cLan e ICHARLI EI ASC I L 1 <: no_pub :> " (EXECUTE) or (Return)

If the password were not included in the specifier, the system would respond with an error message
and refuse to get the file.

348 Using SRM

These statements assume you are in the directory, ProjecLone, as if you had executed the
statements in the previous step.

The second sequence of statements makes CHARLIE the new working directory, whereas in
the first, you merely "pass through" CHARLIE to reach ASCIL1. With the READ access
capability on CHARLIE still public, you do not need a password.

3. Protect the file, BDA Ll, so that data can be read from it but not written into it without using
the password, write. If the current working directory were CHARLIE, you would type:

PROTECT "BDAL 1" d "IH it e" : MANAGER tWR ITE) (EXECUTE) or[Return)

4. Protect the MANAGER access capability of the directory MEMOS with the password,
mgLpass (so that everyone can read from and write to the directory, but a password is
required to purge the directory or its contents) by typing:

PROTECT "MEMOS" t< "fTl9r _pa s s" : MANAGER) (EXECUTE) or (Return)

If you protected the files and directory in CHARLIE as in the steps above, a catalog listing of
CHARLIE would look something like this:

PROJECTS/PrajecLane/CHARLIE : REMOTE 21 t 0
LABEL: Disc1
FORMAT: SDF
AI'!AILABLE SPACE:

FILE NAME
==== ===============
ASCI L1
BDAL1
MEMDS

54096
SYS

LEI,! TYPE

98){6

FILE NUMBER
TYPE RECORDS

========
ASCII 0

BDAT 0
DIR 0

RECORD MODIFIED PUB OPEN
LENGTH DATE TIME ACC STAT

======== ================ --- - ---
256 2-Dec-84 13:20
256 2- Dec-84 13:20 R

24 2-Dec-84 13:20 RW

The letters in the column labeled PUB ACC indicate access capabilities that are public (not protected
with a password). For example, only the MANAGER (M) access capability on the directory MEMOS
has been protected, leaving the READ (R) and WRITE (w) capabilities available to any SRM
workstation user.

Specifying Passwords
When a password is required, you must include the correct password as part of the file or directory
specifier in any command or statement that requires the protected access on the file or directory.
The password must be enclosed between " <: " and" :> " and must immediately follow the name of
the file or directory it protects.

For example, to get the file ASCIL1, you might type:

GET "I PROJECTSI Pro j e cLan e ICHARLI EI ASC I L 1 <: no_pub :> " (EXECUTE) or (Return)

If the password were not included in the specifier, the system would respond with an error message
and refuse to get the file.

Using SRM 349

Purging Remote Files and Directories
The PURGE statement works the same for removing remote files as for removing files from local
mass storage. You may also remove directories using PURGE. PURGE works only with closed files
and directories. Directories must also be empty (not contain any files or directories) . Refer to the
discussion on "Returning to Local Mass Storage" later in this section for details on closing files and
directories.

When specifying the remote file to be purged, you must include all passwords protecting access
capabilities required for the PURGE. For example, to purge the file BDA Ll from the directory
CHARLIE (see previous examples), you could type:

PUR G E ", < pas s ITI e > / B D A T _ 1 < w r i t e >" (EXECUTE) or (Return)

In this example, CHARLIE is the current working directory, as denoted in the directory path by
" • ". (Refer to the syntax for directory path in the "SRM" section of the BASIC Language Refer­
ence.)

To purge a file, you must have the MANAGER access capability on that file and READ and WRITE
access capabilities on the file's superior directory. Because passme protects the WRITE capability
on CHARLIE and write protects the MANAGER capability on BDA Ll, both passwords must be
included in the file specifier in the PURGE statement.

Although you do not normally need to specify the working directory in a directory path, you must
include the password for the PURGE operation. The READ capability on CHARLIE is not pass­
word-protected.

To purge CHARLIE, you would first need to purge the remaining files and directory in CHARLIE.
Because the MSI statement "opens" a directory (making it the current working directory) , you must
also "close" CHARLIE.

For example, if no files or directories remained in CHARLIE, you could purge CHARLIE by typing:

MS I " : REMDTE" (EXECUTE) or (Return)
PUR G E "P R D J E C T S / Pro j e c t _ 0 n e / C H A R LI E < pas s ITI e > (EXECUTE) or (Return)

The first statement closes CHARLIE and establishes the root directory as the current working
directory. Note that, because passme protects the MANAGER access capability on CHARLIE, you
must include that password in the PURGE statement.

Accessing Files Created on
Non-Series 200/300 SRM Workstations
Regardless of the kind of the computer or language system, files containing ASCII data can be
shared among all workstations on the SRM.

This example shows how you can access a remote ASCII file named Prog-x, which was created
with the SAVE ASCII statement on an HP 9845 with the SAVE ASCII statement.

In this example, Prog_x is in an HP 9845 workstation user's directory called COMMON.
COMMON is located in the directory WORKA5, which is at the root of the SRM directory
structure. The password my pass protects the READ capability on WORKA5. All access capabilities
on COMMON are public.

Using SRM 349

Purging Remote Files and Directories
The PURGE statement works the same for removing remote files as for removing files from local
mass storage. You may also remove directories using PURGE. PURGE works only with closed files
and directories. Directories must also be empty (not contain any files or directories) . Refer to the
discussion on "Returning to Local Mass Storage" later in this section for details on closing files and
directories.

When specifying the remote file to be purged, you must include all passwords protecting access
capabilities required for the PURGE. For example, to purge the file BDA Ll from the directory
CHARLIE (see previous examples), you could type:

PUR G E ", < pas s ITI e > / B D A T _ 1 < w r i t e >" (EXECUTE) or (Return)

In this example, CHARLIE is the current working directory, as denoted in the directory path by
" • ". (Refer to the syntax for directory path in the "SRM" section of the BASIC Language Refer­
ence.)

To purge a file, you must have the MANAGER access capability on that file and READ and WRITE
access capabilities on the file's superior directory. Because passme protects the WRITE capability
on CHARLIE and write protects the MANAGER capability on BDA Ll, both passwords must be
included in the file specifier in the PURGE statement.

Although you do not normally need to specify the working directory in a directory path, you must
include the password for the PURGE operation. The READ capability on CHARLIE is not pass­
word-protected.

To purge CHARLIE, you would first need to purge the remaining files and directory in CHARLIE.
Because the MSI statement "opens" a directory (making it the current working directory) , you must
also "close" CHARLIE.

For example, if no files or directories remained in CHARLIE, you could purge CHARLIE by typing:

MS I " : REMDTE" (EXECUTE) or (Return)
PUR G E "P R D J E C T S / Pro j e c t _ 0 n e / C H A R LI E < pas s ITI e > (EXECUTE) or (Return)

The first statement closes CHARLIE and establishes the root directory as the current working
directory. Note that, because passme protects the MANAGER access capability on CHARLIE, you
must include that password in the PURGE statement.

Accessing Files Created on
Non-Series 200/300 SRM Workstations
Regardless of the kind of the computer or language system, files containing ASCII data can be
shared among all workstations on the SRM.

This example shows how you can access a remote ASCII file named Prog-x, which was created
with the SAVE ASCII statement on an HP 9845 with the SAVE ASCII statement.

In this example, Prog_x is in an HP 9845 workstation user's directory called COMMON.
COMMON is located in the directory WORKA5, which is at the root of the SRM directory
structure. The password my pass protects the READ capability on WORKA5. All access capabilities
on COMMON are public.

350 Using SRM

To access Prog-x, you would type:

GET "WoRLlIS< Ill)' pa s s:> I CoMMoNI P ro Lx : REMOTE" (EXECUTE) or (Return)

or

GET "/WoRLlIS < Ill)' pa s s:> ICoMMoNI P ro Lx" (EXECUTE) or (Return)

The system would then load Prog-x into your workstation. Keep in mind that, with GET, any lines
containing BASIC syntax that is invalid will be stored as commented program lines (!).

Locking and Unlocking Remote Files
You can "lock" a shared file with the LOCK statement, giving you sole access to that file. The same
file can be locked several times in succession. Unlocking a file requires that you cancel all locks on
that file . If you use the UNLOCK statement, you must cancel each LOCK with a corresponding
UNLOCK. Using ASSIGN to re-open a locked file unlocks the file and you must execute another
LOCK statement to lock the file again. Closing the file via ASSIGN @ ... TO * cancels all locks on the
file.

In this example, a critical operation must be performed on the file named File_a, and you do not
want other users accessing the file during that operation. The program might be as follows:

1000 ASSIGN @File TO "File_a:REMoTE"
1010 LOCK @File;CoNoITIoNAL Result _c ode
1020 IF Result_code THEN GoTo 1010 ! Try again
1030 Begin critical process

2000 End critical process
2010 UNLOCK @File

The numeric variable called ResulLcode is used to determine the result of the LOCK operation. If
the LOCK operation is successful, the variable contains O. If the LOCK is not successful, the
variable contains the numeric error code generated by attempting to lock the file.

Returning to Local Mass Storage
When you have finished accessing shared resources, you should close all of your files and director­
ies to "release" the system resources.

Remote files are closed by ASSIGN ... TO* (see the"SRM" section of the BASIC Language
Reference for details on ASSIGN). The SCRATCH A command closes directories and files. All
remote files except those opened with the PRINTER IS statement are also closed by pressing
(RESET) .

To close your current working directory, MSI to a local msus (for example, MS I " : INTERNAL").

If you booted from local mass storage, you may also execute the SCRATCH A command to
completely release your access to the system. If you booted from the SRM, executing SCRATCH A
resets the current working directory to the root.

350 Using SRM

To access Prog-x, you would type:

GET "WoRLlIS< Ill)' pa s s:> I CoMMoNI P ro Lx : REMOTE" (EXECUTE) or (Return)

or

GET "/WoRLlIS < Ill)' pa s s:> ICoMMoNI P ro Lx" (EXECUTE) or (Return)

The system would then load Prog-x into your workstation. Keep in mind that, with GET, any lines
containing BASIC syntax that is invalid will be stored as commented program lines (!).

Locking and Unlocking Remote Files
You can "lock" a shared file with the LOCK statement, giving you sole access to that file. The same
file can be locked several times in succession. Unlocking a file requires that you cancel all locks on
that file . If you use the UNLOCK statement, you must cancel each LOCK with a corresponding
UNLOCK. Using ASSIGN to re-open a locked file unlocks the file and you must execute another
LOCK statement to lock the file again. Closing the file via ASSIGN @ ... TO * cancels all locks on the
file.

In this example, a critical operation must be performed on the file named File_a, and you do not
want other users accessing the file during that operation. The program might be as follows:

1000 ASSIGN @File TO "File_a:REMoTE"
1010 LOCK @File;CoNoITIoNAL Result _c ode
1020 IF Result_code THEN GoTo 1010 ! Try again
1030 Begin critical process

2000 End critical process
2010 UNLOCK @File

The numeric variable called ResulLcode is used to determine the result of the LOCK operation. If
the LOCK operation is successful, the variable contains O. If the LOCK is not successful, the
variable contains the numeric error code generated by attempting to lock the file.

Returning to Local Mass Storage
When you have finished accessing shared resources, you should close all of your files and director­
ies to "release" the system resources.

Remote files are closed by ASSIGN ... TO* (see the"SRM" section of the BASIC Language
Reference for details on ASSIGN). The SCRATCH A command closes directories and files. All
remote files except those opened with the PRINTER IS statement are also closed by pressing
(RESET) .

To close your current working directory, MSI to a local msus (for example, MS I " : INTERNAL").

If you booted from local mass storage, you may also execute the SCRATCH A command to
completely release your access to the system. If you booted from the SRM, executing SCRATCH A
resets the current working directory to the root.

Modifying Existing Programs
to Access Shared Resources

Using SRM 351

This section summarizes ways you can modify existing programs that access local resources to allow
those programs to access shared resources.

When modifying programs to access SRM-controlled mass storage device(s) , you should be aware
that:

• Local and remote mass storage file specifiers may differ and string variable names that contain
file specifiers may need corresponding modification.

• References to mass storage unit specifiers (msus) throughout the program may have to be
altered.

• Allowances may have to be made for directory path specification.

• Local protect codes may differ from passwords On remote files. The syntax for protecting
remote files is different from that used for local files.

File Specifiers
Composition of File Names
All file names for local mass storage are one to 10 characters long, while remote file names contain
one to 16 characters. Remote file names can contain the period character (.) while local files
cannot. If file name compatibility between resources is required, use 10 or fewer characters and do
not use periods within remote file names.

File and Mass Storage Device Specification in String Variables
Modifying programs for use with shared resources generally requires changing the value, and often
the length, of the string variables used to specify files and mass storage devices. The statements that
assign the actual values to the string variables may have to be modified individually.

Some programs use One string variable for the entire file specifier. For instance:

100 DIM File_specifierS[32J
110 LI NPUT "En t er file spe c i f i e r " t File_speci f ierS
120 ON ER ROR GDTD 110 I Tr y aga in if i MProper sp ecif i er.
130 ASSIGN @Pa th TO File_ s pec i fierS
140 OFF ERROR

If one variable is used for all file specifiers (as in the preceding example) , only the length of the
variable needs to be changed to allow for the additional characters allowed in remote file specifiers.

The maximum number of characters that can be entered into a string variable from the keyboard in
one operation is a good size for a file specifier variable. The Series 200 Models 216, 220, 226 and
236, as well as Series 300 computers with medium-resolution displays, allow up to 160 characters.
The Series 200 Model 237 and Series 300 computers with high-resolution displays allow 256
characters. Thus, the length of F i I e _ s P e c i fie rS in the preceding example's DIM statement would
be changed from 32 to 160 or 256, accordingly.

Note that the system mass storage (the current MASS STORAGE IS device) will be accessed if no
msus is explicitly specified.

Modifying Existing Programs
to Access Shared Resources

Using SRM 351

This section summarizes ways you can modify existing programs that access local resources to allow
those programs to access shared resources.

When modifying programs to access SRM-controlled mass storage device(s) , you should be aware
that:

• Local and remote mass storage file specifiers may differ and string variable names that contain
file specifiers may need corresponding modification.

• References to mass storage unit specifiers (msus) throughout the program may have to be
altered.

• Allowances may have to be made for directory path specification.

• Local protect codes may differ from passwords On remote files. The syntax for protecting
remote files is different from that used for local files.

File Specifiers
Composition of File Names
All file names for local mass storage are one to 10 characters long, while remote file names contain
one to 16 characters. Remote file names can contain the period character (.) while local files
cannot. If file name compatibility between resources is required, use 10 or fewer characters and do
not use periods within remote file names.

File and Mass Storage Device Specification in String Variables
Modifying programs for use with shared resources generally requires changing the value, and often
the length, of the string variables used to specify files and mass storage devices. The statements that
assign the actual values to the string variables may have to be modified individually.

Some programs use One string variable for the entire file specifier. For instance:

100 DIM File_specifierS[32J
110 LI NPUT "En t er file spe c i f i e r " t File_speci f ierS
120 ON ER ROR GDTD 110 I Tr y aga in if i MProper sp ecif i er.
130 ASSIGN @Pa th TO File_ s pec i fierS
140 OFF ERROR

If one variable is used for all file specifiers (as in the preceding example) , only the length of the
variable needs to be changed to allow for the additional characters allowed in remote file specifiers.

The maximum number of characters that can be entered into a string variable from the keyboard in
one operation is a good size for a file specifier variable. The Series 200 Models 216, 220, 226 and
236, as well as Series 300 computers with medium-resolution displays, allow up to 160 characters.
The Series 200 Model 237 and Series 300 computers with high-resolution displays allow 256
characters. Thus, the length of F i I e _ s P e c i fie rS in the preceding example's DIM statement would
be changed from 32 to 160 or 256, accordingly.

Note that the system mass storage (the current MASS STORAGE IS device) will be accessed if no
msus is explicitly specified.

352 Using SRM

Mass Storage Unit Specification
Some programs use separate variables for the file name and mass storage unit specifier. For
example:

ASSIGN @Path TO FilenaMe$&Msus$

If so, both variables may have to be dimensioned to greater lengths. Allowing 34 characters for the
file name variable accommodates a 16-character file name, a 16-character password, and the " < "
and "> " password delimiters (for example, "ASCDEFGHIJ123456< 1234567890123456>").
The remote msus may occupy up to 54 characters.

Other programs may use MASS STORAGE IS statements throughout the program instead of
including the msus in each file specifier. For instance:

MASS STORAGE IS Left_drive$
ASSIGN @File TO File_naMe$

Unless variable(s) are used to specify the msus and each variable is assigned a value in only one
place, you may have to modify each MASS STORAGE IS statement to specify the desired remote
mass storage device.

Allowing for Directory Paths
Suppose the following program needs to be modified to include a remote file's directory path.

100 DIM Fi lenallle$[14] ,Msus$[20]

500 FilenaMe$="SLIOES"
510 Msus$=":HP9895,700"

1000 ASSIGN @File TO FilenaMe$&Msus$
1010 OUTPUT @File;Oata(*1
1020 ASSIGN @File TO *

2000 ASSIGN @File TO FilenaMe$&Msus$
2010 OUTPUT @File;Oata(*1
2020 ASSIGN @File TO *

352 Using SRM

Mass Storage Unit Specification
Some programs use separate variables for the file name and mass storage unit specifier. For
example:

ASSIGN @Path TO FilenaMe$&Msus$

If so, both variables may have to be dimensioned to greater lengths. Allowing 34 characters for the
file name variable accommodates a 16-character file name, a 16-character password, and the " < "
and "> " password delimiters (for example, "ASCDEFGHIJ123456< 1234567890123456>").
The remote msus may occupy up to 54 characters.

Other programs may use MASS STORAGE IS statements throughout the program instead of
including the msus in each file specifier. For instance:

MASS STORAGE IS Left_drive$
ASSIGN @File TO File_naMe$

Unless variable(s) are used to specify the msus and each variable is assigned a value in only one
place, you may have to modify each MASS STORAGE IS statement to specify the desired remote
mass storage device.

Allowing for Directory Paths
Suppose the following program needs to be modified to include a remote file's directory path.

100 DIM Fi lenallle$[14] ,Msus$[20]

500 FilenaMe$="SLIOES"
510 Msus$=":HP9895,700"

1000 ASSIGN @File TO FilenaMe$&Msus$
1010 OUTPUT @File;Oata(*1
1020 ASSIGN @File TO *

2000 ASSIGN @File TO FilenaMe$&Msus$
2010 OUTPUT @File;Oata(*1
2020 ASSIGN @File TO *

(

Using SRM 353

In this example, it is probably easiest to add another string variable for the (optional) directory path
name. For example:

100 DIM Di LPa th$[160] ,Fi lenalrle$[SO] ,MSl.Is$[SO]

500 Dir_path$="FRED/DATA_FILES/"
510 FilenaMe$="SLIDES"
520 MSl.Is$=":REMOTE 21.1"

1000 ASSIGN @File TO Dir_path$&FilenaMe$&Msl.Is$
101 0 OUTPUT @File;Data(*)
1020 ASSIGN @File TO *

If the D i r - pat h $ variable is null, the statement looks exactly like it did before the modification. If the
M 51.1 5 $ variable is null, the current mass storage device is accessed. The only difference is in the
allowable length of the string variables.

Passwords and Protect Codes
The PROTECT statement format for remote files is different form the format for local files . Depend­
ing on the type of mass storage is being used, you can use either of the following to decide which
syntax will be used:

1. Try the non-SRM syntax with an ON ERROR statement enabled. If an error occurs, see if it
indicates that the mass storage device is an SRM. An Error 1 occurs when the following
statement is executed on a remote file.

PRO TEe T file specifier, protect code

2. If the program uses a string to store the mass storage unit specifier, check for a non-zero
value of pos (M 5 1.\ 5 $," REMOTE"). This alternative is easier to implement than alternative 1 but
will not work if the program accesses the default device when M 5 1.1 5 $ is empty.

If the program looks for a password error (Error 62) at ASSIGN time, the program may have to be
modified because the system may not detect the password error until an ENTER @Path or
OUTPUT @Path is attempted.

(

Using SRM 353

In this example, it is probably easiest to add another string variable for the (optional) directory path
name. For example:

100 DIM Di LPa th$[160] ,Fi lenalrle$[SO] ,MSl.Is$[SO]

500 Dir_path$="FRED/DATA_FILES/"
510 FilenaMe$="SLIDES"
520 MSl.Is$=":REMOTE 21.1"

1000 ASSIGN @File TO Dir_path$&FilenaMe$&Msl.Is$
101 0 OUTPUT @File;Data(*)
1020 ASSIGN @File TO *

If the D i r - pat h $ variable is null, the statement looks exactly like it did before the modification. If the
M 51.1 5 $ variable is null, the current mass storage device is accessed. The only difference is in the
allowable length of the string variables.

Passwords and Protect Codes
The PROTECT statement format for remote files is different form the format for local files . Depend­
ing on the type of mass storage is being used, you can use either of the following to decide which
syntax will be used:

1. Try the non-SRM syntax with an ON ERROR statement enabled. If an error occurs, see if it
indicates that the mass storage device is an SRM. An Error 1 occurs when the following
statement is executed on a remote file.

PRO TEe T file specifier, protect code

2. If the program uses a string to store the mass storage unit specifier, check for a non-zero
value of pos (M 5 1.\ 5 $," REMOTE"). This alternative is easier to implement than alternative 1 but
will not work if the program accesses the default device when M 5 1.1 5 $ is empty.

If the program looks for a password error (Error 62) at ASSIGN time, the program may have to be
modified because the system may not detect the password error until an ENTER @Path or
OUTPUT @Path is attempted.

354 Using SRM

Status Register 0

Status Register 1

Status Register 2

Status Register 3

Status Register 4

Status Register 5

Status Register 6

Status Register 7

Status Register 8

Status Register 11

Status Register 12

Summary of SRM Status Registers
Card Identification

52 if the Remote Control switch (R) is set to 0 (closed) ; 180 if switch is set
to 1 (open).

Interface Interrupts

1 = interrupts enabled; 0 = interrupts disabled.

Interface Busy

1 = busy; 0 = not busy.

Interface Firmware ID

Always 3 (the firmware ID of the HP 98629A interface) .

Not Implemented

Data Availability

0= receiver buffer empty;
1 = receiver data available but no control blocks buffered:
2 = receiver control blocks available but no data buffered;
3 = both control blocks and data available.

Node Address of the interface

Node address of the HP 98629A interface installed in this computer
which is set to the specified select code. The range of node addresses is 0
through 63.

CRC Errors

Total number of cyclic redundancy check (CRC) errors detected by the
interface since powerup or (RESET) .

Buffer Overflows

Total number of times the receive buffer has overflowed since powerup
or (RESET).

Amount of available space (number of bytes) in the transmit-data buffer.

Number of transmission retries performed since powerup or (RESET) .

354 Using SRM

Status Register 0

Status Register 1

Status Register 2

Status Register 3

Status Register 4

Status Register 5

Status Register 6

Status Register 7

Status Register 8

Status Register 11

Status Register 12

Summary of SRM Status Registers
Card Identification

52 if the Remote Control switch (R) is set to 0 (closed) ; 180 if switch is set
to 1 (open).

Interface Interrupts

1 = interrupts enabled; 0 = interrupts disabled.

Interface Busy

1 = busy; 0 = not busy.

Interface Firmware ID

Always 3 (the firmware ID of the HP 98629A interface) .

Not Implemented

Data Availability

0= receiver buffer empty;
1 = receiver data available but no control blocks buffered:
2 = receiver control blocks available but no data buffered;
3 = both control blocks and data available.

Node Address of the interface

Node address of the HP 98629A interface installed in this computer
which is set to the specified select code. The range of node addresses is 0
through 63.

CRC Errors

Total number of cyclic redundancy check (CRC) errors detected by the
interface since powerup or (RESET) .

Buffer Overflows

Total number of times the receive buffer has overflowed since powerup
or (RESET).

Amount of available space (number of bytes) in the transmit-data buffer.

Number of transmission retries performed since powerup or (RESET) .

Porting to 3.0
Chapter

15

If you have programs which were written on 1. 0, 2.0, or 2.1 versions of Series 200 BASIC systems,
you can use these same programs with little or no changes. The major task you have to perform is
to configure the BASIC 3.0 system with the necessary BIN files.

This chapter describes the differences between BASIC 2.0/2.1 extensions and BASIC 3.0. The
following areas require consideration when porting programs from BASIC 2.0/2.1 to BASIC 3.0.
They are listed in the order in which they're discussed in this chapter.

• Configuring BASIC

• Statement changes

• CSUBs
. PHYREC

• Knob

• Graphics

- Default plotter

- Implicit GCLEAR

- Input device viewport

- Graphics Tablet DIGITIZE

- The VIEWPORT Statement

- The PIVOT Statement

• Display functions

• Prerun on LOADSUB

• Special case of I/O transfers

Note
If you are porting a program from a "pre-3.0" version of the BASIC
system to the 4.0 system, then you may also need to read the following
"Porting to Series 300" chapter.

355

Porting to 3.0
Chapter

15

If you have programs which were written on 1. 0, 2.0, or 2.1 versions of Series 200 BASIC systems,
you can use these same programs with little or no changes. The major task you have to perform is
to configure the BASIC 3.0 system with the necessary BIN files.

This chapter describes the differences between BASIC 2.0/2.1 extensions and BASIC 3.0. The
following areas require consideration when porting programs from BASIC 2.0/2.1 to BASIC 3.0.
They are listed in the order in which they're discussed in this chapter.

• Configuring BASIC

• Statement changes

• CSUBs
. PHYREC

• Knob

• Graphics

- Default plotter

- Implicit GCLEAR

- Input device viewport

- Graphics Tablet DIGITIZE

- The VIEWPORT Statement

- The PIVOT Statement

• Display functions

• Prerun on LOADSUB

• Special case of I/O transfers

Note
If you are porting a program from a "pre-3.0" version of the BASIC
system to the 4.0 system, then you may also need to read the following
"Porting to Series 300" chapter.

355

356 Porting to 3.0

Configuring BASIC
This section contains procedures that help you ensure you have loaded all the required language
extensions and drivers. It also tells you where to find related information in your BASIC manual set.

Helpful Documentation
The BASIC manuals can help you determine which BIN files you need. The BASIC User's Guide
contains a brief description of each BIN file. It also lists the functions and statements supported by
each Language Extensions BIN file.

The Language History section of the BASIC Language Reference manual contains an alphabetical
list of all keywords showing which BIN file, if any, is needed for each keyword. The Keyword
Dictionary in the BASIC Language Reference manual also indicates which BIN file is required for
each keyword. Keep in mind that some keywords are partially supported by just core BASIC and
that additional capabilities may require a BIN file. The Keyword Dictionary uses shading in the
syntax diagram to show which aspects of a statement require an additional BIN file . For example,
CAT is supported by core BASIC, but the MS BIN file is needed to support SELECT and other
advanced features.

Missing Language Extensions BIN Files
Follow this procedure to make sure that you have all the language extensions BIN files that a
program needs. The procedure ensures that each program unit is not prerun and then preruns all
program units. Prerun reports the first misSing BIN file that it finds. Editing a program unit ensures
that it is not in the prerun state. Stepping a stopped program preruns it.

Load the program and the BIN files PDEV and ERR. Enter the first line of the program to ensure
that the main program is not in a prerun state. Find every SUB statement (using the FIND
command enabled by the PDEV BIN file) and enter it. Find every DEF FN statement and enter it.
Now no program unit is in a prerun state. Stepping pre runs every subprogram. If prerun finds a
statement or option that requires a missing BIN file, error 1 is given along with the name (if the ERR
BIN file is loaded) of the missing BIN file. After loading the missing BIN file , step again to prerun the
program. If a BIN file is missing, error 1 and its name are given. Repeat this process until stepping
gives no errors. At that point, all language extensions BIN files needed by the program are present.
If the program loads subprograms or other programs, repeat this process for each of them.

This process does not work for a secured program. The best approach in this case is to ask the
author or vendor for a list of the BIN files required. If this is not possible, load the ERR BIN file and
run the program. Whenever a statement is executed that requires a missing BIN file, an error 1 and
the name of the BIN file are given. After loading the BIN file, the program can be continued.
However, it may be difficult to force the execution of all paths in the program. This can be a serious
problem if a real-time control program is surprised by a missing BIN file at a critical moment.

Remember, if you have enough memory, you can load all the BIN files. However, only load
KNB2_0 if you want KNOBX to function as it does in BASIC 2.0/2.1 and KNOBY to always
return a zero. Refer to the Knob section later in this chapter for more information.

356 Porting to 3.0

Configuring BASIC
This section contains procedures that help you ensure you have loaded all the required language
extensions and drivers. It also tells you where to find related information in your BASIC manual set.

Helpful Documentation
The BASIC manuals can help you determine which BIN files you need. The BASIC User's Guide
contains a brief description of each BIN file. It also lists the functions and statements supported by
each Language Extensions BIN file.

The Language History section of the BASIC Language Reference manual contains an alphabetical
list of all keywords showing which BIN file, if any, is needed for each keyword. The Keyword
Dictionary in the BASIC Language Reference manual also indicates which BIN file is required for
each keyword. Keep in mind that some keywords are partially supported by just core BASIC and
that additional capabilities may require a BIN file. The Keyword Dictionary uses shading in the
syntax diagram to show which aspects of a statement require an additional BIN file . For example,
CAT is supported by core BASIC, but the MS BIN file is needed to support SELECT and other
advanced features.

Missing Language Extensions BIN Files
Follow this procedure to make sure that you have all the language extensions BIN files that a
program needs. The procedure ensures that each program unit is not prerun and then preruns all
program units. Prerun reports the first misSing BIN file that it finds. Editing a program unit ensures
that it is not in the prerun state. Stepping a stopped program preruns it.

Load the program and the BIN files PDEV and ERR. Enter the first line of the program to ensure
that the main program is not in a prerun state. Find every SUB statement (using the FIND
command enabled by the PDEV BIN file) and enter it. Find every DEF FN statement and enter it.
Now no program unit is in a prerun state. Stepping pre runs every subprogram. If prerun finds a
statement or option that requires a missing BIN file, error 1 is given along with the name (if the ERR
BIN file is loaded) of the missing BIN file. After loading the missing BIN file , step again to prerun the
program. If a BIN file is missing, error 1 and its name are given. Repeat this process until stepping
gives no errors. At that point, all language extensions BIN files needed by the program are present.
If the program loads subprograms or other programs, repeat this process for each of them.

This process does not work for a secured program. The best approach in this case is to ask the
author or vendor for a list of the BIN files required. If this is not possible, load the ERR BIN file and
run the program. Whenever a statement is executed that requires a missing BIN file, an error 1 and
the name of the BIN file are given. After loading the BIN file, the program can be continued.
However, it may be difficult to force the execution of all paths in the program. This can be a serious
problem if a real-time control program is surprised by a missing BIN file at a critical moment.

Remember, if you have enough memory, you can load all the BIN files. However, only load
KNB2_0 if you want KNOBX to function as it does in BASIC 2.0/2.1 and KNOBY to always
return a zero. Refer to the Knob section later in this chapter for more information.

Porting to 3.0 357

Missing Driver BIN Files
To ensure that all required driver BIN files are loaded, load the appropriate BIN file for each
interface card and I/O port used (including the built-in HP-IB and RS-232 , serial interface, if
present). Also load the appropriate disc driver BIN file for each disc drive used.

If an operation is attempted to a device but the card driver BIN file is missing, the message "ERROR
163 I/O interface not present" is usually provided. Examples of this are: CAT":, 700" or
PRINTER IS 701 with the HPIB BIN file missing.

If the card BIN file is present but the disc driver BIN file is missing, an attempt to access the disc
causes error 1. If the ERR BIN file is loaded, the message "ERROR 1 Configuration error" is
provided.

If both the card driver and disc driver BIN fils are missing, error 163 is usually given but error 1 can
also occur.

Statement Changes
There are several statements added with BASIC 3.0. These are listed below.

KNOBY
LIST BIN
MAXREAL
MINREAL
MODULO
PDIR
PLOTTER IS file
PRINT LABEL

PRINTER IS file
READ LABEL
RES
SCRATCH BIN
SECURE
SET LOCATOR
STORE SYSTEM
SYSBOOT

Two statements were deleted, STORE BIN and RE-STORE BIN.

CSUBs
If you used Pascal-compiled subprograms (CSUBs) in your BASIC 2.0/2.1 programs, you need to
purchase a Pascal 3.0 system upgrade and a CSUB Utility upgrade to use those CSUBs with
BASIC 3.0. You must recompile the Pascal routine on Pascal 3.0 and re-execute the CSUB utility
to make the routine look like a BASIC subprogram. If you are using a CSUB supplied by a vendor,
you must have the supplier update the CSUB for you.

Porting to 3.0 357

Missing Driver BIN Files
To ensure that all required driver BIN files are loaded, load the appropriate BIN file for each
interface card and I/O port used (including the built-in HP-IB and RS-232 , serial interface, if
present). Also load the appropriate disc driver BIN file for each disc drive used.

If an operation is attempted to a device but the card driver BIN file is missing, the message "ERROR
163 I/O interface not present" is usually provided. Examples of this are: CAT":, 700" or
PRINTER IS 701 with the HPIB BIN file missing.

If the card BIN file is present but the disc driver BIN file is missing, an attempt to access the disc
causes error 1. If the ERR BIN file is loaded, the message "ERROR 1 Configuration error" is
provided.

If both the card driver and disc driver BIN fils are missing, error 163 is usually given but error 1 can
also occur.

Statement Changes
There are several statements added with BASIC 3.0. These are listed below.

KNOBY
LIST BIN
MAXREAL
MINREAL
MODULO
PDIR
PLOTTER IS file
PRINT LABEL

PRINTER IS file
READ LABEL
RES
SCRATCH BIN
SECURE
SET LOCATOR
STORE SYSTEM
SYSBOOT

Two statements were deleted, STORE BIN and RE-STORE BIN.

CSUBs
If you used Pascal-compiled subprograms (CSUBs) in your BASIC 2.0/2.1 programs, you need to
purchase a Pascal 3.0 system upgrade and a CSUB Utility upgrade to use those CSUBs with
BASIC 3.0. You must recompile the Pascal routine on Pascal 3.0 and re-execute the CSUB utility
to make the routine look like a BASIC subprogram. If you are using a CSUB supplied by a vendor,
you must have the supplier update the CSUB for you.

358 Porting to 3.0

PHYREC
The PHYREC routine that allowed you to read from and write to physical records on a disc is
changed from a binary program to a CSUB with BASIC 3.0. The PHYREC CSUB is located on the
BASIC Utilities Disc 1.

You must append the PHYREC CSUB to your program and change PHYREAD/PHYWRITE
statements. If the PHYREC binary is appended to a program, a warning message is displayed and
the binary is ignored by BASIC 3.0.

Use the following steps to locate all the lines for an application that uses PHYREC and change them
to call and append the PHYREC CSUB.

1. Boot a BASIC 2.0/2.1 system.

2. Delete the PHYREC binary.

LOAD "pr09raltl"
SAI,JE "p ro 9 ra1t12" - This saves the program without the binary.
SCRATCH A - This deletes the program and binary from memory.
GET "p ro 9 ra11l2" - Calls to PHYREC are commented. Write down the line numbers.
RE-STDRE "pr09raM"
PURGE "p ro 9 ra1112"

3. Attach the PHYREC CSUB.

LOADSUB ALL FROM "PHYREC"

This file is located on BASIC Utilities Disc 1. Do not try to run your application until you
have completed all steps.

4. Uncomment and change all the calls to PHYREC. These are the lines you noted in step 2
above.

PHYREAD SectorIInt_array(*) > Phyread(SectorIInt_array(*))
PHYWRITE SectorIInt_array(*) > Phywrite(Sector IInt_array(*))

5. If Sec tor is declared to be an INTEGER, you need to put it into parentheses so that PHYREC
will interpret it as a REAL.

Ph)'read((Sector) IInLarray(*))

6. The syntax for a conditional call must be changed from:

to:

IF condition THEN PHYREAD SectorIInt_array(*)

IF condition THEN
Ph)'read(SectorIInLarra)'(*))

END IF

or to:

IF condition THEN CALL Phyread(SectorIInt_array(*))

7. RE-STORE "p ro Haill" after you have completed the changes.

8. Boot BASIC 3.0 and run your applic<;ltion.

358 Porting to 3.0

PHYREC
The PHYREC routine that allowed you to read from and write to physical records on a disc is
changed from a binary program to a CSUB with BASIC 3.0. The PHYREC CSUB is located on the
BASIC Utilities Disc 1.

You must append the PHYREC CSUB to your program and change PHYREAD/PHYWRITE
statements. If the PHYREC binary is appended to a program, a warning message is displayed and
the binary is ignored by BASIC 3.0.

Use the following steps to locate all the lines for an application that uses PHYREC and change them
to call and append the PHYREC CSUB.

1. Boot a BASIC 2.0/2.1 system.

2. Delete the PHYREC binary.

LOAD "pr09raltl"
SAI,JE "p ro 9 ra1t12" - This saves the program without the binary.
SCRATCH A - This deletes the program and binary from memory.
GET "p ro 9 ra11l2" - Calls to PHYREC are commented. Write down the line numbers.
RE-STDRE "pr09raM"
PURGE "p ro 9 ra1112"

3. Attach the PHYREC CSUB.

LOADSUB ALL FROM "PHYREC"

This file is located on BASIC Utilities Disc 1. Do not try to run your application until you
have completed all steps.

4. Uncomment and change all the calls to PHYREC. These are the lines you noted in step 2
above.

PHYREAD SectorIInt_array(*) > Phyread(SectorIInt_array(*))
PHYWRITE SectorIInt_array(*) > Phywrite(Sector IInt_array(*))

5. If Sec tor is declared to be an INTEGER, you need to put it into parentheses so that PHYREC
will interpret it as a REAL.

Ph)'read((Sector) IInLarray(*))

6. The syntax for a conditional call must be changed from:

to:

IF condition THEN PHYREAD SectorIInt_array(*)

IF condition THEN
Ph)'read(SectorIInLarra)'(*))

END IF

or to:

IF condition THEN CALL Phyread(SectorIInt_array(*))

7. RE-STORE "p ro Haill" after you have completed the changes.

8. Boot BASIC 3.0 and run your applic<;ltion.

Porting to 3.0 359

Knob
In BASIC 3.0, unshifted knob movement causes horizontal cursor movement, and shifted knob
movement results in vertical movement. This allows for greater compatibility between the knob and
the HP -HIL mouse. (In BASIC 2.0/2.1 , horizontal and vertical modes are toggled and interlocked.)

The KNOBX Function
The BASIC 2.0/2.1 definition of KNOBX, which we will refer to as all-pulse mode, is as
follows: When an ON KNOB statement is executed to trap knob movement, knob pulses are
accumulated and accessed via the KNOBX statement. Since the KNOBX function returns informa­
tion on X-axis movement, a method of tracking Y-axis movement is not directly available with
BASIC 2.0/2.1. The common method used to track Y-axis movement, is to interrogate keyboard
status register 10 for information on the state of the CTRL and SHIFT keys at the time of the last
knob interrupt. Using this information, SHIFTed and/or CTRLed knob movement could be inter­
preted differently; in fact, an example program showing this was included in the 2.0/2.1 manual set.
Following is another sample 2.0/2.1 program with this type of knob interpretation:

30 ON KNOB . 1 GOSUB Knobsuc
LlO Loop: GOTO Loop
SO STOP
60
70
80
90

100
110
120
130
lLlO
IS0
160
170
180
190

Knobsl.lc : !
STATUS KBD,10;Sta t e
Shi ft=BIT(State ,0)
Ct rl=BIT(State t1)

SELECT Shift
CASE 0

IF Ctrl THEN
}(=}(+KNOB){/l O

ELSE
)'(=){ +KNOB){

ENOIF
CASE 1

IF Ctrl THEN
200 Y=Y+ KNdB X/I0
210 ELSE
220 Y=Y+KNOBX
230 ENDIF
2LlO END SELECT

was SHIFT or CTRL Ke y pressed?
bit 0 set SHIFT Key pressed
bi t 1 set = CTRL Ke y pressed

if shift not pressed, X direction
if ctrl pressed, ~iue finer resolution

if shift pressed, Y direction
if ctrl pressed , ~iue finer re s olution

With the introduction of the new HP-HIL keyboards (no built-in knob but optional mouse), the
intent was to allow the mouse to emulate knob behavior in situations where a knob is no longer
present. The all-pulse mode of interpretation, however, is unacceptable whl - using a mouse
because the mouse is not a unidirectional device, yet movement information in only one direction is
available. It is virtually impossible to move the mouse in one direction only. To be able to disting­
uish movement in each direction, the keyword KNOBY has been added to BASIC 3.0. KNOBY
returns the net number of Y -direction knob pulses counted since the last time the KNOBY counter
was zeroed.

Porting to 3.0 359

Knob
In BASIC 3.0, unshifted knob movement causes horizontal cursor movement, and shifted knob
movement results in vertical movement. This allows for greater compatibility between the knob and
the HP -HIL mouse. (In BASIC 2.0/2.1 , horizontal and vertical modes are toggled and interlocked.)

The KNOBX Function
The BASIC 2.0/2.1 definition of KNOBX, which we will refer to as all-pulse mode, is as
follows: When an ON KNOB statement is executed to trap knob movement, knob pulses are
accumulated and accessed via the KNOBX statement. Since the KNOBX function returns informa­
tion on X-axis movement, a method of tracking Y-axis movement is not directly available with
BASIC 2.0/2.1. The common method used to track Y-axis movement, is to interrogate keyboard
status register 10 for information on the state of the CTRL and SHIFT keys at the time of the last
knob interrupt. Using this information, SHIFTed and/or CTRLed knob movement could be inter­
preted differently; in fact, an example program showing this was included in the 2.0/2.1 manual set.
Following is another sample 2.0/2.1 program with this type of knob interpretation:

30 ON KNOB . 1 GOSUB Knobsuc
LlO Loop: GOTO Loop
SO STOP
60
70
80
90

100
110
120
130
lLlO
IS0
160
170
180
190

Knobsl.lc : !
STATUS KBD,10;Sta t e
Shi ft=BIT(State ,0)
Ct rl=BIT(State t1)

SELECT Shift
CASE 0

IF Ctrl THEN
}(=}(+KNOB){/l O

ELSE
)'(=){ +KNOB){

ENOIF
CASE 1

IF Ctrl THEN
200 Y=Y+ KNdB X/I0
210 ELSE
220 Y=Y+KNOBX
230 ENDIF
2LlO END SELECT

was SHIFT or CTRL Ke y pressed?
bit 0 set SHIFT Key pressed
bi t 1 set = CTRL Ke y pressed

if shift not pressed, X direction
if ctrl pressed, ~iue finer resolution

if shift pressed, Y direction
if ctrl pressed , ~iue finer re s olution

With the introduction of the new HP-HIL keyboards (no built-in knob but optional mouse), the
intent was to allow the mouse to emulate knob behavior in situations where a knob is no longer
present. The all-pulse mode of interpretation, however, is unacceptable whl - using a mouse
because the mouse is not a unidirectional device, yet movement information in only one direction is
available. It is virtually impossible to move the mouse in one direction only. To be able to disting­
uish movement in each direction, the keyword KNOBY has been added to BASIC 3.0. KNOBY
returns the net number of Y -direction knob pulses counted since the last time the KNOBY counter
was zeroed.

360 Porting to 3.0

Keyboards with Built-in Knob
To convert your programs which run on hardware with a built-in knob from 2.0/2.1 to 3.0, simply
replace KNOBX with KNOBX + KNOBY in situations where total knob movement is being re­
corded. The major difference in 3.0 operation is that knob pulses in the X-direction are accessed via
KNOBX and knob pulses in the Y -direction are accessed via KNOBY. One way to modify the
above program for 3.0 is:

30 ON KNOB . 1 GoSUB Knobsvc
40 Loop: GoTo Loop
50 STOP
80 I

70 Knobsvc:!
80 STATUS KBo,10;State
90 Shift=BIT(State ,0)

100 Ctrl=BIT(Staterl)
110 SELECT Shift
120 CASE 0
130 IF Ctrl THEN
140
150
180
170
180
190

)-(=)-(+KNoB)-(/10
ELSE

X=X+KNoB)-(
ENDIF

CASE 1
IF Ctrl THEN

200 Y= Y+KNoBY/l0
210 ELSE
220 Y=Y+KNoBY
230 ENDIF
240 END SELECT

was SHIFT or CTRL Key pressed?
bit 0 set = SHIFT key pressed
bit 1 set = CTRL Key pressed

if shift not pressed, X direction
if ctrl pressed, give finer resolution

if shift pressed, Y direction
if ctrl pressed, give finer resolution

However, this does not work with the HP-HIL mouse. A method that works with the HP-HIL
mouse as well as with the built-in knob is:

30 ON KNOB .1 GoSUB Knobsvc
40 Loop: GoTo Loop
50 STOP
80

150 Knobsl.Jc :
180 X=X+KNoBX
170 Y= Y+KNoBY

360 Porting to 3.0

Keyboards with Built-in Knob
To convert your programs which run on hardware with a built-in knob from 2.0/2.1 to 3.0, simply
replace KNOBX with KNOBX + KNOBY in situations where total knob movement is being re­
corded. The major difference in 3.0 operation is that knob pulses in the X-direction are accessed via
KNOBX and knob pulses in the Y -direction are accessed via KNOBY. One way to modify the
above program for 3.0 is:

30 ON KNOB . 1 GoSUB Knobsvc
40 Loop: GoTo Loop
50 STOP
80 I

70 Knobsvc:!
80 STATUS KBo,10;State
90 Shift=BIT(State ,0)

100 Ctrl=BIT(Staterl)
110 SELECT Shift
120 CASE 0
130 IF Ctrl THEN
140
150
180
170
180
190

)-(=)-(+KNoB)-(/10
ELSE

X=X+KNoB)-(
ENDIF

CASE 1
IF Ctrl THEN

200 Y= Y+KNoBY/l0
210 ELSE
220 Y=Y+KNoBY
230 ENDIF
240 END SELECT

was SHIFT or CTRL Key pressed?
bit 0 set = SHIFT key pressed
bit 1 set = CTRL Key pressed

if shift not pressed, X direction
if ctrl pressed, give finer resolution

if shift pressed, Y direction
if ctrl pressed, give finer resolution

However, this does not work with the HP-HIL mouse. A method that works with the HP-HIL
mouse as well as with the built-in knob is:

30 ON KNOB .1 GoSUB Knobsvc
40 Loop: GoTo Loop
50 STOP
80

150 Knobsl.Jc :
180 X=X+KNoBX
170 Y= Y+KNoBY

(

Porting to 3.0 361

HP-HIL Keyboards with Mouse
If your ON KNOB routine reads keyboard status register 10 for shift-knob or control-knob actions
you will need to make some other changes to convert 2.0/2.1 programs to 3.0. On HP-HIL input
devices (Le., the mouse), keyboard status register 10 has a different interpretation: bit 0 (SHIFT
key pressed) is set if last data processed at the last knob interrupt was Y-axis information (data
accessed via KNOBY) and cleared if last data processed was X-axis data; bit 1 (CTRL key pressed)
is never set. If unidirectional HP-HIL devices were to become available, a toggle switch would exist
on the device to switch between X-axis and Y-axis directions and the shift bit on keyboard status
register 10 would be set when in the V-direction mode.

The previous program segment shows recommended servicing of the mouse.

Programming for Both Versions and Keyboards
In the most complicated case, you may wish to write code that runs on both BASIC 2.0/2.1 and
BASIC 3.0 with either a built-in knob or HP-HIL mouse. Write knob service routines for the BASIC
2.0/2.1 program and the BASIC 3.0 program and LOADSUB the appropriate routine based on the
current version of BASIC. The following program segments show one method of handling this
situation:

30 GOSUB Whichl.lersion
40 IF I,Je rs i on=3 THEN
50 LOADSUB ALL FRDM "K NOBSI,JC3_0 "
80 ELSE
70 LDADSUB ALL FROM "K NOBSI,JC2_0"
80 END IF

110 Whichuersion: runnin. BASIC 2.0 / 2.1 or 3.0 ?
120 ON ERROR GDTO B2_0
130 STATUS 2,2;A ! KBD re.ister 2 does nat exist for 2.0/2.1, error
140 Version=3 ! if l ine 130 didn ' t error aut, Mus t be 3.0
150 GOTO Versionfound
180 B2_0: !
170 Version=2
180 Versionfound: I
180 OFF ERROR
200 RETURN

(

Porting to 3.0 361

HP-HIL Keyboards with Mouse
If your ON KNOB routine reads keyboard status register 10 for shift-knob or control-knob actions
you will need to make some other changes to convert 2.0/2.1 programs to 3.0. On HP-HIL input
devices (Le., the mouse), keyboard status register 10 has a different interpretation: bit 0 (SHIFT
key pressed) is set if last data processed at the last knob interrupt was Y-axis information (data
accessed via KNOBY) and cleared if last data processed was X-axis data; bit 1 (CTRL key pressed)
is never set. If unidirectional HP-HIL devices were to become available, a toggle switch would exist
on the device to switch between X-axis and Y-axis directions and the shift bit on keyboard status
register 10 would be set when in the V-direction mode.

The previous program segment shows recommended servicing of the mouse.

Programming for Both Versions and Keyboards
In the most complicated case, you may wish to write code that runs on both BASIC 2.0/2.1 and
BASIC 3.0 with either a built-in knob or HP-HIL mouse. Write knob service routines for the BASIC
2.0/2.1 program and the BASIC 3.0 program and LOADSUB the appropriate routine based on the
current version of BASIC. The following program segments show one method of handling this
situation:

30 GOSUB Whichl.lersion
40 IF I,Je rs i on=3 THEN
50 LOADSUB ALL FRDM "K NOBSI,JC3_0 "
80 ELSE
70 LDADSUB ALL FROM "K NOBSI,JC2_0"
80 END IF

110 Whichuersion: runnin. BASIC 2.0 / 2.1 or 3.0 ?
120 ON ERROR GDTO B2_0
130 STATUS 2,2;A ! KBD re.ister 2 does nat exist for 2.0/2.1, error
140 Version=3 ! if l ine 130 didn ' t error aut, Mus t be 3.0
150 GOTO Versionfound
180 B2_0: !
170 Version=2
180 Versionfound: I
180 OFF ERROR
200 RETURN

362 Porting to 3.0

Because these modifications to the KNOB facilities may prevent your 2.0/2.1 programs from
running on BASIC 3.0 without making a few changes, we have developed a way to return to the
all-pulse mode of KNOB operation in which all knob pulses are accessed via KNOBX. This mode is
not recommended for the HP-HIL mouse. To switch to this mode, execute
CONTROL KBD,l1 ;l .

Note
If you select all-pulse mode, KNOBY always returns a zero.

Executing CONTROL KBD,l1 ;O returns you to the 3.0 mode of operation in which Y-direction
pulses are accessed via KNOBY. To determine the mode, execute STATUS KBD,l1 ;M. If M=O,
KNOBX is in horizontal-pulse mode; if M = 1, KNOBX is in all-pulse mode.

In some cases, it may be desirable to make this mode change implicitly. This can be accomplished
by loading the BIN file KNB2_0 from the Language Extensions disc. A LIST BIN describes the new
BIN file as 2. 0 K NO 5)(De fin i t ion. The only effect of KNB2_0 being loaded is that it executes
CONTROL KBD,l1 ;l for you automatically. When KNB2_0 is loaded, executing SCRATCH A
also automatically executes CONTROL KBD,l1;1. Note that if this binary is included in a stored
system (e.g. created with the STORE SYSTEM statement), the effects are the same as loading it
afterwards.

Note
All-pulse mode (KNB2_0 loaded) is not recommended for the HP-HIL
mouse.

362 Porting to 3.0

Because these modifications to the KNOB facilities may prevent your 2.0/2.1 programs from
running on BASIC 3.0 without making a few changes, we have developed a way to return to the
all-pulse mode of KNOB operation in which all knob pulses are accessed via KNOBX. This mode is
not recommended for the HP-HIL mouse. To switch to this mode, execute
CONTROL KBD,l1 ;l .

Note
If you select all-pulse mode, KNOBY always returns a zero.

Executing CONTROL KBD,l1 ;O returns you to the 3.0 mode of operation in which Y-direction
pulses are accessed via KNOBY. To determine the mode, execute STATUS KBD,l1 ;M. If M=O,
KNOBX is in horizontal-pulse mode; if M = 1, KNOBX is in all-pulse mode.

In some cases, it may be desirable to make this mode change implicitly. This can be accomplished
by loading the BIN file KNB2_0 from the Language Extensions disc. A LIST BIN describes the new
BIN file as 2. 0 K NO 5)(De fin i t ion. The only effect of KNB2_0 being loaded is that it executes
CONTROL KBD,l1 ;l for you automatically. When KNB2_0 is loaded, executing SCRATCH A
also automatically executes CONTROL KBD,l1;1. Note that if this binary is included in a stored
system (e.g. created with the STORE SYSTEM statement), the effects are the same as loading it
afterwards.

Note
All-pulse mode (KNB2_0 loaded) is not recommended for the HP-HIL
mouse.

Porting to 3.0 363

Graphics
Several graphics statements function differently with BASIC 3.0 than they did in BASIC 2.0/2.1.
This section explains the differences.

Default Plotter
The initialization of graphics system variables and devices has changed slightly in BASIC 3. O. When
GINIT is executed, several operations are performed automatically such as setting line type and
character size. In addition to these operations , BASIC 2.0/2.1 also implicitly does a
PLOTTER IS 3, "INTERNAL" to select the CRT as the default plotting device. In BASIC 3.0, the
default plotting device is not selected until a statement is executed that affects it (e.g., DRAW,
LABEL, GLOAD). At this time, the appropriate PLOTTER IS statement is executed along with
GCLEAR, VIEWPORT and WINDOW statements. Refer to GINIT in the BASIC 3.0 Language
Reference manual for more information.

Implicit GCLEAR
In BASIC 2.0/2.1, any graphics statement following GINIT except PLOTTER IS, GINIT, and
DUMP DEVICE causes the implicit execution of GCLEAR, VIEWPORT, and WINDOW. With
BASIC 3 .0, if a statement that requires a plotter is executed after GINIT, a
PLOTTER IS CRT, "INTERNAL" is executed followed by GCLEAR, VIEWPORT, and WINDOW.
Refer to GINIT in the BASIC 3.0 Language Reference manual for more information.

Input Device Viewport
The GRAPHICS INPUT IS statement sets the hard clip limits of the input device to the largest space
possible that has the same aspect ratio as the output device. Since this was not so in earlier versions,
there were two potential problems. The first problem is that it is possible to move to positions on the
input device that do not exist on the output device. The extent of this problem may be reduced with
BASIC 3.0, but the problem is not eliminated. The second problem is that the aspect ratios of the
input and output devices may differ causing pictures on the devices to appear different. BASIC 3.0
solves this problem by automatically setting the hard clip limits of the input device to the largest
possible space that has the same aspect ratio as the output device.

Graphics Tablet DIGITIZE
A stylus press on the HP 9111A Graphics Tablet prior to execution of a DIGITIZE statement does
not satisfy the DIGITIZE with BASIC 3.0 as it does with BASIC 2.0/2.1. An output of the string
"SG" to the graphics tablet after the GRAPHICS INPUT IS statement causes BASIC 3.0 to work
like BASIC 2.0/2.1.

Porting to 3.0 363

Graphics
Several graphics statements function differently with BASIC 3.0 than they did in BASIC 2.0/2.1.
This section explains the differences.

Default Plotter
The initialization of graphics system variables and devices has changed slightly in BASIC 3. O. When
GINIT is executed, several operations are performed automatically such as setting line type and
character size. In addition to these operations , BASIC 2.0/2.1 also implicitly does a
PLOTTER IS 3, "INTERNAL" to select the CRT as the default plotting device. In BASIC 3.0, the
default plotting device is not selected until a statement is executed that affects it (e.g., DRAW,
LABEL, GLOAD). At this time, the appropriate PLOTTER IS statement is executed along with
GCLEAR, VIEWPORT and WINDOW statements. Refer to GINIT in the BASIC 3.0 Language
Reference manual for more information.

Implicit GCLEAR
In BASIC 2.0/2.1, any graphics statement following GINIT except PLOTTER IS, GINIT, and
DUMP DEVICE causes the implicit execution of GCLEAR, VIEWPORT, and WINDOW. With
BASIC 3 .0, if a statement that requires a plotter is executed after GINIT, a
PLOTTER IS CRT, "INTERNAL" is executed followed by GCLEAR, VIEWPORT, and WINDOW.
Refer to GINIT in the BASIC 3.0 Language Reference manual for more information.

Input Device Viewport
The GRAPHICS INPUT IS statement sets the hard clip limits of the input device to the largest space
possible that has the same aspect ratio as the output device. Since this was not so in earlier versions,
there were two potential problems. The first problem is that it is possible to move to positions on the
input device that do not exist on the output device. The extent of this problem may be reduced with
BASIC 3.0, but the problem is not eliminated. The second problem is that the aspect ratios of the
input and output devices may differ causing pictures on the devices to appear different. BASIC 3.0
solves this problem by automatically setting the hard clip limits of the input device to the largest
possible space that has the same aspect ratio as the output device.

Graphics Tablet DIGITIZE
A stylus press on the HP 9111A Graphics Tablet prior to execution of a DIGITIZE statement does
not satisfy the DIGITIZE with BASIC 3.0 as it does with BASIC 2.0/2.1. An output of the string
"SG" to the graphics tablet after the GRAPHICS INPUT IS statement causes BASIC 3.0 to work
like BASIC 2.0/2.1.

364 Porting to 3.0

The VIEWPORT Statement
VIEWPORT was changed in BASIC 3.0 to make it compatible with the Series 500 and the industry
standard. In BASIC 3.0, VIEWPORT rescales immediately. In BASIC 2.0/2.1 , VIEWPORT does
not rescale; only WINDOW and SHOW statements rescale.

An example helps demonstrate the difference. The following program behaves the same way in
BASIC 2.0/2.1 and 3.0 because it does not have a VIEWPORT statement. It draws a large frame
with a large quadrangle in it as shown in the following figure titled "BASIC 2.0/2.1 and 3.0 without
VIEWPORT" .

10 GINIT
20 GRAPHICS ON
30 FRAME
lIO CLI P OFF
50 MOI,IE 0,50
GO DRAW 100 dOO
70 DRAW RATIO*100 ,50
80 DRAW 100 ,0
80 DRAW 0 ,50
100 END

BASIC 2.0/2.1 and 3.0 without VIEWPORT

364 Porting to 3.0

The VIEWPORT Statement
VIEWPORT was changed in BASIC 3.0 to make it compatible with the Series 500 and the industry
standard. In BASIC 3.0, VIEWPORT rescales immediately. In BASIC 2.0/2.1 , VIEWPORT does
not rescale; only WINDOW and SHOW statements rescale.

An example helps demonstrate the difference. The following program behaves the same way in
BASIC 2.0/2.1 and 3.0 because it does not have a VIEWPORT statement. It draws a large frame
with a large quadrangle in it as shown in the following figure titled "BASIC 2.0/2.1 and 3.0 without
VIEWPORT" .

10 GINIT
20 GRAPHICS ON
30 FRAME
lIO CLI P OFF
50 MOI,IE 0,50
GO DRAW 100 dOO
70 DRAW RATIO*100 ,50
80 DRAW 100 ,0
80 DRAW 0 ,50
100 END

BASIC 2.0/2.1 and 3.0 without VIEWPORT

Porting to 3.0 365

If a VIEWPORT statement is placed in the program, BASIC 2.0/2.1 and BASIC 3.0 give different
results. The program becomes:

10 GINIT
20 GRAPHICS ON
30 InEWPORT 801100120180
40 FRAME
50 CLIP OFF
GO MOI.JE 0150
70 DRAW 1001100
80 DRAW RATIO*100150
90 DRAW 10010
100 DRAW 0150
110 END

With BASIC 2.0/2.1, the result is a small frame with a large quadrangle around it (see figure titled
"BASIC 2.0/2.1 with VIEWPORT"). The frame is what one would expect from the VIEWPORT; it
is tall and thin. The quadrangle is the same as the one drawn by the program without the VIEW­
PORT because the VIEWPORT has not caused the DRAW's to be rescaled.

/////////\\

'" .. ""'-., .. -.,,.'-"--.._. II
•................•.•.......•. //./.

BASIC 2.0/2.1 with VIEWPORT

Porting to 3.0 365

If a VIEWPORT statement is placed in the program, BASIC 2.0/2.1 and BASIC 3.0 give different
results. The program becomes:

10 GINIT
20 GRAPHICS ON
30 InEWPORT 801100120180
40 FRAME
50 CLIP OFF
GO MOI.JE 0150
70 DRAW 1001100
80 DRAW RATIO*100150
90 DRAW 10010
100 DRAW 0150
110 END

With BASIC 2.0/2.1, the result is a small frame with a large quadrangle around it (see figure titled
"BASIC 2.0/2.1 with VIEWPORT"). The frame is what one would expect from the VIEWPORT; it
is tall and thin. The quadrangle is the same as the one drawn by the program without the VIEW­
PORT because the VIEWPORT has not caused the DRAW's to be rescaled.

/////////\\

'" .. ""'-., .. -.,,.'-"--.._. II
•................•.•.......•. //./.

BASIC 2.0/2.1 with VIEWPORT

366 Porting to 3.0

With BASIC 3.0, the result is a small frame with a small quadrangle inside the frame (see figure
titled "BASIC 3.0 with VIEWPORT"). The frame is the same frame as given by BASIC 2.0/2.1.
The quadrangle fits inside the frame because the VIEWPORT in BASIC 3.0 causes all subsequent
DRAW's to be rescaled.

./ \
// \

./ II

// \
/ I

.,/ 1\
i

/ I
i

\ I
\ I

\\, II
.... ,\'" I

.... I
\j

BASIC 3.0 with VIEWPORT

The VIEWPORT change usually does not affect programs because most programs used a sequence
such as:

VIEWPORT 20,100,20,80
WINDOW XMin,XMax,YMin,YMax

The result of these two statements in order is the same in BASIC 2.0/2.1 and BASIC 3.0.

Some BASIC 2.0/2.1 programs used the following order:

VIEWPORT 20,100,20,80
WINDOW XMin,XMax,YMin,YMax
VIEWPORT O,lOO*RATIO,O,lOO

The second VIEWPORT was used to change the soft clip limits. In BASIC 2.0/2.1 , the second
VIEWPORT did not rescale so that the scale defined by the WINDOW and the first VIEWPORT
remains effective. When the above sequence is run in BASIC 3.0, the second VIEWPORT rescales
all subsequent plotting.

The best solution to this problem is to change the sequence to:

VIEWPORT 20,100,20,80
WINDOW){Illi n ,XltlaX , YIII in, YlIlax
eLI P OFF

366 Porting to 3.0

With BASIC 3.0, the result is a small frame with a small quadrangle inside the frame (see figure
titled "BASIC 3.0 with VIEWPORT"). The frame is the same frame as given by BASIC 2.0/2.1.
The quadrangle fits inside the frame because the VIEWPORT in BASIC 3.0 causes all subsequent
DRAW's to be rescaled.

./ \
// \

./ II

// \
/ I

.,/ 1\
i

/ I
i

\ I
\ I

\\, II
.... ,\'" I

.... I
\j

BASIC 3.0 with VIEWPORT

The VIEWPORT change usually does not affect programs because most programs used a sequence
such as:

VIEWPORT 20,100,20,80
WINDOW XMin,XMax,YMin,YMax

The result of these two statements in order is the same in BASIC 2.0/2.1 and BASIC 3.0.

Some BASIC 2.0/2.1 programs used the following order:

VIEWPORT 20,100,20,80
WINDOW XMin,XMax,YMin,YMax
VIEWPORT O,lOO*RATIO,O,lOO

The second VIEWPORT was used to change the soft clip limits. In BASIC 2.0/2.1 , the second
VIEWPORT did not rescale so that the scale defined by the WINDOW and the first VIEWPORT
remains effective. When the above sequence is run in BASIC 3.0, the second VIEWPORT rescales
all subsequent plotting.

The best solution to this problem is to change the sequence to:

VIEWPORT 20,100,20,80
WINDOW){Illi n ,XltlaX , YIII in, YlIlax
eLI P OFF

Porting to 3.0 367

The PIVOT Statement
In BASIC 3.0, the local origin of RPLOT and LABEL is affected by the PIVOT statement. The best
way to see the differences between BASIC 2.0/2.1 and BASIC 3.0 is by studying the following
examples.

RPLOT with PIVOT
The following program illustrates the effects of PIVOT on RPLOT statements. Outputs of the
program with BASIC 2.0/2.1 and 3.0 are shown after the program.

10 DEG
20 GINIT
30 GRAPHICS ON
40 VIEWPORT 0,64,511100
50 Pi ~lot(O)

60 VIEWPORT 661130,51.100
70 Pil)ot(30)
80 VIEWPORT 0,64,0,49
90 Pil)ot(60)
100 I,JIEWPoRT 66,130,0,49
110 Pivot(90)
120 END
130 SUB Pivot(P)
140 WINDOW 0.131,0.100
150 FRAME
160 Mo l.JE 30 ,80
170 LABEL "PIl,JoT" ,p
180 Mol,JE 40,20
190 P!l.JoT P
200 T r i
210 Mol,JE 80,20
220 T r i
230 PIl,JoT 0
240 SUBEND
250 SUB T r i
260 RPLoT 20,0,-1
270 RPLoT 20,20
280 RPLoT 0,0
290 SUBEND

Porting to 3.0 367

The PIVOT Statement
In BASIC 3.0, the local origin of RPLOT and LABEL is affected by the PIVOT statement. The best
way to see the differences between BASIC 2.0/2.1 and BASIC 3.0 is by studying the following
examples.

RPLOT with PIVOT
The following program illustrates the effects of PIVOT on RPLOT statements. Outputs of the
program with BASIC 2.0/2.1 and 3.0 are shown after the program.

10 DEG
20 GINIT
30 GRAPHICS ON
40 VIEWPORT 0,64,511100
50 Pi ~lot(O)

60 VIEWPORT 661130,51.100
70 Pil)ot(30)
80 VIEWPORT 0,64,0,49
90 Pil)ot(60)
100 I,JIEWPoRT 66,130,0,49
110 Pivot(90)
120 END
130 SUB Pivot(P)
140 WINDOW 0.131,0.100
150 FRAME
160 Mo l.JE 30 ,80
170 LABEL "PIl,JoT" ,p
180 Mol,JE 40,20
190 P!l.JoT P
200 T r i
210 Mol,JE 80,20
220 T r i
230 PIl,JoT 0
240 SUBEND
250 SUB T r i
260 RPLoT 20,0,-1
270 RPLoT 20,20
280 RPLoT 0,0
290 SUBEND

368 Porting to 3.0

PIVOT

F'I'v'OT

\ ,
I,)'
\ /
\ " f

F'I VOT

F'I \lOT
\'---'--'---..

, '>
I, l

\ /
\ /
'l

o PI\/OT

PI\/OT

BASIC 2.0/2.1 RPLOTwith PIVOT

PI\,/OT

F'I\/C)T

~
..••. , ..

.........
..........

BASIC 3.0 RPLOT with PIVOT

3C1

3C1

368 Porting to 3.0

PIVOT

F'I'v'OT

\ ,
I,)'
\ /
\ " f

F'I VOT

F'I \lOT
\'---'--'---..

, '>
I, l

\ /
\ /
'l

o PI\/OT

PI\/OT

BASIC 2.0/2.1 RPLOTwith PIVOT

PI\,/OT

F'I\/C)T

~
..••. , ..

.........
..........

BASIC 3.0 RPLOT with PIVOT

3C1

3C1

(

Porting to 3.0 369

LABEL with PIVOT
The following program illustrates the effects of PIVOT on LABEL statements. Outputs of the
program with BASIC 2.0/2.1 and 3.0 are shown after the program.

10 DEG
20 GINIT
30 GRAPHICS DN
40 I,IIEWPDRT 0,64,51dOO
50 FRAME
60 Pil,lot(O)
70 1,1 lEW PORT 66 d30 ,51 dOO
80 FRAME
80 Pil,lot(30)
100 I.JI EWPORT 0,64,0,48
11O FRAME
120 Pi\lot(60)
130 VIEWPORT 66 d30 ,0 ,48
140 FRAME
150 Pil,lot(80)
160 END
170 SUB PilJot(P)
180 WINDOW Od31,OdOO
180 MOIJE 40,80
200 LABEL "PIVOT" ,p
210 MOI,IE 60,60
220 PIVOT P
230 IDRAW 0,0
240 LABEL "Ll"
250 LABEL IIL211
260 LABEL "L3"
270 IDRAW 0,0
280 PIIJOT 0
280 IDRAW 0,0
300 LABEL "L4"
310 LABEL ilLS!!

320 LABEL "L6"
330 SUB END

(

Porting to 3.0 369

LABEL with PIVOT
The following program illustrates the effects of PIVOT on LABEL statements. Outputs of the
program with BASIC 2.0/2.1 and 3.0 are shown after the program.

10 DEG
20 GINIT
30 GRAPHICS DN
40 I,IIEWPDRT 0,64,51dOO
50 FRAME
60 Pil,lot(O)
70 1,1 lEW PORT 66 d30 ,51 dOO
80 FRAME
80 Pil,lot(30)
100 I.JI EWPORT 0,64,0,48
11O FRAME
120 Pi\lot(60)
130 VIEWPORT 66 d30 ,0 ,48
140 FRAME
150 Pil,lot(80)
160 END
170 SUB PilJot(P)
180 WINDOW Od31,OdOO
180 MOIJE 40,80
200 LABEL "PIVOT" ,p
210 MOI,IE 60,60
220 PIVOT P
230 IDRAW 0,0
240 LABEL "Ll"
250 LABEL IIL211
260 LABEL "L3"
270 IDRAW 0,0
280 PIIJOT 0
280 IDRAW 0,0
300 LABEL "L4"
310 LABEL ilLS!!

320 LABEL "L6"
330 SUB END

370 Porting to 3.0

PI \/OT [1 F'I\/OT]0

Ll Ll
L2 L2
LJ L:3
L4 L4
LS LS
LE; LE;

PIVOT 60 F'I'v'OT ~"3 [j

Ll Ll
L2 L'-' c

LJ L:3
L4 L4
L5 L5
L5 L5

BASIC 2.0/2.1 LABEL with PIVOT

PI \/O T [1 PI \/OT]0

Ll Ll
L2 L-' c
LJ L'::I ,_I
L4 L4
Ls L5
LE; L5

PI \/OT 60 F'I\/()T ~"3 0

L l L4 Ll
L'-' L5 L2 L4 c:.
L '') L6 L':I

L5
,_I ,_I

L6

BASIC 3.0 LABEL with PIVOT

370 Porting to 3.0

PI \/OT [1 F'I\/OT]0

Ll Ll
L2 L2
LJ L:3
L4 L4
LS LS
LE; LE;

PIVOT 60 F'I'v'OT ~"3 [j

Ll Ll
L2 L'-' c

LJ L:3
L4 L4
L5 L5
L5 L5

BASIC 2.0/2.1 LABEL with PIVOT

PI \/O T [1 PI \/OT]0

Ll Ll
L2 L-' c
LJ L'::I ,_I
L4 L4
Ls L5
LE; L5

PI \/OT 60 F'I\/()T ~"3 0

L l L4 Ll
L'-' L5 L2 L4 c:.
L '') L6 L':I

L5
,_I ,_I

L6

BASIC 3.0 LABEL with PIVOT

(

Porting to 3.0 371

Display Functions
The effect of turning Display Functions mode on is to display special control characters on the
screen. In BASIC 2.0/2.1, Display Functions has no effect on control characters 128 through 159.
With BASIC 3.0, the appropriate character is displayed on the screen when control characters 128
through 159 are displayed and Display Functions is enabled. For example, on a Model 236 running
BASIC 2.0/2.1 ,

PRINT CHR$(129)&"HI THERE"&CHR$(128)

results in:

With BASIC 3.0, the result is:

The h p symbols are machine dependent; the actual characters displayed may vary with other
models.

(

Porting to 3.0 371

Display Functions
The effect of turning Display Functions mode on is to display special control characters on the
screen. In BASIC 2.0/2.1, Display Functions has no effect on control characters 128 through 159.
With BASIC 3.0, the appropriate character is displayed on the screen when control characters 128
through 159 are displayed and Display Functions is enabled. For example, on a Model 236 running
BASIC 2.0/2.1 ,

PRINT CHR$(129)&"HI THERE"&CHR$(128)

results in:

With BASIC 3.0, the result is:

The h p symbols are machine dependent; the actual characters displayed may vary with other
models.

372 Porting to 3.0

Prerun On LOADSUB
To speed the execution of the LOADSUB statement, BASIC 3.0 does not prerun each subprogram
loaded by the execution of the LOADSUB statement if the subprogram has been stored in a
"prerun state" . This differs from BASIC 2.0/2.1 in that BASIC 2.0/2.1 does prerun on the entire
program every time LOADSUB is executed. The only effect seen by this change is improved
performance when loading subprograms with the LOADSUB statement. For more information on
prerun, refer to the "Entering, Running, and Storing Programs" chapter of this manual.

Special Case of 1/0 Transfers
A special case of decreased I/O performance has occurred with BASIC 3.0 due to a missed
interleave caused by the increased overhead for handling multiple processors. Outbound transfers
without DMA to the 913xA/BNIXV Winchester disc drives perform at 11.75 Kbytes/second in
BASIC 3.0. In BASIC 2.0/2.1, those transfers perform at a rate of 50 Kbytes/second. This degrada­
tion occurs only if all the following conditions are met:

.8 MHz processor board (no cache)

• Not using DMA

• Using outbound TRANSFER (not OUTPUT) to 913xA/BNIXV drive

This performance degradation affects users who are logging test data onto their discs. Adding DMA
can increase the outbound transfer rate to 50 Kbytes/second. (Inbound transfers without DMA from
those drives perform at 11.75 Kbytes/second in both BASIC 2.0/2.1 and BASIC 3.0.)

372 Porting to 3.0

Prerun On LOADSUB
To speed the execution of the LOADSUB statement, BASIC 3.0 does not prerun each subprogram
loaded by the execution of the LOADSUB statement if the subprogram has been stored in a
"prerun state" . This differs from BASIC 2.0/2.1 in that BASIC 2.0/2.1 does prerun on the entire
program every time LOADSUB is executed. The only effect seen by this change is improved
performance when loading subprograms with the LOADSUB statement. For more information on
prerun, refer to the "Entering, Running, and Storing Programs" chapter of this manual.

Special Case of 1/0 Transfers
A special case of decreased I/O performance has occurred with BASIC 3.0 due to a missed
interleave caused by the increased overhead for handling multiple processors. Outbound transfers
without DMA to the 913xA/BNIXV Winchester disc drives perform at 11.75 Kbytes/second in
BASIC 3.0. In BASIC 2.0/2.1, those transfers perform at a rate of 50 Kbytes/second. This degrada­
tion occurs only if all the following conditions are met:

.8 MHz processor board (no cache)

• Not using DMA

• Using outbound TRANSFER (not OUTPUT) to 913xA/BNIXV drive

This performance degradation affects users who are logging test data onto their discs. Adding DMA
can increase the outbound transfer rate to 50 Kbytes/second. (Inbound transfers without DMA from
those drives perform at 11.75 Kbytes/second in both BASIC 2.0/2.1 and BASIC 3.0.)

(

Porting to Series 300
Chapter

16

Introduction
This chapter mainly focuses on one objective:

• Making BASIC programs which have been written for Series 200 computers run on Series 300
computers. (This process is known as "porting" programs.)

Note
If you are porting from a "pre-3.0" version of BASIC to the 4.0 version,
then you should also read the preceding "Porting to 3.0" chapter.

This chapter also discusses the following topics, which may not in all cases be directly related to
porting existing Series 200 software:

• Configuring the built-in 98644-like RS-232C serial interface in Series 300 computers.

• Using the "98203 keyboard compatibility" mode with HP-HIL keyboards (such as the 46020
keyboard) .

• Using the 98546 Display Compatibility Interface in your Series 300 computer (this interface
provides the alpha and graphics capabilities of the Model 217 computer).

Methods of Porting
Here are several methods of porting Series 200 software to Series 300 machines:

• Just load the program into a Series 300 computer - with no modifications - and run it.

• Write and run a program that properly configures the Series 300 computer for the program.

• Make your Series 300 computer emulate a Series 200 Model 217 computer (by installing a HP
98546 Display Compatibility Interface) , and then run your unmodified Series 200 program on
it.

• Modify your Series 200 BASIC source program, and then run it on a Series 300 computer with
the BASIC 4.0 system.

Each method has a slightly different set of requirements for its use, as described subsequently.

373

•

(

Porting to Series 300
Chapter

16

Introduction
This chapter mainly focuses on one objective:

• Making BASIC programs which have been written for Series 200 computers run on Series 300
computers. (This process is known as "porting" programs.)

Note
If you are porting from a "pre-3.0" version of BASIC to the 4.0 version,
then you should also read the preceding "Porting to 3.0" chapter.

This chapter also discusses the following topics, which may not in all cases be directly related to
porting existing Series 200 software:

• Configuring the built-in 98644-like RS-232C serial interface in Series 300 computers.

• Using the "98203 keyboard compatibility" mode with HP-HIL keyboards (such as the 46020
keyboard) .

• Using the 98546 Display Compatibility Interface in your Series 300 computer (this interface
provides the alpha and graphics capabilities of the Model 217 computer).

Methods of Porting
Here are several methods of porting Series 200 software to Series 300 machines:

• Just load the program into a Series 300 computer - with no modifications - and run it.

• Write and run a program that properly configures the Series 300 computer for the program.

• Make your Series 300 computer emulate a Series 200 Model 217 computer (by installing a HP
98546 Display Compatibility Interface) , and then run your unmodified Series 200 program on
it.

• Modify your Series 200 BASIC source program, and then run it on a Series 300 computer with
the BASIC 4.0 system.

Each method has a slightly different set of requirements for its use, as described subsequently.

373

•

374 Porting to Series 300

Chapter Organization
This chapter is organized according to the above strategies. It consists of the following sections:

• Description of Series 300 computer hardware, focusing on the enhancements to and differ­
ences from Series 200 comput~rs

• Descriptions of porting methods, including when and how to use each1
:

• Just loading and running programs

• Using configuration programs

• Using the "Display Compatibility Interface"

• Modifying the program's source code

Description of Series 300 Hardware
Acquiring a general understanding of the enhancements or changes to Series 200 computers
provided by Series 300 computers will help you to choose a porting method.

Areas of Change
Series 300 computers have changes in the following areas:

• Many choices of processor, display, and human interface boards:

• Six displays (including a separate, high-speed display controller)

• Two processors: MC68010, and MC68020 (with MC68881 math co-processor)

• Battery-backed, real-time clock

• RS-232C serial interface (similar to the 98644 serial interface)

• HP-HIL keyboard (which is similar to Models' 217 and 237 keyboards, but different
from other Series 200 models' keyboards)

• No 10 PROM (not all Series 200 Models had this feature)

Areas that Did Not Change
It will probably be comforting to know that if a feature is not listed above (and discussed in this
chapter) , then it is the same for both Series 300 and Series 200 computers.

It may also be comforting to note that Series 300 computers can use most Series 200 accessories
and peripheral devices. See the HP 9000 Series 300 Configuration Reference Manual for a
complete list.

1 Note that you may need to use more than one method in porting a program. For instance , you may need to write a configuration program and
use the Display Compatibility Interface in order to port a program.

374 Porting to Series 300

Chapter Organization
This chapter is organized according to the above strategies. It consists of the following sections:

• Description of Series 300 computer hardware, focusing on the enhancements to and differ­
ences from Series 200 comput~rs

• Descriptions of porting methods, including when and how to use each1
:

• Just loading and running programs

• Using configuration programs

• Using the "Display Compatibility Interface"

• Modifying the program's source code

Description of Series 300 Hardware
Acquiring a general understanding of the enhancements or changes to Series 200 computers
provided by Series 300 computers will help you to choose a porting method.

Areas of Change
Series 300 computers have changes in the following areas:

• Many choices of processor, display, and human interface boards:

• Six displays (including a separate, high-speed display controller)

• Two processors: MC68010, and MC68020 (with MC68881 math co-processor)

• Battery-backed, real-time clock

• RS-232C serial interface (similar to the 98644 serial interface)

• HP-HIL keyboard (which is similar to Models' 217 and 237 keyboards, but different
from other Series 200 models' keyboards)

• No 10 PROM (not all Series 200 Models had this feature)

Areas that Did Not Change
It will probably be comforting to know that if a feature is not listed above (and discussed in this
chapter) , then it is the same for both Series 300 and Series 200 computers.

It may also be comforting to note that Series 300 computers can use most Series 200 accessories
and peripheral devices. See the HP 9000 Series 300 Configuration Reference Manual for a
complete list.

1 Note that you may need to use more than one method in porting a program. For instance , you may need to write a configuration program and
use the Display Compatibility Interface in order to port a program.

(

Porting to Series 300 375

Displays
Series 300 display technology is the most visible area of change from Series 200 computers.

All Series 300 computers utilize bit-mapped alpha display technology, which combines alpha and
graphics like the display of the Series 200 Model 237. (All other Series 200 models have separate
alpha and graphics.)

The main difference between "non-bit-mapped" and "bit-mapped" alpha displays lies in whether
or not alpha and graphics are separate.

• With non-bit-mapped alpha displays, alpha is separate from graphics. Alpha is produced by
character-generating hardware, while graphics are produced by bit-mapping hardware.

(You can use the (ALPHA) and (GRAPHICS) keys to turn on alpha and graphics independently.
When alpha is already on, pressing the (ALPHA) key turns off graphics. Similarly, pressing the
(GRAPHICS) key while graphics is on turns off alpha.)

• With bit-mapped alpha displays, alpha and graphics are not separate. Both alpha and graphics
are produced by a combination of software and bit-mapping hardware.

(With BASIC 4.0, there is a way to configure the Series 300 color displays as separate alpha
and graphics planes. This technique is described in the subsequent "Using a Configuration
Program" section.)

An effect of bit-mapped alpha is that both alpha and graphics are dominant. In other words,
displaying a character on the screen overwrites all pixels within the character cell; the previous
contents of those pixels, which may have been graphics, are lost. Also, any scrolling/clearing of the
alpha screen will scroll/clear the graphics information on the screen, since they share the same
display plane. Conversely, graphics operations overwrite alpha-related pixels.

With Series 300 computers, you may choose from one of six displays: monochrome and color,
each available in both medium- and high-resolution versions1

. (Most Series 200 computers have
only one display available for each model.)

• Medium-resolution graphics displays have 5122 horizontal by 4003 vertical pixels (many of the
Series 200 graphics displays had 512 x 390-pixel graphics displays) .

Alpha capabilities of these medium-resolution displays are 80 columns of characters by 26
lines on-screen, plus 51 lines off-screen (as opposed to the 80 x 25-character alpha displays,
with 39 lines off-screen, of many Series 200 computers). The characters on Series 300
medium-resolution displays are in a 12 x 15-pixel cell. These displays have no blinking mode
(except for the alpha cursor) , and no half-bright mode.

• High-resolution displays have 1 024 horizontal by 7684 vertical pixels.

Alpha capabilities of high-resolution displays are 48 lines of 128 characters, with no lines
off-screen, like the Model 237. The characters are in an 8 x 16-pixel cell. These Series 300
high-resolution displays also have no half-bright mode and no blinking mode (except for the
alpha cursor on all Series 300 displays except the 98700 display controller) .

1 There are two medium-resolution monochrome displays and two high-resolution color displays.

2 Series 300 medium-resolution displays actually have 1 024 horizon tal pixels. However, BASIC graphics (but not alpha) handles con ti guous
pairs of horizontal (non-square) pixels as one un it in order to make square dots on the screen.

3 Series 300 medium-resolution displays actually have 512 vertical pixels; however, only 400 are displayed.

4 Series 300 high- resolution displays actually have 1 024 vertical pixels; however, on ly 768 are displayed.

(

Porting to Series 300 375

Displays
Series 300 display technology is the most visible area of change from Series 200 computers.

All Series 300 computers utilize bit-mapped alpha display technology, which combines alpha and
graphics like the display of the Series 200 Model 237. (All other Series 200 models have separate
alpha and graphics.)

The main difference between "non-bit-mapped" and "bit-mapped" alpha displays lies in whether
or not alpha and graphics are separate.

• With non-bit-mapped alpha displays, alpha is separate from graphics. Alpha is produced by
character-generating hardware, while graphics are produced by bit-mapping hardware.

(You can use the (ALPHA) and (GRAPHICS) keys to turn on alpha and graphics independently.
When alpha is already on, pressing the (ALPHA) key turns off graphics. Similarly, pressing the
(GRAPHICS) key while graphics is on turns off alpha.)

• With bit-mapped alpha displays, alpha and graphics are not separate. Both alpha and graphics
are produced by a combination of software and bit-mapping hardware.

(With BASIC 4.0, there is a way to configure the Series 300 color displays as separate alpha
and graphics planes. This technique is described in the subsequent "Using a Configuration
Program" section.)

An effect of bit-mapped alpha is that both alpha and graphics are dominant. In other words,
displaying a character on the screen overwrites all pixels within the character cell; the previous
contents of those pixels, which may have been graphics, are lost. Also, any scrolling/clearing of the
alpha screen will scroll/clear the graphics information on the screen, since they share the same
display plane. Conversely, graphics operations overwrite alpha-related pixels.

With Series 300 computers, you may choose from one of six displays: monochrome and color,
each available in both medium- and high-resolution versions1

. (Most Series 200 computers have
only one display available for each model.)

• Medium-resolution graphics displays have 5122 horizontal by 4003 vertical pixels (many of the
Series 200 graphics displays had 512 x 390-pixel graphics displays) .

Alpha capabilities of these medium-resolution displays are 80 columns of characters by 26
lines on-screen, plus 51 lines off-screen (as opposed to the 80 x 25-character alpha displays,
with 39 lines off-screen, of many Series 200 computers). The characters on Series 300
medium-resolution displays are in a 12 x 15-pixel cell. These displays have no blinking mode
(except for the alpha cursor) , and no half-bright mode.

• High-resolution displays have 1 024 horizontal by 7684 vertical pixels.

Alpha capabilities of high-resolution displays are 48 lines of 128 characters, with no lines
off-screen, like the Model 237. The characters are in an 8 x 16-pixel cell. These Series 300
high-resolution displays also have no half-bright mode and no blinking mode (except for the
alpha cursor on all Series 300 displays except the 98700 display controller) .

1 There are two medium-resolution monochrome displays and two high-resolution color displays.

2 Series 300 medium-resolution displays actually have 1 024 horizon tal pixels. However, BASIC graphics (but not alpha) handles con ti guous
pairs of horizontal (non-square) pixels as one un it in order to make square dots on the screen.

3 Series 300 medium-resolution displays actually have 512 vertical pixels; however, only 400 are displayed.

4 Series 300 high- resolution displays actually have 1 024 vertical pixels; however, on ly 768 are displayed.

376 Porting to Series 300

Processor Boards
Two processor boards are available with Series 300 computers:

• Medium-performance boards, which feature an MC68010 processor (10 MHz clock rate).

• Higher-performance boards, which feature an MC68020 processor (16 MHz clock rate) and
an MC68881 floating-point math co-processor.

(Series 200 computers have either an MC68000 or MC68010 processor with an 8 or 12.5 MHz
clock, depending on model numbers and product options.)

The 68010 is a 16-bit virtual memory microprocessor with a 32-bit internal architecture, while the
MC68020 is a 32-bit microprocessor with an internal 256-byte instruction cache (which is normally
operative but can be disabled by executing CONTROL 32,3; 0).

The MC68020 also has a flexible co-processor interface that allows close coupling between the
main processor and co-processors such as the MC68881 floating-point math co-processor. The
MC68881, which provides full IEEE floating-point math support, can execute concurrently with the
MC68020 and usually overlaps its processing with the 68020's processing to achieve higher
performance. The MC68881 provides increased performance for floating-point operations, particu­
larly for the evaluation of transcendental functions; refer to the "Efficient Use of the Computer's
Resources" chapter for further details. (The MC68881 co-processor is normally operative, but you
can disable it by executing CONTROL 32,2 ;0.)

Battery-Backed Real-Time Clock
Series 300 computers have a built-in, battery-backed, real-time clock as well as a built-in volatile
clock. Both have a lower limit of March 1, 1900. However, the upper limit of the volatile clock is
August 4, 2079, while the upper limit of the non-volatile clock is February 29, 2000.

(Only Series 200 Models 226 and 236 could have optionally installed battery-backed, real-time
clocks. This hardware was included with the HP 98270 Powerfail Option, whose main purpose was
to provide power during brown-out or black-out situations.)

Built-In Interfaces
All Series 300 computers have a built-in HP-IB interface, which is the same as the built-in HP-IB
interface of all Series 200 computers.

Series 300 computers also feature the following built-in interfaces, which differ slightly from some of
their Series 200 counterparts:

• RS-232C serial interface (like the HP 98644 low-cost serial interface).

• HP-HIL keyboard interface (like the one in Models 217 and 237)

Serial Interface
All Series 300 computers have a built-in, 98644-like, serial interface. As with Series 200 Models
216 and 217 built-in serial interfaces, this interface is permanently set to select code 9. However,
this interface differs slightly from versions of the Series 200 built-in serial interface (which are like
the optional HP 98626 serial interface).

376 Porting to Series 300

Processor Boards
Two processor boards are available with Series 300 computers:

• Medium-performance boards, which feature an MC68010 processor (10 MHz clock rate).

• Higher-performance boards, which feature an MC68020 processor (16 MHz clock rate) and
an MC68881 floating-point math co-processor.

(Series 200 computers have either an MC68000 or MC68010 processor with an 8 or 12.5 MHz
clock, depending on model numbers and product options.)

The 68010 is a 16-bit virtual memory microprocessor with a 32-bit internal architecture, while the
MC68020 is a 32-bit microprocessor with an internal 256-byte instruction cache (which is normally
operative but can be disabled by executing CONTROL 32,3; 0).

The MC68020 also has a flexible co-processor interface that allows close coupling between the
main processor and co-processors such as the MC68881 floating-point math co-processor. The
MC68881, which provides full IEEE floating-point math support, can execute concurrently with the
MC68020 and usually overlaps its processing with the 68020's processing to achieve higher
performance. The MC68881 provides increased performance for floating-point operations, particu­
larly for the evaluation of transcendental functions; refer to the "Efficient Use of the Computer's
Resources" chapter for further details. (The MC68881 co-processor is normally operative, but you
can disable it by executing CONTROL 32,2 ;0.)

Battery-Backed Real-Time Clock
Series 300 computers have a built-in, battery-backed, real-time clock as well as a built-in volatile
clock. Both have a lower limit of March 1, 1900. However, the upper limit of the volatile clock is
August 4, 2079, while the upper limit of the non-volatile clock is February 29, 2000.

(Only Series 200 Models 226 and 236 could have optionally installed battery-backed, real-time
clocks. This hardware was included with the HP 98270 Powerfail Option, whose main purpose was
to provide power during brown-out or black-out situations.)

Built-In Interfaces
All Series 300 computers have a built-in HP-IB interface, which is the same as the built-in HP-IB
interface of all Series 200 computers.

Series 300 computers also feature the following built-in interfaces, which differ slightly from some of
their Series 200 counterparts:

• RS-232C serial interface (like the HP 98644 low-cost serial interface).

• HP-HIL keyboard interface (like the one in Models 217 and 237)

Serial Interface
All Series 300 computers have a built-in, 98644-like, serial interface. As with Series 200 Models
216 and 217 built-in serial interfaces, this interface is permanently set to select code 9. However,
this interface differs slightly from versions of the Series 200 built-in serial interface (which are like
the optional HP 98626 serial interface).

Porting to Series 300 377

Since the goal of the 98644 is to provide a low-cost serial interface, there are no hardware switches
that allow you to specify values for the following parameters:

• Select code (hard-wired to 9)

• Interrupt level (hard-wired to 5)

• Default baud rate (the BASIC system sets default to 9600 baud)

• Default line control parameters (the BASIC system sets defaults to 8 bits/character, 1 stop bit,
parity disabled) .

If your program expects any other values for the baud rate and line control parameters, you will
have to change them programatically (select code and interrupt level cannot be set programmatical­
ly). See "Using a Configuration Program" in this chapter for further information.

HP-HIL Keyboard Interface
Like the Series 200 Models 217 and 237 computers, Series 300 computers use the HP 46020A
HP-HIL (Hewlett-Packard Human Interface Link) keyboard.

Note
If you are porting existing Series 200 software to Series 300 and have
already modified it to run on a Model 217 or 237 computer's HIL
keyboard, then you have already made the adjustments necessary for
this keyboard. If not, then continue reading this section.

The major human-interface differences between 98203 keyboards and HP-HIL keyboards are in
the number and layout of "user" and "system" function keys.

Porting to Series 300 377

Since the goal of the 98644 is to provide a low-cost serial interface, there are no hardware switches
that allow you to specify values for the following parameters:

• Select code (hard-wired to 9)

• Interrupt level (hard-wired to 5)

• Default baud rate (the BASIC system sets default to 9600 baud)

• Default line control parameters (the BASIC system sets defaults to 8 bits/character, 1 stop bit,
parity disabled) .

If your program expects any other values for the baud rate and line control parameters, you will
have to change them programatically (select code and interrupt level cannot be set programmatical­
ly). See "Using a Configuration Program" in this chapter for further information.

HP-HIL Keyboard Interface
Like the Series 200 Models 217 and 237 computers, Series 300 computers use the HP 46020A
HP-HIL (Hewlett-Packard Human Interface Link) keyboard.

Note
If you are porting existing Series 200 software to Series 300 and have
already modified it to run on a Model 217 or 237 computer's HIL
keyboard, then you have already made the adjustments necessary for
this keyboard. If not, then continue reading this section.

The major human-interface differences between 98203 keyboards and HP-HIL keyboards are in
the number and layout of "user" and "system" function keys.

378 Porting to Series 300

~~~O~u~~O~~D~O~~ 
~~~~~u~~~~ODD~~u 
~ EJEJ~OEJEJEJEJD[][]EJ Ll~LJ

(;;] Ell IEl ~W~

HP 98203A Keyboard

HP 982038 Keyboard

HP 46020A ("HI~") Keyboard

EJEJEJO
CJEJ[JEJ
EJEJEJO
DEJD[fl
c::JO U

378 Porting to Series 300

~~~O~u~~O~~D~O~~ 
~~~~~u~~~~ODD~~u 
~ EJEJ~OEJEJEJEJD[][]EJ Ll~LJ

(;;] Ell IEl ~W~

HP 98203A Keyboard

HP 982038 Keyboard

HP 46020A ("HI~") Keyboard

EJEJEJO
CJEJ[JEJ
EJEJEJO
DEJD[fl
c::JO U

(

Porting to Series 300 379

Note that the HIL keyboard has only eight physicaJ "user" function keys (CJL) through [KJ,
rather than OLJ through CE!J), and lacks some of the physicaJ "system" keys (such as (ALPHA)
and ~). However, HIL keyboards actually have more functionality than 98203 keyboards,
because BASIC proVides several "system" and "user" definitions for HIL function keys CJIJ
through 00. For complete definitions of each key on every keyboard, see the "Keyboards"
chapter of the BASIC User's Guide.

BASIC also proVides a way to emulate the operation of a 98203 keyboard using an HIL keyboard.
Using this mode is a convenient way of porting Series 200 programs to Series 300 machines
without modifying the source program. For further details of the "98203 compatibility mode", see
the subsequent "Using a Configuration Program" section1

.

Also note that the 98203 keyboards can produce some keycodes that cannot be produced with the
46020 keyboard. These keycodes are produced by pressing the (EXECUTE) and (]QlD keys. Thus if
the Series 200 program depends upon these keycodes, the source code must be modified. See the
subsequent "Modifying the Source Program" section for further details.

IDPROM
Note that there is no built-in ID PROM available with Series 300 computers, as was the case with
many models of Series 200 computers. However, an equivalent feature is provided by an optional
HP-HIL device - the 46084A 10 Module.

If the program reads the ID PROM's contents with a SYSTEM$("SERIAL NUMBER") function call,
then the program will also read the ID Module's contents correctly. See "Software Security" in the
"Entering, Running, and Storing Programs" chapter for further information. However, if its con­
tents were read by a CSUB2

, then you will need to use a version that does not read the ID PROM.

1 A keyboard overlay is provided with the system to label BASIC defi nitions of several HIL keys. The subsequent "98203 Keyboard Compati ­
bility Mode" section describes the use of this overlay in both normal and compatibility modes.

2 CSUB stands for Compiled SUBroutine, which is a program written in Pascal and generated using the CSUB Utility.

(

Porting to Series 300 379

Note that the HIL keyboard has only eight physicaJ "user" function keys (CJL) through [KJ,
rather than OLJ through CE!J), and lacks some of the physicaJ "system" keys (such as (ALPHA)
and ~). However, HIL keyboards actually have more functionality than 98203 keyboards,
because BASIC proVides several "system" and "user" definitions for HIL function keys CJIJ
through 00. For complete definitions of each key on every keyboard, see the "Keyboards"
chapter of the BASIC User's Guide.

BASIC also proVides a way to emulate the operation of a 98203 keyboard using an HIL keyboard.
Using this mode is a convenient way of porting Series 200 programs to Series 300 machines
without modifying the source program. For further details of the "98203 compatibility mode", see
the subsequent "Using a Configuration Program" section1

.

Also note that the 98203 keyboards can produce some keycodes that cannot be produced with the
46020 keyboard. These keycodes are produced by pressing the (EXECUTE) and (]QlD keys. Thus if
the Series 200 program depends upon these keycodes, the source code must be modified. See the
subsequent "Modifying the Source Program" section for further details.

IDPROM
Note that there is no built-in ID PROM available with Series 300 computers, as was the case with
many models of Series 200 computers. However, an equivalent feature is provided by an optional
HP-HIL device - the 46084A 10 Module.

If the program reads the ID PROM's contents with a SYSTEM$("SERIAL NUMBER") function call,
then the program will also read the ID Module's contents correctly. See "Software Security" in the
"Entering, Running, and Storing Programs" chapter for further information. However, if its con­
tents were read by a CSUB2

, then you will need to use a version that does not read the ID PROM.

1 A keyboard overlay is provided with the system to label BASIC defi nitions of several HIL keys. The subsequent "98203 Keyboard Compati ­
bility Mode" section describes the use of this overlay in both normal and compatibility modes.

2 CSUB stands for Compiled SUBroutine, which is a program written in Pascal and generated using the CSUB Utility.

380 Porting to Series 300

Just Loading and Running Programs
This is the most desirable method, since it requires the least amount of work - just load the program
into the Series 300 computer, and run it.

You can probably port most of your BASIC 3.0 or 3.01 programs this way.

There are three different actions you can take, depending on who developed your program:

• If HP developed the program, look in the "Operating Systems and Applications" section of the
HP 9000 Series 300 Configuration Reference Manual. The manual shows which 3.0 or 3.01
applications will run on a Series 300 computer using the 4.0 system.

• If another software vendor developed the program, check with that vendor to determine
whether it will run on a Series 300 computer. (You can also take one of the two actions listed
below.)

• If you developed the program, you can do one of two things:

• Read through the following sections to see whether it requires another porting
method .

• Try running it.

Should Problems Arise
If your program will not run on your Series 300 system, then you may want to make considerations
such as the following:

• Does it meet all of the criteria listed in the subsequent sections?

• Is there sufficient memory in the computer?

• Are all the necessary devices and corresponding device drivers installed?

• Have you fulfilled all other requirements listed by the software developer?

If the program still doesn't run, then you may want to call the organization responsible for support­
ing the program (the programmer, the software vendor, or HP).

380 Porting to Series 300

Just Loading and Running Programs
This is the most desirable method, since it requires the least amount of work - just load the program
into the Series 300 computer, and run it.

You can probably port most of your BASIC 3.0 or 3.01 programs this way.

There are three different actions you can take, depending on who developed your program:

• If HP developed the program, look in the "Operating Systems and Applications" section of the
HP 9000 Series 300 Configuration Reference Manual. The manual shows which 3.0 or 3.01
applications will run on a Series 300 computer using the 4.0 system.

• If another software vendor developed the program, check with that vendor to determine
whether it will run on a Series 300 computer. (You can also take one of the two actions listed
below.)

• If you developed the program, you can do one of two things:

• Read through the following sections to see whether it requires another porting
method .

• Try running it.

Should Problems Arise
If your program will not run on your Series 300 system, then you may want to make considerations
such as the following:

• Does it meet all of the criteria listed in the subsequent sections?

• Is there sufficient memory in the computer?

• Are all the necessary devices and corresponding device drivers installed?

• Have you fulfilled all other requirements listed by the software developer?

If the program still doesn't run, then you may want to call the organization responsible for support­
ing the program (the programmer, the software vendor, or HP).

Porting to Series 300 381

Using a Configuration Program
This method involves writing a program that configures the system for your program. Here are the
situations for which this porting method will work:

• The program depends on a "non-default" 98626 serial interface configuration as set by
hardware switches.

• The program depends on the 98203 keyboard layout (but does not depend on trapping the
(EXECUTE) or (]QjIJ keys) .

• The program depends on separate alpha and graphics planes (and you have a Series 300 color
display which you can configure to have separate alpha and graphics) .

HP 98644 Serial Interface Configuration
Here is an example situation for which you could use this method. Suppose your program depends
on reading the following "non-default" parameters from the configuration switches on the 98626-
like, built-in serial interface in a Model 217:

. 4800 baud

. 7 bits per character (with 1 stop bit) and odd parity.

However, the default parameters for the built-in 98644-like interface in Series 300 computers are
as follows:

. 9600 baud

. 8 bits/character (with 1 stop bit) , and parity disabled

One solution is to use a short program that selects the desired "non-default" baud rate (4800) and
line-control parameters (7 bits, odd parity). This example program changes the "default" para­
meters by writing to CONTROL registers 13 and 14. (Note that you can also execute these
CONTROL statements directly from the keyboard.)

100 CONTROL 9t13 ; 480 0 ! Baud ra t e .
110 CONTROL 9 t1 4; It,JAL $ (' 11001010 I)) ! No handshaf,e (bit s 7 tG)
120 Odd pari t)' (bit s 5-3)
130 st op bi t (b i t 2)
140 END 7 bits/char (bit s 1 , 0)

Enter and run this program on the 4.0 system, making sure that the SERIAL binary program is
installed beforehand. The serial card is properly configured by this program, which you may want
to verify by reading the corresponding STATUS registers. You can then run the application
program.

Another solution is to modify the source program to select these parameters (Le., insert this
segment of code into the program). In such case, you could change the "current" parameters by
writing to CONTROL registers 3 (baud rate) and 4 (line control). However, if the interface is reset
with the SCRATCH A statement, then the values in these registers will be restored to the "default"
values currently in registers 13 and 14. See the BASIC Interfacing Techniques manual for details on
the serial interface registers.

Porting to Series 300 381

Using a Configuration Program
This method involves writing a program that configures the system for your program. Here are the
situations for which this porting method will work:

• The program depends on a "non-default" 98626 serial interface configuration as set by
hardware switches.

• The program depends on the 98203 keyboard layout (but does not depend on trapping the
(EXECUTE) or (]QjIJ keys) .

• The program depends on separate alpha and graphics planes (and you have a Series 300 color
display which you can configure to have separate alpha and graphics) .

HP 98644 Serial Interface Configuration
Here is an example situation for which you could use this method. Suppose your program depends
on reading the following "non-default" parameters from the configuration switches on the 98626-
like, built-in serial interface in a Model 217:

. 4800 baud

. 7 bits per character (with 1 stop bit) and odd parity.

However, the default parameters for the built-in 98644-like interface in Series 300 computers are
as follows:

. 9600 baud

. 8 bits/character (with 1 stop bit) , and parity disabled

One solution is to use a short program that selects the desired "non-default" baud rate (4800) and
line-control parameters (7 bits, odd parity). This example program changes the "default" para­
meters by writing to CONTROL registers 13 and 14. (Note that you can also execute these
CONTROL statements directly from the keyboard.)

100 CONTROL 9t13 ; 480 0 ! Baud ra t e .
110 CONTROL 9 t1 4; It,JAL $ (' 11001010 I)) ! No handshaf,e (bit s 7 tG)
120 Odd pari t)' (bit s 5-3)
130 st op bi t (b i t 2)
140 END 7 bits/char (bit s 1 , 0)

Enter and run this program on the 4.0 system, making sure that the SERIAL binary program is
installed beforehand. The serial card is properly configured by this program, which you may want
to verify by reading the corresponding STATUS registers. You can then run the application
program.

Another solution is to modify the source program to select these parameters (Le., insert this
segment of code into the program). In such case, you could change the "current" parameters by
writing to CONTROL registers 3 (baud rate) and 4 (line control). However, if the interface is reset
with the SCRATCH A statement, then the values in these registers will be restored to the "default"
values currently in registers 13 and 14. See the BASIC Interfacing Techniques manual for details on
the serial interface registers.

382 Porting to Series 300

HP 98203 Keyboard Compatibility Mode
The BASIC system provides a mode of keyboard operation in which the HIL keyboards are
compatible with (Le., emulate) 98203 keybonrds. Before describing how the compatibility mode
works, it will be helpful to review each keyboard's layout and normal operation.

Brief Comparison of Keyboard Layouts
Here are diagrams of each keyboard, shown here for the purpose of comparing their physical
differences. For a key-by-key description of each one, refer to the "Keyboards" chapter of the
BASIC User's Guide.

Here are the layouts of the 98203 keyboards:

Softkeys

Softkeys .

Cursor
Control Keys

Character Entry Keys

Editing
Keys

HP 98203A Keyboard

Cursor Editing
Control Keys Keys
,--.., ~""""-..

! ,

C!:JC!:J ~~

System
Control Keys

System
Control Keys

~------------------------~. ~ '~--~--~
Character Entry Keys Program Numeric Pad

Control Keys

HP 98203B Keyboard

Note the "system" keys across the top of the keyboard (two rows across the top and one column
down the middle of the larger 98203B; one row across the top and one column down the right side
of the smaller 98203A).

382 Porting to Series 300

HP 98203 Keyboard Compatibility Mode
The BASIC system provides a mode of keyboard operation in which the HIL keyboards are
compatible with (Le., emulate) 98203 keybonrds. Before describing how the compatibility mode
works, it will be helpful to review each keyboard's layout and normal operation.

Brief Comparison of Keyboard Layouts
Here are diagrams of each keyboard, shown here for the purpose of comparing their physical
differences. For a key-by-key description of each one, refer to the "Keyboards" chapter of the
BASIC User's Guide.

Here are the layouts of the 98203 keyboards:

Softkeys

Softkeys .

Cursor
Control Keys

Character Entry Keys

Editing
Keys

HP 98203A Keyboard

Cursor Editing
Control Keys Keys
,--.., ~""""-..

! ,

C!:JC!:J ~~

System
Control Keys

System
Control Keys

~------------------------~. ~ '~--~--~
Character Entry Keys Program Numeric Pad

Control Keys

HP 98203B Keyboard

Note the "system" keys across the top of the keyboard (two rows across the top and one column
down the middle of the larger 98203B; one row across the top and one column down the right side
of the smaller 98203A).

Porting to Series 300 383

Softkeys on the 98203 keyboards are labeled ~ through CJL). There are corresponding
"softkey labels" which can be displayed on the alpha screen. For instance, you can enable the
display of the default "typing-aid" labels by executing this statement:

LOAD BIN IIK BDII

If this binary is already loaded and the "typing-aid" definitions are not currently displayed, execute
LOAD KEY (with no file specifier).

Here is the format of the 98203 softkey labels. (Note that they match the physical layout of the
softkeys.)

KO's label f\1 ' s label f~2 's label f~3's label fUlls label

f~ 5 ' s label KG ' s label n's label f~ 8's lab e l f~ 9 ' s label

There are 2 rows of 5 labels each. Each label consists of up to 14 characters.

Contrast this layout to that of the HIL keyboards:

Program
Control

Keys
Softkeys and

Softkeys Control
Editing
Keys

...-..
System

Control Keys

[r=:JEJ [[D DDD El[;d DDDD[[~~I [00001

DD[][]rolO[[][][O[][[JEJ[]~ ~t:J

~~~D~uu~O~uD~O~~ 
EJ~u~~u~~u~ODO~~u 
~ ~uEJ(]u~EJ~Du[J~ Ll~LJ 
r;J Ell IEl ~0~ 

Character 
Entry Keys 

Cursor 
Control Keys 

EJEJElO 
EJ~EJLJ 

EJ~DO 

OEJOrn 
~oU 

Numeric 
Keypad 

HP-HIL Keyboards (such as the 46020) 

Porting to Series 300 383 

Softkeys on the 98203 keyboards are labeled ~ through CJL). There are corresponding 
"softkey labels" which can be displayed on the alpha screen. For instance, you can enable the 
display of the default "typing-aid" labels by executing this statement: 

LOAD BIN IIK BDII 

If this binary is already loaded and the "typing-aid" definitions are not currently displayed, execute 
LOAD KEY (with no file specifier). 

Here is the format of the 98203 softkey labels. (Note that they match the physical layout of the 
softkeys.) 

KO's label f\1 ' s label f~2 's label f~3's label fUlls label 

f~ 5 ' s label KG ' s label n's label f~ 8's lab e l f~ 9 ' s label 

There are 2 rows of 5 labels each. Each label consists of up to 14 characters. 

Contrast this layout to that of the HIL keyboards: 

Program 
Control 

Keys 
Softkeys and 

Softkeys Control 
Editing 
Keys 

...-.. 
System 

Control Keys 

[r=:JEJ [ [D DDD El[;d DDDD[ [~~I [00001 

DD[][]rolO[[][][O[][[JEJ[]~ ~t:J 

~~~D~uu~O~uD~O~~ 
EJ~u~~u~~u~ODO~~u
~ ~uEJ(]u~EJ~Du[J~ Ll~LJ
r;J Ell IEl ~0~

Character
Entry Keys

Cursor
Control Keys

EJEJElO
EJ~EJLJ

EJ~DO

OEJOrn
~oU

Numeric
Keypad

HP-HIL Keyboards (such as the 46020)

384 Porting to Series 300

Here are the default HIL "typing-aid" labels and corresponding keys. There is 1 row of 8 labels.
Each label consists of up to 16 characters (2 rows of 8 characters per label).

f 1 ' s
label

f2's
label

f3's
label

f4's
label

fS's
label

fG's
label

f7' s
label

fB's
label

Even though the HIL keyboards have fewer physical function keys, they have more functionality
than 98203 keyboards. This additional functionality is due to the fact that BASIC provides 1 menu
of "system" keys (shown below) and 3 menus of "User" definitions for softkeys 00 through

00·
Here is the HIL "system" menu of keys, which you can display by pressing the ~ key (if labels
are not already displayed) and then the (System) key:

Step Continue RUN
Print
All *

Clr Tab Displa)' AIH

Set Tab Fctns char

This menu of softkey definitions provides most of the 98203 system key functions.

Recall

As you can see, there are two main areas of differences between 98203 keyboards and HIL
keyboards:

• There are several "system" keys on the 98203 keyboards, such as (STEP), (CONTINUE) ((CO NT)
on the smaller 98203A keyboard) and (RECALL) (~ on the 98203A). These system
functions are not written on the key-cap labels of HIL keyboards, but the BASIC system
functions are available on the System menu .

• Softkeys on the 98203 keyboards are labeled O!J through QQ. Thus, there are 20
softkeys available on the larger 98203 keyboards (by using (SHIFT)), and 1 0 on the smaller
98203 keyboard. Softkeys on the HIL keyboard are labeled 00 through 00. Thus,
there are 24 softkeys available on these keyboards (3 menus of 8 keys each). The number and
size of screen labels are also different.

384 Porting to Series 300

Here are the default HIL "typing-aid" labels and corresponding keys. There is 1 row of 8 labels.
Each label consists of up to 16 characters (2 rows of 8 characters per label).

f 1 ' s
label

f2's
label

f3's
label

f4's
label

fS's
label

fG's
label

f7' s
label

fB's
label

Even though the HIL keyboards have fewer physical function keys, they have more functionality
than 98203 keyboards. This additional functionality is due to the fact that BASIC provides 1 menu
of "system" keys (shown below) and 3 menus of "User" definitions for softkeys 00 through

00·
Here is the HIL "system" menu of keys, which you can display by pressing the ~ key (if labels
are not already displayed) and then the (System) key:

Step Continue RUN
Print
All *

Clr Tab Displa)' AIH

Set Tab Fctns char

This menu of softkey definitions provides most of the 98203 system key functions.

Recall

As you can see, there are two main areas of differences between 98203 keyboards and HIL
keyboards:

• There are several "system" keys on the 98203 keyboards, such as (STEP), (CONTINUE) ((CO NT)
on the smaller 98203A keyboard) and (RECALL) (~ on the 98203A). These system
functions are not written on the key-cap labels of HIL keyboards, but the BASIC system
functions are available on the System menu .

• Softkeys on the 98203 keyboards are labeled O!J through QQ. Thus, there are 20
softkeys available on the larger 98203 keyboards (by using (SHIFT)), and 1 0 on the smaller
98203 keyboard. Softkeys on the HIL keyboard are labeled 00 through 00. Thus,
there are 24 softkeys available on these keyboards (3 menus of 8 keys each). The number and
size of screen labels are also different.

Porting to Series 300 385

Enabling Keyboard Compatibility Mode
You can enter this mode by writing a non-zero value into keyboard control register 15:

CONTROL KBD tiS j 1

The following correspondence between function keys and labels is established1
:

KO's
1 ab e 1

f(1 ' s
label

f(2 ' s
label

K3's
label

fUI 's
la bel

f(S's
label

f(6' s
label

f(7' s
label

f(S's
label

K9's
label

There is 1 row of labels, and each label may have up to 14 characters (two rows of 7 characters
each).

If you want to fully emulate the 98203 keyboard and corresponding softkeys' display behavior, you
will need to execute the following statements:

CONTROL CRT ti2 jO
LOAD KEY

The CONTROL statement sets up the "key labels display mode" to match the default behavior of a
display with the 98203 keyboard. The LOAD KEY statement loads the default "typing-aid" softkey
definitions for the 98203 keyboards.

1 If you are in edit mode when you enter this compatibility mode, then edit mode is canceled.

Porting to Series 300 385

Enabling Keyboard Compatibility Mode
You can enter this mode by writing a non-zero value into keyboard control register 15:

CONTROL KBD tiS j 1

The following correspondence between function keys and labels is established1
:

KO's
1 ab e 1

f(1 ' s
label

f(2 ' s
label

K3's
label

fUI 's
la bel

f(S's
label

f(6' s
label

f(7' s
label

f(S's
label

K9's
label

There is 1 row of labels, and each label may have up to 14 characters (two rows of 7 characters
each).

If you want to fully emulate the 98203 keyboard and corresponding softkeys' display behavior, you
will need to execute the following statements:

CONTROL CRT ti2 jO
LOAD KEY

The CONTROL statement sets up the "key labels display mode" to match the default behavior of a
display with the 98203 keyboard. The LOAD KEY statement loads the default "typing-aid" softkey
definitions for the 98203 keyboards.

1 If you are in edit mode when you enter this compatibility mode, then edit mode is canceled.

386 Porting to Series 300

Using Compatibility Mode
Here is a listing of the correspondence between HIL keys and 98203 keys while in this mode. For a
detailed description of each 98203 key's function, see the "Keyboards" chapter of the BASIC
User's Guide.

Note
Place the BASIC keyboard overlays on the HIL keyboard before read­
ing this section. Also note that you can use these overlays in normal
mode as well as in compatibility mode.

~~~D~uu~O~uOUO~ ~ 

~~ ~~~uO~u~ODD~~~ 
[;] ~EJ []Elul!J EJ EJUr:::J[]~ Ll ~LJ 

~ El l IE) ~w~ 

• To access a 98203 softkey definition, merely press the appropriate HIL softkey. For instance, 
the HIL CJIJ softkey emulates the 98203 ~ softkey, and the HIL ~ key emulates 
the 98203 OQ softkey. (These key definitions are printed on the bottom row of the 
keyboard overlay.) 

Similarly, 98203 softkeys k10 through k19 are accessed by pressing the HIL (]hlliJ key with the 
appropriate softkey. 

a.l~ Conllnue RUN Ptlnt AJI 
kO k1 k 2 k3 k4 

C'rlStl hb OJsp Felnl Any C"., Realil 
k5 k6 k7 ~ 'kB kg 

el, In 

M BASle 

o 0 ([] ro [] [] ([J [] [0 [] ([J EJ lD [=- I 
[",,-,-S----,l ~ EJ D EJ EJ EJ ~ 0 EJ EJ 0 [] [] 
~~~~~D~~~ODDDr )~~ 
(;] EJEJEJEJEJ~EJEJDEJ([]EJ LJ~LJ

~[I E]

386 Porting to Series 300

Using Compatibility Mode
Here is a listing of the correspondence between HIL keys and 98203 keys while in this mode. For a
detailed description of each 98203 key's function, see the "Keyboards" chapter of the BASIC
User's Guide.

Note
Place the BASIC keyboard overlays on the HIL keyboard before read­
ing this section. Also note that you can use these overlays in normal
mode as well as in compatibility mode.

~~~D~uu~O~uOUO~ ~ 

~~ ~~~uO~u~ODD~~~ 
[;] ~EJ []Elul!J EJ EJUr:::J[]~ Ll ~LJ 

~ El l IE) ~w~ 

• To access a 98203 softkey definition, merely press the appropriate HIL softkey. For instance, 
the HIL CJIJ softkey emulates the 98203 ~ softkey, and the HIL ~ key emulates 
the 98203 OQ softkey. (These key definitions are printed on the bottom row of the 
keyboard overlay.) 

Similarly, 98203 softkeys k10 through k19 are accessed by pressing the HIL (]hlliJ key with the 
appropriate softkey. 

a.l~ Conllnue RUN Ptlnt AJI 
kO k1 k 2 k3 k4 

C'rlStl hb OJsp Felnl Any C"., Realil 
k5 k6 k7 ~ 'kB kg 

el, In 

M BASle 

o 0 ([] ro [] [] ([J [] [0 [] ([J EJ lD [=- I 
[",,-,-S----,l ~ EJ D EJ EJ EJ ~ 0 EJ EJ 0 [] [] 
~~~~~D~~~ODDDr )~~ 
(;] EJEJEJEJEJ~EJEJDEJ([]EJ LJ~LJ

~[I E]

(

(

Porting to Series 300 387

• To access a 98203 system-key definition, press (Extend char) with the appropriate HIL softkey.
For instance, the HIL (Extend char) CKJ key emulates the 98203 ~ key. (These key
definitions are printed on the top row of the keyboard overlay. Note that these definitions are
the same as in the normal-mode System softkey menu.)

Step Continue RUN Print All Cl rJSet Tab Disp Fclns Any Char Recall ""en iO ~1- U ii3 114 U ~ ~-\f' 71" Itg-" 0, • End Ch Set

m BASle

o 0 [] [] [] ([J [[] [] [] [] lD EJ [] [=- I ~ ~
[E 1~~D~D~~O EJuD[] (o ~~

~~~~~D~~~~DDO r l ~~ 
[;] EJ~uO~(!]~EJEJD[[]EJ LJ~LJ 
~ 
~ ~ [ l ~ 

~ ' '-------------~. ~ 

• The 98203 (eLR 1/0) and (PAUSE) system-key definitions are available by using the HIL ( Break) 
and ~ keys (without pressing (Extend char)). Note that these key definitions are the same in 
normal mode. 

::::: r::J D D r:=J D [MOnU I [~:: ... l r:=J D D D [~ I [="1 
Reset Slop 'tap Conttnt.. RUH PrIN AU CIt $el TIID OIIP Fe'n_ An, C~, R~ 

Clear ItO Pause 1(0 k' "2 k3 ~4 U "I k7 Itl Itl Ctr • End elf Set 

m BASIC W~ lnComo..hb,hly I'ftOdIt 101M E .. ttnd ,,,., to 8CU'U SYSTEM Func:tkHK 

o 0 (0 [] [] ([J [[] [] [] [] lD EJ [] [::.c:. I ~ eJ 
[E 1~~D~D~~O EJuD[](o ~~ 

~~~~~D~~~~DDOr l ~~ 
[;] EJ~uO~(!]~EJEJD [[] EJ LJ~LJ
(;J ~ [I E) ~[!]~

(

(

Porting to Series 300 387

• To access a 98203 system-key definition, press (Extend char) with the appropriate HIL softkey.
For instance, the HIL (Extend char) CKJ key emulates the 98203 ~ key. (These key
definitions are printed on the top row of the keyboard overlay. Note that these definitions are
the same as in the normal-mode System softkey menu.)

Step Continue RUN Print All Cl rJSet Tab Disp Fclns Any Char Recall ""en iO ~1- U ii3 114 U ~ ~-\f' 71" Itg-" 0, • End Ch Set

m BASle

o 0 [] [] [] ([J [[] [] [] [] lD EJ [] [=- I ~ ~
[E 1~~D~D~~O EJuD[] (o ~~

~~~~~D~~~~DDO r l ~~ 
[;] EJ~uO~(!]~EJEJD[[]EJ LJ~LJ 
~ 
~ ~ [ l ~ 

~ ' '-------------~. ~ 

• The 98203 (eLR 1/0) and (PAUSE) system-key definitions are available by using the HIL ( Break) 
and ~ keys (without pressing (Extend char)). Note that these key definitions are the same in 
normal mode. 

::::: r::J D D r:=J D [MOnU I [~:: ... l r:=J D D D [~ I [="1 
Reset Slop 'tap Conttnt.. RUH PrIN AU CIt $el TIID OIIP Fe'n_ An, C~, R~ 

Clear ItO Pause 1(0 k' "2 k3 ~4 U "I k7 Itl Itl Ctr • End elf Set 

m BASIC W~ lnComo..hb,hly I'ftOdIt 101M E .. ttnd ,,,., to 8CU'U SYSTEM Func:tkHK 

o 0 (0 [] [] ([J [[] [] [] [] lD EJ [] [::.c:. I ~ eJ 
[E 1~~D~D~~O EJuD[](o ~~ 

~~~~~D~~~~DDOr l ~~ 
[;] EJ~uO~(!]~EJEJD [[] EJ LJ~LJ
(;J ~ [I E) ~[!]~

388 Porting to Series 300

• The 98203 (CLR -> END), (CLR LN), and (CLR SCR) system-key definitions are available by using
the HIL (Clear line), (]hlliJ (Clear line), and (Clear display) keys. Note that these key definitions
are the same in normal mode.

Rue' Slop St.p Continue RUN Prlnl All Clr/Set Teb D'IP Feint Anyehllr Aea" ClrLn

Cle., 1/ 0 PeuH 10.0 Itt It2 113 1t4 itS 1111 ,,7 "8 k9 Clr .). End elr Ser

M BASIC When In Comp"lll)il fl y moct. us. [IC,end ch., 10 KCH' SVSTfM Func.lion.

[,,--,-~-----,I @] ~ D ~ U tJ EJ 0 ~ U 0 [] D ~ ~
~~~~~D~~~~DDDr I~~ 
(;] ~[]uO~[]~~Du[]~ u~LJ 
I-il 
~ EJ ['--______ ----J] ~ 

• The 98203 ( RECALL ), (ALPHA), (GRAPHICS ), and RES system-key definitions are available by 
using the unlabeled HIL keys above the numeric keypad. The shifted keys also have corres­
ponding definitions (for example, Shift Alpha is the DUMP ALPHA function). Note that these 
key definitions are the same in normal mode. 

RUN Pfktl All elf,s.1 Tlb Dilll> Fell'll Any Ch.r Reel" Clr In 

10.2 k3 k4 ... 5 Itt! 117 liB k9 Clr. End Clr Ser 

e blend Ch,f 10 ace .... SYSTEM Funct"'n. 

) [] ro [] [] [[J [[J EJ [] [=- I ~ ~ 
~utJEJO~uD[]D ~~ 

iD~~~~DDD[""um I ~~ 
J~[]~~DU[]~ u~LJ 
~r _________ 1 ~ 
I 

0000 
Dump Alpha Dump Graph 

Reca ll A lpha Graphics Resu l t 

M BA S IC 

EJOEJO 

388 Porting to Series 300 

• The 98203 ( CLR -> END ), ( CLR LN ), and ( CLR SCR ) system-key definitions are available by using 
the HIL ( Clear line ), (]hlliJ ( Clear line ), and ( Clear display) keys. Note that these key definitions 
are the same in normal mode. 

Rue' Slop St.p Continue RUN Prlnl All Clr/Set Teb D'IP Feint Anyehllr Aea" ClrLn 

Cle., 1/ 0 PeuH 10.0 Itt It2 113 1t4 itS 1111 ,,7 "8 k9 Clr .). End elr Ser 

M BASIC When In Comp"lll)il fl y moct. us. [IC,end ch., 10 KCH' SVSTfM Func.lion. 

[,,--,-~-----,I @] ~ D ~ U tJ EJ 0 ~ U 0 [] D ~ ~ 
~~~~~D~~~~DDDr I~~ 
(;] ~[]uO~[]~~Du[]~ u~LJ
I-il
~ EJ ['--______ ----J] ~

• The 98203 (RECALL), (ALPHA), (GRAPHICS), and RES system-key definitions are available by
using the unlabeled HIL keys above the numeric keypad. The shifted keys also have corres­
ponding definitions (for example, Shift Alpha is the DUMP ALPHA function). Note that these
key definitions are the same in normal mode.

RUN Pfktl All elf,s.1 Tlb Dilll> Fell'll Any Ch.r Reel" Clr In

10.2 k3 k4 ... 5 Itt! 117 liB k9 Clr. End Clr Ser

e blend Ch,f 10 ace SYSTEM Funct"'n.

) [] ro [] [] [[J [[J EJ [] [=- I ~ ~
~utJEJO~uD[]D ~~

iD~~~~DDD[""um I ~~
J~[]~~DU[]~ u~LJ
~r _________ 1 ~
I

0000
Dump Alpha Dump Graph

Reca ll A lpha Graphics Resu l t

M BA S IC

EJOEJO

(

Porting to Series 300 389

• When shifted, the ~, CI) CU , and c=J HIL keys on the top row of the numeric
keypad have the same definitions as the keys on the top row of the 98203 numeric keypad.
They are CIJ (C§hj[) ~), IT] (C§hj[) [TI), CIJ (C§hj[) CU), and CD
(C§hj[) c=J). Note that these key definitions are the same in normal mode.

,_ '''' c.n..... "UN ""-II AM QrIoe1T .. o..~...,o- ~ QrLII

~ "0 ~1 -., "' •• H III ". Or · ,... Ok

[] [D [J [[] ([J [] [0 [] [] [[J EJ [] I=- I ~ ~
J@]~D~[] EJ(9]OeJ[c)[][][] ~~

EJEJ~~DEJeJe::J[] DOD~ ~LJ
EJ [J[]OEJ~EJ~ Du[] EJ LJ~LJ

El l IEl ~[!J~ ~

MBASle

EJOEJD

• (Extend char) ~ is an on/off toggle for the key labels. ((Exlendchar) C§hj[) ~ produces no
visible change.)

R I Stop S&tp Conlktue Fl UN Pu Aft Clr "1 rib OJ.p feint Aft" CNt Atul elf L.ft

OMr I; 0 'au .. kO kl .2 3 k. 115 U Ii.7 itS U ar. £nd OrScr

o 0 ([] ([] [] (LJ [] [] [] ro (D 0 [] I=- 1 ~ ~
IE l ~EJD~[]EJ~O~uO[JD ~~

~~~~~D~~~~DD D r l ~~ 
(;] ~uDtJ~~EJ~ D u ([] LJ LJ~LJ 
r;;;;;;J 
~ [~oo) I~ __________________ ~ Extend 

chlr 

( 

Porting to Series 300 389 

• When shifted, the ~, CI) CU , and c=J HIL keys on the top row of the numeric 
keypad have the same definitions as the keys on the top row of the 98203 numeric keypad. 
They are CIJ (C§hj[) ~), IT] (C§hj[) [TI), CIJ (C§hj[) CU ), and CD 
(C§hj[) c=J). Note that these key definitions are the same in normal mode. 

,_ '''' c.n..... "UN ""-II AM QrIoe1T .. o..~...,o- ~ QrLII 

~ "0 ~1 -., "' •• H III ". Or · ,... Ok 

[] [D [J [[] ([J [] [0 [] [] [[J EJ [] I=- I ~ ~ 
J@]~D~[] EJ(9]OeJ[c)[][][] ~~ 

EJEJ~~DEJeJe::J[] DOD~ ~LJ 
EJ [J[]OEJ~EJ~ Du[] EJ LJ~LJ 

El l IEl ~[!J~ ~ 

MBASle 

EJOEJD 

• (Extend char) ~ is an on/off toggle for the key labels. ((Exlendchar) C§hj[) ~ produces no 
visible change.) 

R .... I Stop S&tp Conlktue Fl UN Pu .... Aft Clr "1 rib OJ.p feint Aft" CNt Atul elf L.ft 

OMr I; 0 'au .. kO kl .2 3 k. 115 U Ii.7 itS U ar. £nd OrScr 

o 0 ([] ([] [] (LJ [] [] [] ro (D 0 [] I=- 1 ~ ~ 
IE l ~EJD~[]EJ~O~uO[JD ~~ 

~~~~~D~~~~DD D r l ~~ 
(;] ~uDtJ~~EJ~ D u ([] LJ LJ~LJ
r;;;;;;J
~ [~oo) I~ __________________ ~ Extend

chlr

390 Porting to Series 300

• (Extend char) (System) exits compatibility mode, and returns you to the HIL "System" key defini­
tions. Similarly, (Extend char) ~ exits this mode, and returns you to the HIL "User I" key
definitions. (Note that there is no corresponding keystroke to return to compatibility mode.)

(;;] EJ DO r=J 0 ["enu 1 u ... r=J r=J r=J r=J [C~' 1 [C~' 1 ,.,. di..,.., System ._,
Stop S ... Contlnu. RUN Prim All CI, '&'I Tab DI,p Fc;ln. Any Char COoLn

eJu, uO Pol"''' • 0 ., .. k3 .. •• •• " •• .9 O,.Eftd Clrk,

m BASle WMn In CompaUblitly rnott. ut. EI.end chtt 10 KCH. SYSTEM Function.

0 O[] (0 [[J [] (O [] [] [][]O(D [=. 1 ~ ~ lin •

[~ 1 @] ~ 0 ~ [] [] ~ 0 ~ rJ (0 [] [[] ~ ~

EJEJ~EJ~D~EJuEJDDD["~wn 1 ~LJ

[;] E][]OEJEJEJEJEJDuDEJ LJ~LJ
~.nd [1 Ejend
cher . ch.r

~--------------------------~

Exiting Keyboard Compatibility Mode
In addition to using the (Extend char) (System) and (Extend char) ~ keys to exit this mode, you can also
use keyboard register 15:

CONTROL KB0t1 5iO

If the system is currently in edit mode, then exiting keyboard compatibility mode will also cancel the
edit mode.

If you were emulating the 98203 keyboard and corresponding softkeys' display behavior (and want
to return to the "normal" behavior), you will need to execute the following statements:

CONTROL CRT t12; 2
LOAD KE Y

The CONTROL statement restores the "key labels display mode" to the default behavior of a
display with the HIL keyboard. The LOAD KEY statement restores the default "typing-aid" softkey
definitions for the HIL keyboard.

390 Porting to Series 300

• (Extend char) (System) exits compatibility mode, and returns you to the HIL "System" key defini­
tions. Similarly, (Extend char) ~ exits this mode, and returns you to the HIL "User I" key
definitions. (Note that there is no corresponding keystroke to return to compatibility mode.)

(;;] EJ DO r=J 0 ["enu 1 u ... r=J r=J r=J r=J [C~' 1 [C~' 1 ,.,. di..,.., System ._,
Stop S ... Contlnu. RUN Prim All CI, '&'I Tab DI,p Fc;ln. Any Char COoLn

eJu, uO Pol"''' • 0 ., .. k3 .. •• •• " •• .9 O,.Eftd Clrk,

m BASle WMn In CompaUblitly rnott. ut. EI.end chtt 10 KCH. SYSTEM Function.

0 O[] (0 [[J [] (O [] [] [][]O(D [=. 1 ~ ~ lin •

[~ 1 @] ~ 0 ~ [] [] ~ 0 ~ rJ (0 [] [[] ~ ~

EJEJ~EJ~D~EJuEJDDD["~wn 1 ~LJ

[;] E][]OEJEJEJEJEJDuDEJ LJ~LJ
~.nd [1 Ejend
cher . ch.r

~--------------------------~

Exiting Keyboard Compatibility Mode
In addition to using the (Extend char) (System) and (Extend char) ~ keys to exit this mode, you can also
use keyboard register 15:

CONTROL KB0t1 5iO

If the system is currently in edit mode, then exiting keyboard compatibility mode will also cancel the
edit mode.

If you were emulating the 98203 keyboard and corresponding softkeys' display behavior (and want
to return to the "normal" behavior), you will need to execute the following statements:

CONTROL CRT t12; 2
LOAD KE Y

The CONTROL statement restores the "key labels display mode" to the default behavior of a
display with the HIL keyboard. The LOAD KEY statement restores the default "typing-aid" softkey
definitions for the HIL keyboard.

Porting to Series 300 391

Configuring Separate Alpha and Graphics Planes
With BASIC 4.0 on bit-mapped color (multi-plane) displays, you have the ability to specify which
planes are to be:

• write-enabled and used to display alpha

• write-enabled and used to display graphics

This feature allows you to simulate separate alpha and graphics of Series 200 displays. For instance,
you will be able to:

• Turn alpha and graphics on and off independently.

• Dump them separately.

• Scroll alpha without scrolling graphics.

An Example
Assuming that you have a four-plane display, you could enable plane 4 for alpha and planes 1
through 3 for graphics. The following program performs this as well as other operations, as de­
scribed in the program's comments:

100 PLOTTER IS CRT, II I NTERNAL II i COLOR
110 FOR 1=8 TO lS
120 SET PEN I I NTENS ITY 0,1 ,0
130 NEn I
lao CONTROL CRT,SiO
lS0 OUTPUT KBDiCHR$(2SS)&IK"i
160 CONTROL CRTt18i8
170 CONTRDL CRT,Si8
180 INTEGER GrId 0)
190 Grll (0) =7
200 GESCAPE CRT,7,Gm(*)
210 I PLOTTER IS CRT,"INTERNAL"
220 END

MAP Select Series 300 .raphics.

Set alpha pen colors (.reen).

Set alpha pen to black (temp.)
Clear alpha screen.
Select plane a for alpha.
Set alpha pen.
Declare array for GESCAPE.
Set bits 2t1,0, 1,Ihich select

Haphics planes 3,2,1.
Return to non-color-map

r!lode (optional).

This program provides eight graphics pen colors (either the default or previously defined colors)
and a single alpha pen color (green).

For more information concerning graphics displays, see the the "Multi-Plane Bit-Mapped Displays"
section of the BASIC Graphics Techniques manual. For more information on alpha displays, see
the "Display Interfaces" chapter of the BASIC Interfacing Techniques manual.

Porting to Series 300 391

Configuring Separate Alpha and Graphics Planes
With BASIC 4.0 on bit-mapped color (multi-plane) displays, you have the ability to specify which
planes are to be:

• write-enabled and used to display alpha

• write-enabled and used to display graphics

This feature allows you to simulate separate alpha and graphics of Series 200 displays. For instance,
you will be able to:

• Turn alpha and graphics on and off independently.

• Dump them separately.

• Scroll alpha without scrolling graphics.

An Example
Assuming that you have a four-plane display, you could enable plane 4 for alpha and planes 1
through 3 for graphics. The following program performs this as well as other operations, as de­
scribed in the program's comments:

100 PLOTTER IS CRT, II I NTERNAL II i COLOR
110 FOR 1=8 TO lS
120 SET PEN I I NTENS ITY 0,1 ,0
130 NEn I
lao CONTROL CRT,SiO
lS0 OUTPUT KBDiCHR$(2SS)&IK"i
160 CONTROL CRTt18i8
170 CONTRDL CRT,Si8
180 INTEGER GrId 0)
190 Grll (0) =7
200 GESCAPE CRT,7,Gm(*)
210 I PLOTTER IS CRT,"INTERNAL"
220 END

MAP Select Series 300 .raphics.

Set alpha pen colors (.reen).

Set alpha pen to black (temp.)
Clear alpha screen.
Select plane a for alpha.
Set alpha pen.
Declare array for GESCAPE.
Set bits 2t1,0, 1,Ihich select

Haphics planes 3,2,1.
Return to non-color-map

r!lode (optional).

This program provides eight graphics pen colors (either the default or previously defined colors)
and a single alpha pen color (green).

For more information concerning graphics displays, see the the "Multi-Plane Bit-Mapped Displays"
section of the BASIC Graphics Techniques manual. For more information on alpha displays, see
the "Display Interfaces" chapter of the BASIC Interfacing Techniques manual.

392 Porting to Series 300

Using the Display Compatibility Interface
This method involves installing an HP 98546 Display Compatibility Interface, which consists of
essentially the separate graphics and alpha boards of the Series 200 Model 217 computer. You can
then direct the system to use the compatibility display, enabling you to run existing Series 200
programs, which depend on this display's characteristics, on your Series 300 computer.

This card set remedies the following situations.

• The program depends on having separate alpha and graphics planes (and you do not have a
color display which can emulate this feature, as described in the preceding "Configuring
Separate Alpha and Graphics Planes" section).

• The program directly accesses alpha or graphics hardware (such as through a CSUB, rather
than through a BASIC graphics statement).

• The program depends on blinking alpha display highlights (characters with codes 130, 134,
and 135).

• The program depends on the Model 217's specific graphics resolution (512 x 390 pixels) or
alpha display size (80 x 25 characters) , or upon its specific alignment of graphics pixels and
alpha pixels.

This method is required if any of the above statements is true and you cannot modify a program's
source code (or don't want to) . If you have the program's source code, then you may want to
instead make the necessary modifications to it.

If your program requires separate alpha and graphics and also uses color, you have the option of
using an HP 98627 Color Output interface and an RGB color monitor for displaying graphics,
leaving the alpha display on a separate monochrome monitor.

392 Porting to Series 300

Using the Display Compatibility Interface
This method involves installing an HP 98546 Display Compatibility Interface, which consists of
essentially the separate graphics and alpha boards of the Series 200 Model 217 computer. You can
then direct the system to use the compatibility display, enabling you to run existing Series 200
programs, which depend on this display's characteristics, on your Series 300 computer.

This card set remedies the following situations.

• The program depends on having separate alpha and graphics planes (and you do not have a
color display which can emulate this feature, as described in the preceding "Configuring
Separate Alpha and Graphics Planes" section).

• The program directly accesses alpha or graphics hardware (such as through a CSUB, rather
than through a BASIC graphics statement).

• The program depends on blinking alpha display highlights (characters with codes 130, 134,
and 135).

• The program depends on the Model 217's specific graphics resolution (512 x 390 pixels) or
alpha display size (80 x 25 characters) , or upon its specific alignment of graphics pixels and
alpha pixels.

This method is required if any of the above statements is true and you cannot modify a program's
source code (or don't want to) . If you have the program's source code, then you may want to
instead make the necessary modifications to it.

If your program requires separate alpha and graphics and also uses color, you have the option of
using an HP 98627 Color Output interface and an RGB color monitor for displaying graphics,
leaving the alpha display on a separate monochrome monitor.

(

Porting to Series 300 393

Hardware Description
The card set consists of these two hardware pieces:

The Display Compatibility Interface

• An alpha display card, which is like the existing 98204B display controller card except for a
relay and an additional BNe video connector on the rear panel.

• A graphics display card, which is identical to the Model 217's graphics card.

(

Porting to Series 300 393

Hardware Description
The card set consists of these two hardware pieces:

The Display Compatibility Interface

• An alpha display card, which is like the existing 98204B display controller card except for a
relay and an additional BNe video connector on the rear panel.

• A graphics display card, which is identical to the Model 217's graphics card.

394 Porting to Series 300

The Relay and BNC Video Connectors
The relay on the alpha card is used to switch between using the Series 300 bit-mapped display's
signal and using the compatibility display's signal.

RELAY
(CONTROLLED BY SOFTWARE)

TO MONITOR o:===::.~

SERIES 300 COMPUTER

COMPATIBILI TY
VIDEO CARD SET

A Relay Governs Which Display Signal Is Used

Display Compatibility Interface Capabilities
Capabilities of this card are identical to those of the Model 217. The alpha display is an 80 x 25-
character screen with half-bright, blinking, underline, and inverse-video display enhancements. The
graphics display is 512 x 390 monochrome pixels.

Configurations Possible
Here are the video-interface/monitor configurations possible:

• Shared monitor: The Display Compatibility Interface and the Series 300 bit-mapped display
can share a medium-resolution monitor (monochrome or color) .

• Separate monitors: The Display Compatibility Interface can use a medium-resolution moni­
tor, and the Series 300 High-Resolution Video Board can use a separate high-resolution
monitor (monochrome or color).

• Single monitor: The Display Compatibility Interface can use a medium-resolution monitor
(with no Series 300 bit-mapped display) .

394 Porting to Series 300

The Relay and BNC Video Connectors
The relay on the alpha card is used to switch between using the Series 300 bit-mapped display's
signal and using the compatibility display's signal.

RELAY
(CONTROLLED BY SOFTWARE)

TO MONITOR o:===::.~

SERIES 300 COMPUTER

COMPATIBILI TY
VIDEO CARD SET

A Relay Governs Which Display Signal Is Used

Display Compatibility Interface Capabilities
Capabilities of this card are identical to those of the Model 217. The alpha display is an 80 x 25-
character screen with half-bright, blinking, underline, and inverse-video display enhancements. The
graphics display is 512 x 390 monochrome pixels.

Configurations Possible
Here are the video-interface/monitor configurations possible:

• Shared monitor: The Display Compatibility Interface and the Series 300 bit-mapped display
can share a medium-resolution monitor (monochrome or color) .

• Separate monitors: The Display Compatibility Interface can use a medium-resolution moni­
tor, and the Series 300 High-Resolution Video Board can use a separate high-resolution
monitor (monochrome or color).

• Single monitor: The Display Compatibility Interface can use a medium-resolution monitor
(with no Series 300 bit-mapped display) .

Porting to Series 300 395

Steps in Using this Card Set
Here are the steps you will take with this method:

1. Turn off the computer.

2. Configure and install the Display Compatibility Interface according to the instructions in its
Installation Note. Also connect the monitor(s) as described in that note.

3. Turn on the computer, and boot the BASIC system.

4. Load the CRTA display driver binary, if not already installed.

LO AD BIN "C RTA" (Return)

5. Select the Display Compatibility Interface as the display device.

CDNTROL CRT,Z1 ; 1 (Return)

Note
When using one monitor for two different displays (as in the "shared
monitor" configuration described earlier) , a small amount of time is
required for the monitor to synchronize with the new display whenever
you switch from one display to the other. Do not be disconcerted if the
screen sometimes flickers when this switch is made.

The preceding CONTROL statement also performs the following actions:

• Chooses 1 and sets up the Display Compatibility Interface's alpha display as appropriate:

• Sets all CRT registers to the appropriate default values.

• Clears the Series 300 bit-mapped display screen.

• Displays a cursor.

• Displays key labels (if appropriate) in half-bright mode.

• Displays a status indicator, such as the run light (if appropriate) .

• Chooses2 and sets up the Display Compatibility Interface's graphics display by effectively
initializing this display and executing GI N I T and PL DTTE R I S CRT ," I NTE RNA L".

1 See " How the Default Alpha Display Is Chosen" in the " Display Interfaces" chapter of BASIC InterfaCing Techniques. Items 1 and 2 are
exchanged and a new selection of the "default display device" is made.

2 The " default graphics display" is chosen according to the order listed under PLOTTER IS in the BASIC Language Reference.

Porting to Series 300 395

Steps in Using this Card Set
Here are the steps you will take with this method:

1. Turn off the computer.

2. Configure and install the Display Compatibility Interface according to the instructions in its
Installation Note. Also connect the monitor(s) as described in that note.

3. Turn on the computer, and boot the BASIC system.

4. Load the CRTA display driver binary, if not already installed.

LO AD BIN "C RTA" (Return)

5. Select the Display Compatibility Interface as the display device.

CDNTROL CRT,Z1 ; 1 (Return)

Note
When using one monitor for two different displays (as in the "shared
monitor" configuration described earlier) , a small amount of time is
required for the monitor to synchronize with the new display whenever
you switch from one display to the other. Do not be disconcerted if the
screen sometimes flickers when this switch is made.

The preceding CONTROL statement also performs the following actions:

• Chooses 1 and sets up the Display Compatibility Interface's alpha display as appropriate:

• Sets all CRT registers to the appropriate default values.

• Clears the Series 300 bit-mapped display screen.

• Displays a cursor.

• Displays key labels (if appropriate) in half-bright mode.

• Displays a status indicator, such as the run light (if appropriate) .

• Chooses2 and sets up the Display Compatibility Interface's graphics display by effectively
initializing this display and executing GI N I T and PL DTTE R I S CRT ," I NTE RNA L".

1 See " How the Default Alpha Display Is Chosen" in the " Display Interfaces" chapter of BASIC InterfaCing Techniques. Items 1 and 2 are
exchanged and a new selection of the "default display device" is made.

2 The " default graphics display" is chosen according to the order listed under PLOTTER IS in the BASIC Language Reference.

396 Porting to Series 300

Switching Back to the Series 300 Display
The CONTROL statement is also used to select the Series 300 display:

CONTRO L CRT t21 j 0 (Return)

The preceding CONTROL statement performs the following actions:

• Chooses1 and sets up the Series 300's alpha display as appropriate:

• Sets all CRT registers to the appropriate default values.

• Clears the Display Compatibility Interface's alpha display.

• Displays a cursor.

• Displays key labels (if appropriate) .

• Displays a status indicator, such as the run light (if appropriate) .

• Chooses2 and sets up the Series 300 graphics display by effectively initializing the bit-mapped
display and executing GIN IT and PLOTTER I S CRT t " INTERNAL" .

Automatic Display Selection at System Boot
When the BASIC system is booted with both the Display Compatibility Interface and the Series 300
bit-mapped display installed, it automatically selects one of them in the following manner:

• If only the CRTA driver is installed, the system selects the Display Compatibility Interface.

• If only the CRTB driver is installed (or if both CRTA and CRTB are present) , the system selects
the Series 300 bit-mapped display.

If only the Display Compatibility Interface is installed, the system selects it as the display (CRTA
must be currently installed, of course) . For a more detailed description of how the BASIC system
selects the "default display device," see the "Display Interfaces" chapter of BASIC Interfacing
Techniques.

Removing Display Drivers
You can use SCRATCH BIN to remove all but the currently required display driver. In other words,
if you are in compatibility display mode, then CRTB is removed. If you are in "native" Series 300
display mode (Le., not in compatibility mode), then CRTA is removed.

1 See " How the Default Alpha Display Is Chosen" in the " Display Interfaces" chapter of BASIC Interfacing Techniques. A new selection of the
"default display device" is made. (Items 1 and 2 are not exchanged as in the switch to the Display Compatibility Interface.)

2 The " default graphics display" is chosen according to the order listed under PLOTTER IS in the BASIC Language Reference.

396 Porting to Series 300

Switching Back to the Series 300 Display
The CONTROL statement is also used to select the Series 300 display:

CONTRO L CRT t21 j 0 (Return)

The preceding CONTROL statement performs the following actions:

• Chooses1 and sets up the Series 300's alpha display as appropriate:

• Sets all CRT registers to the appropriate default values.

• Clears the Display Compatibility Interface's alpha display.

• Displays a cursor.

• Displays key labels (if appropriate) .

• Displays a status indicator, such as the run light (if appropriate) .

• Chooses2 and sets up the Series 300 graphics display by effectively initializing the bit-mapped
display and executing GIN IT and PLOTTER I S CRT t " INTERNAL" .

Automatic Display Selection at System Boot
When the BASIC system is booted with both the Display Compatibility Interface and the Series 300
bit-mapped display installed, it automatically selects one of them in the following manner:

• If only the CRTA driver is installed, the system selects the Display Compatibility Interface.

• If only the CRTB driver is installed (or if both CRTA and CRTB are present) , the system selects
the Series 300 bit-mapped display.

If only the Display Compatibility Interface is installed, the system selects it as the display (CRTA
must be currently installed, of course) . For a more detailed description of how the BASIC system
selects the "default display device," see the "Display Interfaces" chapter of BASIC Interfacing
Techniques.

Removing Display Drivers
You can use SCRATCH BIN to remove all but the currently required display driver. In other words,
if you are in compatibility display mode, then CRTB is removed. If you are in "native" Series 300
display mode (Le., not in compatibility mode), then CRTA is removed.

1 See " How the Default Alpha Display Is Chosen" in the " Display Interfaces" chapter of BASIC Interfacing Techniques. A new selection of the
"default display device" is made. (Items 1 and 2 are not exchanged as in the switch to the Display Compatibility Interface.)

2 The " default graphics display" is chosen according to the order listed under PLOTTER IS in the BASIC Language Reference.

(

(

Porting to Series 300 397

If Your Screen Is Blank
Your screen can go blank (and characters you type in from the keyboard are not "echoed" on the
screen) under the following conditions:

• You have both a Display Compatibility Interface and a Series 300 bit-mapped display installed,
and they are sharing the same monitor.

• You are not in compatibility mode (Le., alpha is on the bit-mapped display).

• You are running a BASIC program that contains the following statement:

PLOTTER IS 3,"INTERNAL"

The execution of this statement causes your screen to go blank. You have just lost your alpha and
graphics.

What Happened?
The PLOTTER IS 3, "INTERNAL" statement changed the current plotter device from 6 (bit­
mapped display) to 3 (compatibility display). The system is talking to the compatibility cards, and
the software-controlled relay that switches from the bit-mapped to the compatibility display has
been (implicitly) directed to switch to the compatibility display's video signal. However, the remain­
der of the operations performed by the CONTROL CRT,21;1 statement have not been performed.
Therefore, you will not be able to see your alpha or graphics.

What To Do Next
Temporary solution: You can do one of two things:

• To return to the bit-mapped display, first press the (Reset) key, and then execute a SCRATCH A

or CONTROL CRT 121 iO statement.

• To select the Display Compatibility Interface, execute CONTROL CRT 121 ; 1.

Note that you will not see any characters echoed on the display until you have executed one of the
above statements.

Long-term so lution: Change all references to select code "3" to " CRT" (e.g.
PLOTTER I S CRT I" INTERNAL").

Another Related Note
If you want to determine how well your program runs on a Series 300 bit-mapped display and this
program executes a PLOTTER IS 3, "INTERNAL" statement, and you have Display Compatibility
Interface installed, then you will not be able to adequately test the functionality of your software on
a bit-mapped display unless you first remove the compatibility hardware (or change the PLOTTER
IS 3, "INTERNAL" statements to PLOTTER IS CRT,"INTERNAL").

(

(

Porting to Series 300 397

If Your Screen Is Blank
Your screen can go blank (and characters you type in from the keyboard are not "echoed" on the
screen) under the following conditions:

• You have both a Display Compatibility Interface and a Series 300 bit-mapped display installed,
and they are sharing the same monitor.

• You are not in compatibility mode (Le., alpha is on the bit-mapped display).

• You are running a BASIC program that contains the following statement:

PLOTTER IS 3,"INTERNAL"

The execution of this statement causes your screen to go blank. You have just lost your alpha and
graphics.

What Happened?
The PLOTTER IS 3, "INTERNAL" statement changed the current plotter device from 6 (bit­
mapped display) to 3 (compatibility display). The system is talking to the compatibility cards, and
the software-controlled relay that switches from the bit-mapped to the compatibility display has
been (implicitly) directed to switch to the compatibility display's video signal. However, the remain­
der of the operations performed by the CONTROL CRT,21;1 statement have not been performed.
Therefore, you will not be able to see your alpha or graphics.

What To Do Next
Temporary solution: You can do one of two things:

• To return to the bit-mapped display, first press the (Reset) key, and then execute a SCRATCH A

or CONTROL CRT 121 iO statement.

• To select the Display Compatibility Interface, execute CONTROL CRT 121 ; 1.

Note that you will not see any characters echoed on the display until you have executed one of the
above statements.

Long-term so lution: Change all references to select code "3" to " CRT" (e.g.
PLOTTER I S CRT I" INTERNAL").

Another Related Note
If you want to determine how well your program runs on a Series 300 bit-mapped display and this
program executes a PLOTTER IS 3, "INTERNAL" statement, and you have Display Compatibility
Interface installed, then you will not be able to adequately test the functionality of your software on
a bit-mapped display unless you first remove the compatibility hardware (or change the PLOTTER
IS 3, "INTERNAL" statements to PLOTTER IS CRT,"INTERNAL").

398 Porting to Series 300

Modifying the Source Program
This method involves changing or adding to the program's source code to make the program
perform the desired operations on the 4.0 system.

Here are some, but not all, situations for which this method is required:

• The program depends on a CSUB with version 3.01 (or earlier).

• The program depends upon trapping HP 98203 (EXECUTE) or ~ key codes, which cannot
be generated by the HP-HIL (HP 46020) keyboard.

• None of the preceding porting methods worked. (In such case, you should read the subse­
quent "Additional Porting Considerations" section to see if your problem is described therein.)

If any of the above statements is true, then you must modify the program to run on the 4.0 system.
If you do not have access to the source code, then you cannot port it - you will have to obtain a
BASIC 4.0 version of the program, if it is available.

Incompatible CSUBs
An example of this situation is a program that depends upon using a "pre-4.0" CSUB.

To remedy this situation, you will need to obtain a CSUB that is compatible with the BASIC 4.0
system. (This may require modifying the CSUB source program; it will definitely require re­
generating a new CSUB with the the CSUB 4.0 Utility.)

HP 98203 Specific Key Codes
The 98203 keyboards can generate (,.....E-X-EC-U-TE~) and ~ key codes which cannot be generated by
a 46020 keyboard. If your program depends on trapping these key codes, then you will need to
modify it to use 46020 keys instead. For instance, you could trap the HIL (Select) key rather than the
98203 (EXECUTE) key. See the "Keyboard Interfaces" chapter of the BASIC Interfacing Techniques
manual for examples of trapping keystrokes with a BASIC program.

Additional Porting Considerations
This section describes the following topics, which may also require consideration in porting prog­
rams from "pre-4.0" BASIC programs to the BASIC 4.0 system.

• New SYSTEM$("SYSTEM 10") values for Series 300 computers

• Alpha color changes on Series 300 color displays

• Alpha screen height and graphics scrolling

• GLOAD/GSTORE compatibility

• PLOTTER IS statement

• Hidden color changes

• ON KNOB "interval" parameter for HIL knobs

New SYSTEM$("SYSTEM ID") Values
On Series 300 computers, SYSTEM$("SYSTEM 10") will return two different values:

• 5300: 1 0 for computers with an MC68010 processor

.5300: 20 for computers with an MC68020 processor

398 Porting to Series 300

Modifying the Source Program
This method involves changing or adding to the program's source code to make the program
perform the desired operations on the 4.0 system.

Here are some, but not all, situations for which this method is required:

• The program depends on a CSUB with version 3.01 (or earlier).

• The program depends upon trapping HP 98203 (EXECUTE) or ~ key codes, which cannot
be generated by the HP-HIL (HP 46020) keyboard.

• None of the preceding porting methods worked. (In such case, you should read the subse­
quent "Additional Porting Considerations" section to see if your problem is described therein.)

If any of the above statements is true, then you must modify the program to run on the 4.0 system.
If you do not have access to the source code, then you cannot port it - you will have to obtain a
BASIC 4.0 version of the program, if it is available.

Incompatible CSUBs
An example of this situation is a program that depends upon using a "pre-4.0" CSUB.

To remedy this situation, you will need to obtain a CSUB that is compatible with the BASIC 4.0
system. (This may require modifying the CSUB source program; it will definitely require re­
generating a new CSUB with the the CSUB 4.0 Utility.)

HP 98203 Specific Key Codes
The 98203 keyboards can generate (,.....E-X-EC-U-TE~) and ~ key codes which cannot be generated by
a 46020 keyboard. If your program depends on trapping these key codes, then you will need to
modify it to use 46020 keys instead. For instance, you could trap the HIL (Select) key rather than the
98203 (EXECUTE) key. See the "Keyboard Interfaces" chapter of the BASIC Interfacing Techniques
manual for examples of trapping keystrokes with a BASIC program.

Additional Porting Considerations
This section describes the following topics, which may also require consideration in porting prog­
rams from "pre-4.0" BASIC programs to the BASIC 4.0 system.

• New SYSTEM$("SYSTEM 10") values for Series 300 computers

• Alpha color changes on Series 300 color displays

• Alpha screen height and graphics scrolling

• GLOAD/GSTORE compatibility

• PLOTTER IS statement

• Hidden color changes

• ON KNOB "interval" parameter for HIL knobs

New SYSTEM$("SYSTEM ID") Values
On Series 300 computers, SYSTEM$("SYSTEM 10") will return two different values:

• 5300: 1 0 for computers with an MC68010 processor

.5300: 20 for computers with an MC68020 processor

Porting to Series 300 399

Alpha Color Changes
With multi-plane bit-mapped displays, printing one of the alpha color highlight characters,
CHR$(136} through CHR$(143} , will provide the same colors as on the Model 236C as long as the
color map contains default values. A user-defined color map which changes the values of any pen
in the range 0 to 7 will consequently change the effect of the corresponding color highlight
character. See "Display-Enhancement Characters" in the "Useful Tables" appendix of the BASIC
Language Reference for more information.

Alpha Screen Height and Graphics Scrolling
With BASIC 3.0 and later versions, you can limit the height of the alpha portion of the screen. For
instance, to limit the alpha portion of the screen to the bottom 11 lines, execute this statement:

CONTROL CRTI13 ; ll

The screen height parameter of 11 specifies the number of lines to be used for the alpha screen (4
lines of "output area," and 7 lines used by the system). The value of this parameter may not be less
than 9. A corresponding STATUS statement will return the current screen height.

This capability allows you to separate alpha and graphics on a single-plane bit-mapped display
screen. You would also have to limit graphics to the upper portion of the screen (which is not used
for alpha).

GLOAD/GSTORE Compatibility
Raster images loaded by GLOAD should have been stored (GSTORE) from the same type of
display. Otherwise, if the image was stored on a machine with a different graphics resolution or
number of bits per pixel, then the resultant image will be scrambled.

If your program first creates a graphics image and then GSTOREs and GLOADs it, then the image
may be truncated (due to the difference in required array sizes) . With BASIC 4.0, you can use the
GESCAPE statement to determine the required array size.

For example, the Model 236C requires an integer array size of 49 920 elements to store informa­
tion from the graphics planes in the frame buffer [(4 bits/pixel) x (512 x 390 pixels}/(16 bits/inte­
ger}), while a Series 300 medium-resolution color display requires 102 400 elements
(4 x (1024 x 400}/16]). The value of 1024 is used because Series 300 medium-resolution bit­
mapped displays have non-square-pixels.

See GLOAD and GSTORE in the BASIC Language Reference for details concerning this topic.
With BASIC 4.0, there are new utility CSUBs (Bstore and Bload) that allow you to store and load
specified portions of the graphics raster. You may alternatively want to use these utilities in favor of
using GSTORE and GLOAD.

PLOTTER IS Changes
There are several values that you can use when specifying the graphics display; however, the
follOWing examples show the best way:

PLOTTER IS CRTI"INTERNAL"
PLOTTER IS 1 I" INTERNAL "

CRT is a built-in function that always returns 1. The value of 1 signifies the "default display" (to the
PLOTTER IS statement).

Porting to Series 300 399

Alpha Color Changes
With multi-plane bit-mapped displays, printing one of the alpha color highlight characters,
CHR$(136} through CHR$(143} , will provide the same colors as on the Model 236C as long as the
color map contains default values. A user-defined color map which changes the values of any pen
in the range 0 to 7 will consequently change the effect of the corresponding color highlight
character. See "Display-Enhancement Characters" in the "Useful Tables" appendix of the BASIC
Language Reference for more information.

Alpha Screen Height and Graphics Scrolling
With BASIC 3.0 and later versions, you can limit the height of the alpha portion of the screen. For
instance, to limit the alpha portion of the screen to the bottom 11 lines, execute this statement:

CONTROL CRTI13 ; ll

The screen height parameter of 11 specifies the number of lines to be used for the alpha screen (4
lines of "output area," and 7 lines used by the system). The value of this parameter may not be less
than 9. A corresponding STATUS statement will return the current screen height.

This capability allows you to separate alpha and graphics on a single-plane bit-mapped display
screen. You would also have to limit graphics to the upper portion of the screen (which is not used
for alpha).

GLOAD/GSTORE Compatibility
Raster images loaded by GLOAD should have been stored (GSTORE) from the same type of
display. Otherwise, if the image was stored on a machine with a different graphics resolution or
number of bits per pixel, then the resultant image will be scrambled.

If your program first creates a graphics image and then GSTOREs and GLOADs it, then the image
may be truncated (due to the difference in required array sizes) . With BASIC 4.0, you can use the
GESCAPE statement to determine the required array size.

For example, the Model 236C requires an integer array size of 49 920 elements to store informa­
tion from the graphics planes in the frame buffer [(4 bits/pixel) x (512 x 390 pixels}/(16 bits/inte­
ger}), while a Series 300 medium-resolution color display requires 102 400 elements
(4 x (1024 x 400}/16]). The value of 1024 is used because Series 300 medium-resolution bit­
mapped displays have non-square-pixels.

See GLOAD and GSTORE in the BASIC Language Reference for details concerning this topic.
With BASIC 4.0, there are new utility CSUBs (Bstore and Bload) that allow you to store and load
specified portions of the graphics raster. You may alternatively want to use these utilities in favor of
using GSTORE and GLOAD.

PLOTTER IS Changes
There are several values that you can use when specifying the graphics display; however, the
follOWing examples show the best way:

PLOTTER IS CRTI"INTERNAL"
PLOTTER IS 1 I" INTERNAL "

CRT is a built-in function that always returns 1. The value of 1 signifies the "default display" (to the
PLOTTER IS statement).

400 Porting to Series 300

The following statement, with select code of 3, specifies a non-bit-mapped display, if there is one;
otherwise it is the same as PLOTTER IS 1 ," INTERNAL" .

PLOTTER IS 3, " INTERNAL"

The following statement always specifies a bit-mapped display. If one is not currently installed, then
an error results.

PLOTTER IS G," INTERNAL"

Refer to the BASIC Language Reference for further details on the PLOTTER IS statement.

Hidden Color Changes
On a Model 236C display, the following sequence of commands:

GRAPHICS OFF
SET PEN 0 INTENSIT Y 1, 0 Ii
GRAPHICS ON

produces the following results.

• The GRAPHICS OFF statement will turn the graphics display off.

• SET PEN 0 is executed while the graphics screen is still blank and when the GRAPHICS ON
statement is executed, the previous display contents with modified color map entry 0 is
displayed.

On the Series 300 and 98700 displays, the above command sequence produces the following
results:

• If the alpha and graphics planes overlap (Le. the default configuration) , then GRAPHICS OFF
and GRAPHICS ON are no-op's, so the display will change immediately.

• If the alpha and graphics planes are totally independent (such as in "Configuring Separate
Alpha and Graphics Planes" in the "Using a Configuration Program" section) , then:

• GRAPHICS OFF turns the graphics planes off, leaving the alpha plane on.

• SET PEN n INTENSITY a,b,c will not be seen on the screen until the GRAPHICS ON
statement is executed, unless n is equal to 0 or specifies an alpha pen.

• GRAPHICS ON turns on the graphics planes again.

Note
This occurs because alpha and graphics share the same color map on
Series 300 and 98700 displays, and PEN 0 is the default alpha back­
ground color.

HIL Knob Interval Parameter
The ON KNOB "interval" parameter for the optional HIL knob (46083A) has been implemented in
BASIC 4.0 (it was not implemented with HIL knobs in BASIC 3.0 or 3.01). This parameter works
same way on an HIL knob as on the non-HIL knob (built into Series 200 98203 keyboards). See
the "Using the Knob" section of the "Keyboard Interfaces" chapter of BASIC Interfacing Techni­
ques manual.

400 Porting to Series 300

The following statement, with select code of 3, specifies a non-bit-mapped display, if there is one;
otherwise it is the same as PLOTTER IS 1 ," INTERNAL" .

PLOTTER IS 3, " INTERNAL"

The following statement always specifies a bit-mapped display. If one is not currently installed, then
an error results.

PLOTTER IS G," INTERNAL"

Refer to the BASIC Language Reference for further details on the PLOTTER IS statement.

Hidden Color Changes
On a Model 236C display, the following sequence of commands:

GRAPHICS OFF
SET PEN 0 INTENSIT Y 1, 0 Ii
GRAPHICS ON

produces the following results.

• The GRAPHICS OFF statement will turn the graphics display off.

• SET PEN 0 is executed while the graphics screen is still blank and when the GRAPHICS ON
statement is executed, the previous display contents with modified color map entry 0 is
displayed.

On the Series 300 and 98700 displays, the above command sequence produces the following
results:

• If the alpha and graphics planes overlap (Le. the default configuration) , then GRAPHICS OFF
and GRAPHICS ON are no-op's, so the display will change immediately.

• If the alpha and graphics planes are totally independent (such as in "Configuring Separate
Alpha and Graphics Planes" in the "Using a Configuration Program" section) , then:

• GRAPHICS OFF turns the graphics planes off, leaving the alpha plane on.

• SET PEN n INTENSITY a,b,c will not be seen on the screen until the GRAPHICS ON
statement is executed, unless n is equal to 0 or specifies an alpha pen.

• GRAPHICS ON turns on the graphics planes again.

Note
This occurs because alpha and graphics share the same color map on
Series 300 and 98700 displays, and PEN 0 is the default alpha back­
ground color.

HIL Knob Interval Parameter
The ON KNOB "interval" parameter for the optional HIL knob (46083A) has been implemented in
BASIC 4.0 (it was not implemented with HIL knobs in BASIC 3.0 or 3.01). This parameter works
same way on an HIL knob as on the non-HIL knob (built into Series 200 98203 keyboards). See
the "Using the Knob" section of the "Keyboard Interfaces" chapter of BASIC Interfacing Techni­
ques manual.

Error Messages

1 Missing option or configuration error. If a statement requires an option which is not loaded, the
option number or option name is given along with error 1. These numbers are listed in the Useful
Tables section. Error 1 without an option number indicates other configuration errors.

2 Memory overflow. If you get this error while loading a file, the program is too large for the
computer's memory. If the program loads, but you get this error when you press RUN, then the
overflow was caused by the variable declarations. Either way, you need to modify the program or
add more read/write memory.

3 Line not found in current context. Could be a GOTO or GOSUB that references a non-existent
(or deleted) line, or an EDIT command that refers to a non-existent line label.

4 Improper RETURN. Executing a RETURN statement without previously executing an appropriate
GOSUB or function call. Also, a RETURN statement in a user-defined function with no value
specified.

5 Improper context terminator. You forgot to put an END statement in the program. Also applies to
SUBEND and FNEND.

6 Improper FOR. .. NEXT matching. Executing a NEXT statement without previously executing the
matching FOR statement. Indicates improper nesting or overlapping of the loops.

7 Undefined function or subprogram. Attempt to call a SUB or user-defined function that is not in
memory. Look out for program lines that assumed an optional CALL.

8 Improper parameter matching. A type mismatch between a pass parameter and a formal para­
meter of a subprogram.

9 Improper number of parameters. Passing either too few or too many parameters to a subprogram.
Applies only to non-optional parameters.

10 String type required. Attempting to return a numeric from a user-defined string function.

11 Numeric type required. Attempting to return a string from a user-defined numeric function .

12 Attempt to redeclare variable. Including the same variable name twice in declarative statements
such as DIM or INTEGER.

13 Array dimensions not speCified. Using the (*) symbol after a variable name when that variable
has never been declared as an array.

14 OPTION BASE not allowed here. The OPTION BASE statement must appear before any dec­
larative statements such as DIM or INTEGER. Only one OPTION BASE statement is allowed in
one context.

15 Invalid bounds. Attempt to declare an array with more than 32 767 elements or with upper bound
less than lower bound.

16 Improper or inconsistent dimensions. Using the wrong number of subSCripts when referencing an
array element.

17 SubSCript out of range. A subSCript in an array reference is outside the current bounds of the array.

18 String overflow or substring error. String overflow is an attempt to put too many characters into a
string (exceeding dimensioned length) . This can happen in an assignment, an ENTER an INPUT,
or a READ. A substring error is an attempted violation of the rules for substrings. Watch out for
null strings where you weren't expecting them.

401

Error Messages

1 Missing option or configuration error. If a statement requires an option which is not loaded, the
option number or option name is given along with error 1. These numbers are listed in the Useful
Tables section. Error 1 without an option number indicates other configuration errors.

2 Memory overflow. If you get this error while loading a file, the program is too large for the
computer's memory. If the program loads, but you get this error when you press RUN, then the
overflow was caused by the variable declarations. Either way, you need to modify the program or
add more read/write memory.

3 Line not found in current context. Could be a GOTO or GOSUB that references a non-existent
(or deleted) line, or an EDIT command that refers to a non-existent line label.

4 Improper RETURN. Executing a RETURN statement without previously executing an appropriate
GOSUB or function call. Also, a RETURN statement in a user-defined function with no value
specified.

5 Improper context terminator. You forgot to put an END statement in the program. Also applies to
SUBEND and FNEND.

6 Improper FOR. .. NEXT matching. Executing a NEXT statement without previously executing the
matching FOR statement. Indicates improper nesting or overlapping of the loops.

7 Undefined function or subprogram. Attempt to call a SUB or user-defined function that is not in
memory. Look out for program lines that assumed an optional CALL.

8 Improper parameter matching. A type mismatch between a pass parameter and a formal para­
meter of a subprogram.

9 Improper number of parameters. Passing either too few or too many parameters to a subprogram.
Applies only to non-optional parameters.

10 String type required. Attempting to return a numeric from a user-defined string function.

11 Numeric type required. Attempting to return a string from a user-defined numeric function .

12 Attempt to redeclare variable. Including the same variable name twice in declarative statements
such as DIM or INTEGER.

13 Array dimensions not speCified. Using the (*) symbol after a variable name when that variable
has never been declared as an array.

14 OPTION BASE not allowed here. The OPTION BASE statement must appear before any dec­
larative statements such as DIM or INTEGER. Only one OPTION BASE statement is allowed in
one context.

15 Invalid bounds. Attempt to declare an array with more than 32 767 elements or with upper bound
less than lower bound.

16 Improper or inconsistent dimensions. Using the wrong number of subSCripts when referencing an
array element.

17 SubSCript out of range. A subSCript in an array reference is outside the current bounds of the array.

18 String overflow or substring error. String overflow is an attempt to put too many characters into a
string (exceeding dimensioned length) . This can happen in an assignment, an ENTER an INPUT,
or a READ. A substring error is an attempted violation of the rules for substrings. Watch out for
null strings where you weren't expecting them.

401

402 Error Messages

19 Improper value or out of range. A value is too large or too small. Applies to items found in a
variety of statements. Often occurs when the number builder overflows (or underflows) during an
1/0 operation.

20 INTEGER overflow. An assignment or result exceeds the range allowed for INTEGER variables.
Must be -32768 thru 32767.

22 REAL overflow. An assignment or result exceeds the range allowed for REAL variables.

24 Trig argument too large for accurate evaluation. Out-of-range argument for a function such as
TAN or LDIR.

25 Magnitude of ASN or ACS argument is greater than 1. Arguments to these functions must be in
the range - 1 thru + 1.

26 Zero to non-positive power. Exponentiation error.

27 Negative base to non-integer power. Exponentiation error.

28 LOG or LGT of a non-positive number.

29 Illegal floating point number. Does not occur as a result of any calculations, but is possible when a
FORMAT OFF 110 operation fills a REAL variable with something other than a REAL number.

30 SQR of a negative number.

31 Division (or MOD) by zero.

32 String does not represent a valid number. Attempt to use "non-numeric" characters as an
argument for VAL, data for a READ, or in response to an INPUT statement requesting a number.

33 Improper argument for NUM or RPT$. Null string not allowed.

34 Referenced line not an IMAGE statement. A USING clause contains a line identifier, and the line
referred to is not an IMAGE statement.

35 Improper image. See IMAGE or the appropriate keyword in the BASIC Language Reference.

36 Out of data in READ. A READ statement is expecting more data than is available in the referenced
DATA statements. Check for deleted lines, proper OPTION BASE, proper use of RESTORE, or
typing errors.

38 TAB or TABXY not allowed here. The tab functions are not allowed in statements that contain a
USING clause. TABXY is allowed only in a PRINT statement.

40 Improper REN, COPYLINES, or MOVELINES command. Line numbers must be whole numbers
from 1 to 32 766. This may also result from a COPYLINES or MOVELINES statement whose
destination line numbers lie within the source range.

41 First line number greater than second line number. Parameters out of order in a statement like
SAVE, LIST, or DEL.

43 Matrix must be square. The MAT functions: IDN, INV, and DET require the array to have equal
numbers of rows and columns.

44 Result cannot be an operand. Attempt to use a matrix as both result and argument in a MAT TRN
or matrix multiplication.

46 Attempting a SAVE when there is no program in memory.

47 COM declarations are inconsistent or incorrect. Includes such things as mismatched dimensions,
unspecified dimensions, and blank COM occurring for the first time in a subprogram.

49 Branch destination not found. A statement such as ON ERROR or ON KEY refers to a line that
does not exist. Branch destinations must be in the same context as the ON ... statement.

I '

402 Error Messages

19 Improper value or out of range. A value is too large or too small. Applies to items found in a
variety of statements. Often occurs when the number builder overflows (or underflows) during an
1/0 operation.

20 INTEGER overflow. An assignment or result exceeds the range allowed for INTEGER variables.
Must be -32768 thru 32767.

22 REAL overflow. An assignment or result exceeds the range allowed for REAL variables.

24 Trig argument too large for accurate evaluation. Out-of-range argument for a function such as
TAN or LDIR.

25 Magnitude of ASN or ACS argument is greater than 1. Arguments to these functions must be in
the range - 1 thru + 1.

26 Zero to non-positive power. Exponentiation error.

27 Negative base to non-integer power. Exponentiation error.

28 LOG or LGT of a non-positive number.

29 Illegal floating point number. Does not occur as a result of any calculations, but is possible when a
FORMAT OFF 110 operation fills a REAL variable with something other than a REAL number.

30 SQR of a negative number.

31 Division (or MOD) by zero.

32 String does not represent a valid number. Attempt to use "non-numeric" characters as an
argument for VAL, data for a READ, or in response to an INPUT statement requesting a number.

33 Improper argument for NUM or RPT$. Null string not allowed.

34 Referenced line not an IMAGE statement. A USING clause contains a line identifier, and the line
referred to is not an IMAGE statement.

35 Improper image. See IMAGE or the appropriate keyword in the BASIC Language Reference.

36 Out of data in READ. A READ statement is expecting more data than is available in the referenced
DATA statements. Check for deleted lines, proper OPTION BASE, proper use of RESTORE, or
typing errors.

38 TAB or TABXY not allowed here. The tab functions are not allowed in statements that contain a
USING clause. TABXY is allowed only in a PRINT statement.

40 Improper REN, COPYLINES, or MOVELINES command. Line numbers must be whole numbers
from 1 to 32 766. This may also result from a COPYLINES or MOVELINES statement whose
destination line numbers lie within the source range.

41 First line number greater than second line number. Parameters out of order in a statement like
SAVE, LIST, or DEL.

43 Matrix must be square. The MAT functions: IDN, INV, and DET require the array to have equal
numbers of rows and columns.

44 Result cannot be an operand. Attempt to use a matrix as both result and argument in a MAT TRN
or matrix multiplication.

46 Attempting a SAVE when there is no program in memory.

47 COM declarations are inconsistent or incorrect. Includes such things as mismatched dimensions,
unspecified dimensions, and blank COM occurring for the first time in a subprogram.

49 Branch destination not found. A statement such as ON ERROR or ON KEY refers to a line that
does not exist. Branch destinations must be in the same context as the ON ... statement.

I '

Error Messages 403

51 File not currently assigned. Attempting an ONIOFF END statement with an unassigned 110 path
name.

52 Improper mass storage unit specifier. The characters used for a msus do not form a valid specifier.
This could be a missing colon, too many parameters, illegal characters, etc.

53 Improper file name. File names are limited to 10 characters. Foreign characters are allowed, but
punctuation is not.

54 Duplicate file name. The specified file name already exists in directory. It is illegal to have two files
with the same name on one volume.

55 Directory overflow. Although there may be room on the media for the file, there is no room in the
directory for another file name. Discs initialized by BASIC have room for over 100 entries in the
directory, but other systems may make a directory of a different size.

56 File name is undefined. The specified file name does not exist in the directory. Check the contents
of the disc with a CAT command.

58 Improper file type. Many mass storage operations are limited to certain file types. For example,
LOAD is limited to PROG files and ASSIGN is limited to ASCII and BDAT files.

59 End of file or buffer found. For files: No data left when reading a file , or no space left when writing
a file. For buffers: No data left for an ENTER, or no buffer space left for an OUTPUT. Also,
WORD-mode TRANSFER terminated with odd number of bytes.

60 End of record found in random mode. Attempt to ENTER a field that is larger than a defined
record.

62 Protect code violation. Failure to specify the protect code of a protected file, or attempting to
protect a file of the wrong type.

64 Mass storage media overflow. There is not enough contiguous free space for the specified file size.
The disc is full.

65 Incorrect data type. The array used in a graphics operation, such as GLOAD, is the wrong type
(INTEGER or REAL) .

66 INITIALIZE failed. Too many bad tracks found. The disc is defective, damaged, or dirty.

67 Illegal mass storage parameter. A mass storage statement contains a parameter that is out of
range, such as a negative record number or an out of range number of records.

68 Syntax error occurred during GET. One or more lines in the file could not be stored as valid
program lines. The offending lines are usually listed on the system printer. Also occurs if the first
line in the file does not start with a valid line number.

72 Disc controller not found or bad controller address. The msus contains an improper device
selector, or no external disc is connected.

73 Improper device type in mass storage unit specifier. The msus has the correct general form, but
the characters used for a device type are not recognized.

76 Incorrect unit number in mass storage unit specifier. The msus contains a unit number that does
not exist on the specified device.

77 Attempt to purge an open file. The specified file is assigned to an 1/0 path name which has not
been closed.

78 Invalid mass storage volume label. Usually indicates that the media has not been initialized on a
compatible system. Could also be a bad disc.

79 File open on target device. Attempt to copy an entire volume with a file open on the destination
disc.

Error Messages 403

51 File not currently assigned. Attempting an ONIOFF END statement with an unassigned 110 path
name.

52 Improper mass storage unit specifier. The characters used for a msus do not form a valid specifier.
This could be a missing colon, too many parameters, illegal characters, etc.

53 Improper file name. File names are limited to 10 characters. Foreign characters are allowed, but
punctuation is not.

54 Duplicate file name. The specified file name already exists in directory. It is illegal to have two files
with the same name on one volume.

55 Directory overflow. Although there may be room on the media for the file, there is no room in the
directory for another file name. Discs initialized by BASIC have room for over 100 entries in the
directory, but other systems may make a directory of a different size.

56 File name is undefined. The specified file name does not exist in the directory. Check the contents
of the disc with a CAT command.

58 Improper file type. Many mass storage operations are limited to certain file types. For example,
LOAD is limited to PROG files and ASSIGN is limited to ASCII and BDAT files.

59 End of file or buffer found. For files: No data left when reading a file , or no space left when writing
a file. For buffers: No data left for an ENTER, or no buffer space left for an OUTPUT. Also,
WORD-mode TRANSFER terminated with odd number of bytes.

60 End of record found in random mode. Attempt to ENTER a field that is larger than a defined
record.

62 Protect code violation. Failure to specify the protect code of a protected file, or attempting to
protect a file of the wrong type.

64 Mass storage media overflow. There is not enough contiguous free space for the specified file size.
The disc is full.

65 Incorrect data type. The array used in a graphics operation, such as GLOAD, is the wrong type
(INTEGER or REAL) .

66 INITIALIZE failed. Too many bad tracks found. The disc is defective, damaged, or dirty.

67 Illegal mass storage parameter. A mass storage statement contains a parameter that is out of
range, such as a negative record number or an out of range number of records.

68 Syntax error occurred during GET. One or more lines in the file could not be stored as valid
program lines. The offending lines are usually listed on the system printer. Also occurs if the first
line in the file does not start with a valid line number.

72 Disc controller not found or bad controller address. The msus contains an improper device
selector, or no external disc is connected.

73 Improper device type in mass storage unit specifier. The msus has the correct general form, but
the characters used for a device type are not recognized.

76 Incorrect unit number in mass storage unit specifier. The msus contains a unit number that does
not exist on the specified device.

77 Attempt to purge an open file. The specified file is assigned to an 1/0 path name which has not
been closed.

78 Invalid mass storage volume label. Usually indicates that the media has not been initialized on a
compatible system. Could also be a bad disc.

79 File open on target device. Attempt to copy an entire volume with a file open on the destination
disc.

404 Error Messages

80 Disc changed or not in drive. Either there is no disc in the drive or the drive door was opened
while a file was assigned.

81 Mass storage hardware failure. Also occurs when the disc is pinched and not turning. Try reinsert­
ing the disc.

82 Mass storage unit not present. Hardware problem or an attempt to access a left-hand drive on the
Model 226.

83 Write protected. Attempting to write to a write_protected disc. This includes many operations such
as PURGE, INITIALIZE, CREATE, SAVE, OUTPUT, etc.

84 Record not found. Usually indicates that the media has not been initialized.

85 Media not initialized. (Usually not produced by the internal drive.)

87 Record address error. Usually indicates a problem with the media.

88 Read data error. The media is physically or magnetically damaged, and the data cannot be read.

89 Checkread error. An error was detected when reading the data just written. The media is probably
damaged.

90 Mass storage system error. Usually a problem with the hardware or the media.

93 Incorrect volume code in MSUS. The MSUS contains a volume number that does not exist on the
specified device.

100 Numeric IMAGE for string item.

101 String IMAGE for numeric item.

102 Numeric field specifier is too large. Specifying more than 256 characters in a numeric field.

103 Item has no corresponding IMAGE. The image specifier has no fields that are used for item
processing. Specifiers such as II)(/ are not used to process the data for the item list. Item­
processing specifiers include things like K DBA.

105 Numeric IMAGE field too small. Not enough characters are specified to represent the number.

106 IMAGE exponent field too small. Not enough exponent characters are specified to represent the
number.

107 IMAGE sign specifier missing. Not enough characters are specified to represent the number.
Number would fit except for the minus sign.

117 Too many nested structures. The nesting level is too deep for such structures as FOR, SELECT,
IF, LOOP, etc.

118 Too many structures in context. Refers to such structures as FOR/NEXT, IF/THEN/ELSE,
SELECT/CASE, WHILE, etc.

120 Not allowed while program running. The program must be stopped before you can execute this
command.

121 Line not in main program. The run line specified in a LOAD or GET is not in the main context.

122 Program is not continuable. The program is in the stopped state, not the paused state. CONT is
allowed only in the paused state.

126 Quote mark in unquoted string. Quote marks must be used in pairs.

127 Statements which affect the knob mode are out of order.

128 Line too long during GET.

131 Unrecognized non-ASCII keycode. An output to the keyboard contained a CHR$(255) followed
by an illegal byte.

404 Error Messages

80 Disc changed or not in drive. Either there is no disc in the drive or the drive door was opened
while a file was assigned.

81 Mass storage hardware failure. Also occurs when the disc is pinched and not turning. Try reinsert­
ing the disc.

82 Mass storage unit not present. Hardware problem or an attempt to access a left-hand drive on the
Model 226.

83 Write protected. Attempting to write to a write_protected disc. This includes many operations such
as PURGE, INITIALIZE, CREATE, SAVE, OUTPUT, etc.

84 Record not found. Usually indicates that the media has not been initialized.

85 Media not initialized. (Usually not produced by the internal drive.)

87 Record address error. Usually indicates a problem with the media.

88 Read data error. The media is physically or magnetically damaged, and the data cannot be read.

89 Checkread error. An error was detected when reading the data just written. The media is probably
damaged.

90 Mass storage system error. Usually a problem with the hardware or the media.

93 Incorrect volume code in MSUS. The MSUS contains a volume number that does not exist on the
specified device.

100 Numeric IMAGE for string item.

101 String IMAGE for numeric item.

102 Numeric field specifier is too large. Specifying more than 256 characters in a numeric field.

103 Item has no corresponding IMAGE. The image specifier has no fields that are used for item
processing. Specifiers such as II)(/ are not used to process the data for the item list. Item­
processing specifiers include things like K DBA.

105 Numeric IMAGE field too small. Not enough characters are specified to represent the number.

106 IMAGE exponent field too small. Not enough exponent characters are specified to represent the
number.

107 IMAGE sign specifier missing. Not enough characters are specified to represent the number.
Number would fit except for the minus sign.

117 Too many nested structures. The nesting level is too deep for such structures as FOR, SELECT,
IF, LOOP, etc.

118 Too many structures in context. Refers to such structures as FOR/NEXT, IF/THEN/ELSE,
SELECT/CASE, WHILE, etc.

120 Not allowed while program running. The program must be stopped before you can execute this
command.

121 Line not in main program. The run line specified in a LOAD or GET is not in the main context.

122 Program is not continuable. The program is in the stopped state, not the paused state. CONT is
allowed only in the paused state.

126 Quote mark in unquoted string. Quote marks must be used in pairs.

127 Statements which affect the knob mode are out of order.

128 Line too long during GET.

131 Unrecognized non-ASCII keycode. An output to the keyboard contained a CHR$(255) followed
by an illegal byte.

(

Error Messages 405

132 Keycode buffer overflow. Trying to send too many characters to the keyboard buffer with an
OUTPUT 2 statement.

133 DELSUB of non-existent or busy subprogram.

134 Improper SCRATCH statement.

135 READIOIWRITEIO to nonexistent memory location.

136 REAL underflow. The input or result is closer to zero than 10-308 (approximately) .

140 Too many symbols in the program. Symbols are variable names, I/O path names, COM block
names, subprogram names, and line identifiers.

141 Variable cannot be allocated. It is already allocated.

142 Variable not allocated. Attempt to DEALLOCATE a variable that was not allocated.

143 Reference to missing OPTIONAL parameter. The subprogram is trying to use an optional para­
meter that didn' t have any value passed to it. Use NPAR to check the number of passed
parameters.

145 May not build COM at this time. Attempt to add or change COM when a program is running. For
example, a program does a LOADSUB and the COM in the new subprogram does not match
existing COM.

146 Duplicate line label in context. There cannot be two lines with the same line label in one context.

150 Illegal interface select code or device selector. Value out of range.

152 Parity error.

153 Insufficient data for ENTER. A statement terminator was received before the variable list was
satisfied.

154 String greater than 32 767 bytes in ENTER.

155 Improper interface register number. Value out of range or negative.

156 Illegal expression type in list. For example, trying to ENTER into a constant.

157 No ENTER terminator found. The variable list has been satisfied, but no statement terminator was
received in the next 256 characters. The # specifier allows the statement to terminate when the
last item is satisfied.

158 Improper image specifier or nesting images more than 8 deep. The characters used for an image
specifier are improper or in an improper order.

159 Numeric data not received. When entering characters for a numeric field , an item terminator was
encountered before any "numeric" characters were received.

160 Attempt to enter more than 32 767 digits into one number.

163 Interface not present. The intended interface is not present, set to a different select code, or is
malfunctioning.

164 Illegal BYTEIWORD operation. Attempt to ASSIGN with the WORD attribute to a non-word
device.

165 Image specifier greater than dimensioned string length.

167 Interface status error. Exact meaning depends upon the interface type. With HP-IB, this can
happen when a non-controller operation by the computer is aborted by the bus.

168 Device timeout occurred and the ON TIMEOUT branch could not be taken.

(

Error Messages 405

132 Keycode buffer overflow. Trying to send too many characters to the keyboard buffer with an
OUTPUT 2 statement.

133 DELSUB of non-existent or busy subprogram.

134 Improper SCRATCH statement.

135 READIOIWRITEIO to nonexistent memory location.

136 REAL underflow. The input or result is closer to zero than 10-308 (approximately) .

140 Too many symbols in the program. Symbols are variable names, I/O path names, COM block
names, subprogram names, and line identifiers.

141 Variable cannot be allocated. It is already allocated.

142 Variable not allocated. Attempt to DEALLOCATE a variable that was not allocated.

143 Reference to missing OPTIONAL parameter. The subprogram is trying to use an optional para­
meter that didn' t have any value passed to it. Use NPAR to check the number of passed
parameters.

145 May not build COM at this time. Attempt to add or change COM when a program is running. For
example, a program does a LOADSUB and the COM in the new subprogram does not match
existing COM.

146 Duplicate line label in context. There cannot be two lines with the same line label in one context.

150 Illegal interface select code or device selector. Value out of range.

152 Parity error.

153 Insufficient data for ENTER. A statement terminator was received before the variable list was
satisfied.

154 String greater than 32 767 bytes in ENTER.

155 Improper interface register number. Value out of range or negative.

156 Illegal expression type in list. For example, trying to ENTER into a constant.

157 No ENTER terminator found. The variable list has been satisfied, but no statement terminator was
received in the next 256 characters. The # specifier allows the statement to terminate when the
last item is satisfied.

158 Improper image specifier or nesting images more than 8 deep. The characters used for an image
specifier are improper or in an improper order.

159 Numeric data not received. When entering characters for a numeric field , an item terminator was
encountered before any "numeric" characters were received.

160 Attempt to enter more than 32 767 digits into one number.

163 Interface not present. The intended interface is not present, set to a different select code, or is
malfunctioning.

164 Illegal BYTEIWORD operation. Attempt to ASSIGN with the WORD attribute to a non-word
device.

165 Image specifier greater than dimensioned string length.

167 Interface status error. Exact meaning depends upon the interface type. With HP-IB, this can
happen when a non-controller operation by the computer is aborted by the bus.

168 Device timeout occurred and the ON TIMEOUT branch could not be taken.

406 Error Messages

170 110 operation not allowed. The I/O statement has the proper form, but its operation is not defined
for the specified device. For example, using an HP-IB statement on a non-HP-IB interface or
directing a LIST to the keyboard.

171 Illegal I/O addressing sequence. The secondary addressing in a device selector is improper or
primary address too large for specified device.

172 Peripheral error. PSTS line is false. If used, this means that the peripheral device is down. If PSTS
is not being used, this error can be suppressed by using control register 2 of the GPIO.

173 Active or system controller required. The HP-IB is not active controller and needs to be for the
specified operation.

174 Nested I/O prohibited. An I/O statement contains a user-defined function. Both the original
statement and the function are trying to access the same file or device.

177 Undefined I/O path name. Attempting to use an I/O path name that is not assigned to a device or
file .

178 Trailing punctuation in ENTER. The trailing comma or semicolon that is sometimes used at the
end of OUTPUT statements is not allowed at the end of ENTER statements.

301 Cannot do while connected.

303 Not allowed when trace active.

304 Too many characters without terminator.

306 Interface card failure . The datacomm card has failed self-test.

308 Illegal character in data. Datacomm error.

310 Not connected. Datacomm error.

313 USART receive buffer overflow. Overrun error detected. Interface card is unable to keep up with
incoming data rate. Data has been lost.

314 Receive buffer overflow. Program is not accepting data fast enough to keep up with incoming data
rate. Data has been lost.

315 Missing data transmit clock. A transmit timeout has occurred because a missing data clock
prevented the card from transmitting. The card has disconnected from the line.

316 CTS false too long. The interface card was unable to transmit for a predetermined period of time
because Clear-To-Send was false on a half-duplex line. The card has disconnected from the line.

317 Lost carrier disconnect. Data Set Ready (DSR) or Data Carrier Detect (if full duplex) went inactive
for too long.

318 No activity disconnect. The card has disconnected from the line because no data was transmitted
or received for a predetermined length of time.

319 Connection not established. Data Set Ready or Data Carrier Detect (if full duplex) did not become
active within a predetermined length of time.

324 Card trace buffer overflow.

325 Illegal databits/parity combination. Attempting to program 8 bits-per-character and a parity of "I"
or "0" .

326 Register address out of range. A control or status register access was attempted to a non-existent
register.

327 Register value out of range. Attempting to place an illegal value in a control register.

328 USART Transmit underrun.

406 Error Messages

170 110 operation not allowed. The I/O statement has the proper form, but its operation is not defined
for the specified device. For example, using an HP-IB statement on a non-HP-IB interface or
directing a LIST to the keyboard.

171 Illegal I/O addressing sequence. The secondary addressing in a device selector is improper or
primary address too large for specified device.

172 Peripheral error. PSTS line is false. If used, this means that the peripheral device is down. If PSTS
is not being used, this error can be suppressed by using control register 2 of the GPIO.

173 Active or system controller required. The HP-IB is not active controller and needs to be for the
specified operation.

174 Nested I/O prohibited. An I/O statement contains a user-defined function. Both the original
statement and the function are trying to access the same file or device.

177 Undefined I/O path name. Attempting to use an I/O path name that is not assigned to a device or
file .

178 Trailing punctuation in ENTER. The trailing comma or semicolon that is sometimes used at the
end of OUTPUT statements is not allowed at the end of ENTER statements.

301 Cannot do while connected.

303 Not allowed when trace active.

304 Too many characters without terminator.

306 Interface card failure . The datacomm card has failed self-test.

308 Illegal character in data. Datacomm error.

310 Not connected. Datacomm error.

313 USART receive buffer overflow. Overrun error detected. Interface card is unable to keep up with
incoming data rate. Data has been lost.

314 Receive buffer overflow. Program is not accepting data fast enough to keep up with incoming data
rate. Data has been lost.

315 Missing data transmit clock. A transmit timeout has occurred because a missing data clock
prevented the card from transmitting. The card has disconnected from the line.

316 CTS false too long. The interface card was unable to transmit for a predetermined period of time
because Clear-To-Send was false on a half-duplex line. The card has disconnected from the line.

317 Lost carrier disconnect. Data Set Ready (DSR) or Data Carrier Detect (if full duplex) went inactive
for too long.

318 No activity disconnect. The card has disconnected from the line because no data was transmitted
or received for a predetermined length of time.

319 Connection not established. Data Set Ready or Data Carrier Detect (if full duplex) did not become
active within a predetermined length of time.

324 Card trace buffer overflow.

325 Illegal databits/parity combination. Attempting to program 8 bits-per-character and a parity of "I"
or "0" .

326 Register address out of range. A control or status register access was attempted to a non-existent
register.

327 Register value out of range. Attempting to place an illegal value in a control register.

328 USART Transmit underrun.

Error Messages 407

330 User-defined LEXICAL ORDER IS table size exceeds array size.

331 Repeated value in pointer. A MAT REORDER vector has repeated subscripts. This error is not
always caught.

332 Non-existent dimension given. Attempt to specify a non-existent dimension in a MAT REORDER
operation.

333 Improper subscript in pointer. A MAT REORDER vector specifies a non-existent subSCript.

334 Pointer size is not equal to the number of records. A MAT REORDER vector has a different
number of elements than the specified dimension of the array.

335 Pointer is not a vector. Only single-dimension arrays (vectors) can be used as the pointer in a MAT
REORDER or a MAT SORT statement.

337 Substring key is out-of-range. The specified substring range of the sort key exceeds the dimen­
sioned length of the elements in the array.

338 Key subSCript out-of-range. Attempt to specify a subSCript in a sort key outside the current bounds
of the array.

340 Mode table too long. User-defined LEXICAL ORDER IS mode table contains more than 63
entries.

341 Improper mode indicator. User-defined LEXICAL ORDER IS table contains an illegal combina­
tion of mode type and mode pointer.

342 Not a single-dimension integer array. User-defined LEXICAL ORDER IS mode table must be a
single-dimension array of type INTEGER.

343 Mode pointer is out of range. User-defined LEXICAL ORDER IS table has a mode pointer greater
than the existing mode table size.

344 1 for 2 list empty or too long. A user-defined LEXICAL ORDER IS table contains an entry
indicating an improper number of 1 for 2 secondaries.

345 CASE expression type mismatch. The SELECT statement and its CASE statements must refer to
the same general type, numeric or string.

346 INDENT parameter out-of-range. The parameters must be in the range: 0 thru eight characters
less than the screen width.

347 Structures improperly matched. There is not a corresponding number of structure beginnings and
endings. Usually means that you forgot a statement such as END IF, NEXT, END SELECT, etc.

349 CSUB has been modified. A contiguous block of compiled subroutines has been modified since it
was loaded. A single module that shows as multiple CSUB statements has been altered because
program lines were inserted or deleted.

353 Data link failure.

370-399 Errors in this range are reported if a run-time Pascal error occurs in a CSUB. To determine the
Pascal error number, subtract 400 from the BASIC error number. Information on the Pascal error
can be found in the Pascal User's Manual.

401 Bad system function argument. An invalid argument was given to a time, date, base conversion,
or SYSTEM$ function.

403 Copy failed; program modification incomplete. An error occurred during a COPYLINES or
MOVE LINES resulting in an incomplete operation. Some lines may not have been copied or
moved.

427 Priority may not be lowered.

Error Messages 407

330 User-defined LEXICAL ORDER IS table size exceeds array size.

331 Repeated value in pointer. A MAT REORDER vector has repeated subscripts. This error is not
always caught.

332 Non-existent dimension given. Attempt to specify a non-existent dimension in a MAT REORDER
operation.

333 Improper subscript in pointer. A MAT REORDER vector specifies a non-existent subSCript.

334 Pointer size is not equal to the number of records. A MAT REORDER vector has a different
number of elements than the specified dimension of the array.

335 Pointer is not a vector. Only single-dimension arrays (vectors) can be used as the pointer in a MAT
REORDER or a MAT SORT statement.

337 Substring key is out-of-range. The specified substring range of the sort key exceeds the dimen­
sioned length of the elements in the array.

338 Key subSCript out-of-range. Attempt to specify a subSCript in a sort key outside the current bounds
of the array.

340 Mode table too long. User-defined LEXICAL ORDER IS mode table contains more than 63
entries.

341 Improper mode indicator. User-defined LEXICAL ORDER IS table contains an illegal combina­
tion of mode type and mode pointer.

342 Not a single-dimension integer array. User-defined LEXICAL ORDER IS mode table must be a
single-dimension array of type INTEGER.

343 Mode pointer is out of range. User-defined LEXICAL ORDER IS table has a mode pointer greater
than the existing mode table size.

344 1 for 2 list empty or too long. A user-defined LEXICAL ORDER IS table contains an entry
indicating an improper number of 1 for 2 secondaries.

345 CASE expression type mismatch. The SELECT statement and its CASE statements must refer to
the same general type, numeric or string.

346 INDENT parameter out-of-range. The parameters must be in the range: 0 thru eight characters
less than the screen width.

347 Structures improperly matched. There is not a corresponding number of structure beginnings and
endings. Usually means that you forgot a statement such as END IF, NEXT, END SELECT, etc.

349 CSUB has been modified. A contiguous block of compiled subroutines has been modified since it
was loaded. A single module that shows as multiple CSUB statements has been altered because
program lines were inserted or deleted.

353 Data link failure.

370-399 Errors in this range are reported if a run-time Pascal error occurs in a CSUB. To determine the
Pascal error number, subtract 400 from the BASIC error number. Information on the Pascal error
can be found in the Pascal User's Manual.

401 Bad system function argument. An invalid argument was given to a time, date, base conversion,
or SYSTEM$ function.

403 Copy failed; program modification incomplete. An error occurred during a COPYLINES or
MOVE LINES resulting in an incomplete operation. Some lines may not have been copied or
moved.

427 Priority may not be lowered.

408 Error Messages

450 Volume not found-SRM error.

451 Volume labels do not match-SRM error.

453 File in use-SRM error.

454 Directory formats do not match-SRM error.

455 Possibly corrupt file-SRM error.

456 Unsupported directory operation-SRM error.

457 Passwords not supported-SRM error.

458 Unsupported directory format-SRM error.

459 Specified file is not a directory-SRM error.

460 Directory not empty-SRM error.

462 Invalid password-SRM error.

465 Invalid rename across volumes--SRM error.

471 TRANSFER not supported by the interface.

481 File locked oropen exclusively-SRM error.

482 Cannot move a directory with a RENAME operation-SRM error.

483 System down-SRM error.

484 Password not found-SRM error.

485 Invalid volume copy-SRM error.

488 DMA hardware required. HP 9885 disc drive requires a DMA card oris malfunctioning.

511 The result array in a MAT INV must be of type REAL.

600 Attribute cannot be modified. The WORD/BYTE mode cannot be changed after assigning the 1/0
path name.

601 Improper CONVERT lifetime. When the CONVERT attribute is included in the assignment of an
1/0 path name, the name of a string variable containing the conversion is also specified. The
conversion string must exist as long as the 110 path name is valid.

602 Improper BUFFER lifetime. The variable designated as a buffer during an 110 path name assign­
ment must exist as long as the 1/0 path name is valid.

603 Variable was not declared as a BUFFER. Attempt to assign a variable as a buffer without first
declaring the variable as a BUFFER.

604 Bad source or destination for a TRANSFER statement. Transfers are not allowed to the CRT,
keyboard, or tape backup on CS80 drives. Buffer to buffer or device to device transfers are not
allowed.

605 BDA T file type required. Only BDA T files can be used in a TRANSFER operation.

606 Improper TRANSFER parameters. Conflicting or invalid TRANSFER parameters were specified,
such as RECORDS without and EOR clause, or DELIM with an outbound TRANSFER.

607 Inconsistent attributes. Such as CONVERT or PARITY with FORMAT OFF.

609 IVAL or DVAL result too large. Attempt to convert a binary, octal, decimal, or hexadecimal string
into a value outside the range of the function.

612 BUFFER pointers in use. Attempt to change one or more buffer pointers while a TRANSFER is in
progress.

408 Error Messages

450 Volume not found-SRM error.

451 Volume labels do not match-SRM error.

453 File in use-SRM error.

454 Directory formats do not match-SRM error.

455 Possibly corrupt file-SRM error.

456 Unsupported directory operation-SRM error.

457 Passwords not supported-SRM error.

458 Unsupported directory format-SRM error.

459 Specified file is not a directory-SRM error.

460 Directory not empty-SRM error.

462 Invalid password-SRM error.

465 Invalid rename across volumes--SRM error.

471 TRANSFER not supported by the interface.

481 File locked oropen exclusively-SRM error.

482 Cannot move a directory with a RENAME operation-SRM error.

483 System down-SRM error.

484 Password not found-SRM error.

485 Invalid volume copy-SRM error.

488 DMA hardware required. HP 9885 disc drive requires a DMA card oris malfunctioning.

511 The result array in a MAT INV must be of type REAL.

600 Attribute cannot be modified. The WORD/BYTE mode cannot be changed after assigning the 1/0
path name.

601 Improper CONVERT lifetime. When the CONVERT attribute is included in the assignment of an
1/0 path name, the name of a string variable containing the conversion is also specified. The
conversion string must exist as long as the 110 path name is valid.

602 Improper BUFFER lifetime. The variable designated as a buffer during an 110 path name assign­
ment must exist as long as the 1/0 path name is valid.

603 Variable was not declared as a BUFFER. Attempt to assign a variable as a buffer without first
declaring the variable as a BUFFER.

604 Bad source or destination for a TRANSFER statement. Transfers are not allowed to the CRT,
keyboard, or tape backup on CS80 drives. Buffer to buffer or device to device transfers are not
allowed.

605 BDA T file type required. Only BDA T files can be used in a TRANSFER operation.

606 Improper TRANSFER parameters. Conflicting or invalid TRANSFER parameters were specified,
such as RECORDS without and EOR clause, or DELIM with an outbound TRANSFER.

607 Inconsistent attributes. Such as CONVERT or PARITY with FORMAT OFF.

609 IVAL or DVAL result too large. Attempt to convert a binary, octal, decimal, or hexadecimal string
into a value outside the range of the function.

612 BUFFER pointers in use. Attempt to change one or more buffer pointers while a TRANSFER is in
progress.

Error Messages 409

700 Improper plotter specifier. The characters used as a plotter specifier are not recognized. May be
misspelled or contain illegal characters.

702 CRT graphics hardware missing. Hardware problem.

704 Upper bound not greater than lower bound. Applies to P2< = PI or VIEWPORT upper bound
and CLIP limits.

705 VIEWPORT or CLIP beyond hard clip limits.

708 Device not initialized.

713 Request not supported by specified device. Trying to equate color CRT characteristics with an
external device; such as COLOR MAP on a plotter.

733 GESCAPE opcode not recognized. Only values 1 thru 5 can be used.

900 Undefined typing aid key.

901 Typing aid memory overflow.

902 Must delete entire context. Attempt to delete a SUB or DEF FN statement without deleting its
entire context. Easiest way to delete is with DELSUB.

903 No room to renumber. While EDIT mode was renumbering during an insert, all available line
numbers were used between insert location and end of program.

904 Null FIND or CHANGE string.

905 CHANGE would produce a line too long for the system. Maximum line length is two lines on the
CRT.

906 SUB or DEF FN not allowed here. Attempt to insert a SUB or DEF FN statement into the middle
of a context. Subprograms must be appended at the end.

909 May not replace SUB or DEF FN. Similar to deleting a SUB or DEF FN.

910 Identifier not found in this context. The keyboard-specified variable does not already exist in the
program. Variables cannot be created from the keyboard; they must be created by running a
program.

911 Improper I/O list.

920 Numeric constant not allowed.

921 Numeric identifier not allowed.

922 Numeric array element not allowed.

923 Numeric expression not allowed.

924 Quoted string not allowed.

925 String identifier not allowed.

926 String array element not allowed.

927 Substring not allowed.

928 String expression not allowed.

929 I/O path name not allowed.

930 Numeric array not allowed.

931 String array not allowed.

932 Excess keys specified. A sort key was specified follOWing a key which specified the entire record.

935 Identifier is too long: 15 characters maximum.

Error Messages 409

700 Improper plotter specifier. The characters used as a plotter specifier are not recognized. May be
misspelled or contain illegal characters.

702 CRT graphics hardware missing. Hardware problem.

704 Upper bound not greater than lower bound. Applies to P2< = PI or VIEWPORT upper bound
and CLIP limits.

705 VIEWPORT or CLIP beyond hard clip limits.

708 Device not initialized.

713 Request not supported by specified device. Trying to equate color CRT characteristics with an
external device; such as COLOR MAP on a plotter.

733 GESCAPE opcode not recognized. Only values 1 thru 5 can be used.

900 Undefined typing aid key.

901 Typing aid memory overflow.

902 Must delete entire context. Attempt to delete a SUB or DEF FN statement without deleting its
entire context. Easiest way to delete is with DELSUB.

903 No room to renumber. While EDIT mode was renumbering during an insert, all available line
numbers were used between insert location and end of program.

904 Null FIND or CHANGE string.

905 CHANGE would produce a line too long for the system. Maximum line length is two lines on the
CRT.

906 SUB or DEF FN not allowed here. Attempt to insert a SUB or DEF FN statement into the middle
of a context. Subprograms must be appended at the end.

909 May not replace SUB or DEF FN. Similar to deleting a SUB or DEF FN.

910 Identifier not found in this context. The keyboard-specified variable does not already exist in the
program. Variables cannot be created from the keyboard; they must be created by running a
program.

911 Improper I/O list.

920 Numeric constant not allowed.

921 Numeric identifier not allowed.

922 Numeric array element not allowed.

923 Numeric expression not allowed.

924 Quoted string not allowed.

925 String identifier not allowed.

926 String array element not allowed.

927 Substring not allowed.

928 String expression not allowed.

929 I/O path name not allowed.

930 Numeric array not allowed.

931 String array not allowed.

932 Excess keys specified. A sort key was specified follOWing a key which specified the entire record.

935 Identifier is too long: 15 characters maximum.

410 Error Messages

936 Unrecognized character. Attempt to store a program line containing an improper name or illegal
character.

937 Invalid OPTION BASE. Only 0 and 1 are allowed.

939 OPTIONAL appears twice. A parameter list may have only one OPTIONAL keyword. All para­
meters listed before it are required, all listed after it are optional.

940 Duplicate formal parameter name.

942 Invalid I/O path name. The characters after the @ are not a valid name. Names must start with a
letter.

943 Invalid function name. The characters after the FN are not a valid name. Names must start with a
letter.

946 Dimensions are inconsistent with previous declaration. The references to an array contain a
different number of subSCripts at different places in the program.

947 Invalid array bounds. Value out of range, or more than 32 767 elements specified.

948 Multiple assignment prohibited. You cannot assign the same value to multiple variables by stating
){ =Y =Z=(l . A separate assignment must be made for each variable.

949 This symbol not allowed here. This is the general "syntax error" message. The statement you
typed contains elements that don't belong together, are in the wrong order, or are misspelled.

950 Must be a positive integer.

951 Incomplete statement. This keyword must be followed by other items to make a valid statement.

961 CASE expression type mismatch. The CASE line contains items that are not the same general
type, numeric or string.

962 Programmable only: cannot be executed from the keyboard.

963 Command only: cannot be stored as a program line.

977 Statement is too complex. Contains too many operators and functions. Break the expression
down so that it is performed by two or more program lines.

980 Too many symbols in this context. Symbols include variable names, I/O path names, COM block
names, subprogram names, and line identifiers.

982 Too many subSCripts: maximum of six dimensions allowed.

983 Wrong type or number of parameters. An improper parameter list for a machine-resident func­
tion.

985 Invalid quoted string.

987 Invalid line number: must be a whole number 1 thru 32766.

410 Error Messages

936 Unrecognized character. Attempt to store a program line containing an improper name or illegal
character.

937 Invalid OPTION BASE. Only 0 and 1 are allowed.

939 OPTIONAL appears twice. A parameter list may have only one OPTIONAL keyword. All para­
meters listed before it are required, all listed after it are optional.

940 Duplicate formal parameter name.

942 Invalid I/O path name. The characters after the @ are not a valid name. Names must start with a
letter.

943 Invalid function name. The characters after the FN are not a valid name. Names must start with a
letter.

946 Dimensions are inconsistent with previous declaration. The references to an array contain a
different number of subSCripts at different places in the program.

947 Invalid array bounds. Value out of range, or more than 32 767 elements specified.

948 Multiple assignment prohibited. You cannot assign the same value to multiple variables by stating
){ =Y =Z=(l . A separate assignment must be made for each variable.

949 This symbol not allowed here. This is the general "syntax error" message. The statement you
typed contains elements that don't belong together, are in the wrong order, or are misspelled.

950 Must be a positive integer.

951 Incomplete statement. This keyword must be followed by other items to make a valid statement.

961 CASE expression type mismatch. The CASE line contains items that are not the same general
type, numeric or string.

962 Programmable only: cannot be executed from the keyboard.

963 Command only: cannot be stored as a program line.

977 Statement is too complex. Contains too many operators and functions. Break the expression
down so that it is performed by two or more program lines.

980 Too many symbols in this context. Symbols include variable names, I/O path names, COM block
names, subprogram names, and line identifiers.

982 Too many subSCripts: maximum of six dimensions allowed.

983 Wrong type or number of parameters. An improper parameter list for a machine-resident func­
tion.

985 Invalid quoted string.

987 Invalid line number: must be a whole number 1 thru 32766.

l

Error Messages 411

Second Byte of Non-ASCII Key Sequences
Holding the CTRL key and pressing a non-ASCII key generates a two-character sequence on
the CRT. The first character is an "inverse-video" K. This table can be used to look up the key
that corresponds to the second character of the sequence.

Character Value Key Character Value Key

space 1 p 80 (PAUSE)
! 33 (STOP) Q 1

" 1

35 ~
R 82 CID
s 83 (]ill]

$ 36 (ANY CHAR) T 84 (SHIFT)-IT)
I.. 37 (CLR.END) u 85 (CAPS LOCK)
I> 38 (Select)

39 ~
(40 (SHIFT)-ffi[)
) 41 ffi[)

',' 86 IT)
w 87 (SHIFT)-IT)
X 88 (EXECUTE)
'I 89 Roman Mode

* 42 (INS LN) Z 1

+ 43 ~ [91 (CLR TAB) . 44 (]&) \ 92 CD
- 45 (DEL CHR) J 93 (SET TAB) . 46 Ignored .. 94 IT)
/ 47 (DEL LN)
0 48 CTI

- 95 (SHIFT)-CD
1

1 49 c:JU
2 50 OD
3 51 OU
4 52 0Ll
5 53 0Ll
G 54 OQ
7 55 QU
8 56 CJL)
9 57 OQ
: 58 (SHIFT) -systemQO'
i 59 (SHIFT) -systemCJz:J'

< 60 ~
= 61 ~
> 62 ~

a 97 Oii)
b 98 OiL)
c 99 CJ1D
d 100 DiD
e 101 CJiD
f 102 CJ!D
g 103 CJ!D
h 104 O!D
i 105 CJ!D
j 106 CJ:iD
f, 107 C§QJ
1 108 C§D

'"
109 ~

n 110 QD
? 63 (RECALL)
@ 64 (SHIFT)-Oill[]

a 111 (SHIFT) -systemCE:::Y
p 112 (SHIFT) -systemCJL)'

A 65 (PRTALL) 9 113 (SHIFT) -systemQD'
B 66 (BACK SPACE) r 114 (SHIFT) -system[]!:::Y
C 67 (CONTINUE)
D 68 miD

5 115 (SHIFT) -userQD'
t 116 (SHIFT) -userCJL) '

E 69 (ENTER) '-' 117 (SHIFT) -userQD'
F 70 (DISPLAY FCTNS)
G 71 (SHIFT)-~
H 72 (SHIFT)-~

v 118 (SHIFT) -user[]!:::Y
w 119 (SHIFT) -user{I) '
x 120 (SHIFT) -userQO'

I 73 (CLR 110) y 121 (SHIFT) -userCJz:J'
J 74 Katakana Mode z 122 (SHIFT) -user(I)'
K 75 (CLR SCR) } 123 (System)
L 76 (GRAPHICS) I 124 ~
M 77 (ALPHA) { 125 ~
N 78 (DUMP GRAPHICS) N 126 (SHIFT)-~
0 79 (DUMP ALPHA) :,.~ 1

1 These characters cannot be generated by pressing the CTRl key and a non-ASCII key. If one of these characters follows CHR$(255) in an
output to the keyboard , an error is reported (E r r 0 r 131 Bad non - alp han I.lfl' e ric f, e Ye 0 de,).

2 System and user refer to the soltkey menu which is currently active.

l

Error Messages 411

Second Byte of Non-ASCII Key Sequences
Holding the CTRL key and pressing a non-ASCII key generates a two-character sequence on
the CRT. The first character is an "inverse-video" K. This table can be used to look up the key
that corresponds to the second character of the sequence.

Character Value Key Character Value Key

space 1 p 80 (PAUSE)
! 33 (STOP) Q 1

" 1

35 ~
R 82 CID
s 83 (]ill]

$ 36 (ANY CHAR) T 84 (SHIFT)-IT)
I.. 37 (CLR.END) u 85 (CAPS LOCK)
I> 38 (Select)

39 ~
(40 (SHIFT)-ffi[)
) 41 ffi[)

',' 86 IT)
w 87 (SHIFT)-IT)
X 88 (EXECUTE)
'I 89 Roman Mode

* 42 (INS LN) Z 1

+ 43 ~ [91 (CLR TAB) . 44 (]&) \ 92 CD
- 45 (DEL CHR) J 93 (SET TAB) . 46 Ignored .. 94 IT)
/ 47 (DEL LN)
0 48 CTI

- 95 (SHIFT)-CD
1

1 49 c:JU
2 50 OD
3 51 OU
4 52 0Ll
5 53 0Ll
G 54 OQ
7 55 QU
8 56 CJL)
9 57 OQ
: 58 (SHIFT) -systemQO'
i 59 (SHIFT) -systemCJz:J'

< 60 ~
= 61 ~
> 62 ~

a 97 Oii)
b 98 OiL)
c 99 CJ1D
d 100 DiD
e 101 CJiD
f 102 CJ!D
g 103 CJ!D
h 104 O!D
i 105 CJ!D
j 106 CJ:iD
f, 107 C§QJ
1 108 C§D

'"
109 ~

n 110 QD
? 63 (RECALL)
@ 64 (SHIFT)-Oill[]

a 111 (SHIFT) -systemCE:::Y
p 112 (SHIFT) -systemCJL)'

A 65 (PRTALL) 9 113 (SHIFT) -systemQD'
B 66 (BACK SPACE) r 114 (SHIFT) -system[]!:::Y
C 67 (CONTINUE)
D 68 miD

5 115 (SHIFT) -userQD'
t 116 (SHIFT) -userCJL) '

E 69 (ENTER) '-' 117 (SHIFT) -userQD'
F 70 (DISPLAY FCTNS)
G 71 (SHIFT)-~
H 72 (SHIFT)-~

v 118 (SHIFT) -user[]!:::Y
w 119 (SHIFT) -user{I) '
x 120 (SHIFT) -userQO'

I 73 (CLR 110) y 121 (SHIFT) -userCJz:J'
J 74 Katakana Mode z 122 (SHIFT) -user(I)'
K 75 (CLR SCR) } 123 (System)
L 76 (GRAPHICS) I 124 ~
M 77 (ALPHA) { 125 ~
N 78 (DUMP GRAPHICS) N 126 (SHIFT)-~
0 79 (DUMP ALPHA) :,.~ 1

1 These characters cannot be generated by pressing the CTRl key and a non-ASCII key. If one of these characters follows CHR$(255) in an
output to the keyboard , an error is reported (E r r 0 r 131 Bad non - alp han I.lfl' e ric f, e Ye 0 de,).

2 System and user refer to the soltkey menu which is currently active.

412 Error Messages

US ASCII Character Codes
ASCII EQUIVALENT FORMS HP-IB ASCII EQUIVALENT FORMS HP-IB
Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

NUL 0 00000000 000 00 space 32 00100000 040 20 LAO

SOH 1 00000001 001 01 GTL ! 33 00100001 041 21 LA1

STX 2 00000010 002 02 " 34 00100010 042 22 LA2

ETX 3 00000011 003 03 # 35 00100011 043 23 LA3

EOT 4 00000100 004 04 SOC $ 36 00100100 044 24 LA4

ENQ 5 00000101 005 05 PPC % 37 00100101 045 25 LA5

ACK 6 00000110 006 06 & 38 00100110 046 26 LA6

BEL 7 00000111 007 07
,

39 00100111 047 27 LA7

BS 8 00001000 010 08 GET (40 00101000 050 28 LA8

HT 9 00001001 011 09 TCT) 41 00101001 051 29 LA9

LF 10 00001010 012 OA * 42 00101010 052 2A LA10

VT 11 00001011 013 OB + 43 00101011 053 2B LA11

FF 12 00001100 014 OC , 44 00101100 054 2C LA12

CR 13 00001101 015 00 - 45 00101101 055 20 LA13

SO 14 00001110 016 OE 46 00101110 056 2E LA14

SI 15 00001111 017 OF I 47 00101111 057 2F LA15

OLE 16 00010000 020 10 0 48 00110000 060 30 LA16

OC1 17 00010001 021 11 LLO 1 49 00110001 061 31 LA17

OC2 18 00010010 022 12 2 50 00110010 062 32 LA18

OC3 19 0001001 1 023 13 3 51 00110011 063 33 LA19

OC4 20 00010100 024 14 OCL 4 52 00110100 064 34 LA20

NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21

SYNC 22 00010110 026 16 6 54 001 10110 066 36 LA22

ETB 23 00010111 027 17 7 55 00110111 067 37 LA23

CAN 24 00011000 030 18 SPE 8 56 00111000 070 38 LA24

EM 25 00011001 031 19 SPO 9 57 00111001 071 39 LA25

SUB 26 00011010 032 1A 58 00111010 072 3A LA26

ESC 27 00011011 033 1B , 59 00111011 073 3B LA27

FS 28 0001 1100 034 1C < 60 00111100 074 3C LA28

GS 29 00011101 035 10 = 61 00111101 075 30 LA29

RS 30 0001 1110 036 1E > 62 00111110 076 3E LA30

US 31 00011111 037 1F ? 63 00111111 077 3F UNL

412 Error Messages

US ASCII Character Codes
ASCII EQUIVALENT FORMS HP-IB ASCII EQUIVALENT FORMS HP-IB
Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

NUL 0 00000000 000 00 space 32 00100000 040 20 LAO

SOH 1 00000001 001 01 GTL ! 33 00100001 041 21 LA1

STX 2 00000010 002 02 " 34 00100010 042 22 LA2

ETX 3 00000011 003 03 # 35 00100011 043 23 LA3

EOT 4 00000100 004 04 SOC $ 36 00100100 044 24 LA4

ENQ 5 00000101 005 05 PPC % 37 00100101 045 25 LA5

ACK 6 00000110 006 06 & 38 00100110 046 26 LA6

BEL 7 00000111 007 07
,

39 00100111 047 27 LA7

BS 8 00001000 010 08 GET (40 00101000 050 28 LA8

HT 9 00001001 011 09 TCT) 41 00101001 051 29 LA9

LF 10 00001010 012 OA * 42 00101010 052 2A LA10

VT 11 00001011 013 OB + 43 00101011 053 2B LA11

FF 12 00001100 014 OC , 44 00101100 054 2C LA12

CR 13 00001101 015 00 - 45 00101101 055 20 LA13

SO 14 00001110 016 OE 46 00101110 056 2E LA14

SI 15 00001111 017 OF I 47 00101111 057 2F LA15

OLE 16 00010000 020 10 0 48 00110000 060 30 LA16

OC1 17 00010001 021 11 LLO 1 49 00110001 061 31 LA17

OC2 18 00010010 022 12 2 50 00110010 062 32 LA18

OC3 19 0001001 1 023 13 3 51 00110011 063 33 LA19

OC4 20 00010100 024 14 OCL 4 52 00110100 064 34 LA20

NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21

SYNC 22 00010110 026 16 6 54 001 10110 066 36 LA22

ETB 23 00010111 027 17 7 55 00110111 067 37 LA23

CAN 24 00011000 030 18 SPE 8 56 00111000 070 38 LA24

EM 25 00011001 031 19 SPO 9 57 00111001 071 39 LA25

SUB 26 00011010 032 1A 58 00111010 072 3A LA26

ESC 27 00011011 033 1B , 59 00111011 073 3B LA27

FS 28 0001 1100 034 1C < 60 00111100 074 3C LA28

GS 29 00011101 035 10 = 61 00111101 075 30 LA29

RS 30 0001 1110 036 1E > 62 00111110 076 3E LA30

US 31 00011111 037 1F ? 63 00111111 077 3F UNL

Error Messages 413

ASCII EQUIVALENT FORMS
HP-IB! ASCII EQUIVALENT FORMS HP-IB

Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

@ 64 01000000 100 40 TAO , 96 01100000 140 60 SCO

A 65 01000001 101 41 TAl a 97 01100001 141 61 SCl

B 66 01000010 102 42 TA2 b 98 01100010 142 62 SC2

C 67 01000011 103 43 TA3 c 99 01100011 143 63 SC3

0 68 01000100 104 44 TA4 d 100 01100100 144 64 SC4

E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5

F 70 01000110 106 46 TA6 f 102 01100110 146 66 SC6

G 71 01000111 107 47 TA7 9 103 01100111 147 67 SC7

H 72 01001000 110 48 TA8 h 104 01101000 150 68 SC8

I 73 01001001 111 49 TA9 i 105 01101001 151 69 SC9

J 74 01001010 112 4A TA10 j 106 01101010 152 6A SC10

K 75 01001011 113 4B TAll k 107 01101011 153 6B SCll

L 76 01001100 114 4C TA12 I 108 01101100 154 6C SC12

M 77 01001101 115 40 TA13 m 109 01101101 155 60 SC13

N 78 01001110 116 4E TA14 n 110 01101110 156 6E SC14

0 79 01001111 117 4F TA15 0 111 01101111 157 6F SC15

P 80 01010000 120 50 TA16 P 112 01110000 160 70 SC16

Q 81 01010001 121 51 TA17 q 113 01110001 161 71 SC17

R 82 01010010 122 52 TA18 r 114 01110010 162 72 SC18

S 83 01010011 123 53 TA19 s 115 01110011 163 73 SC19

T 84 01010100 124 54 TA20 t 116 01110100 164 74 SC20

U 85 01010101 125 55 TA21 u 117 01110101 165 75 SC21

V 86 01010110 126 56 TA22 v 118 01110110 166 76 SC22

W 87 01010111 127 57 TA23 w 119 01110111 167 77 SC23

X 88 01011000 130 58 TA24 x 120 01111000 170 78 SC24

Y 89 01011001 131 59 TA25 Y 121 01111001 171 79 SC25

Z 90 01011010 132 5A TA26 z 122 01111010 172 7A SC26

[91 01011011 133 5B TA27 { 123 01111011 173 7B SC27

"- 92 01011100 134 5C TA28 I 124 01111100 174 7C SC28

1 93 01011101 135 50 TA29 } 125 01111101 175 70 SC29

A 94 01011110 136 5E TA30 - 126 01111110 176 7E SC30

- 95 01011111 137 5F UNT DEL 127 01111111 177 7F SC31

Error Messages 413

ASCII EQUIVALENT FORMS
HP-IB! ASCII EQUIVALENT FORMS HP-IB

Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

@ 64 01000000 100 40 TAO , 96 01100000 140 60 SCO

A 65 01000001 101 41 TAl a 97 01100001 141 61 SCl

B 66 01000010 102 42 TA2 b 98 01100010 142 62 SC2

C 67 01000011 103 43 TA3 c 99 01100011 143 63 SC3

0 68 01000100 104 44 TA4 d 100 01100100 144 64 SC4

E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5

F 70 01000110 106 46 TA6 f 102 01100110 146 66 SC6

G 71 01000111 107 47 TA7 9 103 01100111 147 67 SC7

H 72 01001000 110 48 TA8 h 104 01101000 150 68 SC8

I 73 01001001 111 49 TA9 i 105 01101001 151 69 SC9

J 74 01001010 112 4A TA10 j 106 01101010 152 6A SC10

K 75 01001011 113 4B TAll k 107 01101011 153 6B SCll

L 76 01001100 114 4C TA12 I 108 01101100 154 6C SC12

M 77 01001101 115 40 TA13 m 109 01101101 155 60 SC13

N 78 01001110 116 4E TA14 n 110 01101110 156 6E SC14

0 79 01001111 117 4F TA15 0 111 01101111 157 6F SC15

P 80 01010000 120 50 TA16 P 112 01110000 160 70 SC16

Q 81 01010001 121 51 TA17 q 113 01110001 161 71 SC17

R 82 01010010 122 52 TA18 r 114 01110010 162 72 SC18

S 83 01010011 123 53 TA19 s 115 01110011 163 73 SC19

T 84 01010100 124 54 TA20 t 116 01110100 164 74 SC20

U 85 01010101 125 55 TA21 u 117 01110101 165 75 SC21

V 86 01010110 126 56 TA22 v 118 01110110 166 76 SC22

W 87 01010111 127 57 TA23 w 119 01110111 167 77 SC23

X 88 01011000 130 58 TA24 x 120 01111000 170 78 SC24

Y 89 01011001 131 59 TA25 Y 121 01111001 171 79 SC25

Z 90 01011010 132 5A TA26 z 122 01111010 172 7A SC26

[91 01011011 133 5B TA27 { 123 01111011 173 7B SC27

"- 92 01011100 134 5C TA28 I 124 01111100 174 7C SC28

1 93 01011101 135 50 TA29 } 125 01111101 175 70 SC29

A 94 01011110 136 5E TA30 - 126 01111110 176 7E SC30

- 95 01011111 137 5F UNT DEL 127 01111111 177 7F SC31

414 Error Messages 414 Error Messages

Subject Index

a
ABS 84
Accessing Directories 242
Accessing Files 218
Accessing Mass Storage 212
Accuracy (clock) 261
Accuracy (math) 79
ACS 84
ALLOCATE 76,122
Alpha displays, Series 300 375
Alpha, Separate From Graphics 391
Angle Functions 85
ANY CHAR Key 40,146
AP2.0 355
Appending Program Lines 30
Arrays:

Copying 94
Declaring 76,87,122
Dimensioning 76,87,122
Indexing .. 319
Numeric. .. 75,87
Operations . 87
Operators ,. 98
Reordering 101
Sorting. , 102
String , 122

ASCII Character Codes 411
ASCII Character Set. , 142
ASCII Files. , .. 208,340
ASN ' , , , . 84
ASSIGN 219
ATN . , 84
Auto Line Numbering, 7
AUTOST 35
Autostart , . . 35
Autostart on SRM , , . , 36

b
BASE , 84,93
Base Conversion .. 140
BASIC 2.0 , 355
BDA T Files , .. 340

BDAT Files:
Reading 221
Structure . . . , . 205
Writing 221

Benchmarking 317
BIN files , 37
BINAND 84
Binary file .. 37
Binary Tree .. 188
BINCMP 84
BINEOR , 84
BINIOR. 84
BINs:

Deleting from Memory , 47
Loading , , 37
Scratching , 37,47

BIT 84
Bit-mapped displays 375
Blank Lines . 280
Boolean Arrays , , 100
Booting from SRM 336
Boundary Conditions 298
Bubble Memory , 216
Bugs . 297,305

c
Cache memory (MC68020) 376
CALL , , 171
Calling a Subprogram. 171
CASE ,., 59
Case Conversion. .. 132
CAT .. . , 27,242
Catalog Header, Suppressing , 246
Cataloging the Disc , , 243
Cataloging, Skipping Files , , ... 247
CHANGE , . . , 22
Character Set, Extended 145
Character Set, Highlights 145
CHR$, 129
Clearing the Computer. , 47
Clearing the CRT . 279

Subject Index

a
ABS 84
Accessing Directories 242
Accessing Files 218
Accessing Mass Storage 212
Accuracy (clock) 261
Accuracy (math) 79
ACS 84
ALLOCATE 76,122
Alpha displays, Series 300 375
Alpha, Separate From Graphics 391
Angle Functions 85
ANY CHAR Key 40,146
AP2.0 355
Appending Program Lines 30
Arrays:

Copying 94
Declaring 76,87,122
Dimensioning 76,87,122
Indexing .. 319
Numeric. .. 75,87
Operations . 87
Operators ,. 98
Reordering 101
Sorting. , 102
String , 122

ASCII Character Codes 411
ASCII Character Set. , 142
ASCII Files. , .. 208,340
ASN ' , , , . 84
ASSIGN 219
ATN . , 84
Auto Line Numbering, 7
AUTOST 35
Autostart , . . 35
Autostart on SRM , , . , 36

b
BASE , 84,93
Base Conversion .. 140
BASIC 2.0 , 355
BDA T Files , .. 340

BDAT Files:
Reading 221
Structure . . . , . 205
Writing 221

Benchmarking 317
BIN files , 37
BINAND 84
Binary file .. 37
Binary Tree .. 188
BINCMP 84
BINEOR , 84
BINIOR. 84
BINs:

Deleting from Memory , 47
Loading , , 37
Scratching , 37,47

BIT 84
Bit-mapped displays 375
Blank Lines . 280
Boolean Arrays , , 100
Booting from SRM 336
Boundary Conditions 298
Bubble Memory , 216
Bugs . 297,305

c
Cache memory (MC68020) 376
CALL , , 171
Calling a Subprogram. 171
CASE ,., 59
Case Conversion. .. 132
CAT .. . , 27,242
Catalog Header, Suppressing , 246
Cataloging the Disc , , 243
Cataloging, Skipping Files , , ... 247
CHANGE , . . , 22
Character Set, Extended 145
Character Set, Highlights 145
CHR$, 129
Clearing the Computer. , 47
Clearing the CRT . 279

Clock:
Accuracy 261
Events 272
General 261
Setting 263,267

Clocks (Series 300) 376
Closing an IIO Path 219
CLR IIO 17,312
COM. .. 32,122,173
COM and GET .. 32
COM Blocks . 175
Command 6
Comments 11 ,13
Common Variable Storage. 175
Comparing REAL Numbers 299
Comparison Operators 81
Compatibility Display Interface 392
Compatibility Mode, Keyboard 382
Concatenation, Strings 123
Conditional Branching 55
Conditional Execution 53
Configurating a System 37
ConfigUring serial interface 381
Constants . 323
Context SWitching .. 178
CONTINUE .. 49
CONTROL .. 280
Control Characters . 253
Control Characters, Displaying 142
COPY. .. 38,240,342
Copying Files (SRM). 342
Copying:

Arrays 94
Files .. 38,240
Program Segments 21
Volumes 240

COPYLINES . 21
COS 84
CREATE ASCII 242,340
CREATE BDAT 221,340
Creating Directories (SRM) 339
Cross References 26
CRT:

Clearing. 279
Function .. 84,252

CSUBs . 355,356,398
CSUM 118

d
DATA 94,196
Data Files:

Storage Requirements 316
Structure. 205

Data Input .. 196
Data Pointer, Moving 199
Data Retrieval . 195
Data Storage 195,313,314
Data Structure . 187
Data Type Conversion 76
Data Types, Numeric 75
DATE. .. 84,263
DATE$ 262
Deactivating Events 71
Debugging. .. 305
Declaring Arrays 76
Declaring Variables 76
DEF 170
Default Dimensioning 92,121
Defined Records. .. 221
Defining Typing-Aid Softkeys 39
Degrees 85
DEL Command . 10
Deleting Lines . 10
Deleting Subprograms 23,183,184
DELSUB. .. 23,183
DET 84,113
Determinant of a Matrix 113
Device Selectors 214,249,252
Device Type 213
DIM 76,122
Dimension Table 313
Dimensioning an Array 87
Directories, Accessing. 242
Directories, Creating (SRM) 339
Directories, Reading 242
Directory Paths (SRM) 352
Directory, Hierarchical (SRM) 332
Directory, Root (SRM) 332
Disabling Events 71 ,73
Disc:

Cataloging. 243
Copying .. 240
Directory. .. 203
Initialization 210
Interleave . 202
Labels 211
Structure .. 200

Display Compatibility Interface 392
Displaying Control Characters 142
Displays . 279
DOT 84,108
Double SubSCripted Substrings 125
DROUND .. 83,84,85
DVAL 84,140
DVAL$ 140
Dyadic Operators .. 81

Clock:
Accuracy 261
Events 272
General 261
Setting 263,267

Clocks (Series 300) 376
Closing an IIO Path 219
CLR IIO 17,312
COM. .. 32,122,173
COM and GET .. 32
COM Blocks . 175
Command 6
Comments 11 ,13
Common Variable Storage. 175
Comparing REAL Numbers 299
Comparison Operators 81
Compatibility Display Interface 392
Compatibility Mode, Keyboard 382
Concatenation, Strings 123
Conditional Branching 55
Conditional Execution 53
Configurating a System 37
ConfigUring serial interface 381
Constants . 323
Context SWitching .. 178
CONTINUE .. 49
CONTROL .. 280
Control Characters . 253
Control Characters, Displaying 142
COPY. .. 38,240,342
Copying Files (SRM). 342
Copying:

Arrays 94
Files .. 38,240
Program Segments 21
Volumes 240

COPYLINES . 21
COS 84
CREATE ASCII 242,340
CREATE BDAT 221,340
Creating Directories (SRM) 339
Cross References 26
CRT:

Clearing. 279
Function .. 84,252

CSUBs . 355,356,398
CSUM 118

d
DATA 94,196
Data Files:

Storage Requirements 316
Structure. 205

Data Input .. 196
Data Pointer, Moving 199
Data Retrieval . 195
Data Storage 195,313,314
Data Structure . 187
Data Type Conversion 76
Data Types, Numeric 75
DATE. .. 84,263
DATE$ 262
Deactivating Events 71
Debugging. .. 305
Declaring Arrays 76
Declaring Variables 76
DEF 170
Default Dimensioning 92,121
Defined Records. .. 221
Defining Typing-Aid Softkeys 39
Degrees 85
DEL Command . 10
Deleting Lines . 10
Deleting Subprograms 23,183,184
DELSUB. .. 23,183
DET 84,113
Determinant of a Matrix 113
Device Selectors 214,249,252
Device Type 213
DIM 76,122
Dimension Table 313
Dimensioning an Array 87
Directories, Accessing. 242
Directories, Creating (SRM) 339
Directories, Reading 242
Directory Paths (SRM) 352
Directory, Hierarchical (SRM) 332
Directory, Root (SRM) 332
Disabling Events 71 ,73
Disc:

Cataloging. 243
Copying .. 240
Directory. .. 203
Initialization 210
Interleave . 202
Labels 211
Structure .. 200

Display Compatibility Interface 392
Displaying Control Characters 142
Displays . 279
DOT 84,108
Double SubSCripted Substrings 125
DROUND .. 83,84,85
DVAL 84,140
DVAL$ 140
Dyadic Operators .. 81

e
Edit 7
EDIT KEy 39
Edit Mode, Exiting. .. 14
Editing Subprograms 184
Editing Typing-Aid Softkeys. 39
Editor 7
Enabling Events. 68
END 48
END IF 56
END LOOP 66
END WHILE .. 64
End-of-File 236
End-Of-File Pointers 224
End-of-Record 236
Ending Functions . 185
Ending Subprograms 185
ENTER. .. 6,234
Entering a Single Item 290
Entering Program Lines 8
EOF Pointers. .. 224
ERRL 300
ERRM$ 300
ERRN 300
Error Messages 401
Error Numbers. .. 401
Error Trapping 300
Errors 297,401
Errors, Operator . 298
Escape Code Sequences 254
Event-Initiated Branching 45,68
Events 68
Events, Disabling. .. 71
Events, Enabling .. 68
Exclusive File Access (SRM) 335
EXEC key 6
EXECUTE key . 6
Executing a Subprogram. 171
EXIT IF 66
Exiting Edit Mode .. 14
EXP 84
Expressions, Evaluating 79
Extended Character Set. 145
External Printers .. 253

f
Files:

Accessing 218
ASCII 208
BOAT 205
Copying 38,242
Data 316
Names .. 28,204
Opening 218
Program . 316
Protecting .. 38,238
Protecting (SRM) 346
Purging 38,241
Purging (SRM) . 349
Renaming . 38
Types 204

FIND 21
FN 170
FNEND 185
FOR NEXT 61
Formatted Printing 255
FRACT 84
Function or Subprogram 169
Functions:

Ending 185
Numeric 84
String 127,131
User-Defined .. 167

9
GET 30
GOSUB 50
GOTO 50
GRAPHICS OFF 280
Graphics, Separate From Alpha 391
Graphics, Series 300 375

h
Halting Program Execution 48
Hardware 358
Hierarchical directory (SRM) 332
Hierarchy of Numeric Operators. 79
Hierarchy of String Operators. 123
Highlight Characters 145
HIL keyboard interface 377
HP 98203 (Compatibility Mode) 382
HP 98203 key codes 398

e
Edit 7
EDIT KEy 39
Edit Mode, Exiting. .. 14
Editing Subprograms 184
Editing Typing-Aid Softkeys. 39
Editor 7
Enabling Events. 68
END 48
END IF 56
END LOOP 66
END WHILE .. 64
End-of-File 236
End-Of-File Pointers 224
End-of-Record 236
Ending Functions . 185
Ending Subprograms 185
ENTER. .. 6,234
Entering a Single Item 290
Entering Program Lines 8
EOF Pointers. .. 224
ERRL 300
ERRM$ 300
ERRN 300
Error Messages 401
Error Numbers. .. 401
Error Trapping 300
Errors 297,401
Errors, Operator . 298
Escape Code Sequences 254
Event-Initiated Branching 45,68
Events 68
Events, Disabling. .. 71
Events, Enabling .. 68
Exclusive File Access (SRM) 335
EXEC key 6
EXECUTE key . 6
Executing a Subprogram. 171
EXIT IF 66
Exiting Edit Mode .. 14
EXP 84
Expressions, Evaluating 79
Extended Character Set. 145
External Printers .. 253

f
Files:

Accessing 218
ASCII 208
BOAT 205
Copying 38,242
Data 316
Names .. 28,204
Opening 218
Program . 316
Protecting .. 38,238
Protecting (SRM) 346
Purging 38,241
Purging (SRM) . 349
Renaming . 38
Types 204

FIND 21
FN 170
FNEND 185
FOR NEXT 61
Formatted Printing 255
FRACT 84
Function or Subprogram 169
Functions:

Ending 185
Numeric 84
String 127,131
User-Defined .. 167

9
GET 30
GOSUB 50
GOTO 50
GRAPHICS OFF 280
Graphics, Separate From Alpha 391
Graphics, Series 300 375

h
Halting Program Execution 48
Hardware 358
Hierarchical directory (SRM) 332
Hierarchy of Numeric Operators. 79
Hierarchy of String Operators. 123
Highlight Characters 145
HIL keyboard interface 377
HP 98203 (Compatibility Mode) 382
HP 98203 key codes 398

•
1

I/O Path:
Closing 219
Opening 218

10 PROM 379
Identifiers 315
Identity Matrix . 109
ION 109
IF THEN 53
IF THEN ELSE 57
Ill-Conditioned Matrices 114
IMAGE 256
Image Specifiers, Numeric 257
Image Specifiers, String 258
Images 256
Implicit Dimensioning 92
INDENT 23
Indenting a Program 23
Initializing a Disc . 210
Inputting Multiple Fields 293
INSERT LINE Key 9
Inserting Lines .. 9
Inserting Subprograms. 184
Instruction cache (MC68020) 376
INT 84
INTEGER 75
Integer Numbers .. 206
INTEGER Variables 319
Interface, Display Compatibility 392
Interfaces, built-in (Series 300) 376
Interleave on Discs 202
Internal Numeric Formats. 77
Interval Timing 271
Introduction .. 1
INV 110
Inverse Matrix 109
IVAL 84

k
KBD 39,84,252
Keyboard Compatibility Mode 382
Keyboard Input .. 289
Keyboard interface (HIL) 377
Keyboard Overlay. 386
Keyboards .. 8
Keyword 5
Knob, Using .. 70
KNOBX 71
KNOBY 71,356

1
Labels, Disc 211
LEN 127
Length of a String 121,127
Lexical Order .. 141
LEXICAL ORDER IS 132;141
Lexical Order, Predefined 147
Lexical Order, User-Defined 158
Lexical Tables 148
LEx..AIO . 160
LGT 84
Linear Program Flow 47,48
LINPUT 293
LIST 11
LIST KEy 41
Listing a Program .. 11
Live Keyboard .. 16,306
LOAD 28,34
LOAD KEy 41
Loading BINs 37
Loading Subprograms. 23,182
Loading Typing-Aid Softkeys 41
LOADSUB .. 23,182
LOG 85
Logical Comparisons 324
LOOP 61 ,65
Loop Counter .. 62
Loops 320
LWC$ 132

m
Main Program .. 5
Mass Memory Performance 316
Mass Storage .. 200
Mass Storage Access 212
MASS STORAGE IS 216
Mass Storage Unit Specifier (MSUS) . . . 27,216
Mass Storage, Non-Disc 216
MAT 95
MAT Functions .. 134
MAT REORDER 101
MAT SORT 102
Math Hierarchy . 79
Mathematical Operations 319
Matrix:

Definition of .. 107
Determinant .. 115
Identity . 111
Ill-Conditioned .. 116

•
1

I/O Path:
Closing 219
Opening 218

10 PROM 379
Identifiers 315
Identity Matrix . 109
ION 109
IF THEN 53
IF THEN ELSE 57
Ill-Conditioned Matrices 114
IMAGE 256
Image Specifiers, Numeric 257
Image Specifiers, String 258
Images 256
Implicit Dimensioning 92
INDENT 23
Indenting a Program 23
Initializing a Disc . 210
Inputting Multiple Fields 293
INSERT LINE Key 9
Inserting Lines .. 9
Inserting Subprograms. 184
Instruction cache (MC68020) 376
INT 84
INTEGER 75
Integer Numbers .. 206
INTEGER Variables 319
Interface, Display Compatibility 392
Interfaces, built-in (Series 300) 376
Interleave on Discs 202
Internal Numeric Formats. 77
Interval Timing 271
Introduction .. 1
INV 110
Inverse Matrix 109
IVAL 84

k
KBD 39,84,252
Keyboard Compatibility Mode 382
Keyboard Input .. 289
Keyboard interface (HIL) 377
Keyboard Overlay. 386
Keyboards .. 8
Keyword 5
Knob, Using .. 70
KNOBX 71
KNOBY 71,356

1
Labels, Disc 211
LEN 127
Length of a String 121,127
Lexical Order .. 141
LEXICAL ORDER IS 132;141
Lexical Order, Predefined 147
Lexical Order, User-Defined 158
Lexical Tables 148
LEx..AIO . 160
LGT 84
Linear Program Flow 47,48
LINPUT 293
LIST 11
LIST KEy 41
Listing a Program .. 11
Live Keyboard .. 16,306
LOAD 28,34
LOAD KEy 41
Loading BINs 37
Loading Subprograms. 23,182
Loading Typing-Aid Softkeys 41
LOADSUB .. 23,182
LOG 85
Logical Comparisons 324
LOOP 61 ,65
Loop Counter .. 62
Loops 320
LWC$ 132

m
Main Program .. 5
Mass Memory Performance 316
Mass Storage .. 200
Mass Storage Access 212
MASS STORAGE IS 216
Mass Storage Unit Specifier (MSUS) . . . 27,216
Mass Storage, Non-Disc 216
MAT 95
MAT Functions .. 134
MAT REORDER 101
MAT SORT 102
Math Hierarchy . 79
Mathematical Operations 319
Matrix:

Definition of .. 107
Determinant .. 115
Identity . 111
Ill-Conditioned .. 116

(Inverse. 111
Multiplication . 107
Singular. .. 114
Summing Columns 120
Summing Rows . 120
Transposition 119

MAX 85
MAXREAL 85
MC68010 376
MC68020 328,376
MC68881. 327
Media Specifiers . 213
Memory, Saving 329
Menues 282
Merging Subprograms 184
MIN 85
MINREAL. 85
Monadic Operators 81
MOVELINES .. 20
Moving a Data Pointer 199
Moving EOF Pointers. 224
Moving Program Segments 20
MSUS 27,213
Multiple Fields Input 293

n
Naming Files . 28
Naming Subprograms 167
Nesting Structures. 56
Non-ASCII Keys 281,411
Non-ASCII Keystrokes 40
Non-Disc Mass Storage 216
NPAR 174
Number Base Conversion 140
Numbers, Comparing. 299
Numeric Accuracy. .. 78
Numeric Computation 75
Numeric Data Types 75
Numeric Formats, Internal 77
Numeric Functions . 84
Numeric Image Specifiers 257
Numeric Precision. 78
Numeric to String Conversion 129

o
OFF-event . 72
ON CYCLE .. 68,272
ON DELAY . 68,272
ON END. 68,236
ON EOR. 68

ON EOT 68
ON ERROR 68,300,301
ON INTR 68
ONKBD 68
ON KEY 68,69
ON KNOB 68,69,400
ON SIGNAL .. 68
ON Statement .. 59
ON TIME . 68,273
ON TIMEOUT 68
ON-event. 68
Opening a File . 218
Opening an 1/0 Path 218
Operator Errors . 298
Operator Hierarchy. 79
Operators 81
Operators, Comparison 81
Operators, Dyadic . 81
Operators, Monadic 81
OPTION BASE. 88
Optional Parameters 173
OUTPUT . 225,236
OUTPUT KBD . 280
Overhead. 313
Overlay, Keyboard 386

p
Parameters .. 172
Parameters, Optional 173
Passwords (SRM) 334
PAUSE 49
PAUSE Key 17
Pausing a Program : 17
PDEV 20
Performance 316
PHYREC 355,357
PI 85
Plotter Spooler (SRM) " 345
Plotters, Shared (SRM) '. 344
Polynomial Evaluations 323
Porting to 4.0 398
Porting to Series 300 273
POS 127
Position of a Substring 127
Powerfail . 271
Precision 78
Prerun 15
Primary Address . 251
PRINT 255
PRINT USING. 256
PRINTALL IS 252,311
PRINTER IS. 248
Printer Spooler (SRM) 345

(Inverse. 111
Multiplication . 107
Singular. .. 114
Summing Columns 120
Summing Rows . 120
Transposition 119

MAX 85
MAXREAL 85
MC68010 376
MC68020 328,376
MC68881. 327
Media Specifiers . 213
Memory, Saving 329
Menues 282
Merging Subprograms 184
MIN 85
MINREAL. 85
Monadic Operators 81
MOVELINES .. 20
Moving a Data Pointer 199
Moving EOF Pointers. 224
Moving Program Segments 20
MSUS 27,213
Multiple Fields Input 293

n
Naming Files . 28
Naming Subprograms 167
Nesting Structures. 56
Non-ASCII Keys 281,411
Non-ASCII Keystrokes 40
Non-Disc Mass Storage 216
NPAR 174
Number Base Conversion 140
Numbers, Comparing. 299
Numeric Accuracy. .. 78
Numeric Computation 75
Numeric Data Types 75
Numeric Formats, Internal 77
Numeric Functions . 84
Numeric Image Specifiers 257
Numeric Precision. 78
Numeric to String Conversion 129

o
OFF-event . 72
ON CYCLE .. 68,272
ON DELAY . 68,272
ON END. 68,236
ON EOR. 68

ON EOT 68
ON ERROR 68,300,301
ON INTR 68
ONKBD 68
ON KEY 68,69
ON KNOB 68,69,400
ON SIGNAL .. 68
ON Statement .. 59
ON TIME . 68,273
ON TIMEOUT 68
ON-event. 68
Opening a File . 218
Opening an 1/0 Path 218
Operator Errors . 298
Operator Hierarchy. 79
Operators 81
Operators, Comparison 81
Operators, Dyadic . 81
Operators, Monadic 81
OPTION BASE. 88
Optional Parameters 173
OUTPUT . 225,236
OUTPUT KBD . 280
Overhead. 313
Overlay, Keyboard 386

p
Parameters .. 172
Parameters, Optional 173
Passwords (SRM) 334
PAUSE 49
PAUSE Key 17
Pausing a Program : 17
PDEV 20
Performance 316
PHYREC 355,357
PI 85
Plotter Spooler (SRM) " 345
Plotters, Shared (SRM) '. 344
Polynomial Evaluations 323
Porting to 4.0 398
Porting to Series 300 273
POS 127
Position of a Substring 127
Powerfail . 271
Precision 78
Prerun 15
Primary Address . 251
PRINT 255
PRINT USING. 256
PRINTALL IS 252,311
PRINTER IS. 248
Printer Spooler (SRM) 345

Printer Switch Setting 250
Printers, Shared (SRM) 344
Printers:

Control Characters. 253
Escape Codes .. 254
External. .. 253
General. .. 249

Printing, Formatted. 255
Processor boards, Series 300 376
PROG Files .. 28
Program Counter .. 47
Program Execution 15,308
Program Execution, Selection 53
Program Files 316
Program Flow:

Linear. 47,48
Repetition .. 47,59
Selection 47,51
Sequence 47,48

Program Line. .. 5
Programming a LOAD. 35
Programming GET .. 31
Programs:

Recording . 28
Replacing .. 29
Retrieving 27,30
Storing 27

PROM, ID 379
Prompts. 279
PROTECT .. 38,238
Protecting Files 38,238
Protecting Files (SRM) 346
PROUND .. 85,86
PRT 85,252
PURGE 349
Purging Files 38,241
Purging Files (SRM) 349

r
Radians 85
RAM Volumes 216
Random ENTER. .. 234
Random Numbers 86
Random OUTPUT 230
Range (clock) 261
Range (math) .. 79
RANK 85
RE-SAVE 29
RE-STORE. .. 29
RE-STORE BIN 357
RE-STORE KEy 41
READ 94,196
Reading BOAT Files 221 ,233

Reading Directories. 242
REAL 75
REAL Number Comparisons. 299
Real Numbers 206,322
Real-Time Clock 261
Recalling Lines 10
Record Lengths . 222
Recording a Program 28
RECOVER. .. 178
Recursion. .. 186
REDIM 97
Redimensioning Arrays, Automatic 95
Redimensioning Arrays, Explicit. 97
Registers, Status (SRM) 354
Relational Operations 123
REM 12
REMOTE 214
REN Command. 10
RENAME 38
Renaming a File. .. 38
Renumbering a Program 10
Reordering Arrays 101,137
REPEAT UNTIL. 61,63
Repeating a String 131
Repetition .. 61
Replacing Programs 29
RES 85
RESET Key . 17
Resources 313
RESTORE .. 199
Retrieving Programs 27,30
RETURN 50
Returning from a Subprogram 51
REV$ 131
Reversing a String .. 131
RND 85,86
Root Directory (SRM) 332
ROTATE 85
Rounding. .. 86
Rounding Numbers. 83
RPT$ 131
RSUM 118
RUN 15
Run Light. .. 17
Run-time .. 16
Running a Program .. 15

s
SAVE 28
Saving Memory .. 329
Saving Time. 325
SC 85
Scalar Expressions. .. 79

Printer Switch Setting 250
Printers, Shared (SRM) 344
Printers:

Control Characters. 253
Escape Codes .. 254
External. .. 253
General. .. 249

Printing, Formatted. 255
Processor boards, Series 300 376
PROG Files .. 28
Program Counter .. 47
Program Execution 15,308
Program Execution, Selection 53
Program Files 316
Program Flow:

Linear. 47,48
Repetition .. 47,59
Selection 47,51
Sequence 47,48

Program Line. .. 5
Programming a LOAD. 35
Programming GET .. 31
Programs:

Recording . 28
Replacing .. 29
Retrieving 27,30
Storing 27

PROM, ID 379
Prompts. 279
PROTECT .. 38,238
Protecting Files 38,238
Protecting Files (SRM) 346
PROUND .. 85,86
PRT 85,252
PURGE 349
Purging Files 38,241
Purging Files (SRM) 349

r
Radians 85
RAM Volumes 216
Random ENTER. .. 234
Random Numbers 86
Random OUTPUT 230
Range (clock) 261
Range (math) .. 79
RANK 85
RE-SAVE 29
RE-STORE. .. 29
RE-STORE BIN 357
RE-STORE KEy 41
READ 94,196
Reading BOAT Files 221 ,233

Reading Directories. 242
REAL 75
REAL Number Comparisons. 299
Real Numbers 206,322
Real-Time Clock 261
Recalling Lines 10
Record Lengths . 222
Recording a Program 28
RECOVER. .. 178
Recursion. .. 186
REDIM 97
Redimensioning Arrays, Automatic 95
Redimensioning Arrays, Explicit. 97
Registers, Status (SRM) 354
Relational Operations 123
REM 12
REMOTE 214
REN Command. 10
RENAME 38
Renaming a File. .. 38
Renumbering a Program 10
Reordering Arrays 101,137
REPEAT UNTIL. 61,63
Repeating a String 131
Repetition .. 61
Replacing Programs 29
RES 85
RESET Key . 17
Resources 313
RESTORE .. 199
Retrieving Programs 27,30
RETURN 50
Returning from a Subprogram 51
REV$ 131
Reversing a String .. 131
RND 85,86
Root Directory (SRM) 332
ROTATE 85
Rounding. .. 86
Rounding Numbers. 83
RPT$ 131
RSUM 118
RUN 15
Run Light. .. 17
Run-time .. 16
Running a Program .. 15

s
SAVE 28
Saving Memory .. 329
Saving Time. 325
SC 85
Scalar Expressions. .. 79

SCRATCH 46
SCRATCH A. 46
SCRATCH BIN. .. 46
SCRATCH C. 46
SCRATCH KEY .. 46
Scratching BINs. .. 37
Screen Width .. 279
Search and Replace 21
Searching for Strings 138
SECURE 43
Securing Program Lines. 43
SELECT 58
SELECT CASE. .. 59
Separate Alpha and Graphics 391
Serial ENTER .. 233
Serial interface configuration 381
Serial OUTPUT. .. 225
Series 300 computers 274
SET TIME .. 262,264
SET TIMEDATE 262,264
Setting the Clock. 262,264
SGN 85
Shared Plotters (SRM) 344
Shared Printers (SRM) 344
Shared Resource Manager (SRM) 331
SHIFT 85
Simple Branching . 50
SIN 85
Single Byte Access . 235
Single-Subscripted Substrings 124
Singular Matrices 112
SIZE 85,93
Softkeys .. 39,282
Softkeys, Defining Typing-Aid 42
Softkeys, Typing-Aid Definitions 39,41
Solving Simultaneous Equations 110
Sorting Arrays 102
Sorting by a Vector 136
Sorting by Substrings 135
Sorting Strings . 133
Spooler (SRM) .. 345
SQR 85
SRM 331
SRM, Autostart . 36
SRM:

Booting from .. 336
Creating Directories. 339
Directory Paths .. 352
Directory, Root .. 332
Exclusive File Access. 335
Hierarchical directory 332
Passwords .. 334
Shared Plotters 344
Shared Printers 344

Statement. .. 5
Statements, New. .. 356
Status Registers (SRM) 354
STEP Key . 308
Stepping 308
STOP 48
STOP Key 17
Stopping a Program . 17
STORE 28
STORE KEY 41
STORE SySTEM 37,355
Storing:

A System 37
Data 196
Programs 27
Strings . 122

String-to-Numeric Conversion. 128
Strings:

Arrays 122
Concatenating .. 123
Conversion to Numeric 128
Default Dimensioning 121
Evaluation Hierarchy 123
Functions 127,131
General. .. 82,121
Image Specifiers. 258
Length 121 ,127
Relational Operations 123
Repeat. 131
Reverse. .. 131
Sorting. .. 133
Storing. .. 122
Trimming .. 131
Null 121

SUBEND 185
Subprogram or Function 169
Subprograms:

Calling. .. 171
Deleting. .. 183
Editing. .. 184
Ending 185
Executing .. 171
General 5
Inserting .. 184
Libraries 23,182
Loading. 182
Merging. .. 184
Naming 167
RECOVER. 179
Returning from .. 51
Softkeys .. 179
Speed 180
User-Defined 167
Variables . 179

SCRATCH 46
SCRATCH A. 46
SCRATCH BIN. .. 46
SCRATCH C. 46
SCRATCH KEY .. 46
Scratching BINs. .. 37
Screen Width .. 279
Search and Replace 21
Searching for Strings 138
SECURE 43
Securing Program Lines. 43
SELECT 58
SELECT CASE. .. 59
Separate Alpha and Graphics 391
Serial ENTER .. 233
Serial interface configuration 381
Serial OUTPUT. .. 225
Series 300 computers 274
SET TIME .. 262,264
SET TIMEDATE 262,264
Setting the Clock. 262,264
SGN 85
Shared Plotters (SRM) 344
Shared Printers (SRM) 344
Shared Resource Manager (SRM) 331
SHIFT 85
Simple Branching . 50
SIN 85
Single Byte Access . 235
Single-Subscripted Substrings 124
Singular Matrices 112
SIZE 85,93
Softkeys .. 39,282
Softkeys, Defining Typing-Aid 42
Softkeys, Typing-Aid Definitions 39,41
Solving Simultaneous Equations 110
Sorting Arrays 102
Sorting by a Vector 136
Sorting by Substrings 135
Sorting Strings . 133
Spooler (SRM) .. 345
SQR 85
SRM 331
SRM, Autostart . 36
SRM:

Booting from .. 336
Creating Directories. 339
Directory Paths .. 352
Directory, Root .. 332
Exclusive File Access. 335
Hierarchical directory 332
Passwords .. 334
Shared Plotters 344
Shared Printers 344

Statement. .. 5
Statements, New. .. 356
Status Registers (SRM) 354
STEP Key . 308
Stepping 308
STOP 48
STOP Key 17
Stopping a Program . 17
STORE 28
STORE KEY 41
STORE SySTEM 37,355
Storing:

A System 37
Data 196
Programs 27
Strings . 122

String-to-Numeric Conversion. 128
Strings:

Arrays 122
Concatenating .. 123
Conversion to Numeric 128
Default Dimensioning 121
Evaluation Hierarchy 123
Functions 127,131
General. .. 82,121
Image Specifiers. 258
Length 121 ,127
Relational Operations 123
Repeat. 131
Reverse. .. 131
Sorting. .. 133
Storing. .. 122
Trimming .. 131
Null 121

SUBEND 185
Subprogram or Function 169
Subprograms:

Calling. .. 171
Deleting. .. 183
Editing. .. 184
Ending 185
Executing .. 171
General 5
Inserting .. 184
Libraries 23,182
Loading. 182
Merging. .. 184
Naming 167
RECOVER. 179
Returning from .. 51
Softkeys .. 179
Speed 180
User-Defined 167
Variables . 179

Substrings:
Defined . 124
Double Subscripts 125
Position .. 127
Single Subscripts 124
Sorting. 135

SUM 85,96
Summing Columns in Arrays 118
Summing Rows in Arrays. 118
Suppressing a Catalog Header 246
SWitching Context. 178
Symbol Table 313
Syntax 9
Syntax Checking. .. 9
System Configuration 37
SYSTEM$("LEXICAL ORDER IS") 147
SYSTEM$("SYSTEM 10") 398
SYSTEMS$("KBD LINE") 295
SYSTEMS$("KEYBOARD LANGUAGE") 147
SYSTEMS$("SERIAL NUMBER") 44
Systems, Storing .. 37

t
TAB 255
TABXY 255
TAN 85
Time 262
TIME . 85,262
TIME$ 262
Time, Saving . 329
TIMEDATE .. 262
Timing Interval .. 270
Token Table 313
TRACE ALL .. 309
TRACE OFF 311
TRACE PAUSE 311
Tracing . 309
Transporting Programs (to 3.0) 355
Transporting Programs (to Series 300) 373
Transposing Matrices 117
Trapping Errors 300
TRIM$ 131
Trimming a String. 131
Type Conversion 322
Typing Aids 39

u
Unit Number 214
UNTIL 63
UPC$ 132
Upgrading BASIC Programs 355,373
Upper and Lower Case 9,132
User-Defined Functions 167
User-Defined Lexical Order 158
User-Defined Subprograms 167

v
VAL 128
VAL$ 129
Variables, Declaring 76,122
Variables, Global. .. 175
Variables, Memory ReqUirements 315
Volume Label 203
Volume Number 215
Volumes, Copying 240

w
WAIT 49
WHILE 61,64
Writing Data. 225
Writing to BOAT Files 221

x
XREF 20,26

Substrings:
Defined . 124
Double Subscripts 125
Position .. 127
Single Subscripts 124
Sorting. 135

SUM 85,96
Summing Columns in Arrays 118
Summing Rows in Arrays. 118
Suppressing a Catalog Header 246
SWitching Context. 178
Symbol Table 313
Syntax 9
Syntax Checking. .. 9
System Configuration 37
SYSTEM$("LEXICAL ORDER IS") 147
SYSTEM$("SYSTEM 10") 398
SYSTEMS$("KBD LINE") 295
SYSTEMS$("KEYBOARD LANGUAGE") 147
SYSTEMS$("SERIAL NUMBER") 44
Systems, Storing .. 37

t
TAB 255
TABXY 255
TAN 85
Time 262
TIME . 85,262
TIME$ 262
Time, Saving . 329
TIMEDATE .. 262
Timing Interval .. 270
Token Table 313
TRACE ALL .. 309
TRACE OFF 311
TRACE PAUSE 311
Tracing . 309
Transporting Programs (to 3.0) 355
Transporting Programs (to Series 300) 373
Transposing Matrices 117
Trapping Errors 300
TRIM$ 131
Trimming a String. 131
Type Conversion 322
Typing Aids 39

u
Unit Number 214
UNTIL 63
UPC$ 132
Upgrading BASIC Programs 355,373
Upper and Lower Case 9,132
User-Defined Functions 167
User-Defined Lexical Order 158
User-Defined Subprograms 167

v
VAL 128
VAL$ 129
Variables, Declaring 76,122
Variables, Global. .. 175
Variables, Memory ReqUirements 315
Volume Label 203
Volume Number 215
Volumes, Copying 240

w
WAIT 49
WHILE 61,64
Writing Data. 225
Writing to BOAT Files 221

x
XREF 20,26

((

Manual Comment Sheet Instruction
If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page) , include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

Manual Comment Sheet Instruction
If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page) , include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

(98613-90011

Name:

MANUAL COMMENT SHEET
BASIC 4.0 Programming Techniques
for HP 9000 Series 2001300 Computers

Update No. ______ _

(See the Printing History in the front of the manual)

July 1985

Company: __ __

Address:

PhoneNo: ______________________ __
fold _________ _ _____ _ _ _ ___ _ _____ __ ___ __ ____ ___________ __ _ _________ _ __ _ __ ____ _ _ __ _ _ _ __ _ _ _ _______ ___ __ fold

fold _ _____ __ _ _ _ __ _ ____________ _____ _ __ ____ _ _ ______ _ ________ _____ __ _ _ _ __ __ ________________ ____ _ _ ____ fok

(98613-90011

Name:

MANUAL COMMENT SHEET
BASIC 4.0 Programming Techniques
for HP 9000 Series 2001300 Computers

Update No. ______ _

(See the Printing History in the front of the manual)

July 1985

Company: __ __

Address:

PhoneNo: ______________________ __
fold _________ _ _____ _ _ _ ___ _ _____ __ ___ __ ____ ___________ __ _ _________ _ __ _ __ ____ _ _ __ _ _ _ __ _ _ _ _______ ___ __ fold

fold _ _____ __ _ _ _ __ _ ____________ _____ _ __ ____ _ _ ______ _ ________ _____ __ _ _ _ __ __ ________________ ____ _ _ ____ fok

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Reorder Number
98613-90011
Printed in U.S.A. 7/85

Fh;1l HEWLETT
.:~ PACKARD

98613-90650
Mfg. No. Only

Reorder Number
98613-90011
Printed in U.S.A. 7/85

Fh;1l HEWLETT
.:~ PACKARD

98613-90650
Mfg. No. Only

Scan Copyright ©

The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP

Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.

