
HP 95LX Developer's Guide

Copyright Hewlett-Packard Company 1991
All rights reserved

1 st Revision
August 30, 1991

Notice

This manual and the software described herein are provided "as·is" and are subject
to change· without notice. Hewlett-Packard Company ·makes no waITanty of any
kind with regard to this manual or the software described herein, including, but not
limited to, the implied·merchantability and fitness for a particular purpose.
Hewlett-Packard Co. shall not be liable for any errors or for incidental or
consequential damages in connection with the furnishing, performance, or use of
this manual or the software descnbed herein.

Copyright Hewlett-Packard Co. 1991. All rights reserved. Reproduction,
adaptation, or translation of this manual, including any programs, is prohibited
without prior written permission of Hewlett-Packard Company, except as allowed
under copyright laws.

Corvallis Division
1000 NE Circle Blvd.
Corvallis, OR 97330, U.SA

Printing History

Preliminary Draft
1st Revision

May 1, 1991
August 30,1991

Important Note to Software Developers

Hewlett-Packard is committed to making your current and future
development efforts as easy as possible. In keeping ~ith ttlis commitment,
Hewlett-Packard recommends that developers avoid using HI? 95LX
hardware specific features for I/O. Software written using HP 95LX
hardware specific features is very likely not to run on future HP product.

lIP 95LX Technical Information

Table of Contents:

Pages

1. ISV Developer's Overview 1-1 to 1-4

2. Off-the-Shelf Development Tools 2-1

3, HP 95LXDOS 3-1

4. HP 95LX BIOS ERS 1 to 104

5. File Specifications for HP 95LX Built-in Applications 4-1 to 4-9

6. HP 95LX Memory Management 6-1 to 6-2

7. HP 95LX Low-Level Graphics Support 7-1 to 7-21

8. HP 95LX System Manager Operation and Programmer's Guide 7-1 to 7-18

9. HP 95LX System Manager Services Reference 8-1 to 8-60

10. From Software Design to Ordering ROM Cards 10-1 to 10-7

11. 'Hopper' HP 95LX System Controller ERS 1 to 80

12. HP 95LX Wired Serial and Infrared I/O ERS 1 to 15

13. Custom Artwork 14-1

14. PC Card Standard (PCMCIA 1.0) 1 to 102

ISV Developer's Overview

The information contained in this notebook is intended for Independent Software Vendor

(ISV) use in planning of software development or adaptation tasks. It is hoped that this

information will provide you with enough details about the Jaguar platform in order to

formulate a strategy for adapting your product to the HP 95LX.

Levels of Adaptation

1

Most programs intended to run on The HP 95LX will require or at least benefit from being

modified to conform to The HP 95LX hardware. Assuming that this has been considered, the

next consideration is how the software will run on The HP 95LX. The The HP 95LX platform

provides three options in this area:

1. Run from RAM as an independent DOS program. Such a program would be compiled and

linked with standard DOS tools and would be loaded and executed by DOS exactly as on a

standard PC.

There are several distribution options for these programs. All that is required for execution

is that they reside on a The HP 95LX disk. Hence they could be down loaded to The

HP 95LX's internal disk from a PC or a modem connection, or they could be distributed

on a plug-in ROM card which has been formatted as a disk.

This is the simplest execution option. However it may be the least RAM efficient and it

will not be integrated with The HP 95LX's built-in applications.

2. Run as an independent ROM executable XIP (eXecute In Place) program. Such a program

would be distributed on a ROM card and at execution time would bank switch its code

into the CPU address space using The HP 95LX's bank switching capabilities.

The advantage of this over option 1 is greater RAM efficiency. There is still no integration

with the built-in applications.

This level of adaptation will require the code to be ROMable, will require the use of

special software tools to prepare the ROM image and will require the program to use The

HP 95LX's bank switching services. The necessary tools and services are not completely

described in this document, but will be defined in the developer's kit. See the "Memory

Management" chapter for more information on XIP.

3. Run under the System Manager. Such a program will be called System-Manager-compliant

and can be either RAM executable or XIP.

Under this option, the program has access to the same set of services that are used by the

built-in applications. For example, this enables the program to share a non-preemptive

multitasking environment with the built-in applications so that the user can conveniently

switch between tasks.

DRAFT ISV Developer's Overview 1-1

4/12/91 14:25

The "System Manager Guide" and "System Manager Reference" sections deal with writing
System-Manager-compliant applications:·

The HP 95LX Hardware Overview
The HP 95LX is a Palmtop PC which is very PC compatible except in areas which have been
customized to obtain its small size or to support large amounts of memory. These areas are
highlighte!i here.

Display

The HP 95LX's physical display is 40 characters by 16 lines in text mode. This display is a
window into an MDA standard 80 character by 25 line display RAM. While there is provision
for windowing the physical display around the larger display RAM, it is expected that most
software development for The HP 95LX will include customization to a 40 by 16 screen.

The HP 95LX's display also has a (non-standard) graphics mode which has pixel dimensions
of 240 columns by 128 rows.

Character Font

The HP 95LX character fonts are stored in ROM. Codepage 850 was used since it contains
international characters. This was chosen to facilitate the localization of the product.
Developers should be aware that the standard for PC's in codepage 437 which contains line
drawing characters.

Keyboard

The HP 95LX's keyboard is shown in figure 1. See the BIOS Int 9h documentation for the
scan/ ASCII codes corresponding to each key.

Memory Structure

The HP 95LX has more "logical" memory (Le., memory residing on memory chips) than can
be accommodated in the 1 megabyte "physical" address space of the CPU. Bank switching is
used to access the additional memory. For example, Figure 2 shows that bank switching is
used to access the code for the built-in applications and to access the memory on a plug-in
card. See the "Memory Management" chapter for more information.

Plug-in Cards

The HP 95LX has one plug-in card slot which accommodates a PCMCIA/JEIDA standard
memory card. This card slot is somewhat analogous to a floppy disk drive on a standard PC.
There are two main types of cards.

One is a battery-backed RAM card which is formatted as a RAM disk. This type of card is
analogous to a floppy disk. RAM cards will be available in 128K and 512K byte sizes.

The other is a ROM card which contains application software. This card could be formatted
as a disk in which case it would be analogous to a read-only disk. A ROM card can also

1·2 ISV Developer's Overview DRAFT
4/12/91 14:25

contain XIP software designed to be bank switched into CPU address space rather than
accessed as a disk file. ROM cards will be available 1 and 2 megabyte sizes.

The HP 95LX Software Overview

Built-in Applications

The HP 95LX features eight built-in applications: Lotus 1-2-3, HP calculator, Memo, Phone
Book, Appointment Book, Terminal Emulator, Filer, and Setup. These applications are
accessed by pressing their corresponding key, see figure 1.

System Manager

The System Manager is the control program which runs the built-in and other
System -Manager-compliant applications.

All the built-in applications execute from ROM under the direction of the System Manager.
Briefly, when an application's key is pressed, the System Manager deactivates any current
application, performs any necessary bank switching to access the code for the requested
application and starts up the new application. This is termed non-preemptive multitasking
since that application being deactivated gets a chance to "clean up" before losing control.

See "System Manager Guide" and "System Manager Reference" for more information.

DOS

The HP 95LX uses Microsoft DOS 3.22. This version of DOS was chosen because it executes
from ROM leaving the maximum amount of RAM available for applications.

The DOS kernel functions are always available and provide access to the DOS command
processor. However, since the emphasis of The HP 95LX is on applications, The HP 95LX
does not contain the full set of DOS external commands. See the "DOS" chapter for notes on
how DOS has been customized for The HP 95LX.

,(BIOS

The HP 95LX contains a ROM BIOS layer which provides the standard interface as well as
many extensions to support The HP 95LX specific hardware. See the "BIOS" chapter for
details.

Disks

The HP 95LX's disk support is patterned after that of a PC which has an internal hard disk
drive and one floppy disk drive.

The HP 95LX's internal disk, which is named C:, is a combination RAM/ROM disk. The
ROM disk portion contains a variety of files such as help files for the built-in applications and
utility programs such as FORMAT. The RAM disk portion contains user files and resides in
system RAM. The size of the RAM disk is user settable using the "Setup" application.

DRAFT ISV Developer's Overview 1-3
4/12/91 14:25

The HP 95LX uses plug-in battery-backed RAM cards formatted as RAM disks for its
"floppy" disks. The plug-in port is the A: (or B:) drive, analogous to a single floppy drive on a
PC.

1·4 ISV Developer's Overview DRAFT
4/12/91 14:25

2
Off-the-Shelf Development Tools

Since the HP 95LX runs Microsoft DOS version 3.22, compilers, assemblers, and debuggers
compatible with this version of DOS can be used to develop software for the HP 95LX. Some
development packages such a Turbo-C from Borland support remote debugging over a serial
interface. This configuration works on the HP 95LX and is very useful for certain types of
software development.

Since the HP 95LX is a relatively small PC, users of off-the-shelf tools should make certain
they understand what overhead is built into the use of their tools. Two examples follow:

• Run time support libraries sometimes include modules that are not needed by the main
program .

• Users building HP 95LX system-manager-compliant programs need to be aware of any
library initialization code their package automatically includes in programs they build.
Much of this sort of initialization code is incompatible with the HP 95LX System Manager.
Steps can usually be taken to use library routines that do ;not require initialization.

DRAFT Off-the-Shelf Development Tools 2-1
4/12/91 14:23

HP 95LX DOS

Introduction

The HP 95LX contains the primary components of ROM-executable MS-DOS 3.22.

More specifically, the HP 95LX contains the DOS Kernel and the command processor, but
only a few external commands.

Generally speaking, DOS works the same on the HP 95LX as it would on a standard PC
(except for the missing external commands). For this reason, these notes discuss only the
differences between the operation of MS-DOS 3.22 on the HP 95LX and DOS's operation
on a standard PC.

DOS Boot Sequence

3

On a st.andard PC, DOS boots off disk and runs from RAM. On the HP 95LX, DOS boots
out of ROM and runs from ROM. Thus on the HP 95LX DOS, RAM requirements are greatly
reduced since only DOS data is stored in RAM.

There is no provision on the HP 95LX to boot from disk. However, a disk can contain
CONFIG.SYS and AUTOEXEC.BAT files-see below.

DOS Initialization

On a standard PC, DOS makes the boot disk drive the default drive and searches the root
directory of that drive for a CONFIG.SYS file.

On the HP 95LX, DOS initialization has been changed to first search for CONFIG.SYS on
the A: drive and, if not found, to search on the C: drive. If CONFIG.SYS is found on the A:
drive, then that CONFIG.SYS is processed and A: is made the default drive. In this case,
any CONFIF.SYS that is on the C: drive will not be processed. If CONFIG.SYS is not found
on the A: drive, then C: is made the default drive and any CONFIG.SYS found there will be
processed.

The DOS EXEC Function

In ROM-executable MS-DOS 3.22, the EXEC function has been extended to first search a
table of ROM-executable programs before searching disk in case the program name has no
drive path specified.

On the HP95LX, the table contains the two names COMMAND and $SYSMGR. The
COMMAND program is the DOS command processor and the $SYSMGR program is the
System Manager.

DRAFT HP 95LX DOS 3-1
4/13/91 08:08

The Default Shell

On standard DOS systems, the default shell is COMMAND.COM. On the HP 95LX,
COMMAND.COM is the System Manager.

The System Manager is the program that directs execution of the built-in and special add-on
applications. The HP 95LX System Manager does not process any AUTOEXEC.BAT files.

The DOS Command Processor

COMMAND.COM is available in the HP 95LX, but is not normally run at initialization
time since DOS goes directly to the System Manager shell. There are two ways to access the
command processor:

1. Invoke the command processor from within the System Manager program.

2. Change the shell to the command processor by including the line

SHELL=COMMAND jP

in the CONFIG.SYS file and reboot.

This causes DOS to go directly to COMMAND.COM - the System Manager is noi
invoked and the built-in application keys will not be active. The commands that are
available are the internal command processor commands, any external programs on disk,
and the two ROMed program commands listed above.

One use of this method is to get access to DOS in order to perform some custom
initialization and then run the System Manager using the $SYSMGR command.

Disk-Resident External Commands

The HP 95LX contains two external commands, COMMAND.COM and CHKDSKEXE,
which reside in the root directory of the ROM disk.

The COMMAND.COM program is only a stub that invokes the actual command processor
residing in ROM. This stub is provided in case some program accesses the command processor
by its full name (including extension). As mentioned above, COMMAND (without path or
extension) will be executed directly from ROM.

CHKDSK is the standard DOS check disk command.

The HP 95LX also contains DEBUG.EXE in a hidden directory called _SYS. This directory is
off the root of the ROM disk. This is the standard DOD DEBUG program.

International Support

MS-DOS 3.22 supports the COUNTRY= configuration parameter and DOS calls that allow
tailoring DOS and applications to local language characteristics. Some of this information
depends on the the PC's character set. DOS 3.22 supports only code page 437 (switchable
code pages start with DOS 3.3). Since the HP 95LX uses code page 850, the country-specific
information in HP 95LX DOS has been updated to match code page 850.

Note however that the international support that is built into the System Manager does not
use these DOS capabilities.

3·2 HP 95LX DOS DRAFT
4/13/91 08:08

JAGUAR BIOS
External Reference Specif i cation

Version 2.02
May 1,1991

Hewlett-Packard Company

/'

Overview

This is the specification of the Jaguar ROM Basic Input/Output System (BIOS). The BIOS provides
the lowest level of software· support- for· applications running on Jaguar. This specification describes in.
detail the implementation of the Jaguar BIOS. The Jaguar BIOS is designed to be completely
compatible with IBM's new version of the PC-XT. In addition to the PC-XT BIOS functions, the
Jaguar BIOS includes a small number of BIOS functions which are compatible with the IBM-AT

The Jaguar BIOS is based upon an XT level BIOS source code obtained from Phoenix Software
Associates (PSA). The code HP purchased from PSA was written to' be' compatible with the IBM PC­
XT of pre-April 1986 vintage, i.e. before the introduction of a new version of the XTwith the.
enhanced keyboard. To our knowledge, the PSA XT code received by HP was written by Phoenix
without infringing on any of IBM's copyrights to the XT BIOS code. In the same spirit, HP has added
and modified the code without copyright infringement.

Jaguar Hardware set

Jaguar is an Information Management Calculator. It features an 8088 processor and hardware set that
is moderately compatible with an IBM-XT. Differences between Jaguar and XT hardware are listed
below:

• Jaguar has a smaller display than a XT. The jaguar display size is 40 x 16 (text) or 240 x 128 dots
(graphics) vs XT's monochrome display size of 80 x 25 (text) or·320 x 200 dots (CGA graphics).
The Display RAM in Jaguar is the same size as that of an XT with a Monochrome Display
Adapter(4K bytes). Also, there is provision to window around in the display RAM, so the user can
see the contents of all4K of RAM.

• Jaguar's display cursor size control is different from that of an IBM-XT.

• Jaguar has no mechanical disk. Instead there is a built-in RAM disk.

• Jaguar has a different keyboard layout from the IBM-XT.

• Jaguar's keyboard management is different from the IBM-XT. Keyboard Scans are implemented in
software in Jaguar, while they are performed by an 8048 microcontroller in a XT. However, the
Jaguar keyboard interrupt service routine will emulate the 8048.

• Jaguar supports plug-in ROMs.

• Jaguar supports plug-in RAMs. All memory in plug-in RAM will be used as RAM disk.

• Jaguar is switched ON or OFF under software control. This is compared to an XT which is
switched ON or OFF by a hardware switch that controls power to the entire machine.

• Jaguar has LCD contrast adjustment under software control. This is fundamentally different from
XT brightness contro~ which is done with a potentiometer adjustment.

• Jaguar does not support a parallel printer. However, it does support a serial printer which uses
XON-XOFF flow control.

• Jaguar supports only one serial port UART. However the serial channel can.be directed either to
the IR or wired serial port.

• Jaguar RAM is 8 bits wide. There is no parity bit, as in the IBM-XT.

• Jaguar's hardware interrupt set is not identical in function to an XT.

Changes to PSA Code
The following changes were made to the PSA code. This list is just touches on the major changes. To
obtain more information on the changes made, refer to the chapter on the BIOS Interrupts or go
straight to the BIOS source code.

1

< Reset Vector>

Int02

Int05

Int06

Int08

Int09

IntOA

Int OB

IntOD

IntOE

IntOF

Int 10

2

Overview

Power On Code was changed so that turning the machine on causes the
machine to return to the application that was running before the system was
powered down.

Nonmaskable interrupt (NMI).
This is invoked in the mM-XT when a RAM parity error occurs. It is
invoked on Jaguar by either a Low Battery or Module Pulled event.

Print Screen Interrupt.
This prints the contents of the active display window only, not the contents of
the entire display memory as in themM-XT.

Low Power Hook
This interrupt is called by the system:

- Just before going to light sleep.

- Just after awakening from light sleep.

- Just before going to deep sleep.

Just after awakening from deep sleep.

Timer hardware service.
The timer service was modified to add display window control and battery
level checks.

Keyboard interrupt.
Int 09 was modified to support Char key translations, Mute key translations
and the ALT-NUMPAD code was modified to work with top row number
keys instead of number pad keys.

Miscellaneous interrupt.
This is a reserved interrupt in the mM-XT.

Keyboard and touch panel hardware interrupt.
In Jaguar, hardware keyboard interrupt in Jaguar is INT Bh, not INT 09.
INT OBh code debounces pressed keys and places key code in the keycode
register (I/O address 6Oh). Then it invokes the INT 09 service routine.
NOTE: INT OBh is the COM2 interrupt in the mM-XT.

HOPPER m Interrupt
This is the fIXed disk interrupt in the mM-XT.

External XINT pin hardware interrupt routine.
This is diskette interrupt in the mM-XT.

HOPPER RTC interrupt.
This is the LPT1 interrupt in the mM-XT.

Video Services
Changed CGA functions to maintain a moderate degree of compatibility.
Left MDA functions intact.

Overview

Int13

Int 14

Int15

Int16

Int 17

Int 19

Int 1A

Int 1£

Int 1F

Disk services.
Modified to work·with a RAM disk.

Serial Port Services.
Removed waits for DSR and crs set when sending a character. Removed
wait for DSR set when receiving a character. The receive character service
changes the serial port interrupt vector to point to a dummy interrupt service
routine Gust an IRET).

System services (Cassette control in now defunct XT)
Just about all of Int 15 is new. Keyboard translation hook (lnt 15 function
4F)

Keyboard Services.
Modified to trap [ON] key press while machine is running. Also invokes light
sleep code.

Printer services
·Modified to work with a serial printer. It implements the XON-XOFF
handshake in Jaguar. These services change the serial port vector to point to
a serial service routine that handles XON-XOFF handshakes.

Boot service
Now boots DOS from ROM.

Time of day services
Added support of real time clock, including the capability of setting an alarm.
The alarm is capable of turning on power to the unit.

Set to a dummy IRET.
This is the disk parameter table in the mM-XT.

Graphics character table pointer
This points to a code page 850 font for characters SOh - FFh.

The following PSA interrupt handlers were not modified:

3

4

Intll

Int12

Int 14

Intl,B

Int1C

Int 1D

Equipment check service

Get memory size service

Serial port service

Keyboard break default handler

Timer tick default handler (how can you change an IRET?)

Video parameter table

Overview

BIOS RAM Def"mition

BIOS RAM Def"mition

This chapter describes how memory is organized and used by the BIOS.

OOOOOh
Interrupt Vectors

OO4OOh
BIOS Data Area

OO6OOh
DOS Data Area

OOlOOOh
Memory Mapped Display RAM

02000h
DOS Data Area

(Variable)-

Disk Operating System (DOS)

(Variable)-

Application Program Area

(Variable)-
RAM Disk Portion of Drive C:

BOOOOh
Unused

AOOOOh
OS Functions

BOOOOh
MDARAM

B1000h

Unused

COOOOh
1\vo 64KB Page Frames

EOOOOh
Four 16KB Page Frame

FOOOOh
BIOS ROM

FffFFh

- Size of the Disk Operating System area varies since optional drivers
and buffers may occupy variable amounts of RAM.

Interrupt Vector Table. The interrupt vector table is in the address range from O:OOOOh through O:3fth.
Vectors used by BIOS are initialized by the BIOS initialization code.

The table below lists the interrupt vector assignments and identifies each interrupt by function and
type. The interrupts consist of four types: services, ISRs, hooks, and tables:

• A service is an application program callable interrupt. Such interrupts provide functions that an
application can call by using the appropriate Int instruction.

5

BIOS RAM Def"mition

• An ISR is a hardware interrupt. service routine. These routines . should not be called from
applications since unpredictable results may occur.

• A hook is an interrupt service routine provided for applications to optionally take over.

• A table is a pointer to a table of data bytes.

Int Address Function 'JYpe
Range (Hex)

OOh 000-003 Divide by Zero Hook
Olh 004-007 Single Step Hook
02h OOS-OOB NMI Interrupt Hook
03h OOC-OOF Breakpoint Hook
O4h 010-013 Arithmetic Overflow Hook
OSh 014-017 Print Screen Service
06h OlS-OlB Low Power Hook Hook
07h OlC-OlP Reserved Hook
OSh 020-023 IROO, TimerO Hardware Interrupt ISR
09h 024-027 IR01, PC Compatible Keyboard Interrupt ISR
OAh 028-02B IR02, HOPPER Miscellaneous Interrupt ISR
OBh . 02C-02F IR03, HOPPER keyboard & touch panel interrupt Hoox
OCh 030-033 IR04, HOPPER UART interrupt Hook
ODh 034-037 IR05, HOPPER IR input interrupt ISR
OEh 038-03B IR06, HOPPER XINT pin interrupt ISR
OFh 03C-03F IR07, HOPPER RTC interrupt ISR
10h 040-043 Video Services Service
llh 044-047 Equipment Check Service
12h 048-04B Memory Size Service
13h 04C-04F Flexible Disk Services Service
l4h 050-053 Serial Port Services Service
15h 054-057 System Functions Service
16h 05S-0SB Keyboard Services Service
17h 05C-05F Dummy Return
lSh 060-063 Reserved
19h 064-067 Boot Service
lAb 068-06B Time-of-Day Services Service
lBh 06C-06F Keyboard Break Hook
lCh 070-073 Timer Tick Hook
lOh 074-077 Video Parameter Table Pointer Table
lEh 07S-07B Flexible Disk Parameter Table Pointer Table
1Fh 07C-07F Graphics Character Table Pointer Table
2Oh-3Fh O8O-0FF Reserved for DOS
4Oh-49h 100-127 Reserved
4Ah 128-12B Alarm Interrupt Hook
4Bh-5Fh 12C-l7F Reserved
6Oh-6lh lSO-lS7 System Manager Interrupts
62h 188-1SB Reserved
63h lSC-1SF XIP Services
64h-6Fh 190-lBF Reserved
70h lCO-lC3 Real-Time Clock Interrupt ISR
7lh-FOh lC4-3C3 Reserved
Flh-FFh 3C4-3FF Not Used

Most Jaguar interrupts have the same function as the corresponding PSA interrupt. (p 28 of Phoenix

6

BIOS RAM Def"mition

manual). Interrupts with different functions from the PSA BIOS definition are shown in the following
table:

Int
(Hex)

Jaguar
Function

IBM-XT
Function

IRQ

02h
06h
09h
0Ah
OBh
ODh
OEh
OFh

Low Batt & Module Pulled
Low Power Hook
Keyboard

RAM Parity Errors
Reserved
Keyboard
Reserved

Non-Maskable
Hook
Hardware·
Hardware
Hardware
Hardware
Hardware
Hardware

.. NMI

Miscellaneous
Kbd & Touch Panel
IR Input
XINTpin
RTC

COM2
Hard Disk
Floppy Disk
LPT

1
2
3
5
6
7

.INT 9h Is a hardware interrupt in the ISM XT, but it is Invoked by software in Jaguar. After an INT OSh, software scans and
de bounces the keyboard and writes the keycode to the keycode register (SOh). Then it invokes INT 09h.

BIOS Data Area. The BIOS data area is also set up by the BIOS initialization code. Jaguar RAM
. definitions are similar to PSA XT ·BIOS .defmitions, except as noted below.

7

BIOS RAM Def"mition

BIOS Data Area Definitions

Length
-.

Address (Bytes) Description
4O:00h 8 I/O address of up to 4 serial communications ports

4Oh:08h 6 I/O address of up to 3 parallel ports. Set to all ODs in Jaguar.

4Oh:OEh 2 Not used

4Oh:10h 2 Equipment variable, where: "-
bit definition
15-14 Number of printer adapters
13-12 Reserved

11·9 Number of R5-232 Adapters

8 Reserved

7-6 Number of disk drives where
OOb=1 drive
01b=2 drives

5-4 Initial video mode (11 b in Jaguar)
3-2 Installed Memory Size (11 = at least 256k installed)

1 1 If Math coprocessor installed

0 1 If disk installed

4Oh:12h 1 Reserved

4Oh:13h 2 Installed memory in Kilobytes

40h:15h 2 Reserved

4Oh:17h 1 Keyboard flag 1, where:
bit definition

7 1 = Insert active
e 1 = Caps Lock active
5 1 = Num Lock active

4 1 = Scroll Lock active

3 1 =AIt pressed
2 1 = Ctrl pressed
1 1 '" Left shift pressed
0 1 = Right shift pressed

4Oh:18h 1 Keyboard flag 2, where:
bit definition

7 1 ... Insert pressed

e 1 IE Caps Lock pressed

5 1 .. Num Lock pressed

4 1 = Scroll Lock Prellsed

3 1 =Ctrl-Num Lock state active

2 1 '" Sys Req pressed
1 1 = Left AIt pressed
0 1 = Left CtrI pressed

4Oh:19h 1 Alt-key, keypad buffer

40h:1Ah 2 Key buffer read pointer

4Oh:1Ch 2 Key buffer write pointer

8

BIOS RAM Def"mition

BIOS Data Area Def"mitions, continued

....
Length

Address (Bytes) Description
4Oh:1Eh 32 Key buffer (16 WOrdS) "

4Oh:3Eh 1 Floppy recalibrate status (not used in Jaguar)

4Oh:3Fh 1 Floppy motor status (not used in Jaguar)

4Oh~40h 1 Floppy motor time-out count (not used In" Jaguar)

4Oh:41h 1 Disk status return code where:
bit definition

7 1 .. Drive not ready
6 1-aeek error occurred
5 1 .. disk ctrIr failed

4-0 Error codes, where:
OOh = No error
01 h = Illegal function was requested
02h=Acidress mark not found
03h=Wrlte protect error
04h = Sector not found
06h .. Drive door was opened
08h = DMA overrun error (not used In Jaguar)
09h = DMA boundary error (not used in Jaguar)
DOl .. Media type unknown
10h=CRCfalled on disk read

4Oh:42h 7 Floppy controller status and command bytes (not used in Jaguar)

4Oh:49h 1 Video mode setting

4Oh:4Ah 2 Number of columns on screen

4Oh:4Ch 2 Video buffer length (bytes)

4Oh:4Eh 1 Offset address of current display page

4Oh:50h 16 Cursor coordinates for 8 pages. Two bytes each page.
First byte of each pair Is column, second byte is row. (0,0) is
upper left corner of screen.

4Oh:60h 2 Cursor size. 1 st byte = end scan line, 2nd byte = start scan line

40h:62h 1 CUrrent display page number

40h:63h 2 Base I/O address of video controller

4Oh:65h 1 Display controller mode select register copy

4Oh:66h 1 Display controller pallette register copy

4Oh:67h 4 Reserved

4Oh:6Bh 4 Reserved

40h:6Ch 4 Timer count - number of ticks since midnight

4Oh:70h 1 24 hour rollover flag

4Oh:71h 1 Ctrl-Brk flag (bit 7 = 1 : < Ctrl > < Break> pressed)

9

BIOS RAM Def"mition

BIOS Data Area DeC"mitions, continued

Lengtb
Address (Bytes) Description

4Oh:72h 2 Warm start flag: 1234h means warmstart
'"

4Oh:74h 1 Hard disk status (not used In Jaguar)

4Oh:75h 1 Number of hard drives (set to 0 In Jaguar)

4Oh:76h 1 Hard disk control byte copy (not used In Jaguar)

4Oh:nh 1 Hard disk controller port offset (not used In Jaguar)

4Oh:78h 3 Parallel printer time-out table. Ports 0-2.

4Oh:7Bh 1 . Halt Value. Used for return time out count of
Int 15h service 41h

4Oh:7Ch 4 Serial port time-out table. Ports 0-3. (Only port 1 used In Jaguar)

4Oh:80h 2 Offset of Key buffer
,.

'40h:82h 2 .. Offset of first byte after key buffer

4Oh:84h 1 Number of video rows -1 EGA mode. (not used In Jaguar)

4Oh:85h 2 Character height EGA mode. (not used in Jaguar)

4Oh:87h 1 Video control bits EGA mode (not used in Jaguar)

40h:88h 1 EGAfVGA switch data (not used in Jaguar)

4Oh:89h 1 EGAfVGA control bits (not used In Jaguar)

4Oh:8Ah 1 Index Into DCC table VGA mode (not used In Jaguar)

4Oh:8Bh 1 Last floppy data rate selected (not used In Jaguar)

4Oh:8Ch 1 Hard disk controller status copy (not used in Jaguar)

4Oh:8Dh 1 Hard disk error status copy (not used In Jaguar)

4Oh:8Eh 1 Hard disk Interrupt flag (not used In Jaguar)

4Oh:8Fh 1 Hard disk controller flag (not used in Jaguar)

4Oh:90h 2 Floppy drive 0/1 media state (not used In Jaguar)

4Oh:92h 2 Floppy drive 0/1 operation state (not used In Jaguar)

4Oh:94h 2 Floppy drive 0/1 track number (not used In Jaguar)

4Oh:96h 1 Keyboard flag 3 (not used In Jaguar)

10

BIOS RAM Dermition

BIOS Data Area Dermitlons, continued

Length
Address (Bytes) Description

4Oh:97h 1 KeyboaroLEDflag(notusedlnJagua~

4Oh:98h 4 Vector to user wait flag (not used in Jaguar)

4Oh:9Ch 4 User wait count (low word, high word order) (not used in Jaguar)

4Oh:AOh 1 Wait active flag (not used in Jaguar) -

4Oh:A1h 2 Number of timer ticks until display timeout
4Oh:A3h 2 Display time out reset value.

4Oh:A5h 1 Printer status flag

4Oh:A6h 1 Cursor movement flag

4Oh:A7h 1 Card Detect Register Copy

4Oh:A8h 4 Pointer to table of EGA pointers (not used in Jaguar)
-40h:ACh 2 CPU register checksum

4Oh:AEh 2 User RAM checksum

4Oh:BOh 2 Hopper register checksum
..

4Oh:B2h 2 Stack Segment register save location

4Oh:B4h 2 Stack Pointer register save location

4Oh:B6h 2 Day Counter. This word contains the count of times the software
clock at 4Oh:06Ch has been set to zero.

4Oh:B8h 1 RTC century value In bed.

4Oh:B9h 1 RTC year value In bed

4Oh:BAh 1 RTC month value In bed

4Oh:BBh 1 RTC day of month value in bed

4Oh:BCh 1 RTC hour value In bed

4Oh:BDh 1 RTC minute value In bed

4Oh:BEh 1 RTC second value in bed

4Oh:BFh 1 RTC daylight savings time flag

4Oh:COh 1 RTC alarm hour value in bed

4Oh:C1h 1 RTC alarm minute value value in bed

4Oh:C2h 1 RTC alarm second value value in bed

4Oh:C3h 1 RTC alarm status

4Oh:C6h 1 NCE[1] RAM FLAG where: c

32 Indicates 2048 kbytes ;We, Jet, , hJ:rv/ f(I";!:,v;

16 Indicates 1024 kbytes
08 Indicates 512 kbytes
04 Indicates 256 kbytes
02 Indicates 128 kbytes
01 Indicates 64 kbytes
00 Indicates 0 kbytes

11

BIOS RAM Def'"Inition

BIOS Data Area Dermitions, continued

Length
Address (Bytes) Description

4Oh:C4h 2 RTC timer value. Last Value written to RTC register.

4Oh:C7h 1 NCE[2] RAM FLA.G where: .
32 indicates 2048 kbytes
16 indicates 1024 kbytes

. 08 Indicates 512 kbytes
04 Indicates 256 kbytes
02 Indicates 128 kbytes
01 Indicates 64 kbytes
00 Indicates 0 kbytes
ff Indicates NCE[2]Is ROM

4Oh:C8h 1 Low Battery Flags

4Oh:C9h 1 Voltage Reference value

4Oh:CAh 2 - - Keyboard output register copy

4Oh:CCh 1 Port Locked & System Manager Media Changed flags where:
bit 7 set Indicates port 1 locked
bit 6 set Indicates port 0 locked
bits 2-5 unused
bit 1 set Indicates port 1 media changed
bit 0 set Indicates port 0 media changed

4Oh:CDh 1 Shift annunciator flag

4Oh:CEh 8 Shift annunciator save location

4Oh:D6h 1 Unused

4Oh:D7h 11 OLD BIT MAP - last bit map collected by INT Obh

4Oh:E2h 22 Keyboard work area

4Oh:F8h 1 Last key pressed

4Oh:F9h 1 Key repeat counter.

4Oh:FAh 1 Miscellaneous Key flags.

4Oh:FBh 1 Mute key flags

4Oh:FCh 1 Number of 33 msec ticks after key press before key repeat starts.

40h:FDh 1 Number of 33 msec ticks between 'keys' during typematlc key repeat.

4Oh:FEh 1 Unused.

4Oh:100h 1 Print screen status byte where:
DOh = No Print Screen activity
01 h = Print Screen operation in progress
ffh = Previous Print Screen operation failed.

12

Jaguar BIOS ID Block

Jaguar BIOS ID Block
The BIOS ROM contains a block of information which--encodes the identification of the machine, and.
indicates the date the BIOS was created. The BIOS ID Block begins at FFFF:5.

FF'FF:5 Date of bios release formatted as MMjDDfYY (8 bytes)
FF'FF:D Unused
FFFF:E System model id (FEh for jaguar)
FF'FF:F Unused

13

Battery Check

Battery Check

There are two batteries in Jaguar: the Main battery and theoBackup Battery. In addition, each RAM
card h.as a battery.

Checks are performed on each battery to detect low voltage. If a· battery is has low voltage, the
approprate message is shown. The low battery messages are shown below:

• MAIN BATIERY LOW

• BACKUP BATIERY LOW

• CARD BATIERY LOW

Main Battery.

The main battery is checked at power on and once per minute while J agaur is running. If the battery is
. , .Jow, . the MAIN BATIERY LOW ·message is displayed each time jaguar is powered on. Also, if the

battery drops below 2.0 volts while the machine is running, the LOW MAIN BATIERY message is
displayed the fIrst time the voltage is found below this threshold. The thresholds for the main battery
are shown below.

25 Volts
2.0 Volts
1.8 Volts

LOW MAIN BATIERY message disabled.
LOW MAIN BATIERY message enabled.
System Shutdown to backup mode.

In other words, the LOW MAIN BATIERY message is disabled until the voltage drops below 2.0
volts. Once the message is enabled, it will be displayed each time jaguar is powered on. The message
is disabled if the main battery voltage goes above 25 volts.

If the main battery voltage drops below 1.8 volts, the hardware causes a system shut down to backup
mode.

Backup Battery.

The backup battery status is checked and displayed only at power on. The voltage from the backup
battery is passed through a voltage divider, so the thresholds measured by the Hopper Chip are shifted
downwards. The thresholds are 'shown below:

TERMINAL
VOLTAGE

3.05 Volts
2.78 Volts

VOLTAGE
DIVIDER OUTPUT

2.77 Volts
2.49 Volts

LOW BACKUP BATIERY message disabled.
LOW BACKUP BATTERY message enabled.

The LOW BATIERY BATTERY message is disabled until the backup battery terminal voltage drops
below 2.78 volts. Once the message is enabled, it will be displayed each time jaguar is powered on until
the terminal voltage goes above 3.05 volts.

14

Battery Check

Card Battery.
The card battery status is tested and displayed only at power on. The thresholds are shown below:

2.60 Volts
2.40 Volts

LOW CARD BATI'ERY message disabled.
LOW CARD BATI'ERY message enabled.

15

Power Management

Power Management

Jaguar is unique among HP CMOS calculafors because power to the epu is completely shut off when
the machine is turned off. This means that the CPU registers are reset to default values whenever the

. 'machine is turned on. Furthermore the CPU starts executing instructions at a different address when
it is powered on, compared to where it was running when it was powered off.

However, it is desirable from the user's viewpoint to be able to turn the machine off, then later tum it
on and have it continue in the same application that was previously running. . The purpose {)f the power
management code is to perform that function. In addition, the power management code performs a
number of quick checks to verify that the saved CPU registers, Hopper Memory Management
registers, USER RAM and Built-In RAM DISK were not corrupted while power was off. If any of
these were corrupted, the power management code will perform either a warm start or a cold start.

Power OFF. Deep Sleep is invoked when any of the following events occur:

• [ON] pressed when machine is ON.

• System'Timer timed out because machine was idle during timeout interval.

• Very Low Battery Interrupt occurred.

• Application program invoked !NT 15h function 42h.

The Power Down Code behavior is described by the following flowcharts:

16

Power Management

INTO'} pW [ON] kcyaxIe in by bull'er

AppIicaIica Req1DII or Tab far lIO:II by code

lIO:II by code (IJIr 1611 oerviceI 00, 01, lOb, llh

Compute Hopper 10 Pert Register 0Ieckrum

Compute plug-in card cIIod<Iumo if card present

ud lei or dar fqt 10 iDdiaUe wbeIher card preoeDI

RetunlIO caller

-This is the normal power down sequence. All CPU registers except SSand SP are saved on. the .11Se~s __
stack. SS and SP are saved in the BIOS data. Checksums are computed for stack area containing the
CPU registers, the Hopper memory configuration registers and user RAM. These are saved for. use
when the machine is powered back on. The checksums of built-in RAM disk and plug-in RAM disk are
computed each time the disk is written to.

Normal Power Up Behavior. The code that handles power on is accessed by the reset vector
(OFFFFh:OOOOh). This is invoked when the ON key is pressed while the machine is off_

17

Power Management

Warm Start Behavior. Warm Start is normally invoked by [CI'RL][ALT][DEL]. It is also invoked if
the user ram is found to be corrupted.during normal power on initialization. It injtjalizes User RAM,
then invokes int 19h bootstrap loader.

Cold Start Behavior~ Cold Start is invoked by :[Sbift][CI'RL][ON] .or,if the Built,.In.RAM·.disk· is·_
found to be corrupted during normal power on. It initializes the User ·RAM and built in.·RAM DISK,
but not the plug-in RAM DISK. The user is prompted to specify whether or not to blow away the in
the built-in RAM disk. After all initializations are done, cold start invokes int·19h bootstrap loader _

Initialization Flow Charts. The following flow charts describe the behavior of Jaguar during Normal
Power On, Warm Start and Cold Start:

P"""rOnB

18

Power Management

WarmSWt

19

20

CoIIlpere plug-in canlltate with IIIe lWe

of cudI rea>rded duriDg previauI JXI'ftI'-oIf

Card pulled tram IacIIed port.

Prea all)' key lowum stan

Upclale SyIIem MalIager Media ClIauge Flap u lppJ'CpI'iaIe

IDtam !NT 13h of all)' media chaD&"

P"""rOnD

Power Management

WumSWt

Power Management

DO

Service RTC In! (DO INI' 4Ah)

Badt 10 deep lleep

DO

Service RTC In! (inciudiJIg !NT 4Ah)

Badt 10 deep lleep
IJIiIDOSOock

SYc IDI (inciudiJIg!NT 4AhifRTq

Restore au registers

21

Power Management

IDitialize BIOS

IDiI DOS Clock

DiIpLoy PboeDiz, Lac ... HP ~ Map

'IW<e !NT I3h Vectcr

DO

CoIdSWt

22

Power Management

110

Prompt: Blaw Away Disk?

lJIilRRDISK

boola

23

Int 02h

Int 02h - Nonmaskable Interrupt

The hardware nonmaskable interrupt is invoked when either a module pulled or low battery event
occurs. The Nonmaskable Interrupt routine handles these two events:

Low Battery IT a low battery event occurs, Jaguar goes to deep sleep as quickly as possible. The
checksums for User RAM, CPU registers, and hopper registers are not computed. A warm start will
always occur on the next wake up after a low battery shut down.

Module Pulled Interrupt. The behavior of the module pulled event depends on whether the machine
is in deep sleep or not. IT the machine is in deep sleep, the module pulled interrupt is disabled, and the
module pulled event is not detected until the next time the machine powers on. IT the machine is not in
deep sleep (i.e. CPU running or in light sleep), then an interrupt is generated.

The behavior of the nonmaskable interrupt code is shown in the following flow charts:

l.Dw Batlery 1

24

Int02b

LawSallery

p~ up tbe backup battery

Warm SWI at wakeup

25

Prill! Mesage:

No SI&cIt for NMI

26

Qxapue pllII-in c:ud _e with

withltale hebe ~

Int02h

Updale SyIIem Mupgcr MedIa ClJaD&ed Flap

u lppI'CpriaIe

R.cIIore au OWe

Int OSh

Int OSh . Print Screen Interrupt

This interrupt executes the BIOS print screen function, causing the current screen contents to· be
written to serial printer port O. The cursor position is saved before the operation is begun, and .
restored once the printout is complete. The -Print Screen service· routine can be initiated by either",._
pressing the [Print Screen] key on the keyboard, or by issuing an Int OSh in a program. When executed,
the Print Screen service routine updates a status byte at address 4Oh:l00h. ·The·value .of this <byte is
interpreted as follows:

• OOh No Print Screen activity.

• Olh A Print Screen operation is in progress.

• FFh The previous Print Screen operation terminated with an error.

The Print Screen routine is not re-entrant. Additional Print Screen calls are ignored while a Print
Screen operation is in progress. This prevents multiple screen printouts from being queued (for
example, if the [print Screen] key is quickly pressed more than once).

Print screen prints .chara!:ters in the active display window. It will not print the entire contents of
display memory.

27

Int 06h

Int 06h - Low Power Hook
This interrupt is called by the system:

- Just before entering deep sleep. (AH=O).

- Just after leaving deep sleep. (AH=l). When this hook is called, the value in AL indicates the
cause of the wakeup:

AL WAKEUP CAUSE
1 ON key press
2 UART wake up
4 Real Time Clock Alarm
8 XINT wake up

- Just before entering light sleep. (AH=2).

- Just after leaving light sleep. (AH=3).

28

Int 08h

Int 08h • Timer Hardware Interrupt

A periodic hardware timer interrupt occurs on hardware interrupt level 0 (IROO) at a rate of 18.2 times
per second. IRQO maps to interrupt vector OBh. The BIOS interrupt service routine for Int 08h •

-performs-several housekeeping duties for the BIOS. As part of the routine, Int 1Ch (Timer Tick) is
called for each hardware timer interrupt.· If an application needs a periodic interrupt,.it should take
over the Timer Tick interrupt hook (Int 1Ch). (The default Int 1Ch service routine is just an iret.) The
application program should not attempt to take over the Int 08h service routine directly. The timer tick
interrupt service routine does the following:

• Increments the BIOS software clock in the double word at 4O:6C. If the count equals 1800BOh then
the count at 4O:6C is reset and the rollover flag at 40:70 is set to 1.

• The Timer Tick Int 1Ch is called, so that a user routine can obtain a periodic call. The default
handler for Int 1C is just a dummy IRET in the BIOS.

• When control is returned from Int 1C resets the 8259 programmable interrupt controller and
enables interrupts.

-. -The timer routine handles automatic windowing of the display. If the hardware indicates that the
cursor has moved, the timer routine attempts to move the display window so it contains the cursor.

• The timer routine is decrements two counters that measure the time _until display timeout (deep .
sleep) and the next battery measurement. However, the timer routine does not invoke either the
deep sleep code or the battery measurement code. This is done by the light sleep code (Int 16h)
when the display timeout timer or battery measurement timer has counted down to O.

• The routine returns with an IRET

29

Int09h

Int 09h - Keyboard Translate Interrupt

Three interrupt service routines are used to input keyboard data and.toprocess.scancodes -..Int..oBh,
Int 09h and Int 16h.

• Int OBh is invoked when a· key is pressed. -It performs -a software scan of the keyboard and
computes the scan code each time a key is pressed or released. It places the scan code in an I/O
port (06Oh) and invokes the Int 09h service routine.

• Int 09h obtains a single byte scancode from I/O port O6Oh and translates it into a two-byte key
code based on the state of the control, shift and alt keys. It puts the two byte code in the keybuffer.

• Int 16h reads the two byte key code from the buffer. When key information is desired, the operating
system or an application calls Int 16h, which returns the key codes in a register.

The BIOS interrupt service routine for Int 09h processes the incoming scancode as follows:

1. The routine reads the scancode from the keyboard I/O port (06Oh)

2. The routine calls the Keyboard Translation Hook function (Int 15h, AH = 4Fh). An application
can take over this hook and insert its own handler. If this call returns with carry clear, Int 09h
stops processing and returns. If carry is set, Int 09h proceeds with step 3.

3. The routine checks for a Break. If the Break is detected, Int 09h clears the keyboard input buffer
and calls Int lBh. (A "dummy" scancode of "OOh/OOh" is entered into the keyboard input buffer.)

4. The Int 09h routine translates the scancode and enters the scancode and its Ascn equivalent
into the keyboard input buffer. Some scancodes have no ASCII equivalent. In this case Int 09h
does one of the following:

• Discard the scancode (enter no data into the keyboard input buffer). If [Shift], [Ctrl], [Alt],
[Caps Lock], [Char] or [Scroll Lock] is detected, the state of the keyboard is updated, but the
scancode is discarded.

• Enter a two-byte pair "OOh/XXh" into the keyboard input buffer. "XXh" may be the original
scancode, or it may be a translated hexadecimal code for the key or key combination pressed.

Once a scancode/ASCn pair has been entered into the keyboard input buffer, an application can read
the data by calling Int 16h.

Char Key The [Char] works like a special function key which changes the operation of the alphabet
keys. If the Char function is active, several alphabet keys return non-English characters. See the
character code tables at the end of this section for a list of character codes returned when Char
function is active.

The [Char] key.also activates 'Mute' functions. These-are special key sequences that return many non­
English charaters. See the table of mute functions at the end of this section.

The [Char] key is 'sticky'. Pressing and releasing [Char] causes the Char function to stay on. Pressing
and releasing a second time causes the Char function to turn off. If the Char state is on but the Char
key is released, then pressing and releasing any other key causes the Char state to turn off. The sticky
Char is hard coded. There is no user option to disable the sticky Char.

Sticky Shift. The [Shift] key is also 'sticky'. It works much like the Char key. Pressing and releasing
[Shift] causes the shift state to stay on. Pressing and releasing a second time causes the shift state to
tum off. If the shift state is on but the shift key is released, then pressing and releasing any other key
causes the shift state to turn off.

30

Int09h

When the Shift key is released and the Shift State is ON, an annunciator is displayed in the lower right
portion of the display. The annunciator is·removed on the next key press .

. 'Key Cap Legends. The following diagram shows key cap legends for the Jaguar Keyboard.

GEJc:Jc:Jc:J~c:JGc:J~c:JG~8

EJ8EJ8EJ0GJ8DBEJc:J8c:J
G~0G00~0G0~~00

G~G0G~[J~G D~DD

EJ00~CJ~~01 ~ 10DDD
BGBI IDGEJBDDDD

Scancode Conversion Tables. Int 09h translates scancodes to ASCII character codes or other
hexadecimal codes as shown in the tables below. The fIrst table shows scancodes returned when the
Char function is OFF. The second table shows scancodes returned when the Char function is ON. For
each scancode, the tables give the equivalent character codes for each keyboard state: normal, shifted,
[Ctrl] active, and [Alt] active. If a scancode has an ASCII equivalent, the ASCII character is returned
in register AL. If a converted code of the form "xxhjOO" is shown, a zero value is returned in register
AL to indicate that there is no ASCII value for the key combination. BIOS Int 16h returns the value
"XXh" in register AH.

Note: Some shifted characters on Jaguar are non-shifted on standard ffiM keyboards·and .some nO;l1-
shifted characters on Jaguar are shifted on standard ffiM keyboards. For example,

• [(] is non-shifted on Jaguar and shifted on ffiM

• [Homel is shifted on Jaguar and non-shifted on ffiM.

On these non-compatible key mappings, Int OBh will force the status of the shift bits in 4Oh:l7h to
the state used by a compatible keyboard, regardless of the actual state of the shift keys. For
example:

• [(] is reported to Int 09h as a shifted character even though it is non-shifted on Jaguar.

31

32

Int09h

• [Home] is reported to Int 09h as a non-shifted character even though it is shifted on Jaguar.

In mM compatible machines, the [Shift], [Ctrl], and [Alt] keys effect the interpretation of a
scancode with ascending priority. That is, the [Alt] key has the highest priority. If [Alt].is pressed,
the [Shift] and [Ctrl] keys have no effect. Likewise, if [Ctrl] is pressed, the [Shift] key has no affect.
The only valid combination ,- involving -both [Ctrl] and [Alt] is the ... Warm . Start seque~ce.
[CI'RL][ALT][DEL]. . .

In Jaguar, however, there are some valid combinations of [Shift] and [Ctrl]. In particular:

• [Shift][CtrI][pGUP] yields the compatible keycode for [CtrI][pGUP]

• [Shift][CtrI][HOME] yields the compatible keycode for [CtrI][HOME]

• [Shift][Ctrl][pGDN] yields the compatible keycode for [CtrI][pGDN]

• [Shift][CtrI][ENO] yields the compatible keycode for [CtrI][ENO]

• [Shift][CtrI][[] yields the compatible keycode for [Ctrl][[]

-. -. [Shift][Ctrl][] _] yields the compatible keycode for [Ctrl][]]

Int09h

SCANCODE TABLE WHEN CHAR FUNCTION IS OFF

CHARACTER CODES (hex)
KEY LEGEND SCANCODE Normal Shifted Control Alt Shift + Control

Normal Shlfted Normal Shifted ah/al ah/al ah/al ah/al ah/al ,

ESC PrtScr 01 37 01/lB PrtScr 01/lB
TAB OF OF OF/(Y) OF/OO 94/00 AS/OO 94/00
F1 3B 3B 3B/00 54/00 SE/OO 68/00 SE/OO
F2 3C 3C 3C/00 55/00 SF/OO 69/00 SF/OO
F3 3D 3D 3D/00 56/00 60/00 6A/00 60/00
F4 3E 3E 3E/00 57/00 61/00 6B/00 61/00
F5 3F . 3F 3F/OO 58/00 62/00 6C/00 62/00
F6 40 40 40/00 59/00 63/00 6D/00 63/00
F7 41 41 41/00 SA/OO 64/00 6E/00 64/00
F8 42 42 42/00 SB/OO 65/00 6F/00 65/00
F9 43 43 43/00 5C/00 66/00 70/00 66/00
FlO 44 44 44/00 SD/OO 67/00 71/00 67/00
i PGUPt 48 49 48/00 49/00 8D/00 84/00
ON/OFF ON/OFF 70 70 A2/oo
FILER SETUP 72 71 AS/OO A4/00 AE/oo AB/OO AA/oo
COMM

'*
73 29 AC/OO 29/60 B2/00 AF/OO

APPT 74 29 BO/OO 29/7E B6/00 B3/00
PHONE 75 02 B4/00 02/21 BA/OO B7/00
MEMO # 76 04 B8/00 04/23 BE/OO BB/OO
123 $ 77 05 BC/OO OS/24 C2/00 BF/OO
+- & x+ 78 08 CO/OO 08/26 C6/00 C3/DO

(t I OA 2B 0A/28 2B/7C SO/OO 2B/1C
)t \t OB 2B OB/29 2B/5C 81/00 2B/1C
<-- <-- OE OE OE/08 OE/08 BREAK OE/OO BREAK
DEL INSt 53 52 53/00 52/00 93/00 92/00
+- HOMEt 4B 47 4B/00 47/00 73/00 77/00
! PGDNt 50 51 50/00 51/00 91/00 76/00 - ENDt 4D 4F 4D/00 4F/00 74/00 75/00
Q 10 10 10/71 10/51 10/11 10/00 10/11
W 11 11 11/77 11/57 11/17 11/00 11/17
E 12 12 12/65 12/45 12/05 12/00 12/05
R 13 13 13/72 13/52 13/12 13/00 13/12
T 14 14 14/74 14/54 14/14 14/00 14/14
Y 15 15 15/79 15/59 15/19 15/00 15/19
U 16 16 16/75 16/55 16/15 16/00 16/15
I 17 17 17/69 17/49 17/(y) 17/00 17/(y)
0 18 18 18/6F 18/4F 18/0F 18/00 18/0F
P 19 19 19/70 19/50 19/10 19/00 19/10
7 [t 08 lA 08/37 lA/SB lA/lB
8 n (Y) lB (y)/38 lB/SD lB/lD
9 { OA lA OA/39 lA/7B lA/lB
/ } 35 lB 35/2F lB/7D lB/lD

t Character Code reported to INT 09h as a shifted character.

* Character Code reported to INT 09h as an unshifted character.

33

Int09h

SCANCODE TABLE WHEN CHAR FUNCTION IS OFF

CHARACI'ER CODES (hex)
KEY LEGEND SCANCODE Normal Shifted -Control Alt . Shlrt+Control

Normal Shifted Normal Shlrted ah/al ah/al ,.ah/al .ah/al .ah/a1

A lE lE lE/61 lE/41 lE/Ol lE/OO lE/Ol
S IF IF IF/73 IF/53 IF/13 IF/OO IF/13
D 20 20 20/64 20/44 20/04 20/00 20/04
F 21 21 21/66 21/46 21/06 21/00 21/06
G 22 22 22/67 22/47 22/07 22/00 22/07
H 23 23 23/68 23/48 23/08 23/00 23/08
J 24 24 24/6A 24/4A 24/OA 24/00 24/OA
K 25 25 25/6B 25/4B 25/0B 25/00 25/0B
L 26 26 26/6C 26/4C 26/0C 26/00 26/0C
4 ~ 05 27 05/34 27/3B
5 06 27 06/35 27/3A
6 '+ 07 28 07/36 28/27 07/lE
• " 37 28 37/2A 28/22 96/00 37/00
CI'RL 1D 1D "

Z 2C 2C 2C/7A 2C/5A 2C/lA 2C/00 2C/lA
X 2D 20 20/78 20/58 20/18 20/00 20/18
C 2E 2E 2E/63 2E/43 2E/03 2E/00 2E/03
V 2F 2F 2F/76 2F/56 2F/16 2F/00 2F/16
B 30 30 30/62 30/42 30/02 30/00 30/02
N 31 31 31/6E 31/4E 31/0E 31/00 31/0E
M 32 32 32/6D 32/40 32/00 32/00 32/00
ENTER lC lC lC/OD lC/OD lC/OA lC/OO lC/OA
1 < 02 33 02/31 33/3C
2 > 03 34 03/32 34/3E 03/00
3 ? 04 35 04/33 35/3F

"- 4A 07 4A/2O 07/SE 8E/00 07/lE
Shift 2A 2A
ALT 38 38
Char 79 79
<space> 39 39 39/20 39/20 39/20 39/20 39/20
, .t 33 33 33/2C 33/2C 33/00
@t @ 03 03 03/40 03/40 03/00 79/00 03/00
MENU 7A 7A CS/OO C9/00 CA/OO CB/OO CA/OO
Shift 36 36
0 CAPS* OB 3A OB/3O

SCRl.4 34 46 34/2E 34/00 BREAK
= 00 OC OD/3D OC/SF 83/00 OC/lF
+ % 4E 06 4E/2B 06/25 90/00

t Olaracter Code reported to INT 09h as a shifted character.

* Olaracter Code reported to INT 09h as an unshifted character.

34

Int09h

SCANCODE TABLE WHEN CHAR FUNCTION IS ON

CHARACTER CODES (hex)
KEY LEGEND SCANCODE Normal ·Shlfted . Control Alt Shift + Control

Normal ·Shifted Normal Shifted ah/al ah/al.· ah/al ah/al ah/al

ESC PrtScr 01 37 01/lB PrtScr 01/lB
TAB OF OF OF/09 OF/oo 94/00 94/00
F1 3B 3B DB/oo F4/oo SE/oo SE/oo
F2 3C 3C DC/oo F5/oo SF/oo 69/00 SF/oo
F3 3D 3D DD/oo F6/oo 60/00 6A/00 60/00
F4 3E 3E DE/oo F7/oo 61/00 6B/00 61/00
F5 3F 3F DF/oo F8/oo 62/00 6C/00 62/00
F6 40 40 EO/oo F9/oo 63/00 6D/00 63/00
F7 41 41 E1/oo FA/oo 64/00 6E/00 64/00
F8 42 42 E2/oo FB/oo 65/00 6F/00 65/00
F9 43 43 E3/oo FC/oo 66/00 70/00 66/00
FlO 44 44 E4/oo FD/oo 67/00 71/00 67/00
t PGUPt 48 49 48/00 49/00 8D/00 84/00
ON/OFF ON/OFF 70 70 A2/oo
FILER SETUP 72 71 AE/oo AB/oo AA/oo
COMM 't 73 29 O4/EF 29/60 B2/oo
APPT - 74 29 05/F9 29/7E B6/oo
PHONE 75 02 06/AD 02/AD BA/oo B7/oo
MEMO # 76 04 07/EE 04/23 BE/oo BB/oo
123 $ 77 05 OS/B8 OS/24 C2/oo BF/oo
+ - & 78 08 09/A9 08/26 C6/oo C3/oo x+

(t I OA 2B OA/DD 2B/7C 80/00 2B/1C
)t \t OB 2B OB/29 2B/5C 81/00 2B/1C
<-- <-- OE OE OE/08 OE/OB BREAK OE/oo BREAK
DEL INSt 53 52 53/00 52/00 93/00 92/00
+- HOMEt 4B 47 4B/00 47/00 73/00 77/00
! PGDNt 50 51 50/00 51/00 91/00 76/00
-+ ENDt 4D 4F 4D/00 4F/00 74/00 75/00
Q 10 10 10/A6 10/A6 10/11 10/00 10/11
W 11 11 11/A7 11/A7 11/17 11/17
E 12 12 12/91 12/92 12/05 12/05
R 13 13 ••••• •••••
T 14 14 ••••• •••••
y 15 15 ••••• • ••••
U 16 16 ••••• • ••••
I 17 17 ••••• •••••
0 18 18 18/9B 1B/9D 18/0F 18/00 18/0F
P 19 19 19/E7 19/EB 19/10 19/00 19/10
7 [t 08 lA OS/AC lA/SB lA/lB
8 It 09 lB 09/AB lB/SD lB/lD
9 { OA lA 0A/F3 lA/7B lA/lB
/ } 35 lB 35/F6 lB/7D lB/lD

t Character Code reported to INT 09h as a shifted character.

- Mute function enabled.

* Character Code reported to INT 09h as an unshifted character.

35

Int09h

SCANCODE TABLE WHEN CHAR FUNCI'ION IS ON

CHARACTER CODES (hex)
KEY LEGEND SCANCODE Normal Shifted Control '. Alt Shift+Control

Normal Shifted Normal Shifted ah/al .ah/al .ah/al ah/al ah/al

A lE lE lE/86 lE/8F lE/Ol $/01
S IF IF IF/El IF/El lF/13 IF/13
D 20 20 20/00 2O/Dl 20/04 20/00 20/04
F 21 21 21/9F 21/9F 21/06 21/00 21/06
G 22 22 22/CF 22/CF 22/07 22/00 22/07
H 23 23 23/BE 23/BE 23/08 23/00 23/08
J 24 24 24/24 24/24 24/OA 24/00 24/OA
K 25 25 25/B0 25/B0 25/0B 25/00 25/0B
L 26 26 26/9C 26/9C 26/0C 26/00 26/0C
4 ~ 05 27 05/34 27/3B
5 06 27 06/35 27/3A
6

'*
07 28 07/36 28/27 07/lE

• • 37 28 37/9E 28/22 96/00 37/00
crRL 10 10

"

Z 2C 2C 2C/F4 2C/F4 2C/lA 2C/lA
X 20 20 2O/F8 2O/F8 20/18 20/18
C 2E 2E 2E/87 2E/SO 2E/03 2E/00 2E/03
V 2F 2F 2F/F5 2F/F5 2F/16 2F/00 2F/16
B 30 30 30IFE 3O/FE 30/02 30/00 30/02
N 31 31 31/05 31/05 31/0E 31/00 31/0E
M 32 32 32/E6 32/E6 32/00 32/00 32/0D
ENTER lC lC lC/OO lC/OO lC/OA lC/OO lC/OA
1 < 02 33 O2/AE 33/FB
2 > 03 34 03/AF 34/FD 03/00
3 ? 04 35 O4/AS 35/FC

" 4A 07 4A/FO 07/SE 8E/00 07/lE
Shift 2A 2A
ALT 38 38
Char 79 79
<space> 39 39 39/20 39/20 39/20 39/20 39/20
,

'*
33 33 33/F7 33/F7 33/00

@t @ 03 03 03/40 03/40 03/00 79/00 03/00
MENU 7A 7A C9/00 CA/OO CB/OO CA/OO '"
Shift 36 36
0 CAPSt OB 3A OB/3O

SCRLt 34 46 34/FA 34/00 BREAK
= 00 OC OD/F2 OC/SF 83/00 OC/lF
+ % 4E 06 4E/Fl 06/25 90/00

t Character Code reported to INT 09h as a shifted character.

* Character Code reported to INT 09h as an unshifted character.

36

Int09h

MUTE KEY SEQUENCES

CHARAcrER CODES (hex)
Normal Shifted

KEY SEQUENCE ah/al ah/al

[Char] [r][a] lE/AO lE/B5
[Char] [r] [e] 12/82 12/90
[Char][r][i] 17/A1 17/06
[Char] [r][o] 18/A2 18/EO
[Char][r][u] 16/A3 16/E9
[Char][r][y] 15/EC 15/EO
[Char][r][n] 31/6E 31/4E

[Char][t] [a] lE/85 lE/B7
[Char] [t][e] 12/SA 12/04
[Char] [t][i] 17/80 17/DE
[Char][t][o] 18/95 18/E3
[Char][t][u] 16/97 16/EB
[Char] [t] [y] 15/79 15/59
[Char][t][n] 31/6E 31/4E

[Char] [y] [a] lE/83 lE/B6
[Char] [y][e] 12/88 12/02
[Char] [y] [i] 17/8C 17/07
[Char] [y][o] 18/93 18/E2
[Char][y][u] 16/96 16/EA
[Char][y][y] 15/79 15/59
[Char] [y][n] 31/6E 31/4E

[Char] [u][a] lE/84 lE/8E
[Char][u][e] 12/89 12/03
[Char] [u][i] 17/8B 17/08
[Char][u][0] 18/94 18/99
[Char] [u][u] 16/81 16/9A
[Char][u][y] 15/98 15/59

'I
[Char][u][n] 31/6E 31/4E

[Char][i][a] lE/C6 lE/C7
[Char][i][e] 12/65 12/45
[Char][i][i] 17/69 17/49
[Char] [i][o] 18/E4 I8/ES
[Char][i][u] 16/75 16/55
[Char][i][y] 15/79 15/59
[Char] [i][n] 31/A4 31/AS

37

38

Int09h

The following table gives Jaguar key sequences to obtain character codes BOh through Ofih. Most
chracters are assigned to a [CHAR] sequence. However the drawing characters are not; they must
rn entered via [ALT] [decimal keycode] sequences.

N.lte that some [CHAR] sequences require the [SHIFI'] key to be pressed. In these sequences, the
. [CHAR] and [SHIFT] keys may be pressed in either order, [CHAR] fJJ'st or [SHIFI'] first.

Int09h

Character Code (hex) Character Name Key Sequence
SOh Ccedilla [CHAR][SHIFI'][q

8lh u diaresis [CHAR][U][u]

82h eacute [CHAR][R][e]

83h a circumflex [CHAR](Y][a]

84h adiaresis [CHAR][U][a]

SSh a grave [CHAR][I'][a]

86h a ring [CHAR] [a]

87h e cedilla [CHAR][e]

88h e circumflex [CHAR](Y][e]

89h e diaresis [CHAR][U][e]

BAh e grave [CHAR][I'][e]

8Bh i diarcsis [CHAR][U][i]

8Ch i circumflex [CHAR](Y]~]

8Dh i grave [CHAR][I'][i]

8Eh Adiarcsis [CHAR][SHIFI'][U][A]

8Fh A ring (CHAR][SHlFT)[A]

90h Eacute [CHAR][SHIFT)[R][E]

9lh a ligature [CHAR][e]

92h A ligature [CHAR][SHIFT)[E]

93h o circumflex [CHAR](Y] [0]

94h o diaresis [CHAR][U][o]

9Sh o grave [CHAR][I'][o]

96h u circumflex [CHAR](Y][u]

97h u grave [CHAR][I'][u]

98h ydiarcsis [CHAR][U][y]

99h o diaresis [CHAR][SHIFT)[U][O]

9Ah U diarcsis [CHAR][SHlFT)[U)[U)

9Bh o with oblique stroke [CHAR][o]

9Ch Pound [CHAR][L]

9Dh o with oblique stroke [CHAR][SHIFT)[O]

9Eh multiply sign [CHARn-]

9Fh Guilder [CHAR][F)

39

Int09h

Character Code (hex) Character Name Key Sequence
AOh a acute [CHAR][R][a]

A1h iacute [CHAR][R][i]

A2h o acute [CHAR][R][o]

A3h u acute [CHAR][R][u]

A4h n tilde [CHAR][I][n]

ASh N tilde [CHARJ(SHIFI'][I][N]

A6h Feminine ordinal [CHARJ(q]

A7h Masculine ordinal [CHAR][w]

ASh upside down ? [CHAR][3]

A9h registered trademark sign [CHAR](HP CALq
AAh [ALT][l][7)[0]

ABh 1/2 [CHAR)[8]

ACh 1/4 [CHAR][7)

ADh upside down I [CHAR][PHONE]

AEh Left French quote [CHAR][l]

AFh Right French Quote [CHAR][2]

BOh [ALT][l][7)[6]

B1h [ALT][l][7)[7)

B2h [ALT][l][7)[8]

B3h [ALT][l][7)[9]

B4h [ALT][l][8)[0]

BSh A acute [CHAR][SHIFI'][R][A]

B6h A citcumflex [CHAR)[SHIFI']lY][A]

B7h A grave [CHAR][SlllFT)lTJ[A]

BBh copyright sign [CHAR][LOTUS 123]

B9h [ALT][l)[8)[5]

BAh [ALT][l)[8)[6]

BBh [ALT][l)[8)[7]

BCh [ALT][l)[8)[8]

BDh Cents sign [CHAR](K]

BEh Yen sign [CHAR](H]

BFh [ALT][l)[9)[1]

40

Int09h

Character Code (hex) Character Name Key Sequence
COh [ALT][l][9][2]

Clh [ALT][l](9][3]

C2h [ALT][l](9][4]

C3h [ALT][l](9][5]

CAh [ALT][l](9][6]

CSh [ALT][l](9][7]

C6h a tilde [CHAR][I][a]

.C7h A tilde [CHAR][SHIFI'][I][A]

CSh [ALT][2][O][O]

C9h [ALT][2][O][l]

CAb [ALT](2][O][2]

CBh [ALT][2][O][3]

CCh [ALT](2][O][4]

COh [ALT][2][O][5]

CEil [ALT][2][O][6]

CFh general currency sign [CHAR][G]

DOh lower case eth [CHAR][d]

Dlh upper case eth [CHAR][SHIFT][D]

D2h B circumflex [CHAR][SHIFT]M[E]

D3h Ediarcsis [CHAR][SillFI'][U][E]

D4h Egrave [CHAR][SHIFT][I'][E]

D5h i without dot [CHAR][N]

D6h I acute [CHAR][SHIFT][R][I]

D7h I circumflex [CHAR][SHIFT]M[I]

DBh Idiarcsis [CHAR][SillFI'][U][I]

D9h [ALT][2][l][7]

DAh [ALT][2][l][8] ..
DBh [ALT][2][l][9]

DCb [ALT][2][2][O]

DDh broken vertical bar [CHAR][O

DEb I grave [CHAR][SHIFT][I'][I]

DFh [ALT][2][2][3]

41

Int09h

Character Code (hex) Character Name Key Sequence
EOh o acute [CHAR][SHIFI'][R][O]

Elh sharps [CHAR][S]

E2h o circumflex [CHAR][SHIFI']M[O]

E3h o grave [CHAR][SHIFI']LTl[O]

E4h o tilde [CHAR][I][o]

ESh o tilde [CHAR][SHIFI'][I][O]

E6h mu [CHAR][M]

E7h Lower case thorn [CHAR][P]

ESh Upper case thorn [CHAR][SHIFI'][P]

E9h Uacute [CHAR][SHIFI'][R][U]

FAll U circumflex [CHAR][SHIFI']M[u]

EBh Ugrave [CHAR][SHIFT]LTl[u]

ECl1 yacute [CHAR][R]M

EDh Yacute [CHAR][SHIFI'][R]M

EBb ordinal indicator [CHAR][MEMO]

EFh acute [CHAR][COMM]

FOh minus sign [CHAR][-]

Plh pIus/minus [CHAR][+]

F2h subscript = [CHAR][=]

F3h 3/4 [CHAR][9]

P4h Paragraph sign [CHAR][Z]

FSh Section sign . [CHAR]M

F6h divide sign [CHAR][/]

F7h [CHAR][,]

FSh degrccsign [CHAR][X]

F9h umlaut [CHAR][APPT]

FAh middle dot [CHAR][.]

FBh superscript 1. [CHAR][SHIFI'][1]

FCb superscript 3 [CHAR][SHIFI'][3]

FDh superscript 2 [CHAR][SHIFI'][2]

FEb block [CHAR][B]

FFh [ALT][2][S][S]

42

Int OAh

Int OAh - Miscellaneous Hardware Interrupt

The Miscellaneous Interrupt services the following hardware interrupts:

• Timer 1 interrupt

• Display Cursor Update Request

TImer ~ interrupt. The timer! interrupt is used to implement keyboard peeks if a key is down. It
repeatedly causes keyboard scans to determine which key is pressed. When the key board changes
state it issues an !NT 09 indicating a new key is down or up.

Display Cursor Update Request Interrupt. This interrupt is normally disabled. The display cursor
update request is detected by polling in the Timer 0 interrupt routine (!NT OSh).

43

Int OBh

Int OBh - Keyboard Hardware Interrupt

Int ~-.' is invoked when a key is pressed. It· performs a software scan and debounce delay of the
keyb"..; -l to detect any newly pressed or released keys. If a key is newly pressed, it sets a bit which
causes timerl interrupts to call the· keyscan code, thereby implementing periodic keyboard peeks.
Whenever a key is newly pressed or released, it computes-its one byte -scan code and places it in -an I/O
port (06Oh). Then it invokes the Int 09h service routine, which is the mM compatible keyboard
hardware interrupt.

44

Int OFh

Int OFh - Real-Time Clock Interrupt

The real-time clock hardware interrupt is intended to implement a software real. time clock. _The
interrupt can be set to wake up the CPU at time intervals of 1 second up to 9.1 hours.

45

IntlOh

Int lOh - Video Services Interrupt

The video services control the display. These services provide a number- of standard functions for _ .
setting the mode of the display, writing characters and dots to the display, and controlling character
attributes. Int 10h supports two modes:

• Mode 07: 80 x 25 monochrome alphanumeric. Mode 7 is compatible with the industry-standard
Monochrome Display Adapter (MDA).

• Mode 2Oh: 240 x 128 Graphics mode. Mode 20h is a unique graphics mode not compatible with any
mMmode.

To set the desired mode, use the Set Mode function (Int 10h, AH = OOh). The power-on default is
Mode 7.

Alphanumeric Mode 7 The physical size of Jaguar's display is smaller than a standard display (40 x 16
·vs 80 x.25) .. .However, the Jaguar display RAM is the same size as the industry standard MDA (4K
bytes). There is provision to window around in the display RAM, so the user can see the contents of all
4K of display memory.

Windowing is done by the BIOS to keep the cursor always in view. When the cursor is moved, the
hardware causes an !NT 0Ah to occur. The Interupt OAh service routine sets bit 5 of the CurFlag byte
in the bios data area to indicate a cursor movement has recently occurred. The Timer 0 interrupt
service routine always shifts CurFlag left one bit position. This effectively debounces the CurFlag byte.
If the shift results in CF set and CurFlag = 0, it indicates the cursor has been moving, but is now quiet.
Timer 0 recognizes this state and moves the display window so it contains the cursor.

When configured for mode 7, the display memory is organized into cells containing 2 bytes each. Byte
o of each cell contains the 8 bit character code and byte 1 defmes the display attributes for that
character. Character cells are arranged in rows of 80 cells each, and there are 25 rows of cells. There is
only one 80 x 25 page of text. The base address of display memory is BOOOOh.

OBOOOOh

OBOOAOh

OBOOFOOh

CellO Cell 1

The attribute byte has the following bit definitions:

46

Cell 79

Row 0

Row 1

Row 24

Int lOb

'--....1---1... ___ Foreground field

'--------- Intensity bit
o (unused)

L...:.--J.....---L _________ Background field

'-------------- Blink bit
O=No Blink
l=Blink

Only four foreground and background field combinations are useful:

Background
Field (Hex)

o
o
o
7

Foreground
Field(Hex)

o
1
7
o

Dermition

White on white (does not display)
Underlined characters
Normal video (black characters on a white background)
Inverse video (white characters on a black background)

Graphics Mode 20h The graphics mode (mode 2Oh) is used to display either graphics or alpha
information. When the display is in graphics mode, each bit in display memory is mapped to a display
pixel. The base .address of display memory is at OBOOOOh.

OBOOOOh

OBOO1Eh

OBOOEE2h

o 1

716Js 14 13J2JIJO

.

lDh

· .. Row 0

· .. Rowl

· .. Row 127

Within each byte of display memory, bit 7 maps to the left most pixel and bit 0 maps to the right most
pixel. The upper left pixel of the display is bit 7 of OBOOOOh.

47

IntlOh

Video Services The Video Services are described below. Specify the desired function code in register
AH (or AX), with additional parameters passed in other registers as indicated in the table.

• AH = OOh Set Mode

This . function sets the display mode. The new mode is. determined by the value .. passed. in the AL..
register.

Input:

Output:

AH=
AL=

None.

Error conditions: None.
Registers modified: AX.

OOh.
07h = 80 char x 2S char monochrome adapter mode.
20h = 240 pixel x 128 pixel graphics mode.

The mode is changed in the BIOS and hardware.
The screen is cleared as a side effect of changing
the mode.

• AH = 01h Set Cursor Size

This function sets the size of the cursor displayed in the alphanumeric display modes. Each
character cell in the alphanumeric display modes is eight scan lines high .. The cursor size is defmed
by specifying the starting scan line within the character cell. The scan lines are numbered from 0
(top of cell) to 7 (bottom). The ending scan line is always flXed at 7. The size of the cursor is
defmed by passing the starting scan line in register CH. The default value is CH=7. If bit 5 of CH
is set to "1", the cursor will be suppressed. In graphics mode bit 5 is automatically set, thus no
cursor is displayed.

NOTE: This is slightly different from 100% mM compatible displays where the both the starting
and ending scan lines for the cursor can be defined. In these displays, the BIOS accepts the starting
scan line in AH and ending scan line in AL.

Input:

Output:
Error conditions:
Registers modified:

AH = 01h.
CH = Starting scan line.
None.
None.
AX.

.AH=02h Set Cursor Position

This function sets the cursor position to the specified row and column address on the specified
page. For Jaguar, the display page should be set to 0 in either graphics or text mode. This function
applies to -both text and graphics modes. In graphics mode, the cursor is invisible, but is used to
defme a position on the screen.

Input:

Output:
Error conditions:
Registers modified:

AH = 02h.
BH = Display page number.
DH = Row address of cursor (0 - 24 for alpha, 0 -15 for grahics).
DL = Column address of cursor (0 - 79 for alpha, 0 - 39 for graphics).
None.
None.
AX.

• AH = 03h Read Cursor Position

This function returns the current address and size of the cursor on the specified page. For Jaguar,

48

IntlOh

the display page should be set to 0 for either graphics or text mode.

Input: AH = 03h.
BH = Display page number.

Output: CH = Starting scan line of the cursor.
CL = Ending scan line of the cursor.
DH = Row address of the cursor (0 - 24 for alpha, 0 - 15 for graphics).
DL = Column address of the cursor (0 - 79 for alpha, 0 - 39 for graphics).

Error conditions: None.
Registers modified: AX, ex, and DX.

• AH = 04h Read Light Pen Position

This function returns the current state and position of a light pen. Since Jaguar does not support a
light pen, the function always returns AH = 0 to indicate the light pen is not activated.

Input: AH = 04h.
Output: AH = Light pen state (0 = not activated).
Error conditions: None.
Registers modified: AX.

• AH = OSh Set Active Display Page

This function sets the active display page. In Jaguar, the only allowed display page is O.

Input: AH = OSh.
AL = Page number: Must be O.

Output: None.
Error conditions: None.
Registers modified: AX.

• AH = 06h Scroll Rectangle Up

This function scrolls the contents of a window up a specified number of lines. The window is
defmed by the row and column addresses specified in the ex and DX registers. The number of
lines to be scrolled is passed in register AL. If AL is set to "0", the entire window is blanked.

NOTE: This video service function operates only display RAM. It is performed regardless of the
position of the video cursor and has nothing to do with the windowing done in the background to
keep the cursor always in view in the 40 x 16 LCD.

Input:

Output:
Error conditions:
Registers modified:

AH = 06h.
AL = Number of lines to scroll (0 = blanks entire scroll area).
BH = Attribute of blanked lines (alpha mode) or

Fill character for blanked lines (graphics mode)
CH = Row address of character in upper left comer of window.
CL = Column address of character in upper left comer of window.
DH = Row address of character in lower right comer of window.
DL = Column address of character in lower right comer of window.
None.
None.
AX.

• AH = 07h Scroll Rectangle Down

49

Int lOb

This function scrolls the contents of a window down a specified number of lines. The window is
defmed by the row and column addresses specified in the ex and DX registers. The number of
lines to be scrolled is passed in register AL. If AL is set to "0", the entire window is blanked.

NOTE: This video service function operates only display RAM. It is performed regardless of the
position of the video cursor and has nothing to do with the windowing done in the background ,tQ ..
keep the cursor always in view in the 40 x 16 LCD.

Input: AH = 07h.
AL = Number of lines to scroll (0 = blanks entire scroll area).
BH = Attribute of blanked lines (alpha mode) or

Fill character for blanked lines (graphics mode)
CH = Row address of character in upper left corner of window.
CL = Column address of character in upper left comer of window.
DH = Row address of character in lower right comer of window.
DL = Column address of character in lower right comer of window.

Output: None.
Error conditions: _. None.
Registers modified: AX .

• AH = 08h Read Character and Attribute at Cursor Position

If the display is in alphanumeric mode, this function returns the character and attribute bytes at the
current cursor location. If the display is in graphics mode, the BIOS attempts to match the bit
pattern at the cursor position with a character pattern from the graphics-character font resident in
the BIOS ROM. If it fmds a match, the character is returned in AL. If no match is found, AL is
set to zero. No attribute is returned when in graphics mode. The display page must be 0 for alpha
mode. Display page is a don't care for graphics mode.

Input:

Output:

Error conditions:

Registers modified:

AH = OSh.
BH = Page number (must be 0 alpha mode; don't care for graphics mode)
AH = Attribute byte (valid for alphanumeric modes).
AL = Character.
AL = OOh if in graphics mode and no match was
found for the current cursor position.
AX.

• AH = 09h Write Character and Attribute at Cursor Position

so

If the display is in alphanumeric mode, this function writes character and attribute bytes at the
current cursor location. The value in BL determines the character attributes.

If the display is in graphics mode, no page number is required and the value in BH is ignored. The
attn'bute byte in BL has different meaning in graphics mode. If bit 7 of BL is set, an exclusive OR
(XOR) of the pixel data is performed with existing display data. If bit 7 is clear, the pixel data
overwrites the existing display data.

For both the alphanumeric and graphics modes, more than one copy of a single character (with
attribute) can be written to the display. Specify the number of copies desired in register ex. In
alphanumeric mode this function will cause line wrap and screen wrap to occur if too many
characters are specified. In graphics mode no wrap-around will occur.

IntlOh

Input: AH = 09h.
AL = Character to write.
BH = Page number; must be 0 in alpha mode; not used in graphics mode
BL = Attribute byte if in alphanumeric mode

(Bit 7 set means XOR pixel data if in graphics mode)
ex = Number of characters to write.

Output: None.
Error conditions: None.
Registers modified: AX.

• AH = 0Ah Write Character at Cursor Position

This function writes a character to the current cursor location, but leaves the attribute byte at that
location unchanged. The function is otherwise identical to function 09h (Write Character and
Attnoute at Cursor Position).

Input: AH = 0Ah.
AL = Character to write.
BH = Page number (must be 0 for alpha mode; not used in graphics mode).
ex = Number of characters to write.

Output: None.
Error conditions: None.
Registers modified: AX.

• AH = OBh Set Color Palette

Since Jaguar's LCD does not support color, this function has no effect.

• AH = OCh Write Pixel

This function writes a pixel on the screen. If bit 7 of register AL is set, an exclusive OR (XOR) is
performed on the current pixel value in display memory and the bit value given in bit 0 of register
AL. If bit 7 is clear, bit 0 of AL is written as the new pixel value.

Input: AH = OCh.
AL = Pixel value:

Bit 7:
If "1", XOR current value with bit o.
If "0", replace current value with value given by bit o.

Bit 0: Pixel value
CX = Horizontal pixel address.
DX = Vertical pixel address.

Output: None.
Error conditions: None.
Registers modified: AX.

• AH = ODh Read Pixel

This function returns the value of the specified pixel

51

.-

Input: AH = OOh.
ex = Horizontal pixel address.
OX = Vertical pixel address.

Output: AL = value of pixel (0 or 1)
Error conditions: None.
Registers modified: AX.

IntlOh

• AH = OEh Write Teletype Character

This -function writes a character to the display memory, then advances the cursor one location. At -
the end of a line, the cursor will wrap to the start of the next: line. At the end of the screen, the
BIOS will scroll the screen up one line, blank a line at the bottom of the screen, and place the
cursor at the start of that line. Four characters have special interpretations: Line Feed (0Ah),
Carriage Return (OOh), Backspace (OBh), and Bell (07h). The BIOS performs the appropriate
actions when it senses these characters. When in alphanumeric mode, the current screen attributes
are unchanged.

Input: AH = OEh.
AL = Character.

Output: None.
Error conditions: None.
Registers modified: AX.

• AH = OFh Get Video State and Mode

This function returns the current state of the display, including the current mode, number of
characters per line, and current display page. Refer to the Set Mode function (AH = OOh) for a
description of the modes.

Input:
Output:

AH = OFh.
AH = Number of characters per line.
AL = Current mode.
BH = Current display page.

Error conditions: None.
Registers modified: AX.

• AH = 10h Reserved

.AH=l2h Reserved

• AX = 1300h Write String, Global Attribute

52

This function writes a string with one global attribute. After the write is complete, the cursor is
restored to its original position on the screen. This function uses the Write Teletype Character
function (Int 10h, AH = OEh) to place the characters in display memory.

IntlOh

Input: AX = 13OOh.
BH = Display page number.
BL = String attribute byte.

(Bit 7 set means XORpixel data if in graphics mode)
ex = Length of string.
DH = Row address of fust character.
DL = Column address of fust character.
ES:BP = Pointer to start of string.

Format of string is: Char, Char, ...
Output: None (display memory is updated).
Error conditions: . None.
Registers modified: AX.

• AX = 130lh Write String, Global Attribute, Move Cursor

This function operates in the same way as function AX = 13OOh, except that once the operation is
complete, it moves the cursor to the character cell following the last character written.

Input:
AX = 13Olh.
BH = Display page number.
BL = String attribute byte.

(Bit 7 set means XOR pixel data if in graphics mode)
ex = Length of string.
DH = Row address of fust character.
DL = Column address of fust character.
ES:BP = Pointer to start of string.

Format of string is: Char, Char, ...
Output: None (display memory is updated).
Error conditions: None.
Registers modified: AX.

• AX = 1302h Write String, Individual Attributes

This function operates like function AX = 13OOh, except that it writes each character in a string
with its own attribute. After the write is complete, the cursor is restored to its original position on
the screen.

Input:

Output:
Error conditions:
Registers modified:

AX = 1302h.
BH = Display page number.
ex = Length of string.
DH = Row address of first character.
DL = Column address of fust character.
ES:BP = Pointer to start of string.

Format of string is: Char, Attr, Char, Attr ...
None (display memory is updated).
None.
AX.

• AX = 1303h Write String, Individual Attributes, Move Cursor

This function operates in the same way as function AX = 1302h, except that once the operation is
complete, it moves the cursor to the character cell following the last character written.

53

Input:

Output:
Error. conditions:
Registers modified:

S4

AX = 1303h.
BH = Display page number.
ex = Length of string.
DH = Row address of fll"st character.
DL = Column address offll"st character.
ES:BP = Pointer to start of striDg.

Format of string is: Char, Attr, Char, Attr ...
None (display memory is updated).
None.
AX.

Int lOh

Int 11h

Int 11h . Equipment Check Interrupt

The BIOS returns a copy of its internal equipment list in the ax register. The list is compiled in the
word at 40:10.

Input: AH = 1lh.

Output: AH:

'----- (Reserved)

'----'---'------ Number of serial ports installed

'---------- Game adapter installed

L....-_________ (Reserved)

'---'------------- Number of printer adapters installed

AL:

'----- One or more flexible disk drives installed

'------ Numeric coprocessor installed

'--....1...-______ Memory size (11 on Jaguar indicates at least 256K)

'---'---------- Initial video mode
01 = 4O-column color
10 = SO-column color
11 = SO-column black and white

'---'------------ Number of flexible disk drives (if bit 0 = 1)
(00 = 1, 01 = 2, 10 = 3, 11 = ~)

Error conditions: None.
Registers modified: AX

ss

Int 12h

Int 12h - Memory Size Interrupt

The Int 12h service, when executed, returns the number of 1K byte blocks of system RAM in register
AX. Note that the number returned is the amount of user RAM found in the system during the
power-on and initialization process. It does not include_any expanded RAM that may be present.

The current Jaguar design has 512K bytes of memory built in as standard equipment. This can be.
increased by .adding a plug-in RAM card. No method is currently provided to disable a portion of
the 512K RAM. The number returned by Int 12h is approximately 512Kminus the number of
Kbytes in the RAM portion of the drive C: Edisk.

Note An application can use this service to determine the total amount of user RAM in the system.
However, this service does not indicate how much RAM is available ("free") for running
applications.

S6

IntIJh

Int IJh - Disk Services Interrupt

The Int 13h services provide low-level support of the Built-In and Plug-In RAM disks. These services
directly access· the memory addresses that comprise the RAM Disks, and are responsible for-bank
selection of the Plug ... In RAM disk. They are also responsible for maintaining a table that. contains a .•.
checksum of each sector in the disks.

The Int 13h services provide the ability to read, write, and verify sectors. The services also perform the
formatting of tracks on a disk, and . provide a number of functions to obtain status information about
the disks. Many of the functions are not relevant to a RAM disk, but are included to maintain
compatibility with the mM XT.

The disk parameter tables are provided for compatibility reasons. There are two tables, one for plug-in
disks (drives a: and b:) and one for the built-in ROM-RAM disk. The table for drives a: and b: is
pointed to by the Int lEh vector. The table for drive c: is pointed to by the Int 41h vector.

The default tables, provided in the BIOS ROM, are described below.

Plug-In Disk Parameter Table (Drives A: and B:)
Offset Bytes Dermition

OOh 1 FOC Specify command: step rate and head unload time.
01h 1 FOC Specify command: head load time and OMA mode.
03h 1 Bytes per sector: 0 = 128, 1 = 256,2 =512,3 = 1024.
04h 1 Last sector number on track.
05h 1 readjwrite gap length between sectors.
06h 1 Oata length for readjwrite operations.
07h 1 Format gap length between sectors.
OSh 1 Format filler byte for sectors.
09h 1 Head-settle time after seek command, in milliseconds.
OAh 1 Motor-start time In 1/8-second units.

Built-In Disk Parameter Table (Drive C:)
Offset Bytes Dermition

OOh 2 Number of Cylinders
02h 1 Number of Heads
03h 2 Reserved (0)
05h 2 Starting write pre-comp cylinder (0)
07h 1 Max ECC burst len (0)
08h 1 Control Byte (OCOh)
09h 3 Reserved (0,0,0)
OCh 2 Landing zone (0)
OEh 1 SectorsjTrack (10h)
OFh 1 Reserved (0)

The Disk Services interrupt (Int 13h) functions are described in the table below. Specify the desired
function code in register All, with additional parameters passed in other registers as indicated in the
table.

57

-.

Int13h

• AH = OOh Reset Disk System

This function does nothing in Jaguar. It is provided for compatibility reasons.

Input:

Output:

Error conditions:
Registers modified:

AH = OOh.

AH = Return disk drive status
See Function 01 below.

As indicated in AH
AX, status

• AH = Olh Read Status of Last Operation

This function returns the error status code that resulted from the last disk operation (OOh is
returned if the last operation was successful).

The function returns with carry clear, even if a non-zero value is returned (indicating an error).

The return codes are defmed in the table below.

Value
04h
10h
SOh

Input:

Output:

Registers modified:

Disk Return Codes
Error

Requested sector could not be found.
Checksum error encountered on disk read.
Invalid Drive

AH = Olh.

AL = Return status of last disk operation.
AH=O

AX, status

• AH = 02h Read Disk Sectors

S8

Based on the supplied parameters, one or more sectors are transferred from the disk into a data
buffer in system RAM. Application programs must ensure that the data area provided is large _­
enough to contain the requested data.

Int13h

Input:

Output:

Error conditions:

AH = 02h.
AL = Number of sectors(1-16)
CH = bits 0-7 of track number (O-max track)
CL bits 6-7: bits 8-9 of track number
CL bits 0-5: Sector number(1-16)
DH = Head number (always 0)
DL = Drive number (1 for drive c:,0 for drive a:,2 for drive d:,etc)

ES:BX = Pointer to buffer in which to put the data read
from the disk.

AH = Return status (refer function 01)
AL = Number of sectors read.

Carry flag is not set if the operation was successful.
Carry flag is set on an error condition.

AX, Status .

• AH = 03h Write Disk Sectors

This function is very similar to the Read Disk Sectors function, except that it writes data from the
data buffer to a disk. See the description of Read Disk Sectors (above) for more details.

Input:

Output:

Error conditions:

Registers modified:

AH = 03h.
AL = Number of sectors (1-16)
CH = bits 0-7 of track number (O-max track)
CL bits 6-7: bits 8-9 of track number
CL bits 0-5: Sector number(1-16)
DH = Head number (0 for drive c:)
DL = Drive unit number.
ES:BX = Pointer to buffer from which to write data to the disk.

AH = Return status (refer to function 01)
AL = Number of sectors written.

Carry flag is not set if the operation
was successful. Carry flag is set on an error condition.

AX, Status .

• AH = 04h Verify Disk Sectors

This function performs a read function without transferring any data. This function insures that the
track, head, and seCtor can be located on the disk, and that the data in the sector can be read. The
description of the Read Disk Sectors function is applicable, except that no data is transferred. The
number of sectors verified is returned in AL.

59

Input:

Output:

Error conditions:

Registers modified:

AH = 04h.
AL = Number of sectors.
CH = bits 0-7 of track number (O-max track)
CL bits 6-7: bits 8-9 of track number
CL bits 0-5: Sector number(1-16)
DH = Head number.
DL = Drive unit number.

AH = Return status (refer to function 01)
AL = Number of sectors verified.

Carry flag is not set if the operation was successful.
Carry flag is set on an error condition.

AX, Status .

Int13h

• AH = OSh Format a Track

This function is a NOP on Jaguar.

Input: AH = OSh.

Output: AH = Return status (Always 0)

Error conditions: None

Registers modified: AH, Status .

• AH = 08h Get Drive Parameters

60

This function returns a set of disk drive parameters for the drive unit number specified in register
DL. These parameters reflect the recommended formatting parameters for the drive.

The register pair ES:DI, if valid, points to a disk parameter table that contains the values
recommended for use in formatting the disk drive.

If this function is called with a hard disk drive unit number specified in DL (That is, the drive unit
number is greater or equal to SOh), the function sets the carry flag and sets AH to Olh, indicating a
bad device number.

Int13h

Input:

Output:

Error conditions:

Registers modified:

AH = OSh.
DL = Drive unit number.

If a drive exists for the drive unit
number:
AX = OOh.
BH = OOh.
BL = Drive type code: Always 0 for Jaguar
CH = bits 0-7 of max track number
CL bits 6-7: bits 8-9 of max track number
·CL bits 0-5: Sectors per track (lOh)
DH Maximum head number (0)
DL = Number of disk drives in the system (01)
ES:DI = Pointer to disk parameter
table.

If specified drive does not exist returns Carry Set and AH = BOh

AX, BX, Cx, DX, DI, ES.

• AH = 15h Get Disk Drive Type

This function returns the disk drive type code for the specified device.

Input:

Output:

Error conditions:

Registers modified:

AH = 15h.
DL = Drive unit number.

AH = Disk drive code:
OOh = No drive present.
Olb = Plug-In disk present, no disk change line available.
02h = Plug-In disk present, disk change line is available.
03h = built-in disk
CX:DX = number of fIXed disk sectors
Carry flag set on any
error.

AH, Status .

• AH = 16h Disk Change Status

This function reports the status of the Disk Change line of the specified disk drive.

61

Input:

Output:

Error conditions:

Registers modified:

AH = 16h.
DL = Drive unit number (0 - 1).

AH = OOh if Disk not changed.
AH = Olb and carry flag is set if value in DL is invalid.
AH = 06h and carry flag is set if Disk changed.

As given in AH (refer to function 01)

AH, Status.

Int13h

• AX = OFFOOh Modify RAM-ROM DISK (Drive C:) RAM Partition

This function changes the size of the drive c: ram partition to BX kbytes.

Input:

Output:

Error conditions:

Registers modified:

AH = Ofth.
AL = OOh
DL= lb
BX = #kbytes to allocate to RAM portion of Disk (default = 384 if BX = 0)
BX = -lb if insufficient memory
BX = lb if RAM disk too full for shrink
BX = Oh if successful

As given in BX

AX, BX, Status

• AX = OFFOlh Initialize RAM-ROM DISK (Drive C:)

This function initializes drive c:

62

Int13h

Input:

Output:

Error conditions:

Registers modified:

AH = Ofth.
AL = Olb
DL= lb
BX = :#kbytes to allocate to RAM Disk (default =384 if BX=O)
CL = :# root directory sectors (16 dir entries/sector)

(0 = use default of 4 sectors)
CH = init data sectors flag

(1= clear to O's, 0= leave alone)

BX = -lb if insufficient memory
BX = remaining user memory in kbytes if successful

As given in BX

AX, BX, Status.

• AX = FOOO Find logical page and offset for "filename"

Input: AX = FDOO

Output:

ES:BX = address of filename. The filename is an array
of 11 bytes, with the primary portion of the
filename in the fIrst 8 bytes (blank-filled)
and the filename extension in the last 3 bytes
(blank-filled).

DL = BIOS drive:# (O=A, 2=D, 3=E, 4=F) (drive Cis
not supported).

ifNC:
ifCY:

BX = 16K logical page, ex = offset in that 16K page
filename was not found

• AX = FOOl Set checksums/flags for cards in Ports 0 and 1

Input: DL = 0
Output: nothing

• AX = F002 Check checksums/flags for cards in Ports 0 and 1

Input: DL = 0
Output: AL Bit 0=0 if no change for PORT 0

Bit 1=0 if no change for PORT 1
Bit 2-7=0

63

Int14h

Int 14h· Serial Port Services Interrupt

This service provides ffiM-XT compatible support for the serial port. BIOS serial port operations are
performed only in a polled mode. While Jaguar hardware supports serial port interrupts, the BIOS
provides no support for interrupt-driven serial operations. However, an application program can
provide interrupt-driven support by writing directly to the serial port hardware.

The Serial Port Services interrupt (Int 14h) functions are described in the table below. Specify the
desired function code in register AH, with additional parameters passed in other registers as indicated
in the table.

• AH = OOh Initialize Serial Port Parameters

64

This service sets the baud rate, parity, number of stop bits, and character frame size for the
specified serial port. Register AL is used to pass the serial port initialization parameters for the Int
14h, AH = OOh function, as shown in figure below:

Input: AH = OOh.
DX = Serial port number (Always 0 in Jaguar).
AL = Parameters as shown below:

'----'---- Frame size
10 = Seven-bit character frame
11 = Eight-bit character frame

'-------- Stop bits
o = One stop bit
1 = '!\vo stop bits

'-------'-------- Pari~
00 = None
01 = Odd
10 = None
11 = Even

~...l.---l'--__________ Baud rate
000 = 110 baud
001 = 150 baud
010 = 300 baud
011 = 600 baud
100 = 1200 baud
101 = 2400 baud
110 = 4800 baud
111 = 9600 baud

Int14h

Output: AH : Serial Port Status

L-___ Data ready

L...-____ Overrun error

L..-______ Parity error

L-________ Framing error

L...-_________ Break detected

L...-___________ Transmit buffer register empty

L...-____________ Transmit shift register empty

L..-______________ Timeout

Error conditions: Timeout error (bit 7) is set in AH if DX is not
in range.

Registers modified: AX .

• AH = Olb Transmit One Character

This function transmits one character through the serial port. the function waits until the UART
transmit buffer is empty, then transmits the character by loading it into the buffer.

When transmitting a character, the BIOS service routine loops until the serial port indicates that it
can transmit the character. If the port does not indicate that it is ready within a timeout period, the
function returns a timeout error.

Input: AH = Olb.
AL = Character to transmit.
DX = Serial port number (Always 0 in Jaguar)

Output: AH = Status as described for 'Initialize Serial Port Function 00'

Error conditions: Timeout is indicated by setting bit 7 in AH.

Registers modified: AH .

• AH = 02h Receive One Character

This function returns the character received by the serial port. The function waits until the serial
port reports that a character has been received, then reads the serial port status register and reports

65

Int14h

any error conditions that may have occurred. The character is returned in AL. NOTE: This
function changes the serial port interrupt vector to point to a dummy interrupt service routine
(!RET) at OfOOOh:Offi3h.

Input:

Output:

Error conditions:

Registers modified:

AH = 02h.
DX = Serial port number (Always 0 in Jaguar).

AH = Status as described for 'Initialize Serial Port Function 00'
except that only bits 7, 4, 3, 2, and 1 are reported.

AL = Character received (valid only if AH = 0).

If AH is non-zero, an error has occurred and the
character in AL should be discarded. If bit 7 is set
in AH, a timeout occurred, and the other bits in AH
may not be valid.

AX .

• AH = 03h Get Serial Port Status

66

This function reports the status of the serial port and the modem-control lines connected to the
serial adapter.

Input: AH = 03h.
DX = Serial port number (Always 0 for Jaguar)

Output: AH = Status as described for 'Initialize Serial Port Function 00'

Error conditions: Timeout error set in AH if DX is not in range.

Registers modified: AX.

'.

IntlSh

Int ISh - System Functions Interrupt

The Int 15h system functions provide a number of general services not related to a particular hardware
function in Jaguar.

The Int 15h system functions are described in the table below. Specify the desired function code· in
register AH, with additional parameters passed in other registers as indicated in the table.

Function 4Fh is found universally in all late model PCs, and allows applications to translate keys easily.
Function CO provides a pointer to a system description table which describes the machine. This table
and function is also new, and present across the mM PC line, including the PS/2 machines.

Note: If a call is made to a function code not listed in the table, Int 15h will return with AH = 86h and
the carry flag set, indicating an error .

• AH = OOh, Olb, 02h, OOh, 04h Cassette Functions.

These functions are mentioned for compatibility reasons. Jaguar does not support the cassette
drive. Register AH is set to 86h the carry flag is set to indicate an error.

Input: AH = OOh, Olb, 02h or 03h

Output: AH = 86h and CF set to indicate an error

• AH = 4th WAIT UNTIL EVENT FUNCTION

This function tests a specified byte in either System RAM or in I/O space. If the test is true, the
~ction returns. If the test is false, the function goes into light sleep. A hardware interrupt or
NonMaskable Interrupt will then wake up the processor. Control is returned to the calling routine
if the specified condition becomes true.

There are two timeouts involved with this function:

- Return timeout:

The calling routine can specify a return timeout value in BL. The return timeout can vary
between 1 and 255 55msec intervals. IfBL=O, return timeout is disabled.

If return timeout is enabled and the interval is exceeded, the function will return to the caller
with carry set. The timeout value is stored in the BIOS data segment at 40:7b. The timerO

, interrupt decrements this timeout value.

- Display timeout:

This timeout is specified by invoking INT 15h service 46h. If the display timeout period is
exceeded, Jaguar will go to deep sleep. Upon subsequent wakeup, it will return to the caller
with carry set, just as if a return timeout had occurred.

67

Input:

Output:

Registers modified:

Int ISh

AH=4lh
AL='IYPe oftest to perform:

OOh - Wait for any interrupt (just goes to light sleep

until next interrupt)

Olh - Compare RAM byte with BH, return when equal to BH

02h - Compare RAM byte with BH, return when not equal to BH

03h - Test RAM byte with BH mask, return when not equal to 0

04h - Test RAM byte with BH mask, return when equal to 0

10h - Wait for any interrupt (just goes to light sleep

until next interrupt)

llh - Compare I/O byte with BH, return when not equal

12h - Compare I/O byte with BH, return when equal

13h - Test I/O byte with BH, return when not equal to 0

14h - Test I/O byte with BH, return when equal to 0

BH= Value or mask
BL=Timeout value in 55ms intervals. 0= timeout disabled

Plus Either:
ES:DI = Pointer to byte in memory to test (AL=l-4)

DX=I/O port (AL=llh-14h)

Carry Clear if test is true

Carry Set if timeout occurred or invalid test type in AL

AX,Status

• AH = 42h Deep Sleep

This function implements deep sleep. Jaguar remains in deep sleep until one of the following

events:

• ON key is pressed.

• Five characters are received by the serial port within approximately 1.5 seconds of each other

and there is at most one framing or parity error.

• XINT line is asserted for 50 ms.

• Real Time Clock wake up alarm occurs.

When a wake up occurs, the machine exits from this service and returns to the calling program.

Input: AH = 42h.

Registers modified: none

• AH = 45h (DE)ACTIVATE Window keys and Cursor Tracking

68

This function controls whether ALT-ARROW keys and ALT-SHIFT-ARROW keys will cause

window movements as well as whether cursor tracking is enabled.

Int ISh

Input:

Output:

Registers modified: none

AH = 45h.
AL= 0 : Enables ALT -ARROW key windowing, Enables cursor tracking

= 1 : Disable ALT -ARROW key windowing, Disables cursor tracking
= 2: Enables ALT -ARROW key windowing, Disables cursor tracking
= 3 : Disables ALT -ARROW key windowing, Enables cursor tracking
> 3 : No Operation

Windowing and cursor tracking enabled or disabled according to AL

• AH = 46h Set Display Timeout

This function enables display timeout and sets its interval. Display timeout occurs occurs only in
light sleep. See INT 15h service 4lh.

Input: AH = 46h.
BX = 1-65535: time out interval in 55 msec increments

= 0 : Display timeout disabled

Output: None

Registers modified: none

• AH = 47h Set/Read Contrast Register

This function sets or reads the contrast register. The range of permissible values is 0 - Ofh. The
highest display contrast corresponds to a value of Ofh.

Input:

Output:

Registers modified: AX

AH = 47h.
AL = Subfunction

= 0 - Set Contrast value in BL
= 1 - Read Contrast value and return it in AL

BL = O-Ofh : Contrast value (If AL=O)
> Ofh : Contrast value set to Ofh

AL = contrast value if AL was 1 at entry

• AH = 48h Set Digital Beeper Volume

69

Input:

Output:

Registers modified: none

AH = 48h.
AL = 0-3: Digital Beep Volume Setting (O=quietest)

> 3 : Volume set to loudest setting

None

Int 1Sh

• AH = 49h Set RS-232 Channel

This function sets the RS-232 Channel to either WIRE or IR. If IR mode is selected, the UART

baud rate is changed to 2400 baud.

Input: AH = 49h.

Output:

Registers modified: none

AL = Oh : WIRE (default)
AL=1h:IR
AL > 1h : No Operation

None

.AH=4Ah Set RS-232 Power

This function turns power to RS232 device on or off.

Input:

Output:

Registers modified: none

AH = 4Ah.
AL = Oh: RS232 power turned off

AL = 1h: RS232 power turned on

AL > 1h: No Operation

None

• AH = 4Bh !nit BIOS Time

70

This service loads time from the RTC and checks for a valid value. If the RTC contains an illegal

value (such as seconds count more than 59), the double word at 4Oh:6ch is cleared to 0 and the

service returns with CF=1. Otherwise, the time value from the RTC is converted to the number of

18.2 Hz ticks since midnight. This is stored in the double word at 4Oh:6ch and the service returns

withCF=O.

Int ISh

Input:

Output:

Registers modified: none

AH = 4Bh.

CF=O if successful
CF= 1 if failed

• AX = 4a)()h Select Keyboard

This function is a NOP in the current version of jaguar. Future versions will employ it to select the
keyboard types.

Input:

Output:

Registers modified: ax

AX = 4a)()h.
BX = keyboard code

= OOOSh FINLAND
= OOlOh FRANCE
= 0020h GERMANY
= OO4Oh ITALY
= O2OOh PORTUGUL
= O4OOh SPAIN
= OSOOh SWEDEN
= BOOOh US

ah =Offh if more than one keyboard requested or
keyboard type is not supported

ah =OOOh if keyboard successfully selected

• AX = 4COlh Return Selected Keyboard 'JYpe

This function returns the selected keyboard type.

Input:
Output:

Registers modified: AX

AX = 4COlh.
AX = selected keyboard type

= OOOSh FINLAND
= OOlOh FRANCE
= OO2Oh GERMANY
=OO4OhITALY
= O2OOh PORTUGUL
= O4OOh SPAIN
= OSOOh SWEDEN
= BOOOh US

• AX = 4C02h Return Available Keyboard 'JYpes

This function returns the types of keyboards available. The return code in AX is the sum of
keyboard codes listed in service 4cOlh. For example, a return code ofAX=800lh would indicate

71

Int ISh

that US and BELGIUM keyboards are supported.

Input: AX = 4C02h.

Output: AX = available keyboard type(s)

Registers modified: AX

• AX = 4C10h Select Language .
This function is used to tell the BIOS whether the selected language is English or Non-English.

Input: AX = 4C10h.
BL = Language

= OOh English
> OOh Non-English

Output: none

Registers modified: ax

• AX = 4C1lh Return Language Type

This function returns the selected language type.

Input: AX = 4C1lh.
Output: AL = selected language type

= OOh English
= Olh Non-English

Registers modified: AX

• AH = 4Dh Return Model Specific Information

Returns Model Specific Information

Input:

Output:

Registers modified: AX, BX, cx, DX

AH = 4Dh.
AL = D4h

BH = 'H'
BL= 'p'
CH = Family type (1)
CL = Model type (1)
DL = Code Revision (0)

• AH = 4Eh Enable Light Sleep In Key Test

72

Enables or disables light sleep in key test If light sleep is disabled, the display time out (shut

down) is also disabled. This function should be used with caution since it is possible for the

batteries to run down if light sleep in key test is disabled indefinitely.

Int ISh

Input:

Output:

Registers modified: none

AH = 4Eh.
AL = OOh -light sleep disabled, display time out disabled.
AL = alb -light sleep enabled
AL> Olb-nop

Light sleep enabled or disabled depending on value of AL at entry.

• AH = 4Fh Keyboard Translation Hook

The Keyboard Hardware interrupt (Int 09h) service routine calls this function once for each
scancode received. It does so after it obtains the scancode from the keyboard shift register, but
before it does any processing on the scaricode. This call is provided so that an application can take
over the function 4Fh "hook" to perform special processing or translation of the key. If the
application service routine clears the carry before it returns to the Int 09h routine, the Int 09h
routine will discard the scancode. If the carry is set, the Int 09h routine will continue with its
normal processing. When the Int 9h Keyboard Interrupt service routine issues an Int 15h function
4Fh, the stack frame is set as shown below upon entry to the 4Fh function:

Saved Flags

SavedCS

Saved IP from Int 9h

Saved AX

SavedBX

SavedCX

SavedDX

SavedSI

SavedDI

SavedDS

SavedES

Saved Flags

SavedCS

Saved IP (from Int 15h)

Input: AH = 4Fh.
AL = Scancode obtained from I/O port 6Ob.
DS = 40h (from Int 09h).

Output: none
Registers modified: none

• AH = SOh Measure Battery

This function measures the voltage of the specified battery. The return value in AX is in the range
from 0-255 if the battery measurement was successfully taken. A return value of 255 represents 5.0

73

Int ISh

volts and 0 represents 0.0 volts. If. an error occurred (such as battery voltage was· too noisy to
measure) then AX = Offilh on exit.

Input:

Output:

Registers modified:

AH = SOh.
AL = Battery to measure

= 00 for system battery
= 01 for backup battery

AX = Measured value (0-255) 0=0 volts, 255=5 volts
= Offilh if error occured

AX

• AH = COh Get Pointer to System Description Table

74

This function returns a pointer to the System Description Table (SDT) for Jaguar.

Input:
Output:

Error conditions:
Registers modified:

AH = COho
AH = OOh.
ES:BX = Pointer to the System Description Table.
None.
AH,BX,ES.

The SDT provides an eight byte description of the BIOS capabilities:

ES:BX-+ OSh

OOh

FBh

OOh

Olb

30h

OOh

OOh

OOh

OOh

No. of bytes in SDT (LSB)

No. of bytes in SDT (MSB)

IDByte

Secondary ID Byte

BIOS ROM Version

Parameter Byte·

Reserved

Reserved

Reserved

Reserved

Int ISh

·The parameter byte describes certain hardware and BIOS features:

'--~---'--"'------ Reserved

Kevboard Translation Hook (Int 15h,
.All = 4Fh) implemented

'------------ Real-time clock in system

'------------- AT-style cascaded interrupt controller

'------------- DMA channel 3 is used by BIOS

Jaguar returns 30h as its parameter byte. This indicates that it does not use DMA channel 3 and
does not have a cascaded interrupt controller, but it does have a real-time clock and supports the
Keyboard Translation Hook function.

75

Int 16h

Int 16h - Keyboard Services Interrupt

Int 16h is used to access character information in the keyboard buffer. Each character is stored in the
buffer as a two-byte pair by Int 09h. Normally, one byte is the scancode for the character and the other
byte is the equivalent ASCII character code. When key information is desired, the operating system or
an application calls Int 16h, which reads the scancode and character code from the buffer and .returns
them. The scancode is returned in AH; the ASCII character code, in AL.

Light Sleep. Int 16h services 0, 1, 10h, 1lh and 13h invoke light sleep. This is a low power mode that
greatly improves battery life. In addition, light sleep code handles Shift annunciator updates and
performs battery check." and display timeouts as scheduled by their respective counters.

The low power state is exited by any hardware interrupt. When an interrupt occurs, it is serviced and
control is passed back to the INT 16h code. The longest interval that can occur between successive
interrupts is SS msecs, which is the period of the 18.2 Hz timer. Thus the longest interval that the
machine can be in low power mode is SS msecs.

When light sleep is exited, control is passed back to INT 16h code. The behavior of the INT 16h code
depends on which service was called by the application. If service 0 or 10h was called, the INT 16h
code checks to see if a keycode was placed in the key buffer. If no keycode is found, it quickly returns
to light sleep and low power mode.

If service 1 or 1lh was called, the behavior is to check the status of the key buffer (key code present or
absent) and return to the caller.

An application that calls service 0 or 10h will save power because the machine quickly goes back to
light sleep after each timer interrupt. The percentage of time that the machine is low power mode is
above 98%.

An application that repeatedly tests for a key down by calling INT 16h services 1 or 1lh will get some
power savings, because the machine goes to low power mode on each call to INT 16h. However, the
percentage of time the CPU is in low power mode will be lower than that of INT 16h services Oh or
10h. For this reason, it is recommended that services 0 or 10h be used whenever possible.

Scancode processing. The scancodes for some keys do not have an ASCII equivalent. Int 09h
processes such scancodes in one of the following ways, depending on the key:

• Int 09h may discard the scancode (no data is entered into the keyboard input buffer). For example,
if a scancode for a keyboard state-defining key ([Shift], [Ctrl], [Alt], [Caps Lock], [Num Lock], or
[Scroll Lock]) is received, the state of the keyboard is updated, but the scancode is discarded.

• Int 09h may enter a two-byte pair "OOh/XXh" into the keyboard input buffer. "XXb" may be the
original scancode, or it may be a translated hexadecimal code for the key or key combination
pressed. Int 16h returns "XXb" in register AH and "OOh" in register AL.

• Int 09h may enter a two-byte pair "EOh/XXh" into the keyboard input buffer. This occurs if the
received scancode "XXb" is prefIXed with "EOh". Int 16h returns "XXh" in register AH and "EOh" in
register AL.

If the [ON] key is pressed with the machine running, INT 16 invokes deep sleep. No key code is
returned to the calling routine.

There are some non-compatible keys on jaguar. These include UTIL, FILER, COMM, APPT,

76

Int 1611

PHONE, MEMO, LOTUS 123 and HP CALC. There are special key codes for these keys, which are
not part of the mM compatible key code set. These key codes are passed on to the calling application
the same as 'compatible key codes'. See the keycode table in the INT 09 section for a complete list of
jaguar key codes. .

The Keyboard Services interrupt (Int l6h) functions are descn"bed below. Specify the desired function
code in register AH, with additional parameters passed in other registers as indicated in the table.

Note: Int l6h functions OOh and Olh discard scancode values greater than 84h. These extended
scancodes can only be read with Int l6h functions llh and 12h.

COMPATIBll.JTY:

The mM KEYBXX utilities perform the following test to determine if the BIOS supports function lOb,
l1h, and 12h:

mov AH,92h
Int l6h
cmp AH,SOh
ja NoExtendedSupport

Therefore Jaguar Int l6h service must make sure that AH is decremented by 12h when an invalid
function code greater than 12h is passed to the service .

• AH = OOh Read Character From Keyboard Input Buffer

This function attempts to read a character from the keyboard input buffer. Each character is stored
in the buffer as a two-byte pair consistiDg of the scancode and its AScn equivalent. If a
scancodejASCll pair is available, it is removed from the buffer and returned in AX. Note that this
function cannot return scancode values greater than 84h. Use function lOh for the extended
scancodes. The function waits until a scancodejASCll pair is present in the keyboard input buffer.
Except for hardware interrupts, no other processing occurs until a key is pressed on the keyboard.

Input: AH = OOh.
Output: AH = Scancode.

Error conditions:
Registers Modified:

AL = ASCll character code, or

None.
AX.

OOh for a special scancode.

• AH = Olh Report If Character Available

This function examines the keyboard input buffer to see if a scancode/ASCll pair is available. If a
pair is available, it is returned without removing it from the buffer. The function returns
immediately, regardless of whether a scancodejASCll pair is available. This function does not
recognize scancode values above 84h. Use function llh for the extended scancodes.

77

Input:
Output:

Error conditions:
Registers modified:

AH = Olb.
Zero flag is clear if character is available:

AH = Scancode.
AL = ASCll character code, or

OOh for a special scancode.

Zero flag is set if no characters are available:

AX is indeterminate.
None.
AX, Status.

.AH=02h Get Shift Status

78

This function returns the shift status as defined below:

Input: AH = 02h.

Output: AL = Shift status bits as follows:

17 I' Is 14 13 1 2 1 1 10 1

-

Error conditions:
Registers modified:

None.
AX.

Unused

Left [Shift] key pressed

[Ctrl] key pressed

[Alt] key pressed

Scroll Lock state active

Num Lock state active

Caps Lock state active

Insert state active

Int 16h

Int 16h

• AH = 03h Set 'JYpematic Rate and Key Delay

This function sets the typematic rate and delay between key press and when key repeat takes effect.

Input: AH = 03h
AL = OSh Set typematic rate
BH = OOh - 03h for delays of 25Om.s, SOOms, 75Oms, or Is
BL = OOh - 1Fh for typematic rates of 30cps down to 2cps

BL=OOh -> 30cps
BL=Olh -> 30cps
BL=02h -> 30cps
BL=03h -> 30cps
BL=04h -> 30cps
BL=OSh -> 30cps
BL= 06h - > 30cps
BL=07h -> 30cps
BL=08h -> 15cps
BL=09h -> 15cps
BL=Oah -> 15cps
BL=Obh - > 15cps
BL=Och -> lOcps
BL= Odh - > lOcps
BL=Oeh-> lOcps
BL==Ofh -> lOcps

BL=lOh -> 7.5cps
BL=llh -> 7.5cps
BL=12h -> 6.0cps
BL=13h -> 6.0cps
BL=14h -> S.Ocps
BL= 15h - > S.Ocps
BL=16h -> 4.3cps
BL=l7h -> 4.3cps
BL= lSh - > 3.7cps
BL= 19h - > 3.3cps
BL=lah -> 3.0cps
BL=lbh -> 2.7cps
BL= lch - > 2.5cps
BL=ldh -> 2.3cps
BL= leh - > 21cps
BL=1fh -> 20cps

Output: None
Error conditions: None.
Registers Modified:

• AH = OSh Write Character to Keyboard Input Buffer

This function writes the character code and scancode in ex to the keyboard input buffer. The
character and scancode are placed at the end of the buffer. The function will return an error status
if the buffer is full.

Input:

Output:

Error conditions:
Registers modified:

AH = OSh.
CH = Scancode to write to buffer.
CL = ASCll character code to write to buffer, or

OOh for a special scancode, or
EOh for an extended scancode.

AL = OOh if the write succeeded.
AL = Olh if the write failed due to a full buffer.
The write will fail if the buffer is full.
AX.

• AH = lOh Extended Read Character From Keyboard Input Buffer

This function, like function OOh, attempts to read a character from the keyboard input buffer.
However, function lOh can read both standard scancodes and the new extended scancodes.
Function lOh reads characters just like function OOh, but scancode values above 84h are recognized.

79

Int 16h

H a scancode/ASCll pair is available, it is removed from the buffer and returned in AX. The
function waits until a scancode/ASCII pair is present in the keyboard input buffer. Except for
hardware interrupts, no other processing occurs until a key is pressed on the keyboard.

Input:
Output

Error conditions:
Registers Modified:

AH = lOh.
AH = Scancode.
AL = ASCll character code, or

OOh for a special scancode, or
EOh for an extended scancode.

None.
AX.

• AH = llh Extended Report if Character Available

This function, like function Olb, examines the keyboard input buffer to see if a scancode/ASCII pair
is available. However, function llh recognizes scancode values above 84h. Thus, it can read the
extended scancodes. If a scancode/ASCll pair is available, it is returned without removing it from
the buffer. The function returns immediately, regardless of whether a scancode/ASCII pair is
available.

Input:
Output:

Error conditions:
Registers modified:

AH = llh.
Zero flag is clear if character is available:

AH = Scancode.
AL = ASCII character code, or

OOh for a special scancode, or
EOh for an extended scancode.

Zero flag is set if no characters are available:
AX is indeterminate.

None.
AX, Status.

.AH=12h Get Extended Keyboard Status

80

This function returns an extended shift status byte in AH. The byte returned in AL is the same as
that returned by function 02h.

Int 16h

Input: AH = 12h.
Output: AH = Status bits as follows:

'---- Left [Ctrl] key depressed

'------- Left [Alt] key depressed

'-------- Un~ed

~-------Un~ed

'----------- [Scroll Lock] key depressed

~-------------------Un~ed

'------------- [Caps Lock] key depressed

'---------------------------Un~ed

AL = Status bits as follows:

'---- Right [Shift] key pressed

'--------- Un~ed

'------- [Ctrl] key pressed

'-------- [Alt] key pressed

'---------- Scroll Lock state active

'--------------------- Num Lock state active

'----------------------- Caps Lock state active

'--------------------------- Insert state active

Error conditions: None.
Registers modified: AX.

81

Int 16h

• AH = 13b Wait for keyboard event

82

This function waits until a key bas been pressed or the keyboard shift flags change. If a new key

code is found in the key buffer, it returns with ZF=O and AX=key code/ascii code for the key. If

any of the keyboard shift flags change, it returns with ZF= 1 and AX= shift flags.

This routine times out after 9 timer ticks (4950. seconds) and returns even if there bave been no

keyboard events. If timeout occurrs, the routine returns with ZF = 1 and AX = shift flags.

Input:

Output:

Error conditions:
Registers Modified:

AH = 13b
BX = current keyboard shift flags (same format as service 12h)

Zero flag is clear if character is available:

AH = Scancode.
AL = AScn character code, or

OOb for a special scancode, or
EOb for an extended scancode.

Zero flag is set if timeout or keyboard flags changed.

AX is loaded with the keyboard flags as described in service 12h.

None.
AX, flags

Int 17h

Int 17h - Printer Services Interrupt

The Int 17h service routine supports one serial printer. This is different from the standard PC-XT bios
where Int 17h drives a set of up to three parallel printers. However, it is similar to the situation when
the DOS command

MODE LPTl:= COM1:

is used to redirect LPTl output of a PC to a serial printer. In this case, MS-DOS redirects the INT 17h
interrupt vector to point to an interrupt service routine that supports a serial printer.

This service performs several general tests before performing a specified function. It checks to make
sure that the port number requested is in the range (0 - 1). It also checks the value of the function
requested to make sure it is in range (0 - 2). If any of the tests fail, the service will set AH to 29h and
return. The carry flag is not affected by any of the functions.

The printer timeout values are stored at 4Oh:78h.

The Printer Services interrupt (Int 17h) functions are described below. Specify the desired function
code in register AH, with additional parameters passed in other registers as indicated in the table.

NOTE: The printer services change the serial port interrupt vector (INT OCh) to point to its own serial
port interrupt service routine .

• AH = OOh Write a Byte to a serial Printer

This function checks to see whether an XOFF character has been received. If no XOFF was
received, the routine writes a byte to the serial port and returns.

If an XOFF was received, it waits until an XON is received, or the timeout period is elapsed. If the
XON is received before the timeout period elapsed, the routine writes a byte of data to a serial
printer port and returns. If the timeout period is elapsed before an XON is received, the routine
simply returns with bit 0 of AH set.

83

Input:

Output:

AH = OOh.
AL = Data byte to be written.
DX = Port number (0 -1).
AH = Printer status as shown below

Registers modified: AH.

'----- Time-out

'------ Unused

~-----------Unused

'--------- I/O Error

'------------------ Printer Selected

'------------------- Out of Paper

'---------------- Acknowledged

'------------------------ Printer not busy

Error conditions:
Registers modified:

None.
AX.

Int 17h

• AH = Olh Initialize Printer

This function initializes a serial printer port. It clears the XOFF received flag. It does not set the
baud rate or parity. This should be done with !NT 14h function 00.

Input: AH = Olh.
DX = Port number (0 - 1).

Output: AH = Printer status (see function AH=OOh)
Registers modified: AH.

.AH=02h Get Printer Status

This function returns the status of the specified serial printer port.

84

Int 17h

Input: AH = 02h.
DX = Port number (0 - 1).

Output: AH = Status byte (see functionAH =OOh).

Error conditions: As indicated in AH.

Registers modified: AH.

85

Int19h

Int 19h - Boot Interrupt

This service boots the MS-DOS operating system.

86

Int lAb

Int lAb - Time-or-Day Services

The Time-of-Day services provide access to the real-time clock and the BIOS clock. The BIOS clock is
a software tool that is incremented by the Int OSh service routine once every timer "tick" (hardware
timer interrupt). This occurs 18.2065 times per second. The software clock consists of a count of the
timer "ticks."

The Time-of-Day Services interrupt (Int lAh) functions are described below. Specify the desired
function code in register AH, with additional parameters passed in other registers as indicated in the
table. If an unsupported function is requested, Int lAh will return with the carry flag set.

COMPATIBll.lTY: For compat:1bility, the Int 1A services does the following:

• Immediately enable interrupts upon entry into the Int 1A services.

• All functions in the lAh set of services return via a RET 2 instruction.

• Interrupts are NOT be disabled while processing functions 0 and 1.

• AH = OOh Read the Current Clock Count

This function returns the number of BIOS clock ticks since midnight. If AL is non-zero, the
application should increment the date by one day.

Input: AH = OOh.
Output: AH = OOh.

ex = Timer "tick" count, most significant word.
DX = Timer "tick" count, least significant word.
AL is nonzero if the timer has not been read in 24 hours.
The carry flag is cleared in the Status register.

Error conditions: None.
Registers modified: AX, ex, DX, Status.

• AH = Olh Set Current Clock Count

This function sets the number of timer "ticks" in the software clock.

Input:

Output:

Error conditions:
Registers modified:

AH = Olh.
ex = Timer "tick" count, most significant word.
DX = Timer "tick" count, least significant word.
AH = OOh.
The carry flag is cleared in the Status register.
None.
AH, Status.

.AH=02h Read the Time From the Real-Time Clock

This function reads the time from the real-time clock (RTC).

87

Input:
Output:

AH = 02h.
AH = OOh.
CH = Hours in BCD.
CL = Minutes in BCD.
DH = Seconds in BCD.
The carry flag is cleared if the RTC is operating.

Error conditions: The carry flag is set if the RTC is not operating.

Registers modified: AX, ex, DX, Status.

• AH = 03h Set the Time in the Real-Time Clock

This function sets the time in the real-time clock.

Input: AH = 03h.
CH = Hours in BCD.
CL = Minutes in BCD.
DH = Seconds in BCD.
DL = Olb if daylight saving time.

OOh if standard time.
The carry flag is cleared in the Status register.

Output: AH = OOh.
Error conditions: None.

Registers modified: AX, Status.

• AH = 04h Read Date From the Real-Time Clock

This function reads the date from the real-time clock.

Input:
Output:

Error conditions:

AH = 04h.
AH = OOh.
DL = Day in BCD.
DH = Month in BCD.
CL = Year in BCD.
CH = Century:

19 if 20th century.
20 if 21st century.

Carry flag set if the real-time clock is not operating,

otherwise the carry flag is cleared.

Registers modified: .AX, ex, DX, Status.

• AH = OSh Set Date in Real-Time Clock

This function sets the date in the real-time clock.

88

Int lAb

Int lAb

Input: AH = OSh.
DL = Day in BCD.
DH = Month in BCD.
CL = Year in BCD.
CH = Century:

19 if 20th century.
20 if 21st century.

The carry flag is cleared in the Status register.
Output: AH = OOh.
Error conditions: None.
Registers modified: AX, Status.

• AH = 06h Set Alarm

This function sets the alarm to generate an Int 4Ah at the specified time. The user must place a
pointer to an appropriate interrupt handling routine in the Int 4Ah vector. The alarm will reoccur
every 24 hours if not reset using AH = 07h.

Input:

Output:
Error conditions:

Registers modified:

AH = 06h.
CH = Hours in BCD.
CL = Minutes in BCD.
DH = Seconds in BCD.
AH = OOh.
Carry flag set if the alarm is already set or the
real-time clock is not operating, otherwise the carry
flag is cleared.
AX, Status .

• AH=07h Reset Alarm

This function resets the alarm hardware and clears any pending alarm. (An alarm, when set, will
reoccur every 24 hours until it is reset.)

Input:
Output:

AH = 07h.
AH = OOh.
The carry flag is cleared in the Status register.

Error conditions: None.
Registers modified: AX, Status.

• AH = OSh Set Alarm to Power-On the System

This function sets an alarm in the real-time clock. When the alarm time is reached with the system
in the powered-down state, the system powers on and boots. IT the system is powered on when the
alarm time is reached, the alarm interrupt routine will issue an Int 4Ah. The Int 4Ah call is made
as if the alarm had been set up by Int 1Ah function 06h.

89

.'"
.~

!

•

Input:

Output:
Error conditions:

Registers modified:

AH = 08h.
CH = Hours in BCD.
CL = Minutes in BCD.
DH = Seconds in BCD.
AH = OOh.
Carry flag set if the alarm is already set or the
real-time clock is not operating.
AX, Status .

AH = 09h Get the Current Alarm. Setting

This function returns the alarm setting currently in the real-time clock.

Input:
Output:

Error conditions:

AH = 09h.
CH = Hours in BCD.
CL = Minutes in BCD.
DH = Seconds in BCD.
DL = Status of the alarm:

OOh: The alarm is not enabled.
01h: The alarm is enabled but will not power on

the system.
02h: The alarm is enabled and will power on the

system.
The carry flag is set if the real-time clock is not
operating. Otherwise, the carry flag is cleared.

Re~ters modified: AX, ex, DX, Status.

Int lAb

• AH = 0Ah Read Day Counter

The BIOS maintains a count of the number of times the software clock has accumulated 24 hours
worth of timer "ticks." This variable allows an application to determine how many days have passed
since it last read the date.

Input:
Output:

AH = 0Ah
AH = OOh.
ex = Day count (number of times the software clock has
overflowed). The carry flag is cleared in the Status
register.

Error conditions: None.
Registers modified: AX, ex, Status.

• AH = OBh Write Day Counter

90

This function writes CX into the day counter.

Input:

Output:

Error conditions:
Registers modified:

AH = OBh.
CX = Value to write to the day counter.
AH = OOh.
The carry flag is cleared in the Status register.
None.
AX, Status.

IntlBh

Int lBh - Keyboard Break Interrupt

The Keyboard Break interrupt is called when [Ctrl] [Break] is pressed. It is called from the
Keyboard Hardware interrupt (Int 09h) via an Int lBh instruction. Applications may chain into the
Keyboard Break interrupt. Interrupts are enabled when Int lBh is called. (The BIOS points the Int
lBh vector to an !ret instruction.) Just prior to calling Int lBh, the Int 09h routine clears the
keyboard buffer. When the Int lBh routine returns, the Int 09h routine puts the pseudo
scancode/ASCII pair "OOh/OOh" into the keyboard buffer, then returns.

When the Int lBh routine is entered, the BIOS has established a stack frame as shown below:

Saved Flags

Saved CS

Saved IP from Int 9h

Saved AX

Saved BX

Saved ex
Saved DX

Saved SI

Saved DI

Saved DS

Saved ES

Saved Flags

Saved CS

SP- Saved IP (from Int lBh)

The register contents are as shown below when Int lBh is called:

AH: Undefined
AL: Break scancode (46h)
BX: copy of Keyboard buffer read pointer word at 4Oh:1Ah
DS: 40h
ES: Undefined

91

Int lCh

Int lCh - TImer Tick Interrupt

The Timer Tick interrupt is called from the Timer Hardware interrupt (Int OSh) via an Int lCh

instruction. The interrupt is called every time the hardware timer issues an interrupt (a timer "tick").

This occurs at a nominal rate of 18.2 Hz (once every 55 ms). Applications may chain into the Timer

Tick interrupt Interrupts are enabled when the Int 1Ch is issued. (The BIOS points the Int lCh

vector to an Iret instruction.) When the Int 1Ch routine is entered, the BIOS bas established a stack

frame as shown below:

Saved Flags

SavedCS

Saved IP from Int 8h

SavedDS

Saved AX

SavedDX

Saved Flags

SavedCS

Saved IP (from Int lCh)

The register contents are as shown below when Int 1Ch is called:

92

AX, BX, ex, DX, BP, SI, DI: contain undefIned values

DS: 40h
ES: Undefmed

IntIDb

Int IDb - Video Parameter Table Pointer

Int 1Dh is a pointer to a video parameter table .. This table contains parameters used to initialize the
display controller for a particular display mode. The modes are described in the section on Int 10. 'I.'he
video parameter table is structured into fIelds as shown below:

Field Length
(Bytes)
16
16
16
16
8*
8
8

Dermltion

Alphanumeric 40 x 25 initialization parameters.
Alphanumeric 80 x 25 initialization parameters.
Graphics initialization parameters.
Monochrome 80 x 25 initialization parameters.
Video buffer size.
Number of columns for each video mode.
Video mode parameter bytes.

*The video buffer size field consislS of 4 two-byte words.

The initialization parameters can be used to set up the horizontal and vertical size of the display, and to
establish the cW'Sor size and position.

The video buffer size parameter can set the size of the graphics buffer for the graphics modes. This
parameter should not be used in monochrome mode 7.

The number of columns parameter can be used to indicate the number of columns to display. This
parameter can be used for subsequent display address calculations.

The video mode parameter bytes are written to the display hardware to set it up appropriately for a
given mode.

93

"

Int 1Fh

Int 1Fb - Graphics Character Table Pointer

This is a pointer to the font table for Code Page 850 characters 128 thru 255. Each character in the
character table is defined by eight bytes. The first byte defines eight dots along the top row of the
character. The next byte defines eight dots along the next row down, and so on. The character is
defined as an 5-by-7 font.

For example, this is the bit representation for the A acute character taken out of the font file:

DB 02H,004H,OOEH,011H,01FH,011H,011H,OOOH Char B5: A acute

· .. 1 .

· . 1 ..

· 1 11 .

· 1 ... 1

.11111

· 1. . 1

· 1. . 1

The BIOS also has a built in character font table for Code Page 850 characters from OOh through
7Fh. There is no interrupt vector pointing to this table, but it is fixed in location at otOOOh:Ofa6eh.

94

Int4Ah

Int 4Ah - User Alarm Interrupt

Int 4Ah is called from the real-time clock interrupt service routine (Int 70h) when an interrupt is issued
by an alarm. Applications may chain into this interrupt so that they may be alerted when an alarm is
active. (The BIOS points the Int 4Ah vector to an Iret instruction.) When the Int 4Ah routine is
entered, the BIOS has established a stack frame as shown below:

Saved Flags

SavedCS

Saved IP from Int 70h

SavedDS

Saved AX

SavedDI

SavedDX

Saved Flags

SavedCS

Saved IP (from Int 4Ah)

The register contents are as shown below when Int 4Ah is called:

AL = ODh
AH, BX, ex, DX, BP, SI, DI: contain undefined values
DS: 40h
ES: Undefined

95

Int63h

Int 63h - eXecute In Place (XIP) Services Interrupt

The Int 63h XIP services provide low-level program location and bank switching capabilities which can
be usc d to run code directly from a plug-in ROM card.

Plug-in card ports 0 and 1 are supported. However, since Jaguar has only one card port, a custom card
or a custom extender board would be required to access two cards. When a PCMCIA standard' card is
inserted into Jaguar, that card resides in Port O.

The term "logical page" will refer to memory in a plug-in card and the term "physical page" will refer to
memory in the address space of the CPU.

Memory on a plug-in card is viewed as a sequence of 16 KB logical pages. The logical pages start on
successive 16 KB boundaries starting with logical page 0 which starts at card physical address o.

Jaguar has four 16 KB physical pages and two 64 KB physical pages. The physical page numbers,
starting addresses, and sizes are:

Physical Page Number Starting Address Size

3 EaJOO 16KB
2 E8000 16KB
1 E4000 16KB
0 EOOOO 16KB
8 DOOOO 64KB
4 COOOO 64KB

The XfiJ Services interrupt (Int 63h) functions are described in the table below. Specify the desired
function code in register AH, with additional parameters passed in other registers as indicated in the
table .

• AH = SOh Return File Location and Lock Card Port

96

This function searches the root directory of plug-in card drives A, D, E, and F (in that order) for
the specified me. If the me is found, the card port containing the me is locked.

This function is intended to be used by an XIP loader program to locate an XIP program on a
plug-in ROM card. If successful, the port is locked which means that a warm start will result if the
card is removed prior to unlocking the port. Thus, the program is assured that the logical pages
containing the me are available for mapping until the program explicitly unmaps the pages and
unlocks the port. .

Int63h

Input:

Output:

Error conditions:

Registers modified:

AH = SOh.
ES:BX = Pointer to an 11 byte buffer containing the me name in
the same format as used in a DOS disk directory. That is, the me
name left justified and blank filled in bytes 0 through 7 and the
extension left justified and blank filled in bytes 8 through 10.

AH = Return status
OOh = Success
A2h = FIle not found
BX = logical page which contains the beginning of the me
ex = offset from beginning of logical page to beginning of me
DX = port number of card that contains the me

As given in AH

AH, BX, ex, DX

• AH = 8lh Unlock Card Port

This function unlocks a card port which has been previously locked by function SOh. Prior to
unlocking, all the mapped pages of the port must be unmapped.

This function is intended to be used by the XIP loader's exit processing so that the card port will be
available for use by other programs.

Input: AH = 8lh.

Output:

Error conditions:

Registers modified:

DX = port number to unlock

AH = Return status
OOh = Success
AOh = Invalid port number
Alh = Port not locked
A3h = Port has mapped pages

As given in AH

AH

• AH = 82h Map/Unmap Card Port Pages

This function maps a logical page from a plug-in card memory into the physical address page
frames. This function operates on 16 KB pages when requested to map into physical pages 0, 1, 2,
or 3, and operates on 64 KB pages when requested to map into physical pages 4 or 8.

For physical page numbers 4 and 8, the logical page number must be a multiple of 4 so that the
logical page starts on a 64 KB boundary. In this case four consecutive logical pages are mapped
into the C or D bank corresponding to physical pages 4 or 8, respectively.

This function can also unmap physical pages, which makes the previously mapped logical pages
inaccessible for reading or writing. You unmap a physical page by setting its associated logical page
toFFFFh.

97

Int63h

This function is intended to be used by the XIP loader to map XIP code and data into CPU address
space for execution. It is subsequently used to unmap card pages prior to unlocking a port.

Input:

Output:

Error conditions:

Registers modified:

AH = 82h.
AL = Physical page number, 0, 1, 2, 3, 4, or 8
BX = Logical page number
DX = Port number

AH = Return Status
OOh = Success
8Ah = Invalid logical page number (Physical page is 4 or 8, but
logical page is not a multiple of 4)
8Bh = Invalid physical page number
AOh = Invalid port number
Alh = Port not locked

As given in AH

AH

• AH = 83h Get/Set Page Map

98

This function is composed of four subfunctions which perform general saving and restoring of the
page mapping state. The state is saved to or restored from a save array provided in the calling
program. One of these subfunctions is used to determine the required length fOl' the array.

These functions are intended to be used to save or restore Jaguar's page map state as a unit; the
internal representation of the page map state should not be manipulated .

• AX = 8300h Get Page Map Subfunction

Input:

Output:

Registers modified: AH

AX = 8300h
ES:DI = pointer to destination save array

AH = Return Status
OOh = Success

• AX = 830lh Set Page Map Subfunction

Input:

Output:

Registers modified: AH

AX = 830lh
DS:SI = pointer to source save array

AH = Return Status
OOh = Success

Int63h

• AX = 8302 Get and Set Page Map Subfunction

Input:

Output:

Registers modified: AH

AX = 8302h
ES:DI = pointer to destination save array
DS:SI = pointer to source save array

AH = Return Status
OOh = Success

• AX = 8303 Get Size of Page Map Save Array Subfunction

Input:

Output:

Registers modified: AH

AX = 8303h.

AH = Return Status
OOh = Success
AL = Save array size in bytes

99

, ..

Appendix A

Appendix A • Compatibility Issues

BIOS Special Compatible Subroutine The following code fragment must be present at the address
indicated for compatibility with the Industry Standard.

; This subroutine must be placed here for compatIbility.

FOOO:EOOD 204942
FOOO:E010 4D
FOOO:E011 C3
FOOO:EOOD

AND
DEC
RET
DB

[BX + DI + 42],CL
BP

2Ob, 49b, 42h, 4Dh ;"ffiM"

Compatibility Addresses The table below shows the compatible entry points and data table addresses
which the Jaguar BIOS system supports.

Int Rom Entry 'JyPe Function
FOOO:EOSB code Reset

02 FOOO:E2C3 code Nonmaskable Interrupt
19 FOOO:E6F2 code Boot

FOOO:E729 data Baud rate divisor table
14 FOOO:E739 code Serial
16 FOOO:E82E code Keyboard
09 FOOO:E987 code Keyboard interrupt service routine
13 FOOO:EC59 code Disk
OE - FOOO:EF57 code Disk int svc routine (Not used in Jaguar)

FOOO:EFC7 data Disk parameter table (Not found in Jaguar)
17 FOOO:EFD2 code Printer
10 FOOO:F065 code Video
10 FOOO:FOA4 code Video parameter table
12 FOOO:F841 code Memory size
11 FOOO:F84D code Equipment check
15 FOOO:F859 code System functions

FOOO:FA6E data Character table (lower 128 chars only)
1A FOOO:FE6E code Time and date
08 FOOO:FEA5 code Timer interrupt service routine

FOOO:FEF3 data Interrupt Vector Table
FOOO:FF23 data Default Interrupt handler

Handles interrupts not specifically
handled by the BIOS.

FOOO:FF53 data DummyIRET
05 FOOO:FF54 code Print screen

FOOO:FFFO code Hardware reset point
FOOO:FFF5 data BIOS date stamp
FOOO:FFFE data Hardware ID byte

100

AppendixB

Appendix B - BIOS Messages

The following is a list of messages display by the BIOS. Most messages will be localized (translated)
to foriego. languages, but a few messages will not be localized.

Messages which will be localized to foriego languages

CR.LF. "RAM Disk Corrupted"

CR.LF. "Initialize RAM Disk? Enter Y or I: "

CR.LF. "Initializing RAM Disk" .CR.LF

" MAIl BATTERY LOV "

" BACKUP BATTERY LOV "

" CARD BATTERY LOV "

"Exiting Backup Mode" .CR.LF

CR.LF. "Card changed in locked port."

CR.LF. "10 stack for IMI."

CR.LF. "Press any key to warm start "

CR.LF."All files on drive C: will be erased!"

CR. LF • "Continue? Enter Y or I:"

Messages which will not be localized

"(C)Copyright Lotus Development Corp 1990",cr,lf

"(C}Copyright Hewlett-Packard 1990",cr,lf

"Copyright 1984,1985",cr,lf,
" Phoenix Software Associates Ltd",CR,LF

"Version @.QA.02",CR,LF

101

AppendixC

Appendix C - PASSWORD

TECHNICAL DETAILS

The Jaguar password is implemented in a fairly simple fashion. At three places in the main BIOS,
there are calls to password routines:

1. At the beginning of the routine which places Jaguar into DeepSleep mode, a check. is made to
see if the ALT-ON key press is the cause and, if so, a call is made to the ALTONYWD
routine which, if a password is defined, sets a flag which says that the unit is "ALTON-locked".

2. At the end of the routine which brings Jaguar out of DeepSleep mode, a call is made to the
CHK....PWD routine which checks two flags, the "ALTON-locked" flag and the "AUTO-locked"
flag. If either is set then the display is scrambled and the password is required from the user.
If the password fails, the unit is put back to sleep, otherwise the display is unscrambled, the
"ALTON-locked" flag is cleared, and the unit is brought fully awake and available for use.

3. At the beginning of the COLDSTART routine (which gets control at CI'RL-ALT-DEL and
SHIFT -CI'RL-ON) a call is made to the CHK....PWD routine, as described above in 2). If the
password fails, the unit does not go to sleep (since it's not easily and cleanly done at that point
by a simple call), but continues to loop on password entry until the password is entered
correctly.

There is also some special code in the !NT 16 functions for handling special cases involving an
unattended wakeup by an alarm.

Additionally, a PASSWORD command is provided which implements the setting of the password,
the setting/clearing of the ''ALTON-lock'' flag, and the clearing of the "PASSWORD-defined" flag
(deleting the password).

The hope is that there is NO way to bypass the password, except to remove the main and backup
batteries from the unit (thus loosing the contents of the drive C: RAM disk).

USER'S PERSPECTIVE

There is a built-in command PASSWORD, which allows the user to set, change, and remove a
password. It can also be used to set and clear an AUTO-LOCK mode. When in AUTO-LOCK
mode, • ANY. time the unit turns off, or is re-booted, the password is required before the display
contents can be viewed, or the computer used. When not in AUTO-LOCK mode (in MANUAL
mode), the password is ONLY required if the user turns the unit off by holding down the ALT key,
and then pressing and releasing the ON key. This "locks" the unit, requiring the password upon
wakeup.

To set the password, you must go to DOS (by closing all applicat- ions, entering the filer, pressing
MENU, and selecting System). Then, at the DOS prompt, type

PASSWORD

followed by the ENTER key. You will be prompted:

102

AppendixC

Enter new password:

At this point you should type in your password, which can consist of from 1 to 12 alphanumeric
characters (ASCll values from 32 through 255). Control characters are not allowed and will abort
password entry. After typing in your password, press ENTER. You will now be prompted:

Verify new password:

You should re-enter your password at this point and press ENTER. IT the two passwords don't
match, it will not be accepted, the password will not be set, and you will see the message:

Verify failed. Password unchanged.

Otherwise, the password will not be set, and you will see:

Password changed.

You may now turn the unit off AND secure it by pressing ALT-ON. When turned on again, most of
the display will be blank, with a small box in the center containing the characters:

pwd:

At this point, you can turn the unit back off, type in a password and press ENTER, or do nothing.
IT the password is not typed correctly, the unit will beep and turn itself off. IT you re-boot with
CI'RL-ALT-DEL or SHIFI'-Cl'RL-ON, you will still be prompted for the password. At that point, if
the password is not typed correctly, the unit will beep, but will NOT turn off.

When a unit is turned on after having been secured from graphics mode, the display will be
scrambled imd look like a TV screen after the station has gone off the air, but will have the 'pwd:'
message in a box in the center of the display.

After a password has been specified, it can be changed by going to DOS and typing:

PASSWORD

You will be prompted:

Enter old password:

You will need to correctly enter your old password before being allowed to change the password.
This prevents an unauthorized person from changing your password without your knowledge,
prevent- ing you from accessing your own machine. After your old password has been correctly
entered, the new password is then entered in the same fashion as the first password (as documented
above).

To enable AUTO-LOCK, go to DOS and type:

PASSWORD /A

('A' for Automatic.) To disable AUTO-LOCK, type:

PASSWORD 1M

('M' for Manual.) To completely remove password protection, type:

103

AppendixC

PASSWORD /D

('D' for Delete.) Hence, the complete syntax for the PASSWORD command would look something
like:

PASSWORD (fA I 1M I /D]

IT the machine has been shut off with password protection enabled, it can be awakened by a key
press, an alarm (set in the appointment book), or a series of characters arriving over the serial cable.
IT the cause of the awakening is an alarm or serial characters, the unit will 'beep' for approximately
four seconds or until a key is pressed. You must still enter the password correctly before being able
to use the unit. No keys are discarded, so if th~ unit is beeping, just start typing the password and
the beeping will stop after the first key press.

IT the cause of the awakening was an alarm, the appointment book will display it's alarm message
and start beeping immediately after the password has been entered.

IT an alarm goes off and the user does not press any keys for about 15 seconds, the password code
will allow execution to continue on into the main system so that the next alarm can be set, but the
keyboard is locked out during this period, maintaining the systems security.

It should be recommended to the user that he set up a password, whether it's used or not, simply to
prevent a malicious person from setting an unknown password that would lock the user out of his
own machine. IT the password LOCK is left in "manual" mode (the default) then the password will
never intrude itself unless the user requests it (by pressing ALT-ON).

104

File Specifications for
HP 95LX Built-in Applications

HP 95LX Appointment Book File Format
The HP 95LX Appointment Book file is structured as a file-identification record, followed
by a settings record, followed by a variable number of data records, and terminated by an
end-of-file record. There are multiple types of data records corresponding to the different
types of appointment book entries.

4

The formats of these appointment book records is described in the following tables. In the
descriptions, the type iDt refers to a two-byte integer stored least significant byte first, the
type swpiDt refers to a two-byte integer stored most significant byte first, the type char refers
to a one-byte integer, and the type ASCn refers to a string of ASCII characters.

HP 95LX Appointment Book File Identification Record

Byte Offset

o
2

4

Name

ProductCode

ReleaseNum

FileType

Type Contents

int -1 (FFh, FFh).

int 1 (Olb, OOb).

char 1 (Olb).

HP 95LX Appointment Book Settings Record

Byte Offset Name

0 StartTime

2 Granularity

4 AlarmEnable

5 LeadTime

6 Carry Forward

Type

int

int

char

char

char

Contents

Daily display start time as tbe number of
minutes past midnight.

Daily display time line granularity in minutes.

1 = on, 0 = oft'.

Alarm default lead time in minutes.

To do carry forward default: 1 = on, 0 = oft'.

File Specifications for 4·1
HP 95LX Bullt·ln Applications

HP 95LX Appointment Book Dally Data Record

Byte Offset Name Type Contents

0 RecordType char 1 (01h).

1 RecordLength int Number of bytes in the remainder of this data
record - see note l.

3 ApptState char See note 2.

4 Year char Year counting from 1900.

5 Month char Month, 1 - 12.

6 Day char Day,1- 31-

7 StartTime swpint Start time in minutes since midnight.

9 EndTime int End time in minutes since midnight.

11 LeadTime char Alarm lead time in minutes, 0 - 30.

12 ApptLength char Length of appointment text in bytes.

13 N oteLength . int Length of note text in bytes.

15 ApptText ASCII Appointment text - see note 4 below.

15+ ApptLength NoteText ASCII Note text where the null character is used as the
line terminator - see note 5 below.

4·2 File Specifications for
HP 95LX Bullt·ln Applications

HP 95LX Appointment Book Weekly Data Record

Byte Offset Name

0 ~cordType

1 ~cordLength

3 ApptState

4 DayOfWeek

5 StartTime

7 StartYear

8 StartMonth

9 StartDay

10 EndTime

12 EndYear

13 End Month

14 EndDay

15 Lead Time

16 ApptLength

17 NoteLength

19 ApptText

19+ApptLength NoteText

Type

char

int

char

char

awpint

char

char

char

int

char

char

char

char

char

int

ASCII

ASCII

Contents

2 (02h).

Number of bytes in the remainder of this data
record - see note 1.

See note 2.

Day of week, 1 = Sun., ... , 7=Sat.

Start time in minutes since midnight.

Start year counting from 1900.

Start month, 1-12.

Start day, 1 - 31.

End time in minutes since midnight.

End year counting from 1900.

End month, 1 - 12.

End day, 1 - 31.

Alarm lead time in minutes, 0 - 30.

Length of appointment text in byte.s

Length of note text in bytes - see note 5 below.

Appointment text - see note 4 below.

Note text where the null character is used as the
line terminator - see note 5 below.

File Specifications for 4-3
HP 95LX Built-In Applications

... ~ .. ~'~

HP 95LX Appointment Book Monthly by Date Data Record

B1t£ Oftiet Name Type Contents

0 RecordType char 3 (03h).

1 RecordLength int N umber of bytes in the remainder of this data
record - see note 1.

3 ApptState char See note 2.

4 DayOfMonth char Day of month, 1 - 31.

S StartTime swpint Start time in minutes since midnight.

7 StartYear char Start year counting from 1900.

8 Start Month char Start month, 1 - 12.

9 StartDay char Start day, 1 - 31.

10 EndTime int End time in minutes since midnight.

12 EndYear char End year counting from 1900.

13 EndMonth char End month, 1 - 12.

14 End Day char End day, 1 - 31.
, ,') LeadTime char Alarm lead time in minutes, a - 30.

16 ApptLength char Length of appointment text in bytes.

17 NoteLength int Length of note text in bytes.

19 ApptText ASCII Appointment text - see note 4 below.

19+ApptLength NoteText ASCII Note text where the null character is used as the
line terminator - see note 5 below.

4-4 File Specifications for
HP 95LX Bullt·ln Applications

HP 95LX Appointment Book Monthly by Position Data Record

Byte Offset Name

0 RecordType

1 RecordLength

3 ApptState

4 WeekOfMonth

5 DayOfWeek

6 StartTime

8 StartYear

9 StartMonth

10 StartDay

H EndTime

13 EndYear

14 EndMonth

15 EndDay

16 LeadTime

17 ApptLength

18 NoteLength

20 ApptText
-

20+ApptLength NoteText

Type

char

int

char

char

char

swpint

char

char

char

int

char

char

char

char

char

int

ASCII

ASCII

Contents

4 (04h).

Number of bytes in the remainder of this data
record - see note 1.

See note 2.

Week of month, 1 - 5.

Day of week, 1 = Sun., ... , 7 = Sat.

Start time in minutes since midnight.

Start year counting from 1900.

Start month, 1 - 12.

Start day, 1 - 31.

End time in minutes since midnight.

End year counting from 1900.

End month, 1 - 12.

End day, 1 - 31.

Alarm lead time in minutes, 0 - 30.

Length of appointment text in bytes.

Length of note text in bytes.

Appointment text - see note 4 below.

Note text where the null character is used as the
line terminator - see note 5 below.

File Specifications for 4·5
HP 95LX Bullt·ln Applications

" \

..,

HP 95LX Appointment Book Yearly Data Record

Byte Offset Name Type Contents

0 RecordType . char 5 (05h).

1 RecordLength int N umber of bytes in the remainder of this data

record - see note l.

3 ApptState char See note 2.

4 MonthOfYear char Month of year, 1 = Jan., ... , 12 = Dec.

5 DayOfMonth char Day of month, 1 - 31.

6 StartTime swpint Start time in minutes since midnight.

8 StartYear char Start year counting from 1900.

9 StartMonth char Start month, 1 - 12.

10 StartDay char Start day, 1- 31.

11 EndTime int End time in minutes since midnight.

13 EndYear char End year counting from 1900.
~

14 EndMonth char End month, 1 - 12.

15 EndDay char End day, 1 - 31.

16 LeadTime char Alarm lead time in minutes, 0 - 30.

17 ApptLength char Length of appointment text in bytes.

18 NoteLength int Length of note text in bytes.

20 ApptText ASCII Appointment text - see not.e 4 below.

20+ Appttength NoteText ASCII Note text where the null character is used as the

line terminator - see note 5 below.

4·6 File Specifications for
HP 95LX Bullt·ln Applications

HP 95LX Appointment Book To Do Data Record

Byte Offset Name

0 RecordType

1 RecordLength

3 ToDoState

4 Priority

5 StartYear

6 StartMonth

7 StartDay

8 CheckOflYear

9 CheckOfl'Month

10 CheckOftDay

11 ToDoLength

12 NoteLength

14 ToDoText

14+ ToDoLength NoteText

Type

char

int

char

char

char

char

char

char

char

char

char

int

ASCII

ASCII

Contents

6 (06h).

Number of bytes in the remainder of this data
record - see note 1.

See note 3.

Priority, 1 - 9.

Start year counting from 1900.

Start month, 1 - 12.

Start day, 1 - 31.

Check off year counting from 1900; 0 indicates
not checked off.

Check off month, 1 - 12; 0 indicates not checked
off.

Check off day, 1 - 31; 0 indicates not checked
off.

. Length of to do text in bytes.

Length of note text in bytes.

To do text - see note 4 below.

Note text where the null character is used as the
line terminator - see note 5 below.

File SpecHlcatlons for 4·7
HP 95LX Bullt·ln Applications

" ,
'-

HP 95LX Appointment Book End of File Record

Byte Offset

o
1

Notes:

Name

RecordType .

RecordLength

TJpe

char 50 (S2h).

int 0 (OOh, OOh).

Contents

1. Files created by the Appointment Book application may contain some padding following
the last field of some data records. Hence, the RecordLength field must be used to
determine the start of the next record. Appointment book files created by other programs
do not require any padding.

2. ApptState has several bit fields. Only bit 0 is meaningful to software processing an
appointment book file. Bit 0 being set or cleared corresponds to the alarm being enabled or
disabled. Programs creating Appointment book files should clear all bits, except perhaps
bit o.

3. ToDoState has two one-bit bit fields. Bit 0 being set or cleared corresponds to 'carry
forward' being enabled or disabled for this todo item. Bit 1 being set or cleared
corresponds to the doto being checked off or not checked off.

4. Appointment and ToDo texts are each limited to a maximun of 27 charatcers.

·5. Note text is limited to a maximum of 11 lines of 39 characters per line (not counting the
line terminator).

HP 95LX Phone Book File Format
An HP 95LX Phone Book file is structured as a file-identification record, followed by a
variable number of phone book data records, and terminated by an end-of-file record. Each
data record contains the information for one phone book entry.

The formats of these phone book records is described in the following tables. In the
(descriptions, the type int refers to a two-byte integer stored least significant byte first,

the type char refers to a one-byte integer, and the type ASCn refers to a string of ASCII
characters.

HP 95LX Phone Book File Identification Record

Byte Offset

o
2

4

Name

Pro ductCo de

ReleaseNum

FileType

4·8 File Specifications for
HP 95LX Bullt·ln Applications

Type Contents

int -2 (FEh, FFh).

int 1 (Olh, OOh).

char S (OSh).

HP 95LX Phone Book Data Record

Byte Oft'set Name Type Contents

0 RecordType char I (Olh).

I RecordLength int Number of bytes in the remainder of this data
record - see NOTE below.

3 NameLength char Length of name text in bytes.

4 NumberLength char Length on number text in bytes.

5 AddressLength int Length of address text in bytes.

7 NameText ASCII Name text, 30 characters maximum.

7 +NameLength NumberText ASCII Number text, 30 characters maximum.

7+N ameLength+ AddressText ASCII Address text where the null character is used as
NumberLength the line terminator. Addresses are limited to a

maximum of 8 lines of 39 characters per line (not
counting the line terminator).

HP 95LX Phone Book End of File Record

Note

•

Byte Oft'set Name Type Contents

o
I

RecordType

RecordLength

char 2 (02h).

int 0 (OOh, OOh).

Files created by the Phone Book application may contain some padding
following the last field of some data records. Hence, you must use the
RecordLength field to determine the start of the next record.
Phone book files created by other programs do not require any padding.

File Specifications for 4-9
HP 95LX Built-In Applications

6
HP 95LX Memory Management

Introduction
This chapter discusses ROM-executable XIP programs for the HP 95LX plug-in ROM cards.

The definition of the HP 95LX hardware is now complete, but software tools and support
services are not. Since there are no standards for creating XIP software in the DOS
environment, some of the eventual tools and services may depend on the needs of ISVs.

The PCMCIA is currently working on standards for XIP software. As of this printing, they
have agreed on a basic level of hardware support. This level of support is built into the HP
95LX.

Bank Switch Areas

The HP 95LX hardware supports bank switching of plug-in card memory into the CPU
address space as follows:

Start Lengtlt Contents

COOOOh 64K Page Selectable on 64K boundary

DOOOOh 64K Page Selectable on 64K boundary

EOOOOh 16K Page Selectable on 16K boundary

E4000h 16K Page Selectable on 16K boundary

E8000h 16K Page Selectable on 16K boundary

ECOOOh 16K Page Selectable on 16K boundary

For ease of reference,

• The two 64K sections in the C and D blocks are designated as "code pages."

Code pages are selectable on 64K boundaries-64K portions of the plug-in card that fall on
64K boundaries can be mapped into either the C or D block of the CPU address space .

• The four 16K sections in the E block are designated as "data pages."

Data pages are selectable on 16K boundaries-16K portions of the plug-in card that fallon
64K boundaries can be mapped into any of the 16K subdivisions of the E block of the CPU
address space.

DRAFT HP 95LX Memory Management 6-1
4/12/91 14:18

ROM Card Structure

Applications using XIP will be distributed on a ROM card that the user inserts in the

HP 95LX's plug-in card slot.

Plug-in ROM cards typically contain a ROM-disk structure at their beginnings. ROM disks

each contain a stub program that is used to start the XIP program. Many applications will

have additional files that they desire to access through DOS. These typically include help files,

example files, and other files of application-specific data. All such files will be placed on the

ROM disk that is accessible to the HP 95LX as the A: drive.

In addition to its ROM-disk portion, a plug-in ROM card may contain blocks of

ROM-executable code intended to be bank switched into the code pages mentioned above.

XIP Program Execution

For an independent XIP program, the stub program that resides on the ROM disk will be

loaded and executed as a standard DOS origram. The stub program perform the necessary

bank switching to access its code blocks.

For a System-Manager-compliant application, the stub program will be loaded by the System

Manager.

XIP Bank Switching Services

The two fundamental services provided in the HP 95LX are:

1. A service that returns the card address of the XIP code. The stub program calls this

service to determine the logical addrress of the XIP code it desires to accress.

2. A service that bank switches a logical page of the plug-in card into a physical code or data

page on the HP 95LX.

XIP Tools

Additional tools that we expect to provide in the full Developer's Kit are:

• ROM disk image builder that takes as input a collection of files and outputs a binary image

of a ROM disk that can be included at the beginning of the plug-in ROM card.

• Locator tools that prepare XIP code to execute from the HP 95LX's code pages.

• ROM image builder that combibes the ROM disk image with any blocks of XIP code to

create a complete ROM image.

• Example stub programs that perform bank switching and other control functions typically

needed by applications.

6·2 HP 95LX Memory Management DRAFT
4/12/91 14:18

HP 95LX Low-Level Graphics Support

Introduction
The package of low-level routines built into the HP 95LX that are available for use by
applications programs support these functions:

1. Set Video Mode (Set the display to alpha or graphics mode.)

2. Set Fill Mask

3. Graphics Settings (Get information about current graphics settings.)

4. Set Logical Origin (Specify origin to which all graphics operations relate.)

7

5. Set Clip Region (Specify coordinates of upper-left and lower-right corners of a rectangle.)

6. Draw Rectangle (Specify diagonally opposite corners of a rectangle.)

7. Draw Line

8. Plot Point

9. Move Pen

10. Set Pen Color

11. Set Replacement Rule (Specify how pen color combines with pixel color when plotting.)

12. Set Line-type

13. Read Point (How to read the color value of a point.)

14. Read Area (Reads rectangular area of display into specified buffer.)

15. Write Area (Writes to rectangular area of display from specified buffer.)

16. Write Text (Writes specified text to specified location of display.)

All of the routines which plot to the display always obey the current logical origin, clip region,
pen color, replacement rule, and (where appropriate) line-type and fill-mask.

The pen color can be 0 or 1.

The replacement rule can be one of FORCE, AND, OR, or XOR. Writing a rectangular image
can optionally invert the image before applying the specified replacement rule. Writing an
image is different from all other plotting in that it uses an argument as the replacement rule
rather than the current replacement rule.

The line-type is a 16-bit value whose bits are used repeatedly when drawing a line or an
outlined rectangle.

DRAFT HP 95LX Low-Level Graphics Support 7-1
4/11/91 13:58

The fill-mask is an 8-byte value which specifies an 8-bit by 8-bit rectangular mask which is

used repeatedly when drawing a pattern-filled rectangle.

The general process to do graphics is:

1. Set the display mode to graphics.

2. Set the desired pen color, replacement rule, linetype, fillmask, logical origin, and clip

region, if different than the default values set by the set-mode function.

3. Perform the desired drawing using the attributes setup by step 2).

4. Repeat steps 2) and 3) until done.

S. Set the display mode back to alpha.

The graphics routines are accessed through software iilterrupt SF (hex). The required

arguments are loaded into specific CPU registers, the requested function number is loaded into

the AH register, and then an INT SFh instruction is executed. Unless otherwise stated, all

functions preserve ALL registers except for AX.

X-coordinates always get larger (more positive) when moving to the right on the display.

V-coordinates always get larger when moving down (towards the bottom) on the display. The

default origin is in the top-left corner of the display.

Although the interface is designed primarily as an assembly language interface, it is simple to

write an assembly language module that can provide a library of corresponding functions to a

C program. A sample is provided below.

7 -2 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

Set Video Mode

This routine forces the current video mode to alpha or graphics and clears the display.

Entry conditions:

AH = 0

AL = requested mode:

07h = alpha (system manager compliant).

20h = graphics (system manager compliant).

87h = alpha (non-system manager).

AOh = graphics (non-system manager).

Sub-functions 07h and 20h call the System Manager routine to change video modes, thus
letting the System Manager know that the display has changed modes and the display
contents destroyed. This is important for any applications which are intended to be
system-manager compliant.

Subfunctions 87h and AOh call the BIOS directly in order to change display modes,
thus by-passing the System Manager. These should be used by programs that are NOT
system-manager compliant, so that they will function correctly whether the system was
booted into the system manager or if it was booted straight into DOS (by pla.cing a SHELL=
command in a CONFIG.SYS file).

After a SET _MODE call to change to graphics, the defaults are:

Operation

Logical origin

Clip region

Pen location

Pen color

Coordinates

(0,0)

(0, 0) thru (239, 127)

(0,0)

1

Replacement ruleFORCE

Line-type OFFFFh

OFFh,OFFh,OFFh,OFFh,OFFh,OFFh,OFFh,OFFh Fill mask

Sample assembly code:

DRAFT
4/11/91 13:58

mov
int

mov
int

ax,0020h
5fll

aX,0007h
5fll

; set mode to GRAPHICS

; set mode to ALPHA

HP 95LX Low-Level Graphics Support 7-3

; .

.l

Set Fill Mask

This routine sets the eight-byte fill mask used by DRAW _RECTANGLE when pattern-filling.

Entry conditions:

AH = 1
ES:Dl = address of 8 bytes of fillmask.

The defat:lt fillmask after a mode set to graphics is eight bytes of Oflh (which would result in a

solid-fill).

The fillmask is always aligned with the byte boundaries of the displaymemory, and it is then

clipped by the rectangle being drawn. This means that as the rectangle is shifted bit-by-bit,

the pattern appears to exist on a plane behind the rectangle, and that the rectangle is a

moving window onto that plane. It's tough to describe, and a little experimentation should

make it plain.

Sample assembly code:

fmaskl db 055h, Oaah, 055h, Oaah, 055h, Oaah, 055h, Oaah

assume es:dgroup
lea di,fmaskl
mov ah,l
int 5ib ; set fillmask pattern to FMASKl

7 -4 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

Get Current Graphics Information

This routine returns current information about the state of the graphics functions.

Entry conditions:

AH = 2
ES:DI = address of a 36-byte long buffer into which the graphics information
will be placed.

At exit from this function, the buffer contents will be:

Offset Size Description
0 1-byte CURRENT VIDEO MODE
1 1-byte DEFAULT VIDEO MODE
2 1-word WIDTH OF DISPLAY IN PIXELS
4 I-word HEIGHT OF DISPLAY IN PIXELS
6 1-word CURRENT X-LOCATION OF PEN
8 1-word CURRENT Y-LOCATION OF PEN
10 1-word CURRENT LINE-TYPE
12 I-word CURRENT REPLACEMENT RULE
14 1-word CURRENT PEN COLOR
16 I-word CURRENT X-MINIMUM OF CLIP REGION
18 I-word CURRENT X-MAXIMUM OF CLIP REGION
20 I-word CURRENT Y-MINIMUM OF CLIP REGION
22 I-word CURRENT Y-MAXIMUM OF CLIP REGION
24 I-word CURRENT X-LOCATION OF LOGICAL ORIGIN
26 I-word CURRENT Y-LOCATION OF LOGICAL ORIGIN

28-35 8-bytes CURRENT FILL MASK (for rectangle fill)

At exit:

DX:AX = address of the 36-byte long buffer (for return to C).

Sample assembly code:

infobuf label byte
curmode db ?
defmode db ?
dspwidth dw ?
dspheight dw ?
curpenx dw ?
curpeny dw ?
curlinetype dw ?
curreprule dw ?
curpen dw ?
curclipminx dw ?
curclipmaxx dw ?
curclipminy dw ?
curclipmaxy dw ?
curlogorgx dw ?

DRAFT HP 95LX Low-Level Graphics Support 7-5
4/11/91 13:58

curlogorgy
curfmask

dw
db

?
8 dup (?)

assume
lea
mov
int

es:dgroup
di,infobuf
ah,2 ; read currentvideo info into infobuf
5fh

Set Logical Origin

This routine sets the logical origin in terms of absolute screen pixels, regardless of previous
settings of the logical origin or clip region. The (X,Y) of the logical origin may be specified
off of the actual physical screen (ie, negative values or greater than (239, 127). All other
coordinate arguments in this graphics system are relative to the logical origin, including those
used to specify the clip region.

SET LOGICAL ORIGIN resets the CLIP REGION to the entire physical display (0,0) to
(239,127). So, if clip_region is used, it must be set AFTER the set JogicaLorigin.

The default logical origin after a mode set is (0,0).

Entry conditions:

AH = 3
CX = x coordinate
DX = y coordinate

Sample assembly code:

mov
mov
mov
int

ah,3
cx,120
dx,64
5fh

; move log org to approximately the
; center of the display

7-6 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

Set Clip Region

This routine sets the coordinates of the upper-left and lower-right corners of the clip rectangle.

All reading/writing of the display in this graphics system is limited (clipped) by the current
CLIP REGION.

Default after mode set is (0,0) and (239,127).

Entry conditions:

AH= 4
CX = x-minimum coordinate
DX = y-minimum coordinate
SI = x-maximum coordinate
DI = y-maximum coordinate

Sample assembly code:

DRAFT
4/11/91 13:58

mov
mov
mov
mov
mov
int

ah,4
cx,120
dx,O
si,239
dx,127
5th

; clip (limit) all drawing to the
; right half of the display

HP 95LX Low-Level Graphics Support 7-7

Draw Rectangle

This routine draws a rectangle which has two diagonally opposite corners at the current

pen location and (CX,DX). Hence, you will usually first do a MOVE_PEN, then a

DRAW _RECTANGLE. ALL rectangle draws obey the current replacement rule. The pen

location is left at the starting location (it is not changed).

IT the rectangle drawn is just an outline, it is drawn using the current line-type. If the

rectangle drawn is pattern-filled, it uses the current fill-mask. In all cases the current pen

color and replacement rule are used.

Entry conditions:

AH = 5
AL = fill flag O==outline, current linetype and pen color.

l==solid fill, current pen color.
2==pattern fill, current fillmask and pen color.

CX = x-coordinate of second corner of rectangle.

DX = y-coordinate of second corner of rectangle.

Sample assembly code:

mov ah,8 ; move pen to (50,74)

mov cx,50
mov dx,74
int 5th

mov ah,5
mov al,l ; solidfill rectangle to (101, 99)

mov cx,lOl
mov dx,99
int 5th

7 -8 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

Draw Line

This routine draws a line from the current pen location to (CX,DX) using the current
pen color, linetype, and replacement rule. The pen location is left at the end point. If
another DRAW _LINE is executed after the first without an intervening MOVE_PEN, the
starting point is not plotted. This is to avoid the problem of drawing connecting lines with a
replacement rule of XOR. Since the starting point of the second line is the same as the ending
point of the first line, it would get plotted twice, which in XOR mode is the same as not
plotting it at all.

Entry conditions:

AH = 6
CX = x-coordinate of end point.
DX = y-coordinate of end point.

Sample assembly code:

mav ah,6
mav cx,21
mov dx,10
int 5ib

Plot Point

; draw from current pen location
; to (21, 10)

This routine moves the current pen location to CX,DX and plots a single point there using the
current pen color and replacement rule.

Entry conditions:

AH = 7
CX = x-coordinate of point.
DX = y-coordinate of point.

Sample assembly code:

DRAFT
4/11/91 13:58

mov
mov
mov
int

ah,7
cx,239
dx,127
5ib

; plot point at (239, 127)

HP 95LX Low-Level Graphics Support 7-9

Move Pen

This routine moves the current pen location to (eX,DX). The default location after a mode

set is (0,0).

Entry cor:ditions:

AH = 8
ex :=. x-coordinate.
DX :=. y-coordinate.

Sample assembly code:

Set Pen Color

mov
mov
mov
int

ah,8
cx,22
dx,44
5fh

; move pen to (22,44)

This routine sets the current pen color to 0 or 1. The default after a mode set is 1 (black).

Entry conditions:

AH = 9
AL = new pen color (0 for white or 1 for black)

Sample assembly code:

mov
mov
int

ah,9
al,O
5fh

; set pen color to white (0)

7-10 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

..

"

Set Replacement Rule

The replacement rule controls how the current pen color is combined with the existing color
of a pixel on the display when performing any plotting function (except WRITE_AREA,
which has its own replacement rule specified with each call). If the current replacement rule is
FORCE then the resulting color of a pixel is equal to the current pen color at the time of the
plotting action. For the other three replacement rules (AND, OR, and XOR), the resulting
color is the logical operation between the current screen pixel color and the current pen color.

The default replacement rule after a mode set is 0 (FORCE).

Entry conditions:

AH = 10 (OAh)
AL = new replacement rule

Sample assembly code:

mov ah,lO

O==FORCE
1==AND
2==OR
3==XOR

mov al,3 ; set replacement rule to XOR

int 5fll

Set Line Type

This is a f6-bit value that is repeated over and over as each pixel of a line or an outlined
rectangle is drawn. OxFFFF will cause solid lines to be drawn. The default after a mode set is
OxFFFF (solid line).

Entry conditions:

AH = 11
(OBh) CX = new line type

Sample assembly code:

mov

mov

int

DRAFT
4/11/91 13:58

ah,ll

cx,Oc440h

5fll

; set line type to XXOOOXOOOXOOOOOO

HP 95LX Low-Level Graphics Support 7-11

Read Point

This routine returns AX==the color (0 for white, 1 for black) of the requested point. The
current pen location is not modified.

Entry conditions:

AH = 12 (Oeh)
ex = x-location of point to read.
DX = y-Iocation of point to read.

Sample assembly code:

mov
mov
mov
int

Read Area (get image)

ah,12
cx,49
dx,57
5th

; read point (49,57)

This routine reads a rectangular area of the display into the specified buffer. There is an
8-byte header at the beginning (specifying number of planes, number of bits/pixel, width of
image, and height of image. The first two are always equal to 1 on the HP 95LX.
The size needed for the buffer is: 8 + «x2-x1+8)/8) * (y2-y1+1) bytes.

The diagonally opposite corner points (xl, y1) and (x2, y2) are included in the read area. Bits
with a value of 0 are added to the right end of each row of pixels (if necessary) to fill out an
integral number of bytes of data for that row. The image is always left justified within the
buffer regardless of its byte-alignment on the display.

Entry conditions:

AH = 13 (ODh)
ex = x-coordinate of corner 1.
DX = y-coordinate of corner 1.
SI = x-coordinate of corner 2.
BP = y-coordinate of corner 2.
ES:Dl = address of buffer for image.

Sample assembly code:

tmpbuf db

assume es:dgroup
mov ah,13
mov cx,24
mov dx,55
mov si,41
mov bp,70
lea di,tmpbuf
int 5th

'56 dup (?)

; read a rectangular area of the screen
; from (24,55) thru (41,70) into
;'tmpbuf'

7 -12 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

'.'

Write Area (put image)

This writes to a rectangular area of the display from a specified buffer. The buffer should have
the same eight-byte header described in READ_AREA (above). This call is different from
all other "write"-type calls in that it specifies its own replacement rule rather than using the
"current" replacement rule. It expands upon the replacement rule types by allowing the image
to be inverted before being combined in the usual fashion (according to FORCE, AND, OR,
or XOR) with the display contents. This does not modify the contents of the buffer. IT the
entire image doesn't fit on the display, none of it is drawn.

Entry conditions:

AH = 14 (DEh)
AL = replacement rule o FORCE

1 AND
2 OR
3 XOR
4 invert image and then FORCE
5 invert image and then AND

,,' 6 invert image and then OR
7 invert image and then XOR

CX = x-location of top-left corner of image destination.
DX = y-Iocation of top-left corner of image destination.
ES:DI = address of image.

Sample assembly code:

tmpbuf db 56 du') (?)

assume es:dgroup
mov ah,14
mov al,7 ; invert, then XOR
mov cx,133
mov dx,66
lea di,tmpbuf ; put image 'tmpbuf' at (133,66)

DRAFT HP 95LX Low-Level Graphics Support 7-13
4/11/91 13:58

Write Text

This routine writes the specified text (all 256 chars are legal EXCEPT 0) to the specified
location, horizontally or rotated 90 degrees counter-clockwise from horizontal, using the BIOS
6x8 font, the current pen color and replacement rule. The specified location (eX, DX) is
the top-left corner of the text string, or if the rotate flag is non-zero, the string is rotated 90
degrees counterclockwise about the point (CX, DX) (such that it is now the bottom-left corner
of the text).

Entry conditions:

AH = 15 (OFh)
AL = rotate flag.
CX = x-coordinate of top-left corner of first character.
DX = y-coordinate of top-left corner of first character.
ES:DI = address of null-terminated string.

Sample assembly code:

txtstr db "This is a test" ,0

assume es:dgroup
mov ah,15
mov al,O ; plot text horizontally.
mov cx,124
mov dx,37 ; at (124, 37)
lea di,txtstr
int 5ib

7-14 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

Sample assembly language module of C-callable functions
; Graphics interface module for calling The HP 95LX graphics from C programs.
; Copyright 1990 Hewlett Packard Company. All rights reserved.
; Author: Everett Kaser August 14, 1990 .

. MODEL LARGE,C

.CODE
assume ds:nothing

; G.-Mode(int BiosVideoMode);

G_Mode PROC BiosVideoMode:word
movax,BiosVideoMode
xor ah,ah
int 5ilt
ret
G_Mode endp

; GFillMask(maskptr)j

G_FillMask PROC uses ES DI, maskptr:dword
les di,maskptr
movah,l
int 5ilt
ret
G_FillMask endp

; _GetInfo(GJNFO *gp)j

G_GetInfo PROC uses ES DI, gp:dword
les di,gp
movah,2
int 5fh
ret G_GetInfo endp

; G_LorgA(int x, int y)j

G_LorgA PROC x:word, y:word
.~,-. mov cx,x

mov dx,y
movah,3
int 5ilt
ret
G_LorgA endp

DRAFT
4/11/91 13:58

HP 95LX Low-Level Graphics Support 7-15

; G_ClipL(int xmin, int ymin, int xmax, int ymax);

G_ClipL PROC uses SI DI, xmin:word, ymin:word, xmax:word, ymax:word
mov cx,xmin
mov dx,ymin
mov si,xmax
mov di,ymax
movah,4
int 5fb
ret

G _ClipL endp

; G_Red(int x, int y, int ftllflag);

G_Rect PROC x:word, y:word, fill:word
mov cx,x
mov dx,y
movax,fill
movah,5
int 5fb
ret

G_Rect endp

; G_Draw(int x, int y);

G_Draw PROC x:word, y:word
mov cx,x
mov dx,y
movah,6
int 5fh
ret

G_Draw endp

; G_Point(int x, int y);

G_Point PROC x:word, y:word
mov cx,x
mo\' dx,y
movah,7
int 5fb
ret

G_Point endp

; G_Move(int x, int y);

G_Move PROC x:word, y:word
mov cx,x
mov dx,y
movah,8
int 5fb
ret

G_Move endp

7 -16 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

; G_ColorSel(int color};

G_ColorSel PROC color:word
moy ax,color
moYah,9
int 5fh
ret

G_ColorSel endp

; G_RepRule(int rrule};

G_RepRule PROC rrule:word
moy ax,rrule
moYah,Oah
int 5fh
ret

G_RepRule endp

; G_LineType(int ltype};

G_LineType PROC ltype:word
moy cx,ltype
movah,Obh
int 5fh
ret

G_LineType endp

; G_PointRead(int x, int y};

G_PointRead PROC x:word, y:word
moy cx;x
mov dx,y
movah,Och
int 5fh
ret

G_PointRead endp

; GJmageGet(illt xl, int yl, int x2, int y2, char far *image};

G_IrnageGet PROC uses ES SI DI, xl:word, yl:word, x2:word, y2:word, irnage:dword
mov cX,xl
rno\' dx,yl
rnov si,x2
les di,irnage
rnov bp,y2
rnovah,Odh
int 5fh
ret

GJrnageGet endp

DRAFT HP 95LX Low-Level Graphics Support 7-17
4/11/91 13:58

j GJmagePut(int x, int y, char far *image, int replacerule);

G.JmagePut PROC uses ES DI, x:word, y:word, image:dword, reprule:word
mov cx,x
mov dx,y
les di,image
mov ax,reprule
movah,Oeh
int 5fh
ret

G.JmagePut endp

j G_Text(int x, int y, char far *string, rotflag);

G_Text PROC uses DS ES SI DI, x:word, y:word, string:dword, rotfiag:word
mov ax,rotfiag
mov cx,x
mov dx,y
les di,string
movah,Ofh
int 5fh
ret

G_Text endp

@curseg ends
end

7-18 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

Sample Header File for Use with C Programs.

J* Definitions * /

#define G_ALPHA Ox07
#define G_GRAPHICS Ox20

#define G_FORCE 0
#define G_AND 1
#define G_OR 2
#define G-XOR 3
#define G_NOTFORCE 4
#define G_l\TOTAND 5
#define G_NOTOR 6
#define G_NOTXOR 7

#define G_OUTLINE 0
#define G_SOLIDFILL 1
#define G_PATTERNFILL 2

- -""

#define MINCOLOR 0
#define MAXCOLOR 1

/* Structures * /

typedef struct g_info {
unsigned char vidmode;
unsigned cnar defmode;
unsigned int xpixels;
unsigned int ypixels;
int xloc;
int yloc;
unsigned int linetype;
int rrule;
unsigned int color;
int xclipmin;
int yclipmin;
int xclipmax;
int yclipmax;
int xlorg;
int ylorg;
unsigned char fillmask [8];
} G_INFO;

DRAFT HP 95LX Low-Level Graphics Support 7-19
4/11/91 13:58

/* Graphics library function definitions. (All x,y locations relative to current logical origin
unless specified otherwise.) * /

void far cdecl
G_INFO far * cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl
int far cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl
void far cdecl

G_Mode(int);
G_GetInfo(G_INFO far *);
G_ColorSel(int);
G_RepRule(unsigned int);
G_LineType(unsigned int);
G_FillMask(unsigned char far *);
G_LorgA(int, int);
G_ClipL(int, int, int, int);
G_Move(int, int);
G_Point(int, int);
G_PointRead(int, int);
G_Draw(int, int);
G_Rect(int, int, int);
G_ImageGet(int, int, int, int, char far *);
G_ImagePut(int, int, char far *, int);
G_Text(int, int, char far *, int);

/* --- */
/**** G_MODE(mode): mode = {G_TEXT I G_GRAPHICS} changes the display mode to
text or graphics. * /
/**** G_GETINFO(GraphInfoPtr): GraphInfoPtr is a far pointer to a buffer of the
programmer's choosing where the graphics information will be copied. See the typedef for
the G _INFO structure in this file for the contents of the buffer. * /

*/ --- */
*/ --- */
/**** G_COLORSEL(color): color = 0 or 1 sets the current pen to "color" * /
/**** G_REPRULE(reprule): reprule = {G_FORCE I G-AND I G_OR I G-XOR} sets the
current replacement rule for all other drawing (except for GJmagePut, which specifies its
own replacement rule). * /
/**** G_LINETYPE(linetype): linetype = a 16-bit image that is repeated while drawing
lines and G_OUTLINE'd rectangles. Bits that are 1 cause the current pen color to be plotted
using the current replacement rule.Bits that are 0 are not plotted and leave the display
un-modified. * /
/**** G_FILLMASK(buffer): buffer is a far pointer to an 8-byte array which specifies the
fillmask to use when doing drawings of rectangles with a fillflag of G_PATTERNFILL. Every
bit that is a 1 will cause a point of the current color to be plotted. Every bit that is a 0 will
cause that "point" of the display to be undisturbed. * /

/* --- */
/**** G_LORGA(x,y): x,), = -32768 to +32767 sets the logical origin (0,0) to be located
at the absolute screen coordinate specified by x,y. * /

7-20 HP 95LX Low-Level Graphics Support DRAFT
4/11/91 13:58

/**** G_CLIPL(xl, yl, x2, y2): xl,yl,x2,y2 = -32768 to +32767 sets the current clip
boundary to the rectangle whose diagonally opposite corners are specified by the absolute
screen coordinates equal to the xl,yl and x2,y2 offsets from the current logical origin.*/

/* --- */
/**** G--MOVE(x, y): x,y = -32768 to +32767 causes logical pen to be moved to "x,y" * /

"/**** G_POINT(x,y): x,y = -32768 to +32767 plots a point of the current pen color with
the current replacement rule at "x,y" unless "x,y" is outside the current clip limits. * / .

/**** G_POINTREAD(x,y): x,y = -32768 to +32767 reads the color of the point located at
x,y and returns that as the value of the function. * /

/**** G-DRAW(x,y): x,y = -32768 to +32767 draws a line of the current pen color with the
current replacement rule and the curn"nt linetype from the current pen location to "x,y";
only those points lying within the clip limits are actually plotted. * /

/**** G_RECT(x,y,fillflag): x,y = -32768 to +32767 fillflag = {G_OUTLINE I
G_SOLIDFILL I G_PATTERNFILL} draws a rectangle with diagonally opposite corners at
the current pen location and at "x,y", using the current pen color and replacement rule. The
"type" of rectangle drawn is determined by fillflag. If fillfiag==G_OUTLINE, the outline of
a rectangle is drawn, using the current linetype. If fillflag==G_SOLIDFILL, a solid, filled
rectangle ofthe current color is drawn. If'fillflag==G_PATTERNFILL, a pattern filled
rectangle of the current color is drawn, using the current fill mask. * /

/* ---------------~--- */
. /**** G.JMAGEGET(xl, yl, x2, y2, buffer): xl,yl,x2,y2 = -32768 to +32767.
If both points xl,yl and x2,y2 are within the current clip boundary, the display image
bounded by the rectangle whose diagonally opposite corners are xl,yl and x2,y2 is read into
the bytes pointed to by "buffer".

NOTE: for G_ImageGetO, the required size of 'buffer' is (on The HP 95LX):

. 8 + (x2-xl+8)/8) * (y2-yl+l) bytes * /

/**** G.JMAGEPUT(x, y, buffer, reprule): x,y = -32768 to +32767 reprule = {G_FORCE
I G-AND I G_OR I G.JCOR I G_NOTFORCE I G_NOTAND I G_NOTOR I G_NOTXOR}
If x,y and the un-specified bottom-right corner of the image are within the clip boundary, the
image from "buffer" is drawn on the display using rep rule as the replacement rule. (For the
"NOT" replacement rules, the image is color-invert-ed first, then placed on the display using
the "rest" of the replacement rule.) * /

/* --- */
/**** G_TEXT(x,y,buffer,rotfiag): X,Y = -32768 to +32767, rotfiag = 0 or 1 draws the string
pointed to by "buffer" on the display at the specified location x,y using the current font. If
rotfiag = 0, it's drawn horizontally, else it's rotated 90 degrees counterclockwise. * /

DRAFT HP 95LX Low-Level Graphics Support 7-21
4/11/91 13:58

HP 95LX System Manager Operation
and Programmer's Guide

Overview

7

The System Manager is a layer of control and services that resides between the operating
system (MS-DOS) and the built-in applications on the HP 95LX. In addition to the built-in
applications, the System Manager supports external applications that conform to the
programming conventions discussed in this chapter. External applications that run under the
System Manager will be called "System-Manager-compliant" applications to differentiate them
from programs that run directly under MS-DOS.

A PC version of the System Manager is also used by the Connectivity Pack so that System
Manager compliant applications can, usually with no or only minor changes, also run as a
component of the Connectivity Pack.

The System Manager provides two basic functions:

1. Application control (includes launching and task swapping).

2. Common services for basic user-interface constructs, file I/O, memory management, and
system requests.

This chapter provides general information for developing System-Manager-compliant
applications~ The information ranges from the general principals of System-Manager operation
to a template for a System-Manager-compliant application written in C. See chapter 8 for
descriptions of the services available to System-Manager-compliant applications.

System Manager Operation
'The System Manager reads all keyboard input so that when an application's hot key is
pressed, the System Manager can start that application. When no other applications are
active, the System Manager displays the owner-information screen (which can be thought of as
the default application).

System Manager Execution

The System Manager is the default shell. That is, it is the program that is started by
MS-DOS at boot time and it always remains resident in memory. The System Manager does
NOT process AUTOEXEC.BAT on startup.

If desired, the shell can be changed to the standard MS-DOS command processor. This is
done by creating a config.sys file containing the command "SHELL=COMMAND IP" and
rebooting. If this is done, the system will boot directly into MS-DOS, the System Manager
will not be running, and the built-in applications will not be available. The IP parameter
causes COMMAND to be a permanent shell and also causes COMMAND to process any
AUTOEXEC.BAT file.

HP 95LX System Manager Operation 7·1
and Programmer's Guide

After booting directly into DOS, the System Manager can be invoked by the command
SSYSMGR. There is no way to exit the System Manager, however you can spawn a DOS shell
using the Filer's System command or by running COMMAND.COM from the Filer.

Task Management

First, consider the case where an application is being selected and no applications are
currently active (i.e., the owner-information screen is showing).

When the System Manager starts a.n application, it loads the application into memory,
sets up the segment registers, and transfers control to the application's entry point. For
built-in applications (that run from ROM), the load step involves allocating enough system
RAM for the application's data and copying the initialized data from ROM to RAM. For
loading external applications, the System Manager must also allocate system RAM for the
application's code. In this case, both the code and initialized data are read from disk into
memory.

Once started, an application enters an event loop where it calls the System Manager m_event
or m-nevent function to get the next key stroke or other event. Once started, an application
will be called open until it calls the System Manager m..fini function, which is normally when
the user quits the application. An open application will be called active if it has control and
inactive if another application has control.

Now, consider the case where an application is being selected but a different application is
currently active. In this case, the System Manager not only needs to load and launch the new
application, but also needs to deactivate the previous application.

When switching to a new application, the System Manager sends a deactivate event to the
current applica.tion, which changes its status from active to inactive, and then starts the new
one. If there is insuiIicient memory to load the new application, the System Manager displays
a low memory close down screen and gives the user the chance to terminate one of the open
applications. Once there is sufficent memory, the new application is loaded and launched,
while the data for the previously open applications remain in memory.

Special handling of the code space is required for external applications. Only one external
application's code is kept in memory at anyone time, so if the new application is a.n
external application and another external application is open, this code space (after possible
expansion) is reused for the code of the new external application.

Note

••
Whenever there is a.n external application open, the external application code
space is not reduced in size because there must always be enough code space
to restart any of the open (but inactive) external applications.

Memory Management

The System Ma.nager is responsible for efficiently managing memory for·
System-Manager-compliant applications.

For example, to prevent memory fragmentation, an inactive application '8 data space may be
moved in memory as other applications are launched and exited. This means that applications
should not save the DS value in memory unless the application is prepared to modify the DS
value in case its data segment has been moved.

7·2 HP 95LX System Manager Operation
and Programmer's Guide

As another example, the code space is overlaid for all external applications. This means that
the code for an inactive external application will not be in memory if any other external
application has been subsequently activated. This implies that variable data should not be
stored in the code segment.

TSRs, Interrupt Vectors, and the System Manager

TSRs are DOS programs that terminate but stay resident in memory. There are two ways
that DOS can be accessed on the HP 95LX. One way is to change the DOS shell from
SSYSMGR to COMMAND as mentioned above. The other way is to run a DOS command
from the Filer or from the DOS command line accessed via the Filer's System function. Thus,
there are two environments in which to run TSRs.

Running TSRs from the Filer has two drawbacks. One is memory fragmentation due to the
hole left by COMMAND's data when the TSR terminates. This memory mayor may not be
usable by the System Manager. A more important drawback is that the System Manager may
not be able to run an external application, after a TSR has been installed from the Filer. This
is because the System Manager needs to expand a memory block in order to load the external
application's code and the TSR may block this expansion.

Consequently, we generally recommend that TSRs be run before starting the System Manager.
The TSRs can be started from an AUTOEXEC.BAT file which, if terminated with the
SSYSMGR command, will start the System Manager. This technique permanently ties up
memory for COMMAND's data; but, since this is below the System Manager, it does not
cause memory fragmentation.

TSR's usually make use of some interrupt vectors. The System Manager takes over some
interrupt vectors without "chaining" onto the previous owner. This means that a TSR that
is loaded first may not get control when it expects to if the System Manager has taken the
TSR's interrupt. Thus, it is necessary to know which interrupts are used by the System
Manager.

The interrupts taken by the System Manager are:

Int 05h Print screen.
Int 06h HP 95LX specific BIOS service used to signal entering and

leaving sleep modes.
Int OCh COMi serial port interrupts.
Int iBh Ctrl-Break interrupt. The System Manager saves the original

value and restores it before accessing DOS from the Filer.
Int 4Ah User alarm. Called by BIOS when real-time clock alarm goes off.
Int 60h Used for calls to System Manager services.
Int 6ih Used by the System Manager to load its DS register.

In addition, the System Manager chains into Int lCh, the user timer tick interrupt.

Finally, ht 62h is used by the HP 95LX's Calculator application.

HP 95LX System Manager Operation 7·3
and Programmer's Guide

Ext~rnal Application Support
The System Manager supports adding external applications via entries in an apname.lst
file. External applications can reside either on the C: drive or on a plug-in card. External
applications have the file name extension EXM that distinguishes them from DOS applications
that typically have the EXE extension.

The creation of EXM files is discussed in "Building Applications" below.

The total number of external applications, including those on the C: drive and the plug-in
card, is limited to eight.

The APNAME.LST File

Each record in apname.lst contains registration information on one external applicatioIl.. The
format of each record is:

filespec,hotkey, name(carriage return)

where

filespec is the complete drive, path, and file name of the executable file
for the application. Note that the filespec must not be longer than 28
characters.

hotkey is the four hex digits of the scan/ASCII code for the application's
hot key. Refer to the Int 09h section in chapter 5 for a table of
scan/ ASCII codes. Char modified keys cannot be used for hot keys.

name is the application name that will be displayed in the System Manager
low memory close out screen. name can be up to 12 characters long.

Applications on the C: Drive

At startup, the System Manager checks for the presence ofthe file C:\-DAT\APNAME.LST.
If the file exists, the applications listed in it are added to the System Manager task table as
external applications.

This provides the opportunity to register applications that reside on the C: drive. All entries
in C:\-DAT\APNAME.LST should start with C:.

Applications on a Plug-in Card

The System Manager contains support for automatic registration of external applications that
reside on a plug-in card. The general situation is that when a card is inserted, the System
Manager checks for the presence of the file A:\APNAME.LST. If the file is found, its entries
are added to the System Manager task table as (possibly additional) external applications.
Likewise, when the card is removed, the entries are removed from the task table. However,
there are special situations that can occur if a plug-in card application is "missing" due to its
card being removed while while the application was open.

7-4 HP 95LX System Manager Operation
and Programmer's Guide

Suppose a card containing an open external application is removed. In this case, the System
Manager will not remove the card's applications from the task table and will refuse to register
any applications from other cards that might be inserted.

Should reloading the missing application's code become necessary, an error condition exists
since the code cannot be found. Reloading would be necessary, for example, if a second
external application residing on the C: drive is run and then the missing application's hot key
is pressed.

A distinctive beep is issued to signify various "missing application" conditions as follows:

• When any card is inserted. If this card is the missing application's card, then that
application is again available for use. If this is a different card, then the beep is a warning
that there is an open application from a previous card and that any applications that might
be on this card have not been registered.

• When the hot key for a missing application is pressed.

• When other applications are exited causing the missing application to become the current
application. In this case, the missing application will be skipped, allowing the next
application on the stack to be restarted. In addition, the missing application will be hidden, ")
on the active task list so that it will be skipped in the future.

• When the application is selected from the low-memory close down menu. In this case, the
application will remai;t on the menu, but it cannot be closed down until its card is plugged
in again.

HP 85LX System Manager Operation 7-5
and Programmer's Guide

Access to Services

Accessing Services from the C Programming Language

C-Ianguage applications access services by calling the functions as listed in chapter 8.

Each source file containing services calls must include the header file inter!ac.h which contains
macro definitions for each service. The macro expands the call to be a call to a common
System Service request function. In addition, the macro adds a service number to the
argument list and casts near pointers to far pointers as appropriate.

For example, the m_disp call in the source

#include "interfac.h"

int row,col,style,ostyle;
char ·str;

m_disp(x,y,str ,strlen(str) ,style,ostyle)j

expands to

c_service(F -M-DISP ,x,y,(void far *)str ,strlen(str),style,ostyle);

where

F ..M_DISP is the function code for m_disp and is defined in inter!ac.h.

The function c-service is provided in the object module esvc.obj and converts the call into a
software interrupt that transfers control to the System Manager dispatch table.

Accessing Services from Assembler

Assembler programs access the services by pushing any required arguments on the stack and
then using the SMCALL macro to "call" the service. The required arguments can be found in
chapter B.

For example, usage of m_disp might appear as:

include interfac.mac

push dx ; ostyle (not actually used)
push dx ; style
push ex ; string length
push ds ; string segment
push si j string offset
push ax ; column
push bx ; row

SMCALL F jLDISP ; display the string

add sp,14 j remove arguments from stack

7·6 HP 95LX System Manager Operation
and Programmer's Guide

There are three things to note in this example:

• The arguments are pushed in left to right order as is done by the C compiler.

• Pointers are passed as far pointers. See intermc.h for argument specifics where, in general,
pointers are cast as far pointers.

• The function numbers IUch as F -M..DISP and the SMCALL macro can be found in
intermc.mac.

HP 95LX System Manager Operation 7-7
and Programmer's Guide

Application Considerations

RAM Versus XIP Execution

RAM execution refers to having the application code load into RAM at run time. XIP
(eXecute In Place) refers to having the application code run directly from ROM. All the
built-in applications are XIP while external applications can be either strictly RAM or a
combination of RAM and XIP.

The System Manager does not directly support external XIP applications. That is, the
System Manager loads both the code and data for EXM files into RAM. However, an EXM
program can in turn use the XIP services provided in Int 63h to launch an XIP program. In
this senario, the EXM program acts as a loader for the XIP portion of the program.

Since the XIP loader is a small amount of code, an application done as XIP will require less
RAM for execution than if it was done as RAM-executable. However, the card containing an
XIP application must not be removed while that application is active. Doing so will force a
system warm start.

Application Initialization and Termination

All System M~ager applications must call the System Manager functions m.Jnit and m-fini
on startup and termination, respectively.

Note m-fini never returns and hence plays a role analogous to the DOS terminate
process function.

Event Handling

The System Manager implements non-preemptive multitasking for System-Manager-compliant
applications. Hence, compliant applications are event driven and must make timely calls to
the m_event or m_nevent function to receive keyboard input and other events.

Ths System Manager reports key strokes for normal keys, but reports a deactivate event when
another application's hot key is pressed. In response to a deactivate event, the application
is expected to do any necessary housekeeping to prepare for suspension and then request
the next event. The next event, which will be an activate event, will not be returned until
this application is activated again. Activation can occur for several reasons; for example,
the application's hot key is pressed, all subsequently activated applications are quit, or the
application has been selected for termination from the low memory close out menu.

In response to an activate event, the application must redraw its screen. For RAM efficiency,
it is recommended that applications have a means of redisplaying the screen from primary
data, rather than by saving a copy of display memory.

7·8 HP 95LX System Manager Operation
and Programmer's Guide

The System Manager may also return a termination event at any time. The application "is
required to respond to this as if the user issued a quit command, with any user-interface
variations needed to make clear what is happening. For example, if an editor is being
terminated and its buffer has been modified, the user should be prompted to save the file.

If possible, when an application terminates, it should save its state information in a file.
When it is subsequently relaunched, it can inspect the file and reconstruct its state prior to
termination.

The example at the end of this chapter shows the code for a typical event loop.

Interruptible Processes

An "interruptible process" within a program is one which the user can interrupt by pressing
a key. An example of an interruptible process is function plotting in the built-in calculator
application.

During an interruptible process, the program must periodically check the keyboard to see if
the user has requested interruption. The HP 95LX BIOS uses keyboard checks as an occasion
to go into light sleep. This is done as a power saving feature and is only done when running
on batteries. In many cases keyboard checks are only done when a program is otherwise
idle. In these cases going into light sleep does not affect performance and is an etrective
way to conserve batteries. However, during an interruptible process, going to light sleep can
substantially slow down the process.

The BIOS provides a service (Int I5h, function 4Eh) which controls whether light sleep will be
entered during a key test. This function should be used to disable going to light sleep during
an interruptible process and then to reenable going to light sleep after the process is complete.
Care must he taken to be sure and reenable light sleep for power conservation reasons. The
code fragment below shows an interruptible process which can be terminated by the ESC key
or by Cntl-Break. Included are routines which disable and enable going to light sleep during a
key press.

HP 95LX System Manager Operation 7·9
and Programmer's Guide

,*---.,
m_lockO; 1* disable task swapping and thus ensure that we

cannot exit without getting a chance to reenable
light sleep *1

disable_light_sleep();
while (1) {

1* one iteration of interruptible process goes here *1

1* check for key *1
m_nevent(tappevent);
if (appevent.kind •• E_BREAK)

break;
if (appevent.kind •• E_KEY) {

m_event(tappevent);
if (appevent.data •• ESCkey)

break;
else

m_beepO;
}

}
enable_light_sleep();
m_unlock(); 1* reenable task swapping *1

1*---*1
void disable_light_sleep(void)
{

mov ax,4eOOh
int iSh

}
}

1*---*1
void enable_light_sleep(void)
{
_asm {

mov ax,4e01h
int iSh

}
}

1*---*1

7-10 HP 95LX System Manager Operation
and Programmer's Guide

Using Standard C Library Functions

Our general recommendation is: If the System Manager provides a given service, that service
should be used instead of using a C-library function. This ensures compatability and reduces
the application's code size.

Some apecffic pOints to note are:

• Keyboard input must be obtained only by the use of the System Manager m..event or
m-Devent functions.

• Dynamic memory allocations must be done only by the use of the System Manager m..alloe
or m.-a1loe-Iarge functions, or by using DOS services directly. Standard C library memory
management functions should not be used.

• Elementary C Library routines such as .trlen and atoi can be used.

• System Manager file 1/0 uses a FILE structure that is not compatible with the FILE
structure defined in Microsoft C .tdio.h. Use care with including stdio.h and, in particular,
don't include both fileio.h and stdio.h in the same module.

• The standard C library startup code is not used with System-Manager-compliant
applications. This may affect the use of some types of C Library functions.

Using DOS and BIOS Services Directly

Our general recommendation is: If the System Manager provides a given service, it should be
used instead of going directly to a DOS or BIOS function. This insures compatibility and also
reduces the application's code size. In particular, keyboard input must be obtained only by
the use of t~e System Manager m_event or m_nevent functions.

HP 95LX System Manager Operation 7-11
and Programmer's Guide

Memory Model Conventions

External System-Manager-compliant applications must be sma.1l model programs.

Specifica.1ly,

• Less than 64 KB of code.

• Less than 64 KB of prea.1located data including the stack.

If larger code is required, the program must be made Execute-In-Place (XIP).

Additional data space, up to available memory, can be dynamica.1ly a.1located using the System
Manager m..al1oc: or m..alloc:.Jarge functions.

Data Pointer Consld6rations

As mentioned previously, the System Manager may move an application's data space under
certain circumstances and in particular when an application is inactive. If only DS relative
NEAR pointers are used, then this is not a problem since the System Manager will set up
DS properly prior to activating the application. If FAR data pointers are used, then the
application needs to fix these pointers each time the System Manager moves its data segment.

Startup Considerations

The special C-Ianguage program-startup situations for System-Manager-compliant applications
are:

• Applications must link with a special version of the C-Ianguage startup code, c:rtO.obj .. This
version is needed because the System Manager launch mechanism has already performed the
tasks performed by the normal C-Ianguage startup code.

• The command-line and environment variables, argc, argv, and envp, are not available.

Compiling and Linking Conventions

Three rules must be followed when compiling and linking System-Manager-compliant
applications:

1. Applications must be compiled with the IGs option to eliminate stack checking.

2. There must be at least 256 bytes of application stack space available for System Manager
use whenever a System Manager service is called.

3. Applications must link with the System Manager services interface module, c:svc:.obj. This
module contains the c_service function that performs the software interrupt to transfer
control to the System Manager services jump table.

7·12 HP 95LX System Manager Operation
and Programmer's Guide

Building Applications

Development Tools

Compliers, Assemblers, and Linkers

We recommend that System-Manager-compliant applications be built using Microsoft's C 5.1
(or later version) compiler or the Microsoft 5.1 (or later version) assembler. The recommended
linker is the Microsoft linker which is compatible with your compiler and assembler. The
output from these tools is an EXE file.

EXE to EXM Utility

A utility program, E2M, is provided to convert the EXE file produced by the linker to an
EXM program that can be loaded by the System Manager. See the example below.

Checkout Using Tkemel

Tkernel is a DOS TSR version of the System Manager that runs on a standard PC. While
there are limitations, extensive development can be done on many applications using tkernel.
When applicable, tkernel provides the fastest checkout and debugging environment for System
Manager compliant applications.

Tkernel takes over Int 60h and processes System-Manager-function calls in a manner very
similar to that on an actual HP 95LX. The HP 95LX screen will be simulated by a 40
character by 16-line region in the center of the PC screen.

Some special aspects of using tkernel are:

• When using tkernel, your application runs as a standard DOS application and a standard
debugger can usually be used.

• Task switching and other interactions among applications cannot be tested because only one
task runs at a time under tkernel.

• Since the HP 95LX's MENU key is not on a PC keyboard, some other key must be used.
It is suggested that your application respond to both the Fll key (scan/ASCII code =
Ox8500) and the MENU key in the same way. This enables the Fll key to be used as the
MENU key under tkernel. To enable this to work on PC's which don't have an Fll key,
tkernel converts Alt-FlO to the Fll key code so either Fll or Alt-FlO can be used as the
MENU key.

Graphics Checkout Using TSRGraph

In a manner analogous to tkernel, TSRgraph.eom is a DOS TSR which provides access to
the HP 95LX's graphics routines on a PC. TSRgraph can be installed either before or after
tkernel. Successive executions of TSRgraph switch between installing it and deinstalling it.

HP 85LX System Manager Operation 7·13
and Programmer's Guide

Example

Simple System Manager Program

The following listing is a template for a System-Manager-compliant application.

,*
• SMHELLO.C - Small example of a System Manager compliant program.

*,
.def ine TRUE 1
'define FALSE 0

'include 1I •• \headers\interfac.hll

'include " •• \headers\event.h"

,* function prototypes *'
void app_init(void);
void app_term(void);
void app_awake(void);
void app_sleep(void);
voi~ app_break(void);
int app_key(void);
void app_display(char *msg);

,* global variables *,
EV ~NT 8:ppevent;

,*---*1
void main(void)
{

int done • FALSE;

m_init(); ,* init call to system manager *,
app_init(); ,* application initialization *,

'* event loop *,
do {

m_event(tappevent);
switch (appevent.kind) {

case E_ACTIV:
app_awakeO;
break;

case E_DEACT:
app_sleep 0 ;
break;

case E_ TERM:
done • TRUE;
break;

7·14 HP 95LX System Manager Operation
and Programmer's Guide

,* get next event *,

,* reactivate app *,

,* prepare for suspension *,

,* being terminated *,

}

case E_BREAK:
app_breakO;
break;

case E_KEY:

}

done • app_key();
break;

while (! done) ;

,* app ctrl-break handler *,

,* process key *,

app_termO;
m_finiO;

,* application termination *, ,* terminate call to system manager. never returns *,
}

,*---.,
void app_init(void)
,*
• Initialize application

*,
{

}

,*---*,
void app_term(void)
,*
* Terminate application

*,
{
}

,*---*,
void app_avake(void)
,*
* Reactivates application after suspension.

*,
{

}

,*---*,
void app_display(char *mag)
{

}

char usage_str 0 • "press q to exit II.
• •• t

m_setmode(1); ,* set text mode *,
dravbox("SM HelloU

);

m_disp(1.S.msg.strlen(msg).O,O);
m_disp(3.S.usage_str,strlen(usage_str).1.0);

,*---*,

HP 95LX System Manager Operation 7·15
and Programmer's Guide

void app_sleep(void)
,*
* Prepares application for suspension.

*,
{
}

,*---*/
void app_break(void)

'* * Application control-break handler.

*,
{
}

'*---*'
tnt app_key(void)
,*
* Application keystroke processor.

* * Returns TRUE if user has requested termination, else returns FALSE.

*,
{

}

if (appevent.data •• 'q') {
return TRUE;
}

else {
m_beepO;
return FALSE;
}

,* signal error *'

,*---*,

7-16 HP 95LX System Marlager Operation
and Programmer's Guide

Make FOe for Bulldlrtg EXE and EXM FOes

Below is an mnake make file that will build both a tkernel and an HP 95LX version of the
example program. The tkernel version is called smhello.exe and the HP 95LX version is called
smhello.exm.

This file as well as object modules csvc.obj and crtO.obj are provided in the developer's kit.

all: ambello.exe amhello.exm

• BP 9SLX vera ion

amhello.exm: jamhello.exe
•• \tools\e2m jambello
copy jsmhello.exm amhello.exm
del jsmhello.exm

jamhello.exe: jsmhello.obj
link G«jamhello.lnk

1M INOE INOI jsmhello.obj+ .. \tools\csve.obj+ .. \tools\ertO.obj
jambello.exe
jambello.map;
«NOKEEP

jambello.obj: smbello.e
el Ie lAS IGs IFojsmhello.obj smhello.e

• tkernel version

ambello.exe: ambello.obj
link G«smhello.lnk

1M INOE INOI smhello.obj+ .. \tools\esvc.obj
ambello.exe
ambello . map;
< <NOKEEP

ambello.obj: amhello.e
el Ie lAS IFosmhello.obj amhello.c

Running SMHELLO Under Tkernel

To run SMHELLO under tkernel, use the commands

tkernel
smhello

H tkemel is executed when tkernel is already loaded, you are asked if you want to uninstall it.

H desired, the smhello command can be replaced with a command which runs smhello.exe
from a debugger.

HP 95LX System Manager Operation 7·17
and Programmer's Guide

Running SMHELLO on the HP 9SLX

Download smhello.exm to the root directory of the C: drive on the HP 95LX and
using Memo, create or modify the file C:\-DAT\APNAME.LST to include the line
C:\SMHELLO.EXM,C300,SMHel1o

Now reboot the system.

At this point, the hot key Alt-CALC is assigned to the SMHELLO program.

7·18 HP 9SLX System Manager OperaUon
and Programmer's Guide

HP 95LX System Manager Services Reference

This chapter describes the HP 95LX System-Manager services that are available to any
System-Manager-compliant application.

Overview

8

The HP 95LX System-Manager Services provide a simple, memory-effective means by which
all HP 95LX System-Manager-compliant applications can share a set of library functions.
These services simplify development of HP 95LX applications and maximize memory
efficiency. .
Because System-Manager Services are inherently viewed as a set of subroutine calls made
by applications, the services described herein are specified as 'C' Language function calls.
Services are grouped by functionality, and each group has a brief operational overview,
description of any data structures required by the group, and specifications for each function.
Individual function descriptions include parameter conventions, return values, and a functional
synopsis.

The functional areas are:

• Event Services.
• Menu Services.
• File Menu Services.
• Screen Services.
• Editing Services.
• File Services.
• Process Management Services.
• Clipboard Services.
• Sound Services.
• Memory Management Services.
• Date/Time Services.
• Printer Services.
• Configuration Services.
• Communications Services.
• Miscellaneous Services.
• Resource Services.
• Help Services.
• Collating Services.
• 1-2-3 Bridge Services.

These services are described in the following sections of this chapter.

HP 95LX System Manager Services Reference 8·1

Header Files
Header files are used for macro and structure definitions. All functional areas require the
inclusion of interf'ace.h for C modules or interf'ac.mac for assembler modules.

Some functional areas also require.the inclusion of additional header files as follows:

Service Class C Program Assembler Program

Event event.h event.mac
Menu menu.h menu.mac
File Menu fmenu.h fmenu.mac
Editing edit.h smedit.mac
Clipboard ebcodes.h cbeodes.mae
File I/O fileio.h filio.mac
Date/Time smtime.h smtime.mac
Configuration settings.h settings.mae
Communication eomio.h comio.mae
Bridge bridge.h bridge.mac
Mise lIl-error.h lIl-error .mac

A Note on C-Language Function Prototypes

The header files do not contain function prototypes for the services. Instead, interf'ac.h
contains macro definitions that expand System-Manager-service calls into calls to a single
service-dispatch routine.

Hence, if a service is accidentally called with the incorrect number of parameters, it will not
match the macro and the compiler will issue a warning about too few or not enough actual
parameters for the macro.

However, if a. service is accidentally called with an incorrect argument type but with the
correct number of parameters, this may not be caught by the compiler due to the lack of a
function prototype.

The following functions in interf'ae.h are not usable by applications:

com_timer_addr
InitCom
lIl-app_name
m_day _trigger
m_enable_maeros
m_geLsettings
m-reboot
m-Bet-Bettings
m-Bys_rsre_addr

com_timer_counLaddr
lIl-appeount
m_eommon_open
IIl-disable..macros
mJalLprinter
m-f&In-iv -info
m-Set_daterule
m-Spawnarg

A Note on Far Versus Near Pointers in Service Calls from C

All pointers in System-Manager-service calls are far pointers. However, the service macros
contain casts of pointer arguments to far pointers. Consequently, near pointers can be used for
data in cases where the compiler can supply the segment value due to the cast.

8·2 HP 95LX System Manager Services Reference

Event Services
While active, applications should poll the System Manager's event functions to get input from
the user, and dispatch according to the type of event reported and the current state of the
application (doing a menu, editing text, etc.). Keystrokes are translated for both applications
(CP 850) and 123 (LICS and function key flags). Event information is passed through the
structure of type EVENT, which is defined below.

typedef struct {
enum event_kind kind;
unsigned int data;

,* event kind code defined below *,
,* For ASCII keys. this is just the ASCII

code in the low byte. For non-ASCII keys.
the scan code is in the high byte and the
low byte is zero. *,

unsigned char scan;
unsigned char shifts;

,* scan code from BIOS *,
,* shifts register. when function returns *,
,* not necessarily when key struck *,

unsigned int lics;
unsigned char fkey_num;

,* LICS translation of keystroke *,
,* function key number for 123 only *,

void far *bridge; ,* pointer to 123 bridge data structure *,
} EVENT;

The meanings of the event-kind codes are:

Code

E_ACTIV

E-ALARM_DAY

E_ALARM_EXP

E_BREAK

E_BRIDGE

E_DEACT

Meaning

Application receiving the event has just been activated or
reactivated. This should be taken as a signal to (re)display
in the active state.

The application's daily chance to set an alarm.

The application's alarm has expired.

Control-Break detected.
shifts reports current stat of the keyboard shift flags.

Event reported only to 123 when a bridge service is requested.
Pointer to data is found in bridge field.

Application receiving this event is about to be deactivated.
It is given the opportunity to prepare for an inactive state
that will begin following the next m-event call.

A request to 123 to grow.

Keystroke available to application.
data contains the CP 850 ASCII value.
ICaD contains the keyboard sean code.
lies contains the LICS interpretation of the keystroke.
fkey_num contains the function key code used by 123.
shifts reports the current state of keyboard shift flags, not
necessarily the state of the shifts when key was struck.

HP 95LX System Manager Services Reference 8·3

Code Meauing

E_NONE No event available.
shifts reports current state of keyboard shift flags
(immediately before control is returned).

E_SHRINK A request to 123 to shrink.

E_TERM Application receiving the event is about to be terminated.
It should respond to this event as if {MENU ,Quit} had been
entered from the top level.

An application may interact with the user and make calls to
m-event as necessary. It should ultimately make a call to
uUiDiO to give up control, or to m..no-fiDiO if the user has
indicated a desire to abort the shutdown process.

E_TIMECHANGE Indicates that the system date or time has been changed.

Applications using the event services must include the header files event.h and interfac.h.

void m_event(eventptr);
EVENT far *eventptr;

Transfers control to the System Manager until a reportable event has occurred or until a
timeout period of approximately 0.5 seconds has elapsed. The event is reported in *eventptr
and is taken out of the system queue.

In the event of a timeout, E-NONE will be reported. This gives applications the opportunity
to redisplay the current time.

m_flush_kb

void m_flush_kb();

Flushes the keyboard queue. Control is returned when the queue is empty.

void m_nevent(eventptr);
EVENT far * eventptr;

Transfers control to the System Manager. If no event has occurred, E_NONE will be reported.
The event is reported in * eventptr.

If the event is an E-KEY event, the event is not removed from the system queue. However,
all other events, such as activation and deactivation events are only reported once, despite the
fact that m-neventO has been called.

8-4 HP 95LX System Manager Services Reference

Toid m_no_fini(eventptr);
EVENT far *eventptr;

If, in response to an E_TERM event, an application discerns that the user wishes to abort
the shutdown procedure, it should call m-D.o-finiO. This call will release the system locks
(allowing context switching) and break the shutdown sequence. The application making the
call will continue to be the active application.

An event structure must be passed, but its fields will be undefined on return, and may be
safely ignored.

int __ sh_status();

Gets the current status of the keyboard shift flags. Return value is same as value returned by
BIOS (Int 16h, Service 2).

m_yleld

Toid m_yield(eventptr);
EVENT far *eventptr;

Voluntary suspension of an application. When called, the application is placed at the end of
the application stack, and the active state reverts to the next application. Control will not
return to the caller of m_yield until some external action causes it to be made active again
(generally, -user request via hotkey).

The return value will be the same as if the application had made an m_eventO call and had
been suspended; that is, the expected event type on return is E-ACTIV.

HP 95LX System Manager Services Reference 8-5

Menu Services
All applications should use the menuing system provided by the System Manager. The menu
system uses the 1-2-3-styled two-line menu bar (where the top line contains keywords to all
of the options available at a particular decision branch and the second line displays a long
message corresponding to the currently highlighted option). Because of the screeen space
constraints, the two lines are used for keywords, and no long prompts are supported.

There is an option which supports a prompted menu, in which the top line is a constant
prompt (it does not change as the item selection changes) and the second line is filled with
keywords.

Menus are used by calling menu_setupO to fill a data structure of type MENUDATA.
menu-onO should be called when the menu becomes active; menu_otf() when menu selection
has been made. The application should repeatedly call menlLkeyO and menu_disO while
keystroke& are available or until the user has selected an item or aborted the process. Note
that process events (i.e., non-keystrokes) should be handled without calls to menu_disO.

The definition for the structure MENU DATA is:

typedef struct {
-> /* define the menu display storage area */

/* the intent is to have one string per display line to make display
management easier */

char menu_text [HAX_MENU][MAX_MWIO]; /* menu display storage area */
int menu_count; /* number of keywords */
int menu_highlight; /* index of hightlighted item */

/* -l·for no highlight */
/* flag indicating special mode with single prompt on top line */
int menu_tprompt; /* 0 •• > no */
/* define the menu information table */
char menu_line [HAX_KWOS]; /* which line of menu this word is on */
char menu_offset [MAX_KWOS]; /* offset of this keyword in the string */
char menu_length [HAX_KWOS]; /* length of this keyword */
char menu_letter [HAX_KWDS]; /* first letter of this keyword */
/* store the pointers to the long prompts */
unsigned menu.prompt[MAX_KWDS]; /* OS-relative offsets •.• */

} MENUDATA;

Applications using the menu services must include the header files menu.h and interfac.h.

void menu_dis(m);
MENUDATA far *m;

Displays the menu, when appropriate, with any necessary highlighting.

8-6 HP 95LX System Manager Services Reference

menu_key

int menu_Itey(m, keystroke, presult);
MENUDATA far *m;
int keystroke;
int far *presult;

Given the keystroke, updates the menu display and returns the index of the selected item (if
any). The routine determines the appropriate action for any arbitrary keystroke. keystroke
should be the value returned in the data field of the event structure.

Sets *presult to -1 if no final selection has been made, otherwise to the index of the selected
item.

Returns O.

void menu_off(m);
MENUDATA far *m;

Deactivates menu management, removes highlight.

void menu_on(m);

MENUDATA far *m;

Activates menu management and highlights first item in list.

menu_setup

int menu_setup (m t keywords t keyword_count t double_space t top_prompt,
tprompt_Ien ,long_prompts)

MENUDATA far *m;
char far *keywords;
int keyword_count;
int double_space;
char far *top_prompt:
int tprompLlen;
char far * long_prompts:

Builds a menu structure to be used later.

m points to a structure of type MENUDATA to be filled in by the procedure. keywords
points to a series of null-terminated strings which make up the keywords of the menu. The
first character of the second word directly follows the null terminator of the first, and so on.
keyword_count indicates the number of keywords present. double_space indicates whether one
(value of 0) or two (value of 1) spaces will be displayed between menu items. The spacing
argument is taken as a recommendation: single spacing will be used if it keeps all items on the
top line or if the second line is filled.

HP 95LX System Manager Services Reference 8·7

For normal menus, *top_prompt will be NULL, and tprompLlen will be o. In that case,

long_prompts points to an array of pointers (all relative to the constant resource segment)

to the long prompts for the menu. There must be a one-to-one correspondence between long

prompts and keywords.

Note Long prompts are not supported and long_prompts will be ignored on the

HP 95LX.

Special menus with top-line prompts are created by setting *top_prompt and tprompLlen.

Returns O.

8-8 HP 95LX System Manager Services Reference

File Menu Services
File-Menu services provide a flexible method for file name selection. The services can display a
list of file names from which the user can make a selection by moving a cursor to the desired
name and pressing [ENTER).

The list of file names can be selected by means of a wild card. A common usage is to display
all the file names that have the application-specific extension.

The services make use of three structures: FMENU, FILEINFO, and EDITDATA. FMENU
and FILEINFO are described below; EDITDATA is described in the Editing Services section.

The FMENU structure is:

typedef struct {

'.---Members to be Initialized by the Application---*'
char far .fm_path; ,* base directory name C:\DATA\ *,
char far .fm_pattern; ,* file pattern. e.g .•. WK1 .,
FILEINFO far .fm_buffer; ,* workspace for file list (hold infos) *,
int fm_buf_size; ,* size of the buffer in bytes *,
int fm_startline,fm_startcol; ,* starting rov.col *,
int fm_numlines.fm_numcols; ,* number of lines and columns *,
int fm_filesparline; ,* number of files displayed across *,

'.---Members thst are initialized by the File Menu Services---*'

int fm_firstediti
int fm_filesinbufi
int fm_maxf inbuf ;
int fm_topfile;
int fm_curselect;
int fm_oldselecti
int fm_focus;
} FMENU;

,* 0 if first edit char. else multi line *,
,* number of files in list *,
,* maximum number of files buffer holds *,
,* file at top of list *,
,* index of the file highlight *,
,* index of file to un-highlight *,
,* 1 • fmenu. 2 • edit *,

HP 95LX System Manager Services Reference 8·9

As indicated by the comments, some elements of this structure are to be initialized by the
application. This initialization must occur prior to the call to fmenu..init. These elements are:

fm..path

fm-pattem

fm..buLsize

fm-startline

fm..muncols

fm..filesperline

Pointer to null-terminated name of directory that is to be searched for files.
For examole, C:_DAT.

Pointer to null-terminated string that contains a file name or a wild-card-file
pattern. For example, *.WKI.

Pointer to an array of FILEINFO structures (see below) that will be used to
hold the file names that match the file pattern. The number of elements in
this array is the total number of files that can be displayed by the File-Menu
Services. Thus, choosing the size of tlus array is a tradeoff between memory
usage for this array and how many files are supported.

Size in bytes of file-name list pointed to by fm-buffer.
If NFILES is the number of elements in fm..buft'er, fm..buLsize is NFILES •
sizeof(FILEINFO) .

Number of lines on the display where the file-menu prompt will appear. The
file list will start on the next line down. As with the Screen Services, the top
line is the number -3. A common value is -2 which leaves the top line free
for a prompt such as "File to open."

Leftmost column to be used by the file-menu display. A common value is O.

Number of lines to be used by the file-menu display, including the
file-menu-prompt line. A common value is 13, which, together with the top
line for a general prompt and the bottom two lines for softkey labels will use
all lines of the display.

Number of columns to be used by the file-menu display. A common value is
40 which uses all columns of the display.

Number of file names to be displayed on each line across the screen.
A common value is 3 given that fuwlumcols is 40.

In addition, a common usage employs a file-selection prompt identifying the file to be selected
(for example, "File to open:"). This prompt is inserted in the EDIT DATA structure prior to
calling fmenu-init.

8·10 HP 95LX System Manager Services Reference

There are four EDITDATA structure elements to be initialized as follows:

prompLwindow
promtp-line_length
message_line
message_Iine-1ength

The FILEINFO structure is:

typedef atruct {
char fi_attr;
int fi_time;
int fi_date;
long fi_8ize;
char fLname[13]

} FILEINFO;

Should be set to 1.
Should be set to o.
Should point to the desired prompt string.
The length of the prompt string.

,* file attribute *,
,* time modified *'
,* date modified *,
,* file length *'
'*file name *,

The FILEINFO structure is used internally by the File-Menu Services and is not intended to
be manipulated directly by the application.-"

Applications using the File-Menu Services must include the header files !menu.h, edit.h, and
interfae.h.

int fmenu_ dis (fmen u_data. edit-data) ;
FMEW far .fmenu_data;
EDITDATA far *edit_data;

Redisplays the current file-menu screen. fmenu_data and edit_data are pointers to the same
FMENU and EDITDATA structures that were used in the call to fmenu.Jnit.

int fmenu_ini t (fmenu_data, edit_data, name, namelen, ma:clen) ;
FMENU far *fmenu_data;
EDITDATA far *name;
char far *namei
int namelen;
int ma:clen;

Initializes the File-Selection-Menu Services and displays the File-Selection menu. fmenu_data
points to an FMENU structure that has been initialized by the application as shown above.
edit-data points to an EDITDATA structure that is normally initialized with a file-selection
prompt as described above. name points to a null-terminated string that can be a file name, a
pattern, or a null string. If name is a file name or pattern, fmenu.Jnit will present this name
on the prompt line and will not display the names of files that match fm_pattern. If name is a
null string, fmenu..init displays fm_pattern on the prompt line and displays the names of files
that match this pattern. namelen is the length of the name string.

HP 95LX System Manager Services Reference 8·11

The mazlen must be present, but is not used. We recommend that you set mazlen to zero.

Returns RET_OK normally; else returns RET_BADFILE, RET_BADDIR, or
RET _BADDRIVE if there is a problem with name. If such an error results, a common
recourse is to use the null string for name. This causes the File-Menu Services to use the file
pattern contained in fm_pattern, which should specify an existing directory.

fmenu_key

int fmenu_key(fmenu_data,ediLdata,key);
FMENU far *fmenu_data;
EDITDATA far *ediLdata;
int key;

Processes a keystroke that is entered while the File-Menu Service is active. fmenu_data and
ediLdata are pointers to the same FMENU and EDITDATA structures that were used in the
call to fmenuJnit.

key is the value of the keystroke as returned in event.data by the Event Services.

The return values defined in fmenu.h are:

RET_REDISPLAY
RET_ACCEPT

RET_ABORT

key vas unknown by fmenu_key.
key vas procdssed by fmenu_key,

just call fmenu_dis.
key vas known by fmenu_key,
but vas invalid (for example, pgdn off list).
redisplay application area before calling fmenu_dis.
user mada a file selection, the filename is in the
edit_bufter element of the EDITDATA structure
pointed to by ediLdata.
user aborted operation.

int fmenu_off(fmenu_data,ediLdata);
FMENU far *fmenu_data;
EDITDATA far *ediLdata;

Clears the portions of the screen that were used by the File-Menu Services. fmenu_data and
ediLdata are pointers to the same FMENU and EDITDATA structures that were used in the
call to fmenuJnit.

Returns RET _OK.

8-12 HP 95LX System Manager Services Reference

..

Screen Services
Accessing the user display is done through the following functions. All row and column values
given relative to the top-left comer of the application's active window; that is, (0,0) are the
coordinates of the first character that may be drawn in the applications window.

In the HP 95LX, position (0,0) corresponds to the first column in the fourth row. Negative
row coordinates can be used to access the first three rows of the HP 95LX screen; for example,
the top row is -3.

Applications using the screen services must include the header file inter!ae.h.

Il_chrattr (buffer ,len) ;
char far .buffer;
int len;

Returns the characters and attributes starting from the top left corner of the screen.
len character/attribute pairs are put into buffer.

Il_chrinv(row, col, nchars);
int row, col, nchars;

Invert the attributes for nchars, starting at the screen location specified by row and col.

ll_chrrvrt(row,col,buf,len) ;
int row, col, len;
char far .buf;

Restore attributes on display. buf is a pointer to an array of characters, which are the saved
attributes to be restored. len tells how many characters are to be restored. row and col tell
which characters to restore.

Il_clear(row, col, nrows, ncols);
int row,col.nrows,ncols;

Clears a rectangular region where row and col specify the top-left corner and nrows and ncols
specify the dimensions.

m_dirty _sync

void Il_dirty_sync(void);

HP 95LX System Manager Services Reference 8-13

Causes an immediately redisplay of the virtual display buffer. This function is called
automaticaJ.ly at the beginning of m_event (and m-nevent).

m_disp

m, disp (row, col, str, len, style, ostyle) ;
h t row. col, len, style, ostyle ;
c;;'ar far *str;

Displays str of length len at row and col, with the attribute style. The ostyle parameter is
required, but is not used. The valid values for style are:

Style

o
1
4
8
9
12

MDA Attribute

07h
70h
Olh
B7b
FOh
Blh

Description

Normal
Inverse
Underlined
N erma! Blink
Inverse and Blink
Underline and Blink

m_disp puts the string into a virtual display buffer and does not write the string to the
physical displ~y. The changes to the virtual display buffer are written to the physical di::play
each time the application requests the next event. The m_dirty -sync function should be used
if it is desired to update the physical display immediately after an m_disp call (as might be
the case during debugging).

m_getmode

int m_getmode(void);

Returns the current display mode, l=text or 2=graphics.

int m_rovs_cels();

Returns number of rows in high byte, number of columns in low byte.

m_scroll (row, col. nrows. ncols, offset) ;
int row, col. nrows, ncols, offset;

Scrolls vertically the rectangular region where row and col specify the top-left corner, nrows
and ncols specify the dimensions, and offset is the number of lines to scroll.

8·14 HP 95LX System Manager Services Reference

void __ •• tcur(row,col).
int row,col;

Sets the cursor position to the row and column coordinates specified by row and col.
The cursor can be turned oft' by moving it to an oft'-screen location; for example, use
Dl-Betcur(O,-l).

m_setmode

void m_ •• tmod.(nlode).
int mode.

Sets the display mode to text (mode=l) or graphics (mode=2) and clears the display.

m_xchg (row, col, nrows, ncols. region) ;
int row, col, nrows, neols;
char far • region;

Copies the information in region into the recti:LIlgular region on the screen whose top-left
coordinates are row and col, and whose dimensions are nrows and neols.

HP 85LX System Manager Services Reference 8-15

Editing Services

The System Manager provides general purpose editing facilities that should be used by aJ.l

applications. Single-line editing is done by filling a structure of type EDITDATA by caJ.ling

EDITJNIO or EDIT_TOPO, and then by repeatedly caJ.ling EDIT-KEYO and EDIT-DISO

until the editing is terminated (generaJ.ly when a CR is struck), which will be signaJ.led by

EDIT-KEYO·

The EDITDATA structure is defined as follows:

typedef struct {
int edit_length;
char first_time;
char spec_flags;
int prompt_window;
char far *.message_line;
int message_line_length;
char far *prompt_line;
int prompt_line_length;
char edit_buffer[80]
int line_array[2];
MOlTOATA mdit;
int e_dispcols;

} EOlTOATA;

'* current length of the edit buffer *'
,* flag for special processing on first char *,

,* bit 0 is tab handling *,
,* whether this belongs to prpt. Window*'

,* the top line message for prompt *,
,* length of message_line *, '* second line of prompt window *,
,* length of prompt_line *'
,* work space *,
,* to be passed to mdit structure *,
'* multi-line st~lct. to hold more info *,

The width of the edit buffer may exceed the width of the display window, up to 78 characters.

Horizontal scrolling is handled by the services.

Multi-line editing is done similarly, but with calls to the mdiL·O series of fU:lctions. Tle

multi-line editor allows the buffer to exceed the capacity of its display window, up to some

length fixed at initialization.

The MDITDATA structure is defined as follows:

typedef struct {
char far *m_ buff er ;
int m_length;
int m_pos;
int m_row. m_col;
int m_nrows.m_ncols;
int m_yoff.m_disprows;
char m_ccol;
char m_modified;
char m_xoff;
char wrapflag
int far *m_line;

int markon;
char spec_flag;
int markst;
int mark end ;
int m_dispcols;

} MOlTOATA;

'* user supplied edit buffer *,

,* length of buffer *'
,* current cursor position *'
,* location of edit area *,
,* dimensions of logical edit area *, '* log. top line of display;lines of display*'

'* cursor column *,
,* 1 if buffer has been changed *,
,* 1st disp. col (for ticker fields only) *,
,* word wrap enable flag *'
,* caller supplied buffer for line starts *,

,* must be at least m_nrows+1 long *,
,* marking is currently active flag *,

,* offset of start of marked region. inclusive *,

,* offset of end of region. inclusive *,

,* displayable columns *,

8-16 HP 95LX System Manager Services Reference

The m-DrOWS field specifies the number of rows in the buffer. m_disprows specifies the .
number of rows displayed on the screen.

Applications using the editing services must include the header files edit.h and interCae.h.

edit-dis

int edit_dis{e);
EDlTDATA far *e;

Displays the edit area, defined in e, on the screen.

Returns 0

edit-Inlt

edi t _ ini t (e, inLbuf, inLlen, ma:c_len, display_line, display_col) ;
EDlTDATA far *e;
char far *inLbuf;
int inLlen, display_line, display_col, ma:c_Ien;

Sets up the structure e for single line editing at an arbitrary location. inLbuf points to a
string of length inLlen, which is the default value for the edit field. This buffer must be in
the application's, data segment. ma:c_Ien indicates the maximum width of the field. dislay_Une
and display_col provides coordinates for the first character of the field.

Calls edit-disO to display the field.

Returns o.

edit-key

int edit_key(e,keystroke,presult);
EDITDATA far *e;
int keystroke;
int far *presult;

Processes keystroke in the context of ej that is, it does the work of inserting characters, etc,
for the edit field. keystroke is the value returned in event.data by the Event Services.

Sets *presult to 1 if editing has been completed, otherwise, sets *presult to o.
Returns o.

edit-top

int edit_top(e, inLbuf, inLbuf_Ien, ma:c_Ien,linel,lenl,line2, len2) ;
EDlTDATA far *e;
char far *line1;
char far *Une2;
char far *inLbuf;
int inLbuf_len;
int lenl;
int len2;
int ma:c_lfn;

HP 95LX System Manager Services Reference 8-17

Sets up the structure e for single line editing. The field will be edited on the top line of the
application '8 menu area if it occupies only one line; otherwise, it is edited on the second line of
the menu area. The first character of the edit field will follow the last character of the prompt
string (line2).

inLbuf points to a string of length inLbuf_len, which is the default value for the edit
field. This buffer must be located in the application's data segment. maz_len indicates the
maximum width of the field. line 1 , of length len1, will be displayed as a message. line!, of
length len!, will be displayed as the user prompt.

Calls edit-disO to display the field.

Returns O.

mdiLcutmark

void mdit_cutmarlt(mp);
MDlTD!T! far *mp;

Deletes the characters included in the marked region. If an application wants to save the
contents of marked region, it should copy the data prior to making the cutmark call. The
offsets for the start and end of the region are maintained in the markst and markend fields of
the MDITDATA structure. Applications should note that if markend == m.length, the last
character should be ignored. .

The marking mode is ended after successful completion of this function.

mdiLdis

void mdit_dis(mp);
MDITD!TA far *mpi

Displays the current contents of the edit field pointed to by mp and updates the cursor
position.

mdiLfil

mdit_fil(mp,/p) i
MDITD!TA far *mpi
FILE far *fPi

Writes the buffer in mp to the open file associated with /p. No attempt is made to reposition
the write pointer of the file.

Returns 0 if successful; otherwise, returns the error code reported by m_writeO.

8-18 HP 95LX System Manager Services Reference

mdiLlni

void mdi t_ini (mp. row. col. nrows. ncols. buf • len • wrapftag. dis prows .line_arTOY) ;
MDITDATA far .mp;
int row. col. nrows. ncols • len ;
char far. but;
int wrapftag;
int disprows;
int far .line_arTOY;

Initializes the structure mp for multi-line editing. row and col establish the top-left corner of
the edit regioni nrows and ncols establish the dimensions of the logical edit region. The caller
must provide the buffer through buf, which must be located in the application's data segment.
Its length is specified in len, and the maximum length is 32767.

m_nrows specifies the number of rows in the edit buffer, while m_disprows specifies the
number of screen rows that are displayed; that is, the latter defines the size of the region on
the screen.

wrapftag, if nonzero, enables word wrapping.

line_array provides the mdit functions a buffer in which to store line offsets for each row. It
must be at least (m_nrows+l)*sizeof(int) bytes long, and must he located in the application's
data segment.

To use mdit functions without vertical scrolling, m_disprows must equal m_nrows.
Applications must also provide the buffer space for line_arTOY.

Returns 0

int mdit_ins_str(mp.str.len);
MDITDATA far .mpi
char far IItstr;
int len;

Allows entry of multiple characters into the edit buffer. Screen will be updated after all
characters have been inserted.

mdiLkey

int mdi t_key (mp. keystroke) i
MDITDATA far .mp;
int keystroke;

Processes keystroke in the context of mpi that is, it does the work of inserting characters, etc,
for the edit field. keystroke is the value returned in event.data by the Event Services.

If marking mode is in effect, only cursor movement keys will be accepted.

HP 95LX System Manager Services Reference 8·19

The cursor movement keys are as follows: •

UP ARROW Move to previous line, same column if possible.
DOWN ARROW Move to next line, same column if possible.
LEFT ARROW Move to previous character.
RIGHT ARROW Move to next charcter.
HOME First column of current line
END Last column of current line
CONTROL HOME First character of buffer.
CONTROL END Last character of buffer.
CONTROL LEFT ARROW Beginning of previous word.
CONTROL RIGHT ARROW Beginning of next word.

The following keys also have special. meanings:

Returns O.

mdiLmark

BACKSPACE
DELETE
CONTROL ENTER
CONTROL BACKSPACE
TAB

void mdit_mark(mp);
MDlTDATA far *mp;

Delete character to left of cursor
Delete character under cursor.
Delete characters from cursor to end of line.
Delete word to left of cursor.
Insert spaces from current position to next tab
stop.

Invokes the-multi-line editor's marking mode. While marking is active, only cursor movement
keys are accepted by mdiLkeyO. The current cursor position becomes the anchor, and the
user may select text before or after the anchor, but the anchor cannot be moved.

An application may inspect or copy the text in the marked region by observing the current
values in the markst and markend fields of the MDITDATA structure.

This function causes the display to be updated showing the initial marked region (1 character)
in inverse video.

mdiLunmark

void mdit_unmark(mp);
MDlTDATA far *mp;

Ends the multi-line editor's marking mode. This function has no other effect on the
MDITDATA structure, but it will redisplay the text without the marking attributes.

8·20 HP 95LX System Manager Services Reference

File Services
Operations on disk files are done through the following set of calls. Refer to the include file
flleio.h for information on the structures and lIl-error.h for error codes used by the File
Services.

Caution The FILE Services use a FILE structure that is not compatible with the FILE
structure defined in a Standard C Library include file, .tdio.h. Modules using
the System Manager File Services must not include .tdio.h. •

Applications may use either buffered and unbuffered operations. If only unbuffered operations
are used, then the structure NBFILE can be used in place of FILE to save the RAM that
would be used for the file buffer.

Applications that use File Services must include the header files fileio.h and interfae.h, and
may want to include m-t!rror.h for file-error codes.

int m_close(fp) j
FILE far *jPj

Closes the file associated with /p.

Returns 0 if successful, otherwise, returns an error code.

m_copydt

void m_copydt(jpsrc,fpdest) j

FILE far */psrcj
FILE far *fpdestj

Copies the date and time modified values from jpsrc to fpdest, both of which must refer to
files opened through System-Manager-file services.

m_create(jp,filespec, len,sys, nobuf> j

FILE far *jPj
char far * filespec j
int lenj
int SYSj

int nobujj

Creates a new file to be identified by filespec. len is the length of filespec. sys is not used and
should be zero. If nobuj is set, no buffering will be performed.

The file will be created and opened only if it does not already exist.

If successful, the values in jp will be updated and 0 will be returned. Otherwise, an error code
will be returned.

HP 95LX System Manager Services Reference 8·21

int m_delete(bp, len, sys) ;
char far *bp;
int len;
int SYS;

Deletes the file specified by bp. len is the length of of the string pointed to by bp. sys is not
used and should be set to zero.

Returns 0 if successful, otherwise, returns an error code.

m_fcreat (fp ,filespec , len, sys, nobu/i ;
FILE far *fp;
char far * filespec;
int len;
int sys;
int nobuf;

Creates a new file identified by filespec. len is the length of filespec. sys is not used and
should be set to zero. H nobuf is nonzero, no buffering will be performed.

Any existing file matching the filespec will be truncated.

H successful, the values in fp will be updated and 0 will be returned. Otherwise, an error code
will be returned.

m_fdate -

m_fdate (JpI, IpI) ;
FILE far *fpl;
char far *ZpI;

For the file referenced by fpl, return the time and date values in *lpl.

m_getattr

m_getattr(bp,len,sys,attr) ;
char far *bp;
int len;
int sys;
unsigned far *attr;

For the file specified by bp, returns in attr the file attributes as returned by DOS. len is the
length of the file specification. sys is not used and should be set to zero.

8·22 HP 95LX System Manager Services Reference

m_getdir

int m_get_dir(drive. bp.lenp) j
char drivej
char far *bpj
int far *lenpj

Builds in bp the current directory for the specified drive. The returned path includes the drive
designator (for example, "c:"). *lenp contains the length of the string returned in bp.

Returns O.

m_getdrv

int m_getd.rv(drivep);
char far *drivepj

Sets *drivep to the drive letter of the current default drive. Reported values start at 'A'.

Returns 0 if successful, otherwise, returns an error code.

m_getfdt

void m_getfdt (fp. dateval) j
FILE far *fp;
long far *datevalj

Gets the last modification date/time of the file fp and returns it in *dateval. The format of
datevai is that of the date/time stamp in a DOS directory entry.

m_geLsysdir

m_get_sysdir(bp)j
char far *bpj

Copies into * bp the system directory path. On the HP 95LX, the system-directory path is
C:\..DAT\. On the Connectivity Pack, the system-directory path is controlled by the PIMS
environment variable with default of C:\CPACK\.

int m_ident(bp.len.sys.typep) j
char far *bpj
int lenj
int sYSj
int far *typePj

Sets *typep to indicate the file type of the file whose name is pointed to by bp. len indicates
the length of the filename stored in bp. sys is not used and should be set to zero.

The file type is set to 1 for a file, set to 2 for a directory, set to 3 for a device, or set to 0 if
filename is not found.

Returns 0 if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8·23

int m_match(matchp,jlagp);
MATCH far .matchp;
int far .jlagpi

For the matchp structure set up by m..setpatO, find the next matching file name. ·flagp is set
to nonzero when a match is found; otherwise, *flagp is set to zero.

Returns 0 under normal conditions; returns a nonzero error code with jlagp set to 0 when an
error other than no more matches is encountered.

int m_mkdir(bp,len,sys);
char far .bp;
int len;
int sys;

Creates the directory specified in the string bp, where len is the length of bp. sys is not used
and should be set to zero.

Returns 0 if successful, otherwise, returns an error code.

m_open

int m_open (/p ,filespec, len, sys, nobuj) ;
FILE far */p;
char far * filespec;
int- len;
int sys;
int nobu/;

Opens an existing file identified by filespec. len is the length of filespec. sys is not used and
should be set to zero. If nobu/ is nonzero, no buffering will be performed.

If successful, the values in fp will be updated and 0 will be returned; otherwise, an error code
will be returned.

m_openro

int m_openro(/p,filespec,len,sys,nobuj);
FILE far ./p;
cha.t" far. filespec;
int len;
int sys;
int nobu/;

Opens an existing file identified by filespec in read-only mode. len is the length of filespec. sys
is not used and should be set to o. If nobu/ is nonzero, no buffering will be performed.

If successful, the values in fp will be updated and 0 will be returned. Otherwise, an error code
will be returned.

8·24 HP 9SLX System Manager Services Reference

m_putfdt

void m_putf dt (fp, dateval) ;
FILE far .fp;
long dateval;

Sets the last modification date/time of the file fp to dateval. The format of dateval is that of
the date/time stamp in a DOS directory entry.

m_read (fp, buffer • len ,lenp) ;
FILE far .fp;
char far • buffer;
int len;
int far .'enpf;

Reads up to len bytes of data from the I/O stream fp into the memory pointed to by buffer.
*lenp tells how many bytes were actually read. If *lenp != len and the returned value is zero,
the end-of-file has been reached.

Returns 0 if successful, otherwise, returns an error code.

int m_rename(bpI,lenI,sysI, bp2, len2,sys2);
char far .bpI;
c~ar far .bp2;
int lenI;
int sysI;
int len2;
int sys2;

Rename the file specified by the name pointed to by bp1 to the name pointed to by bp2. len1
and len2 are the lengths of the filenames pointed to by bp1 and bp2 respectively. sys1 and
sys2 are not used and should be set to zero.

Returns 0 if successful, otherwise returns an error code.

int m_rmdir (bp, len, sys) ;
char far .bp;
int len;
int sys;

Removes the directory specified in the string bp, where len is the length of bp. sys is not used
and should be set to zero.

Returns 0 if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8·25

m_seek

m. seek (fp, mode, seek) ;
FILE far $/p;
int mode;
l~ng seek;

Sets the c-arrent position in the file associated with /p. seek is the signed-byte offset of where
to set the position, relative to the value of mode. Modes defined in tileio.h are:

Mode

seek_ beginning

seek_current

seek_end

m_setattr(bp,len,sys,attr) ;
char far $bp;
int len;
int sys;
int attr;

Meaming

Offset from start of file.

Offset from current position.

Offset from end of file.

For the file specified by bp, sets the file attributes to attr. len is the length of the file
specification. sys is not used and should be set to zero.

int m_setdir(bp,len);
char far $bp;
int len;

Given the path bp of length len, sets the current directory for the drive included in the path.

Returns 0 if successful; otherwise, returns an error code.

int m_setdrv(drive);
char drive;

Sets the default drive to drive. Drive values should start with 'A'.

Returns 0 if successful, otherwise returns an error code.

8·26 HP 95LX System Manager Services Reference

m_setpat

m_setpat(matchp. bp.len.BJ/s);
MATCH far *matchp;
char far *bp;
int leni
int 8YSi

Builds the MATCH structure used for seaching for files with the m-IIlatchO function. bp is
the pattern to match, including any path information. len specifies the length of bp. 8YS is
not used and should be set to zero.

int m_tell(/p.seekp);
FILE far */p;
long far *seekp;

Sets * seekp to the current position in the file associated with fp.

Returns 0 if successful, otherwise, returns an error code.

m_volume

void ~volume(bp.sizep);
char far *bp;
long far *Sizep;

Sets bp to .the name of the current volume and sets * sizep to the amount of freespace available
on that volume.

m_write

m_vrite(fp.buffer.len) ;
FILE far *fp;
char far * buffer;
int len;

Writes len bytes of data to the I/O stream /p from the memory pointed to by buffer.

Returns 0 if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8-27

Process Management Services

void m_fini(void);

Signals to the System Manager that the current application is done. Control is never returned
to the application.

void m_init(void);

Must be called by the application's main entry point.

void m_lock(void);

Increments the system lock count, which prevents interruption of the currently running
application while it is nonzero. That is, it causes other applications' hot keys to be ignored.

This could be used, for example, to prevent a task switch until after an error message is
acknowledged by the user .

. m_reg_app_name

m_reg_app_name(appname);
char far *appname;

Records the null-terminated string pointed to by appname as the name of the application.
The application name is used in the low memory closeout screen. The third field in the
APNAME.LST entry provides an initial name for external applications. Internal applications
use this function to record their names.

m_spawn

int m_spavn (command_str, command_len, sysflag, prompLstr) ;
char far *command_str;
int command_len;
int sysflag;
char far *prompLstr;

command_Btr points to the string that will be passed to COMMAND.COM for execution.
commantLstr must be terminated with a carriage return (,\r' = OxOd). command_len is the
length of command_str.

sysflag can be 0 or 2. Applications should set sysflag to OJ value 2 is reserved for internal
System-Manager use. When sysflsg is set to 0, the calling application must be the only open
application. When sysflag is set to 2, the spawn will be attempted even if other applications
are open.

8·28 HP 95LX System Manager Services Reference

Process Management Services

void m_fini(void)i

Signals to the System Manager that the current application is done. Control is never returned
to the application.

void m-tnit(void)i

Must be called by the application's main entry point.

m_lock

void m_lock(void)i

Increments the system lock count, which prevents interruption of the currently running"''''
application while it is nonzero. That is, it causes other applications' hot keys to be ignored.

This could be used, for example, to prevent a task switch until after an error message is
acknowledged by the user.

m_reg_app_name

m_reg_app_name(appname);
char far *appname;

Records- the null-terminated string pointed to by appname as the name of the application.
The application name is used in the low memory closeout screen. The third field in the
APNAME.LST entry provides an initial name for external applications. Internal applications
use this function to record their names.

m_spawn

int m_spam (c:ommand_str. command_len. sysjfag. prompLstr) ;
char far *command_stri
tnt command_len;
tnt sysjfag;
char far *prompt_stri

command_str points to the string that will be passed to COMMAND.COM for execution.
commantLstr must be terminated with a carriage return ('\r' = OxOd). commantLlen is the
length of command_str.

sysftag can be 0 or 2. Applications should set sysjfag to 0; value 2 is reserved for internal
System-Manager use. When sysjfsg is set to 0, the calling application must be the only open
application. When sysftag is set to 2, the spawn will be attempted even if other applications
are open.

8-28 HP 85LX System Manager Services Reference

prompLBtr points to a null-terminated string that will be displa.yed by the System Manager a.t
the top of the screen prior to invoking the program.

Returns 0 if successful; 513 if another application is active; otherwise, a DOS error code as
returned by EXEC (INT 21h, AH = 4bh).

void m-unlock(void);

Decrements the system lock count. If calls are not nested, allows the system to take control
from the current application.

HP 95LX System Manager Services Reference 8·29

Clipboard Services
The following functions provide a generic means of passing information between applications.
In the current form, applications can only get or put information onto the clipboard; there is
no provision for forcing information through to another application. Data on the clipboard is
named, however. Applications can therefore establish regimes of communication as needed.

The default representation of data is that of "TEXT". All applications using the clipboard
at all should write a "TEXT" representation, and read a "TEXT" representation if no other
known representations are found. Data in the "TEXT" form should be ASCn characters, with
a lone carriage return (OxOd) used to mark the end of each line.

Clipboard return codes are contained in ebeodes.h.

m_cb_read(index, offset, data, length);
char far *data;
int index;
uns igned int length, offset;

Reads length bytes into data from the representation associated with index. offset indicates
the starting offset in the clipboard buffer from which data will be read.

m_cb_vrit9(data, length);
char far *data;
~signed int length;

Writes length bytes from data to the representation opened by m-Ilew-I'epO. The maximun
length of a single call to m_cb_write is 1024. Multiples calls may be made to m_cb_writeO if
needed.

m_close_cb

int m_close_cb();

Attempts to close the clipboard and allow other applications to claim it. Returns 0 if
successful; returns -1 if the clipboard is not currently open.

m_finLrepi

m_fini_rep(void);

Signals the clipboard that no further data will be sent for the current representation.

8·30 HP 95LX System Manager Services Reference

m_new_rep

m..nev_rep(rep_name) ;
char far *rep_name;

Prepares the clipboard to receive a representation under the name rep_name. Multiple
representations of the same data may be copied to the clipboard.

m_open_cb

int m_op8n-cb(void);

Attempts to claim the clipboard and lock out requests from other applications. Returns 0 if
succestfully claimed, otherwise returns a nonzero value.

m_rep_lndex

int m_rep _ index (name, index, length) ;
char far *name;
int far .index;
unsigned int far *length;

Gets the index and length of a representation, given a name. Returns 0 with pointers updated
if successful; otherwise, returns an error code.

Applications attempting to respond to a Paste command should call this function with the
appropriate representation name ("TEXT" as default).

m_rep_name

m_rep_name (index, name, length) ;
int index;
char far *name;
unsigned int far • length;

Gets the name and length of a representation, given an index. Returns 0 with pointers
updated if successful; otherwise, returns an error code.

m..reset_cb(author) ;
char far *author;

Clears the contents of the clipboard and establishes the current application, specified by the
string author, as the creator of clipboard contents. Applications should attempt to use a
unique string for this value. Returns 0 if successful; returns -1 if there is an error.

HP 95LX System Manager Services Reference 8·31

Sound Services
These services are used to signal the user through the system speaker.

void m_uound(index);
int index;

Generates one of several various sound patterns, as specified by index. There are currently
seven (0-6) supported patterns. The first four are used to generate tones for 1-2-3, the
remaining three are more complicated alarm sounds.

m_beep

void m_beep(void);

General purpose sound for error alerts.

void m_soundoff(void)i

Turns off the current sound. If the speaker is on when this function is called, the sound will
actually continue until the next BIOS clock tick.

void m_thud(void)i

Generally- used when a user's keystroke cannot be interpreted in the current application state.

8·32 HP 95LX System Manager Services Reference

Memory Management Services
When an application is invoked, the System Manager must provide the RAM space indicated
in the application's image structure. This amount of memory should be sufficient for ordinary
uses of the application.

There are limited instances when more RAM is required, at which point the application calls
m..allocO or m_alloc.largeO to expand the size of its data area. If successful, the application's
data area may have been moved by the System Manager. Consequently, applications must
be careful to not store the current data segment or to update these stored values after
memory-allocation calls.

Dynamic memory allocation is implemented by resizing the memory block belonging to the
application. The new buffer will therefore begin at the previous end of the memory block.
Calls to release memory are translated into requests to shrink the memory block to the
specified level. These services should not be confused with the functions mallocO and freeO·

DOS memory allocation services are also available. However, it is likely that all DOS
memory will have been consumed by 1-2-3, and memory will be available only by using the
System-Manager's memory-management services.

void near * m_alloc(expsize) j
unsigned int expsizej

Attempts to expand the data space occupied by the accesory by expsize bytes. If successful,
the return value will be the offset (near address) of the new buffer. The function returns 0
on failure. Failure may be caused by a request which would grow the applications total data
space beyond 64K or by an exhaustion of system memory.

If expsize is not a multiple of 16 (the size of a paragraph), it will be rounded up to the next
multiple.

m_Blloc_large

void near * m_alloc(exp_paras) j
unsigned int exp_paraSj

Attempts to expand the data space occupied by the accesory by exp_paras paragraphs (16
byte units). If successful, the return value will be the paragraph offset from the beginning of
the application's data segment. The function returns 0 on failure.

This function must be used with care, since it is possible to claim space that cannot be
accessed through the DS register (> 64K). Since the entire data space of the application may
be moved during certain System Manager calls, the application must be· careful either not to
store any segment values that may become invalid or to update these stored values after any
time that the data segment may have moved.

HP 95LX System Manager Services Reference 8·33

unsigned tnt m_free(ptr);
void near *ptr;

Shrinks the data space claimed by· the application by releasing all memory beyond ptr.
Applications should make sure that the value of ptr is above or equal to the first value
returned by m.-aliocO.

m_free_large

void ~free_large(paras);
unsigned int paras;

Shrinks the data space claimed by the application beginning at paras that is the paragraph
offset from the beginning of the application's data. segment. Applications must make sure that
the value of paras is above or equal to the first value returned by m_alloc-IargeO.

8-34 HP 95LX System Manager Services Reference

Date/Time Services
There are three subsets of date and time services. Primarily, there are calls to get and set
the system time and to get the system-wide display format. Secondly, there are alarm calls,
which are primarily used by the Appointment Book and Watch applications. Finally, there are
stopwatch functions used by the Watch.

The date and time information is maintained in the following structure:

typedef struct {
char dt_order;
char dt_dsep;
char dt_tsep;
cahr dt_24_hri

} DTIHFO;

1* month-day-year order, 0 • MDY, 1 • DMY, 2 • YMD *1
1* date separator *1
1* time seperator *,
1* nonzero means 24 hour time *1

The following structure is used to schedule alarms:

typedef struct {
char a_hour;
char &-minute;
char a_second;
char a_pad;
int a_interval;
char a_use_seconds;
char a_sound;
ch~ message[ALARM_MSG~LEN];

char owner;
char special;
char extra[ALARM_EXTRA_LEN];

} ALARM;

1* time of alarm *1

1* supplied by caller *1
1* reschedule interval (seconds) *1
1* are seconds significant *1
1* alarm sound *1
1* message displayed when alarm goes off*1
1* task id of owner *1
1* apps own use for sub-class*1
1* apps own use for specific data *1

This final structure is used to represent the actual time and date:

typedef struct {
int dt_yeu;
char dt_month;
char dt_date;
char dt_day;
char dt_hour;
char dt_minute;
char dt_second;
cahr dt_hundreth;

} DIM;

1* year in the range of 1980, to 2116 *1
1* Jan •• 1 *1
1* 1st .11: 1 *1
1* Day of week, 0->6; otherwise unknown *1

HP 95LX System Manager Services Reference 8·35

Dl_alarm (alaMnp, type) ;
ALARM far *alaMnp;
una ignad int type;

Sets an alarm as defined in the ALARM structure pointed to by alaMn and associates it with
the application-determined alarm type.

m_dtinfo

Dl_dtinfo(dtp) ;
DTINFO far *dtp;

Fills in the DTINFO structure pointed to by dtp with a special time and date information as
described below. Due to the special nature of this information, m_dtinfoO should probably
not be used.

The information returned in dtp does not have complete separator information. The current
separator information is stored in the settings structure (see the Configuration Services
section). In that structure, there are two separators for both date and time, to provide for
flexibility of localization. Only the first character is copied into the DTINFO structure by
m_dtinfoO. It is probably easier for applications to get th.ese fields directly from the settings
structure.

These values are not based on the date and time settings selected in the SETUP utility.
Rather, they are part of the localization done when the user selects his country at very cold
boot. The values are used exclusively to format date and time values in the Filer's directory
directory listings. They should match what a localized version of DOS would display in
response t~ the DIR command.

m_getdtm

Dl_getdtDl(dtmp) i
DTM far *dtmpi

I,teturns the system date/time in the DTM structure pointed to by dtmp.

m_geLsw

Dl_get_sv(starLtime, elapsed_time, onftag) ;
TIME far *start_time;
TIME far *elapsed_time;
char far *onftag;

Copies contents of system manager buffers and variables into those supplied by the
application.

8·36 HP 95LX System Manager Services Reference

m_get-timer

IB_get_ timer (start_time • elapsed_time. onjlag) ;
D':M far *start_time;
DTH far *elapsecLtime;
dar far * onjlag;

Copies COL-tents of System Manager buffers and variables into those supplied by the
application.

int IB_parse_date (rule, input. dtm) ;
int rule;
char far * input;
DTH far *dtm;

Parses a null-terminated input string accoring to rule, and fills in the day, date, week, and
year fields of the DTM structure pointed to by dtm (the time of day fields are unaffected).
Unspecified fields that do not cause parsing errors are set to O.

The available rules (found in settings.h) are:

o - rule appropriate to currently selected system date format.
1 - DR_DMY _LIM - date, month, year and year IBust be in limited range.
2 - DR_MDY_LIM - month, date, year and year must be in limited range.
3 - DR_YMD_LIM - year. month, date and year IBust be in limited range.
4 - DR_MD - just month"and date.
S - DR_DM - just date and month
6 - DR_MY_LIM - month and year and year must be in limited range.

Years with the rules above must be in the range of 1900 to 2099. Two-digit input of
years is assumed to be in the range of 1980 to 2079. For parsing of arbitrary years, OR
DR-ANY_YEAR (Ox8) onto the rule code.

Returns 0 if parsing is successful, nonzero if input is improperly formatted or invalid value.

m_parse_time

int m_parse_ time (rule, input. dtm) ;
int rule;
char far *input;
DTH far *dtmj

Parses a null-terminated input string accoring to rule, and fills in the hour, minute, second,
and hundredth fields of the DTM structure pointed to by dtm (the date fields are unaffected).
Unspecified fields that do not cause parsing errors are set to O.

HP 95LX System Manager Services Reference 8·37

The ava.i1able rules (found in settings.h) are:

o .·rule appropriate to currently selected system ttme format.
1 - TM_H_M_S_P • 12 hour clock, wi~h optional am/pm specifier.
2 - TM_H_M_S+24 • 24 hour clock.
3 - TM_HM_S_24 • 24 hour clock with hours and minutes together.
4 - TM_H_M_S_C_24 • 24 hour clock to hundredth resolution.
S - TM_H_M_P • 12 hour clock, without seconds.
a - TM_H_M_24 • 24 hour clock, without seconds.
7 - TM_HM_24 • 24 hour clock with hours minutes together, without seconds.

Returns 0 if parsing is successful, nonzero if input is improperly formatted or invalid value.

m_posttime

void m_postttme(void);

Gets the current time and writes it to the display in the standard location.

m_setdtm

m_setdtm(dtmp) ;
DTM far .dtmp;

Sets the system date/time with the contents of the DTM structure pointed to by dtmp.

m_starLsw

m_start_sw(time) ;
TIME far .time;

Saves the starting time specified in the TIME structure pointed to by time in a system
manager buffer and sets the System-Manager-stopwatch flag to on.

m_stop_sw

m_stop_sw(time) ;
TIME far .time;

Saves the current elapsed time, as calculated by an application and stored in the TIME
structure pointed to by time, in a System-Manager buffer and sets the stopwatch flag to off.

m_starLtimer

m_start_ttmer(starLdtm) ;
DTM far .start_dtm;

Saves the starting time specified in the DTM structure pointed to by starLdtm in a
System-Manager buffer and sets the System-Manager-timer flag to on.

8·38 HP 95LX System Manager Services Reference

m_stop_tlmer

m..atop_ timer (elapsecLtime) ;
DTM far *elap8ed_time,

Saves the current elapsed time, as calculated by an application and contained in the DTM
structure pointed to by elapsed_time, in a System Manager buffer and sets the timer flag to
off.

m_ telLanytime

char far *m_tell_enytime(content,row,col,dtinfo,dtm);
int content;
int row;
int col;
DTINFO far *dtinfo;
DTM far *dtm;

'~ Formats the date or time contained in the structure pointed to by dtm, according to content.
Returns a pointer to a System Manager buffer containing the formatted time. The content
parameter uses the same values as with m_telltimeO. row, col, and dtinfo are ignored, but are
currently left in to preserve existing calls.

m_telltime(content, row, col);
int content, row, col;

Displays the current date or time, according to content, at the given row and column
coordinates. The current system date and time formats are used.

The defined content values are as follows:

o • date only
1 • time only
2 • date and time
3 • date prefixed with day of week.

m_xalarm

m_xalam(type) ;
uns igned int type;

Kills all alarms of the application-defined type.

HP 95LX System Manager Services Reference 8-39

Printer Services
The printer services manage communications with and translation of characters for specific
printer types. The active printer is selected through SETUP. That selection is used to control
access tables for special characters and print-control sequences. .

m_close_prlnter

void m_close_printer(void);

Any remaining characters are flushed to the printer, and the printer channel is closed.

m_lnlt-prlnter

unsigned int m_init_printer(void);

The printer tables are initialized for the selected printer. This call does not initialize the
communications channel. It is intended to be called from 1-2-3 and SETUP only. Other
applications should use m_open_printer. A segment value is returned which is used by 1-2-3
to access printer information in a standard format.,

m_open_printer

void m_open_printer(void);

Prepares the communications channel to converse with the printer. The printer baud rate is
established and the printer tables are set to the selected device.

m_trans_printer

int m_trans_printer(ch,bp);
char Chi
char far .bpi

This routine should be used by applications that wish to do their own printer
communications. The CP850 character passed as ch is converted to the sequence required
by the selected printer to produce the equivalent character. The resulting sequence is placed
in the buffer pointed to by bp. This buffer must be at least 48 bytes long. The number of
characters in the buffer is returned by this routine. That number will always be greater than
zero.

m_write_printer

int m_vrite_printer(bp,len);
char far .bp;
unsigned int len;

The string pointed to by bp is sent to the printer. The string is expected to be composed of "
CP850 characters and of length len. Any special sequences required to produce the specified
characters on the output are supplied by this routine.

This routine does not add a carriage return (OxOd), line feed (OxOa) pair for terminating a line
so these should be included in the string as desired.

8-40 HP 95LX System Manager Services Reference

Configuration Services
Various System Manager settings are maintained in RAM in a SETTINGS structure. The
functions in this section provide access to this information.

Applications using these services must include settings.h and interf'ac.h.

See settings.h for the definition of the SETTINGS structure as well as the manifest constants
which specify the values that may be found in the structure.

m_geLseHings_8ddr

SETTINGS far ~_g.t_8ettings_addr(void)i

Returns a pointer to the System Manager's settings structure. Applications other than
SETUP should never change any values in this structure, but should use this only to enquire
about system settings.

HP 95LX System Manager Services Reference 8-41

Communications Services
The Communication Services provide access to the serial port.

Applications using the Communications Services must include eomio.h and inter!ae.h.

ComAnswer

int ComAnsver(handle. mode) ;
com_handle handle;
int mode;

Put the modem/com line in answer mode. handle identifies the port to which the modem is
connected. The only valid value for mode is COM-ANS_NOWAIT.

Returns 0 if successful; otherwise returns an error code.

ComBreak

int ComBreak (handle. duration) ;
com_handle handle;
int duration;

Sends a break to the port associated with handle. The break state will be held for duration
milliseconds.

Returns 0 if successful, otherwise, returns an error code.

ComClose

int ComClose(handle);
com_handle handle;

Closes the communication port associated with handle.

Returns 0 if successful, otherwise, returns an error code.

ComCommand

int ComCommand (handle, cmd. cmdlen) ;
com_handle handle;
char far *cmd;
int cmdlen;

Sends the modem specific command pointed to by cmd to the modem attached to the port
associated with handle, where cmdlen is the length of the command.

The modem will be put into command state and the command will be sent verbatim.
No translation will occur.

The transmit queue associated with handle will be flushed before the command is sent.
To ensure that all data is sent, use ComXmittingO before sending the command.

Returns 0 if successful, otherwise, returns an error code.

8·42 HP 95LX System Manager Services Reference

ComConfigure

int ComConf igure (port. IRQnum. IObase. modem .perTnftag) ;
int port:
int IRQnum;
int IDbase:
int modem;
i::.t perTnflag:

Note

•
There is no need for this routine to be called on the HP 95LX, since there is
only one COM port, and one configuration that may be used .

Configures the communications port where IRQnum is the interrupt-request number, IObase
is the base address of the port in 110 space, and modem is the modem type.

If perTnflag is nonzero, the information will be entered into the COM driver's permanent
database, otherwise it will not be permanent.

Returns 0 if successful, otherwise, returns an error code.

ComDial

int ComDial (handle, number) ;
com_handle handle;
char far .number;

Dials the number contained in number on the modem associated with handle.
number includes punctuation andlor commas and the number will be dialed according to the
modem's specifications. For example, ','s cause a delay.

Returns 0 if successful, otherwise, returns an error code.

ComForceXoff

int ComForceXoff (handle) ;
com_handle handle;

Forces XOFF state on the port associated with handle.

Returns 0 if successful, otherwise, returns an error code.

ComForceXon

int ComForceXon(handle):
com_handle handle;

Forces XON state on the port associated with handle.

Returns 0 if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8·43

ComHangUp

int ComBangUp(handle);
com_handle handle;

Hangs up phone on the modem attached to the port associated with handle. The transmit
queue associated with handle will be flushed before the command is sent. To ensure that all
data is sent, use ComXmittingO before sending the hang-up command.

Returns 0 if successful, otherwise, returns an error code.

ComHayesCommand

int ComBayesCommand (handle, cmd, cmdlen) ;
com_handle handle;
char far *cmd;
int cmdlen;

Sends the Hayes command pointed to by cmd to the modem attached to the port associated
with handle, where cmdlen is the length of the command.

The transmit queue associated with handle will be flushed before the command is sent. To
ensure that all data is sent, use ComXmittingO before sending the command.

Returns 0 if successful, otherwise, returns an error code.

ComGet

int ComGet(handle,settings);
com_handle handle;
com_settings far *settings;

Gets the communications settings for the port associated with handle. These settings are
returned in the structure pointed to by settings.

Returns 0 if successful, otherwise, returns an error code.

ComGetModem

int ComGetModem(handle);
com_handle handle;

If successful, returns the modem type for the port associated with handle, otherwise,
. returns an error code. H successful, the returned value is either COM_MDM..NONE or

COM_MDM_HAYES indicating either no modem or Hayes-compatible modem, respectively.

8·44 HP 95LX System Manager Services Reference

ComOpen

int ComOpen(handle,port);

com_handle far *handle;

int port;

Opens the communication port specified by port and returns a handle in the location given

by handle. The returned handle is associated with this port and is used in subsequent

communications function calls.

Returns 0 if successful, otherwise, returns an error code.

ComQryErr

int ComQryErr(handle);

com_handle handle:

Returns the error status of the port associated with handle. A return value of 0 indicates no

error. Possible nonzero error values are E_OVERN, E-PARITY, E_FRAME, etc .

. ~ Use of ComStatus is preferred over use of ComQryErr.

ComQryRxQue

int ComQryRxQue (handle, size .Jru) ;

com_handle handle;

int far .size;
int far .free;

Queries the- status of the receive queue for the port associated with handle. Sets the location

specified by size to the total queue size and sets the location specified by free to the number

of free bytes in the queue.

Returns 0 if successful, otherwise, returns an error code.

ComQryTxQue

int ComQry!xQue (handle , size ,free) ;

com_handle handle j

int far .sizej
int far .free:

Queries the status of the transmit queue for the port associated with handle. Sets the location

specified by size to the total queue size and sets the location specified by free to the number

of free bytes in the queue.

Returns 0 if successful, otherwise, returns an error code.

HP 95LX System Manager Services Reference 8-45

ComRecelveBytes

int ComRecei veBytes (handle, data, datalen) ;
com_handle handle;
char far .data;
int far .datalen;

Receives bytes from the port associated with handle. The data is received in the location
specified by data up to a maximum of datalen bytes. On return, datalen is set to the number
of bytes actually received, which can be zero.

Returns 0 if successful, otherwise, returns an error code.

ComReset

int ComReset (handle, reset) ;
com_handle handle;
int 'reset;

Resets the port associated with handle in accordance with the reset options specified in reset. . .. ",
reset uses bit values to indicate what is to be reset. The constants listed below can be OR'd
together to create the desired reset actions.

Constant
COM_RESET _LINE
COM_RESET_TXB
COM_RESET _RXB
COM_RESET_MODEM
COM_RESET_RXFLOW
COM_RESET_TXFLOW

Always returns O.

ComSendBytes

Bit Action if Bit is Set
o Line is reset.
I Transmit buffer is flushed.
2 Recieve buffer is flushed.
3 Modem is reset.
4 Receiver's 'S state is reset.
5 Transmitter's 'S state is reset.

int COmSendBytes (handle, data, option, datalen) ;
com_handle handle;
char far *data;
int option;
int far .datalen;

Queues datalen bytes of data pointed to by data for transmission over the port associated
with handle. control uses bit values to indicate queuing options. The constants listed below
can be OR'd together to create the desired actions.

Constant

COM_CTL_ WHOLE

COM_CTL-SETRCV

Bit

o

I

Action if Bit is Set

Do not queue any data unless all
datalen bytes will fit in the
output queue.

Turn receiver on after sending
data.

8-46 HP 95LX System Manager Services Reference

If COM_CTL_WHOLE is not specified, partial data may be queued and several calls to
ComSendBytes may be required to complete sending all the data.

If successful, returns 0 and stores the number of bytes queued for transmision in the location
specified by datalen. If not successful, an error code is returned. In particular, E_NOFIT will
be returned if COM_CTL_WHOLE was specified and there is not enough free space in the
transmit queue to fit the data. In this case, the value pointed to by datalen will be set to zero.

ComSet

int ComSet Chandle,settings) ;
com_handle handle;
com_settings far *settings;

Sets the communications settings for the port associated with handle to the values contained
in the structure pointed to by settings.

Note that the values used may differ from what is specified in the structure. For instance,
if IR is used, HALF-DUPLEX is forced, baud rate is limited to 2400, and FLOW control is
turned off. On return the passed structure will have the settings that are actually being used.

Returns 0 if successful, otherwise, returns an error code.

ComSetDtr

int ComSetDtrChandle, state) ;
com_handle handle;
int state;

Sets the DTR state on the port associated with handle. If state is zero, DTR will be set OFF,
else DTR will be set ON.

ComStatus

int comStatusChandle) i
com_handle handle;

Returns the error status of the port associated with handle. A return value of 0 indicates no
"error. Possible nonzero error values are E_OVERN, E-PARITY, E_FRAME, etc.

ComXmitting

int ComXmittingChandle) i
com_handle handle i

Tests the transmitting status on the port associated with handle.

Returns 0 if nothing is being transmitted, else returns a nonzero value.

HP 95LX System Manager Services Reference 8-47

Miscellaneous Services

drawbox

void dravbox(boz_name);
char far *boz_name;

May be used to display the application name on draw the double line seperating the menu
area from the data window. The application name to be dieplayed is pointed to by boz_name.
The display is cleared before the box is drawn.

m_errmsg

void m_errmsg(code. bp. len. lenp) ;
int code;
char far *bp;
int len;
int far *lenp;

Returns the string which serves as the error message for the code passed in code. String is
copied into buffer pointed to by bp, whose maximum length is specified by len. The actual
length of the returned string is returned in * lenp.

If an error message is not found for the given code, the string "Error n" is generated.

Actual codes are listed in m_error .h.

message

void message (strl.lenl. str2.len2) ;
char far *strl;
char far *Strf!;
int len1;
int len2;

Displays one or two lines of text in the menu area of the application window. The string
pointed to by strl is displayed on the first line and the string pointed to by srt2 is displayed
on the second line. lenl and len!! give the lengths of the strings strl and str2, respectively.
Strings that are wider than the display area will be truncated.

When message is called, the screen hidden by the message box is saved by the System
Manager, and will be restored by a call to msg_offO.

Generally speaking, applications should lock the system (m-1ockO) until the message is
cleared by the user.

8-48 HP 95LX System Manager Services Reference

message3

void massage3(str1,len1,Btr2,len2,strS, lenS);

char far .str1;
char far .str2;
char far .strS;
int len1;
int len2
int lenS;

Similar to messageO except that it supports three lines of text.

msg_off

void msg_off(void);

Clears the message posted by a prior call to messageO or message-30 and restores the text

that was covered by the message box.

m_form_ft

char far *IIl_form_ft (dtm) ;

DTM far *dtm;

Given the time and date in the DTM structure pointed to by dtm, returns a pointer to a

null-terminated string in the format described above, suitable for display in a directory listing.

Note

•
The cClntents of the buffer will be destroyed by the next call to any of the

date and time formatting functions (made by the caller), so it should be used

immediately.

This function is used by the Filer to format the date and time used in its directory listings.

showname

void shovname(box_name);

char far *box_name;

Displays box_name on the menu line of the application's window.

HP 95LX System Manager Services Reference 8-49

Resource Services
The Resource Services are only applicable to the built-in applications.

.."

8-50 HP 95LX System Manager Services Reference

Help Services
At this time, the Help Services are only applicable to the built-in applications.

HP 95LX System Manager Services Reference 8·51

Collating Services
The System Manager provides character and string comparison functions which may be used
to sort items. These comparisons are more useful than those based solely on the machine's
character set.

m_coLcpsearch

int m_col_cpsearch(sptr.slen.dptr.dlen.dir);
char far .sptr;
int Bien;
char far .dptr;
int dlen;
int dirt

The data string of length dlen pointed to by dptr is searched for the search string of length
Bien pointed to by Bptr. The search is in a forward direction if dir = -1, and backwards if dir
= +1. The search comparison follows the same rules as for m_coLcpstr.

If found, returns the offset of the beginning of the search string within the data string. If not
found, returns o.

int m_col_cpstr(strI.lenI. str2.len2);
char far .strI;
int lenI;
char far .str2;
int len!;

Compares the supplied code page 850 string of length lenI pointed to by strI with the code
page 850 string of length len! pointed to by str!. Comparison is case- and accent-insensitive:
characters a, A, and a. are considered equivalent. Graphical characters also all evaluate
together.

Returns:

o if the strings are equal
+1 if string 1 precedes string. 2
-1 if string 2 precedes string 1

void m_col_init(void);

Initializes internal pointers in accordance with the global sort selection. These are used by the
LICS comparison routines.

8·52 HP 95LX System Manager Services Reference

m_coLtolower

void m_col_tolollar(sptr.len);

char far .8ptr;
int len;

The code page 850 string of length len pointed to by sptr is scanned through its length, and

any upper case characters found are converted to their lower-case equivalents.

m_coLtoupper

void m_col_touppar(sptr.len);

char far .sptrj
int len;

The code page 850 string of length len pointed to by sptr is scanned through its length, and

any lower case characters found are converted to their upper case equivalents.

HP 95LX System Manager Services Reference 8·53

1-2-3 Bridge Services
The System Manager includes a bridge function, with a set of subfunctions, which allow
applications to communicate with 1-2-3. . .

Applications using the bridge services must include bridge.h.

Applications prepare a bridge parameter block (see below) and make a call to the bridge
service. The system manager confirms that 1-2-3 is loaded and performs a context-switch
so that the applicaiton is deactivated (but not notified, since it is generating the bridge
request) and 1-2-3 is reactivated with a Bridge-Request Event, that contains a pointer to the
application-supplied parameter block.

1-2-3 then performs the requested action and signals the System Manager that the service
has been completed. 1-2-3 is fully responsible for the values returned in the parameter block
(except for -1 in the retcode that indicates that 1-2-3 is not loaded). The System Manager
then switches control back to the application.

In general, the application should repaint its screen when it regains control.

The bridge parameter block definition is:

typedef BRIDGE_BP {
int bpb_funcode;
int bpb_retcode;
char bpb_rangename[16];
int bpb_startcol;
int bpb_startrov;
int bpb_endcol;
int bpb_endrov;

-int bpb_order;
int bpb_bufsize;
char near *bpb_buffer;

} BRIDGE_BP;

1* function code *1
1* return value *1
1* ASCIIZ name of range *1
1* column coordinates of range start *1
1* rov coordinates of range start *1
1* column coordinates of range end *1
1* rov coordinates of range end *1
1* order (rov or col first) of range data *1
1* size in bytes of supplied buffer *1
1* buffer for prompt and range data (must be

located in same seg. as the struct) *1

Range specification (used even for a single cell) is stored in the bpb_startcol, bpb_startrow,
bpb_endcol, and bpb_endrow fields of the bridge-parameter block. Coordinates are zero based
so that the cell Al is stored as COL=O, ROW =0.

If the range is to be accessed by name, the name is stored as an ASCIIZ string in the
bpb_rangename field.

Applications and 1-2-3 exchange cell contents using a buffer composed of variable length cell
records. The records contain a single byte type followed by a type specific body. The cells are
in the order declared by a flag passed with the get/set functions.

8·54 HP 95LX System Manager Services Reference

The following cell types are defined:

'l)pe Code 'l)pe Body Length

B Blank 0

I Integer 2

N Float 8

S ASCIIZ String variable

F Formula variable

bridge_serv

void bridge_serv(bpb);
BRIDGE_BP far. bpb;

The bridge services are used by setting a function code in the bridge parameter block and
then calling bridge_serv. The valid function codes are described below.

bridge_test

This function should be called before using any other services to ensure that 1-2-3 is loaded
and ready to recei~e bridge calls.

INPUT:

OUTPUT :

brldge_getrange

BRIDGE_TEST (0)

1 if 1-2-3 is loaded and safe for bridge services
o if 1-2-3 is loaded, but busy.

-1 if 1-2-3 is not loaded.

This function switches to 1-2-3 POINT mode, for user to select range. Range can be entered
by painting, or by name. Pressing the NAMES key (F3) will switch to NAMES mode,
allowing the user to select by name.

INPUT:

bpb_funcode
bpb_buffer
bpb_order

BRIDGE_GETRANGE (1)
ASCIIZ string containing user prompt.
The range edit is controlled by the folloving
bitflags:

1 • BRIDGE_GETRANGE_EDITOLD
2 • BRIDGE_GETRANGE_STARTANCHDRED
4 • BRIDGE_GETRANGE_SHDWHIDDEN

HP 95LX System Manager Services Reference 8·55

OUTPUT:

bpb_startcol
bpb_startrow
bpb_endcol
bpb_endrow

brldge_getrange_addr

If directed to EDITOLD. then getrange edits the
range in startcol •••• else starts at the current
cursor position.

If STARTANCHORED then getrange begins with an
ancored range. else single cell.

If SHOWHIDDEN. then 1-2-3 vill shov hidden columns
hidden vith /vch. else vill hide those columns.

1 if successful
o if user entered ESC. thus aborting selection.

-1 if 1-2-3 is not loaded.

ASCIIZ string is used selected by name. else '\0'

Coordinates of selected range.

This function returns the current coordinates for a named range.

INPUT:

OUTPUT:

bpb_st art col
bpb_startrov
bpb_endcol
bpb_endrow

ASCIIZ string containing range name.

1 if successful
o if range name not found.

-1 if 1-2-3 is not loaded.

Coordinates of selected range.

8·56 HP 95LX System Manager Services Reference

bridge_le~ange_addr

This function sets the coordina.tes for a named range. If the range name already exists, its
coordinates will be replaced. If the range does not already exist, it will be created.

INPUT:

bpb_startcol
bpb_startrov

. bpb_endcol
bpb_endrov

OUTPUT:

bridge_ge~ange_data

ASCIIZ string containing range name.

Coordinates of selected range.

1 if successful
o if failed (not enough room in 123 or invalid values)

-1 if 1-2-3 is not loaded.

This function gets the data associated with a range of cells, which must be specified through
coordinates. The data is exported from 1-2-3 into the client supplied buffer (bpb_buffer).

. Cells are copied until the entire range is exported, or the buffer overflows. The data is a
stream of cep records' that must be parsed by the client.

INPUT:

bpb_startcol
bpb_startrow
bpb_endcol
bpb_endrow

OUTPUT:

Coordinates of range.

Rov order • 0 (a1,b1,a2,b2,etc)
Column order • 1 (a1,a2,b1,b2,etc)

Size in bytes of client supplied buffer.

Pointer to client supplied buffer. Segment must
be the same as that of the bpb structure itself,
vhich must be in the client's data segment.

Number of cells returned in buffer.
o may indicate error in argument specification.

-1 if 1-2-3 not loaded,

Stream of cell records.

HP 85LX System Manager Services Reference 8·57

brldge_setrange_data

This function sets the contents of a cell or range. The data is imported to 1-2-3 from the
bpb_buffer field. The entire range must be contained in the RDB. The data is a stream of cell
records which will be parsed by 1-2-3.

INPUT:

bpb_funcode

bpb_startcol
bpb_startrov
bpb_8ndcol
bpb_endrov

OUTPUT:

bridge_reeale

Coordinates of range.

Rov order • 0 (a1,a2,b1,b2,etc)
column order • 1 (a1,b1,a2,b2,etc).

Size in bytes of the cell stream found in
bpb_buffer.

Pointer to client supplied buffer. Segment must
be the same as that of the bpb structure itself,
which must be in the client's data segment. Data
must be a stream of cells to be parsed by 1-2-3.

number of cells successfully entered. Any number
less than the full range indicates error, probably
inadequate memory or invalid range specification.

-1 if 1-2-3 not loaded.

This function tells 1-2-3 to recalculate the current worksheet.

INPUT:

OUTPUT:

BRIDGE_RECiLC (6)

1 if successful
o if error

-1 if 1-2-3 is not loaded.

8·58 HP 95LX System Manager Services Reference

brldge_ueLcursor

This function gets the cell coordinates of the cursor.

INPUT:

OUTPUT:

bpb_startcol
bpb_startroll

bpb_retcode

.. brldge_seLcursor

Coordinates of cursor.

1 if successful.
o if error.

-'1 if 1-2-3 is not loaded.

This function sets the cell coordinates for the cursor.

INPUT:

bpb_startcol
bpb_st~row

OUTPUT:

bridge_redisplay

Coordinates for cursor.

1 if successful
o if error

-1 if 1-2-3 is not loaded.

This function causes 1-2-3 to redisplay the worksheet, but does not redisplay the control panel
or status area.

INPUT:

OUTPUT:

BRIDGE_REDISPLAY (9)

1 if successful
o if error

-1 if 1-2-3 is not loaded.

HP 95LX System Manager Services Reference 8·59

brldge_ceUtype

This function returns the cell type of the specified cell.

INPUT:

bpb_startcol
bpb_startrov

OUTPUT:

Coordinates of cell.

'B' if blank
'I' if integer
'N' if float
'S' if ASCIIZ string
'F' if formula

brldge_calctype",

This function returns the current calc type of 1-2-3.

INPt.'T:

BRIDGE_CALCYTPE(11)

OUTPUT:

o if 1-2-3 in manual mode.
-1 if 1-2-3 in automatic mode.

8·60 HP 95LX System Manager Services Reference

10
From Software Design to Ordering ROM Cards

HP Supplied Development Tools
The purpose of this section is to introduce some tools Hewlett Packard is making available to
help with the development of HP 95LX software. The tools are discussed in the order they
would be used during the software development process. This process includes the following
steps:

1. Prepare the program and data files.

2. If the program is to be system management compliant, the RAM resident protion needs to
be converted from .EXE form to .EXM form.

3. If the program is to execute in place in ROM, the .EXM form will need to be converted to
.XIP form and an .EXM loader will need to be created.

4. Finally, all the files needed for the ROM card will need to be combined into a ROM image
file.

This is the all-inclusive process, and many applications can be prepared using only a
subset of the steps. For example, if the a.pplication is to run under DOS and not be
System-Manager-compliant then it does not need to set up an event handler that uses
System-Manager routines. Or if your application will run in RAM like most PC applications
then you wiJl not need to convert your .EXE file to a .XIP file.

Power-Saving Suggestions

The HP 95LX has a low-power mode that greatly extends battery life. This is an idle state
that the computer enters whenever you invoke INT 16h to test for a keypress (services 1 or
llh) or GET key (services 0 or 10h).

Idle State

When TEST for a keypress is called, the computer enters the idle state until the next
hardware interrupt. Noemally, this is the 18.2 Hz timer, that interrupts every 55 msecs.
However, it could be any other hardware interrupt. Assuming that the timer interrupt is what
causes the computer to exit from its idle state, the TEST for key routine can last at most for
55 msecs.

DRAFT From Software Design to Ordering ROM Cards 10-1
4/13/91 11:00

If an application program has a main loop that does some processing and then TESTs for
a key down, the computer will automatically enter its idle sta.te on each pass through the
loop. The percenta.ge of time the HP 95LX spends in the idle state depends on the amount
processing apart from the TEST for key. To optimize battery life, you should minimize
processing time in the program's main loop.

If GET key is called and no key is in the buffer, the HP 95LX enters its idle state almost
continuously until a key is pressed.

Caution , The idle state is suppressed for 110 msecs (two timer ticks) after a screen
cursor movement or BIOS call to write to the display. Consequently, do
not include these operations in the main loop of your program if you desire
low-power mode.

Serial Port Power

HP 95LX battery life can be extended by approximately 10% by simply turning off power to
the serial port-use Interrupt 15h service 4Ah. When serial port power is turned off, the HP
95LX can receive characters from the serial port, but it can not send characters.

Prepare the program and data files.

The fist steps of a software project involve defining a project that will meet the users needs
and will be compatible with the constraints of the target hardware. After the project has
been defined and the design has been developed you will want to start writing the software.
For small applications that will run in the HP 95LX's RAM you can proceed by compiling
and linking software on your PC and downloading the .EXE file to your HP 95LX. For larger
programs_ that will eventually run XIP from a ROM card, you will want to use a product like
Soft-ICE from Nu-Mega and emulate the software on your PC. The output from this precess
will be an .EXE file and whatever datafiles are needed to run the program.

For system manager compliant software, you should take time to develop a good design to
handle keyboard events, memory management and display output. All this activity should
go through the system manager to DOS and the BIOS. It should be done by in a central top
level area of your program. The smhello.c program included with the developer's software
demonstrates one such method of interfacing the system manager to your applacation.

Important HP 95LX Considerations

1. Since the RAM of the HP 95 LX is limited, avoid linking in libraries that include unused
entries.

2. Many C libraries cause startup or initialization code to be included in the final program.
System manager application writers should avoid such libraries since such initialization
code is usually incompatible with the HP 95LX system manager.

10-2 From Software Design to Ordering ROM Cards DRAFT
4/13/91 11:00

Converting from .EXE to .EXM

Standard .EXE files must be converted to standard .EXM files before they can be successfully

loaded and run by the system manager. This conversion can be most easily made by using the

E2M.EXE available in the HP 95LX Software Developer's package.

In order for the system manager to link your application to a hot key, you must include a line

in your apname.lst file that points to the appropriate .EXM file. The format for each entry in

your apname.lst file is: .

path with file name, hot key scan code, identification string

For example, you could use the following entry to associate the smhello program with the

Alt-S hot key:

c: \ smhello.exm ,1400 ,Hello Program

Converting Files from .EXM or .EXE to .XIP

If your application is to execute in place on a ROM card it must be converted to a standard

.XIP file. Hewlett Packard is providing tools to support this conversion. For system manager

compliant applications this tool is called exej for DOS applications it is called

.exe. These tools are also available in the softw~re ,developer's package.

In addition to the .XIP file these tools create the source code for a stub program. The stub

program needs to be included on your ROM card. The stub program will need to be edited

to incluc'.e the eventual ROM address of your .XIP program. Then it will need to be compiled

and linked to create an .EXE file. For system manager compliant applications it should be

converted to an .EXM file. The purposes of the .EXE or .EXM file are to provide these

services:

1. File manager (.EXM case) or DOS (.EXE case) run your application by starting up the

stub program. In particular, it is the stub program that should be listed in the apname.lst

file.

2. The stub program will bank switch the .XIP file into high memory and set registers so the

.XIP program will run successfully.

3. For system manager compliant applications the stub program should be the top level

handler of keyboard, memory allocation, and display events.

The constraints on the .XIP program include:

1. The .XIP file must start on a 64K byte boundary on the ROM card. As mentioned the

ROM address needs to be coded in the stub program. It also needs to be communicated to

the ROM CARD File Ssytem Builder described in the next section.

2. The .XIP file cannot exceed 192K bytes.

DRAFT From Software Design to Ordering ROM Cards 10-3

4/13/91 11:00

ROM Image Builder

Purpose

The ROM Card File System Builder (ROMCFS) creates an image of a file system that can
be placed on a Plug-in ROM card. The card can then be used as a file system or drive when
plugged into the HP 95LX.

ROMCFS is invoked: ROMCFS directory

Where directory contains a configuration file (ROMIMAGE.CFG) and all files to be placed on
the ROM card. <directory> may contain nested subdirectories that will also be added to the
ROM card.

Glossary of Terms

Term

PCMCIA

CIS

constrained file

device

ROMCFS

Overview

Explanation

Personal Computer Memory Card International Association PCMCIA
provides standards for memory card header information (see CIS in this
glossary).

Card Information Structure. First sector on a device containing
information based on the PCMCIA standard.

A file that needs to start on a certain boundary. Usually one that will be
mapped into RAM.

The hardware being created. For example, EPROM or OTP.

ROM Card File System. An image of a file system to be placed on a
device. The device can then be treated as a file system or another drive on
certain products.

ROMCFS reads a configuration file. Using the configuration information it creates a file
that is the image of a file system. Through subsequent means the image can be placed on a
programmable device. .

The directory specified on the command-line (see USAGE above) becomes the root directory
on the file system. Any sub-directories are also added to the file system. When complete, the
file system will contain:

1. PCMCIA CIS

2. boot sector

3. two File Allocation Tables (FAT)

4. root directory

10-4 From Software Design to Ordering ROM Cards DRAFT
4/13/91 11:00

5. files and sub-directories

Subsequent sections in this document may imply that the output of ROMCFS is a device
with a filt system on it; however, ROMCFS only creates a DOS file which is an image of a
file system. The newly created file is suitable for transfering to a programmable device using
other me .. ns.

The Configuration File for ROMCFS

The configuration file contains keywords and parameters. The keyword and associated
parameter are separated by one or more spaces or tabs. Some reasonability checking is done
on the parameters. Incongruities are listed on stdout. By design most of these are flagged as
WARNING and processing continues. This allows the creation of some non-standard devices.
Any error marked ERROR causes termination of the process.

Keywords and Parameters

Keyword Description Default Required

ROM_SIZE Size in Kbytes of the ROM being created. 0 R

RAM_SEE Size in Kbytes of the RAM being created. 0

RAM_OFFSET Offset to the beginning of RAM from O. ROM_SIZE

DEVICE_SIZE Size in Kbytes of the device being created; ROM_SIZE+
e.g., 1024 for a 1MB device. RAM_SIZE

ROM_NAME Variable length name to be placed in the CIS.

DEVICE_TYPE R
Kind of device being
created:
EPROM, OTR etc.

DEVICE_SPEED Speed of the device being created: e.g., 250 ns R

VENDOR Vendor's name

MACHINE_CODE Code for the machine for which the device is 0
being created.

<file> <bounds> N arne of a file that is to be placed on a specific
boundary.

DRAFT From Software Design to Ordering ROM Cards 10-5
4/13/91 11:00

Required Keywords and Parameters

The following keywords and parameters are required as the very minimum.

ROM_SIZE n

where n is the size of the ROM in Kbytes. Minimum value according to PCMCIA standards
is 512. The maximum is 256MB (specified 262144 for Kbytes). The HP 95LX accepts a
maximum size of 2MB.

H the speed is then s is

250 nsee 1

200 nsee 2

150 nsee 3

100 nsee 4

H the device is a

masked ROM

OTP (One-time Programmable ROM)

EPROM

EEPROM

Flash EPROM

Optional Keywords and Parameters

DEVICE_SIZE n

then tis

1

2

3
4

5

n is specified in Kbytes. DEVICE_SIZE is assumed to be the sum of ROM_SIZE and
RAM_SIZE. RAM_SIZE n n is the size in Kbytes of RAM to be added to the device. The
RAM is not actually added; the value is placed in the CIS. RAM_OFFSET n n is the offset
from the beginning of the device to the start of RAM. For RAM_SIZE > 0, RAM is assumed
to start immediately following ROM. ROM_NAME string string is the name of the ROM to
be placed in the CIS. Any ASCII character is valid. Maximum length is 60. VENDOR string
string is the name of the company or individual producing the ROM code. Maximum size is
25.

MACHINE_CODE e

The default machine code is: O.

filename b

If the machine is then c is

HP95LX 0

filename is the name of a file in the root directory; b is the boundary specified in Kbytes on
which filename is to be located on the device. filename is placed at the first appropriate

~81\fldfR).fp§Bt\wiJrif\)~nllSll6Pctewnij~M e1arctsrs for the entire file. Multiple DRAFT
filename-boundary combinations can occur (maximum 64) in the configuration fi4113/91 11:00

These constrained files are placed on the device before a.ny others.

14
Custom Artwork

Keyboard Overlay

Custom overlays can be made for the HP 95LX. They can be made to either layover the
standard overlay, or the can be made to stick on permanently. Northern Engraving does the
standard keyboard overlays. They use a tool that was supplied by Hewlett Packard. They
are willing to manufacture custom overlays using this tool for Hewlett Packard approved
Independent Software Vendors. They are able to generate custom artwork to vendor
specifications, or they can use artwork supplied by the vendor.

If you are interested in custom overlays for your HP 95LXI application, then you should
contact:

ruchard Kirby
Hewlett Packard
1000 NE Circle Blvd.
Corvallis, Oregon 97330
Telephone: (503) 750-2360

Ie C3rds

If required; Epson can provide custom artwork printed on the IC cards. Information on
submitting artwork designs to Epson is included in the materials that should be obtained
directly from Epson America. To get materials from Epson, contact:

David rufkin
Epson America
20770 Madrona A venue
Torrence, California 90509-2842

Alternatively, labels or silkscreening can be applied to the cards after they have been delivered
from Epson.

DRAFT Custom Artwork 14-1
4/13/91 10:59

Processing Specifics

The ROM Card File System builder uses the configuration file ROMIMAGE.CFG and user

files to build ROMIMAGE.ROM: a DOS file containing the image of a file system.

ROMCFS changes directories to the one specified on the' command-line. It expects to find the

configuartion file ROMIMAGE.CFG.

Some validation on the keywords and associated parameters is done. Incongruities result in

either warnings or errors written to stdout. Warning messages are prefaced by "WARNING"

and are non-fatal. Warnings usually result in the software making an assumption. Review

these messages to insure that the desired value has been obtained. Error messages are

preceded by "ERROR" and cause ROMCFS to terminate.

Appropriate sizes are calculated for the root directory and FATs based on the contents of the

directory to be processed.

Any constrained files found in the configuration must exist in the current directory. At

this point the current directory will become the root directory on the new file system. The

constrained files are sorted by boundary in descending sequence. Each constained file is

written to the file system at the first appropriate boundary and in contiguous clusters.

After processing constrained files, ROMCFS does a "find" on the current directory. All files

excluding ROMIMAGE.CFG, ROMIMAGE.ROM and constrained files are added to the file

system. These files and sub-directories may be fragmented into 512-byte clusters to optimize

the file system space.

Once the contents of the current directory have been added to the file system, contents of

sub-directories are added.

ROMCFS extends the file system to the specified ROM_SIZE padding with zeros.

A checksum is computed on the entire ROM image and added to the CIS header.

Each time ROMCFS is run, it will re-build ROMIMAGE.ROM. All other contents of the

user-supplied directory are unaltered.

Ordering ROM's from Epson

It is the ROM file image that needs to be transferred to ROM cards. Epson America should

be contacted directly for instructions on ordering ROM's. Their Hewlett Packard ISV

coordinator is:

David Rlfkin
Epson America
20770 Madrona Avenue

Torrence, California 90509-2842 Telephone: (213) 782-5315

DRAFT From Software Design to Ordering ROM Cards 10-7

4/13/91 11:00

-,

'HOPPER'

95LX SYSTEM CONTROLLER

External Reference Specification

Version 1.01

HEWLETT-PACKARD COMPANY

April 30, 1991

III
CHAPTER 1

INTRODUCTION

III

This document contains a description of the 'HOPPER' IC. This
chip is designed to be used in conjunction with an 80C88 CPU, a
LCD module, and ROM/RAM chips, to implement a system with a
moderate degree of PC compatibility. This chip is divided into
the following functional areas:

1. An 8088 CPU Bus Interface. This block contains the
functionallity of the 8288 BUS CONTROLLER plus address
latches, address/data transceivers, and internal/external
chip enable decoding. The internal chip enable decoder

.".. supports programable address configuration for 5 external
ROM/RAM devices.

2. A Display Controller capable of controlling an LCD module of
up to 16 lines by 40 characters. The Display Controller
supports a movable window into the 25 line by 80 character
MDA standard. It also supports non-standard bit-mapped
graphics of up to 128 rows by 240 columns.

3. A Keyboard Controller that interfaces direc::tly to a keyboard
switch matrix of up to 8 rows by 16 columns plus a separate,
dedicated ON key. PC compatible key codes are generated by
the BIOS.

4. A Card Detect Register that contains information on the
presence and write protect status of up to 2 plug-in cards.

5. RS232 and infrared (IR) serial ports supporting
communication via an 8250 compatible UART. IR communication
with the REDEYE printer and HP calculators is also
supported.

6. An 8259 compatible Programmable Interrupt Controller (PIC).

7. An 8254 compatible Programmable Interval Timer (PIT).

8. A Real Time Clock timer used by software to keep track of
time and date and to implement alarms.

9. A set of PC compatable I/O registers for system
configuration.

HOPPER ERS 1.01 Page 1

10. A low frequency (32.768KHz) quartz-crystal oscillator.

11. A high frequency (5.37MHz or 10.74MHz) quartz-crystal
oscillator.

12. A Clock Generator that uses the output of the high frequency
oscillator (HFO) to generate clocks for the CPU, the PIT, and
the UART.

13. A Touch Panel Controller which includes an 8-bit A/D
converter. This A/D converter is also used to monitor the
voltage levels of up to 4 battery inputs.

14. An analog Tone Generator which includes an 8-bit D/A
converter.

15. A Power Management circuit that controls the external
switching power supply regulator. This external supply
operates in low power, high power, and backup power modes.
The power management block also includes a Power-On Reset
(POR) circuit.

16. A Contrast Control Voltage generator to control the external
LCD voltage generation. This circuit consists simple
resistive network used to impliment a 4 bit D/A.

A chapter has been dedicated to each of these functional areas.
Also included are chapters describing the chip BLOCK DIAGRAM, the
chip PIN_OUT, the I/O ADDRESSING, and TESTING.

Page 2 HOPPER ERS 1.01

III
CHAPTER 2

BLOCK DIAGRAM

III

The following is a simplified block diagram of the HOPPER chip.

Figure 2.1. HOPPER Block Diagram 0.12

Inf ra,.e" I,. " .. ,
1

,,0
."IZ

cent ..)

,. •• u,.,,'" CPU
• "ant. r ••• '

t
i8250

(Uflllll:TJ

display
controller

l'
I

cou
st..lul

G
rea 1
l i r'le

c lock

IUiII'(IIIl.., f-:;.....-------------,

R"
CPU che ..

"kHz •• e

tauch •• ,.el ~

8"""'"
2

~

HOPPER ERS 1.01

clock
generator

louch
controller

------- .. -------
8 - b i l adc

cvgen

. T
Vtld Ok

lone
generator

8 - b i l dac

I

keyboard
controller

l' f T

C'U lIulll(lll)'.'d
.cld,. ••• add .. ,,,,,,, ..

bus
int.erface

sp8254
(PI T)

sp8259
(P Ie)

'slched .d',. •••
chiiii' enlbl ••

~c,utnt,.
L...-------1~N.,

- __________ [OM)· ... "

Page 3

III

3.1 PIN Description

PIN

Power Supply:

VDD

GND

AVDD

AGND

TYPE

7

4

2

2

I

I

I

I

80C88 Interface:

CLK

NS[O:2]

AD[O:7]

MA[8:11]

AP[12:15]

AS[16:19]

INTR

NMI

NRGO

PRES

Page 4

1

3

8

4

4

4

1

1

1

1

I/O

I

I/O

I/O

I

I

o

o

I/O

o

CHAPTER 3
PIN OUT

DESCRIPTION

Power Supply: 4.5 to 5.5 Volts.

Ground: 0 Volts.

Analog Power Supply.

Analog ground.

System clock.

Processor status.

Multiplexed address/data lines.

III

System address lines. Source either from
CPU or from HOPPER.

Processor address lines.

Multiplexed address/status lines.

Interrupt request.

Non-Maskable interrupt. Caused by either
NVDDOK = 1 or a change on the CDT[O:l]
inputs.

Request/Grant pin for bus hold requests
(required by display controller to take
control of AD[O:7] and MA[8:11]).

Processor reset.

HOPPER ERS 1.01

System RAM/ROM Interface:

MA[0:7]

MA[12:20]

NWE

NCE[O]

NCE[l]

NCE[2]

NCE[4:5]

NOE

ROY

CDT[O:l]

8

9

1

1

1

1

2

1

1

2

o

o

o

o

o

o

o

o

I

I/O

LSB's of system address; normally latched
from AD[0:7].

MSB's of system address. Four of these 8
bits are required to remap 4K portions of
the system RAM, the others are latched
from AS[16:19].

Read/Write enable; active low.

Internal ROM chip enable; active low.

Internal RAM chip enable; active low.

Internal ROM/RAM chip enable; active low.

Plug-in ROM/RAM chip enables; active low.

output enable; active low. This pin also
provides refresh timing for pseudo-static
RAMs.

High true ready input from external
devices. If this pad is pulled low
a memory access, CLK will be held
There is a resistive pullup on this

memory
during
high.

pad.

Card detects; sense NWPOUT (write protect
output) of plug-in cards.

External LCD Row/Col Drivers:

OVEN

YO

LOAD

OF

CP

00[0:3]

1

1

1

1

1

4

HOPPER ERS 1.01

o

o

o

o

o

o

Display blanking output. This signal is
actually a general purpose output used to
control the display module's high voltage
supply in JAGUAR.

Data for row driver.

Parallel load pulse.

Frame inversion signal.

Clock pulse. Data is shifted on the fall
of this signal.

Data to display column drivers.

Page 5

Keyboard:

KBO[0:15]

KBI[0:7]

ON

Other:

BAT[0:3]

NVDDOK

ACIN

BUP

SOFF

IOFF

TPH[0:1]

TPL[0:1]

SPK[0:1]

CCV

IRO

IRI

RX

TX

Page 6

16

8

1

4

1

1

1

1

1

2

2

2

1

1

1

1

1

o

I

I

I

I

I

o

o

o

I/O

I/O

o

o

o

I

I

o

Keyboard drive.

Keyboard sense.

ON key input.

Analog battery voltage inputs (main
batteries, backup battery, and 2 card
batteries).

Low true Vdd OK input from external power
supply. If this line goes high in
operating or light sleep a NMI will be
issued. It it is high at any other time
it will force the system into backup mode.

Input from the external power supply
indicating that the AC adapter is plugged
in.

Backup; driven high to force the external
power supply into backup mode.

System power off; driven high to turn off
power to CPU, Display, ROM, and Card.

I/O power off; driven high to turn off
power to IR receiver chip.

Touch panel lines. Driven high or float.

Touch panel lines. Driven low or float.

Differential speaker driver pins.

Contrast control voltage. This is a high
impedance analog voltage output between
GND and VDD.

LED output driver.

Infrared input sensor.

Serial in.

Serial out.

HOPPER ERS 1.01

HXI, HXO

LXI, LXO

XINT

NTKO

NTEST

NRES

2

2

1

1

1

1

TOTAL 132

HOPPER ERS 1.01

I/O

I/O

I

I

I

I

5.369318MHz quartz crystal connections.

32.768KHz quartz crystal connections.

External interrupt; pulling XINT high will
wake the system if asleep and ca~se an
interrupt. This is a wired-or input with
a passive pulldown.

Take over; if NTKO is shorted to ground by
a plug-in card, all system ROM accesses
(NCE[O]) will be redirected to NCE[4].

Test mode input; pulled low to force the
part into test mode.

Reset; active low.

Page 7

III
CHAPTER 4

I/O ADDRESS SUMMARY

III

The following is a summary of the HOPPER I/O addresses. Where at
all possible the I/O addresses are compatible with the original
IBM PC.

4.1 Programmable Interrupt Controller (8259 compatible)

I/O R/W
Address Mode Description

0020h R

0020h W

Page 8

PIC Interrupt Request/In-Service Registers
programmed by Operation Command Word 3 (OCW3):

Interrupt Request Register, where:
bits 7-0 =0 no active request for the

corresponding interrupt line
=1 active request for the corresponding

interrupt line

Interrupt In-Service Register, where:
bits 7-0 =0 the corresponding interrupt line is

not currently being serviced
=1 the corresponding interrupt line is

currently being serviced

PIC Initialization Command Word I (ICW1) when bit
4 is one:

bits 7-5 =0
bit 4 =1
bit 3 =0
bit 2 =1
bit 1 =1
bit 0 =1

not used
required to select this command word
edge triggered mode
not used
single mode (no ICW3 needed)
ICW4 needed

HOPPER ERS 1.01

I/O R/W
Address Mode Description

0021h W PIC ICW2 and ICW4 in sequential order after ICW1

written to Port 0020h:

ICW2, where:
bit 7-3 =00001 address lines A7-A3 of base vector

address for interrupt controller

bit 2-0 =0 reserved

ICW4, where:
bits 7-5 =0
bits 4 =0
bits 3-2 =11
bit 1 =0
bit 0 =1

not used
no special fully nested mode
buffered mode/master
normal EOI
8086/8088 mode

0021h R/W PIC interrupt mask register (OCW1), where:

0020h W

bit 7
bit 6
bit 5
bit 4
bit 3

bit 2

bit 1

bit 0

=0
=0
=0
=0
=0

=0

=0

=0

enable HOPPER RTC interrupt
enable HOPPER XINT pin interrupt
enable HOPPER IR input interrupt
enable UART interrupt
enable HOPPER keyboard and touch
panel interrupts
enable miscellaneous HOPPER
interrupts
enable PC compatible keyboard
interrupt (checked by BIOS)
enable timerO interrupt

PIC OCW2 when bit 4 is zero and bit 3 is zero,

where:

bits 7-5 =000
=001
=010
=011
=100

=101
=110
=111

bits 3-4 =00
bits 2-0

rotate in automatic EOI mode (clear)
non-specific EOI
no operation
specific EOI
rotate in automatic EOI command
(set)
rotate on non-specific EOI command
set priority command
rotate on specific EOI command
required to select this command word
interrupt request to which the
command applies

HOPPER ERS 1.01 Page 9

I/O R/W
Address Mode Description

0020h W

Page 10

PIC OCW3 when bit 4 is zero and bit 3 is one,
where:

bit 7
bits 6-5

bits 4-3
bit 2

bits 1-0

bits 1-0

=0
=00
=01
=10
=11
=01
=0
=1
=00
=01
=10

=11

reserved
no operation
no operation
reset special mask
set special mask
required to select this command word
no poll command
poll command
no operation
no operation
read interrupt request register on
next read at Port 20h
read interrupt in-service register
on next read at Port 20h

HOPPER ERS 1.01

4.2 Programmable Interval Timer (8254 compatible)

I/O R/W
Address Mode

0040h R/W

0041h R/W

0042h R/W

0043h W

Description

PIT counter 0

PIT counter 1

PIT counter 2

PIT control word, where:

bits 7-6

bits 5-4

bits 3-1

bit 0

=00
=01
=10
=11
=00
=01
=10
=11

=000
=001
=x10
=x11
=100
=101
=0
=1

select Counter 0
select counter 1
select counter 2
read back command
counter latch command
read/write counter bits 0-7 only
read/write counter bits 8-15 only
read/write counter bits 0-7 first,
then bits 8-15
mode 0 select
mode 1 select
mode 2 select
mode 3 select
mode 4 select
mode 5 select
binary counter 16 bits
BCD counter

HOPPER ERS 1.01 Page 11

4.3 Programmable Peripheral Interface (Emulates 8255)

The HOPPER chip does not contain a PPI as such. Instead it
contains a group of 3 I/O registers that are configured to behave
as the PC's PPI. These registers are referred to as the PC
Compatible I/O Registers. The definitions of the configuration
switch bits should be chosen to be PC compatible.

I/O R/W
Address ModeDescription

0060h R/W PPI Input Port A:

If port 0061h bit7=0:
bits 7-0 scratch location for keyboard scan code

If port 0061h bit7=1:
bits 7-0 scratch location for SW1 configuration

swi tch settings '"~

0061h R/W PPI output Port B:

bit 7

bit 6
bit 5
bit 4
bit 3

bit 2
bit 1
bit 0

=0 read/write keyboard scratch byte (0060h)
=1 read/write SW1 scratch byte (0060h)
=0 disable keyboard
=0 ignored, reads 0 (enable I/O check)
=0 ignored, reads 0 (enable RAM parity check)
=0 read high switch (0062h)
=1 read low switch (0062h)
=0 ignored, always reads 0
=1 enable speaker data
=1 enable timer 2 gate (to speaker)

0062h R/W PPI Input Port C:

Page 12

bits 7-6 =0 unused (read only)
bit 5 timer 2 output (read only)
bit 4 =0 unused (read only)

If port 0061h bit 3=0:
bits 3-0 scratch location for 4 MSBs

configuration switches

If port 0061h bit 3=1:
bits 3-0 scratch location for 4 LSBs

configuration switches

of SW2

of SW2

HOPPER ERS 1.01

4.4 MDA Adapter (PC MDA Compatible)

I/O R/W
Address Mode Description

03B4h W MDA Index register (only OAh, OEh, and OFh
supported)

03B5h R/W Indexed MDA registers

03B8h R/W MDA mode control register

03 BAh R MDA status register

HOPPER ERS 1.01 Page 13

4.5 Serial Port (8250 Compatable UART)

I/O R/W
Address Mode Description

03F8h W

03F8h R

03F8h R/W

03F9h R/W

UART transmitter holding register, which contains
the character to be sent. Bit 0, the least
significant bit, is sent first.

bits 7-0 contains data bits 7-0 when Divisor
Latch Access Bit (DLAB) = 0 (03FBh)

UART receiver buffer register, which contains the
received character.

bits 7-0 contains data bits 7-0 when DLAB=O

UART divisor latch, low byte. Both divisor latch
registers store the baud rate divisor.

bits 7-0 bits 7-0 of divisor when DLAB=l

UART divisor latch, high byte, where:

bits 7-0 bits 15-8 of divisor, when DLAB=l

03F9h R/W UART interrupt enable register when DLAB = o.

Page 14

Allows the four controller interrupts to enable
the chip interrupt output signal.

bits 7-4 =0 reserved
bit 3 =1 not used (modem status interrupt

enable)
bit 2 =1 receiver line status interrupt

enable
bit 1 =1 transmitter holding register empty

interrupt enable
bit 0 =1 received data available interrupt

enable

HOPPER ERS 1.01

I/O R/W
Address Mode Description

03FAh R UART interrupt ID register. Information about a
pending interrupt is stored here. When ID
register is addressed, the highest priority
interrupt is held and no other interrupts are
acknowledged until the CPU services that
interrupt.

bits 7-3 =0 reserved

bits 2-1 Identity of the pending interrupt with
the highest priority

bit 0

=11 receiver line status interrupt:
highest priority

=10 received data available: second
priority

=01 transmitter holding register: third
priority

=00 invalid (modem status interrupt)

=0

=1

interrupt pending, contents of
register can be used as a pointer
to the appropriate interrupt
service routine
no interrupt pending

03FBh R/W UART Line Control Register, where:

bit 7 =0

bit 7 =1
bit 6 =1
bit 5
bit 4 =0

=1
bit 3 =1
bit 2 =0

=1

bits 1-0 =00
=01
=10
=11

HOPPER ERS 1.01

Receiver buffer, transmitter
holding or interrupt enable
register access (DLAB)
divisor latch access
set break enabled (output = space)
stick parity
odd parity
even parity
parity enable
1 stop bit
1.5 stop bits if bits 1-0 = 00,
else 2 stop bits
5 bit word length
6 bit word length
7 bit word length
8 bit word length

Page 15

I/O R/W
Address Mode Description

03FCh R/W UART Modem Control Register . (modem control is not
implemented)

bits 7-4 =0 reserved
bit 3 =1 enable UART interrupt
bits 2-0 =0 reserved

03FDh R UART Line status Register, where:

bit 7 =0 reserved
bit 6 =1 transmitter shift and holding

bit 5 =1
registers empty
transmitter holding register is

bit 4 =1
empty
break interrupt

bit 3 =1 framing error
bit 2 =1 parity error
bit 1 =1 overrun error
bit 0 =1 data ready

03FEh R UART Modem status Register (modem status is not
implemented, these bits are hard-programmed to
always return the values shown)

bit 7 =0 Carrier Detect (changed to read a

bit 6
one on Rev C)

=0
bit 5 =0 Data-set-Ready (changed to read a

one on Rev C)
bit 4 =0 Clear-To-Send (changed to read a

one on Rev C)
bits 3-0 =0

03FFh R/W UART scratch pad register

Page 16 HOPPER ERS 1.01

4.6 Display Controller (HOPPER specific)

I/O R/W
Address Mode Description

D300h R/W bits 7-0 LSBs of display window start address
pointer

D301h R/W bits 7-4 unused
bits 3-0 MSBs of display window start address

pointer

D302h W bit 7 unused
bits 6-0 window row size offset

D303h W bits 7-6 unused
bits 5-0 horizontal window size

D304h W bit 7 unused
bits 6-0 vertical window size

D305h R/W bits 7-4 row time control
bits 3 unused
bit 2 =0 display blank
bit 1 =1 display on
bit 0 =0 alpha mode

=1 graphics mode

4.7 Real-Time Clock (HOPPER specific)

I/O R/W
Address Mode Description

D306h

D307h

R/W

R/W

bits 7-0

bits 7-0

HOPPER ERS 1.01

bits 7-0 of the 16-bit counter value

bits 15-8 of the 16-bit counter value

Page 17

..

4.8 Miscellaneous Registers (HOPPER specific)

I/O R/W
Address Mode

E300h R/W

E301h R/W

E302h R/W

Page 18

Description

Test Mode
bit 7
bit 6

bit 5 =1
bit 4
bit 3 =1

bit 2 =1
bit 1

bit 0 =0

Register
reserved
state of AMPPD for test (read only)
(Rev Conly)
enable watchdog circuit (Rev Conly)
state of ACIN pad (read only)
force PIT clock to run in light sleep
(normally enabled only when CPU is
running)
force HOPPER output disable test mode
should be set if a 10.74MHz crystal is
used (not supported at this time)
reset has occured; this bit will be
cleared by a system reset; it is
initialized to a one by a warmstart

First Byte of System Control Register

bit 7 =1
bit 6 =1
bit 5 =1
bit 4 =1
bit 3
bit 2 =1
bit 1 =1
bit 0 =1

RTC interrupt/wakeup enable
XINT pad interrupt/wakeup enable
IR circuit interrupt/wakeup enable
UART interrupt/wakeup enable
unused
I/O on
CPU shutdown (set only)
writing a one twice in succession will
cause a reset (write only)

Second Byte of System Control Register

bit 7
bit 6
bit 5

bit 4
bit 3
bit 2
bit l.
bit 0

=1
=1
=1

=1
=1
=1
=1
=1

touch pan~l interrupt/wakeup enable
keyboard interrupt/wakeup enable
low voltage RX pad interrupt/wakeup
enable
display cursor interrupt/wakeup enable
module pulled interrupt/wakeup enable
low power interrupt/wakeup enable
timer 1 interrupt/wakeup enable
timer 0 interrupt/wakeup enable

HOPPER ERS 1.01

I/O R/W
Address Mode Description

E303h R/W

E304h R/W

E305h W

E306h R

E307h R/W

Interrupt Source Register (read/clear 'only)
bit 7 =1 touch panel interrupt
bit 6 =1 keyboard service request
bit 5 =1 low voltage RX interrupt
bit 4 =1 display cursor update request
bit 3 =1 module pulled interrupt
bit 2 =1 low power interrupt
bit 1 =1 timer 1 interrupt
bit 0 unused

Card Detect Register
bit 7 =1 port 1 has card inserted (read only)

bit 6 =1 port 0 has card inserted (read only)

bit 5 =1 port 1 is write enabled (read only)

bit 4 =1 port 0 is write enabled (read only)

bits 3-2 unused
bit 1 =1 update bits 7-4 every millisecond

(write only)
bit 0 =1 update bits 7-4 continuously (write

only)

Tone Buffer Register (D/A value)

A/D Value Register (0 = 0 Volts, 255 = 5 Volts)

A/D Control
bits 7-6
bit 5

Register (ADCONT)
unused

bit 4
bit 3
bits 2-0

=1
=1
=0
Input
=000
=001
=010
=011
=100
=101
=110
=111

conversion completed (read only)
start conversion (write only)
power down mode (write only)
Voltage Channel Select, where:
system battery
backup battery
port 1 battery
port 2 battery
touch pad x-axis
touch pad x-axis
touch pad y-axis
touch pad y-axis

low side
high side
low side
high side

HOPPER ERS 1.01 Page 19

I/O R/W
Address Mode Description

E30Sh R/W

E309h R/W

E30Ah R/W

E30Bh R/W

Page 20

Touch Panel
bits 7-6
bit 5 =1

bit 4 =1
bit 3 =1
bit 2 =0

=1
bit 1 =1
bit 0 =1

Tone Control
bits 4-7

bits 3-2

bit 1 =0
bit 0 =1

Control Register (TPCONT)
unused
indicates pad has been touched in
standby mode (read only)
touch pad interrupt enabled
unselected axis is precharged to ground
select y-axis
select x-axis
touch panel precharge mode
touch panel standby mode

/ Contrast Register (TCCONT)
DfA value for contrast control
pin
digital beeper volumn control
min, 3 = max)
tone circuit power down mode
tone buffer empty (read only)

voltage

(0 =

IR Format Register (IRFMAT)
bit 7 =1 disables IR pad current regulation
bit 6 =1 enable LED buffer empty interrupt
bit 5 =1 LED buffer full (read only)
bit 4 =0 single pulse transmission mode

bit 3
=1 multiple pulse transmission mode
=0 modulate using 32.76SKHz

bit 2
bit 1
bit 0

=1 modulate using baud rate generator
=1 IR UART communication mode
=1 modulated communication mode
=1 REDEYE transmit mode

IR Transmit
bit 7
bit 6 =1
bit 5 =1

bit 4-3
bit 2 =1

bit 1 =0

=1
bit 0 =1

/ Receive Register
state of the IRI pin (read only)
enable IR interrupt on IRI = 1
IR event has occurred, must be cleared
by software
unused
gate output when in modulated
communication mode
transmit "off" half-bit in REDEYE
format
transmit "on" half-bit in REDEYE format
turn on LED driver, used for software
controlled transmissions

HOPPER ERS 1.01

I/O R/W
Address !1ode Description

E30Dh W Writing anything to this location. will end
keyboard precharge

E30Eh W Low byte of keyboard output register (KBO[O-7])

E30Fh W High byte of keyboard output register (KBO[8-15])

E30Eh R Keyboard input register (KBI[O:7])

E30Fh R bits 7-1 =0 unused
bit 0 state of [ON] key

HOPPER ERS 1.01 Page 21

4.9 HOPPER Memory Configuration and Bank switching

I/O R/W
Address Mode

F300h R/W

F301h R/W

F302h R/W

F303h R/W

F304h R/W

F305h R/W

F308h R/W

F309h RjW

F30Ah R/W

F30Bh R/W

F30Ch R/W

F30Dh R/W

Page 22

Description

bit 7
bits 6-5
bits 4-3
bits 2-0

bits 7-5
bits 4-2
bits 1-0

bits 7-1
bit 0

bits 7-1
bit 0

bits 7-1
bit 0

bits 7-1
bit 0

bit 7 =0
bits 6-0

bit 7 =1
bits 6-1
bit 0

bit 7 =0
bits 6-1
bit 0

bits 7-1
bit 0

bit 7
bits 6-1
bit 0

bit 7
bits 6-1
bit 0

unused
2-bit NCE[2] wait state value
2-bit NCE[l] wait state value
3-bit NCE[O] wait state value

3-bit NCE[5] wait state value
3-bit NCE[4] wait state value
reserved

NCE[2] starting address (MSBs)
unused

reserved
unused

NCE[4] starting address (MSBs)
unused

NCE[5] starting address (MSBs)
unused

NCE[O] write protected (default)
unused

NCE[l] write enabled (default)
NCE[l] size register
unused

NCE[2] write protected (default)
NCE[2] size register
unused

reserved
unused

unused
NCE[4] size register
unused

unused
NCE[5] size register
unused

HOPPER ERS 1.01

I/O R/W
Address Mode Description

F310h R/W bits 7-1

bit 0

F311h R/W bits 7-3

bits 2-0

F312h R/W bits 7-1

bit 0

F313h R/W bits 7-3
bits 2-0

F314h R/W bits 7-1

bit 0

F31Sh R/W bits 7-3
bits 2-0

F316h R/W bits 7-1

bit 0

F317h R/W bits 7-3
bits 2-0

F318h R/W bits 7-3

• bits 2-0

F319h R/W bits 7-3

bits 2-0

F31Fh R/W bits 7-0

HOPPER ERS 1.01

Bank EO frame select (MSBs of device
address)
unused

unused

Bank EO device select
=000 select NCE[O] (ROM)
=001 select NCE[l] (syst.em RAM)
=010 select NCE[2] (system RAM/ROM)
=011 reserved
=100 select NCE[4] (slot 0)
=101 select NCE[S] (slot 1)

Bank E1 frame select (MSBs of device
address)
unused

unused
Bank E1 device select (see F311h)

Bank E2 frame select (MSBs of device
address)
unused

unused
Bank E2 ,device select (see F311h)

Bank E3 frame select (MSBs of device
address)
unused

unused
Bank E3 device select (see F311h)

Bank C frame select (MSBs of device
address)
Bank C device select (see F311h)

BANK D frame select (MSBs of device
address)
BANK D device select (see F311h)

MDA buffer address mapping register (MSBs
of NCE[l] device address)

Page 23

III
CHAPTER 5

CPU BUS INTERFACE

III

The HOPPER chip includes a CPU Bus Interface block that generates
internal address and data busses, internal and external device
select signals, as well as read/write and other control signals.
This section includes an Intel 8288 compatible Bus Controller. A
block diagram of the Bus Interface follows.

N5[1'21

eLK

ADCII"

'rop! CPU

AP [12. lS]

Alitt,""

Page 24

Figure 5.1. Bus Interface Block Diagram

at h.,. ConLro 1

8288 ~
DEN

J.-ALE r-

8- B it
reney"
'----

r---
~ r--

'--H
8-1 it
Lat.ch
'----

rJr-

4-lit
r.ne",.
'----

----;;;-
~

4- 8it
La" ch -

RDCII?') nA(Sllil

J
DE

UiBs

12-1"
Tri -It.

lutl.,.

1
"sas
Of.pl Addr

I."appe"
.. -----------

Prot"a""abl.
Chip S.l.ct.
C.n.,..Lor'

""lB' "

""I8:rL

"" IZ'nL

NCEcel '5)

r-

---7

r--

DAce

I Ace t I J]

IOCII?]

\0 UAAT, PIC, PIT, PPI,
and HOPPER r •• isL.,..

I ACII 5]

IDSELC't 7]

"ACel?')
"R[l2IZI)

HOPPER ERS 1.01

The 8288 compatible bus controller latches and decodes the status
lines, S[0:2], from the 80C88 cpu. Its outputs include memory
read/write signals, I/O register read/write signals, as well as
control signals for the address latches, data bus transceivers,
and PIC.

The address lines can be sourced from either the cpu or
Display Controller. The Display Controller will gain
the CPU address bus using the Grant/Request sequence.
then act as a bus controller to read up to 80 bytes
data from system memory into its refresh buffer.

5.1 Display Address Remapping

from the
control of

It will
of display

The data for the display is stored in the device connected to
NCE[l] (system RAM) at the device address lnnXXXh, where "nn" is
the value stored in the 8-bit MDA buffer address register located
at I/O location F31Fh. The display data can be accessed at either
the MDA address space or at it's actual address.

When the 5 most significant bits of the CPU address are pointing
into the 32KB MDA address space starting at BOOOOh, the display
address remapper replaces these address bits with the contents of
its 8-bit display address register (with MA[20]=1). The contents
of.~his register is always used when addresses are being sourced
from the Display Controller. The display address register must be
initilized to point into a 4KB section of RAM (NCE[l]) as defined
by the external chip select configu~ation.

5.2 Internal Chip Selects

The I/O Select logic decodes 6 device select signals for the
internal I/O registers. The addresses within which these select
signals are active are hard programmed as follows:

SIGNAL I/O ADDRESS DESCRIPTION
IOSEL[O] 0020h-0021h PIC (8259)
IOSEL[l] 0040h-0043h PIT (8254)
IOSEL[2] 0060h-0063h Miscellaneous PC compatible 10

registers.
IOSEL[3] 03BOh-03BFh MDA registers
IOSEL[4] 03F8h-03FFh UART (8250)
IOSEL[5] D300h-D307h HOPPER display control and real

time clock.
IOSEL[6] E300h-E30Fh Miscellaneous HOPPER

control/status.
IOSEL[7] F300h-F31Fh HOPPER memory configuration and

bank switching.

HOPPER ERS 1.01 Page 25

5.3 External Chip Selects

SIGNAL

NCE[O]

NCE[1]

NCE[2]

NCE[3]

NCE[4:5]

FUNCTIONAL DESCRIPTION

ROM chip select. It is hard- addressed (non­
programmable) at two separate address ranges of
64KB each. The top 64KB of the ROM chip is
addressed at FOOOOh to FFFFFh. The next 64KB of
the ROM chip is addressed at AOOOOh to AFFFFh.
The remaining portion of a ROM that is larger
than 128KB can be accessed using bank switching
as described in the next section.

RAM chip select with a starting address of
OOOOOh. The size is programmable from 8KB to
512KB (6-bits) and defaults to 8KB on reset.
The 4KB display data buffer is stored in this
device.

RAM/ROM chip select intended for built-in
memory. The size registers are programmable to
any power of 2 from 8KB to 512KB (6-bits). The
7-bit starting addresses must be programmed to
an address that is a multiple of the size.

Reserved for future expansion.

RAM/ROM chip selects intended for either built­
in or plug-in memory. The size registers
associated with these chip selects are
programmable to any power of 2 from 8KB to 512KB
(6-bits). The 7-bit starting addresses may be
programmed to any 8KB boundary. This requires 2
7-bit adders.

Unused upper-order address lines are driven high during an access.
This means that the accesses will be made to the upper portion of
devices that are larger than their configured size. The remaining
portion can be accessed via bank switching as described in the
following section. The upper portion was chosen since plug-in's
with both RAM and ROM configure the RAM in upper addresses. This
RAM can be used to extend system memory and the ROM can then be
accessed via bank switching.

If 2 chip select configurations are programmed to overlap at some
addresses, the lowered number chip select takes precedence.
Therefore, in order for NCE[2:5] to be generated, the starting
address register for each must be configured (written to) after a
system reset.

Page 26 HOPPER ERS 1.01

~.

5.3.1 Wait state Registers

The number of wait
programmed using the
to the maximum number
max~m1ze the system
the devices present.

Addr Bits Signal

F300h [0-2] NCE[O]
[3-4] NCE[l]
[5-6] NCE[2]

[7] unused

F301h [0-1] unused
[2-4] NCE[4]
[5-7] NCE[5]

states required by each device can be
wait State Regiters. This register defaults
of wait states and should be programmed to
performance allowed by the access speeds of

Reset
Value Comments

111b 0 to 7 wait states
11b 0 to 3 wait states
11b 0 to 3 wait states

x

xx reserved
111b o to 7 wait states
111b o to 7 wait states

5.3.2 Start Address Registers

The Start Address Registers specify the 7 MSBs of the CPU address
(A13 to A19) at which the device address 0 is mapped. Address bit
20 is always a one except when using bank switching as described
later in this chapter. The LSB of these registers is not used.

Reset
Addr Signal Value Comments

NCE[O] EOh non-programable ROM start
NCE[l] OOh non-programable RAM start

F302h NCE[2] OOh must be a multiple of the size
F303h none XXh reserved
F304h NCE[4] OOh any aKB boundary
F305h NCE[5] OOh any aKB boundary

5.4 Write Enable Bits

The MSB of the the Device Size Registers described in the
following section serve as write enable bits for the NCE[O]
through NCE[2] signals. NCE[l] defaults to one (enabled). NCE[O]
and NCE[2] default to zero (disabled). The write enable for
NCE[4] and NCE[5] is controlled by the card detect circuitry. The
write enable bits should be set for RAM and clear for ROM.

HOPPER ERS 1.01 Page 27

5.4.1 Device size Registers

The Device Size Registers specify the size of the device that is
mapped into CPU addresses. The 6-bit size may configured to any
power of 2 between 8KB and 512KB. The size value can be
calculated as a 7-bit value as follows:

Size Register Value = (Device Size / 4096) - 2

This formula will yield even values for valid size values. This
is necessary since the LSB is unused. The MSB is used as a write
enable flag as described in the previous section.

Reset
Addr Signal Value Comments

NCE[O] 1Eh non-programable (ROM size = 128KB)
F309h NCE[l] 80h 8KB default with write enable bit set
F30Ah NCE[2] OOh any power of 2 from 8KB to 512KB
F30Bh none XXh reserved
F30Ch NCE[4] OOh any power of 2 from 8KB to 512KB
F30Dh NCE[5] OOh any power of 2 from 8KB to 512KB

If a device is configured with a size
actual size several images of the
allotted address space.

that is larger than its
device will appear in the

NOTE: After a reset, NCE[1:5] are all configured to a size of 8KB
starting ··at OOOOOh. with this configuration, only NCE[l] will be
accessed in this address range since it will take precedence over
the others.

5.5 Bank switching

HOPPER implements a bank switching scheme that allows up to 2
MByte of memory to be addressed on each of the 6 chip enable
signals. This allows up to 12MByte to. be accessed in 1M Byte
address space of the 80C88 CPU. ,-

The bank switching scheme supports two 64KB banks and four 16KB
banks. It is intended to allow support of LIM EMS 3.2 and also to
support the need for several 64KB pages of ROM code to be swapped
in and out of upper memory. Bank switching is totally independent
of the external chip select configuration defined above.

Each of the 6 banks is accessed at a fixed location in the CPU
address space. There are IO registers associated with each bank.
These registers must be initialized to specify the section of
memory that will be mapped into the bank.

Page 28 HOPPER ERS 1.01

\

5.5.1 BANK C and BANK D

Pages C and D of the CPU address space (CPU addresses COOOOh to
CFFFFh and DOOOO to DFFFFh) are each set up as ·a 64KB bank. These
banks are referred to as BANKs C and D. Each has a single a-bit
IO register used to select the memory mapped into the bank. .The 3
LSBs (bits 0-2) of each register contain the "Chip Select (CS)"
value that is used to select the device to be addressed. The 5
MSBs contain the "Frame Select (FS)" value that specifies -the 5
MSBs of the 21-bit address to the device, thereby selecting a 64KB
section.

The 3-bit CS values of BANK C and D can select any of the 6
possible external memory devices. The CS value is decoded into a
chip select (NCE) as follows:

CS VALUE DEVICE SELECTED

000 NCE[O] - Built-In system ROM.

001 NCE[l] - Built in RAM hard-configured to
start at OOOOOh.

010 NCE[2] - Built-In ROM or RAM.

011 none - Reserved

100 NCE[4] - Plug-In slot o.

101 NCE[5] - Plug-In slot 1.

5.5.2 BANK EO through BANK E3

Page "E" of the CPU address space (EOOOOh to EFFFFh) is divided
into four 16K banks. These banks are referred to as BANK EO
through BANK E3. Each of these banks has 2 IO registers that
select the memory mapped into the bank. One register contains the
3 bit "Chip Select (CS)" value. The other contains the 7 bit
"Frame Select (FS" value that specifies the 7 MSBs of the 21-bit
address to the device, thereby selecting a 16KB section.

The 3-bit CS values of BANK EO-3 are defined as for BANK C and D
above.

HOPPER ERS 1.01 Page 29

5.5.3 Limitations

Devices larger than 2MB (21 address bits) are not supported by
bank switching. There is also no provision to prevent one section
of memory to be accessed both in the normal CPU address space and
via bank switching.

5.5.4 Bank Control Registers

The Bank Control Registers are read/write registers. The function
of these registers is disabled until the register has been
initilized.

Addr Name Bits Comments
F310h EO Frame Select [1-7] 7 MSBs of device address
F311h EO Chip Select [0-2] 3-bit device select code

F312h E1 Frame Select [1-7] 7 MSBs of device address
F313h E1 Chip Select [0-2] 3-bit device select code

F314h E2 Frame Select [1-7] 7 MSBs of device address
F315h E2 Chip Select [0-2] 3-bit device select code

F316h E3 Frame Select [1-7] 7 MSBs of device address
F317h E3 Chip Select [0-2] 3-bit device select code

F318h Bank C [3-7] 5 MSBs of device address
- [0-2] 3-bit device select

F319h Bank D [3-7] 5 MSBs of device address
[0-2] 3-bit device select

F31Fh MDA Buffer [0-7] A[12:19] of NCE[l]
device address.
A[20]=1.

Page 30 HOPPER ERS 1.01

~--

5.5.5 Example

As an example of bank switching, assume that a 512KB ROM is tied
to NCE[O]. The last pages of this ROM (ROM addresses 70000h to
7FFFFh) would be configured at FOOOOh to FFFFFh. The second to
the last page (ROM addresses 60000h to 6FFFFh) would be configured
at AOOOOh to AFFFFh. If an application needs 2 contiguous 'pages
beginning at ROM address 20000h, it can configure those into CPU
pages C and D. The following register settings would accomplish
this plus map the starting addresses of a plug-in in slot 0 into
the 4 sections of BANK E.

Bank C = 10h
Bank D = 18h

(FS=00010, CS=OOO)
(FS=OOOll, CS=OOO)

EO-3 Chip Select = 4h
EO Frame Select = Oh
El Frame Select = lh
E2 Frame Select = 2h
E3 Frame Select = 3h

5.6 Take Over ROM/EPROMs

The NTKO pin in the card port is normally left floating. A ROM
card or EPROM card may be manufactured as a take over device if
the NTKO pin is connected to ground. This pin is sampled each
time the system is turned on. If it is low it will cause a swap
in functionallity between the NCE[O] and NCE[4] pads. This makes
the plug-in card look like the system ROM, and the system ROM look
like plug-in port o.

The following rules apply to write protection

1. The write protect switch on the plug-in card always write
protects the card (NCE[4]).

2. The write protect bit at address F308h is associated with
NCE[O] in normal operation. In take-over mode this bit is

. associated with NCE[4].

3. NCE[O] can not be hardware write-protected in take-over
mode.

HOPPER ERS 1.01 Page 31

II
CHAPTER 6

II
HOPPER DISPLAY CONTROLLER

The display controller in the
shelf LCD drivers to drive a
size. The actual display
programmable.

HOPPER chip interfaces to off-the­
dot matrix LCD up to 240x128 dots in
size to be driven is software

The display controller is designed to be compatible with the IBM
Monochrome Display Adapter when operating in alpha mode. The IBM
MDA will display 25 lines of 80 characters each. The HOPPER
display controller supports displays up to 16 lines of 40
characters. A means is provided to move this smaller (16x40)
window around within the full (25x80) display. The HOPPER display
controller also supports a non-standard bit-mapped graphics mode.

The major functional areas of the display controller are described
in this chapter.

6.1 Displ~y Timing and Control Registers

This area contains all of the I/O registers necessary to be
compatible with the IBM MDA. It also contains the I/O registers
necessary for setting the display width and height, window
location in MDA memory, and control (such as text vs. graphics
mode). The I/O registers are defined as follows:

6.1.1 MDA Registers

The following MDA registers have identical functions as those in
an IBM MDA.

I/O R/W
Address Mode Description

03B4h W

Page 32

Address index register for 6845 CRTC'used in MDA
mode.

HOPPER ERS 1.01

03B5h W 6845 data register for transfer of data to
internal 6845
index register.

register pointed to by the address

03B8h W MDA CRT control register:

bit 3 video enable bit
bit 5 Enable blink bit

03BAh R MDA CRT status register:

bit 0 Horizontal drive status
bit 3 video data status

HOPPER ERS 1.01 Page 33

The following internal 6845 registers are implemented. Except
where noted, their function is identical to the original 6845
registers.

6845 R/W
Register ModeDescription

R10 W Cursor definition register:

R14

bits 0-4 Cursor start: Defines the starting
scan line of the alpha cursor. If
value is equal to or greater than
7, cursor is an underline. Cursor
end register is not implemented.
Cursor end is always row 7.

bits 5-6 Cursor control: Enables or disables

bit 7
cursor.
not used

R/W Cursor address register:

bits 0-5 high order bits of cursor address
bits 6-7 not used

R15 R/W Cursor address register:

bits 0-7 low order bits of cursor address

Page 34 HOPPER ERS 1.01

6.1.2 HOPPER Display Control Registers

The following are registers unique to the
controller.

HOPPER display

I/O
Address

D300h

D301h

D302h

D303h

R/W
Mode

R/W

R/W

W

W

HOPPER ERS 1.01

Description

Window start
bits 7-0

window start
bits 7-4
bits 3-0

Address
LSBs of display window start
address pointer. Window start
address points to the character in
MDA memory which is to appear in
the upper, left corner of the
HOPPER display.

Address
unused
MSBs of display window start
address pointer. window start
address points to the character in
MDA memory which is to appear in
the upper, left corner of the
HOPPER display.

Window Row
bit 7

Size Offset
unused

bits 6-0

Horizontal
bits 7-6
bits 5-0

Text Mode: For 40 character
display, value should be 80. This
will add 40 characters (81 bytes)
to end of current row address to
obtain address for beginning of
next row.

Graphics Mode: Can be set to any
desired number of bytes. If
contiguous memory is desired, value
should be one.

Window Size
unused
Text Mode: contains the number of
characters (minus 1) to be
displayed. For a 40 character
display, value should be 39.

Graphics Mode: contains the number
of 16-bit words (minus 1) to be
displayed. For a 240 column
display, value should be 14.

Page 35

I/O R/W
Address Mode Description

D304h W

D305h R/W

Page 36

vertical
bit 7
bits 6-0

Row Time
bits 7-4

bit 3
bit 2

bit 1

bit 0

Window Size
unused
contains number of scan lines (minus 1)
in display. For a 128 line (16
character) display, value should be 127.

Control
Value in register determines the time to
update one row in the display. The
combination of the value in this
register and the vertical window size
register determines the refresh rate of
the display. The contents of bits 7-4
make up a constant named RT. The system
LFO clock (32768 Hz) is divided by RT to
obtain a start of new row clock. The
value of RT is determined as follows:
Bit 7 is the most significant bit, bit 5
is the least significant bit. If bit 4
is set, 1/2 will be added to the value
of Bits 7-5 to determine the value of
RT. RT is set to 3.5 after a hard
reset.
unused

=1 Display is active and not blanked.
=0 Display is active but blanked.
=1 Display refresh is on.
=0 Display refresh is off.
=0 alpha mode
=1 graphics mode

HOPPER ERS 1.01

6.2 System Memory Interface

memory. This
a dedicated DMA

bus, drive the
refresh data, and

The display memory is physically located in system
section of the display controller acts like
controller in that it will request the system
system address bus, buffer one row of display
then release the bus.

At the beginning of each row time, the display controller will
request the system bus from the cpu if necessary. In graphics
mode this occurs every row. In alpha mode, this is only necessary
every 8 rows since the data represents ascii characters which are
implemented in an 8-row high font. After the bus is granted, the
display controller will begin accessing system memory and filling
the refresh buffer until the horizontal window size is reached.
The display controller will then release the bus back to the cpu.

At this time, the data will be read from the refresh buffer and
'_./ shifted to the external column drivers.

The major function of the system memory interface is to generate
the system memory addresses from which the display data is
obtained. For the first row in the display, the first address is
loaded from the window start address register. This address is
incremented for each succesive memory access until the horizontal
window size is reached. The window row size offset is then added
to the current adcress to obtain the first address for the next
row. Each of the remaining rows in the display are refreshed in
the same manner.

In order to keep the degradation of system performance down, the
system memory interface runs at the HFO clock frequency. The
memory access time is two HFO clock cycles.

6.2.1 Display Memory Organization

There are 4K bytes of system memory reserved for display memory.
The display memory is organized differently depending on whether
the display is in alpha or graphics mode.

In alpha mode, the memory is organized into character
containing two bytes each. Byte 0 of each cell contains an
character code and byte 1 contains attribute information for
character. The character cells are arranged in rows of 80
(160 bytes) each with a total of 25 rows.

cells
8 bit
that

cells

In graphics mode, each bit in display memory corresponds to a

HOPPER ERS 1.01 Page 37

pixel on the display. The first byte corresponds to the 8 pixels
on the left side of the first row of the display. The next byte
corresponds to the next 8 pixels on the first row, etc. within a
byte, bit 7 maps to the left most pixel and bit 0 maps to the
right most pixel.

6.3 Display Data Generation

Once the display refresh buffer is filled, the display data must
be generated from the buffer.

In alpha mode, the first byte of data in a word is used to address
a character rom containing 256 characters in a 6x8 character cell.
The output of the character rom is the 6 bits of data used to
build the current row of the addressed character. The second
byte in the buffer contains attribute information and modifies the
character as follows:

Page 38 HOPPER ERS 1.01

BIT:7-0

bOOOxOOO

bOOOX001

bOOOx111

b111xOOO

b:

x:

DESCRIPTION

No display

Underline character

Normal characters.

Inverse video characters.

If set, character will blink.

Intensity bit, ignored.

The character blink (and cursor blink) rate is set by the VSCLK
(Very Slow CLK) signal from the timer block. The blink rate is
not software adjustable.

'C In graphics mode, the data in the refresh buffer is shifted out to
the column pads with no modification. No attributes of any kind
are supported.

6.4 Cursor Generation

In alpha mode, the cursor is controlled and generated in the same
way that the 6845 CRTC generates a cursor. The cursor address is
contained .. in two registers. This address corresponds to the
character location where the cursor will appear. The starting
scan line for the cursor can be adjusted by writing to the cursor
start register. Since the character cell is 8 scan lines deep,
this register can contain a value from 0 to 7. The 6845 also has
a register to set the cursor end. In the HOPPER display
controller, the cursor end is always set in hardware to line 7 or
the bottom line in the character cell.

Cursor blink is enabled/disabled by two bits in the cursor start
register as described above.

6.5 Display Blank Mode

The display blank bit in HOPPER at address D305h goes directly to
a pad on HOPPER. In the 95LX system, it is being used to provide
a way to blank the display by turning off the external display
drivers. The display controller is still active and refreshing the
display. The purpose of this bit is to provide a way to power-up

HOPPER ERS 1.01 Page 39

and power-down the display module while preventing any high­
voltage. dc bias on the LCD. To power-up the module, software
should wait at least 1ms after turning on the DON bit before
enabling this bit. On power-down, the display should be blanked
at least 1ms before the DON bit is cleared.

This mode can also be used to save some power during data
communications or other activities where the CPU must be powered
on but the display need not be visible to the user.

Page 40 HOPPER ERS 1.01

III
CHAPTER 7

KEYBOARD CONTROL

III

The HOPPER IC contains a keyboard control block. This block along
with the proper software control will enable a PC compatible
keyboard to be implemented. The keyboard consists of a 16 by 8
matrix of output lines and input lines. When a key is depressed,
one input line is shorted to one output line. To sense this
connection the output line must be driven high and the input line
pulled low by a weak pull down. The connected input line will
then be pulled high by the output line. All control of keyboard
scans is done by software.

7.1 Keyboard Hardware

The keyboard hardware contained in the HOPPER chip consists of an
input register, output register, and precharge control circuit.
Each bit in the output register controls one output keyboard line.
When this bit is set to one, the keyboard line must be pulled high
by a strong pullup. If a zero output is desired, the keyboard
line must first be precharged low and then hele there by a weak
pulldown. The pulldown must be weak to limit the current that can
occur if- two output lines become shorted together. This could
happen if two keys on the same input line are pressed at the same
time. The input lines must first be precharged low by the strong
pulldown and then held there by the pulldown resistor. If a key
is pressed, the line will then be pulled high by the corresponding
output line. The weak pulldown in the input pad can be disable by
setting 00 to a 1 for test purposes.

7.2 Software Control

The output register bits are located at register addresses
E30Eh(low order 8 bits) and E30Fh(high order 8 bits). The input
register bits are located at register address E30Eh. The status
of the ON k~y can be read as bit 0 of register address F30Fh.

A keyboard pre charge will occur anytime the ouput register is
written. This precharge lasts until ended by a write to address
E30Dh.

When all keys are up, the keyboard should be placed in standby

HOPPER ERS 1.01 Page 41

--mode. To do this, software should write the appropriate value,
normally all ones, to the output register; wait an appropriate
amount of time for precharge; then write any value to address
E30Dh to end precharge. - Once -in standby mode, an interrupt will
occur when a key is pressed.

After a key is pressed, a keyboard scan must be executed. To do
this, each output bit must be driven high one at a time and the
state of the input register checked at each bit. A software
keyboard interrupt (09h) must then be generated after the proper
keycode has been placed in the keycode register (address 60h).
The keyboard must be continually scanned at a determined interval
until all keys have been released. This must be done to determine
if more keys have been depressed or if a key has been released.
If a key has been pressed or released, a proper interrupt must be
generated as before. After all keys are released, the keyboard
again can be placed in standby mode.

Keyboard interrupts must be enabled by setting bit 6 of 061h in . -',
the PPI.

7.3 Hardware Reset

The keyboard hardware will also enable a hardware reset of the
system. To initiate a hardware reset, three input lines, KBI[6],
KBI[7], and ON, must be pulled high at the same time. These three
lines will be debounced in hardware to prevent stray resets from
occuring. - Software will have no control over this feature,
although they will be able to read these keys seperately. When
these keys are all pressed simultaneously, the machine will be
reset.

Page 42 HOPPER ERS 1.01

ill
CHAPTER 8

CARD DETECTION
III

The Card Detect Circuit (CDR block) uses the CDT[O:l] pins to

sample the write protect outputs of plug-in cards. It can

determine if a card is plugged in and if it is writable. A low

level on the CDT pins indicates that a card is present and

writable, a high indicates that a card is present and write

protected, and a float indicates that no card is present. When

enabled the card detect circuit cycles through floating the CTD

pads, passively driving them lOW, and passively driving them high

to determine the states of the pads.

8.1 Card Detect Register

A one byte I/O register located AT E304h controls the circuit and

shows its status:

Bit

[0]

[1]

[2]

[3]

Reset
Value

x

HOPPER ERS 1.01

R/W
Mode

W

W

W

Description

RCDT - Run Card Detect. If RCDT and ECDT
are set then the card detect logic runs
continuously, updating its status every
122uS. This mode is intended to be used
while the CPU is running. In this mode
the CDT pads are fighting with a cards
write protect output 30uS every 122uS.

ECDT - Enable Card detect. If only ECDT
is set then the card detect logic runs
updating its status every 1mS. This mode
is inteded to be used in light sleep. In
this mode the CDT pads are fighting with
a cards write protect output no more then
30uS every millisecond.

RSTMP - Reset Module Pulled. Writing a
one to this bit will reset the module
pulled condition. This should be done
each time a module pulled interrupt
occurs.

unused

Page 43

[4] 0 R POW - High when port 0 is writable. When
low all writes to NCE[4] are disabled.

[5] 0 R P1W - High when port 1 is writable. When
low all writes to NCE[5] are disabled.

[6] 0 R POC High when port 0 has a card
inserted.

[7] 0 R P1C High when port 1 has a card
inserted.

The moduled pulled interrupt status bit, MPI, is located in the
interrupt status register. When enabled, the card detect logic
will set this bit and cause an IRQ2 interrupt when it senses any
change in the card status (i.e. any change in the states of POW,
P1W, POC, or P1C bits). Since this interrupt is shared with other
sections, the MPI bit must be read to determine if the card detect
was the source of the interrupt. The MPI bit must be cleared
before another interrupt will occur. ~.

8.2 Special Considerations

1. The status bits (P1C etc) are initialized to zero.
Therefore, a spurious module pulled interrupt will be
generated if a card is already plugged in when the circuit is
first enabled.

2. When the system enters deep sleep power is removed from the
card ports. This will cause the the CDT pad to transition
from pulled high to pulled low if connected to a card that is
write protected. A spurious interrupt will occur if the card
detect circuit is enabled.

3. If a single card contains both RAM and ROM, the RAM chip
enable should be tied to the pin normally used for card
enable. Thus writes can be disabled to the RAM. However,
since an auxillary chip enable pin must be used for the ROM
chip enable, ROM writes must be disabled using the write
enable bit for the corresponding chip enable.

\

Page 44 HOPPER ERS 1.01

ill
CHAPTER 9

SERIAL COMMUNICATION

Iii
The serial communication portion of the HOPPER IC contains both
wired RS232 and IR transmit and receive capabilities. The RS232
UART ports use an 8250 cell to control transmit and receive. The
IRO output port can be used for two types of communication, IR
transmit and REDEYE. REDEYE is used to transmit data to an
infrared REDEYE printer port. The IR communications portion uses
both the IRO output to transmit and the IRI input pin to receive
data. These ports are used for wireless communication using
infrared light. The 8250 and the IR ports can be used
simultaneously to implement a wireless infrared UART mode.

9.1 UART

The serial UART block is implemented using an 8250 compatible
macro cell. A 1.8 MHz clock will be supplied for operation of
this block. The UART is addressed from 3F8h to 3FFh. RS232 drive
and receive circuits are be provided off chip.

The 1.8MHz UART clock is available in operating and light sleep
modes. The UART clock should be disabled to save power when the
UART is not in use. This is done by setting the 8250 baud rate
divisor to zero.

9.2 IR Communication

The IR communication block enables the HOPPER IC to have wireless
communication using an external infrared LED and IR receive
circuit. The IR communication block supports 5 seperate
communication formats. These formats are REDEYE, Software
controlled communication, Modulated communication, IR UART with
both single pulse and multiple pulse communication. To control
the IR transmission of these formats, the hardware uses 2 control
registers, the IRCNT register and the IRFMAT register. The IRFMAT
register at I/O register address E30Ah contains control bits that
choose which format is chosen for IR communication. These bits
are as follows:

HOPPER ERS 1.01 Page 45

Bit Name

o RED

1 MDLTE

2 IRURT

3 MDSEL

4 PMOD

5 LBF

Page 46

Description

This bit when set activates REDEYE transmit
mode. It turns on the REDEYE transmit
hardware and sets it to a state where it is
waiting for input from software.

This bit when set
communication mode.
modulation source and
the IRCNT register to
modulated waveform.

activates Modulated
It turns on the

allows the MDLD bit in
control the output of a

This bit when set activates IR UART
communication mode. This bit disconnects the
8250 from the RS232 pins and connects it to
the IR communication block. Software after
setting the PMOD and MDSEL bits in this
register, just transmits and receives using
8250 as though it were connected to the RS232
ports.

This bit is used to select the modulation
source for both IR UART mode and Modulation
communication mode. If this bit is 0, the
32kHz low frequency clock is chosen as the
modulation source. If it is set to 1, th
8250 baud rate generator 16x clock is used
for the modulation source. This allows the
modulation source to be set a 38kHz to be
remote control compatible.

This bit is used in IR UART mode to select
between single pulse transmission and
multiple pulse transmittion. If it is set to
0, a single pulse of duration equal to a half
cycle time of the modulation source will be
transmitted for a 0 output bit. If it is set
to 1, a pulse train of the modulation
frequency will be used to transmit a O.

Led Buffer Full. This bit is used in REDEYE
mode to indicate that the contents of the LBR
bit have not yet been transmitted and should
not be written at this time. Writing to the
LBR automatically sets this bit. This bit is
cleared when the LBR is transferred to the
REDEYE formatter.

HOPPER ERS 1.01

6 ELBE Enable Interrupt on LBR bit Empty (LBF
clear) . If this bit is set and LBF is clear,
an IR interrupt will occur.

7 UNREG This bit is used to test the HPIRO pad.
setting it high disables regulation of the
pad current.

The IRCNT register at I/O register address E30Bh
that are used to transmit a bit or waveform out
The IRCNT register also allows software to receive
of the formats that can be transmitted. The
follows:

contains bits
on the IRO pad.
IR data in any
contents are as

Bit Name

o LED

1 LBR

2 MOLD

5 IRE

6 EIRI

7 IRI

Description

This bit is used to turn on the IR LED
connected to the HPIRO pad. It is used for
software controlled IR transmission. When it
is set to a 1, the IR LED is turned on.

This bit contains the half-bit to be
transmitted in REDEYE format. write a one to
send an "on" half-bit or write a zero to send
an "off" half-bit.

This bit is used for software
serial waveform to be modulated
modulation source. This allows
with remote control format.

to output a
by the chosen
compatibility

IR Event. This bit is set by a logic low
voltage on the IRI pin. It is set to
indicate that an IR event has occurred. Once
set, software must reset this bit.

Enable IR interrupt. An IR interrupt will
occur if this bit and the IRE bit are both
set.

IR Input pin. This bit allows software to
monitor the state of the IRI pin. It is a
read only bit.

Using the last three bits, software can receive each of the
transmission formats described later. Also, if IR UART mode is
set, software can receive data using the 8250 the same as it would
in RS232 mode.

HOPPER ERS 1.01 Page 47

9.2.1 REDEYE format

The REDEYE portion consists of the RED, LBF, and ELBE bits in the
IRFMAT register, the LBR bit in the IReNT register, the REDEYE
formatter, and the IRO LED pin. The LED pin has an open drain
device and thus may be driven low or tristated only. When driven
low the drain current is somewhat regulated by a feedback circuit.
The LBF and LBR bits form a double buffered handshake mechanism
that allow automatic REDEYE half-bit formatting and pacing. An
interrupt mechanism is provided to indicate completion of each
half-bit.

The REDEYE printer requires 15-bit frames of a precise format.
Each bit of the frame consists of two half-bits. The duration of
each half-bit is 14 cycles of the 32768 kHz crystal oscillator.
The half-bit is considered to be "on" if the LED is pulsed 6-8
times (out of the 14 possible) at the 32768 kHz rate. HOPPER's
REDEYE port uses 8 pulses. The format of a complete REDEYE frame
is shown below:

start-bits
Hamming-bits
Data-bits

Stop-~its

Three half-bits "on-on-on".
Four pairs of half-bits.
Eight pairs of half-bits. Each of the
four hamming and eight data bits are
encoded with two half-bits. A "one" data
or hamming bit is encoded by "on-off" and
a zero is encoded by "off-on".
Three half-bits "off-off-off". This is
the m~n~mum idle time required between
frames.

The ELBE, RED, LBF, and LBR bits are cleared at reset. The REDEYE
port also uses a formatter which is turned off whenever RED is
cleared. Software initiates a half-bit transmission by writing a
bit to LBR. This automatically sets the LBF flags in IRFMAT
register and starts the state machine. The state machine
transfers the bit from LBR into the formatter and clears LBF. If
ELBE is set, this will cause an IR interrupt indicating that it is
safe to write the next half-bit to LBR. The state machine then
times the half-bit for 14 counts of the 32768 Hz crystal
oscillator. If the bit in the formatter is a one, the LED is
pulsed for the first eight of the 14 counts. Otherwise the LED is
left off. If after the 14 counts LBF is clear, the state machine
will return to its idle state of waiting for LBF. Otherwise it
will immediately transfer the next half-bit and start timing it.

When LBF is clear and ELBE is set, an IR interrupt will occur.
When the state machine clears LBF, software has 13 counts of the
oscillator to write the next bit to LBR. Otherwise the length of
the half-bits will not be correct.

Page 48 HOPPER ERS 1.01

Through-put:
32768 /14 = 2340.6 baud (half-bits/sec)
32768 /28 = 1170.3 bps (bits/sec)

REDEYE Frame Length:
1.5 start + 4 Hamming + 8 data + 1.5 stop = 15 bits

REDEYE Thru-put:
1170.3 /15 = 78.02 cps

9.2.2 Software Controlled Mode

The LED bit in IRCNT register is provided for
IR formats. This bit is OR-ed with the
formatter, and the other IR format outputs.
formats may not be used simultaneously.

software generated
output of the REDEYE
Therefore, two IR

Due to LED current limitations, the LED output driver duty cycle
must be limited to a time average of 29%. The duty cycle is
automatically limited to 1/2 x 8/14 or 28.6% by the REDEYE
formatter. The format of a full REDEYE frame yields a duty-cycle
of only 14.3%. If a different format is used (by using the LED
bit) software must limit the duty-cycle.

9.2.3 Modulated Mode

The MOL") bit in the IRCNT register can be used by software to
output any custom modulated waveform desired. To output a
waveform,-software must first set the MDLTE bit in the IRFMAT
register and choose the modulation source using the MOSEL bit. If
the 8250 baud rate 16x clock is chosen, its frequency must be set
to the desired modulation frequency. Once this has been
accomplished, software can set and clear the MDLD bit at desired
to emulate the envelope of the output waveform. Whenever MDLD is
one, pulses will be output of a 50% duty cycle for the given
modulation source. As before, care must be taken not to exceed
the 29% communication duty cycle.

9.2.4 IR UART Modes

The 8250 may be used for half duplex IR communication of limited
baud rate. To use this mode the IRURT bit must be set in the
IRFMAT register. When this bit is set, the 8250 is disconnected
from the RS232 ports and connected to the IR communication block.
When using this mode, software must first choose the transmission
format. The two possible formats are single pulse mode and
multiple pulse mode. If the PMOD bit is 0, single pulse mode is
chosen. In this mode, a single pulse of one half cycle of the

HOPPER ERS 1.01 Page 49

modulation source is transmitted for a o. In multiple pulse mode,
a train of pulses of the modulation source is transmitted for a O.
In both modes, a 1 is transmitted as no pulses. As in Modulated
mode, the modulation source again must be chosen. If the baud
rate of 2400 baud is chosen, choosing the 8250 16x clock will give
you a modulation rate of 38 kHz.

After this is set up, software can use the 8250 to communicate as
though it were still connected to the RS232 ports.

Page 50 HOPPER ERS 1.01

ill
CHAPTER 10

INTERRUPT CONTROL

III

The HOPPER interrupt control .circuitry includes a Intel 8259
compatible Programmable Interrupt Controller (PIC) and additional
support circuitry. The support circuitry is located in the PWR
block and provides wakeup timing and interrupt enable bits. For
additional information on these features please see the chapter
entitled' "POWER MANAGEMENT".

10.1 8259 Interrupt Sources

The 8259 PIC supports 8 vectored priority interrupts.
interrupt sources are defined as follows:

These

INPUT INT

IRQO 08h

IRQ1 09h

IRQ2 OAh

IRQ3 OBh

IRQ 4 OCh

IRQ5 ODh

IRQ6 OEh

IRQ7 OFh

HOPPER ERS 1.01

SOURCE

PIT Timer 0 (same as PC).

Unused (PC Keyboard). INT09h calls are made
by the BIOS for PC compatibility.

Timer 1, display cursor update request, low
voltage RX pad input (PC reserved).

Keyboard and Touch Panel (PC COM2).

UART (PC COM1).

IR input (XT fixed disk).

External XINT pin (PC diskette).

Real Time Clock timer underflow (PC LPT1).
The 8259 will default to this interrupt
vector if the signal requesting interrupt
has gone away before the interrupt
acknowledge cycle. These spurious
interrupts should be handled gracefully.

Page 51

10.2 Non-Maskable Interrupt

Low Power Interrupt (LPI) and Module Pulled Interrupt eMPI) will
cause a CPU NMI to occur. The NMI service code must do a deep
sleep shutdown immediately if the LPI bit of the Interrupt Source
Register is set. If the MPI bit is set, it should be immediately
cleared to re-enable NMls. This is necessary since-the NMI occurs
on a rising edge.

10.3 Interrupt Source Register

The interrupt source register (ISR) is provided in order to allow
software to individually identify and acknowledge interrupts that
are shared among several sources.

The individual bits of the ISR will be set when
requested from its corresponding interrupt
interrupt will not occur from this source until
cleared by writing a zero.

an interrupt is
source. Another

the bit has been

Writing a one to an ISR bit will have no effect. This is an
important feature. To avoid missing interrupts when writing to
the ISR, all bits that are not to be affected should be written to
a one.

The interrupt source register is physically located in the PWR
block and is mapped at I/O address E303h.

Reset R/W
Bit Value Mode Description

[0] x unused

[1] 0 R/W TIl TIMER 1 interrupt.

[2] 0 R/W LPI Low power interrupt.

[3] 0 R/W MPI Module pulled interrupt.

[4] 0 R/W DCI Display cursor update request.

[5] 0 R/W RXI Low voltage RX pad interrupt.

[6] 0 R/W KBI Keyboard service request.

[7] 0 R/W TPI Touch Panel interrupt.

Page 52 HOPPER ERS 1.01

"

10.4 Wake-Ups

All interrupt sources that are active in deep sleep or light sleep
can cause the CPU to wake up to service the interrupt. This
feature is discussed in the chapter entitled "POWER MANAGEMENT".

10.5 Enabling Interrupts

.Each interrupt source has a separate enable bit.
discussed in the chapter entitled "POWER MANAGEMENT".

10.6 Special Considerations

This is

1. The XINT pad can be enabled to cause a wake-up. However
this signal must still be high when the CPU ~s up and
running (50ms hardware delay plus software delay) 1n order
to be recognized. This constraint actually applies to all
non-shared interrupts, IRQ4 through IRQ7, since. they are not
latched by the ISR.

HOPPER ERS 1.01 Page 53

II

The HOPPER
compatible
counters.

11.1 TIMERO

CHAPTER 11
PROGRAMMABLE INTERVAL TIMER

II

Programable Interval Timer (PIT) is completely
with the Intel 8254. It contains 3 independent 16-bit

The PC dedicates TIMERO to generating time of day interrupts every
54.9 milliseconds. The HOPPER implimentation of TIMERO is the
same as on the PC.

11.2 TIMER1

SIGNAL

CLKO
GATE 0
OUTO

CONNECTION

1.193182MHz (nominal)
VDD (always enabled)
IRQO

The PC dedicates TIMER1 to generating DMA requests for dynamic RAM
refresh. This is not needed in a HOPPER system. In the HOPPER
system TIMER1 is a general purpose timer. It's output is or'ed
with other sources to cause an IRQ2 interrupt. It is intended to
be used for generating keyscan interrupts (see the chapter
entitled KEYBOARD).

Page 54

SIGNAL

CLK1
GATE 1
OUT1

CONNECTION

1.193182MHz (nominal)
VDD (always enabled)
causes IRQ2 interrupt

HOPPER ERS 1.01

-_ .. '

11.3 TIMER2

The HOPPER connection of TIMER2 is the same as on the pc.

SIGNAL

CLK2
GATE 2
OUT2

CONNECTION

1.193182MHz (nominal)
Bit-o of port 61h
Tone generation circuit and bit-5
of port 62h

11.4 Timer operation in Light Sleep

In order to save power, the 1. 19MHz timer clock is normally
stopped anytime the system is in light sleep. This can be avoided
by setting bit 3 of E300h, LST. The timer clock does not operate
in deep sleep.

HOPPER ERS 1.01 Page 55

III
CHAPTER 12

REAL TIME CLOCK TIMER

III

12.1 Functional Description

The REAL TIME CLOCK (RTC) TIMER consists of a 16 bit
read/writeable counter that is decremented once per second. The
HOPPER 32.768KHz crystal oscillator generates frequency is divided
by a 15 bit pre-divider to produce the 1Hz timer clock. This
clock is accurate to approximately 2 minutes per month.

The RTC timer is always enabled to run. A reset will clear the
timer value and pre-divider to all zeros.

A level 7 interrupt (INT OFh) will occur anytime the timer's most '"
significant bit (MSB) is a one. This will occur when the timer
underflows. A wakeup will occur prior to the interrupt if the
system is in light or deep sleep. The timer will continue to
decrement after underflow. The maximum time that can be set is
2A 15 seconds or 9.1 hours.

12.2 Special Considerations

Special care is taken in the circuit design to prevent timer
values from being corrupted by a decrement occurring during reads
and writes. Even so, it is recommended that all read values be
verified against a second read, and all write values be verified
by a read.

12.3 Pre-DividerOutputs

The following signals are taken off of the timer pre-divider:

1. F16KHZ - Interrupt timing in IRCOM, KBD, and TOUCH. D/A
sample output control in TONE.

2. F1KHZ - State timing in CDR (Card Detect) •

3. F128HZ - Power-up delay in PWR and deb ounce in KBD.

4. F16HZ - Amp power down control in TONE

5. F1HZ Cursor blink in DISP.

Page 56 HOPPER ERS 1.01

CHAPTER 13
PC COMPATABLE IIO REGISTERS

The I/O Register block
registers (8255 PPI).

contains 3-bytes of PC compatab1e
These registers are defined as follows:

I/O

PORT BIT(S) MODE DESCRIPTION

60h 0-7

0-7

61h o

1

2

3

4-5

6

7

62h 0-3

0-3

4

5

6-7

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R

R

R

HOPPER ERS 1.01

If port 61h bit7=0 :
keyboard scan code
KEYBOARD) •

Scratch location for
(see chapter entitled

If port 61h bit7=1 : Scratch location for SW1

configuration switch settings.

TIMER 2 gate.

Speaker data (see chapter entitled
GENERATOR) .

Ignored, always reads o.

TONE

Select source/destination for port 62h bits

0-3

Ignored, always read o.

o = disable keyboard

Select source/destination for port 60h

If port 61 bit3=0: Scratch location for 4
MSBs of SW2 switch settings.

If port 61 bit3=1: Scratch location for 4

LSBs of SW2 switch settings.

Unused (reads 0).

TIMER 2 output.

Unused (read 0).

Page 57

III

CHAPTER 14
CRYSTAL OSCILLATORS

III

The HOPPER chip includes a 2 crystal oscillators. Each require a
pair of 20pF loading capaciters as well as a quartz crystal of the
appropriate frequency.

14.1 Low Frequency Oscillator

The low frequency oscillator operates at 32.768KHz and is used to
generate timing for the real time clock, the card detect circuit,
and the display controller. The low frequency oscillator can not
be disabled.

14.2 High Frequency Oscillator

The high frequency oscillator is used to generate system timing
for the CPU and peripherals. It will accept either a 5.37MHz or a
10.74MHz quartz crystal. The high frequency oscillator is active
in light sleep and in operating mode.

NOTE: Operation with a 10.74MHz crystal is not supported at this
time.

Page 58 HOPPER ERS 1.01

III
CHAPTER 15

CLOCK GENERATOR

III

The Clock Generator takes as its inputs the output of the High
Frequency Oscillator, HFO, and also the speed control bit, SPD.
It outputs several clock frequencies that are used by different
portions of the HOPPER chip. The following is a block diagram of
the clock generator circuitry.

Figure 15.1. Clock Generator Block Diagram

Output 2 puls.s 1.193MHz TCLk
out of 9 to TlnERS,2

Output 11 puis., 1.8 .. 6MHz UCLK
out of 32 t.o UART

)-......-______ --"-5 0 3=6'=~""'HZ~ ~~o D f. plo ••
Touch, Ton.

SPO --------'

Signal Where Used Hopper Freq PC Freq Error

CCLK CPU, DISPlay, 5.369318MHz / 4.7727MHz +12.5% /
Bus InterFace 10.738636MHz +125%

TCLK TIMERO,2 1. 193182MHz 1.193182MHz 0%

UCLK UART 1.845703MHz 1.8432MHz +0.14%

HFO DISPlay, TOUCH, 5.369318MHz n/a
TONE

LFO RTC 32.768KHz n/a

HOPPER ERS 1.01 Page 59

The HOPPER chip will accept either a 5.369318MHz (5.37MHz) or a

10.738636MHz (10.74MHz) crystal. The SPO bit must be initialized

to a "zero" for a 5.37MHz crystal or a "one" for a 10. 74MHz

crystal. This initialization must occur before using the display,

timers, UART, touch, or tone circuits.

NOTE: Operation with a 10.74MHz crystal is not-supported at this

time.

Page 60 HOPPER ERS 1.01

II
CHAPTER 16

TOUCH PANEL CONTROLLER
II

The HOPPER IC includes an analog touch panel interface that
consists 'of' an AjD converter and touch panel control registers.
In order to provide a simple and flexible circuit, the burden of
controlling the touch panel and the AjD converter is placed on
software.

The touch panel contr~l circuit consists of 2 resistive sheets of
material. The x-ax~s sheet is connected on the left and right
ends and the y-axis sheet is connected on the top and bottom.
These 4 connections are wired to the TPL[O:l] and TPH[O:l] pads of
the HOPPER IC. The x-axis position of a finger or stylus that is

.. ,,' touching the panel is determined by driving one side of the x-axis
sheet to VDD and the other to ground. Both sides of the y-axis
sheet are precharged to ground and then released. The voltage
that appears on the y-axis sheet is measured using the AjD
converter and corresponds to the x-axis position of the touch.
The y-axis position is determined in a similar manner by driving
the y-axis and using the x-axis to sense voltage.

16.1 The-AjD Converter Interface (ADCONT)

Software is given control of the AjD converter through the use of
the control bits in the ADCONT register at IjO address E307h. The
contents of the register are as follows:

Signal

CHSO,1,2
PWUP
START
STA

Bits

0,1,2
3
4
5

RjW
RjW

R

Type Description

RjW Analog Input Channel Select
Power up the AjD
Start an AjD conversion
AjD converter status

Before using the AjD, it should be turned on by setting the PWUP
bit to 1. Using the CHSO-2 bits, software can choose between the
8 possible analog input channels to do the AjD conversion on. To
start an AjD conversion, the START bit must be set. During the
first twenty clock cycles after the START bit is set, the AjD does
a sample and hold of the chosen input channel. The START bit
should be cleared previously when the channel is selected. The
STA bit will be set when the conversion is finished. The
conversion including the sample and hold takes a total of 130

HOPPER ERS 1.01 Page 61

clock cycles. The digital output value can then be read at I/O
address E306h. When the A/D is not being used, it should be
powered down by resetting the PWUP bit to o. When the system is
reset, the A/D will also be reset and all of the bits in the
ADCONT register set to O.

The analog input channels are as follows:

Signal

BAT[O]
BAT[l]
BAT[2]
BAT[3]
TPL[O]
TPH[O]
TPL[l]
TPH[l]

Channel

o
1
2
3
4
5
6
7

Description

System Battery Voltage
Backup Battery Voltage
Card Battery Voltage
Card 2 Battery Voltage
Touch pad X-axis low side
Touch pad X-axis high side
Touch pad Y-axis low side
Touch pad Y-axis high side

16.2 Touch Panel Control (TPCONT)

The touch panel control circuit has 6 possible modes. They are:
1) off; 2) standby; 3) precharge x-axis; 4) precharge y-axis; 5)
measure x-axis; and 6) measure y-axis. These modes are completely
under software control and are set by the TPCONT register at I/O
address E308h. The individual bits of this register are defined as
follows:

Bit Name

o STDBY

Page 62

Description

Touch panel standby mode. When this bit
is set the entire touch panel is treated
as a single switch. In this mode the
TUCH status bit will go high if the
panel is touched. This will also cause
an interrupt if the ETINT bit is set.
This is a zero-power state as long as
the panel is not being touched. The
panel should be precharged by setting
both the STDBY bit and the TPPC bit for
several microseconds before entering
standby mode. The SELX bit has no
effect on this mode.

HOPPER ERS 1.01

1

2

3

4

5

TPPC

SELX

PULLO

ETINT

TUCH

Touch panel precharge mode. If the
STDBY bit is not set, the axis chosen to
be measured by the SELX bit is connected
from VDD to Ground. The panel must be
precharged for several microseconds
before making an AID measurement. In
STDBY mode, this bit pulls one axis high
and the other low for precharge.

Select X bit. The x-axis is selected
for measurement if this bit is set. The
y-axis is selected if it is clear.

This bit allows the axis opposite that
chosen for measurement to be pulled to
ground. This could be used to decide if
a reading is valid, ie. a (0,0) reading
is a no touch reading. This bit only
has effect in an active precharge mode.

Enable Touch Pad Interrupt. If this bit
is set and the touch pad is in Standby
mode, an interrupt will occur if the pad
is touched.

Read Only. Indicates that the pad has
been touched in Standby mode.

When the pad is not in use it should be shut down by writing

XXXXOO to the TPCONT register. Before taking a touch pad reading,

the SELX bit must be set to the appropriate value for the axis

that is desired. The Touch pad should then be precharged for a

predetermined amount of time by setting the TPPC bit to one. The

ADCONT register must also be set up to read the appropriate analog

input channel by setting the CHS bits. After the precharge time

has passed, the START bit in the ADCONT register must be set to

start the AID conversion. Twenty clock cycles after the START bit

is set and the AID is finished with its sample and hold, the TPPC

is automatically cleared shutting off the Touch pad. This is

accomplish with the use of a 5-bit counter in the TPCONT register

and allows the AID time for the sample and hold portion of the

conversion process.

When not actively reading the Touch pad, software can wait for the

pad to be touched by placing the pad in standby mode. Before

entering Standby mode, a Standby precharge must first occur. To

do this, software must set both the STDBY and TPPC bits in the

TPCONT register. After precharging for a given amount of time,

the TPPC bit is cleared and the pad is now in standby mode. When

HOPPER ERS 1.01 Page 63

the pad is touched, the TUCH bit will be set to a one, and if the
ETINT bit is set, a Touch pad interrupt will occur. Software can
then take a Touch pad reading.

Warning! - Because the Touchpad uses a considerable amount of
power, it should be shut off when not in use.

Page 64 HOPPER ERS 1.01

III

17.1 Hardware Description

CHAPTER 17
TONE GENERATOR

III

The tone block on the "HOPPER IC consists of digital control
circuits and registers to control a D/A converter and a
differential output amplifier. This block allows the HOPPER chip
to output custom sounds and speech using an external piezo
speaker. To output a sound waveform, software must write a series
of digital values representing the waveform to the D/A. The D/A
converts the digital values to analog voltages at a conversion
rate of 16kHz. This allows the waveforms to contain frequencies
up to 8kHz which is satisfactory for speech. After the D/A has
used a value it signals software that it is ready for another
value by setting the DAMT bit. The output voltage is converted to
a differential voltage by the output amplifier and output to the
external piezo. The D/A converter and output amplifier can be
powered down when not in use by resetting the PWRDN bit to save on
current consumption. The hardware will detect a digital beep to
power up the amplifier and will power it down after the beep
finishes.

There "is also a digitally produced sound signal that is
multiplexed with the analog speaker outputs. This will be used as
a backup plan in case the analog portion of hopper is unusable.
This signal will be the output of counter 2 ORed with port B1.
The signal to be output to the piezo is selected by default. If
the D/A converter is powered up by setting the PWRDN bit, the
analog waveform is chosen. The volume of the digital signal can
be controlled using the DVAL bits in the TCCONT register. These
two bits allow 4 levels of volume control for the digital output
signals, 3 being the loudest. The analog waveform can be
controlled by scaling the analog values that are written to the
D/A buffer.

The DAMT and PWRDN are located in the TCCONT register at I/O
address E309h. The DVAL bits to control the digital volume are
also located in this register as well as the CVAL bits" for the
CVGEN block. The register contents are as follows:

HOPPER ERS 1.01 Page 65

Name Bit Description

DAMT 0
PWRDN 1
DVAL[0:1]2,3
CVAL[0:3]4-7

set to 1 when D/A Buffer is empty, read only
Powers down the D/A and analog buffer when reset to 0
Volume control for the digital tone signal
Voltage selector value for CVGEN

17.2 Software Control

During tone output generation, software must write one sample
value to the D/A buffer register every 61us. This buffer is
located at I/O address E305h. This timing restriction may require
that all values be stored in RAM beforehand and just rewritten to
the D/A buffer during tone output. The DAMT bit will be set to 1
when the hardware is ready for another sample value and otherwise
be set to O. Software must poll the DAMT bit before it writes to ""
the D/A buffer.

Before outputing an analog waveform software should write a 7Fh to
the D/A buffer, a differential 0, and then set the PWRDN bit to
turn the D/A on. Digital sample values for the analog signal can
then be written to the D/A. A 1 second sound requires 16384 bytes
to be written to the D/A buffer sequentially. At the end of each
tone, the PWRDN bit must be reset to turn off the D/A converter.

Page 66 HOPPER ERS 1.01

III
CHAPTER 18

POWER MANAGEMENT

The power management circuitry controls
the following system modes:

EXTERNAL
Mode SUPPLY CPU DISPLAY
-------------- ------- ------- -------
Static OFF OFF
Deep Sleep Low Power OFF OFF
Light Sleep Hi Power OFF ON
Operating Hi Power ON ON
Backup Backup OFF OFF

18.1 Static Test Condition

III

the transitions between

TIMER HFO LFO
------- ------- -------

OFF OFF OFF
ON OFF ON
ON ON ON
ON ON ON
OFF OFF ON

The static test condition is entered only during test. This mode
in used to measure static leakage current. In this mode the part
has been reset and no clocks are being driven. The low frequency
ocsillator (LFO) is held inactive externally.

18.2 Deep Sleep

Deep sleep is entered from operating mode when software sets the
SHT bit with the DON bit cleared. The DON bit is described in the
chapter entitled "HOPPER DISPLAY CONTROLLER". In deep sleep the
SOFF pad is driven high causing the external supply to operate in
low power mode. The system will exit deep sleep and begin
operating when an enabled interrupt is received from either: 1)
the ON key; 2) Keyboard input; 3) RTC underflow; 4) the external
interrupt pad, XINT, being pulled high; or 5) a rising edge on the
RX pad (UART interrupt input).

18.3 Light Sleep

Light sleep is entered from operating mode when software sets the
SHT bit with the DON bit set. The external supply continues to
operate in high power mode in light sleep. Any enabled interrupt
source will exit light sleep to operating.

HOPPER ERS 1. 01 Page 67

18.4 Operating

Operating mode can be entered from either of the other two modes.
If it is being entered from deep sleep then the HOPPER chip will
hold off the CPU in reset for 35ms after requesting high power
(SOFF=O) from the external supply. The 35ms delay is generated in
the RTC pre-divider. Folowing this delay the CPU will begin
operation at the reset vector (ffffOh) with interrupts disabled by
the CPU reset.

When software is finished processing, it may exit operating mode
and enter either light sleep or deep sleep. Light sleep is
entered by setting the SHT bit. Deep sleep is entered by first
clearing the DON bit, then setting the SHT bit. The CPU will
prefetch several instructions following the instruction that sets
the SHT bit. This requires that several NOP instructions follow
setting the SHT bit. When operating mode is again entered,
hardware will clear the SHT bit. It is up to software to control
the state of the DON bit.

18.5 Backup

When the external power supply senses that VDD is too low it will
drive the NVDDOK line high. This will cause an NMI if the system
is in light sleep or operating modes. Software will use this NMI
to quickly shutdown the system. When the system is in deep sleep
or in the process of powering up with NVDDOK high it will
immediately enter backup mode. In backup mode the BUP output is
driven high switching the external supply to the backup battery.
The system will remain in backup mode until the ON key is pressed.

If NVDDOK does not go low within 50ms of entering backup mode, or
if NVDDOK goes low at some time following the 50ms delay, the BUP
line will be driven low switching the external supply back to the
main batteries. The system is still in backup mode however and
will stay there until NVDDOK goes low.

The hopper chip will ignore the state of the NVDDOK signal if
ACIN signal is high indicating an AC adapter is plugged in.
NVDDOK and ACIN are deglitched internally using the
oscillator.

18.6 System Resets

The HOPPER chip will be reset when:

the
Both

32KHz

1. Power is first applied (Power-On-Reset (POR) circuit), or a
logic low level is driven on the NRES pad. This reset will
be held until NVDDOK=O.

Page 68 HOPPER ERS 1.01

\

2. The RST bit is set twice in succession.
3. The keyboard circuitry senses that the ON pad, KBI[6], and

KBI[7] are all high for a 7.8ms debounce time (ON/SHIFT/CNTRL
keys depressed).

A reset will cause the system to:

1. Execute the power-up seqence if asleep,
2. Reset the CPU, and
3. Enter operating mode.

18.7 System Control Register

The 2-byte System Control Register controls the system mode and
also contains the interrupt enable bits that allow individual
interrupt sources to be enabled or disabled. If an interrupt is
disabled it will not cause a CPU interrupt and will not cause a
wakeup. If enabled, all interrupt sources will cause a wakeup
from light sleep or deep sleep. In order to cause a wakeup, the
wakeup source must be valid for SOUSe After a wakeup, the system
will ignore shutdown attempts for 1Sus.

The first byte of the System Control Register is located at E301h
and is defined as follows:

Bit

[0]

[1]

[2]

[3]

[4]

Reset
Value

o

o

x
o

HOPPER ERS 1.01

R/W
Mode Description

W

W

R/W

R/W

RST - Reset. Writing a one to this bit
twice in succession will cause the system
to reset.

SHT - CPU shutdown. setting this bit
will stop clocks to the CPU. The system
will enter light sleep mode if the DON
bit is set and will enter deep sleep mode
if the DON bit is clear. This bit is set
only, it is automatically cleared by a
wakeup.

ION - I/O On. This bit controls the
power to the IR receiver chip and
possibly to the RS232 transmitter.

unused

UTE - UART interrupt/wakeup enable.

Page 69

[5] 0 R/W IRE - IR circuit interrupt/wakeup
enable.

[6] 0 R/W EXE - External (XINT pad)
interrupt/wakeup enable.

[7] 0 R/W RTCE - Real Time Clock interrupt/wakeup
enable.

Page 70 HOPPER ERS 1.01

The second byte of the System Control Register is located at E302h
and is defined as follows:

Bit

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Reset
Value

o

o

o

o

o

o

o

o

HOPPER ERS 1.01

R/W
Mode Description

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

TOE - Timer 0 interrupt/wakeup enable.

T1E - Timer 1 interrupt/wakeup enable.

LPE - Low power interrupt/wakeup enable.

MPE - Module pulled interrupt enable.

DCE - Display cursor update request
interrupt enable.

RXE - RX pad low voltage
interrupt/wakeup enable. This bit should
be set when the supply voltage is reduced
in deep sleep and a wakeup is desired
when activity is detected on the serial
port. It is necessary to select an input
device with the proper threshold on the
RX pad.

KBE - Keyboard interrupt/wakeup enable.

TPE - Touch panel interrupt/wakeup
enable.

Page 71

CHAPTER 19
CONTRAST CONTROL VOLTAGE GENERATOR

The Contrast Control voltage (CCV) Generator is a simple 4-bit D/A
converter. An analog conversion of the 4-bit ccv register value
is output on the CCV pin anytime that the display is on (DON=l).
This analog voltage is used by the external LCD voltage generation
circuitry to control the drive levels on the display panel.
Variations in these drive levels affect the apparent darkness or
"contrast" of the LCD to compensate for variations in the LCD
material and for differing viewing angles. Thus the CCV allows
the user to adjust the contrast of the display under software
control.

The CCV Generator circuit consists of a simple resistive ladder.
The output pin is high impedance and should not drive a DC load.

Page 72 HOPPER ERS 1. 01

CHAPTER 20
SPECIAL HARDWARE CONSIDERATIONS AND HOPPER REV C

This chapter is intended to detail several hardware features that
need special consideration when using the HOPPER IC. Most of the
shortcomings discussed here have been addressed in a revised
version of the HOPPER IC. This revised version is referred to as
Rev C. It is schedulea to be phased into production in the fall
of 1991.

20.1 Pseudo-Static RAMs and the CPU Halt Instruction

When the CPU is being clocked (run mode), HOPPER issues an
-r" automatic refresh cycle during the start of each CPU cycle. This

refresh cycle is necessary for pseudo-static RAMs to maintain
data. Unfortunately this means that if the CPU stops issuing new
cycles, as it does when a halt instruction is executed, no refresh
cycles will occur. The RAM specification states that 2048 refresh
cycles must occur each 32ms. In normal operation, 2048 refresh
cycles will occur about every 7ms (this figure was calculated
assuming that the average instruction is 16 clock cycles long).
Therefore, if the CPU is halted for more than about 25ms, the RAM
refresh specification will be violated.

In actual practice, our experi~nce has been that most pseudo­
static RAM parts will maintain data for several seconds with no
refresh cycles. However, this cannot be guaranteed. It is
preferable that no halt instructions be used. If they are used,
the halt must be ended with an interrupt well under the 25ms time
limit.

Rev C of the HOPPER IC includes a "WATCHDOG" circuit. When
enabled by setting bit 5 of IO location E300h, this circuit will
attempt a system shutdown if no refresh cycle occurs in 3.5 to 4.5
ms. If this shutdown is successful, it will put the PSRAMs into
self-refresh. The only known way for this to occur is if
refreshes were suspended by the execution of a HALT instruction.
This shutdown will be transparent to software since HOPPER will
wake-up on the first enabled interrupt. This interrupt will also
terminate the HALT.

After attempting to set the shutdown bit, the WATCHDOG circuit
continues to watch for PSRAM refresh. If a refresh does not occur
in another 2 ms, a hardware reset will be initiated. Holding the
RDY line low for several milliseconds is the only known way of

HOPPER ERS 1.01 Page 73

.. causing this reset. Holding the ROY line low will not allow a
successful shutdown since CLK is stopped.

20.2 Pseudo-Static RAMs and Hardware Reset

HOPPER is defined such that if the KBI[6:7] and ON pads are all
driven high a hardware reset will occur. This corresponds to
hitting the [SHIFT] [CTRL] [ON] keys on the 9SLX. A hardware
reset will also occur if the NRST pad is pulled low.

are asynchronous with HOPPER chip­
timing and therefore can cause glitches on

may corrupt user memory since pseudo-static
to glitches on either chip-enable or output-

The hardware resets
enable/output-enable
these signals. This
RAMs are sensitive
enable.

In actual use, the user RAM appears to be fairly insensitive to
corruption caused by hardware resets. The RAM based operating .. "
system seems to be much more sensitive, probably because it is
being chip enabled more often. But since the output-enable signal
is common to all RAMs, a part can be corrupted even if it is not
being accessed when a reset occurs •.

The ability to cause a hardware reset from the keyboard is a very
useful and powerful feature. But users should be warned that it
is only to be used as a last resort, and it may corrupt memory.
Software should never be written that will intentionally hang the
system and require the user to do a hardware reset.

Rev C of the HOPPER IC includes circuitry that will attempt to
synchronize the start of most hardware resets. This circuitry
provides a window of 60us during which a synchronous reset will be
initiated if memory timing allows. If memory timing is such that
a synchronous reset did not occur during this window, an
asynchronous reset will be initiated. Asynchronous resets should
only occur in deep sleep. This change will prevent corruption of
PSRAMs due to all hardware resets except for those initiated by
pulling the NRES pad low.

20.3 Display Cursor

The display cursor will disappear in an area of dots that are all
on.· This is because the cursor is defined as turning dots on.
HOPPER Rev C will define the cursor as inverting the normal dot
data. This will allow it to be always visible.

HOPPER Rev C also has a small change to provide MDA compatibility
for some illegal attribute bytes.

Page 74 HOPPER ERS 1.01

20.4 TX output

The TX output is normally driven high even during deep sleep. (TX
is the invert of TXD). This causes a high current condition in
the 95LX since the power to the TX buffer is removed in deep
sleep. In order to prevent this, software is required to send a
break after turning IO off and before deep sleep shutdown. This
break is never seen outside of the product since turning IO off
tristates the TX buffer. On wakeup, the break should be removed
before turning IO on. On HOPPER Rev C this problem is solved in.
hardware by forcing TX low in deep sleep.

Another problem with the TX output is that it is forced low when
IR UART mode is selected. This will be interpreted as a break by
any device that may be connected to the serial port. Some
printers will print a garbage character in response to a break.
There is no software workaround for this problem. HOPPER Rev C
will hold TX high when IR UART mode is selected.

20.5 Timer Wakeups

A standard PC BIOS will set up TIMERO in Mode 3. This causes the
timer output to be a square wave. If this timer output is enabled
to cause wakeups, the HOPPER system will be unable to shutdown
whenever the timer output is high, which is 50% of the time. This
causes a large increase in current while the system is idle. The
sante probl em exists with TIMER1 wakeups.

The 95LX BIOS works around this problem by setting up TIMERO in
Mode O. When the 55ms count expires, the interrupt routine
calculates a new count value and reloads TIMERO. This works, but
causes problems for PC applications that expect TIMERO to be in
Mode 3.

HOPPER Rev C will solve this problem by making the TIMERO/TIMER1
wakeups edge sensitive. Edge sensitive in this case is defined as
meaning that timer wakeups are disabled if they are active when a
wakeup occurs. They are re-enabled when the request goes inactive.

20.6 Interrupt Source Register (ISR)

Bits in the ISR (E303h) are set only after the 45ms power-up
delay. This makes it possible for a wakeup source such as the
serial port to cause a wakeup and then go inactive before setting
the appropriate bit in the ISR. It is therefore sometimes very
difficult for software to determine the cause 'of the wakeup.
HOPPER Rev C solves this problem by allowing bits in the ISR to be
set immediately.

HOPPER ERS 1.01 Page 75

20.7 The ON Key

It is impossible to shutdown while the ON key is being held
This is considered a problem only for low-power conditions.
is no software workaround tor this problem. HOPPER Rev C
this problem by making ON key wakeups edge sensitive.

down.
There

solves

Another problem with the ON key is that it may cause a wakeup,
then be released before software can read its status due to the
45ms power-up delay. The Rev C fix·to the ISR discussed above
does not solve this problem since keyboard wakeups must be
disabled in deep sleep. When keyboard wakeups are disabled, the
ON key is the only key that will cause wakeup. This problem is
solved on Rev C by latching the ONKEY bit (E30Fh bit 0). This bit
is cleared only if the ON key is up when it is read.

20.8 RDY Timing

A timing problem in the HOPPER IC requires that the RDY pin be
constrained to go inactive (low) after the fall of one of the chip.
enables. HOPPER Rev C fixes this timing problem and will allow
RDY to go inactive at any time.

20.9 Speaker Power-Down

The HOPPER IC includes circuitry that will automatically power-up
the beeper amplifiers whenever activity is sensed on the PC
compatible speaker output. The amplifiers are powered-down after
up to 125ms of inactivity. If a shutdown occurs while the
amplifiers are powered-up, the system will be left in a very high
power mode. This problem requires software to delay 125ms after
the ON key is pressed before shutting down.

HOPPER Rev C forces the amplifiers off in deep sleep.

20.10 Keyboard Precharge and Reset

The keyboard reset feature ([ON]-[SHIFT]-[CTRL]) is disabled while
the keyboard is in precharge. Keyboard precharge is initiated
anytime the keyboard output register is written (E30Eh-E30Fh). It
is terminated by a write to E30Dh.

HOPPER Rev C does not address this problem.

Page 76 HOPPER ERS 1.01

.20.11 UP8250 Lockup

writes to the UP8250 Line Control Register (LCR) during receive
and transmit operations can result in lockup and/or incorrect data
reception or transmission. To prevent this, software must follow
these steps:

1. Clear IR UART communication mode (E30Ah bit 2 <- 0).

2. If the baud rate divisor is zero, change it to a non-zero
value.

3. wait for transmitter empty (03FDh bit 6 = 1).

4. Enable RX pad interrupts (E302h bit 5 <- 1). Then wait for
at least one full frame time with no RX interrupts. This
frame time will vary according to the number of data bits,
parity, and stop bits. worst case is 12 bits at 300 baud =
40ms. If an RX interrupt is received during this time, the
wait time should start over. (The RX interrupt is on IRQ2
and will set E303h bit 5).

5. The Line Control register (03FBh) must now be written within
5 bit times. Worst case is 115.2K baud = 43us.

HOPPER Rev C solves this problem by buffering new values that are
written to the LCR. These new values become active only on word
boundaries.

20.12 UP8250 Parity Enable

Changing UP8250 parity from disabled to enabled will cause the
receiver to corrupt the next character as well as the error flags
associated it. This problem is fixed on Rev CHOPPER.

20.13 UP8250 Interrupts and Interrupt ID Register

The Interrupt ID Register (IIR) is synchronized with the 16X UART
clock. This causes delays in the setting and clearing of the IIR
bits. This in turn causes numerous problems for software that is
interfacing with the IIR register. There is also a bug that will
allow a false indication of receiver line status interrupt (110).

It is recommended that software avoid using bits 1 and 2 of the
IIR to determine the interrupt source. The Line status Register
should be used instead to determine the source of interrupts.
Also, in order to avoid missing interrupts, the interrupt handling
routine should not return until bit 0 of the IIR is set indicating
no pending interrupts.

HOPPER ERS 1.01 Page 77

The IRR and interrupt logic has been redesigned for Rev CHOPPER.
The redesigned circuit is compatible with a standard 8250. During
this redesign, it was decided not to attempt to issue new edges on
the interrupt signal each time there is a new interrupt source.
This is compatible with both the Intel 8250A and the National
16450. It requires that the interrupt handling routine service
all interrupts before returning.

20.14 UP8250 Receiver Error Bits

The receiver error bits (OE, FE, BI, and PEl are reset by
received word. This is not compatible with the 8250A.
HOPPER these bits are reset only when the Line status
(LCR) is read.

the next
On Rev C
Register

Also, the parity error bit (PE) is updated when the parity bit is
received. On Rev C HOPPER, this bit is updated on the stop bit
along with the other LCR bits.

20.15 UP8250 Modem status Register

The Modem Status Register always reads OOh. It was determined
that bits 4 (clear-to-send), 5 (data-set-ready), and 7 (receive
line signal detect) should be high. Jagaur's DOS service routines
pretend that these bits are always high. Software that reads the
hardware directly, however, may not work. On Rev C HOPPER these
bits will always be set.

20.16 UP8250 Break Reset

When a BREAK condition occurs, the UART receiver is shutdown until
the Line Status Register is read cle~ring the BI bit. On a
standard 8250, the receiver will rece1ve a new character
regardless of whether or not the BI bit has been serviced. Rev C
HOPPER will fix this compatibility problem.

20.17 UP8250 Line status Register

Continuous polling of the Line status Register may cause receiver
errors to be missed. Rev C HOPPER eliminates this possibility.

20.18 UP8250 Receiver Buffer Register

Reading the Receiver Buffer Register (RBR) after the full word has
been received, but before the stop bit has been received will
result in loss of the previous data with no Overrun Error

Page 78 HOPPER ERS 1.01

xeported. HOPPER Rev C will fix this problem by not updating the
RBR until the stop bit is received.

HOPPER ERS 1.01 Page 79

III
CHAPTER 21

TESTING

III

A test pad has been included to force the part into test mode.
The following sections are be implemented as macro-cells and are
tested using the appropriate off-the-shelf test program:

~ 8288 compatible BUS CONTROLLER

~ 8254 compatible PIT

~ 8259 compatible PIC

The remaining blocks are tested using custom test programs.

A output disable (00) mode is implimented for testing of input
leakage on pads with resistive pullups/pulldowns. When the 00 bit
has been set, these pins will resistive elements are disabled.

Page 80 HOPPER ERS 1.01

CONTENTS

INTRODUCTION. . • • . • . • • . • • • . . . • • • • . . 1

BLOCK DIAGRAM........ • • . . . 3

PIN
3.1

OUT •.•••••••••••••••••••.••.•••.••••••••.•••••••••••••••••
PIN Description

I/O
4.1

ADDRESS S~y •••

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Programmable Interrupt Controller (8259
Compatible)
Programmable Interval Timer (8254 Compatible) ••••••.••.
Programmable Peripheral Interface (Emulates 8255) ••••••
MDA Adapter (PC MDA Compatible) •••••••••••••••••••••••.
Serial Port (8250 compatable UART) •.•••••••••••••••••••
Display Controller (HOPPER specific) ••••••••.••••••••••
Real Time Clock (HOPPER specific) •••••••••.••.••••••••.
Miscellaneous Registers (HOPPER specific) •••.•••••••••.
HOPPER Memory Configuration and Bank Switching •••••••••

CPU
5.1
5.2
5.3

BUS INTERFACE•................•...••.•..•.•

5.4

5.5

5.6

HOPPER
6.1

6.2

6.3
6.4
6.5

Display Address Remapping ••••••••••••.••••••••••••••••
Internal Chip Selects
External Chip Selects
5.3.1 Wait state Registers 27
5.3.2 Start Address Registers 27
write Enable Bits
5.4.1 Device Size Registers 28
Bank Switching .. .
5.5.1 BANK C and BANK D 29
5.5.2 BANK EO through BANK E3 29
5.5.3 Limitations 30
5.5.4 Bank Control Registers 30
5.5.5 Example 31
Take Over ROM/EPROMs •....••.••.•••••••.•..••••••••.••••

DISPLAY CONTROLLER ..•...•••.••••••••••.•.••.••••••.•.••
Display Timing and Control Registers •••••••••.•••••••••
6.1.1 MDA Registers 32
6.1.2 HOPPER Display Control Registers 35
System Memory Interface .•.•..•.•.•••.•.••••.•••••••••••
6.2.1 Display Memory Organization 37 .
Display Data Generation .•.•••.•.•.•.•••.•.....•..••••.•
Cursor Generation
Display Blank Mode ,

~1l~()~I> ~()~~~()~ ••
7 • 1 Keyboard Hardware
7.2 Software Control

- i -

4
4

8

8
11
12
13
14
17
17
18
22

24
25
25
26

27

28

31

32
32

37

38
39
39

41
41
41

7.3 Hardware Reset•..•..••.............•..•....•.

DETECTION ••.•..•.•...•.•.. CARD
8.1
8.2

Card Detect Register .•••
Special Considerations ••

.
SERIAL
9.1
9.2

COMMUNICATION •.•••
UART ••••••••••••••
IR Communication ••
9.2.1 REDEYE format 48
9.2.2 Software Controlled
9.2.3 Modulated Mode 49
9.2.4 IR UART Modes 49

Mode 49

INTERRUPT CONTROL .••••••••••
10.1 8259 Interrupt Sources •••••
10.2 Non-Maskable Interrupt ••
10.3 Interrupt Source Register ••
10.4 Wake-Ups ••.•.•••••••.•.
10.5 Enabling Interrupts •••.
10.6 Special Considerations ••

PROGRAMMABLE INTERVAL TIMER ••
11.1 TlMERO •••
11.2 TlMER1.
11.3 TlMER2.

. . . .
. . . .
.

11.4 Timer Operation in Light Sleep •••

REAL
12.1
12.2
12.3

TIME CLOCK TIMER •••••••••
Functional Description.
Special Considerations.
Pre-Divider outputs •.

.
. . ..

.
.
.

.
.

.
· .
·
.

PC COMPATABLE I/O REGISTERS.
CRYSTAL OSCILLATORS •••••..••••••••
14.1 Low Frequency Oscillator •••
14.2 High Frequency Oscillator •••

.
·

. . .

CLOCK GENERATOR ••• .
TOUCH
16.1
16.2

TONE
17.1
17.2

PANEL CONTROLLER •••••••••.•••• ,; •••••••
The A/D Converter Interface (ADCONT)
Touch Panel Control (TPCONT) •••••••••

GENERATOR •••..•••••••••
Hardware Description.
Software Control. . . .

POWER MANAGEMENT ••••••••••••
18.1 Static Test Condition ..

ii

·
·
.

· .. , . ·

42

43
43
44

45
45
45

51
51
52
52
53
53
53

54
54
54
55
55

56
56
56
56

57

58
58
58

59

61
61
62

65
65
66

67
67

''-,

18.2
18.3
18.4
18.5
18.6
18.7

Deep Sleep ..
Light Sleep.
Operating •.•..
Backup ••••••.•
System Resets.
System Control Register ..

CONTRAST CONTROL VOLTAGE GENERATOR.

SPECIAL HARDWARE CONSIDERATIONS AND HOPPER REV C.
20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18

Pseudo-Static RAMs and the CPU Halt Instruction.
Pseudo-Static RAMs and Hardware Reset.
Display Cursor .•
TX Output•.•.......
Timer Wakeups ..••...•.•....
Interrupt Source Register (ISR)
The ON Key............. . .
RDY Timing
Speaker Power-Down .•.•.....
Keyboard Precharge and Reset .•.

Lockup •••.•••.••••..•..••••••
Parity Enable ..•.....•..

UP8250
UP8250
UP8250
UP8250
UP8250
UP8250
UP8250
UP8250

Interrupts and Interrupt ID Register.
Receiver Error Bits ••.•.
Modem Status Register •.
Break Reset •••.•••..••
Line Status Register •.••
Receiver Buffer Register .•

. . . .

TESTING .• ;•...............

iii

67
67
68
68
68
69

72

73
73
74
74
75
75
75
76
76
76
76
77
77
77
78
78
78
78
78

80

LIST OF FIGURES

Figure 2.1. HOPPER Block Diagram 0.12....................... 3

Figure 5.1. Bus Interface Block Diagram ..•.•••••••.•. _ .••••. 24

Figure 15.1. Clock Generator Block Diagram ••••.•••••••••••••. 59

- iv -

HP95LX

WIRED SERIAL AND INFRARED I/O

EXTERNAL REFERENCE SPECIFICATION

HEWLETI-PACKARD

April 11, 1991

CONTENTS

JmRODUCI'ION •.•••••••..•..••••...••.• __ ... 1
RS232 COMPATIBLE SERIAL PORT .. 2

Protocol .. _ ... 2
Hardware ... 2
Software •••••••••••••••..••••••••••• _ _ .. __ ••••••••••••••••••••••• 3

BIOS control .. __ ••.•••••••...•.•...•.........••..•••••....•...•..•••••••..••••.••.•. 3
Direct Register COntrol _ •••••• _ .• _._ _••..••.•• _ ...•••••..•••....•.•••.•..••••• 6

IR 1/0 SERIAL PORT .. 10
Protocol .. 10
Hardware _ ••..•...•.•.•.••.....•....•••.....••.•.••...•.••••.•••...••.•.••••.•••••• _ ••••••....•.....•..•..•••...•..•••.••...••...••...•..•..•...•. 10
Software ••• _ •••• _ _ ••••••••••••••••••• _._._ ••••••••••• _._ ••••••• _ •• 11

OTllERIR COMMUNICATION __ _ .. _ 12
R.EDEYE Format •••..••••.. __ ••.••••• __ •• ____ •• __ ••.•••• __ • __ •• __ ••••••••.•••••.••• _ •••.•••••••....•...••••••..•..••.••. 13
Software COntroUed MocIc •... _ _ _._ ... 14
Modulated Output Mode ... 14
Modulated IR UAR T Output Mode .. _._15

INTROPUCTION

The HP95LX contains several I/O capabilities. These include an RS232 compatible wired serial port
and a two way wireless infrared port This document contains a brief description of the hardware, the
supporting software, and the communications formats used. This document is not a complete
description of all of the HP95LX features. It is not guaranteed to be 100% accurate as hardware and
software changes may be made after its release. It will, although, address most of the issues involved in
using the HP9SLXI/O capabilities.

RS232 COMPATIBLE SERIAL PORT

protocol

The serial protocol used in HP95LX is the standard asynchrODOUS serial protocol used in the Pc. It
~ts of three signal CODDectiODS; RXD, Receive Data, TXD, Transmit Data, and SGND, Sipal
Ground. Each data word is prec:cdcd by a start bit, which is a spacing condition for one serial bit time.
Each word is followed by at least 1 stop bit, which is a marking condition for one bit time. When the
transmitter is idle, the transmit line is held at a marking condition.

The wired serial port voltage levels are -4.5 Volts for a logic level '1' or marking condition and 4.5 volts
for a logic level '0' or spacing condition. These are consistent with the RS232 standard for wired
communication. When powered down, the serial transmit line wiD be held to ground. HP95LX
interprets this as a marking condition as wiD Plost RS232 receivers.

Hardware

The HP95LX serial port hardware includes an 8250 compatible UART, an SN75C198 transmitter chip,
and a discrete level shifting receiver portion. A block diagram of the serial hardware is shown below.
The SN75C198 is an RS232 transmitter that converts a CMOS logic level to the appropriate positive
and negative voltages used for the serial port. The receiver section is used to convert the positive and
negative RS232 voltages to CMOS compatible voltage levels. The 82SO compatible UART controls aD
serial communication and interfaces to the rest of the HP95LX system. Using the UART, the baud
rate is set, the word length of 5, 6, 7, or 8 bits is chosen, and parity error detection can be used.
Although_the hardware will support baud rates up to 115.2k baud, the wired link is not guaranteed to
work for aD applicatioDS above 20k baud. For optimum performance, a short cable, less than 3 meters,
should be used.

8250
Comtnflbl.

UART

Serial Hardware

SN75Ct9S TX
.__---1 RS232

rr.n.mlltr

SGND

5V r---
RX

--

2

Software

Software control of the serial port can be accomplished by writing to the appropriate hardware
registers or through BIOS routines.

BIOS control

There are several software interrupt functions provided in the BIOS for serial port control. It is
recommended that applications use the BIOS routines to control the serial port. Here is a summary of
these functioDs. .

IntJD

Set Serial Cluumel

This function sets the HP9SLX serial channel to either Wired or JR. If IR mode is selected,
the UART baud rate is changed to 2400 baud.

Input: AH .. 49h
AL·Oh:Wued

-1h:IR
> 1h: No Operation

Output: None

Registers modified: None

Set RSl32 Pawer

1NT14h

This function turns power to the RS232 transmitter and JR receiver on or off.

Input: AH = 4Ah
AL .. Oh : Power off

.. 1h: Power on
> 1h: No Operation

Output: None

Registers modified: None

initialize Serial Port Parameters

This service sets the baud rate, parity, number of stop bits, and character frame size for the
specified serial port.

Input: AH = OOh
DX = Serial port number (Always 0 in HP9SLX)
AL .. Parameters shown below

3

Output:

Bit
7
6
5
4
3
2
1
o

Bit Description

7-5 Baud rate
000 .. 110 baud
001 .. 150 baud
010 .. 300 baud
011 - 600 baud
100 .. 1200 baud
101 .. 2400 baud
110 .. 4800 baud
111 - 9600 baud

4-3 Parity
00 - None
01- Odd
10 .. None
11- Even

2 Stop bits
o .. One stop bit
1 .. Two stop bits

1-0 Frame size
10 = 7 bit word
11 = 8 bit word

AH = Serial port status

Description
Timeout
Transmit shift register empty
Transmit buffer register empty
Break detect
Framing error
Parity error
Overrun error
Data ready

4

.<

Bit ,
6
S
4
3
2
1
o

Registers modified:

Transmit One Character

AL .. Modem Status (Modem Control not implemented

inHP9SLX)

AX

This will always be returned as BOh.

Description
Receive Line Signal Detect
RiDg Indicator
Data Set Ready
Clear to Send
Delta Receive Line Signal detect
Trailing edge RiDg Detect
Delta Data Set Ready
Delta Ocar Send

This function tr8DSDlits one character through the serial port. It waits until the UART

transmit buffer is empty, then transmits the givcn character.

Input: AH .. Olh
AL = Character to transmit
DX .. Serial port number (Always 0 in HP9SLX)

Output: AH .. Serial port status (same a previous function)

Registers modified: AH

ReceIve One Character

This functions returns the character received by the serial port. It waits until the serial port

reports that a character has been received, then reads character and the serial port status.

Input

Output:

Registers modified:

AH = 02h
DX .. Serial port number (Always 0 in HP95LX)

AH .. Serial port status (only bits ',4,3,2, 1 as before)

AL .. Character received

AX

5

Get Serial Pol1 Status

This function reports the status of the serial port.

Input: AH .. 03h
DX • Serial port number (Always 0 in HP95LX)

Output: AH • Serial port status (same as Initialize function)

Registers modified: AX

Direct Register Control

Serial communication in 1IP95LX can also be accomplished by writing directly to the hardware
registers that control the communication functions. The first important register is located at I/O
address E30lh. Bit 2 of this System Control Register is used to tum the RS232 transmitter and the IR
receiver on and off. By setting bit 2, power is turned on to these devices. The other bits in this register
control various other system functions so bit 2 should be ORed with the contents of the register. When
the HP95LX is in DOS, the FILER, or COMM application, bit 2 of E301h will be set. To chose
between IR mode and wired mode, the register at I/O address E30Ah is used. To select wired serial
communication, a Oh must be written to this register.

The rest of the serial registers are used to control the 8250 compatible UART. There functions are
equivalent to those for the UART in the PC. The registers are as follows:

1/0 Address 3F8b

DLAB - 0

W UART Transmitter Holding Register
Contains the character to be sent.

R UART Receiver Buffer Register
Contains received character

DLAB -1

R/W UART Divisor Latch- Low Byte
Contains the low order byte of the baud rate divisor

6

.. ~ ... '

I/O Address 3F9h

DLAB - 0

RJW UART Interrupt Enable Register
Allows enable and disable of UART interrupt sources

bit 7-4 -0 reserved
bit 3 -I not used
bit 2 -I Enable rec:civer line status interrupt

.. 0 Disable
bit 1 .. 1 Enable transmitter holdiDg register empty interrupt

.. 0 Disable
bit 0 -I Enable received data available interrupt

.. 0 Disable

DLAB = 1

RJW UART Divisor Latch- High Byte
Contains high-order byte of UART baud rate divisor.

I/O Address 3F Ah

,R UART Interrupt ID Register
Contains information about interrupts pending. Only the highest priority
interrupt is indicated.

bits 7-3 =0 Reserved
bits 2-1 -11 Receiver line status interrupt: Highest priority

-10 Received data available: Second priority
- 01 Transmitter holding register empty: Third priority
-00 Invalid

bit 0 -1 No interrupt pendiDg
.. 0 Interrupt pendiDg

7

I/O Address 3FBb

R/W UART Line Control Register

bit 7 =1
-0

bit 6 =1
bitS -1
bit 4 .. 1

-0
bit 3 -1
bit 2 .. 1

-0
bits 1-0 .. 11

=10
=01
-00

I/O Address 3FCb

DlAB: select divisor latch access
select receiver buffer, transmit holding reg, and interrupt enable
reg ac:ce.ss
Set break enabled
Stick parity enabled
EYeD parity
Odd parity
Parity enabled
2 stop bits, 1.5 if S bit word
1 stop bit
8 bit word length
7 bit word length
6 bit word length
S bit word length

R/W UART Modem Control Register
Modem control is not implemented

I/O Address 3FDb

bit 7-4 -0
bit 3 -1
bits 2-0 =0

reserved
Enable UART interrupt
reserved

R UART Line Status Register

I/O Address 3FEb

bit 7 -0
bit 6 =1
bit S -1
bit 4 -I
bit 3 -1
bit 2 .. 1
bill .. 1
bit 0 .. 1

reserved
Transmitter empty
Transmitter holding register empty
Break interrupt
Framing error
Parity error
Overrun error
Data ready

R UART Modem Status Register
Modem control is not implemented

bits 7-0 = BOh reserved REV CHopper
=OOh reserved REV B Hopper-(Early production HP9SLX)

8

I/O Address 3FFh

R/W UART Scratch Pad Register

The baud rate divisor should be chaseD as follows:

Baud rate Divisor
300 180h
600 o)h
1200 60h
2400 30h
4800 18h
9600 0Ch
19200 06h

9

IR I/O SERIAL PORT

protocol

The llP9SlXIR 1/0 port is a half-duplex serial port usiDg infrared 1ight as a communication dwmet
The port is capable of communicating at 2400 baud usiDg any of the available word modes used for the
"wired serial port. The mark state, logic level 1, is indicated by no transmiHion. The space statc,logic
level 0, is transmitted by a single 30 mseeond IR pulse per bit. A bit time at 2400 baud is 416
DlSCconds. An CDDlple IR 1/0 frame is shown below.

I
IR Frame

I
I I
I

Start • Data BIt. I Stop I
I

bit :
I I

I I bit I · I 0 I 1 0 1 · 0 · 0 · 1 1 0 I 1 I · · · I · · · I I

n ~
· I · J I n · n I I · · I I · I · · I ·

J 14."_1
3D ".
"", ..

Hardware

The llP9SLXIR 1/0 hardware block diagram is shown below.

IR I/O Hardware

IR
""",., 1-----1 IR
Det:tIW ~

--
The UART used is the same UART used for wired serial communication. When IR I/O mode is
chosen. the UART is disconnected from the wired serial port and connected to the IR I/O port. The
wired TX line will be held in the marking condition., spacing condition in early production llP9SLXs, to
indicate that the serial port is idle. The wired serial RX line is just ignored. The UART is used to

10

transmit and receive the serial data streams. The output of the UART is converted to the IR output
protocol and then converted to light by turning an infrared LED on and off. The LED transmits at a
wavelength of 940nm. The infrared receiver uses a photo diode to detect the incoming IR light. The
light pulse is transformed into a CMOS level digital pulse by the IR receiver. The IR format decoder
then generates the appropriate serial bit stream which is sent to the UART. Due to reflections, the IR
serial port receives everything that it transmits. This must be taken into account in software.

Software

Software control of the 1IP9SLXIR I/O port is very similar to the wired serial port. All of the BIOS
routines support IR as well as serial. The baud rate must be set to 2400 as higher baud rates are not
functional. To turn on power to the IR receiver either Int 1Sh can be used as shown previously, or bit 2
of the register at I/O address E30lh can be set directly. Again, the other bits of this register should be
left alone. To select the IR I/O port, software Int 15h can be used as shown previously. Again, it is
recommended that the BIOS routines be used to set up the port. The IR port can also be chosen by
writing a 04h directly to the register at I/O address E3OAh.

After the port is chosen and powered up, the UART can be used to transmit and receive as it was used
in the RS232 wired serial pOrt. The only issue to keep in mind is that the IR I/O port will receive
everything it sends.

11

OTHER IR COMMUNICATION

The IR communication hardware of 1IP9SLX also supports three other IR communication modes.

These modes are REDEYE, software controlled ~mmunication, and modulated output mode. These

formats are all software controlled using the IRFMAT register and the IRCNT register. The IRFMAT

register is located at I/O address E30Ah and contains control bits to choose the IR communication

formaL The IRCNT register is located at I/O address E30Bh and is used to transmit a bit or wave

form to the LED or monitor the IR receiver. The registers contents are as follows:

Bit NIUIIe.,
0 RED
1 MDLTE
2 IRURT
3 MDSEL

4 PMOD

S LBF

6 ELBE

7 UNREG

IRFMAT RegIster
I/O Address E30Ah

Dacrl dOD

This bit activates REDEYE transmit mode when set.

This bit activates Modulated output mode when set.

This bit chooses the IR I/O port when set.
This bit chooses whether the 32kHz dock or the Baud rate divisor 16x

dock is used as a modulation source for both Modulated output and

UART modes. U set, the baud rate divisor 16x dock is chosen. "-

This bit chooses whether or not the UART mode uses a single pulse

or modulated output. U set, the output from the UART sends out 6

pulses instead of 1 for a space or logic 0 bit.

LED Buffer Full. This bit is used in REDEYE mode to indicate that

the contents of LBR have not yet been transmitted. Writing to LBR

sets this bit.
Enable Interrupt OD LBR bit Empty. U this bit is set, an interrupt will

occur if LBF is deared
This bit should never be set. It may cause hardware damage.

NOTE: Only ODe of bits 0-2 should be set at a time.

12

Bit Name
0 LED

1 LBR

2 MDLD

3-4 Undefined
S IRE

6 ElRI

7 IRI

REDEye Format

IRCNT RegIster
I/O Address DBb

Description
This bit is used to tum on the IR LED. When set the LED is turned

oD. Care should be taken to avoid setting this bit for long periods of

time or hardware cIamase may occur.
This bit contains the baH-bit to be transmitted in REDEYE format. A

one willscnd an 'on' baH-bit
This bit is used to turn on and off the modulated LED output in

Modulated output mode (MDLTE-l). When set, a modulated

waveform is output.

IR Event. This bit is set by an input pulse from the IR receiver to

indicate that an IR event has occurred. It must be reset by writing a

'0' to it.
Enable IR Interrupt. U this bit is set, an IR interrupt will occur when

the IRI bit is set.
IR Input pin. This allow the output of the IR rec:eiver to be

monitored. It is a read only bit

The REDEYE portion of the HP951Xhad not yet been fully tested as of the writing of this document

and therefore is not guaranteed to function completely. The hardware consists of the RED, LBF and

ELBE bits in the IRFMA T register and the LBR bit in the IRCNT register. The REDEYE format

consists o! 15 bit frames of a precise format. Each bit of the frame consists of two half-bits. The

. duration of each half-bit is 427 mseconds. The half-bit is c:onsidered 'on' if the LED is pulsed 6-8 times

during the half-bit time. HP95LX uses 8 pulses. The pulses and all of the timing is generated by using

the 32,768 Hz oscillator. Each bit is encoded for transmission. A one is encoded as two half-bits, the

first one 'on' and the second 'off. A zero is transmitted by an 'off-on' sequence. Each frame contains:

Start-bits
Hamming bits
Data bits
Stop bits

Three half-bits 'on-on-on'
Four bits for error correction
Eight data bits
Three half-bits 'off-off-ofr

The format of a complete RED EYE frame is as follows:

13

REDEYE Frame

• • I SI.rl Error Correcllon Blls I 0.1. I I
I HI • H2 H8 • H4 I MSB • I • • I • I ! • 0 I • 0 I 0 r • I • · : • · I · • . · · · I · · · · I • · · • · I · • · ~ i i I • : • I . •
011 0111 IIII IIII IIIII IIII 1111 IIII • 1 ••

.11.

I 1/ 1 1·51". I .p
82kHz 6011 Ny ~yCIfI 46".

Slop
UB Ita >-.J

r i r r '{ ~ II11HJt.
I I . ·

IIIII IIII IIIII IIII 1111 IIII

To enter REDEYE mode. the RED bit must be set. All REDEYE frames must be generated by
software. All that the hardware is design~ to do is output half-bits. REDEYE transmiuion is
initiated by a write to the LBR bit. This sets the LBF flag and starts the half-bit transmission. The bit
in LlJR is transferred to the formatter and the LBF bit is cleared. This indicates that it is safe to write
another hilf-bit to the LBR. If the ELBE bit is set, this will cause an interrupt. After a full half-bit
transmission time, if the LBF is dear, the output will remain idle. Otherwise. the next half-bit will
immediately be transmitted. After LBF is cleared, there are 396 mseconds in which to write the next
half-bit to LBR avoid REDEYE transmiuion errors.

Software Controlled Mode

The LED bit in the IRCNT is provided for software generated IR output formats. Due to LED
current limitations, the duty cycle of this wave form should be limited to a time average of 29%.

Software can also monitor the IR receiver to receive incoming data. This can be done using the IRE,
IRI. and EIRI bits in the IRCNT register. The IR pulses into the receiver can be stretched by as much
as 300 ms from the end of light transmission, so this must be taken into account by the software.

Modulated Output Mode

A Modulated output mode is provided and can be used to output any custom modulated wave form
desired. To choose Modulated mode. the MDLTE bit in the IRFMAT register must be set. Two
different modulation sources are available. The 32,768 Hz clock can be used, as well as the baud rate
16x clock. The MDSEL bit is set to a 1 to select the baud rate 16x clock. Otherwise. the 32768 Hz

14

clock is used. If the baud rate 16x clock is chosen, the baud rate must be set in the UART to obtain the

desired modulation frequency. If a baud rate of 2400 is chosen the modulation frequency is 38.4 kHz.

After these bits havc been imti81ized, the MDLD bit in the IRCNT register is used to output

modulated signals. Whenevcr the MOLD bit is set to a one, a the LED is modulated by the

modulation source. The output of the modulation source will be a 50% duty cycle if the 32kHz clock is .

used. If the baud rate divisor 16x clock is used, the on time for each pulse will be 3.25 ms. Care must

be lakeD Dot to exceed a 29% communication duty cycle.

Modulated IR VARY Output Mode

The IR UART function, dcscnDcd previously as it is used for the IR I/O port, can also usc modulated

output mode. In this mode, 6 pulses of the modulation source will be seDt out instead of a single pulse.

To select this output mode, the PMOD bit in the IRFMAT register must be set along with the IRURT

bit. The modulation source is again choscn using the MOSEL bit. The 82SO compatible UART is

again used to output data as in the IR I/O port. All output waveform is shown below ..

I
I

Modulated IR UART OUtput Frame

I StITt I
I I
I bit I
101 1
I I

111111 :

.
: 0

ill III
I

'pwa.
of

Data BI18

1 1 i 0 i 0

i 11111 i 11111

1

15

.

Imil

Stop
bit
1

PC CARD

STANDARD

Release 1.0

August 1990

Personal Computer Memory Card International Association

PCMCIA

Copynsht 1990 P-.l CoInput .. Mnlary Card lnlftNtiONI AIIodiIiCIII. Allltip • ..-wei.

nus IXXL'MENT MA YNar BE COPrED. MOO[f1E) OR DfSTIUBt.ilD. EXCEPI'nlATMEMBERS OFPOfCA MAY
- copy nus 1XXL'MENf fOR DIS11U8t.."'n:TlON Ao"lO t."SE wmuN nmR ORCAo'15ATlONS PROVIDED nm

IXXL'MENT 15 COPIED IN m ~'l1REI'Y Ao''D ALL COPYRlQiT AND emu Sana5 CO!loi~"EO IN nm
ORlCINAL ARE REPRODt:CEO IN EAOi COPY.

nus ooct..'MENT CONTAl''S MATDlAL COPYRlCHrED BY JAPAN ELECI1tONIC !SOC!il1lY DEVELOPML'oi
ASSOClATlON (JEIDA).

1989 ·90 Officers

Chairman:
John Reimer
Fujitsu Miaoelectronics Inc.

Marketing Committee:
Neal Chandra
Poqet Computer

-2-

President:
Jim Prelack
Lotus Development

Standards Committee:
Daniel Chen
Mitsubishi Electronics America

..

REVISIONS

Initial Release 27 March 1990

2nd Revision 4 May 1990

3rd Revision 14 June 1990

4th Revision 12 July 1990

Release 1.0 21 August 1990

- 3 -

Standards Committee
1989 -1990

~ Committee Chairman:
~'.

Daniel Chen Mitsubishi Electronics America ~~.

Task Force Chair:

~\.
Terry Moore Databook

\.:. Stan Sharp ITrCannon
Mike Dryfoos Microsoft
Renft Bader Poqet Computer

l'

Committee Members:
Art Lesh A.'vIP
Ken Jacobsen Atari Corporation ".

.' Hidemaru Sato Citizen Systems
Don Vendetti Data 1/0

c;... Chuck Brewer Digital Research
Chris Walke Dupont Electronics
Richard Vincent Epson

* Joel Urban FUjitsu Components
Phil Ackerly FUjitsu Microelectronics
Howard Honig Hewlett Packard, Corvallis Division
TonyWutka IBM
Kurt Robinson Intel
Bill Claff Lotus
Roger Fearing Microlytics
Tom Cruise Molex International

Jim Clayton Motorola, Inc.

* RAy Salas NEC Technologies
Jeffrey Glacchetti Shigma/Fujisoku

Ching Jeng Silicon Storage Technology, Inc.
Mark Cummings SRI
Steve Gross SunDisk Corp.

Brady Le Blanc Techworks

Daniel Baudouin Texas Instruments

A vrarn Grossman Toshiba

* Committee Co-chair

-4-

PREFACE

An extraordinary ammount of progress 'has taken place over the past twelve months in the development
and growth of memory card technology. With the formation of the PCMCIA in mid-1989, a focus for the
computer industry's interest in this memory card technology was created and work was begun on this
standard.

The handful of companies who joined last year are now sunounded by dozens of additional member
companies who are adding their collective interest and energy to the effort to standardize this memory
card technOlogy. The current PCMCA membership consists of a wide variety of large and small
companies, based in the United States, Europe, Japan and other countries. Partidpating in the creation of
the standard were companies representing computer manufacturers, software suppliers, system
integrators, hardware manufacturers and semiconductor memory card manufacturers.

This initial Release 1.0 of the PCMCIA standard, entitled PC Card Standard. reflects the effort and
perseverence of many individuals who have spent countless late nights and air-miles in the effort to
create this document. Special thanks to Daniel Chen, PCMCA Technical Committee chair, and to all of
the suixommittee chairpeople who contributed a disproportionately large ~t of time and effort. .

This standard has been created by the PCMCIA with the cooperation of the Japanese Electronic Industry
Development Association (JEIDA).

Future releases of this standard will provide for additional capabilities beyond those supported by this
initial release

Board of Directors
PCMClA
August 1990

-s -

INTRODUCTION

Among the many applications of I.C. memory cards, one of the most appealing is to use them to replace slow,

fragile, bulky and power-wasting magnetic disk drives. This standard desaibes a family of memory

standards used as mass-storage.devices in computer systems.

The intent of this standard is not to impose a single philosophy on all card applications .. Rather, we want

to develop a standard that will:

• Be appropriate (in its minimal form) for use with very small memory cards for example, appliance

memory modules.

• Allow the use of different formats for recording data. The marketplace will decide which format

becomes predominant.

• Recognize the legitimate requirements of specialized applicatiOns, and establish means by which

. OEMs can develop new data formats for their specific applications.

-6-

1.0

2.0

3.0
4.0

5.0

6.0

7.0

GENERAL

SCOPE

CONTENTS

CARD PHYSICAL DIMENSIONS

CARD INTERFACE
4.0 Memory Card Features

4.1 Signal Description

4.2 Operating Conditions

4.3 MemOl)' Function

4.4 Timing Function

4.5 Electrical Interface

4.6 Card Detect

4.7 Battery Voltage Detect

4.8 Power-up and Power-down

4.9 Future Tasks

CARD METAFORMAT

5.1 The Standard

5.2 Basic Compatibility (Layer 1)

5.3 Data Recording Formats (Layer 2)

5.4 Data Organization (Layer 3)

5.5 System-Specific Standards (Layer 4)

5.6 Compatibility Issues

FAT FILE SYSTEM

EXECUTE IN PLACE

APPENDIX 1 - Metafont Closury

APPENDIX 2 - Hot/Cold Insertion Removal

PCMClA PC CARD STANDARD
August 21, 1990

Page

10

10

11

27

29

29

32

32

36

39

40

40

41

42

43

44

49

65

80

82

86

89

93

96

100

APPENDIX 3 - Recommended Testing Method for Hot-Insertion and Removal 102

-7 -

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 -
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

LIST OF TABLES
Page

IC Memory Card Dimensions 26

Host Connector Pin Configuration 26

Features of PCMCIA Memory Card 29

Memory Types and Speed Version 29

Operating Conditions 32

Main Memory Read function for all types of Memory . 33

Main Memory Write function for SRAM, EEPROM and Single SUI' ply FLASH Card 33

Main Memory Write function for OTPROM, EPROM and FLASH EPROM 34

Attribute Memory Read Function 34

Attribute Memory Write function for SRAM and Sing!e Supply EEPROM 34

Attribute Memory Write Function for OTPROM, EPROM, DUal Supply EEPROM,

fLASH-EEPROM and EEPROM 35

Write Protect Functions 35

Main Memory Read Timing Specification for all types of Memory 36

Main Memory Write Timing Specification SRAM 36

Attribute Memory Read Timing Specification for all types of Memory 37

Electrical Interface 39

Batterey Voltage Detect 40

Power-up/Power-down Timing 41

Tuple format 49

Tuple Codes 50

Null Control Tuple 53

Long Unk Tuple 53

Link Target Tuple 54

No-Unk tuple 54

End-of-List Control Tuple 55

Checksum Tuple 56

Alternate Language String Tuple 57

Device Information Tuples 59

Device ID
60

Devi~S~~es
60

Extended Devi~ Speed ~es 61

DeviceType~es
61

Level 1 Velsion I Product Information Tuple 62

The JEOEC Identifier Tuples 63

Level-2 Information Tuple 66

Card Initialization Date Tuple 68

Battery Replacement Date Tuple 69

Format Tuple 70

Format Type ~es 71

Enor Detection Type Codes 71

Format Tuple for Disk-like Regions 72

Error DeteCtion Format Summary 73

Format Tuple for Memory-like Regions 74

Geometry Tuple 76

Byte Order Tuple 77

Byte Order Codes . 77

Byte Mapping Codes 77

Data Organization Tuple 80

Data Organization Codes 81

DOS Boot-Block Structure 84

Extended BPB 84

Boot Record Format for Small Partitions 89

Boot Record Format for Large Partitions 90

-8-

LIST OF FIGURES

1 TYPE I PC Card Package Dimensions

2 TYPE n PC Card Package Dimensions

3 TYPE IPC

4 TYPEllPC

5 Thickness of Label

6 Card Connector Socket

7 Connector

8 PC Memory Card Contact Pins

9 Recommended Right Angle Connector PCB Footprint
,

10 Recommended Straight Connector PCB Footprint

11 Memory Card Guide

12 Read Timing Chart

13 Write Timing Chart (WE control)

14 Write Timing Chart (CE control)

15 Card Detect

16 Power-up/Power-down Timing

- 9 -

PCMClA PC CARD STANDARD
August 21, 1990

Page
18

19

20

20

21

22

22

23

24

24

2S

37

38

38

40

41

CeneraVScope

1.0 General

The PC Card system design guideline is endorsed by PCMCIA member companies as well as Japan

Electronic Industry Development Association (JEIDA>.

2.0 Scope

This design guideline details mechanical, electrical interface, host interface protocol, and data

format of a para11el type Ie card assembly.

-10-

SECTION 3

PCMCIA PC CARD STANDARD
August 21, 1990

CARD PHYSICAL DIMENSIONS

-11 -

Card Physical Dimensions

3.0 Card Physical DimeDlions

This section of the specification defines the carci physical outline dimensions, connector system,

connector reliability, connector durability and PC card guidance system. .

U Card Dimensions

Two typeS of PC Cards are specified within this specification. The two types are Type I (see Figure 1)

and Type n (see Figure 2). The Type I and Type n PC Cards differ in thickness. rtte Type I PC Card

is prefered and the Type III'CCard is optional. The Type II PC Card thickness is greater in the substrate

area (see Figures 2 Ie 4)

UJ. The PC Card dimensiON for the Type I and Type n are shown in Table 1.

~ The connector location and pin numbers for the Type I and Type n PC Cards are shown in Figures 1

and 2.

~ The PC Card polarization technique and dimensions are shown in Figures 1 and 2. A mismated PC

Card and connector shall withstand a minimum 22 pounds (lOKg) static load without damage to the

PC Card or connector.
-'.

ll:.! The PC Card must be opaque (non see-through).

~ Write Protect Switch <wps>

~ The wps, if installed, shall be located to the right of the PC Card centerline when viewed from

the end opposite the connector (see Figures 1, 2, 3 Ie 4).

~ The write protected position of the WPS shall be the far right position. The write protected

switch position shall be indicated by an arrow and either 'Write Protect" or ''Protect'' indicated.

The arrow and indication may be indicated in the PC Card end as shown in Figures 1, 2, 3 Ie

. 4, on the bottom cover as indicated in Figure 5 or on both the end and bottom cover.

lJA Battery Location

~ The battery, if installed, shall be located to the left of the PC Card centerline when viewed from

the end opposite the connector (see Figures 1, 2, 3 Ie 4).

~ The battery holder, if installed, should be designed 50 that the positive (+) side of the battery

faces the top sunace.

-12 -

-.

"

PCMCIA PC CARD STANDARD
August 21, 1990

llZl.ml
UU The thickness of the label, if used, (see Figure 5) shall not cause the PC Card to exceed the

thickness specified in Table 1.

Ull The label, if used, must withstand any environmental test specified by PC Card specifications.

UaZJ The JEIDA and PCMCA logo location is shown in Figure 5. The JEIDA and PCMOA logos
may be displayed on the label if authorized by the respective organizations. .

ll:Q Connector

The PC Card interconnect system specified shall be a 68 position 2 piece pin and socket. The socket
contacts shall be on the PC Card memory card connector.

J.JJ. The socket contacts are located on the PC Card as shown in Figures 1,2,3 " 4.

~ The PC Card connector socket shall be configured as shown in Figure 6.

~ The PC Card connector socket layout shall match the host pin connector socket layout as shown in
Figure 7.

U:~

~

~

ua

~

Host Connector

The host pin connector shall be a 68 pin connector. The host pin connector opening polarization and
pin location shall be as shown in Figure 7.

The host connector pin configuration is shown in Figure 8.

The host pin lengths are shown in Table 2.

The socket and pins contact area outermost plating shaD. be Cold or other plated materials which are
. compatible with Cold and meet the requirements specified in Paragraph 3.4.1.

The recommended host connector PCB footprints for the right angle connector (Figure 9) and the
straight connector (Figure 10) are shown without mounting or hardware hole locations.

The interconnect system shall pus all requirements of Paragraph 3.4.0 (Connector reliability) and
Paragraph 3.5.0 (Connector durability).

UJg It is recommended, if a connector ejector mechanism is UIed, the connector mechanism pass all
requirements, as applicable in Paragraphs 3.4.0 and 3.5.0 for reliability and durability.

u.:a PC Card Cuidance (see Figure 11).

J.JJ. The PC Card shall be guided by the host connector for a minimum distance of .197" (5.0) before
engagement.

~ To ensure alignment of the PC Card to connectors, the PC Card should be guided for a minimum
distance of 1.570" (40.0) before engagement.

-13 -

Card Physical Dimensions

~ Connector Reliability

The interconnect system is specified in Paragraph 3.2.0 shall meet or exceed all reliability test
requirements of this paragraph.

No. Item Standard Testing

l:U 1. Office Cuaranteed 'lumber of See Paragraph 35.1
M~IIliS:11 Environment Insertions/Ejections
Perfonnans:e 10,000 MIN.

2. Harsh Cuaranteed number of See Paragraph 35.2
- Environment Insertions/Ejections

5,000 MIN.

3. Total insertion 8.8 Ibs (4Kg) MAX. Insert and extract at speed of
force - l"(25mm)/min

4. Total pulling 15lbs (.68Kg) MIN. Insert and extract at speed of
force 1" (25mm)/min

5. Single pin .022 lbs (lOgr) MIN. Pull the gauge pin shown at left
pulling force - atspeed of 1" (25mm)/min.

----+::r- Cauge pin's surface must be

0.0165 ± 0.005 (0.42)
wiped clean of dirt and
lubrication oil.

-
Cauge:
Material- Tool making steel
Hardness - HRC = 50 to 55

,

6. Pin holding 2.2lbs (lKgs) MAX. Push pins on the axis at speed of
force 1" (25mm)/min

7. Vibration a. No mechanical MIL-STD-202F
and high defects should occur MEniOD 204B,

< frequency on the parts. Test condition B (l5C peak),
b. Must not cause 10Hz 2000Hz;

current interruption See detail 1
of lOOns or more.

8. Shock a. No mechanical MIL-STD-202F
defects should occur METHOD 213B,
on the parts. Acceleration SOC,

b. Must not cause Standard holding time 6 ms,
current interruption semisine wave; "

of lOOns or more. SeedetaU 1

-14 -

-<

No. Item

ldaZ 1. Contact
£1Kb:i,1I resistance
I3:lformana! (low level)

2. Withstandahle
voltage

3. Insulation
resistance

4. Current
capacity

5. Insulation
material

-

~ 1. Operating
£nvimn- environment
mental
I3:l1grmalH:i

2. Storage
environment

Standard

a. Initially ._.40 ann MAX.
h. After test _ .• 20 ann MAX.

a. No shorting or other
damages when 500 Vrms
AC is applied for 1 minute

PCMClA PC CARD STANDARD
August 21, 1990

Testing

MIL·STD-I344A
ME'IHOD 3002.1
Open voltage S 20 mV
Test c:ummt 1 mA

MIL·STD-202F
ME'IHOD301

h. Current leakage 1 mA MAX.

a. Initially I,OOOMn MIN. MIL-STD-202F
h. Alter test l00Mn MIN. ME'IHOD302

meuure within 1 minute
after applying 500 V DC

0.5 A per pin

UL94V 0 equivalent

Operating temperature:
-200C to +6OOC

Relative humidity:
95% MAX.
(Non-amdensing)

Storage temperature:
-&OOC to +7()OC

Relative humidity:
95% MAX.
(Non-amdensing)

-15 -

Card Physical Dimensions

No. Item Standard Testing

M! 1. Moisture Contact resistance MIL-STD-202F
Enxirgn- resistance 3.4.2.1.b. METHOOI06E
mental Insulation resistance (excluding vibration); 10 cycles
BailllW 3.4.2.3.b. (1 cycle. 24 hours)

with connecton engaged.

2.Tenninal No physical damage should MIL-STD-202F
shock occur during testing. METHOOI07G

Contact resistance Test condo A, -55°C to +85°C
3.4.2.1.b. 5 cycles (1 cycle = 1 hour)

Insulation resistance with connectors engaged.
3.4.2.3.b.

3. Durability Contact resistance MIL-STD-202F
(High 3.4.2.1.b. METHOOI08A
temperature) Test condo B, 8S°C, 250 hours

with connectors engaged

4. Cold Contact resistance JIS C 5021, -55°C, 96 hours
resistance 3.4.2.1.b. with connectors engaged

5. Humidity Contact resistance MIL·STD-202F
(normal 3.4.2.1.b. METHOOI03B
condition) Insulation resistance Test condo B, 40°C, 90 to 95% RH

3.4.2.3.b. with connectors engaged.

6. Hydrogen Contact resistance JEIDA 38 3ppm
sulfide 3.4.2.1.b. we, approx 80% RH

96 houn, with connecton
engaged

7. Salt water No hannful corrosion - MIL·STD-202F
spray (to contact performance) METHOD 1010

should occur Oft the pin Test condo B, Concentration 5%
and socket contacts. 35°C, 48 hours, with connectors ..

disengaged.
I

·16 -

~ COMectpr Durability

PCMCIA PC CARD STANDARD
August 21, 1990

The intercoMect system as specified in Paragraph 3.2.0 shall meet or exceed all durability require­
ments of this paragraph.

Test conditions for the mate/unmate cycles are:
Cycle rate 400-600 cycles per hour
Temperature 15 to 35°C (59 to 95°F)
Relative Humidity 30-80"
Barometric pressure 24-31 inches of Mercury

UJ. Qffjce Environment

The office environment is defined in EIA-364A as class 1.1- year round air conditioning (non­
filtered) with humidity control.

Test Sequence
Contact Resistance per test method 3.4.2.1.A
Mate and unmate the cOMector for a total of 10,000 cycles
Contact Resistance per test method 3.4.2.1.B

~ Harsh Enyironment

The harsh environment is defined in EIA-364A as class 1.3 - no air conditiOning, no humidity
control with normal heating and ventilation.

Contact Resistance per test method3.4.2.1.A
Mate and unmate the connector 1,000 cycles
HUmidity Resistance per test method 3.4.4.5
Mate and unmale the connector 1,000 cycles
Humidity Resistance per test method 3.4.4.5
Mate and unmale the connector 3,000 cycles
Humidity Resistance per test method 3.4.45
Hydrogen Sulfide test per method 3.4.4.6
Contact Resistance per test method 3.4.2.1.B

rar AL CYL'1.ES - 1,000
(1 cycle -24hours)

TOr AL CYCLES - 2,000
(1 cycle -24hours)

TOTAL CYCLES - 5,000
(1 cycle -24hours)

-17 -

PCMCIA PC CARD STANDARD
August 21, 1990

SUBSTRATE AREA

'--- CONNECTOR

3.378
3.362

(85.80)
85.40

.067J
2X .063

(1.70)
2X .118 MIN 1.60

(3.00) 2.130
2.122 1--------.54•10 "-----...

.041 53.90)

'037~
(1.04 J

0.94

L

.065 -68

.061
1.65)
1.55

.098 "AX 2X(2.50)M

.& RECOMENDED BATTERY LOCATION. THE BATTERY HOLDER SHOULD BE
DESIGNED SO THAT THE POSITIVE SIDE OF THE BATTERY IS UP.

2. THE I C MEMORY CARD SHALL BE OPAQUE (NON SEE THRU>

Fig 2. n1'E n PC Card Package Dimensions

-19 -

Card Physical Dimensions

Fig 3. TYPE I PC

Fig 4. TYPE n PC

-20-

CONNECTOR END

PCMClA PC CARD STANDARD
August 21, 1990

2.968
(75.39) MAX

~ ~ PROTECT JElDA/PCMCIA (LOGO)

t-------(~~~;O) MAX -.J
..&. IF WRITE PROTECT SWITCH INSTALLED

&" OTHER REGULA TORY LOGOS.

NOTE: Labels must withstand aU environmental lesta U lpec:ified.

Fig 5. PC Card Label

- 21 -

Card Physical Dimensions

I L,cm) MIN

PIN INSERTION

Fig 6. Card Connector Socket

rl~~,)REFI

.L--$$$$ $

S- $$$$ $
.046 054 .054 J L

(1.37) '046
1.17 (i.37) PITCH

1.17

PIN LAYOUT
2 ROW - 68 PINS

.037

.033

(0.95)
O.BS

2.138

.037

.033

(0.95)
0.85

2.132 1------..... 54.30):0------1
54.15

fRONT VIEW

Fig 7. Connector

-22-

.020 MAX (O.S)

MIN <1100>

PCMCIA PC CARD STANDARD
August 21, 1990

Jlh
,

.018
•• 016

.... 018 "AX J (0.46) .,. (0.46)M 0.42

ENCAGEMENT AREA

.024 15·

.016 10·
0.60)
0.40

t---L-~

NOTE: Length "L .. given in Table 2.

Fig 8. PC Card Contact Pins

- 23 -

Card Physical Dimensions

INSERT CARD

r
• e-u-.. -u-u-.. -uru----.. -u----u-e e eI '(5~~~5)REF

'34 J'I \:e;-:=::=::=::=::=::~f~::=::=::=::=:::YlJ K Lx :g~~
833 .052 (1.955)

.048 LeSS

1.654 (1.32) 81
1.648 1.22."

t---------(':~8?1)

Fig 9."Recommended Right Angle Connector PCB Footprint

. r't ~:::
'Z --',i e e----u - u ---- u - u - ___________ u_u_ e e 1/ t

"e e ... ----------------T----------------~: e.A rI (5~~§1 REF

'35 /i \: e.:~:=::~-:=::=::=::~f::~::=::~:~-:~?~ I ~ Lx(i_~~1\
.048 ~ ~ 1.ge

1.654 (1.32 \ 868"

..... ______ ~1.648.---------I.-22-J-__I
(:~8?1)

Fig 10. Recommended Straight Connector PCB Footprint

·24·

PCMCIA PC CARD STANDARD
August 21, 1990

2.2<1<1 &
2.13<1

.-----(·57.0)
54.2

2
2

.13
3

8 l' ~ __________ .1 2~~~ ______ ~
(54.3)

54.15

1.570 M'N
(40.0) &

IT IS RECOMENDED THAT THE I C MEMORY CARD BE GUIDED FOR A MIN
DISTANCE OF 1.570 (<10.0).

THE CONNECTOR MUST GUIDE THE I C MEMORY CARD FOR A MIN
DISTANCE OF .197 (5.0) BEFORE ENGAGEMENT.

MAX PIN LENGTH .201 (5.1)

Fig 11. PC Card Cuide Cuidance

-25 -

Card Physical-Dimensions

LENGTH WIDTH
INTERCONNECT SUBSTRAT~

AREA & AREA I

TYPE I 3.370 :.008 2.126 :.004 .065 t.002 .065 :.002
(85.6 :0.20) (54.0 :0.10) (1.65 to.06) (1.65 :0.06)

TYPE II 3.370 :.008 2.126 :.004 .065 :.002 .098 MAX
(85.6 :0.20) (54.0 :0.10> (1.65 to.06) (2~5)

NOTES:
& INTERCONNECT AREA AND SUBSTRATE AREA THICKNESS ARE SPECIFIED FROM

THE IC MEMORY CARD CENTER LINE TO EITHER THE TOP OR BOTTON SURF ACE

2. MILLIMETERS ARE IN PARENTHESES ().

Table 1 PC Card Dimensions

PIN TYPE PIN LENGTH (U PIN •

DETECT .142 (3.6)
.134 3.4 36.67

GENERAL .171 (4.35) ALL
.163 4.15 OTHER PINS

POWER .201 (5.1) 1.17.34.
.193 4.9 35.51. 68

Table 2 Host Connector Pin Configuration

-26 -

SECTION 4
CARD INTERFACE

-27 -

PCMCIA PC CARD STANDARD
AUJUIt 21, 1990

Card Interface

4. CARD INTERfACE RESERVED PINS

PCMCIA MEMORY CARD PIN ASSIGNMENTS

.... 1 P_I_"_! _S1_Sl_"'_1 __ il_IO_' _F_U"_ct_I_O" _____ 1 +1--.1-1 I PI" I SISI".I i 1I0! Fu"ctlo" I +I-I
! 1 I GND I !

I I Ground 35 GND Ground I

2 I D3 11/0 Data bit 3 36 CD1 0 carddeted -
3 D4 1110 . Data bit 4 37 011 110 Data bit 11

4[05 1110 . Data bit 5 38 012 I/O Data bit 12

5 I De I VOl Data bit 6
I

39 013 110 Data bit 13

6 07 I VOl Data bit 7 40 014 VO Data bit 14

7 CE1 I I carcsenable - 41 015 VO Data bit 15

8 I A10 I I AcId,." bit 10
I

42 CE2 I Card enable - .. '

9 OE
,

I i Output enable - 43 RFSH I I Refresh ~

I

10 I A11 I Add,.ss bit 1 1 I 44 RFU Reserved

11 i A9 I I Add,. .. bit 9 :
45 RFU I Reserved

12 I A8 I I I Add,.s, bit 8 I 46 A17 I I Add,." bit 17

13 i A13 I I I Add,.ss bit 13
I

I
I 47 A18 I AcId,." bit 18 I

14 A14 I I Add,.ss bit 14 :
;

48 A11 I Add,. .. bit 19

15 I WElPGM I i Write enable I -I
41 A20 I Add,. .. bit 20

16 I RDYI8SY 0 Reaclyfousy (EEPROM) I +1- 50 A21 I Add,.ss bit 21

17 ! Vt:I; 51 Vt:e I

18 I Vpp1 I i 52 Vpp2

11 I A16 I I AcId,.ss bit 16 53 An I I Add,.ss bit 22

20 I A15 I I Add,.ss bit 1 5 I
I I 54 A23 I Add,.,. bit 23 I

21 A12 I I i Add,.ss bit 1 2 i 55 A24 I Add,.ss bit 24

22 A7 I I Add,. .. bit 7 56 A25 I Addrua bit 25

23 I A6 I Add,.ss bit 6 ! 57 RFU I Renrved

24 ! AS I Add,. .. bit 5 ! 58 RFU Renrved

25 AI. I Add,... bit 4 I 59 RFU ReHrved .,
'.~

26 ~ I Add,... bit 3 60 RFU I ReHrved

27 A2 I Addrau bit 2 81 REG I Register Hlect -
28 A1 I Add,... bit 1 62 BV02 0 Battery voltage detect 2

2t AO I Add,... bit 0 63 BV01 0 Battery voltage detect 1

30 DO 110 Data bit 0 64 De 110 Data bit 8

31 01 110 Data bit 1 65 DO I/O Data bit 9

32 02 110 Data bit 2 88 010 I/O Data bit 10

33 WP 0 Wrtte proted + 67 CO2 0 card detect - ,

34 I GND Ground 68 GND Ground

NOTE: Active -low- signals are Indicated by -(minus).

Active -high- signals are inficated by +(plus).

- 28-

PCMCIA PC CARD STANDARD
August 21, 1990

4.0 MEMORY CARD FEATURES

Item Feature
Access Random Access
Data Bus Bus 16 bits/8 bits
Memory Types MaskROM, O'Il'ROM, EPROM, EEPROM, Flash-EPROM, SRAM
Memory Capacity 64MB (A()'A2S) maximum

REGfundion " ·,Attribute Memory for storing card identification

Table 3 Features of PCMOA Memory CarcI

i:.QJ. MemQO'Types and Speed Vmion

Memory Type Speed Version

2SOns 200ns lSOns lOOns

SRAM defined defined defined defined

MaskROM, OTPROM, EPROM not
EEPROM, Flash-EPROM defined defined defined defined

Table 4 Memory Type. and Speed Venion

4.1 SIGNAL DESCRIPTION
Signals on the PCMCIA interface are considered asserted, (+) within the range 2.0 to 5.25 volts and
negated, (-) within the range of 0.0 to 0.5 volts. All signals are considered to be active when the
line is asserted; (+)·unless the signal name is preceded by the minus sign, (-) when it shall be
considered active when the line is negated.
AU signals are grouped under 4 classifications, I (Input) 0 (Output) I/O (Bidirectional) and R
(Reserved). Input signals are those driven by the host and Output signals are those driven by the
Memory Card
All pins identified as ground shall be connected to signal ground at the host Signal pins identified
as Reserved shall have no connection at the host
The data path to the memory card, is 16 bits wide and consists of signals 00-015. The card
supports an address bus, of 26 bits, (A()'A2S) giving a maximum addressing range of 64
megabytes.

jll AdcSms IUS (AQ..A25)

Signals AO through A2S are address bus lines driven by the host which enable direct ad­
dressing of up to 64 megabytes of memory on the card. Signal AO is not used in word
access mode. Signal A2S is the most significant bit. Bit number and significance decrease
downward to AO.

~ pata BUS CDO-DI5)
Signals DO through 015 constitute the bidirectional data bus. The most Significant bit is
DIS. Bit number and significance decrease downward to DO.

-29 -

Card Interface

ill Card Enable (-eEl" -CE2)
The -eEl and .Q2 lines are active-low card enable signals driven by the host; -CE1 is used to enable even bytes, -eE2 for odd bytes. A multiplexing scheme based on AO, -eEl and -cE2 allows 8 bit hosts to access all data on 00 .. 07 if desired. See table 6.
Reference Section 4.3.1 for additional information regarding (Main Memory Read Function­ality).

!J.:i Output Enable (.QE)

The'()E line is the active-low signal driven by the host which is used to gate ~d data from the memory card. Memory cards incorporating static RAM fall into two categories: cards for which the -OE signal must be deasserted during write operations, and cards that do not use the -OE signal during Write operations and allow the signal to be in either state.

!:U Write Enable/Pqram (-WE/-PGM)
The -WE/-PGM signal is driven by the host and used for gating Write data to the memory card. This line is also used for memory cards employing programmable memory technolo­gies. See Section 5 for identification of programmable memory technology cards.

U& Ready/Busy(+RDY/-BSY>
The +RDY /-BSY line, is driven low by the memory card to indicate that the memory card circuits are busy, and unable to accept a data transfer operation. Th~ +RDY /-BSY signal is set low when the card is busy processing a previOUS write command. The signal +RDY / -BSY is set high (+), when the memory card is ready to accept a new data transfer com­mand. The Host memory card socket must provide a pull-up resistor. See Table 16, Electri-. cal Interface.

iJ2 Card Detect (-CPl " -CO2)
The -COl and -CO2 signals provide for proper memory card insertion detection, and have ... been positioned at opposite ends of the connector to facilitate the detection process. The signals are connected to ground internally on the memory card; thus they will be forced low whenever a card is .placed in a host socket. The host socket interface circuitry shall provide 10K pull-up resistors to Vee on each of these signal pins.

Write Protect C+wp)

The WP output signal is used to reflect the status of the Write Protect switch on the mem­ory card. Ii the memory card Write Protect switch is present, this signal will be asserted by the card when the switch is enabled, and deasserted when the switch is disabled. Ii the memory card has no Write Protect switch, the card will connect this line to ground or Vcc, . depending on the condition of the card memory. Ii the card can always be written, the pin will be connected to ground. Ii the card is pennanently Write Protected, the pin will be connected to V cc.

-30-

U:2 Attribute Memoa Select (-REG)

PCMCIA PC CARD STANDARD
August 21,1990

The -REG signal is kept inactive, (+) for all nonnal accesses to what is known as the Main

Memory of the card. When this signal is active, (-) access is limited to Attribute Memory.

Attribute Memory is a separately accessed section of memory on the card and is generally

used to record card capadty and other configuration and attribute information. Main

Memory is used to store user data.

The timing of Attribute Memory may be different than that of Main Memory, refer to

manufacturer's specifications for details. When Attribute Memory is accessed, only data

signals DO-D1 are valid and signals 08-015 shan be ignored. Signals-cEl and -eE2 and

AO are still valid, but it is only possible to select even addreSle5, (a combination of -cEll

-cE21 AO that requests an odd byte will result in invalid data on the bus. Ref. Table 9 .

. For those PC memory cards that do not have a section reserved for Attribute Memory, all

Main Memory addresses shan begin with address (hex) OH and proceed for a minimum of

16 kilobytes of contiguous space.

U:..Ul Battet)' VOItI" Detect (BVOl ck BVD2)

The signals, BVOl and BV02 are generated by the memory card, as an indication of the

condition of the battery on the memory card.""'"

Both signals are kept asserted when the battery is in good condition. When BV02 is ne-

gated while BVDl is still asserted, the battery is in a warning condition and should be

replaced, although data integrity on the card is still assured. If BVOl is negated with BVD2

either asserted or negated, the battery is no longer serviceable and data is lost. (Ref. Table

17.)

iJ.J.l. Prosram Volta= MPl ck vPn>

The VPPl and vPP2 signals supply program voltages for programmable memory opera­

tion. These pins are to be COMected to V cc when vPPl or VPP2 are not active and are not

.. being used for altering programmable memory. Refer to section 5 and the Card Informa­

." tion Structure for more information on the characteristics of VPPl and VPP2.

UJl Card Volta&e and Ground <Vcc ck GNP)
The vee and GND input pins have been placed at symmetrical positions on the memory

card to provide safety in the case of an inverted card insertion. Two power pins and four

ground pins are employed to reduce the impedance between the memory card and the

system.

- 31 -

Card Interface

W1 Refresh CRFSH>
Intended use is for pseudostatic SRAMS <PSRAM). Will be more clearly defined for use by
a future version of this standard.

Wi Reserved Pins RFU
Several pins have been identified as Reserved for Future Use. Neither memory cards, nor
Host systems shall make any electrical connections to these pins.

4.2 OPERATING CONDmONS

Item Symbol IEEE Symbol Conditions

Operating Voltage VCC 5V:t5%

Signal Interface Level - TTL or CMOS Level

Table 5 Operating ConditioN

4.3 MEMORY FUNCTION

~ Main Memol)' Function

This section describes operations of Main Memory Area.

!J.J Main Memoty Read Function

The memory card can be configured with different types of memory devices, (such as
SRAM, MaskROM, etc.). Among all types however, the Read function shares common
signal state sequendng.

To access "Main Memory"i the signal-REG shall be kept inactive and the signal-QE shall
be active during the Read cycle. Signals -eEl & -eE2 control the activation of the Memory
Card and AO control byte ordering on the data bus lines DO-OI5. Table 6 shows the signal
states and data bus validity for the Read functions described below.

When both -eEl and -eE2 are inactive, the card is in standby mode. When either -eEl or

-eE2 become active, (low) the memory card is activated and ready for data transfers.
When -eEl is active and -CE2 is not active, Byte Access mode is enabled (8-bit transfers).
Both the even-byte data and odd- byte data outputs will be valid in data bus lines 00-07.
The selection of an even-byte or an odd-byte is controlled by signal AO.
When using word access (t6-bit transfers), both -eEl and -cE2 are active (low), and the
even-byte data and odd-byte data outputs are valid in data bus lines DO-OI5. During
Word mode, signal AO is ignored.

Odd-byte Only access is enabled by -eEl being inactive and -eE2 active. During Odd-byte
Only access, only data lines 08-015 contain valid data and address signal AO is ignored.

-32 -

,

Function Mode -REG -eE2 -eEl AO -OE

Standby Mode X H H X X

Byte Access (8bits) H H L L L

H H L H L

Word Access (16bits) H L L X L

Odd-Byte Only Access H L H X L

-WE

X

H

H

H

H

PCMClA PC CARD STANDARD
August 21, 1990

VPP2 VPPl 015-08 01-00

vee vee High-Z High-Z

vee vee High-Z Even-Byte

vee vee High-Z Odd-Byte

vee vce Odd-Byte Even-Byte

vec vec Odd-Byte High-Z

Table 6 Main Memory Read Function for all type. of Memory

~ Main Memory Write Function for $RAM. EEPROM and Sin&le Supply FLASH Card.

During Write mode, the function of signals -REG, -CEl, -eE2 and AO are the same as in the

Read mode. .

During Write mode, Signal-OE must be kept inactive, and signal-WE/-PGM is active. The

Memory Card can perform Write operations in 3 modes: Byte access, Word access, and

Odd-byte Only access. Refer to Table 1 for signal states and data bus validity for Main

Memory Write modes. ".,

Function Mode -REG -eE2 -eEl AO -OE -WE VPP2 VPPl 015-08 D1-oo

Standby Mode X H H X X X vee vee xxx xxx

Byte Access (8bits) H H L L H L vee vee xxx Even-Byte

.. H H L H H L vee vee xxx Odd-Byte

Word Access (16bits) H L L X H L vee vee Odd-Byte Even-Byte

Odd-Byte Only Access H L H X H L vee vee Odd-Byte xxx

Table 7 Main Memory Write Function for SRAM, EEPROM and Single Supply FLASH Card

~ Main MemOI)' Write Function for OD'ROM. EPROM and flash-EPROM

During the Program function, signals -REG,-cEl, -CE2, AO,'()E, and -WE/-PGM are the

same as in the Main Memory Write function for SRAM Cards. In addition. 3 access modes

are supported as in the Read and Write functions. Refer to Table 8 for signal states and bus

validity regarding the explanations below.

In Byte access Program mode, when AO is asserted, VPP2 shall be at the programing volt­

age level and VPPllnactive. Conversely, when AO is negated, VPPl shall be at the pro­

graming voltage level and VPP2 shall be inactive. For Odd-byte Only access mode, VPP2

shall be at the programing voltage level and VPPl inactive, (AO is not used).

When Word access mode is used, both VPPl and VPP2 are kept at the programing voltage

level.

- 33 -

Card Interface

Function Mode REG CE2 eEl AO PE WE VPP2 VPPI 015-08 07-00

Write Inhibit X H H X X X veeorVPP veeorvpp xxx xxx
Byte Access (Sbits) H H L L H L vee VPP xxx Even-Byte

H H L H H L VPP vee xxx Odd-Byte

Word Access(16bits) H L L X H L VPP VPP Odd-Byte Even-Byte

I Odd-Byte Only Access H L H X H L VPP vee Odd-Byte xxx

Table 8 Main Memory Write Function for OTPROM, EPROM and FLASH EPROM

jJ:! Attnpute Memcny Function
Attribute Memory is an optional space intended for storing memory card identification and
configuration infonnation, and does not require a large address space. Attribute Memory
is limited to 8-bit wide access for economic reasons.

~ Attribute Memory Read Function
For the Attribute Memory Read function, signals -REG and -OE must be active during the
cycle. As in the Main Memory Read function, the signals -eEl and -eE2 control the even­

. byte and odd-byte address, but only even-byte data is valid during the Register function.
Refer to Table 9 for signal states and bus validity for the Attribute Memory Read function.

Function Mode REG eE2 eEl AO OE WE VPP2 VPP1 015-08 07-00

Standby Mode X H H X X X vee vee High-Z High-Z·

Byte Access (Sbits) L H L L L H vee vee High-Z Even-Byte

L H L H L H vee vee High-Z Not Valid
-

Byte Access (16bits) L L L X L H vee vee Not Valid Even-Byte

Odd-Byte Only Access L L H X L H vee vee Not Valid High-Z

Table 9 Attribute Memory Read Function

!:M Attribute Memory Write Function for $RAM. EEPROM Card and Sin&1e SURRly FLASH Cards
While writing Attribute Memory, signals -REG and -WEI -PGM must be kept active for the
entire cycle while the signal -OE is kept inactive for the entire cycle. See Table 10 for signal
states and bus validity for the Attribute Memory Write function.

Function Mode REG eEl CEI AO OE WE VPP2 VPPI 015-08 07-00

Standby Mode X H H X X X vee vee xxx xxx
Byte Access (8bits) L H L L H L vee vee xxx Even-Byte

L H L H H L vee vee xxx xxx
Byte Access (16bits) L L L X H L vee vee xxx Even-Byte

Odd-Byte Only Access L L H X H L vee vee xxx xxx
Table 10 Attribute Memory Write Function for SRAM and Single Supply EEPROM

-34 -

PCMCIA PC CARD STANDARD
August 21, 1990

!aU Attribute MemoO' Write Function for O'D'RDM, EPROM and flASH Cards

The Program function for OTPROM and Dual Supply EEPROM Cards is the same as the

Write function for SRAM Cards except for the functionality of VPP1 and VPP2. VPPl and

VPP2 are activated as shown in Table 11 for the write function for OTPROM and Dual Sup­

ply EEPROM Cards.

Function Mode ~G CE2 CEI AO DE WE VPP2 VPPl D1S-DB 07-00

Write Inhibit X H H X X X VCCorVPP VCCorVPP XXX . XXX

Byte Access (Bbits) L H L L H L VCC VPP XXX Even-Byte

L H L H H L VCC VCC XXX XXX

Byte Access (16bits) L L L X H L VPP VPP XXX Even-Byte

Odd-Byte Only Access L L H X H L VPP VCC XXX XXX

Table 11 Attribute Memory Write Function for OTPROM, EPROM, Dual Supply EEPROM,

FLASH-EEPROM and EEPROM

~ Write PrQtect Function

, Memory Writeability Symbol WP WP Minimum Card Information Contents
-.,", Combinations on Card Switch Signal Related to Write Protect

~ Always Writeable A None Low No WP Information Needed - MemQry follows WP

. " signal which is always Low (Not Protected).
Optionally the Card info may specify all devices as
Always writeable.

, Never Writeable N NQne High No WP Information Needed - Memory follows WP
I signal which is always High (Protected).

Optionally the Card info may specify all devices as
Never writeable.

.' Switch Controlled S Protect Hi&h No WP Information Needed - Memory fQllows WP

No prot Low signal.

Always/Never AN None Low Card info must specify devices (addresses) which
ignore the WP signal and are Never writeable.
The remaining devices follow the WP signal and

are therefore Always writeable.

Always/Switch AS Protect High Card info must specify both devices (addresses)

:

which override the WP signal and are Always

No prot Low writeable as well as the devices which override the
WP signal and are Never writeable.

, Never/Switch NS Protect High Card info must specify devices (addresses) which
ignore the WP signal and are Never writeable.

No prot Low The remaining devices follQW the WP Signal.

Always/Never ANS Protect High Card info must specify both devices (addresses)

Switch which override the WP signal and are Always

NQprQt Low writeable as well as the devices which override the
WP signal and are Never writeable. The remaining
devices fQllow the WP signal

Table U Write Protect Functions

- 3S -

,"

Card Interface

4.4 TIMING FUNCTIONS

idJl Main Memory Timin, Specification
This sedion desc:ribes Main Memory Access Timing.

UJ. Main Memory Read Timin, for all txPes of Memcuy
There are several types of Memory Cards: SRAM, OTPROM, etc., and within a memory
card, several types of memory devices may be mounted. To maintain compatibility among
several types o(memory,"read timing specifications are common. The read timing specifica­
tions are shown in Table 13.

SpeedVenion 250M 200ns 150fts

ItIm Symbol IEEES~ Min Max Min Max Min MIX Min Max
Rad Cyde Tame tcR tAVAV 250 200 150

Address AcceIs Tame tl CA) tAVQV 250 200 150

wd Enable AcceII Time ta (CE) tELQV 250 200 150

Output Enable Access Time ta (OE) teLQV 125 100 75

Output Disable Time &om CE tdiJ(CE) tEHQX 100 90 75

Output Disable Time &om OE tdiJ(OE) tCHQZ 100 90 75

Output Enlble Tilne &om CE ten(CE) tELQNZ 5 5 5

Output Enable TUne from OE ten(OE) tCLQNZ 5 5 5

Data Valid &om Add Change tv(A) tAXQX 0 0 0

Table 13 Main Memory Read Timing Specification for all type. of Memory

4.4.2 Write Timin, for SRAM Card
Write Timing Specs are shown in Table 14.

Speed Version 250fts 200ns l50fts

ItIm Symbol IEEE Symbol Min Max Min Max Min Max Min Max

Write Cyde Tune teW tAVAV 250 200 150

Write Pw.e Width tw(WE) tWLWH 150 120 80

Adclres Setup 1bne Uu(A) tAVWL 30 20 20

Adclres Setup TIme for WE tau(A·WEH> tAVWH 180 140 100

Card Enable Setup 1bne for WE tau (CE·WEH) tELWH 180 140 100

Data Setup 1bne far WE tsu(D.WEH) tDVWH 80 60 50

Dati Hold TIme th(D) tWMDX 30 30 20

Write RecovS' TIme trec(WE) tWMAX 30 30 20

Output Disable TIme &om WE tdiJ(WE) tWLQZ 100 90 75

Output Disable TIme &om OE t cIi5 (OE) tCHQZ 100 90 75

Ou~ Enable Time from WE ten (WE) tWHQNZ 5 5 5

OuJput Enable Time &om OE ten (OE) tCLQNZ 5 5 5

Output Enable Setup from OE tau (OE·WE) tCHWL 10 10 10

Output Enlble Hold from OE tH (OE·WE) tWHCL 10 10 10

Table 14 Main Memory Write Timing Specification SRAM

-36- "

lOOns

Min Max

100

100

100

SO

50

50

5

5

0

lOOn,

Min Max

100

60

10

70

70

40

15

15

SO

SO

5

5

10

10

PCMCIA PC CARD STANDARD
August 21, 1990

4.4.3 Main Memoty Write Timini for 011'ROM. EPROM. and FLASH EPROM

The programming specification of various memory devices are not standardized. More­

over, programming specifications may vary among different generations of the same

device. Because of this situation, it is not practical to set standardized programming specifi­

cations for these memory cards.

4.4.4 Attribute Memoty Read Timini Specification

The Attribute Memory's access time is defined as 300ns. Detailed timing specifications are

shown in Table 15.

Speed Version . 300ns

Item Symbol IEEE Symbol Min Max

Read Cycle Time tcR tAVAV 300

Address Access Time ta(A) tAVQV 300

Card Enable Access Time ta (CE) tELQV 300

Output Enable Access Time ta (OE) tGLQV 150

Output Disable Time from CE tdis (CE) tEHQZ 100

Output Disable Time from OE tdis (OE) tGHQZ 100

Output Enable Time from CE ten(CE) tELQNZ 5

Output Enable Time from OE ten (OE) tGLQNZ 5

Data Valid from Add Change tv (A) tAXQX 0

Table 15 Attribute Memory Read Timing Specification for all types of Memory

~ An

I.(A)

Ci

Do(Doul)

Note 12:The hatched portion may be either high or low.

Note 13:WE is high.
Note 14: Output Load • 1 TIt + 100pf

leR

Fig 12. Read Timing Diagram

-37 -

l~ ,,(AI

Card Interface

leW

An

l.u(CE·WEH)

Ce

lau(A.WEH)

-OE

'.(WE)
We

DnCDln)

. DoCDout) ----------...p;~------.;....--_4IE~----

• Apply to cards for which ~E may be either (high or low) active or inactive during write operations.
Note 15: The hatched portion may be either high or low.

- Note 16: When the data I/O pin is in the output state, no signals shall be applied to the data pins coo-015) by the system.

Fig 13. Write Timing Diagram (WE control)

t--------tcW---------..I Jt----
tau (A)

t.u lDo'NE"I\-~

DnCDln) ----------0(] DATA INPUT ESTABUSHED 1>-------
Note 17: OE must be high ("H").
Note 18: The hatched portion may be either high ("Hi or low C'L ").
Note 19: When the data I/O pin is in the output state, a reverse phase signal should not be applied to it.

Fig 14. Write Timing Diagram(CE control)

-38 -

PCMClA PC CARD STANDARD
August 21, 1990

4.5 ELECTRICAL INTERFACE

I

111 Sima! Interface

. Electrical specific:ations must be maintained to insure data reliability.

The Memory card operating voltage for Vee is 4.15 to 5.25 DC. Interface signal levels are

compatible with standard TI'L or CMOS.

Item Signal Card Host Card Output
Format

Control Signal CEl pull-up to VCC R > 10K ohms
CE2
REG

OE pull-up to VCC R > 10K ohms
WE/PGM

ROY/BSY pull-up

RFSH NC NC not defined

Address Ao-A2S pull-down R > lOOK ohms·

Data Bus 00-015 pull-down R > lOOK ohms·

Card Detect COl connected to GND in the c:ard pull-up

CO2

Reserved Pin RFU NC NC

Battery IDetect BVD1: pull-Up asserted or

BVD2 NOTE 1 deasserted

TAble 16 Electrical InterfAce

·Resistor is optional

NOTE 1: For implementation of BVOl only type system.

~ Address Oecodinl

The Memory Card's maximum address space is 64M Bytes. The address bus is defined in

Ao-A2S with AD being the LSB and A2S the MSB. Address bit AO is a "don't care" when

card is in word access mode.

In case of SRAM without Attribute Memory, address decoding is recommended as follows:

1. Minimum memory unit 16KB

2. Memory address starts from COh

3. Memory units exist continuously.

- 39 -

. /

Card Interface

4.6 CARD OETECI'

The Memory Card provides the means to allow the system to detect when the card is inserted or
removed. Signal lines COl and C02 are connected to GNO in the card. A pull-up resistor must be
connected to COl and C02 on the system side.

Vee

A-___

B

DATA PROCESSING
EQUIPMENT

-CD1

CD2

MEMORY CARD

Fig. 15. Cud Detect

4.7 BATrERY VOLTAGE OETECI'

When using SRAM Cards, it is critical for data integrity of the system to be able to determine the
status of the on-card battery. The SRAM card provides two status signals for this purpose: BVDl and
BVD2. -The Memory Card contains one or two OP-AMPs and one or two reference voltages. The
Memory Card compares the battery voltage with the reference voltages. Battery status is expressed
on 2 digital signal1ines, BVDl and BV02.lf signal BVD2 isn't supported, BVD2 is held to Vee
through a pull-up resistor by the card.

BVDl (##63) BVD2 (*62) COMMENT

H H 'GREEN' Battery Operational

H L 'YELLOW' Battery should be replaced. Data is OK.

L H 'RED' Battery & Data integrity is not guaranteed.

L L 'RED' Battery & Data integrity is not guaranteed.·

Table 17 Battery Voltage Detect

• If BVD2 is not supported, BV02 is held to vee and only one reference voltage is required •.

-40 -

PCMCIA PC CARD STANDARD
August 21, 1990

4.8 POWER-UP AND POWER-DOWN

!:U Power-yp/Power-down Timin,
To retain data in the SRAM .Card during power-up or power-down cycles, a timing specifi­
cation is defined as follows.

Value

Item Symbol Condition Min Max Unit

. CE signallevelt2 Vi (CE) OV < VCC < 2.0V 0 ViMAX V

2.0V.s VCC <VIH VCC-O.l ViMAX

VIH<VCC VIH ViMAX

CE Setup Time tsu (vCC) 20 ms

CE Recover Time tree (VCC) 0.001 ms

VCC Rising Time1l tpr 10%->90% of (VCC +5%) 0.1 300 ms

VCC Falling Time" tpf 90% of (VCC -5110)-> 10% 3.0 300 ms

ViMAX means Absolute Maximum Voltage for Input
in the period ofOV S vee <2.0V, Vi (eE) is onlyOV-ViMAX

11 The tpr and tpf are defined as '1inear waveform" in the period of 10~ to 90~ or vice-versa,
Even if the waveform is not "linear waveform", its rising and falling time must be met this specification.

Table 18 Power-uplPower-clown Timing

VccMlN mean. Minimum Operating Voltage.

vce

.... ---- CE',CE2

. Vee

CE" CE2

Fig. 16 Power-uplPower-clown Timing

·41 -

Card Interface

~ Data Retention

This specification does not intend to guarantee retention of data stored into memory cards
conforming to this Specification. The conditions in the preceding tables show the minimum
requirements to ensure data retention. Card vendors and system vendors may have to ne­
gotiate with each other to determine the detailed method of guaranteeing data retention for
specific memory card models.

UJ Sywtement
The dataretention.capabilityof the memory card. during insertion/removal with power
active depends on the individual Memory Card model, manufacturer's environmental
specifications, and other conditions. Therefore, there is no guarantee of data retention
during insertion/removal with power active. Appendix 2 provides technical reference
information on a suggested circuit for insertion/removal with power active.

4.9 FUTURE TASKS and REMARKS

!£l Insertion/Removal with Power Active

PCMCIA has recognized the market need for insertion/removal of the card with power
active. PCMOA has been discussing this issue but has not yet achieved concensus on a
specification which would guarantee data retention during insertion/removal with power
active. PCMCIA will continue to discuss this issue at future meetings.

i:Y . Standardization of EPROM and EEPROM Pgrammin&

Programming specifications for EPROM and EEPROM are not standardized at the device
level yet. The programming voltage, timing, and other conditions·vary with individual
vendors. Due to this situation, it is impossible to standardize at the memory card level.
PCMCIA desires device vendors to standardize their programming voltage, timing, and
other conditions. The memory card committee will continue to work towards a standard
memory card which is easy to use and reliable .

. ~ Wide Operatinl Volta=

There is a large potential market of memory cards for battery powered equipment. Low
voltage operation is urgently needed by this market. To respond to these needs, PCMOA
is investigating means by which low voltage memories can be supported by the standard.

lli I/O Functionality

PCMCIA is working on defining a standard I/O function. This I/O functionality will allow
• variety of I/O cards, such as communications cards or disk emulation cards, to be imple­
mented. The PCMOA committee has set fall '90 as the target date by which it will have a
draft of the I/O standard.

-42-

PCMClA PC CARD STANDARD
August 21, 1990

SECTION 5

.CARDMETAFORMAT

-43 -

Cud Metaformat

'u The Meta Format

2alJ. Goals of This Standard

The following goals guided the development of this standard.

I. We want to be able to support several different file system formats on the card, both DOS compat­
ible and other file systems <e.g., XENIX). We also want to support applications such as data
storage for VCRs or musical instruments, which might not use any traditional file system to record
their data. At the same time, we'd like for any computer system to be able to look someplace on a
card and determine such things as the card's overall size, type and other low-level information.

Given the wide potential scope of applications for memory cards, the ability to read non-DOS
cards on DOS-based systems will be of Significant value to users.

The ability to detect that a given card is formatted <though perhaps not readable by the computer
which the card is plugged into) is particularly valuable in that it"allows system designers to protect
users against common mistakes. We could prompt the user during the format routine if we detect
that the card is (for example) already formatted as a data storage card for a VCR.

2. Because application requirements differ, we want to be able to support various low-level data
recording strategies <akin to physical formatting for floppies). These strategies would include
sequential recording of blocks of bytes with no error checking; sequential recording of blocks of
bytes with embedded error checking (CRC codes); sequential recording of bytes with separate
error checking (e.g., non-sequential checksum bytes); or sequential non-blocked recording of bytes.

3. For eompatibility with existing operating systems and application programs, we'd like to be able to
cater to those environments that believe that all media are organized in a disk-like way: with

. .'. sectors, tracks and cylinders. On the other hand, we want to support those environments that ..
simply address media as sequences of blocks.

4. We want to be able to support cards that include directly-executable ROM images, and cards that
include a mixture of direct1y-executable images and DOS file systems.

5. We want to be able to support cards for the DOS environment that include programs that can be
directly executed from ROM, or executed from RAM in the usual fashion, depending on the
capabilities of the computer system.

1. The standard should be reasonably general, and should allow for future expansion without major·
rewrites of existing software. At the same time, for common (MS-DOS) environments, WE' don't
want to impose excessive generality.

-44 -

~ Overview

PCMCIA PC CARD STANDARD
August 21, 1990

Our goals include the ability to handle numerous somewhat incompatible data-recording formats and data

organizations. Taking our cue from networking standards, we have structured the overall standard as a

hierarchy of layers. Each layer has a number, which increases as the level of abstraction gets higher.

The layers are:

O. The Physical Layer is the lowest layer of possible standardization. This layer specifi~s the form

factor and electrical characteristics of memory cards.

1. The Basic Compatibility Layer specifies a minimal level of card'data organization. To be compat­

ible at this level, we merely require that each card contain a small CIlrd information struct"rt ("CIS").

This structure contains certain level-1 information, primarily some fundamental information about

the devices used to construct the card: size, speed, and so forth. In addition, this structure con­

tains informati~ on how the card is organized at levels 2, 3, and 4.

The information contained in the card information structure is commonly called the mttaformat.

A card can comply .t level 1 without being required to comply at any higher level; thus, this is an

open standard. Cards that comply only at level 1 need not reserve space for the higher-level

information.

The CIS can be thought of as being separate from the data recorded on the media. Under DOS,

only the BIOS (or device driver) would be aware of its existence.

The information block must be recorded someplace that can be easily found by low-level software.

This standard requires that the primary CIS be recorded in attribute memory, starting at address

zero.'

For flexibility, the as can be extended into common memory. This allows application parameters

_"to be changed by the user, yet attribute memory can be read~nly (therefore cheaper).

At this level, the standard defines two kinds of information:

1.1 Data structures and concepts used by all layers of this'standard.

1.2 Physical device information.

2. The Data Recording Format Layer specifies how the data on the card is organized at the lowest

level. This layer is analogous to the physical format of a floppy disk.

The use of a traditional DOS file system or boot block is NOT Specified (or required) for compati­

bility at level 2.

1 The metaformat standard is also applicable to non-standard card technologies that do not provide for a separate

attribute memory. See Section 5.6.4, page 87.

-45 -

Card Metaformat

Specific formats supported are:

• Blocke~ Unchecked - the bytes are recorded in blocks with no error checking.

• Blocked. Checksummed - the bytes are recorded in blocks with checksums for error check-
ing. .

• Blocke~ with eRe - the bytes are recorded in blocks with CRe codes for error checking.

• Unblocked - individual bytes of the card may be accessed or modified by software directly
at random. The bytes are recorded in a way that does not correspond to a disk organization.
The flaSh file system uses cards in an unblocked way.

3. The Data Organization Layer specifies how the data is logically organized on the card. Possibili­
ties are:

• DOS (or other operating system) file system.

• Flash file system.

• Execute-in-place ROM image.

• AppUcation-specific organization.

A DOS file system can be used with any of the appropriate (blocked) level 2 organizations.

4. The System-Specific Layer defines standards that by their nature are spedfic to a particular oper­
ating environment.

-

4. t The DOS Direct-Execution Standard defines a standardized way of preparing DOS-executable
. images on ROM cards. Programs that conform to this standard will execute correctly on any

- ·'systemthat can read the ROM card; in addition, the programs will directly execute from the
ROM card on those systems that support direct execution.

-46 -

.s.J.a Venctor-S,pedfic Intonnation

PCMCIA PC CARD STANDARD
August 11, 1990

Vendor-spec:i.fic information allows card and software vendors to implement proprietary functions while re­

maining within the general framework of this standard.

. Vendor-spedfic information comes in two kinds:

• Vendor-specific fields are areas reserved in the data structures for free use by vendors. These

fields have no meaning to the standard software.

• . Vendor-specific codes are encoding values reserved'to represent non-standard values in standard

fields. In the absence of other information, standard software must interpret vendor-specific codes

as meaning "the information in this field is not specified." . .
The card-manufacturer field in the CIS gives knowledgeable system software enough informatlon to interpret

vendor-specific fields and code values in the card physical-desaiption tuples.

Similarly, the OEM and INFO fields in the CISTPL_ VERS_2 tuple give knowledgeable system software

enough information to interpret vendor-specific fields and code values in the card logical format tuples.

A system will not, in general, be able to interpret all possible vendor-specific fields or code values. This

. standard requires the following behavior .when a system encounters an unrecognized vendor-specific field.

• U the unrecognized field itself is vendor-specific, the system shall ignore that field.

• U a standard field contains an unrecognized vendor-specific code,·the system must refuse to

perform any operation that requires the information encoded in that field.

-47 -

This page intentionally left blank.

. .

-48 -

S.2 Basic Compatibility (Layer 1)

PCMCIA PC CARD STANDARD
August 21,1990

This layer is the cornerstone of the standard. Any card that complies with this standard shall have at least

a rudimentary card information structure (referred to as the "as") recorded starting at address zero of the

card's attribute memory space.

- The card information structure is a variable-length linked list of data blocks known as tuples. All tuples have

the format shown in table 19.

Byte 7 1 6 I 5 J 4 ~ 3 I 2 I 1 I 0

0 TPL_CODE Tuple code: CISTPL_xxxi see table 2.

1 TPL_UNK Offset to next tuple in list. This can be viewed as the

number of additional bytes in tuple, excluding this byte.

(n)

2 .. n Bytes specific to this tuple.

Table 19 Tuple format

Byte 0 of each tuple contains a tuple code. A tuple code of FFh is a special mark, indicating that there are no

more tuples in the list. Byte 1 of each tuple contains a Unk to the next tuple in the list. If the link field is zero,

then the tuple body is empty. If the link field contains FFh, then this tuple is the last tuple in the list.

There are thus two ~ays of marking the end of the tuple list: a tuple code of FFh, or a tuple link of FFh.

• If a tuple code of FFh marks end-of-list, and the list is stored in writeable memory, it will be easy to

add additional items to the list.

• If the list is stored in read~nly memory, a tuple link of FFh conserves memory space.

System software must use the link field to validate tuples. No tuple can be longer than (2 + value of link field)

bytes long. Some tuples provide a termination or stop byte that marks the end of the tuple. In this case, the

tuple can effectively be shorter than the value implied by its Unk field. However, software must not scan

beyond the implied length of the tuple, even if a termination byte has not been seen.

-49 -

Card Metaformat

The following tuple codes are defined:

tsm ~ Descri~tign

0 CISTPL_NlJLL Null tuple - ignore.
1 CISTPL..DEVICE The device information tuple (common memory).
2-7 (Reserved for future, upwards compatible versions

of the device information tuple)
8-OFh <Reserved for future, incompatible versions of the

device information tuple.)
10h CISTPL_CHECKSUM The checksum control tuple.
llh CISTPL_LONGUNK_A The long-link control tuple (to attribute memory).
12h CISTPL_LONGLINK_C The long-link control tuple (to common memory).
13h CISTPL_LINKTARGET The link-target control tuple
14h C1STPL_NO_UNK The no-link control tuple
ISh CISTPL_ VERS_l Levell version / product-information tuple.
16h CISTPL_ALTSTR The alternate-language string tuple.
li'h CISTPL..DEVICE_A Attribute memory device information.
18h CISTPLJEDEC_C JEDEC programming information for common

memory
19h CISTPLJEDEC_A JEDEC programming information for attribute

memory
1Ah-3Fh (Reserved for future standardization.)
40h CISTPL_ VERS_2 The level-2 version tuple.
41h CISTPL_FORMAT The format tuple
42h C1STPL_GEOMETRY The geometry tuple. Only allowed for disk-like

formats.
43h CISTPL_BYTEORDER The byte-order tuple .. Only allowed for memory-

-
like formats.

44h CISTPL_DA TE The card initialization date and time tuple.
45h CISTPL_BA ITERY The card battery-replacement date and time.
46h C1STPL_ORG The data organization tuple.
4i'h-7Fh (reserved for future standardization)
80h-FEh Vendor-specific.
FFh CISTPL_END The end-of-list tuple

Table 20 Tuple Code.

Note to Implementon: Itisantic:ipated that the CIS wiU be wriHen once, when the card is formatted, and then
rarely (if ever) updated. The standard is not designed to allow incremental updating of the CIS on
Flash media. On EEPROM devices that require the CIS to be erased occasionally (for example when
a Flash-type file system is reorganized), we suggest that a buffer-page strategy be used, with an
appropriate utility that can recover from a power-failure.

Note to Implementon: Most implementations will be limited to reading cards of a specific format, orat most
of a few different formats. Thus, many combinations of values available in the tuples will be non­
portable. We suggest that implementors restrict themselves to the suggested formats presented in "
section 5.33.

-50-

~ Byte Order Within Tuples

PCMCIA PC CARD STANDARD
August 21, 1990

Within tuples, all multi-byte numeric data shall be recorded in little-endian order; that is, the leut-significant

byte of a data item shall be stored in the first byte of a gi yen field. .

Within tuples, all character data shall be stored in the natural order; that is, the first character of the field shall

be stored in the first byte of the field. Fixed length character fields shall be padded with null characters, if

necessary.

~ B,yte Order on Wide Cards

Ifa card has a data-path wider thanS bits, we must assign a byte order to the data path, atleastfor fields within

the CIS that are recorded in common memory space.2 This standard requires that the low-order byte of word

o be used to record byte Oof the CIS. Ascending bytes of each word shall be used to record bytes sequentially

from the CIS; when the first word is filled, the same process shall be repeated on subsequent words until the

entire CIS is recorded. On Intel-family machines, this byte order is equivalent to the native order; other

machines may need to reorder the bytes when reading or writing the CIS ..

The basic compatibility layer does not impose any particular byte order on non-header portions of the card.

However, some data-format layers will impose further requirements.

~ Tuple Format in Attribute Memmy sace

PC Cards have two address spaces: attribute memory space and common memory space. The electrical

specifica tion for PC Cards requires that information be placed only inwm byte addresses of attribute memory

space; the contents of odd byte addresses of attribute memory space are not defined.

·For Simplicity, this specification describes the tuples of the metaformat as if the bytes of each tuple were

recorded consecutively. When a tuple is recorded in common memory space, the bytes will indeed be

record~ consecutively; but when a tuple is recorded in attribute memory space, the data will be recorded

in even bytes only.

Link fields of tuples stored in attribute memory space are handled as follows. If only the even bytes are read

and the tuples are copied into system memory, packed into consecutive bytes, the link fields shall be set

appropriately for byte addressing. This means that the link field values are conceptually the same, whether '~

a tuple resides in common memory or in attribute memory.

2 At present, attribute memory is byte-wide only; only the ~ven bytes are present

- 51 -

Card Metaformat

~ Use of Common MetnoO' Space for Attribute Memory Storale

~ For cost reasons, many ROM cards will not implement a separate attribute memory space. Regardless of the
state of the tREG line, memory cycles will always access common memory. These cards will provide an
attribute-memory-style CIS starting at byte zero of the card, and recorded in even bytes only. If, for space
reasons, the manufacturer wants to switch to a common-memory-style CIS <packed into ascending bytes), a
long-link to common memory shall be embedded in the CIS. The target address of this long-link must be non­
zero, and the common-memory CIS will be stored immediately following the attribute-memory CIS .

. . ·It's important to distinguish between "ttril"d! memory sptlC! and "ttribuu memory. All'PC Cards will have
. attribute memory space, accessed by asserting the tREG pin. Some PC Cards will, in addition, have attribute

memory; in this case, the contents of location 0 in attribute memory space will be different and distinct from
the contents of location 0 in common memory space. However, l!\any PC Cards <e.g., ROM cards) will not
have attribute memory distinct from common memory; in this case, reads from a given location in attribute
memory space will return the same data as reads from the same location in common memory space. Data
being accessed from attribute memory space must be stored in the even bytes only, even if attribute memory
is not distinct from common memory. Regardless of the presence or absence of attribute memory, the CIS for
PC Cards always begins at location 0 of attribute memory space.

This standard allows attribute information to be stored both in attribute memory spza and common memory
space.· Tuples stored in common memory space are recorded byte sequentially; both·the even and the odd
bytes of the card are used to record data.

Note that the use of odd bytes to represent tuple data is controlled by the logical address space the tuple
resides in, not by the type of memory actually used to record the tuple. If the tuple is intended to be accessed
via attribute memory space, it must be stored only in the even bytes; if it's intended to be accessed via common
memory space, it must be stored in even and odd bytes.

-52 -

,
~:

~ Control Tuples

PCMClA PC CARD STANDARD
August 21, 1990

~ ~ The Null Control Tuple

The null control tuple is simply a placeholder. It has a non-standard form: it consists solely of the code

. byte.
'

Byte 7 I 6 I 5 I 4 I 3 I 2 I t I 0

0 TPL_CODE ClSTPL_N1.1LL (DOh): ignore this tuple.

Table 21 The Null Control Tuple

Software shall ignore these tuples. The next tuple begins at the next byte in sequence.

~ The Lonl-Link Control Tuples

. The long-link tuples are used to jump from one tuple chain to another, beyond the limits of the I-byte link field.

The target tuple chain may be in attribute memory space or common memory space, as indicated by the tuple

code.

Byte 7 6 5 4 3 2 1 0

,

0 TPL_CODE Long-link tuple code (CISTPL_LONGLINK_A, I1hi or

CISTPL_LONGUNK_C,12h)

1 TPL_UNK . Link to next tuple (at leaSt 4).

2 .. 5 TPLL_ADDR target address; stored as an unsigned long, low-order

byte first.

Table 21 Long Link Tuple

The tuple code byte selects the new address space: CISTPL_LONGUNK_A indicates that the target is in'

attribute memory space; ClSTPL_LONGUNK_C indicates common memory space.

A given tuple chain shall contain at most one long-Unk tuple. The long-link tuple need not appear as the last,

tuple in a given chain; the entire chain containing the long-link tuple will be processed before the link is

honored.

Software shall verify that the Long-Link tuple points to a Unk-Target tuple before processing the target chain.

Because a Long-Unk tuple may point to uninitialized RAM, it's important that software simply reject target

tuple chains that don't begin with a Unk-Target tuple.

- 53 -

c.rd Metaformat

~ The Link-Ta~et Control Tuple

The link-target tuple is used for robustness. Every long-link tuple must point to a valid link-target tuple. The
link target tuple has one prindpal field: the string "OS". The link field of the link-target should always point

.. to the next byte after the link-target tuple. Processing software is required to check that the link-target tuple
is correct before dedding to process the linked list of tuples at the new target address.

Byte 1 I 6 I 5 I 4 I 3 I 2 I 1 I a

0 'Il'L_CODE OS'Il'L_LINI<TARGET (13h)

1 'Il'L_UNJ< Link to next tuple (at least 3).

2 'Il'LTG_TAG "C"(43h)

3 ''1'' (48h)

4 "S"(S3h)

Table 23 Link Target Tuple

~ The No-Link Control Tuple

The attribute-memory OS of a RAM Card must be kept small for economic reasons. To save attribu \~
memory space, processing softwi.re shall ass\. me the presence of a (OS'Il'L_LONGLINK_ C, aL) tuple as PI . '
of the primary tuple chain - the tuple chain which starts at address a of attribute memory space. n 05

assumption can be overridden by placing an explidt long-link tuple in the attribute-memory CIS. To preve ,.t
software from trying to execute any long-link operations, the card manufacturer can place a <NO-LINK) tuF

;; in the attribute-memory CIS.

Byte 1 I 6 I 5 I 4 J 3 J 2

a TPL_CODE CISTPL_NO_LINK (14h)

1 TPL_LINK Link to next tuple.(may be zero).

Table 24 No-Link Tuple

Note that the body of this tuple is always empty.

I 1 I a

A given tuple chain shaD contain at most one NO-LINK control tuple. No-link tuples and long-link tuples are
mutually exclusive: a given chain may contain either a no-link tuple or a long-link tuple but not both.

-54 -

~ The End..Qf-list Tuple

PCMClA PC CARD STANDARD
Auguat 21, 1990

The End~f-list control tuple marks the end of a tuple chain. It has a non-standard form, consisting solely of
the code byte.

Byte 7 6 5 " 3 2 1 0

0 TPL_COOE CISTPL_ENO (FFh): end of this tuple chain.

Table 25 The End-of-List Control Tuple

Upon encountering this tuple, system software shall take one of the following actions:

• If a long-link tuple was encountered previously in this chain, continue tuple processing at the
location specified in the long-link tuple.

• If a no-link tuple was encountered previously in this chain, no tuples remain to be processed.

• If processing the primary as tuple chain (the list starting at address 0 in attribute memory
space), and neither a long-link nor a no-link tuple were seen in this chain, then continue tuple
processing as if a long-link to address 0 of common memory space was encountered.

• If processing and tuple chain other than the primary CIS tuple chain, and no long-link tuple was
seen in this chain, then no tuples remain to be processed.

-55 -

Card Metaformat

~ The Checksum Control Typle

For additional reliability, the as can contain one or more checksum tuples. This tuple has three fields: the
relative address of the block of as memory to be checked; the length of the block of as memory to be
checked; and the expected checksum. The checksum algorithm is a straight modul~256 sum. Relative
addressing is used to make the CIS as a whole position-independent. The checksum tuple can only validate
memory in its own address space.

Byte 7 I 6 I 5 I 4 I 3 I 2 J 1 I 0

0 TPL_CODE CISTPL_CHECKSUM (lOh)

1 TPL_UNK Link to next tuple (at least 5).

2 .. 3 TPLCKS_ADDR offset to region to be checksummed, stored LSB first.

4 .. 5 TPLCKS_LEN length of region to be checksummed, given LSB first.

6 TPLCKS_CS the checksum of the region.

Table 26 Checksum Tuple

The checksum is calculated by summing the bytes of the selected region, modulo 256. The result must match
the value stored in byte 6 of the Checksum Tuple.

TPLCKS_ADDR contains the offset of the region to be checksllmmed, relative to the start ad dress of this tuple.
The address is a signed, 2 byte integer. Negative values indicate locc.tions prior to the checksum tuple;
positive values indicate locations after the checksum tuple. The exact interpretation depends on the address
space containing the tuplr.

TPLCKS_LEN contains the number of bytes to be checksummed, expressed as an unsigned, 2 byte integer.

If the tuple appears in common memory space, the checksum is calculated in the obvious way: simplt add the
contents of lPLCKS_ADDR (as a signed integer) to the base address of the tuple, yielding the target address.
Starting at the target address, fonn the algebraic sum of all the bytes included in the range. Then compare
the low~rder 8 bits of this sum to the value stored in TPLCKS_CS. If identical, then the region of tuple
memory covered by the checksum passes the checksum test.

If the tuple appears in attribute memory space, then things are a bit more complicated. Again, we choose to
record the data structures in such a way as to minimize the differences between attribute space representation
and common memory representation. To fonn the target address, add (2 • offset) to the base byte target
address of the tuple. Then fonn the algebraic sum of the even bytes in the address range [target, target + 2
• length - 1L ignoring the odd bytes. Compare the low~rder 8 bits of this sum to the value stored in
TPLCKS-':S. .

-56 -

~ The NationaJ-tan""a= Strini Tuple

PCMClA PC CARD STANDARD
August 21, 1990

, Several tuples contain character strings, which are intended to be displayed to the user under some circum­

.stances. Some international applications need the ability to store strings for a number of different languages.

'. Rather than having various languages used in the tuples, this standard provides Alternate-String tuples.

;~Strings in the primary tuples are always recorded in ISO 646 IRV code, using characters in the range

.' [20h..1Eh). Alternate-String tuples contain two kinds of information: a code representing the language (an

ISO-standard escape sequence), and a series of strings. These strings are to be positionally substituted for the

primary strings when operating in that language environment. .

Byte 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0

0 TPL_CODE CISTPL_AL TSTR <t6h)

1 TPL_UNK Link to next tuple (at least p-l).

2 .. m-l TPLALTSTR_ESC ISO-standard escape sequence to select the character
set for these strings. Indicates which character set is
associated with these strings. The leading ESCAPE
is not recorded.

Terminated by a NUL (OOh).

A special escape sequence denotes the PC Extended-

ASCD character set; see appendix

m .. n-l Alternate string 1; translation for first string in most
recent non-ALTSTR tuple. Terminated by OOh.

n .. o-l Alternate string 2; translation for second string in
most recent non-AL TSTR tuple. Terminated by OOh.

... Etc .

P FFh - marks end of strings.

Table 27 Altemate Language String Tuple

~ Tuple Processinl Recommendations

This standard requires system software to be carefully coded in order to prevent incompatibilities from

system to system. This section presents some specific recommendations.

• The routine that reads a given tuple should be coded to start by examining the tuple code. U the

tuple code is not recognized by the routine (e.g., if the code is vendor specific or represents an '.

extension under a future standard), then the tuple should be ignored. U the code is not recognized,

it is safe to read the code byte and the link byte: other bytes within the tuple may represent active

registers.

- 57 -

Card Metaformat

• H the tuple code is known, and if the tuple does not contain active registers (which is the case for
all standard tuples), then the routine should copy bytes into a buffer in main storage. Bytes should
be copied from the code byte up to the last byte before the next tuple. If the link field is FFh
<meaning end-of-list> then a maximum of 257 bytes should be copied from the card to the main
store: the code byte, the link byte and 255 byte of potential tuple data.

• When processing a long-link tuple, software should merely record the target address and address
space; it should not validate the target address, nor should it immediately begin processing of
tuples from the target address. Similarly, when a no-link tuple is found, that fact should be re­
corded for later.

Long-link and no-link tuples should be processed when the end of the tuple chain is encountered.
At that time, if a long-link is to be processed, software should validate the target address (by
checking for a link-target tuple) and begin processing the target chain if it appears to be valid.

• A long-link that points to an invalid tuple chain should not usually cause any diagnostic messages
,,' to be displayed to the user. This situation may result from an unititialized card, from a card which

.' was-initialized for some unanticipated use, or from data being corrupted. Since only the last
mentioned case merits a diagnostic message, it is better to assume either that the card is uninitial­
ized or that it is initialized in some unconforming way.

-58 -

~ Bask Compatibility Typles

2:.t§J. The Device Information Typle

PCMClA PC CARD STANDARD
August 21, 1990

The device infonnation tuples contain infonnation about the devices on the card. The tuples contain device

-speed, device size, device type, and address space layout information for either attribute memory space or

j cummon memory space, as determined by the tuple code. A device infonnation tuple for common memory

space (CISTPL_DEVICE, Olh) must be the first tuple in attribute memory. The device-information tuple for

-~, attribute- memory is optional.

Byte 7 1 6 I 5 I 4 ~ 3 1 2 1 I I 0

0 TPL_CODE CISTPL_DEVICE (Olh) or aSTPL_DEVICE_A (17h)

I TPL_UNK Link to next tuple (at least m·1).

Device Info I (2 or more bytes)

Device Info 2 (2 or more bytes)

... (etc.)

Device Info n (2 or more bytes)

m FFh (markS end of device info field).

Table 28 Device Information Tuples

The tuple code CISTPL_DEVICE indicates that this tuple describes common memory space; the code

~!I aSTPL_DEVICE_A indicates that this tuple describes register memory space.

5.2.6.1.1 The Device Info Field

The device-information tuples are composed of a sequence of device info fields. Each info field is further

composed of two variable-length sequences of bytes: the device 10 and the device size. Each info field defines 0.

the characteristics of a group of addresses in the appropriate memory space.

·59 •

Card Metaformat

5.2.6.1.2 Device JD

'!- The device JD indicates the device type and the access time for a block of memory.

Byte 1 , 6 J 5 I 4 3 2 I 1 I 0

0 Device Type Code WPS Device Speed

1 . . Extended Device Speed (if Device Speed Code equals Eb, otherwise
omitted)

2 Additional Extended Device Speed (if bit 1 of Extended Device Speed
is 1, otherwise omitted)

3 Extended Device Type (if Device Type Code equals Eh, otherwise
omitted).

TAble 29 Device m

. The WPS bit, ifclear, indicates that the write protect switch is in control of this device.

5.2.6.1.3 Device 10 S_ Field

If the device speed/type byte is OOh, the effect is unspedfied.1f the device size infonnation is valid, the
address range shall be treated as a NULL device.

- If the device speed/type byte is FFh, it shall be treated as an end marker.
-

Bits 0 through 3, and one or two optional additional bytes, represent the speed of the devices associated with
this part of the address space. The device speed field contains one of the following values:

~ NI!ru: MmDini

Oh (Reserved - do not use)
Ih DSPEEO_250NS 250nsec
2h DSPEED_200NS 200nsec
3h DSPEEO_l50NS 150nsec
4h DSPEED_lOONS lOOnsec
5h-§h (Reserved)
1h DSPEEO_EXT use extended speed byte.

TAble 30 Device Speed Code.

The extended speed byte has the following layout:

~1-E-:r--~I--~6~~I-S-~---~~~-:-N-T--3---T--2-s-pee~d-:-Xpo~n~en-t-O--'

If the extended speed byte is zero, then the byte should be ignored.

-60 -

PCMClA PC CARD STANDARD
August 21, 1990

The EXT bit, if set, indicates that an additional extended speed byte follows. The meaning of that byte is not

presently defined. However, the string of extended speed bytes may be arbitrarily long: it extends through

;: (and including) the first byte that has bit 7 reset.

The extended device Speed Mantissa and Exponent specify the speed of the device, as follows:

Mantissa:

Oh
Ih
2h
3h
4h
Sh
6h
7h
Sh
9h
Ah
Bh
Ch
Dh
Eh
Fb

Reserved
1.0
1.2
1.3
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
7.0
S.O

Exponent Part:

Oh
1h
2h
3h
4h
5h
6h
7h

1 nsec
10nsec
l00nsec
1 microsec
10 j.1SeC

100 j.1SeC

1 msec
10msec

Table 31 Extended Device Speed Codes

5.2.6.1.4 Dfvice 10 Iype Field

, Bits 4 through 7 ofbyteOof the device speed lid sequence indicate the devic~ type. The following device types

are defined: .

"

~ ~ MUIliDI

0 DTYPE_NULL No device. Generally used to designate a hole in the
address space. If used, speed field should be set to Fb.

1 DTYPE_ROM Masked ROM

2 DTYPE_OTPROM One-time programmable PROM

3 DTYPE_EPROM UVEPROM.
4 DTYPE_EEPROM EEPROM

5 DTYPE_FLASH flash EPROM

6 DTYPE_SRAM Static RAM

7 DTYPE_DRAM Dynamic RAM.

8-Ch (reserved for future use)

Dh DTYPE_IO I/O Device

Eh DTYPE_EXTEND Extended type follows.

Fb (reserved for future use)

Table 32 Device Type Codes

The extended device type, if specified, is reserved for future use. Bit 7, if set, indicates that the next byte is

also an extended type byte. The chain of extended type bytes can continue indefini tely. The end is marked by

an extended device type byte with bit 7 reset.

-61 -

Card Metaformat

5.2.6.1.5 The Deyice Size Byte

Following the device speed/type information within a Deyice ID structure is a device size byte.

1 6 5 4 3 2 1 o
, of address units - 1 Size Code

!i the device-size byte is zero, then it is not valid; in this case, this device ID block should be ignored .
. Otherwise, bits 0 through 2 indicate the address units used·to describe this part of the address space:

~ lJnm MI2S 5iz:~
0 512 bytes 16K
1 2K 64K
2 8K 256K
3 32K 1M
4 128K 4M
S S12K 16M
6 2M 64M
1 8M 256M

• Bits 3 through 1 represent the number of address units: a code of zero indicates 1 unit; a code of 1 indicates
~., 2 units; and 50 forth.
~.

If the device-size byte is FFh, then this entry should be treated as an end marker for the device information
tuple. The device type and speed information encoded for this entry should be ignored.

~ Th~ leye11 Version I Product Information Tuple ¢.

if .This tuple containslevel-1 version compliance al!d card-manufacturer information.

Byte 1 I 6 ~ S I 4 I 3 I 2 I 1 I 0

0 lPL_CODE CISTPL_ VERS_1 (lSh).

1 TPL_UNlC Link to next tuple (at least m-l).

'2 TPLLVl_MAJOR major version number (04h)

3 TPLLV1_MlNORminor version number (OOh)

4 TPLLV1_INFO Product information st:ring: name of the manufacturer,
terminated by OOh.

Name of product, terminated by OOh.

Additional product information. in text; terminated
by OOh. Suggested use: lot number.

Additional product information, in text; terminated
by OOh. Suggested use: programming conditions.

m FFh: maries end of list.

Table 33 Levell Version I Product Information Tuple

·62 - .

~ The IEPEe Identifier Tuples

PCMCIA PC CARD STANDARD
August 21, 1990

This optional tuple is provided for cards containing programmable devices. It provides an array of k

entries, where k is the number of distinct entries in the device information tuple (codes Olh or 17h) .

. There's a one to one correspondence between IEOEC identifier entries in this tuple and device iniorma­

.' tion entries in the device-information tuple •
... -

Byte 7 I 6
,

5 I 4 I 3 I 2 I I
.,

a

a IPL_CODE . Format tuple code (CISIPLJEDEC_C,1Sh, or
OSIBLJEOEC _A,19h).

I IPL_UNK Link to next tuple (at least mel).

2 .. 3]EDEC identifier for first device-info entry.

4 .. 5 IEDEC identifier for second device-info entry (if needed).

6 .. m]EDEC identifiers for remaining device-info entries (if needed)

Table 34 The }IDEe Identifier Tuples

.!.: The IPL_CODE field indicates which device information tuple the IEDEC identifier tuple corresponds to. U

.. the value is 18h <CSIPLJEDEC_C), this tuple corresponds to the common-memory device information

tuple (CISIPL_DEVICE). If the value is 19h (CISIPLJEOEC_A), this tuple corresponds to the attribute-

- memory device information tuple (CISIPL_DEVlCE_A>.

IEOEC identifiers consist of two bytes. The first byte is the device manufacturer 10, as assigned by IEDEC

committee IC-42.3. This byte if valid must always have an odd number of bits .set true. The MBS (bit n of

the byte is used as a parity bit to ensure that this constraint is met. The values of a and FFh are illegalIEDEC

identifiers; such values are used to indicate "no IEDEC identifier for this device" and "end of IEDEC identifier

';: list" respectively.

. . The second byte contains manufacturer-specific information, representing device type, programming algo­

rithm, and so forth. Ii the manufacturer 10 is OOh, then this byte is reserved and should be .set to zero.

It's intended that IEDEC identifiers will only be provided for device-info entries that indicate some kind of

programmable device. For aU other entries, the correspondingIEDEC identifier field shall be absent (i.e., after

the FFh byte that marks the end of the list) or set to OOh.

Examples:

.... ' If a card consists of four FooBar 27CS12 devices, whose IEDEC identifier is (hypothetically) (manufacturer:

.1 40h, device IO:1Sh), then the header block might be laid out as follows:
1.:

/reg[O]:
/reg(2):
/reg(4):
/reg[6J:

/reg[81:
/reg(10):
/reg(12):

(OSTPL_DEVICE,
/·link·/
/·type/speed·/
/·size: units/ exp· /
);

(CISIPLJEDEC_C,
rUnk·/
rmanufacturer W /

2,
D1YPE_OIPROM I DSPEED_2S0NS,
((1«3) I 4)

/·lSh·/
OFFh, /·(end of list)· /
40h,

- 63 -

.~

.. ~ .•

~

..

Card Metaformat

'reg[14]:
'reg[16]:

,-mfr's info-'
'-end of tuple-'
)i

ISh,
FFh

(In the above example, the size byte indicates that 2 x 128K bytes are available, for a total of 2S6K. Pro­
gra~g softw~re would use the JEDEC information to detennine that in fact 4 64K x 8 devices are
present; since JEIDA V4 , PCMCIA cards are always 16 bits wide, programming software could therefore
deduce the the organization of the card). . .

The following tuples might be used to describe a card with 2S6K of OTPROM and 16 I<bytes RAM. In
this example, RAM occupies locations [O •. 03FFFh], and ROM occupies locations [20000h . .5FFFFh] (for ease
of decoding).

'reg[O]: (CISTPL_DEVICE,
'reg[2]: /-link-/
'reg[4]: /-type'speed-'
/reg[6]: I-size: units'exp-'
/reg[8]: '-type'speed-'
/reg[lO]: '-size: units'exp-'
/reg[12]: /-type/speed-'
'reg[14]: /-size: units' exp-/

);

/reg[16]: (OS11'L-1EDEC_ C,
'reg(18): /-link-/
'reg(20): /-RAM: no code-'
/reg[22]: /-rtoinfcf/
'reg[24]: '-hole: no code-'
/reg[26]: /-rtoinfcf/
/reg(28): ,-manufacturer 10-,
/reg[30): /-mfr's info-'
/reg(32): /-end of tuple-'

);

6,
DTYPE_SRAM I DSPEED_lOONS,
«(1«3) I 2)
DTYPE_NULL I DSPEED_NONE,
((1«3) I 2)
DTYPE_011'ROM I DSPEED_2S0NS,
((1<<3) 14)

om, '-(end of list)-'
0,
0,
0,
0,
40h,
ISh,
FFh

Note that place holders were left in the OSTPLJEDEC tuple corresponding to the RAM and hole entries
in the device tuple.

~ Use of Additional Tuples

. Cards that only comply with the basic compatibility layer of this standard need only contain the basic device
information tuple for the common memory space. Cards that comply with one of the data format standards
listed in section 5.3.3 will need to supply additional information as Specified in that section. In many cases,
an implementation will need only to verify that certain subfields in specific tuples are compatible with its
requirements.

- 64-

,. "

5.3 Data Recording Formats (Layer 2)

PCMCIA PC CARD STANDARD
August 21, 1990

This level defines the data-recording format for the card. If none of the layer-2 headers are present, software

should assume that the card is organized as an unchecked sequence of bytes.

Card data-recording fonnats fall into two categories:

• Disk-like: the card consists of a number of blocks of data, where each block consists ·of a fixed

number of bytes. These blocks correspond to the sectors of rotating disk drives •. Conceptually,an

entire block must be updated if any byte in the block is to be changed.

• Memory-like: the card is treated as a sequence of directly-addressable bytes of data.

Formats are further categorized according to how error-checking is performed. This standard recognizes 3

basic possibilities:

• uncMcktd: no data checking is performed at the data format layer.

• chtcktd with in-line codes: data checking is performed by the data format layer using check codes.·

The check code for a given block is recorded immediately after the block.

• chec1ced with out-of-Iine codes: data checking is performed by the format layer using check codes.

The check code for a given block is recorded in a special table that resides separately from the data

blocks.

• checktd over entire partition: data checking is performed only over the complete partition.

. This standard recognizes two kinds of check codes: arithmetic checksum and CRe Arithmetic checksums

are typically one or two bytes long; CRes are always two bytes long .

• When cards with 16-bit"or wider data paths are used to record byte data, it's necessary to specify how the

bytes of the data card correspond to sequential bytes of data. In this standard, all disk-like organizations

require that bytes be assigned to words with the lowest byte address mapping to the least-significant byte of

the word, and subsequent byte addresses mapping to increasingly Significant bytes.

Memory-like formats also require that the byte mapping be specified. For maximum flexibility, both little­

endian and big-endian byte orders are supported.

-65 -

Card Metaformat

ill. Card Information Tuples

- The tuples listed in the follOwing subsections provide generic infonnation about how the card is intended to
be used.

'Jf

~ The LeyeI-2 Versjon and Infonnation Typle

The level 2 infonnation tuple serves to introduce infonnation pertaining to the logical organization of the data
~ the card. 1be layout of the level-2 tuple is shown in table 35.

Byte 7 J 6 I 5 I 4 I 3 I 2 I 1 I 0

0 TPL_CODE Code value indicating that this is the level-2 tuple
(CISTPL_ VERS_2, 40h).

1 TPL_LINK Link to next tuple (at least m-l).

2 TPLLV2_ VERS structure version (OOh).
..

3 TPLL V2_COMPL Y level of compliance claimed.

4 .. 5 TPLLV2_DINDEX byte address of first data byte in card (ISB first).

~6 .. 7 TPLLV2_RSV6, TPLLV2_RSV7 reserved; must be zero.

8 .. 9 TPLLV2_ VSPECS, TPLL V2_ VSPEC9 vendor-specific bytes.

10 TPLL V2_NHDR Number of copies of CIS present on the device.

11 .. k TPLLV2_0EM Vendor of software that formatted card (ASCll, variable
length, tenninated with a NUL (OOh).

k+l .. m TPLLV2_INFO Informational message about the card (ASCn, variable
length, terminated with a NUL (OOh).

Table 3S Level-2lnformation Tuple

TPLL V2_ VERS represents the standardization version of the tuple. This byte should always be zero.

TPLL V2_COMPLY indicates the claimed degree of compliance with this standard. At presence, this should
always be zero.

TPLL V2_DINDEX specifies the address of the first data byte on the card. Setting this non-zero reserves bytes
at the begining of common memory. Note that the first data byte on the card must always be somewhere in
the first 64 Kbytes of the card. This field should be consistent with infonnation provided in the format tuple "
(if that tuple is present).

-66-

PCMCIA PC CARD STANDARD
August 21, 1990

TPLL V2_NHDR specifies the number of copies of the CIS that are present on the card. For compatibility with

this standard, this value should be 1 . This field will allow automated recovery in the face of various error

conditions.

TPLL V2_0EM specifies the vendor of the machine or format program that formatted the card. This is a text

..... string, terminated by a NUL byte (OOh). The value of TPLLV2_0EM, combined. with the value of

TPLL V2_INFO, determines how vendor-specific fields in the level-2 tuples are to be interpreted.- For

alternate languages, CISTPL_ALTSTR tuples may follow this tuple, specifying the string value to be

" substituted when using alternate languages. .

TPLL V2_INFO contains a text message, terminated by a NUL byte (OOh). This message is intended to be

;.& displayed to users by a computer whenever the host needs to desaibe the type of card that's in the drive. For

. alternate languages, CISTPL_AL TSTR tuples may follow this tuple, specifying the string value to be

substituted when using alternate languages.

010'-'"

Note to bnplementors: if the computer system's format routine determines that the card is already

formatted, it will display a mess., like:

uution! This artl contains d4ta for <info>, from <t1~or>.

'- .The contents of the information field should be chosen appropriately. For example, a VCR setup card

for a VCR by Shrdlu Electronics might have <info> as "Model 9770 VCR"; the <vendOr> field would

be "Shrdlu" .

. The characters used in TPLL V2_INFO and 'Il'LLV2_0EM shall be chosen from the printing 7 -bit ISO 646 IR V

set (codes 20h through 7Eh, inclusive).

TPLL V2_R$V6 and TPLL V2_RSV7 are reserved for use in future versions of this standard. They shall be set

to zero.

TPLLV2_ VSPECS and TPLL V2_ VSPEC9 are vendor Specific. U not used, they shall be set to zero.

3 The PCMCIA will maintain a registry of vendor names.

- 67 -

,- .. -.,

Card Metaformat

~ The Card Initialization Pate Typle (CISIPL DATE)

This optional tuple indicates the date and time at which the card was formatted. Its format is given in table
36.

Byte 7 I 6 I 5 4 I 3 I 2 1 1 I 0

0 TPL_CODE lnitialization-date tuple code (OSTPL_DA IE, 44h).

1 TPL_UNK Link to next tuple (at least 4).

2 TPLDA IE_TIME:
MMM .. 555

3 HHH I MMMhJ

4 TPLDA IE_DAY:
MONIa - DAY

5 yyyy .1 MONhI

Table 36 Card Initialization Date Tuple

~ Bytes 2-3 (Tl'LDA IE_TIME) indicate the time at which the card was initialized; it should be considered to be
• a 16-bit number, stored LSB first.

'"
~

• The field HHH contains the hour at which the c~.fd was initialized; it is a number between 0 and
23. -

• The field MMM contains the minute at which the card was initialized; it is a number between 0 and
59 • . ' • The field 555 represents the two-second interval at which the card was initialized; it is a binary
number between 0 and 29. To convert SSS to seconds, it should be multiplied by two .

. Bytes 4-5 (Tl'LDA IE_PA Y> indicate the date the card was initialized; it should be considered to be a 16-bit
number, stored LSB first.

• The field YYYY represents the year; it is a binary number between 0 and 127, with 0 representing
the year 1980. .

• The field MON represents the month; it is a binary number between 1 and 12, with 1 representing
January.

• The field PAY represents the day; it is a binary number between 1 and 31.

H the date and time components of the date are both zero, this should be taken as an indication that the date
and time were unknown when the card was first initialized.

-68 -

PCMClA PC CARD STANDARD
August 21, 1990

2J.J.J The BattetY-Replacement Date Tuple <gSIPL BAmRY>

" Ibis optional tuple shall be present only cards with battery-backed storage. It indicates the date at which the

". battery was replaced, and the date at which the battery is expected to need replacement. Its format is given

~ in table 37 •
Byte 7 I 6 I 5 4 I 3 I 2 , 1

"

0

0 TPL_CODE Initialization-date tuple code (OSTPL_BA nERY,45h).

1 TPL_UNK Link to next tuple (at least 4)

2 TPLBATI'_RDAY:
MONIo

DAY

3 yyyy 1 MONIIJ

4 11'LBATI'_XDAY: .. -
MONIo

DAY

5 yyyy .1 MONIIJ

Table 37 Battery Replacement Date Tuple

Bytes 2-3 (11'LBA TT _RDA Y) indicate the date on which the battery was last replaced; it should be considered

to be a 16-bit number, stored. LSB first. This field has the same interpretation as the field 11'LDA TE_DA Y

(page68). _

Bytes 4-5 (TPLBATT_XDAY, "expiration day"> indicate the date on which the battery should be replaced.

Ibis field has the same format as TPLBATT_RDAY.

~ If either field is zero, it indicates that the corresponding date was not known when the tuple was recorded.
, 00

~ Pata Becordinc Format Tuples

All information about the data-recording format for a given card is given in special tuples in the Card

Information Structure. Each card that conforms to layer two of this standard shall contain at least one format

tuple, defining how the data is recorded on the card.

If the format is disk-UIce, the format tuple may be followed by a geometry tuple. This tuple indicates the

cylinder, track and sector layout for operating environments that need to treat aU mas5-storage devices in that

way.

If the format is memory-like, the format tuple may be followed by a byhH»rder tuple. The byte-order tuple

specifies two independent (but related) parameters: how multi-byte numbers are recorded on the media, and '.

(for cards with 16-bit or wider data-paths) the asSignment of byte addresses within each word.

-69 -

Card Metaformat

llZ.J. The Format Tuple (CJmL FORMAT)

~ The format tuple defines the data recording format for a region (usually all) of a caref. Its layout is shown in
• table 38.

Byte 7 I 6 J 5 I 4 1 3 2 I 1 I 0

0 IPL_COOE Format tuple code (CISTPL_FORMAT, 41.h).

1 IPL_UNK Unk to next tuple (ra-l: at least 12, typically 20)

2 IPLFMT_TYPE Format type code (IPLFMTIYPE_xxx); see table 39.

3 IPLFMI EDC

RFUI Error Detection Code type. EDCLength

4-7 IPLFMI_OFFSEI - Byte address of the first data byte in this partition.

8-11 IPLFMI_NBYI'ES - Number of data bytes in this partition.

12-ra Additional information, interpreted based on value of
IPLFMT_IYPE.

Table 38 Format Tuple

Each format tuple implicitly begins a partition tuple set. Subsequent geometry, byte order, and data
organization tuples are implicitly associated with the immediately prt!vioUS form\t tuple .

..

Byte one of the tuple specifies the link to the next tuple, and therefore (implicitly) the length of this tuple. Two
ranges of values are permitted. Nonnally, the value will be at least 20 (014h); however, if the format tuple

. : is specifying a memory~like format, the value may be as little as 12 (0Ch), as bytes 13 through 21 must be zero
for memory-like formats. If the partition does not use error-detecting codes, then the ll'LFMI_EDCLOC
field may be omitted.

-70-

PCMCIA PC CARD STANDARD
Auguat 21, 1990

. Byte two of the tuple (11'lFMT_TYPE) specifies the kind of fonnat used for this partition. The permitted

.__ values for this field are given in table 39.

~ ~ ~escriJ2tiQll

0 TPLFMTI'YPE_DISK This partition uses a disk-like format.

1 11'LFMTI'YPE_MEM This partition uses a memory-like format.

2-7Fh (reserved for future standardization.)

SOh-Ffh 11'LFMTI"YPE_ VS This partition uses a vendor-spedfic £onnat.

Table 39 format Type Co4es

Byte 3 (11'LFMT _EDC) specifies the error-detection method, and the length of the error-detection code. Byte

3 is generally only meaningful for disk-like formats. Bit 7 is reserved; it must be zero. Bits 3-6 specify the error-

detection code. The legal values are given in table 17. Bits 0-2 (11'lFMT _EDeLEN) specify the length in bytes -,~,

of the error-detection code; this is a number between 0 and 7. The legal values for the length field are .~

. determined by the error-detection method in use.

Memory-like regions may use the PCC method of error detection.

~ NIB ~escriJ2tigD

.
,0 11'LFMTEDC_NONE No error-detection code is used. If the length field is

" non-zero, space will be reserved for the check" code, but no

.. checking will be performed .

1 TPLFMTEDC_CKSUM An arithmetic checksum is used to check the data. The
length field must be 1 if this code is selected. See section

5.3.2.1.1 for details in calculating the checksum.

2 TPlFMTEDC_CRC A cyclical redundancy check is used to check the data. The

length field must be 2 if this code is selected. The CRC value

is always recorded low-order byte first; see section 5.3.2.1.2

for details. f

3 TPLFMTEDC_PCC An arithmetic checksum is used to check the data; however,

a single checksum is provided for the entire data partition.

This technique is intended for use with static data on ROM

or OTPROM cards.

The PCC code itself is recorded in byte 18 of the tuple (field

TPLFMT_EDCLOC, byte 0).

The length field must be 1 if this option is selected.

4-7h <Reserved for future standardization.) .

8h-Fh TPlFMTEDC_ VS A vendor-specific method of error checking is used.

Table 40 Error Detection Type Cocles

-71 -

Card Metaformat

. The code in TPLFMT'::EDC only specifies the method to be used to verify data integrity. To determine
c whetherthecodeistobeinterleavedwiththedataorstoredinaseparatetable,thevalueinll'LFMT_EDCLOC
. must be consulted.

'. Bytes 4-7 (TPLFMT_OFFSET) specify the absolute byte address of the first data byte governed by this tuple.
: The value is stored as a 32-bit quantity, LSB first. .

Bytes 8-11 (11'LFMT_NBYrES) specify the number of bytes in the partition, including (if present) the error-
detection codes. The value is stored as a 32-bit quantity, LSB first. .

5.3.2.1.1 The FOrmat Tuple for Disk-like Ruions

When the TPLFMT_1YPE field of the format tuple has the value TPLFMT _DISK, bytes 12 through 21 of the
tuple are interpreted as shown below.

Byte 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 ,

12-13 TPLFMT_BKSZ Block size. For unblocked formats, this value should be
O. This field corresponds to the number of data
bytes/sector. The value in this field must be a power of
2.

14-17 TPLFMT_NBLOCKS Number of data blocks in this partition.

18-21 TPLFMT_EDCLOC Location of the error-detection code. If zero, the
error detection code is interleaved with the data blocks.
If non-zero, the error-detection code is stored in a
linear table starting at the specified address on the card.

If using PeC, the first byte of this field contains the
check code: bytes 19·21 must be zero if present.

Table '1 Format Tuple for Disk-like Regions

Bytes 12-13 (11'LFMT _BKSZ) specify the number of data bytes in each block in the partition. This value does
not include error check bytes. The value in this field must be a power of 2 between 128 and 2048; this standard
recommends that 512 be used wherever possible. The value is stored as a 16-bit quantity, LSB first.

Bytes 14-17 (TPLFMT _NBLOCKS) specify the number of data blocks in the partition. This value is stored as
a 32-bit quantity, LSB first. The quantity:

TPLFMT_NBLOCKS· ITPLFMT_BKSZ + TPLFMT_EDa.EN)

shall be less than or equal to TPLFMT _NBYrES.

-72· .

PCMClA PC CARD STANDARD
August 21, 1990

Bytes 18-21 (TI'LFMT_EDCLOC) specify where the error-detection codes are stored. This value is stored as

a 32-bit quantity, LSB first. If the value stored in this location is zero, or if this field is not present, then codes

- (if present) are interleaved with the data blocks, with the code for a given data block following immediately

after that block. If the value stored in this location is non-zero, it shall be the address of the first byte of the

. error-detection code table. This table shall be an array of values, with TI'LFMT_NBLOCKS entries,

containing the error-detection codes for each data block. Each entry in the table shall be TPLFMT_EDO.EN

bytes long. The value stored in TPLFMT_EDCLOC shall be at leastTPLFMT_OFFSET, and shall be no greater

than TPLFMT_OFFSET + TPLFMT_NBYI'ES - <TPLFMT_EOCLEN . TPLFMT_NBLOCKS).'

IfPCC error checking is selected, then the TPLFMT_EDCLOC field is used to add the actual LRC value, rather

than pointing to the cell that holds the pce

. The bit TPLFMT_EDC_RFU is reserved for future use and shall always be zero.

".

Table 42 summarizes some possible error-detection strategies.

EDC EDC
EIK:Eormal Len&lb L~li!2D DescriRlism

TPLFMTEDC_NONE 0 0 No error checking is performed; no room is re-

served for error-detection tables. The data blocks
are recorded sequentially.

TPLFMTEDC_NONE . 2 0 No error checking is performed; but room is re-
served for a two-byte error-detection code after
each data block.

TPLFMTEDC_NONE 1 non-zero No error checking is performed; but room is re-

- served for an out-of-line table of error- detection
codes, with one byte per data block. The data
blocks themselves are recorded contiguously.

TPLFMTEDC_CI<SUM 1 non-zero Data is checked using a one-byte arithmetic
checksum of the data. The checksum is stored in
an out-of-line table. The data blocks themselves
are recorded contiguously.

TPLFMTEOC_CRC 2 0 Data is checked using SOLC CRC codes. The
check<ode for a data block is stored immediately
follOwing the data block.

TPLFMl'EDC_PCC 1 special Entire partition is checked using a one byte arith-
metic checksum. The checksum is stored in the
TPLFMT_EDCLOC field of the tuple itself.

Table 42 Error Detection Format 5W1U1lary

, In other words, the table must be entirely contained in the range of bytes between TPLFMT_OFFSET and

TPLFMT_OFFSET + TPLFMT_NBYICS -1. Since the fint data byte of block 0 resides at TI'LFMT_OFFSET, the

standard requires that the EDC table appear after all the data blocks in the partition. The standard does not require

that the table occur immediately after the last block, nor does it preclude use of spare space for vendor-specific

purposes.

-73 -

.~ 0

Card Metaformat

5.3.2.1.2 The Format Typle for Memmy-like Resions

~. When the TPLFMI_TYPE field of the format tuple has the value TPLFMI_MEM, bytes 12 through 21 of the
... tuple are interpreted as shown below.

Byte 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0

12 TPLFMI_FLAGS Various flags I AUro I ADDR (reserved)

13 (reserved; must be zero)

14 .• 17 TPLFMI_ADDRESS Physical address at which this memory partition
should be mapped, if 50 indicated by TPLFMI_FLAG.
Four bytes, stored LSB first.

18 . .21 IPLFMI_EDCLOC Error-detection code location, with same meaning as
for disk-like regions. Used for PeC checking only; byte
18 holds the check value, and bytes 19 • .21 must be zero or
omitted.

Table 43 Fonnat Tuple for Memory-Uke JlegioN

As with the format tuple for disk-like regions, zero bytes at the end of the format tuple for memory-Uke
regions may be omitted; to do this, the next tuple must begin immediately after the last non-zero byte in the
format tuple.

Byte 12 <TPI:-FMI_FLAGS) contains several control bits.

• Bit 0 <TPLFMTFLAGS_ADDR), if set, indicates that bytes 14-17 <TPLFMI_ADDRESS) represent a
'. physical address to be associated with the first byte of this region. If clear, bytes 14-17 do not
represent a physical address.

• Bit 1 <TPLFMTFLAGS_AUIO), tells the system whether to automaticaDy map the region into
memory when the card is inserted (or at system start-up). U set, the system should attempt to map
the region into memory; if TPLFMm.AGS_ADDR is set, the system should attempt to map the
code at the specified address. A system shaD ignore these field if it cannot perform the specified
mapping; it may also, at the designer's option, ignore these fields even if it could perform the
mapping.

Byte 13 is reserved, and must be set to zero if present.

'. 'Bytes 14 through 17 O'PLFMT_ADDRESS) represent the physical address at which the partition should be
mapped into the host's address space. For 8Ox86-family machines, this is a linear address, not a segment/
offset address. If the flag TPLFMIFLAGS_ADDR is not set, then this field is reserved and must be zero.

-74 -

PCMCIA PC CARD STANDARD
A.ugust 21, 1990

NOTE TO IMPLEMENTORS: A system can be fully with this standard and not honor these fields. The

automatic mapping feature is not intended for general purpose use or for building interchangeable

BIOS extensions for general purpose systems. The automatic mapping feature of this standard is

included for use in low-cost embedded systems, and is not intended as a general execute-in-place

specification. Many important issues are deliberately not addressed by this part of the standard, such

as what to do when the card is removed, or how to resolve conflicts when cards in different sockets

both need to be mapped to a specific physical address. It is anticipated that general purpose DOS­

based systems will ignore these fields.

Bytes 18-21 <TPLFMT_EDCLOC) have the same meaning for memory-like regions that they have for disk-like

regions. A memory-like region has only two options for error checking: none or pcc. Therefore, if this field

is used, byte 18 contains the check code, and bytes 19-21 are reserved and must be zero.

5.3.2.1.3 Arithmetic CbecJssums As Enpr-Petection Codes

Arithmetic checksums shall be computed by summing together all the data bytes of the block using eight-bit

twos-complement addition, ignoring any ov~rflow that occurs. The resulting sum shall be stored in an

external table (for block-by-block checksum) or in the format tuple itself (for pec checking).s

5.3.2.1.4 CRC Error-Detection Codes

CRC codes shall be computed using the SOLe algorithm.' In this algorithm, the data to be checked is

. considered as a serial bitstream, with the low-order bit of the first byte taken as the first bit of the stream. This

bit stream is conceptually taken as the coefficients of a polynomial in xn, where n is the number of bits in the

. stream, and where the first bit is the coefficient of the term in x .. 1• This polynomial is divided (modulo 2) by

. the polynomial x" + XU + xl + 1, leaving a remainder of order 15 or less.' The one's complement of this

remainder is the error check code; it is recorded with the complemented coefficient of XIS as its least­

Significant bit, and with the complemented coefficient of XO as its most-significant bit.

The SOLe CRe has a convenient property: when the check code is appended to the data stream, and the

algorithm is run on the result, the remainder will always be xu + XU + XID + x· + x5 + x2 + Xl + XO (assuming that

neither the data nor the CRe have been corrupted).

Despite its complicated formal definition, the SOLe CRe is quite easy to compute both in hardware and in

software. Commercially available chips (such as the Fairchild 9401) can compute the CRe directly from a

serial data stream. There are several well known methods for computing the CRe one byte at a time using

a lookup table. Even so, computing a CRC in software is somewhat slower than computing a simple

checksum.

5.3.2.1.5 Byte Mappinl for Pisk-LiJce Media

Within a disk-like partition, cards with data-paths wider than 16 bits shall be byte mapped with the lowest

byte address of each word corresponding to the least-significant byte of that word, and withinaeasing byte

addresses corresponding to increasingly significant bytes.

5 This method has the disadvantage that the checksum of a block of zero data is also zero; however, it is consistent with

current practice. We don't anticipate that implementors will want to interleave checksums and data; if that's desired,

the standard should introduce another error-detection code type, one's complement of checksum.

, Also known as CRC.cCITT or HOLC CRC.
7 As an additional refinement, the initial remainder is set to aU ones, rather than aU zeroes; this causes the CRC code

for a block of all zeroes to be non-zero.

- 7S -

. --'

Card Metaformat

llU The Geometry Tuple (CIS'D'L GEOMETRY)

This tuple shall only appear in partition tuples for disk·1ike partitions. It provides instructions to those
. operating systems that require that all mass-storage devices be divided into cylinders, tracks and sectors.

Byte 7 I 6 I 5 I 4 I 3 I 2 -I 1 I 0

0 TPL_CODE Geometry tuple code (C1STPL_GEOMEJ'RY, 42h).

1 TPL_UNK Link to next tuple. (at least 4)

2 n-LGEO_SPT Sectors per track.

3 TPLGEO_TPC Tradc.s per cylinder.

4 . .5 TPLGEO_NCYL Number of cylinders, total.

Table'" Geometry Tuple

. Byte 2 (TPLGEO_Sm specifies the number of sectors per simulated track on the memory card. This is a
. number between 1 and 255. A value of zero is not pennitted.

Byte 3 (TPLGEO_Tl'C) specifies the number of tracks per simulated cylinder on the device. This is a number
between 1 and 255. A value of zero is not pennitted.

Bytes ~5 (TPLGEO_NCYL) specify the number of simulated cylinders on the device. This is a number
between 1 and 65535, stored as a l~bit integer, LSB first'

The product

TPLGEO_NCYL·TPLGEO_TPC·TPLGEO_SPT

shall be less than or equal to the number of blocks recorded in field TPLFMT _NBLOCKS of the format tuple
(section 53.2.1.1 page 72) .

• This value is one greater than the same quantity as represented by the PC BIOS. This standard records the number
of simulated cylinden; the PC BIOS records the maximum cylinder number. Since cylinder numben on the PC start
at zero, the maximum cylinder number on the PC is one less than the number of cylinders.

·76·

PCMCIA PC CARD STANDARD
August 21, 1990

~ The 8yte-Order Tuple (CISTPL BYl'EORPER)

This tuple shall only appear in a partition tuple set for a memory-like partition. It specifies two parameters:

the order {or multi-byte data, and the order in which bytes map into words (for 16-bit or wider cards).

Byte ! 1 J 6 I 5 I • 1 3 I 2 I 1 I 0
.

0 TPI._CODE Tuple code (CIS11'L_BYl'EORDER, 43h).

1 TPL_LINX Unit to next tuple; should be at least 2-

2 TPLBYl'E_ORDER Byte order code: see table 42.

3 TPLBYl'E_MAP Byte mapping code: see table 43.

Table 45 Byte Order Tuple

Byte 2 <TPLBYI'E_ ORDER) specifies the byte order for multi-byte numeric data. Symbolic codes for this field

begin with the text "TPLBYI'EORD_", and are listed in table 46.

~ Ni!m Desaiptign

0 TPLBYTEORD_LOW 'Spedfies that multi-byte numeric data is recorded in
little-endian order.

1 TPLBYTEORD_HIGH Specifies that multi-byte numeric data is recorded in

- big-endian order.

2-7Fh ReServed for future standardization.

80h-FFh TPLBYI'EORD_ VS Vendor-specific.
y

Table" Byte Order Codes

Byte 3 (TPLBYI'E_MAP) . -.~ ':fies the byte mappi ' • for 16-bit or wider cards. Symbolic codes for this field

begin with the text ''!PI MAP _", and are li:-, j in table 41.

~ ~ Desaiptign

0 TPLBYTEMAP _LOW Specifies that byte 0 of a word is the least-significant byte

(multi-byte cards).

1 TPLBYI'EMAP _HIGH Specifies that byte 0 of a word is the most-Significant byte

(multi-byte cards).

2-1Fh Reserved for future standardization.

80h-FFh TPLBYrEMAP _ VS Vendor-specific.

Table 47 Byte Mapping Codes

-11 -

Card Metaformat

If a byte-order tuple is not present, the data shall be recorded using little-e\dian byte order m'LBYI'EORD_lOW),
and shall be mapped with byte 0 of each word amesponding to the Ieast-significant byte (11'LBYI'EMAP _LOw).

i.. For applications involving DOS file systems, little-endian byte order and low-to-high byte mapping are
.. mandatory.

2.J.J Standard Data Becordin& Formats

This standard allows great flexibility in adjusting the card format to meet specific requirements. ·For
simplicity, this standard further specifies recommended formtlts - formats which are expected to be commonly
used.

• Generic - the bytes are recorded in 512-byte blocks with no error checking; the first data byte of
the card appears at byte address 512 (200h).

• Single-byte checksum format - the bytes are recorded in 512-byte blocks, with a separate region
reserved for error-checking codes, and with a sector buffer.

• Two-byte Embedded CRe format- the bytes are recorded in 512-byte blocks, with each block
followed by a 16-bit CRC

• Raw byte format - the bytes are recorded sequentially in an unblocked form.

In order to maintain a reasonable degree of interchangeability, this standard recommends that alllayer-2
conforming implementations be able to read and write generic-format cards.

When an implementation is presented with a card whose format is not supported by that implementation, the
implementation shall refuse to write on the card, except to reinitialize it. If the basic fonnat is not supported
by the implementation at all, the implementation shall retum an error to applications whenever they attempt

. to access the card. The implementation may allow read-only access to a card whose basic format is supported
but whose error-detecting code is not For example, an implementation that only supports the creation of
generic-format cards could allow single-byte-checksum cards to be read, by ignoring the checksum bytes.
With a little more sophistication, the implementation could also allow embedded-CRC format cards to be
read.

-78-

~ Mixed Data Formats

PCMCIA PC CARD STANDARD
August 21, 1990

• Layer 2 allows a card to have multiple partitions, with each partition having its own data-recording format.

In this case, there shall be one Format Tuple (section 5.3.2.1, page 70) in the Card Information Structure for

each partition on the carel. The additional tuples that refer only to a given partition shall appear immediately

-following the format tuple that defines the partition.

An implementation is not required to support multiple partitions on a single card. When presented with a

card with multiple partitions, an implementation may:

• Only allow access to the first partition (if supported)

• Scan the CIS for the first partition type of a supported type, and only allow access to that partition.

• Deny access to the card.

Note to Implementon: We anticipate that for most applications, only 1 or 2 regions will be required. (Two

regions would be used by a ROM card that contained both executable ROM images and a DOS file

system).

-19 -

Card MetaiOl'Dlat

5.4 Data Organization (Layer 3)

This layer defines the data organization of a particular partition on a memory card. At this level, the
possibilities become manifold. Some examples are:

• A partition can contain a DOS file system (or a file system for some other operating system). This
can be used with any disk-like level 2 format.

• A partition can contain a FlaSh file system (used with memory-like fonnats) . .. '
• A partition can use a vendor-specific organization.

• A partition can use an application-specific organization.

Layer 3 of this standard provides an unambiguous means of specifying the organization of the partition.

5.4.1 pata ~anizationTup1es

All information about the organization of a given partition is given in special tuples in the Card Information
Structure. Each card that conforms to layer three of this standard shall contain at least one data-<»rganization
tuple for each partition defined on the card.

At present, the data-organization tuple is the only tuple defined by layer three.

~ The Omanization Tu~le (CJSTPL QRG)

The Organization Tuple appears in the list of partition-specific tuples that follows each format tuple. It has
the format shown in table 48.

Byte 1 I 6 J 5 I' 4 1
3

1
2 I 1 I 0

0 TPL_CODE Tuple code for this tuple. (CISlPL_ORG,46h)

1 lPL_LINK Unk to next tuple (at least n-l).

2 TPLORG_TYPE Data organization code

3 •• n TPLORG_DESC Text description of this organization, tenninated by OOh.

Table 48 Data Organization Tuple

-80 -

PCMCIA PC CARD STANDARD
August 21, 1990

Byte 2 (TPLORG_TYPE) specifies the type of data organization in use. The possible values of this byte are

given in table 49.

Qm ~ t2~~I2I:iQD

0 11'LORGTYPE_f'S This partition contains a file system. The desaiption
field specifies the file system type and venion.

1 11'l.ORGTYPE_APP This partition contains application-spedfic information.
The description field specifies the application name
and version.

2 TPLORGTYPE_ROMCODE This partition contains executable code images. The
description field. The description field specifies the
name and version of the organization scheme.

3-7Fh (Reserved for future standardization.)

80h-FFb TPLORGTYPE_ VS This partition uses a vendor-specific organization.
The contents of the description field are vendor-
specifiC.

Table 49 Data Organization Codes

Bytes 3 through the end of the tuple (TPLORG_DESC) contain a NUL-terminated ASCII-text description of

the organization. For file system organizations, this field should specify the file system type. This field shall

contain only characters in the printing ASCn set, 020h through 07Eh. (For intemational use, one or more

CISTPL_AL 1'STR tuples can follow this tuple.)

For DOS file systems, TPLORG_ TYPE shall contain TPLORGTYPE_f'S, and TPLORG_DESC shall contain the

string ''DOS''. For FlaSh file systems, TPlORG_TYPE shall contain TPLORGTYPE_f'S, and TPLORG_DESC

. shall contain the string ''FlaSh''. .

The intent of this field is two-fold.

• For operating systems with sufficient flexibility, it allows the appropriate file-system driver to be

selected based on the value of this field.

• If a card cannot be read due to software incompatibilities, a utility program can display the con­

tents of this field along with other card information to inform the user as to what kind of informa­

tion is really on the cuel.

- 81 -

Card Metalormat

5.5 System-Specific Standards (Layer 4)

<. Layer four of this standard specifies things that are only relevant in certain operating environments. At present, all layer-four standards are specific to the DOS environment. The following DOS-specific standards are defined:

• An interchange format for cards formatted with the DOS file system (section 5.5.1).

• A standard for directly-executable programs (specified in a separate document). .

• A standard for interpreting older cards formatted without the Card Information Structure (section 5.5.3).

~ Intertban_Ie Card Format

This standard would be of little use if it did not allow the free interchange of infonnation between DOS systems. Rather than limiting all DOS implementations to a single format, this standard requires that all implementations support the follOwing format in tuldition to any other formats.

The Interchangeable card fonnat has the following characteristics:

Laya" 1: the card information structure shall contain at least a device information tuple.

Layer 2: the card information structure shall contain the following tuples.

1. Level-2 information tuple, with the following fields set.

• TPLLV2_COMPL Y shall be O.

• . TPLL V2_NHDR shall be 1, indicating that only one copy of the as is present.

• TPLL V2_ VSPECS and TPLL V2_ VSPEC9 shall be zero.

2. A single format tuple. This tuple shall indicate that the partition uses a disk-like format with 512-byte blocks. It shall further indicate that the card uses no error detection code, that the EDC length is zero, and that the first data byte of the ,card appears at byte 512, or higher, of the card. This tuple shall indicate that the partition covers all but the first 512 bytes of the card, and that there are (partition_size / 512) blocks in the partition.

In addition, the OS may optionally contain the following tuples:

• A single geometry tuple. If present, this tuple shall contain information that matches the in­formation presented in the boot block BPB.

• A single card-initialization date tuple.

• A single battery-replacement date tuple.

Laya" 3: the card shall contain a DOS-compatible file system. The boot sector shall be recorded in data block zero (that is to say, starting at byte 512 of the card). The BPB in the boot sector shall describe the geometry of the file system in any convenient fashion. This standard recommends that geome­try parameters be set to appropriate powers of two.

-82 -

~ Execute In ptace

PCMCIA PC CARD STANDARD
August 21, 1990

'~The proposed format for cards supporting direct execution of application programs from the card ("execute

in place") is described in a separate document.

~ lnteJ:pretin, Cards Without Card Information Structures

Some existing systems use RAM cards with a pseudo-floppy organization.

Pseudo-floppy cards have the following fonnat:

A series of contiguous logical sectors, as viewed by MS-DOS

The BIOS sector addressing scheme (head, cylinder, sector) is mapped one-to-one to the logical

sectors

The logical sectors are arranged exactly as in the case of a floppy disk, i.e. the first is the BOOT SEC­

TOR, then come a variable number of FILE ALLOCA nON TABLE (FAT) sectors, then a number of

ROOT DIRECTORY sectors, and finally the card is filled up with DATA sectors

Sectors are a standard M5-DOS size: 128,256 or 512 bytes; 512 byte sectors are the standard default,

since this allows room for executable code in the first (BOOT) sector

The BOOT'sector is defined exactly as for a floppy; it thus contains the BIOS Parameter Block (BPB),

and thus a definition of the number of bytes per sector, number of copies of the FAT etc.

'~ Boot Sector Structure

The boot sector would typically be 512 bytes, if it needs to contain bootstrap code as well as the BPB.

-Otherwise, it could be as small as 128 bytes. However, the first 30 to 50 bytes of the bootstrap sector are always

recorded in a standard fonnat.

The first three bytes of the boot sector are reserved for a short or a near jUmp:

E9XXXX

EBXX90
or

This gives us a simple way to detect a pseudo-floppy boot block. There then follows the BIOS Parameter ,

•. ~lock.

. .'.The format of the boot-sector header is shown in tables 47 and 48, below.

Note: The infonnation in these tables is controlled by DOS; the data fonnats are

included here only for reference.

-83 -

Card Metaformat

Byte 7 I 6 T 5 I 4 I 3 I 2 I I I 0

0-2 Short or near Jump: OE9h XX XX or OEBh XX O9Oh.

3-OAh System ID (OEM name and version) (8 bytes)

OBh«h Bytes per sector (2 bytes)

ODh Sectors per duster

OEh-OFh II reserved sectors

10h Number of FATs

llh-12h II root directory entries

13h-14h II sectors in logical volume

ISh Media Descriptor Byte

16h-17h II sectors per FAT

18h-19h II sectors per track

IAb-lBh number of heads

lCh-lDh II hidden sectors

Table SO DOS Boot-Block Structure

With DOS 4.0 and later, the following additional fields are defined:

lEh-lFh II hidden sectors (most Significant word)

20h-23h II sectors in logical volume (4 bytes)

24h Physical drive number

2Sh Reserved

26h Extended boot .signature (29h)

27h-2Ah Volume ID (binary) (4 bytes)

2Bh-3Sh Volume label (11 bytes)

36h-3Dh Reserved (8 bytes)

Table S1 Extended BPB I

-84 - .

The BPB and Header Information

PCMCIA PC CARD STANDARD
August 21, 1990

The information in the BPB can be accessed by the device driver, whether embedded in the ROM BIOS, or

external to the BIOS, or separately loaded as an MS-DOS Installablt Otf1it:t Omtr. In this way, differing

configurations of ROM BIOS to Logical Sector Mappings can be used; a card can have "multiple heads", for

instance •

. ~ Handlinl Pseudo-FlOlWies in a Conforminl System

.. Pseudo-floppies can easUy be handled from within a conforming sys~ if the following procedure is

followed during card-insertion processing:

1. Read the first byte of attribute memory. U it is 01h, process the as from attribute memory in the

ordinary way. If all metafonnat information is present in attribute memory, or in common mem­

ory as specified by the attribute memory, then this is not a pseudo-floppy. U a as is present in

attribute memory, but no layer-2 information is present, or if no CIS is present, proceed to step 2.

2. Read the first few bytes from the card's common memory (starting at physical address 0) into a

local buffer.

3. Compare the first five bytes of the buffer to the CIS link-target tuple Signature (13h, xx, "CIS",

where xx is a link value in the range [03h, FEh]). If they match, then this card has the CIS metafor­

mat structure in RAM (and probably has no attribute memory); use the ordinary processing rules.

Otherwise, no CIS is present at aU; proceed to step 4.

4. Compare the first three bytes of the buffer to the DOS boot block Signature: OE9h, XXh, XXh, or

OEBh, XXh, 9Oh. If it matches, assume that this is a DOS-format pseudo-floppy. Extract the rele­

vant geometry and block-size information from the BPB, assume that there is no error detection,

and assume that the card consists of a single data partition encompassing ~ number of blocks

indicated in the BPB.

- 85 -

Card Metaformat

5.6. Compatibility Islues

~ BufferPa.

Some vendors use a buffer page to improve the reliability of memory cards in the face of power failures. This
standard does not directly provide a means for spedfying the location of the buffer page. Space can easily
be reserved for a buffer page by proper adjustment of the values in the format tuple. II needed, a vendor­
specific tuple can be added to specify the location of the buffer page within the partition.

~ Formattin, Cards Under DOS

Use of a CIS does not require a special (non-DOS) format utility in the common case where the entire card is
to be formatted as a DOS file system. For example, the memory card BIOS could determine all the relevant
information (including the pseudCHiisk geometry) using information that is passed to the BIOS fannat
function, and transparently construct the CIS during the format operation. DOS is unaware of the existence
of the CIS; when it reads block 0 of the disk, the BIOS returns the first user-accessible block.

For multi-format cards, a special format utility is required, in order to get the proper partition information
in the CIS.

-86-

~ Adaptin, Existin, Software

PCMCIA PC CARD STANDARD
August 21, 1990

The intent of this standard is that existing BIOS and DOS driver software be easy to migrate to the new

standard. This process involves making the foUowing modifications to system software:

1. The existing software should be examined to determine how its data layout corresponds to the

options presented by this standard.

2. From this, design a standard as which describes how the data is presently laid out;·however,

move everything up (for example, by 512 bytes) to leave room for the CIS at the front of the card.

Place a copy of this CIS in the code for the BIOS or driver. .

3. Modify the driver or BIOS to check for a CIS signature whenever a card may have been changed.

• If the card has a CIS signature, do a byte-by-byte comparison of the CIS on the card with the

CIS in the BIOS or driver code. If the CIS matches, set a flag indicating that a 'standard­

conforming card' is installed. If the CIS does not match, set a different flag indicating that

an card with an unsupported format is installed.

• For flexibility, the comparison operation could ignore device-information tuples and (possi­

bly) the partition length field of the format tuple. It could alsO be structured to allow the

tuples to appear in any order.

• If the card does not have a CIS Signature, assume that it is an old-style card. Set a flag indicat­

ing that a supported, non-conlorming card is installed.

4. Whenever I/O is performed, check the flags.

• If an unsupported card is installed, return an error.

• If a supported non-conforming card is installed, convert the block address to the byte address

just as you did previously.

• If a supported conforming card is installed, convert the block address to the on-card byte

address just as you did previously; then add 512 (or whatever base address you decided on

in step 2).

Using the address you've just calculated, perform the I/O operation.

~ Usin, this Standard with Non-Standard Hardware

It is possible to use the metalormat portion of this standard to organize data, even in the absence of attribute

memory support. To do so, we recommend the following adaptioo:

Fonnat the card so that a card information structure begins at location zero on the card; make the first

tuple a LINK_TARGET tuple. This gives software a reasonably unambiguous way to determine whether

the card is forma tted or not.

- 87 -

This page is intentionally left blank

-88 -

SECTION 6

FAT FILE SYSTEM

- 89 -

PCMCIA PC CARD STANDARD
August 21, 1990

FAT FUe System

6. FAT mE SYSTEM

U Introduction

This section desaibes the essential elements of how the D~ :
on Ie memory cards. This is not a fun description of the F A.~ .
assumed the reader is familiar with this technology.

The FAT file system is the default data transfer standard rc.-·
recognized that the FAT does not make the most efficient U~·
for all types of memory technology. However, it does offer a fa,; .
compatible data structure requiring little system software ow
suited for specific technologies or applications will be incorp-
a later date.

SuPJ?Ortinc FAT on IC cards

FAT file systems will be contained within partitions on Ie me.
described by the PCMCIA metafonnat; the metafonna t will inc
identify partitions as FAT partitions. The card device driver \.
the partition as a block device to DOS. The partition willl>: .

.. sector 0 beginning at the first address within the partition.

The logical fonnat of a FAT partition is described by the B: ="
standard DOS data structure. It is incorporated into the bo
partition. Two different formats are supported, one for part·
partitions greater than or equal to 32Mb. Note that DOS 3.3 a:­
larger than 32Mb.

Offset Size Contents

-+00 3 10 (Jump instruction to t
It must be EBh,xxh, 90h C'

+03 8 OEM name and version

+OB 2 Bytes per sector

+00 1 Sectors per allocation un.

+OE 2 Reserved sectors count

+10 1 Numbers of FATs BPB

+11 2 Numbers of root direct-·

+13 2 Numbers of sectors in i~

+15 1 Media descriptor

+16 2 Numbers of sectors pe~ ~

+18 2 Sectors per track

+1A 2 Numbers of heads

+1C 2 Numbers of hidden sectc

+1E 22h Reserved for fu ture use

+40 - Bootstrap code etc.

Table 52 Boot Record Format for Small Pi'

- 90·

Contents

PCMCIA PC CARD STANDARD
August 21,1990

10 (Jump instruction to boot cord)
It must be EBh,xxh 90h or E9h,xxh,xxh

OEM name and version

Bytes per sector

Sectors per allocation unit

Reserved seeton count

Numbers of FATs BPB

~ umben of root directory entries

Numben of seeton in logical image

~ledia descriptor

~umbers of seeton per FAT

Sectors per track

Numbers of heads

Numben of hidden secton

~umber of logical seeton

Reserved section and bootstrap code

• Record Format for Large PartitioDl

·.:sed, the image size at offset 13h is set to 0, and the alternative field at

2.1 ues chosen for sectors per track and number of heads be powers of

by the device driver. It is also recommended that the media

":-> avoid conflicts with older venions of DOS.

AT file systems must be structured as standard DOS block device

::uests from DOS in terms of sectonand trades; they must be prepared

to physical card addresses, based on the geometryparameten defined

";? cards wi th a variety of logical formats, and should be prepared to

. nan being tied to a spedfic format.

- 91 -

This page is intentionally left blank

·92·

PCMClA PC CARD STANDARD
August 21, 1990

SECTION 7

EXECUTE IN PLACE

-93 -

Execute In Place

7. EXEClJTE IN PLACE

ZJ. General
Common program execution in MS-DOS computers occurs in system RAM space. These

programs are often time loaded from magnetic media based I/O devices such as floppy disb,
hard disks, or tape drives. Programs stored in an IC memory card can be executed directly
when appropriate mapping methods are employed. This committee recognised this need and
provided methods for program eXecution-In-Place (XIP). A framed window'memory paging
structure is used.

U Pap/FrameDefinition

"A" "B" "C"

16 Kby1e

16 Kbyte This region is divisible This region II divisible
64Kbyte 64 Kbyte down ID 2 Kbyte 64 Kbyte down ID 2 Kbyte

frame frame apag8I trame pagel

16 Kbyte I
16 Kbyta

~-----.-

1. Three regions ("frames") of 64 Kbytes are defined.

2. These three regions are llQ! required to be contiguous to each other.

3. Within each region the 64 Kbytes must be contiguous.

4. One region l!llW be subdivided into four pages of 16 Kbytes each.

5. The other regions may be "single pages" of 64 Kbytes, or they may be subdivided into pages,
as small as 2 Kbytes.

6. There is no specific requirement to implement any of the regions in hardware. Software
emulation and "copying" schemes are acceptable.

7. Software vendors may assume that the frame "A" is implemented in hardware to optimize
performance. They may further assume that regions "B" and ftC' may be implemented by
"copying", which would make it desirable to place the root overlay or other infrequently
paged code in regions "B" and "C".

8. All API (Application Programmer Interface) issues including definition of read-only pages
are left to a later release.

-94 -

APPENDICES

- 95 -

PCMCIA PC CARD STANDARD
August 21, 1990

APPENDIXl
, Metaformat G10WtY

o' attribute memory: PCMOA/JEIOA standard memory cards provide a separate memory address space for
recording fundamental card information. This memory is intended to be used by the card
manufacturer to record basic configuration information. This memory is selected by asserting the I
REG line on the card interface. It is typically, but not necessarily, read-only.

Attribute memory space need not be physically distinct from common memory space; but it must be
logically distinct.

basic t:tmrptJtibility layer: The layer of this standard aayer 1) which mandates the use of a card-information
structure (as) at the beginning of any complying card.

big-erulum byte order: a means of specifying the order in which multi-byte numeric objects are recorded, when
broken into bytes. Big-endian byte order specifies that the most-significant byte shall be recorded in
the lowest byte address; bytes of deaeasingsignificance shall be recorded sequentially in subsequent
bytes. O. little-endian byte order.

block: for disk-like data formats, a block is the fixed-length sequence of bytes. In such formats, data must
. usually be read or written as a series of one or more blocks.

byte: in this standard, a byte is eight bits.

bytemtZpping: the sequence in which byte data is recorded on cards. For 8-bitmemory cards, the byte mapping
is one-to-one, and not at issue for standardization. For 16-bit and wider cards, the byte mapping
within words of the card is arbitrary, and so is governed by this sta ,dard. .

-
buffer page: a region of memory on a card used to improve reliability when updating a card. A buffer page

typically includes an indication of the region of the card being updated, an image of the desired value
. for the region of the card, and a flag that indicates that the buffer page is valid. If power fails while
a card is being updated, the buffer page can be used to automatically complete the transfer when
power is restored. .

OI,d In/o"""OOn Structure: a data structure written at the beginning of every card that complies with this
standard, containing information about the formatting and organization of the data on the card.

chedsum: an arithmetic error-checking code for data recording based on summing the bytes of data to be
checked. Checksums are frequently used by systems that perform error-checking in software.

as: ",14 information .m.ct1lre.

common memory: PCMCA/JEIDA standard cards provide two memory address spaces. The term "common
memory" denotes the primary address space, containing the memory used for application data
storage. See also attribute memory.

CRC: cycliCIIl ,edundancy checJc.

cycliCIIl redundancy CMa: an error-checking' code for data recording based on bitwise polynomial division of
the data bytes to be checked. As used in this standard, refers to the 16-bit SOLC version of this code,
using the polynomial X16+ x12+x'+ I, with the check-register initialized to all ones. CRCsaretypically
used by systems that perform error-checking in hardware.

- 96-

PCMCIA PC CARD STANDARD
August 21, 1990

cylinder: a unit of disk organization. A disk is typically viewed as a collection of cylinders. Each cylinder on

a disk is divided into tracks; each track is further divided into sectors. Typically, all of the sectors

within a cylinder can be accessed without moving the ann of the disk. See Steto,.

dilf4 Mganiz4tion: the logical organization of data on a card, independent of the data-recording format. The

data organization of a memory card will almost always be some kind of file system.

dilf4 Mganiz4tion lIIyer: the layer of this standard covering the data organization of the card.

diltt:-recording fomud: the organization of a memory card into sequences of bytes that are updated or accessed

by a single logical operation. The data-recording format of a card includes such details as whether

the card's data is organized into blocks of bytes; whether the card includes error checking codes for

each block; and so forth. The data-recording format does not specily whether a file system is used.

The data-recording format of a card is akin to the physical format of a diskette. a. dilf4 MganiZlltion.

dilf4 r«ordingjomult lIIyer: the layer of this standard (layer2) thatspedfies the data-recording format of a card.

DOS: the disk operating system for 8Ox86 architecture sYstems, such as the IBM PC. DOS is available in

several different versions, which are largely compatible with -each other; the term generically

designates all of them.

EDC: tn'Or-detection code

EEPROM: Electrically-Erasable Programmable Read-Only Memory. A non-volatile memory device which

can be programmed electrically, and in which individual bytes can be erased electrically. Usually

writes and erasures are much slower than reads.

EPROM: Erasable Programmable Read-Only Memory. A memory device which can be programmed

electrically, and erased in bulk by some means, usually by exposure to ultraviolet light.

error-detection code: a numeri~ code derived from the contents of a data block, used to determine whether the

data read from the block are probably correct.

file system: an operating-system specified method of structuring data on a mass-storage device. A file system

standard consists of a set of data structures and the rules by which those structures are interpreted.

We sometimes say that a card has a file system recorded on it by this we mean that an operating

system utility program has placed the appropriate information on the card, allowing the card to be

interpreted and manipulated by the operating system.

Not aU cards have file systems on them. Some cards are managed directly by application programs.

flash EPROM: a type of EPROM that can be electrically erased. It differs from EEPROM in that generally the .

entire memory must be erased at once.

f14Sh: a trademark of Microsoft, describing a file system designed for use with W -erasable or Flash EPROM

memory cards.

Kbyte: kilobyte. 1 Kbyte .. 1024 bytes.

little-endilln byte order: a means of specifying the order in which mul ti-byte numeric objects are recorded, when

broken into bytes. Little-endian byte order specifies that the least-significant byte shall be recorded

in the lowest byte address; bytes of increasing significance shall be recorded sequentially in

subsequent bytes. CE. big-mdilln byte order.

-97 -

ISO 6461RV: International Standards Organisation standard number 646 (Character codes), Inteernational
Referencevenion. A character set very similar to ASCD, used internationally for representing textual
information. It differs from ASCD only in that code 24h represents the international currency symbol
rather than the dollar sign ("S"). Except in the alternate/ national string tuple, all character data shall
be represented using the printing characters from this character set.

LSS; least-significant byte.

meft:flJmud: in this standard, the word metaformat is used to encompass the contents, layout, and interpre­
tation of the card information structure. -The PCMCIA Metaformat Standard is outlined in"Section
5 of this document.

one-time programmable: A tenn describing memory that can be programmed to a specific value once, and
" thereafter cannot be changed (or can only be revised in a limited way). One-time programmable

EPROMs are ordinary EPROMs that have been packaged in such a way that ultra-violet light cannot
be used to erase the contents of the EPROM. Such packaging is ususlly less expensive.

OTP: one-time programml2ble

paragraph: on InteI8Ox86 family machines, a paragraph is a block of sixteen bytes, aligned on a sixteen-byte
boundary.

partition: a region of a mass storage device. In this standard, partitions are used to allow a single card to
contain two different kinds of data; for example, a card might contain a normal DOS file system in
one partition, and directly-executable ROM images in another partition. Most RAM cards will
contain only a single partition that contains all the usable storage of the device.

partition che~k code; A simple method of verifying the contents of an entire partition. A checksum is computed
by summing together all the data bytes of the partition; this sum is compared to a value stored in the
format tuple that defines the partition. This method is typically used for partitions that change

" relatively infrequently, such as data partitions in OTP memory.

PCC: partition chtck code

PSP: program-segment prefix. Under DOS, the PSP is the primary data structure for a process, containing
its command line, information about exception handling, and so forth.

reserved: As used in this standard, a reserved field or code value is set aside for use in future standardization.
Vendors shall not use reserved fields or code values for any purpose except compliance with future
versions of this standard.

sector: As used in this standard, a sector is the fundamental data storage unit of a disk. A sector is the smallest
unit of data that can be individually. read or updated. Disk sectors correspond to memory card
blocks.

TPL: abbreviation used in symbolic codes to represent the word "tuple".

TSR: acronym for terminate-and-stay-resident. Under DOS, a lSR is a program that is loaded semi­
permanently into memory, extending the system's functionality.

tuple: in this standard, a tuple is a block that appears in the Card Information Structure. Tuples are used to
record various items of information about the card layout. All tuples have a common format, shown
in Table 19, page 49.

-98-

PCMCIA PC CARD STANDARD
August 21, 1990

vendor specific: in this standard, this term indicates bits, fields, or code values that are specific to a particular

vendor and are not defined by this standard. This standard further distinguishes two kinds of

vendor: the card manufacturer, and the supplier of the card data contents.

word: as used in this standard, a word is the smallest addressable unit of a given card. Eight-bit cards have

eight-bit words composed of one byte; 16-bit cards have 16-bit words, composed of two bytes; and

so forth.

-99 -

", -'

APPENDIX 2

Hot/Cold Insertion Removal

1

2

3

4

How to retain the"data stored into memory cards depends on system conditions and environments etc.

There are many cases of insertion and removal. This table shows whether data is retained and system
design requirements for data retention under major system conditions.

System Side Data Remark

Power Conditions CE Retention

Cold Insertion OV - - YES Refer to Table 18 for the power-up sequence

Cold Removal OV - - YES Refer to Table 18 for the power-doWD sequence

Warm Insertion Vee Hi-z ''H'' YES Cgndiligna fQr IJ,Ilrln=in& l~ dill retenti2n
1. Place buffer between system and card.
2. Control signal (fCE) from system biased to

Vee and be High-Z.
3. In the card, ICE is turned High by internal

pull-up resistor on the ICE before the buffer
enable is disabled.

4. System Vee is forced from card when in-
serted into system. In such case, system Vee
must maintain the certain voltage.

5. Utilizing 2 CO pins, system enables buffer
and then accesses to card after detecting the
completion of card insertion.

Oiib.!d2InS;:1: fmm 'Ird 12 i~l~m dYlln& iOBr-
mm
There is no disturbance to system because there
are buffers between system and card and the
buffers are enabled after card is ready.

Warm Removal Hi-z "Hu YES Condingna fQ[IJ,Ilrlnt=in& l~ dlla [l:lcnti2Jl
1. Place buffer between system and card.

2. Control signal (fCE) from system biased to
Vcc and High-Z.

3. In the card, ICE is turned High by internal
pull-up resistor on the ICE until the buffer
enable signal is enabled.

4. Utilizing 2 CD pins, system stops accessing
to card and then disables the buffer before
card is completely removed from system.

Diitur12lnS;:1: fmm grs;l lQ a~item dunn& rl::
I!l2n!
There is no disturbance to system because there
are buffers between system and card and the
buffers are disabled before card is removed.

-100-

System Side

Power Conditions CE

5 Hot Insertion Va. Active "L"

6 Hot Removal Va. Active "L"

Data

Retention

NO

NO

-101 -

PCMCIA PC CARD STANDARD
August 21, 1990

Remark .

Iml2S2ssi12J1: Sg llli[lDl= "ill Btmiign
Effective pin length differences cannot be used

to tell the system that a card is being in5erted. A
detect means other than pin length must be

used for incoming cards.

Impossi12J1: Sg IYimnl= "ill Il:tmlign

Utilizing card insertion detect by effective pin
length difference (O.28mm) of CD pins or me-
chanical inter-lock system, the system should
prevent this from happening by fordngCE high
whenever either CD pin signals card not-pres-
ent.

Scan Copyright ©

The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP

Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159
	00000160
	00000161
	00000162
	00000163
	00000164
	00000165
	00000166
	00000167
	00000168
	00000169
	00000170
	00000171
	00000172
	00000173
	00000174
	00000175
	00000176
	00000177
	00000178
	00000179
	00000180
	00000181
	00000182
	00000183
	00000184
	00000185
	00000186
	00000187
	00000188
	00000189
	00000190
	00000191
	00000192
	00000193
	00000194
	00000195
	00000196
	00000197
	00000198
	00000199
	00000200
	00000201
	00000202
	00000203
	00000204
	00000205
	00000206
	00000207
	00000208
	00000209
	00000210
	00000211
	00000212
	00000213
	00000214
	00000215
	00000216
	00000217
	00000218
	00000219
	00000220
	00000221
	00000222
	00000223
	00000224
	00000225
	00000226
	00000227
	00000228
	00000229
	00000230
	00000231
	00000232
	00000233
	00000234
	00000235
	00000236
	00000237
	00000238
	00000239
	00000240
	00000241
	00000242
	00000243
	00000244
	00000245
	00000246
	00000247
	00000248
	00000249
	00000250
	00000251
	00000252
	00000253
	00000254
	00000255
	00000256
	00000257
	00000258
	00000259
	00000260
	00000261
	00000262
	00000263
	00000264
	00000265
	00000266
	00000267
	00000268
	00000269
	00000270
	00000271
	00000272
	00000273
	00000274
	00000275
	00000276
	00000277
	00000278
	00000279
	00000280
	00000281
	00000282
	00000283
	00000284
	00000285
	00000286
	00000287
	00000288
	00000289
	00000290
	00000291
	00000292
	00000293
	00000294
	00000295
	00000296
	00000297
	00000298
	00000299
	00000300
	00000301
	00000302
	00000303
	00000304
	00000305
	00000306
	00000307
	00000308
	00000309
	00000310
	00000311
	00000312
	00000313
	00000314
	00000315
	00000316
	00000317
	00000318
	00000319
	00000320
	00000321
	00000322
	00000323
	00000324
	00000325
	00000326
	00000327
	00000328
	00000329
	00000330
	00000331
	00000332
	00000333
	00000334
	00000335
	00000336
	00000337
	00000338
	00000339
	00000340
	00000341
	00000342
	00000343
	00000344
	00000345
	00000346
	00000347
	00000348
	00000349
	00000350
	00000351
	00000352
	00000353
	00000354
	00000355
	00000356
	00000357
	00000358
	00000359
	00000360
	00000361
	00000362
	00000363
	00000364
	00000365
	00000366
	00000367
	00000368
	00000369
	00000370
	00000371
	00000372
	00000373
	00000374
	00000375
	00000376
	00000377
	00000378
	00000379
	00000380
	00000381
	00000382
	00000383
	00000384
	00000385
	00000386
	00000387
	00000388
	00000389
	00000390
	00000391
	00000392
	00000393
	00000394
	00000395
	00000396
	00000397
	00000398
	00000399
	00000400
	00000401
	00000402
	00000403
	00000404
	00000405
	00000406
	00000407
	00000408
	00000409
	00000410
	00000411
	00000412
	00000413
	00000414
	00000415
	00000416
	00000417
	00000418
	00000419
	00000420
	00000421
	00000422
	00000423
	00000424
	00000425
	00000426
	00000427
	00000428
	00000429
	00000430
	00000431
	00000432
	00000433
	00000434
	00000435
	00000436
	00000437
	00000438
	00000439
	00000440
	00000441
	00000442
	00000443
	00000444
	00000445
	00000446
	00000447
	00000448

