

\$10.00

ISBN 0-944889-08-5

HP42S EDM Slope Staking

D'Zign

HP42S

EDM Slope Staking

Library of Congress Catalog Card No. 89-81214
ISBN 0-944889-08-5

Manufactured in the United States of America
2nd Printing June 1991
3rd Printing August 1992

Copyright © 1990 by Ted J. Kerber

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping or information storage and retrieval systems - without written permission of the author.

published by D'Zign Land Survey & Development
Tollhouse, California, U.S.A. 1992

ISBN 0-944889-08-5

NOTICE

No express or implied warranty is made by D'Zign Land Survey & Development or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign Land Survey & Development nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign Land Survey & Development and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

TECHNICAL ASSISTANCE

The program material, instructions and procedures contained in this book assume that the user has a working knowledge of both surveying and the general operation of the HP-42S calculator.

Technical assistance is limited to verification of the results shown in the various examples used in the book.

user support

We want you to get maximum performance from your D'Zign product. If you have questions or if you should encounter any difficulties, we will be glad to help! Most of the time you will find the answers right in your Owner's Manual, so check there first. If you still have questions, call for help. Our Support Staff is available at (209) 297-8025 between 8:00 A.M. and 12:00 noon PACIFIC time.

Unauthorized reproduction and/or sales may result in imprisonment of up to one year and fines of up to \$10,000 (17 USC 506). Copyright infringers may also be subject to civil liability.

NOTICE

No express or implied warranty is made by D'Zign Land Survey & Development or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign Land Survey & Development nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign Land Survey & Development and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

Hewlett-Packard has produced a really powerful calculator at a very good price, the HP-42 Scientific Calculator, which lends itself nicely to solving surveying problems. It can not be programmed by insertion of a module, or with a card reader, like the HP-41 series, but it has a really simple system for typing in a program.

the operations index

To find a function for the first time, HP has provided an "Operations Index" on pages 310 through 335 of the instruction manual, which tells you exactly what keystrokes to use to type in the function you want.

Even better, this index gives you the page number that you can refer to if you want to know more about the function you are using. If, while typing in a program, you aren't sure how to input a particular function, simply refer to the Operations Index.

the softkey menus

All of the programs in this booklet take advantage of the "softkey" menu system built into this calculator. When you want to start a program you stroke **XEQ** and then the softkey corresponding to the program you want, from the menu displayed in the bottom half of the screen.

the programs

There are several different ways to slope stake, and we've tried to make this program as convenient as possible for everyone. You can use it as is, or maybe change some of the output labels to match what is used in your particular area.

The main program is set up to allow setting of a catch point at any convenient location, and the station at which the stakes are set is output. There is also a subroutine which lets you precalculate the angle and distance to a specific station, at any offset, to begin at.

It's a good idea to take your time with the input of the program steps, to avoid errors. You might also want to do the programming in stages, rather than all at one sitting. Be extra careful with the proof-reading.

subroutines

Because of the way the calculator works, we will start by input of some subroutines.

Once the subroutine has been input, its name appears in the menu when you stroke **XEQ**, and all you have to do to add it as a step in the program you are typing in is stroke GTO or XEQ followed by keystroking the key corresponding to the subroutine to input the program step GTO XXX or XEQ XXX.

getting started

Begin by stroking the shift key, then the **XEQ** key. The display will show a menu which will be blank (if you haven't yet input any programs) except for **.END.** on the left. The keys just below each of the menu portions will correspond to the menu instruction above it. Stroke the key just below the **.END.** in the display.

00MC 0-Byte Prgm)
01 .END.

Next, go into **program mode** by stroking the shifted **R/S** key, and you should have a display similar to the one shown to the left. Begin typing in the program **"YN"**.

quick tip

Program steps 03 and 05 use a function which stores the prompt to the menu, and at the same time assigns the key.

To access the function, stroke **PGM.FCN**

You'll receive a prompt, **KEY _**. Stroke the key number (we'll use 1 as the example), and you will get a prompt, **KEY 1 GTO _**. Now type in the 01.

next subroutine

This one has three steps we might want to review before you start:

09 ARCL ST X To use a store or recall function involving the stack, stroke **STO** (or RCL) . This brings up a menu from which you can select the function to complete the program step.

05 1E2 Third row down, second from the right, is a key, **E**. Stroke this key, then the number (in this case 2). Nothing will happen until you input the next step, usually 'times' or 'divide'.

11 **F**"+" The **F** symbol is "append", which adds to what is already in the **alpha** register.

01LBL "STA" 02 CF 29 03 FIX 00 04 STO 21 05 1E2 06 **F** 07 ENTER 08 IP 09 ARCL ST X 10 **F**"+" 11 FIX 03 12 1E2 13 X 14 15 10 16 X>Y? 17 **F**"0" 18 ARCL ST Y 19 RCL 21 20 SF 29 21 FIX 04 22 END

This program changes the output of the stationing to really read like stationing. It takes up 48 bytes of memory.

After you've input the program make sure to proof read it. Look, in particular, for steps that are **alpha** but shouldn't be, or should be **alpha** and aren't.

Follow the same procedure to begin the input as with the first subroutine, **"YN"**, and type in the steps. When you input the **END** at step 22, do it by stroking **XEQ** before going into **alpha mode** to type in the rest.

testing

After you do the proof-reading, you can give it quick check, to see if it's working properly. First, clear the **alpha** register, then input 1204.78 and execute the program. Now, if you go into **alpha mode**, or execute **AVIEW**, the display portion should read as 12+04.780.

If you go to the program, "STA", which was just input and scroll up to 00, you can begin the next subroutine. When you input the last step, END, the calculator will automatically divide the two programs.

You could also use a RTN, instead of END as step number 15. This leaves the two programs together but, since neither of them uses any subroutine labels, they will both still work properly.

"CL1" is a register clearing routine. The other, "FCL", clears all of the flags 00 through 13.

This group of programs uses 44 bytes of memory for both programs.

By now you should be familiar with most of the strokes used in the programming. The next subroutine (below) outputs angles labeled with the °, ' and " symbols.

All of these subroutines can be used with other programs. In this one, if flag 19 is set the program clears the alpha register before it starts. When flag 19 is clear alpha labels ahead of the numeric portion are retained.

01LBL "DMS"	14 ABS	27 XEQ 01
02 FS?C 19	15 STO 18	28 ARCL ST X
03 CLA	16 IP	29 F _W
04 ENTER	17 XEQ 01	30 CLX
05 STO 19	18 ARCL ST X	31 FIX 04
06 IP	19 F ₁	32 SF 29
07 CF 29	20 RCL 18	33 RCL 19
08 FIX 00	21 FP	34 LBL 01
09 ARCL ST X	22 100	35 10
10 F ₂	23 X	36 X ₂
11 -	24 FIX 02	37 X ₂ Y ₂
12 100	25 RND	38 F ₀
13 X	26 FIX 01	39 END

Take a few minutes to look the program over after you finish with the input. Like "STA", "DMS" may be checked by using it. Input 12.34567 and stroke XEQ DMS. If you execute AVIEW, or go into alpha, the display should be 12°34'56.7". If it isn't, something is wrong with one or more of the program steps.

When a program is long it runs slower. The search for a specific label goes all of the way around the loop until it comes to the label it's looking for. For this reason, the input prompting sequences have been set up as a separate program, "INPT", which is the next to be put in.

important strokes

The symbol, ¶, is "line feed", and we use it to control the display (the first time we use it is at program step 04). You can input it by stroking

This time, put the program in at the permanent .END. and it will have the secondary effect of removing .END. from your GTO/XEQ menu. The programs should be grouped in such a way that the ones you use most often appear in the first menu, for convenience. Enter **program mode** and scroll up to 00 to begin.

00 (512-Byte Prgm)	29 CLX
01 LBL "INPT"	30 X ₂ Y ₂
02 CF 21	31 X ₂ Y ₂ ?
03 "Instrument"	32 360
04 F ₁ "Station?¶"	33 +
05 PROMPT	34 STO 07
06 STO 05	35 "Inst. H.I.?¶"
07 "Offset?¶"	36 PROMPT
08 PROMPT	37 STO 11
09 STO 06	38 "Profile Elev.?¶"
10 RCL 05	39 PROMPT
11 X ₂ Y ₂ ?	40 STO 20
12 XEQ 06	41 STO 33
13 "Backsight"	42 ENTER
14 F ₂ "Station?¶"	43 ENTER
15 PROMPT	44 "Cut. Factor?¶"
16 STO 03	45 PROMPT
17 "Offset?¶"	46 +
18 PROMPT	47 STO 27
19 STO 04	48 R ₊
20 RCL 03	49 "Fill Factor?¶"
21 X ₂ Y ₂ ?	50 PROMPT
22 XEQ 02	51 +
23 RCL 03	52 STO 28
24 RCL 04	53 % Grade?¶"
25 RCL- 06	54 PROMPT
26 X ₂ Y ₂	55 1E2
27 RCL- 05	56 ÷
28 →POL	

```

57 STO 10      104 ABS      152 RCL+ 14
58 CF 21       105 RCL+ 15  153 →REC
59 "Vertical Curve?" 106 STO 24  154 +/--
60 AVIEW      107 RCL 13   155 RCL+ 14
61 SF 21       108 ABS      156 FS? 05
62 CLMENU     109 2       157 +/--
63 XEQ "YN"   110 ÷       158 RTN
64 FC? 10     111 TAN      159 ▶LBL 05
65 GTO 09     112 RCLX 14  160 RCL 14
66 SF 04       113 STO 26  161 PI
67 "B.V.C."   114 -       162 X
68 "Station??" 115 STO 25  163 RCL 15
69 PROMPT     116 RCL 15   164 RCL 03
70 STO 16     117 STO+ 26  165 XEQ 03
71 "Length V.C.?" 118 RTN   166 RCL 04
72 PROMPT     119 ▶LBL 01  167 XEQ 04
73 STO 17     120 R+      168 STO 04
74 "Grade Out??" 121 CLX   169 X<>Y
75 PROMPT     122 RCL 14   170 RCL+ 15
76 1E2        123 PI      171 STO 03
77 ÷          124 X       172 RTN
78 STO 09     125 RCL 15   173 ▶LBL 06
79 GTO 09     126 RCL 05   174 +/--
80 ▶LBL 00     127 XEQ 03   175 STO 05
81 CF 01       128 RCL 06   176 XEQ 00
82 "B.C. Station??" 129 XEQ 04   177 XEQ 01
83 PROMPT     130 STO 06   178 RTN
84 X<0?       131 X<>Y  179 ▶LBL 09
85 SF 01       132 RCL+ 15  180 FC? 01
86 X<0?       133 STO 05   181 RTN
87 +/-         134 RTN     182 CLMENU
88 ▶LBL 07     135 ▶LBL 02  183 CF 01
89 CLMENU     136 +/-     184 CF 21
90 STO 15     137 STO 03   185 "NEXT"
91 FS? 01       138 XEQ 00   186 AVIEW
92 RTN        139 XEQ 05   187 SF 21
93 "Radius??" 140 RTN     188 "B.C."
94 PROMPT     141 ▶LBL 03  189 KEY 1 GTO 07
95 STO 14     142 -       190 "END"
96 "Delta??"  143 +/-     191 KEY 6 GTO 08
97 PROMPT     144 180     192 MENU
98 →HR        145 X       193 STOP
99 X<0?       146 X<>Y  194 ▶LBL 08
100 SF 05      147 ÷       195 +/--
101 STO 13     148 RTN     196 SF 01
102 →RAD      149 ▶LBL 04  197 GTO 07
103 RCLX 14    150 FC? 05  198 .END.
104 +/-        151 +/-     199

```

Proof read the program at least once, looking for typos. One quick check is to execute the program and run/stop through the prompts. This will check the **sequence** of the prompts, and should run as follows:

First, execute "INPT", to bring up the first prompt.

stroke **R/S** after each of the prompts appears, until you get to the beginning of the prompts for the vertical curve.

Answer this one "yes" to bring up the remaining vertical prompts, and finally, the prompt for "NEXT" and the prompt bar for selection of either an ending point or a B.C. station.

When you stroke **R/S** at this prompt the display should clear. Go into program mode, and your program pointer should be at step 93, "Radius??".

Exit and stroke **R/S** twice to bring up the next prompt, and continue. A **R/S** after "Delta?" will not bring up another prompt. If you go into program now, you should be at step 120, LBL 01.

the main program, "SS"

The best place to put this next program is at the bottom of "INPT". GTO "INPT" and enter **program mode**. Scroll upward 3 times, to put the pointer at step 197, GTO 07, and type in the first step of the new program, LBL "SS".

Next, scroll upward to GTO 07 again, stroke **XEQ** and then enter **alpha mode** and type in "END". This separates the programs and positions the new one correctly. Leave **program mode** and GTO "SS" to input the rest of the program listing which begins on page 8.

Take your time with the programming, because this is a rather long one, and extremely difficult to debug.

Instrument station?	<input type="checkbox"/>	R/S
Offset?	<input type="checkbox"/>	R/S
Backsight station?	<input type="checkbox"/>	R/S
Offset?	<input type="checkbox"/>	R/S
Inst. H.I.?	<input type="checkbox"/>	R/S
Profile Elev.?	<input type="checkbox"/>	R/S
Cut Factor?	<input type="checkbox"/>	R/S
Fill Factor?	<input type="checkbox"/>	R/S
% Grade?	<input type="checkbox"/>	R/S
vertical Curve?	<input type="checkbox"/>	R/S
YES	<input type="checkbox"/>	NO
B.V.C. station?	<input type="checkbox"/>	YES
Length V.C.?	<input type="checkbox"/>	R/S
Grade Out?	<input type="checkbox"/>	R/S
NEXT	<input type="checkbox"/>	END
B.C.	<input type="checkbox"/>	END
<input type="checkbox"/> R/S	93 "Radius??"	EXIT R/S R/S
Radius?	<input type="checkbox"/>	R/S
Delta?	<input type="checkbox"/>	R/S
<input type="checkbox"/> R/S	120 ▶LBL 01	EXIT

```

00 ( 1008-Byte Prgm )
01 LBL "55"
02 XEQ "CL1"
03 XEQ "FCL"
04 CLST
05 SF 01
06 XEQ "INPT"
07 LBL 00
08 CLX
09 CLMENU
10 "H<""
11 KEY 1 GTO 01
12 "Z<""
13 KEY 2 GTO 01
14 "S.D."
15 KEY 3 GTO 01
16 "CC"
17 KEY 4 GTO C
18 "F<""
19 KEY 5 GTO F
20 "ROD"
21 KEY 6 GTO A
22 KEY 7 GTO 02
23 KEY 8 GTO 02
24 KEY 9 GTO 03
25 MENU
26 LBL 04
27 STOP
28 GTO 04
29 LBL 02
30 CLMENU
31 "STA"
32 KEY 1 GTO 06
33 "0/S"
34 KEY 2 GTO 07
35 "-USE-"
36 KEY 3 GTO 12
37 "NEWC"
38 KEY 4 GTO 14
39 "NEWF"
40 KEY 5 GTO 25
41 "REF"
42 KEY 6 GTO 09
43 KEY 7 GTO 00
44 KEY 8 GTO 00
45 MENU
46 LBL 05
47 STOP
48 GTO 05
49 LBL 03
50 CLMENU
51 EXITALL
52 STOP
53 RTN
54 LBL 01

55 CF 22
56 STOP
57 LBL 06
58 STO 30
59 CLA
60 CF 21
61 XEQ "STA"
62 AVIEW
63 SF 21
64 STOP
65 LBL 14
66 RCL+ 33
67 STO 27
68 STO 20
69 STOP
70 LBL 25
71 RCL+ 33
72 STO 28
73 STO 20
74 STOP
75 LBL 17
76 FIX 02
77 CLA
78 "RP Elev = "
79 ARCL ST X
80 "L<""
81 RCL- 12
82 +/-"
83 X>0?
84 "F<+"
85 ARCL ST X
86 "R<""
87 ARCL 34
88 "F<" to S.S."
89 AVIEW
90 CF 06
91 ADV
92 GTO 00
93 LBL A
94 SF 03
95 FC? 22
96 RCL 01
97 FS? 22
98 +/-"
99 STO 01
100 R+
101 X<>Y
102 >HR
103 X<>Y
104 >REC
105 RCL+ 11
106 RCL+ 01
107 FS? 06
108 XEQ 17

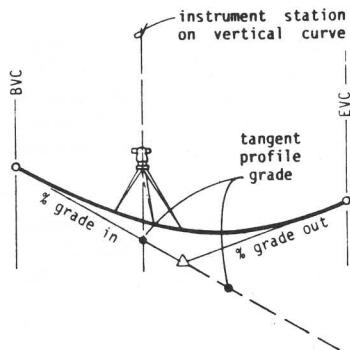
109 FS?C 06
110 GTO 10
111 STO 12
112 R+
113 X<>Y
114 >HR
115 RCL+ 07
116 X<>Y
117 >REC
118 RCL+ 05
119 STO 30
120 X<>Y
121 RCL+ 06
122 STO 31
123 X<>Y
124 RCL 24
125 X<>Y?
126 GTO 08
127 CLX
128 RCL 15
129 FS? 01
130 GTO 11
131 X>Y?
132 GTO 11
133 -
134 X<>Y
135 FS? 05
136 +/-"
137 RCL- 14
138 +/-"
139 >POL
140 +/-"
141 RCL+ 14
142 FS? 05
143 +/-"
144 STO 31
145 X<>Y
146 >RAD
147 RCLX 14
148 RCL+ 15
149 STO 30
150 RCL 24
151 X<>Y?
152 GTO 08
153 R+
154 X<>Y
155 FS? 05
156 +/-"
157 X<>Y
158 ENTER
159 GTO 11
160 RTN
161 LBL 27
162 RCL 08

```

```

163 "W/2 = "
164 ARCL ST X
165 "L<""
166 PROMPT
167 STO 08
168 SF 08
169 RCL 29
170 ENTER
171 IP
172 X=Y?
173 CF 08
174 R+
175 FIX 00
176 CF 29
177 FS? 08
178 FIX 02
179 "Slope Ratio = "
180 ARCL ST X
181 "F<:1<""
182 SF 21
183 PROMPT
184 FIX 02
185 SF 29
186 STO 29
187 RCL 23
188 RCL- 12
189 STO 02
190 ABS
191 RCLX 29
192 RCL+ 08
193 STO 32
194 RCL 31
195 X<0?
196 +/-"
197 -
198 +/-"
199 STO 00
200 CLA
201 "TRY "
202 ABS
203 ARCL ST X
204 RCL 31
205 X>0?
206 XEQ 29
207 RCL 00
208 X<0?
209 "F<" LEFT"
210 X>0?
211 "F<" RIGHT"
212 CF 21
213 AVIEW
214 SF 21
215 XEQ 02
216 RTN

217 LBL 29
218 RCL 02
219 X>0?
220 RTN
221 -1
222 STO X 00
223 RTN
224 LBL 12
225 FIX 01
226 CLA
227 "FILL "
228 RCL 02
229 X<0?
230 "CUT "
231 ABS
232 ARCL ST X
233 "L<""
234 RCLX 29
235 " AT"
236 ARCL ST X
237 AVIEW
238 CF 03
239 RCL 32
240 RCL 30
241 ENTER
242 LBL 11
243 R+
244 CLA
245 "Sta"
246 XEQ "STA"
247 RCL 31
248 FIX 02
249 X>0?
250 GTO 13
251 +/-"
252 "F<" at "
253 ARCL ST X
254 "F<" Left"
255 LBL 15
256 FC? 03
257 AVIEW
258 "Elev. = "
259 ARCL 12
260 "F<""
261 XEQ 28
262 FS? 03
263 GTO 27
264 LBL 10
265 CF 21
266 "INPUT SHOT"
267 AVIEW
268 SF 21
269 GTO 00
270 LBL 13


271 "F<" at "
272 ARCL ST X
273 "F<" Right"
274 GTO 15
275 LBL 28
276 RCL 30
277 FS? 04
278 GTO 21
279 LBL 26
280 RCL 30
281 RCL- 05
282 RCLX 10
283 RCL 20
284 LBL 24
285 +
286 STO 23
287 "Grade = "
288 ARCL ST X
289 FC? 03
290 AVIEW
291 ADV
292 FS? 03
293 GTO 27
294 GTO 02
295 LBL 09
296 SF 06
297 ENTER
298 ABS
299 STO 34
300 R+
301 RCL+ 31
302 LBL 07
303 RCL- 06
304 RCL 30
305 RCL 24
306 X<Y?
307 GTO 20
308 CLX
309 RCL 15
310 X<Y?
311 XEQ 19
312 R+
313 RCL- 05
314 LBL 16
315 >POL
316 LBL 18
317 FIX 02
318 "DIST = "
319 ARCL ST X
320 "F<""
321 FIX 04
322 CLX
323 X<>Y
324 RCL- 07

```

325 X \leq Y?	368 \rightarrow REC	412 X
326 360	369 X \times Y	413 RCL \div 17
327 +	370 RCL- 06	414 X
328 \rightarrow HMS	371 X \times Y	415 2
329 H^{a} = "	372 RCL 26	416 \div
330 XEQ "DMS"	373 RCL- 05	417 RCL 10
331 AVIEW	374 +	418 1E2
332 ADV	375 \rightarrow POL	419 X
333 GTO 10	376 GTO 18	420 +
334 \blacktriangleright LBL 19	377 \blacktriangleright LBL 22	421 X
335 -	378 RCL- 17	422 1E2
336 RCL \div 14	379 X \times Y?	423 \div
337 \rightarrow DEG	380 GTO 26	424 RCL 16
338 STO 03	381 GTO 23	425 RCL- 05
339 COS	382 \blacktriangleright LBL 21	426 RCLX 10
340 X \times Y	383 RCL 16	427 RCL \div 20
341 FC? 05	384 RCL+ 17	428 GTO 24
342 +/-	385 X \times Y?	429 \blacktriangleright LBL C
343 RCL+ 14	386 XEQ 22	430 RCL 27
344 X	387 X \times Y	431 STO 20
345 STO 04	388 RCL 16	432 GTO 10
346 RCL 03	389 RCL 17	433 \blacktriangleright LBL F
347 TAN	390 2	434 RCL 28
348 X	391 -	435 STO 20
349 RCL 15	392 +	436 GTO 10
350 RCL- 05	393 ENTER	437 \blacktriangleright LBL 08
351 +	394 RCL- 05	438 RCL 31
352 RCL 04	395 RCLX 10	439 RCL 30
353 RCL- 14	396 RCL+ 20	440 RCL- 26
354 FC? 05	397 RCL 30	441 \rightarrow POL
355 +/-	398 RCL- 16	442 X \times Y
356 X \times Y	399 RCL 17	443 RCL- 13
357 GTO 16	400 2	444 +/-
358 \blacktriangleright LBL 20	401 -	445 X \times Y
359 R \downarrow	402 -	446 \rightarrow REC
360 X \times Y	403 RCLX 09	447 RCL+ 25
361 RCL+ 06	404 GTO 24	448 STO 30
362 X \times Y	405 \blacktriangleright LBL 23	449 X \times Y
363 RCL- 25	406 -	450 +/-
364 \rightarrow POL	407 ENTER	451 STO 31
365 X \times Y	408 ENTER	452 X \times Y
366 RCL+ 13	409 RCL 09	453 ENTER
367 X \times Y	410 RCL- 10	454 GTO 11
	411 1E2	455 .END.

Before starting with the user's instructions and the keystroke examples, this is a good place to look at how the program is set up.

vertical grade

When the station that is occupied by the instrument is within a vertical curve, the elevation that is input as profile grade is the elevation of the **vertical tangent** at the instrument station.

It's a simple matter to calculate this elevation since it is just the extention of the back vertical tangent (even if the instrument is upstation of the PVI).

slope ratio

The slope ratio is carried as a constant, and is displayed each shot. If you want to change it, input the new number before stroking **R/S**. If it is the ratio you plan to use just stroke **R/S**.

half-width

Like the slope ratio, the half-width (distance from the centerline to the hinge point) is displayed each shot. If it is the width you want to use, stroke **R/S**. If not, input the new number and then stroke **R/S**.

Both of the variables above may be changed at any time, during the shot input, allowing for widening the roadbed or flattening the slope as the cut or fill approaches a "daylight" area.

referencing

A routine has also been included which calculates the angle to turn and the distance to measure to set the

reference stake. The amount of offset is input by the user and the angle and distance are calculated. A shot taken on the reference hub after it is set will output the elevation of the RP and the plus or minus to the slope stake.

setting specific stations

This program allows the flexibility of setting stakes wherever the terrain forms a high or low point, to best define the top or toe of slope. Since the program calculates the finished grade at any station you shoot, it isn't necessary to only set those points with elevations shown on the profile.

To stake at specific stations, at 25' or 50' intervals, you can set the station at an offset (determined as approximate catch point based on the drawings) for the first trial station, using **OFF** and **SET**.

After input of the station and offset the program will output the angle and distance to that point. Set a temporary point there and take a shot on it. The output will tell you which way, and how far, to the catch point.

Since the ground changes, it should be understood that this distance is where the catch point would be if the ground were flat.

the cut and fill factors

The actual point where the slope will end is seldom at the same elevation as profile grade. Use of these factors causes the adjustments to profile grade to be made automatically. These factors are discussed in more detail as part of the keystroke instructions.

sizing

To use the basic program, the calculator should be sized to 0035. This means that registers 00 through 34 are used for storage. If you decide to add either or both of the optional routines (resection and data storage) additional registers will have to be allocated for their use.

XEO **SET**. This clears the registers, resets the status of the flags, and calls up the first prompt:

Instrument Station?

Input the station which (or opposite which) is occupied by the instrument. If this station is within a curve on the alignment, stroke **✓** before stroking

R/S

Offset?

If the instrument is on centerline, input 0. If the instrument is at an offset distance from centerline, input the offset distance. If the offset is left of centerline, stroke **✓** before

R/S

Backsight Station?

Input the station at the backsight. If the station is within a curve (and the instrument station was not), first stroke **✓**, then

R/S

Offset?

Input 0 if the sight is on centerline, or input the offset distance. If the offset of the point is to the left of centerline, stroke **✓** before

R/S

B.C. Station?

This prompt will appear after the instrument station input, if the instrument is on a curve in the alignment, or after input of the backsight information, if it is on a curve. If there is a curve, the prompts marked * will appear.

If neither point was on a curve, but there is a curve in the work area, a later prompt provides the opportunity to input the curve data. Input the station,

R/S

Radius*

Input the length of the radius of the curve

R/S**Delta?***

Input the central angle of the curve. If the curve is a curve to the left, **✓** before stroking

R/S**Inst. H.I.?**

Input the elevation of the height of instrument. Stroke

R/S**Profile Elev.?**

Input the **finished grade** elevation at the instrument station. If the instrument is at a station which is located within a vertical curve, input the elevation of the **back tangent profile grade**.

R/S**Cut Factor?**

Input the "cut factor". This is the difference in elevation between the finished (profile) grade and the hinge-point of the cut section. If negative, **✓**, then stroke

R/S**Fill Factor?**

Input the "fill factor". This is the difference between profile grade and the hinge-point in a fill section. If negative, **✓** and stroke

R/S**% Grade?**

Input the percent of grade for the vertical alignment. If negative, **✓**. Stroke

R/S**Vertical Curve?****YES NO**

This prompt requires a yes or no answer. If the answer is "YES", the next three prompts for input of the vertical data will appear:

B.V.C. Station?

Input the station at the beginning of the vertical curve. In the case of a grade break, instead of a curve, input the station at the grade break

R/S**Length V.C.?**

Input the length of the vertical curve. If this is a grade break instead of a curve, input 0

R/S**Grade Out?**

Input the percent of grade leaving the vertical curve. If negative, **✓** before stroking

R/S**NEXT****YES****END**

If there is a curve in the work area, input the B.C. station and stroke **YES**. If there is not, input a station that is as far as you intend to go, to set the auto-stop option, stroke **END**.

INPUT SHOT**K Z S C F ROD**

The first time this prompt appears, or at any time when you want to change the hinge point elevation (from cut to fill or from fill to cut) select the appropriate factor

If staking a cut, stroke

1

If staking a fill, stroke

2**INPUT SHOT****K Z S C F ROD**

Input the horizontal angle

3

Input the zenith angle

4

Input the measured slope distance

Because, in slope staking, the rod is always a minus the program will indicate that; you need not change the sign

Once the rod has been input you do not have to input it again, unless it changes. Stroking **ROD** will cause the program to repeat the last rod reading for this shot.

Input the rod reading

The next two prompts are for the "half-width" and the slope ratio. Since they both vary, the value about to be used for the calculation is displayed, and may be changed at this time by input of a new value, prior to stroking **R/S**.

W/2 = 0.00

Input the correct half-width value, if it is different than the value which is displayed

Slope Ratio = 0:1

Input the correct slope ratio value, if different from the value displayed

At this point the display will show the distance to the actual catch point. If the distance is considered to be within tolerance, stroke . If it is not, have the rodman move to a new position (based on the display), scroll once, with **▲** or **▼** and begin with input of the data from the new shot.

to set a reference stake

Once you have reached the catch point, stroking will display the information for making out the slope stake.

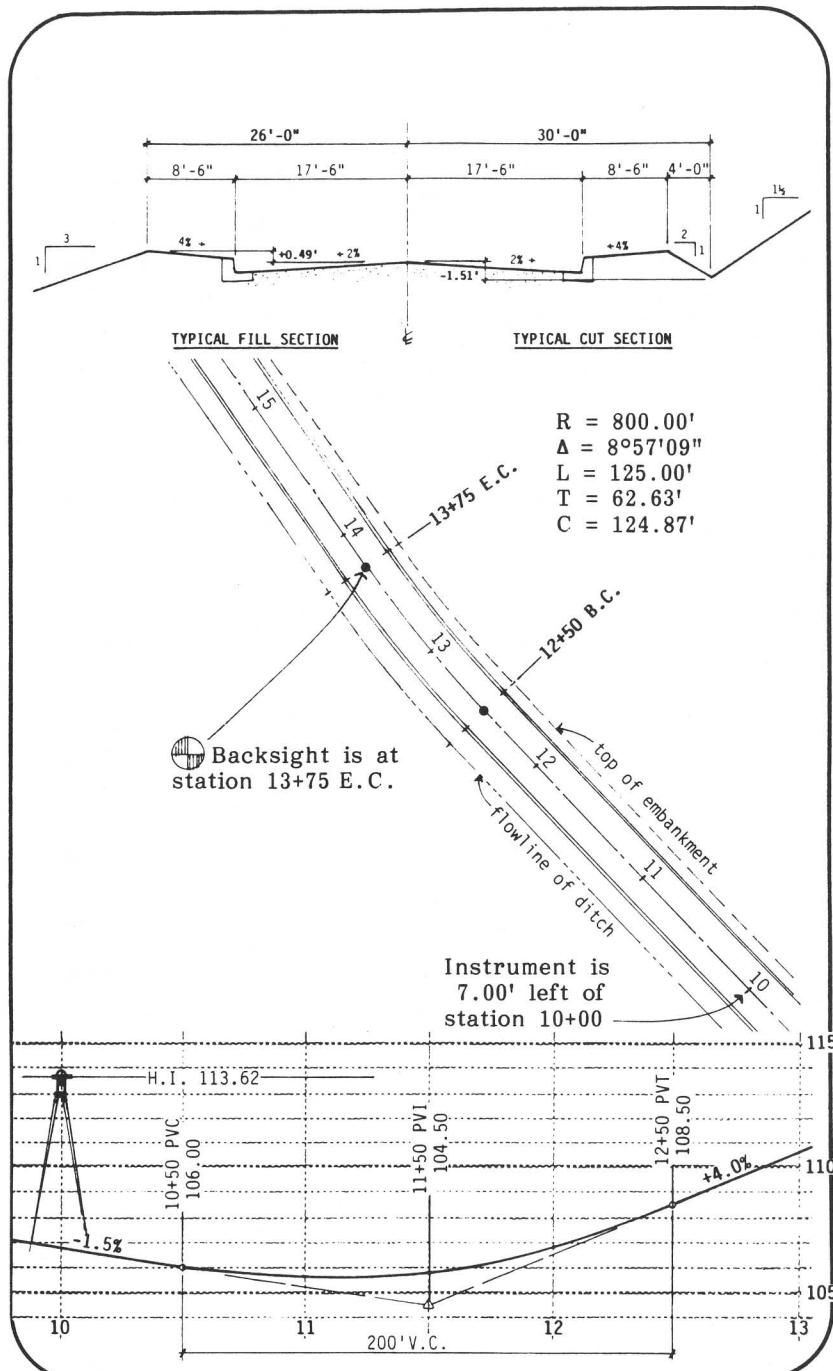
Input the distance you want to use, from the slope stake to the reference stake. If it is left of centerline, **✓**, then stroke

Output will be the distance to the reference point and the horizontal angle to turn to set it.

INPUT SHOT

After setting the reference point, take a shot on it and input it in the same manner as the previous shots.

Output will be the elevation of the reference point and the difference in elevation to the slope stake.


changing the cut or fill factors

At times, design conditions change and a new "Typical Section" means using a different cut or fill factor. There are keys for doing this in the second menu.

To change the cut factor, input the new factor and stroke

To change the fill factor, input the new factor and stroke

This will calculate the elevations based on the new input until you change it again. The new factor also becomes the **current** factor. If you have just input a new fill factor, but are currently staking a cut stroke before beginning input of the shot.

Before you begin input of the alignment information, take a moment to calculate the cut and fill factors. This is simply the difference in elevation between the finish profile grade and the hinge point you are staking to. If for instance, you were staking to the back of a bench in a cut section, this could be a difference of 20 or more feet.

We are going to use the roadway details shown on the opposite page for the keystroke examples, so we won't have that type of condition. In the typical cut section we are going to be staking to the flowline of the ditch.

The **factor** will be the sum of the differences. We have 17.5 feet at -2%, +0.5' for the curb, and 8.5' at +4% on both sides; $(17.5)(-.02) + 0.5 + (8.5)(.04) = +0.49$. This is the **fill factor**. For a cut, we have the added ditch, 4' @ 2:1, which is -2', so the **cut factor** will be -1.51'.

Let's start with the keystrokes for input of the basic information about our setup and the alignments of our roadway. The calculator should be sized at **030**, and we initialize the program by stroking **0 XEQ 55**.

Instrument Station?

keystrokes:

1 0 0 0 R/S

Offset?

keystrokes:

7 +/- R/S

Backsight Station?

keystrokes:

1 3 7 5 +/- R/S
(it's on a curve)

Offset?

keystrokes:

0 R/S

B.C. Station?

keystrokes

1 2 5 0 R/S

Radius?

keystrokes:

8 0 0 R/S

Delta?

keystrokes:

8 . 5 7 0 9 R/S

Inst. H.I.?

keystrokes:

1 1 3 . 6 2 R/S

Profile Elev?

keystrokes:

1 0 6 . 7 5 R/S

Cut Factor?

keystrokes:

1 . 5 1 +/- R/S

Fill Factor?

keystrokes:

. 4 9 R/S

% Grade?

keystrokes:

1 . 5 +/- R/S

Vertical Curve?

YES END

keystroke:

YES

B.V.C. Station?

keystrokes:

1 0 5 0 R/S

Length V.C.?

keystrokes:

2 0 0 R/S

Grade Out?

keystrokes:

4 R/S

x:0.00

K E 30 C F ROD

Prior to the first shot input, we need to say whether it's a cut or fill section. We'll assume that the first shot will be fill, and stroke **F**

INPUT SHOT

K E 30 C F ROD

Let's try a shot using the following data:

horiz. angle = $13^{\circ}10'20''$
zenith angle = $92^{\circ}05'15''$
slope distance = 187.40'
the rod reading is 5.00'

keystrokes:

1 3 . 1 0 2

9 2 . 0 5 1 5

1 8 7 . 4

5 ROD

W/2 = 0.00

keystrokes:

2 6 R/S

Slope Ratio = 0:1

keystrokes:

3 R/S

display: TRY 2.55' RIGHT

You need to have the rodman go about $2\frac{1}{2}$ feet to the right. We take a shot there, with the following data:

horiz. angle = $13^{\circ}30'25''$
zenith angle = $92^{\circ}27'00''$
slope distance = 187.70'
the rod reading is 5.00'

Input this data the same as we did the first shot. This time the prompts for the half-width and the slope ratio will already show us the right information, so we can just continue at that point.

keystrokes:

▲ 1 3 . 5 7

9 2 . 4 2

1 8 7 . 9

5 ROD

W/2 = 26.00

keystroke:

R/S

Slope Ratio = 3:1

keystroke:

R/S

display: TRY 0.94' LEFT

The ground slope has made a difference, and you need to go left about a foot, at the same elevation, for a catch point. On this shot we get:

horiz. angle = $13^{\circ}30'25''$
zenith angle = $92^{\circ}27'00''$
slope distance = 187.70'
the rod reading is 5.00'

keystrokes:

1 3 . 3 0 2 5

▼

9 2 . 2 7

▼

1 8 7 . 7

▼

5 ROD

W/2 = 26.00'

keystroke:

R/S

Slope Ratio = 3:1

keystroke:

R/S

display: TRY 0.09' RIGHT

This is close enough to use for the catch point. Stroke

DISP

output:

FILL 6.3
AT 18.8
sta 11+80.203
at 44.90 Right
Elev. = 100.60
Grade = 106.87

Let's set the reference point at 15'

R/S

keystrokes:

1 5 ROD

output:

DIST = 192.22
Δ = 17°48'26.7"

INPUT SHOT**K Z SD C F ROD**

Turn the angle shown and set the reference point at the distance given. After the point is set, take a shot on it to get the elevation. We'll use the following data:

horiz. angle = $17^{\circ}48'30''$
 zenith angle = $93^{\circ}06'15''$
 slope distance = 192.20'
 the rod reading is 5.00'

keystrokes:

1 7 • 4 8 3
 K
 9 3 • 0 6 1 5
 Z
 1 9 2 • 2
 SD
 ROD

output:

RP Elev = 98.21
 $+2.38 @ 15.00$ to S.S.

x:0.00

K Z SD C F ROD

Let's try one on the cut side. First, change the factor by stroking

INPUT SHOT**K Z SD C F ROD**

We'll use the following data:

horiz. angle = $348^{\circ}23'00''$
 zenith angle = $89^{\circ}19'50''$
 slope distance = 201.90'
 the rod reading is 5.00'

keystrokes:

3 4 8 • 2 3
 K
 8 9 • 1 9 5
 Z
 2 0 1 • 9
 SD
 ROD

W/2 = 26.00

keystrokes:

3 0 R/S

Slope Ratio = 3.00

keystrokes:

1 • 5 R/S

display: TRY 0.29' RIGHT

Let's go a little to the right and try another shot. We get:

horiz. angle = $348^{\circ}25'40''$
 zenith angle = $89^{\circ}17'20''$
 slope distance = 202.30'
 the rod reading is 5.00'

keystroke:

x:0.00

K Z SD C F RODLet's try one on the cut side. First, change the factor by stroking **INPUT SHOT****K Z SD C F ROD**

We'll use the following data:

horiz. angle = $348^{\circ}23'00''$
 zenith angle = $89^{\circ}19'50''$
 slope distance = 201.90'
 the rod reading is 5.00'

3 4 8 • 2 5 4
 K
 8 9 • 1 7 2
 Z
 2 0 2 • 3
 SD
 ROD

W/2 = 30.00

keystroke:

R/S

Slope Ratio = 1.50:0

keystroke:

R/S

display: TRY 0.02' LEFT

keystroke:

DISP

output:

CUT 5.8
 AT 8.7
 Sta 11+99.787
 at 38.69 Left
 Elev. = 111.13
 Grade = 105.33

R/S

keystrokes:

1 0 R/S

(we're going left)

output:

DIST = 204.09
 $\angle = 345^{\circ}39'14.3''$

INPUT SHOT**K Z SD C F ROD**

After setting the RP, we get a shot of:

horiz. angle = $345^{\circ}39'00''$
 zenith angle = $87^{\circ}32'00''$
 slope distance = 204.10'
 the rod reading is 5.00'

keystrokes:

3 4 5 • 3 9
 K
 8 7 • 3 2
 Z
 2 0 4 • 1
 SD
 ROD

output:

RP Elev = 117.40
 $-6.27 @ 10.00$ to S.S.

x:0.00

The shots listed below will give you some additional practice with the keystrokes. The shots are to the catch points, still using the same alignment. Remember to change the cut or fill factor (if necessary) before input of the shot. Forgetting to do so will result in an error at the catch point.

1. **Cut section**, set the RP @ 15'. Use a zenith angle of $88^{\circ}12'20''$ for the RP shot.

horiz. angle = $354^{\circ}40'50''$
 zenith angle = $88^{\circ}29'25''$
 slope distance = 400.70'
 the rod reading is 5.00'

CUT 6.4
 AT 9.6
 Sta 13+94.686
 at 39.57 Left
 Elev. = 119.18
 Grade = 112.78

DIST = 403.87
 $\angle = 352^{\circ}35'47.1''$

RP Elev = 121.27
 $-2.09 @ 15.00$ to S.S.

2. **Fill section**, set the RP @ 15'. Use a zenith angle of 89°40'30" for the RP shot.

horiz. angle = 6°13'55"
zenith angle = 89°25'40"
slope distance = 477.50'
the rod reading is 5.00'

FILL 4.8
AT 14.4
Sta 14+79.939
at 40.40 Right
Elev. = 113.39
Grade = 118.19

DIST = 477.67
Δ = 8°01'53.3"0

RP Elev = 111.33
+2.06 ← 15.00 to 5.5.

3. **Cut section**, set the RP @ 15'. Use a zenith angle of 87°52'10" for the RP shot.

horiz. angle = 351°23'30"
zenith angle = 88°21'00"
slope distance = 315.00'
the rod reading is 5.00'

CUT 8.3
AT 12.5
Sta 13+09.986
at 42.54 Left
Elev. = 117.69
Grade = 109.39

DIST = 317.39
Δ = 348°42'48.1"0

RP Elev = 120.42
-2.73 ← 15.00 to 5.5.

The two most likely sources of error when using this program are forgetting to change the factor when going from cut to fill (or fill to cut) and not checking that the half-width and slope ratio are correct for the shot being taken.

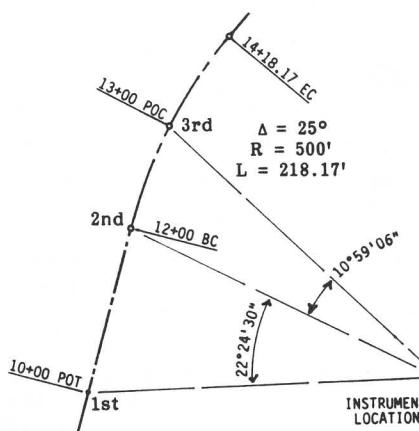
If you're using the calculator without a printer, remember to continue stroking R/S after output, until the next answer or prompt appears.

resection

This program has been added as an option, for those days when you could stake the whole job if you had a point "up on that hill". It works with the stations and offsets, so you can determine the station and offset of a random point anywhere that you can see three known points from.

The program locates the station and offset of the instrument setup point, and then outputs the distances to the points which were used as backsights, as a check on the shots used. All that is required is the input of the Station/Offset information for three points and the angles between the first and second and second and third points.

The best place to put this one is on top of "SS". Stroke XEQ ~~SS~~ to go to "SS", then scroll up above the .END. to begin. When you have finished the input, the "END" on this program will separate them.


00 { 587-Byte_Prgm }	34 X<>Y	68 RCL÷ 06
01▶LBL "R'SEC"	35 STO 04	69 RCL 11
02 XEQ "CL1"	36 "≤ 1st - 2nd?4"	70 SIN
03 XEQ "FCL"	37 PROMPT	71 X
04 180	38 →HR	72 RCL 12
05 STO 15	39 STO 11	73 SIM
06 SF 07	40 "≤ 2nd - 3rd?4"	74 ÷
07 "Sta 1"	41 PROMPT	75 1
08 ASTO 30	42 →HR	76 -
09 ↓"↑ 0/54"	43 STO 12	77 X
10 PROMPT	44 RCL 01	78 LASTX
11 XEQ 03	45 RCL- 03	79 2
12▶LBL 07	46 RCL 00	80 +
13 STO 01	47 RCL- 02	81 →POL
14 X<>Y	48 →POL	82 R+
15 STO 00	49 STO 06	83 +
16 SF 08	50 X<>Y	84 ENTER
17 "Sta 2"	51 STO 14	85 X<0?
18 ASTO 31	52 RCL 05	86 XEQ 05
19 ↓"↑ 0/54"	53 RCL- 03	87 STO 08
20 PROMPT	54 RCL 04	88 CF 07
21 XEQ 03	55 RCL- 02	89 X<>Y
22▶LBL 08	56 →POL	90 +/-
23 STO 03	57 STO 07	91 RCL+ 10
24 X<>Y	58 X<>Y	92 X<0?
25 STO 02	59 RCL- 14	93 XEQ 05
26 SF 09	60 RCL- 11	94 STO 10
27 "Sta 3"	61 RCL- 12	95 RCL 08
28 ASTO 32	62 STO 10	96 RCL 14
29 ↓"↑ 0/54"	63 2	97 RCL 11
30 PROMPT	64 ÷	98 RCL- 15
31 XEQ 03	65 ENTER	99 +
32▶LBL 09	66 TAN	100 +
33 STO 05	67 RCL 07	

```

101 RCL 08
102 SIN
103 RCLX 06
104 RCL 11
105 SIN
106 ÷
107 →REC
108 RCL+ 02
109 STO 16
110 X<Y
111 RCL+ 03
112 STO 17
113 ADV
114 GTO 14
115 →LBL 06
116 0
117 STO 24
118 30
119 STO 20
120 →LBL 02
121 RCL IND 24
122 RCL- 16
123 ISG 24
124 STO ST X
125 RCL IND 24
126 RCL- 17
127 X<Y
128 →POL
129 FIX 02
130 "Dist to "
131 ARCL IND 20
132 L"
133 ARCL ST X
134 AVIEW
135 ISG 20
136 STO ST X
137 ISG 24
138 STO ST X
139 33
140 RCL 20
141 X=Y?
142 STOP
143 ADV
144 GTO 02
145 RTN
146 →LBL 03
147 STO 33
148 X<Y
149 STO 34
150 X<Y
151 CF 21
152 "Curve?"
153 AVIEW
154 SF 21

155 XEQ "YN"
156 FS? 10
157 XEQ 10
158 GTO 13
159 RTN
160 →LBL 13
161 FS? 09
162 GTO 09
163 FS? 08
164 GTO 08
165 FS? 07
166 GTO 07
167 RTN
168 →LBL 14
169 RCL 39
170 RCL 16
171 X>Y?
172 XEQ 16
173 RCL 36
174 X>Y?
175 XEQ 15
176 CLA
177 RCL 16
178 "Inst. Located a"
179 L"t Sta. L"
180 XEQ "STA"
181 RCL 17
182 X<0?
183 SF 01
184 ABS
185 FIX 02
186 L" P"
187 ARCL ST X
188 FS? 01
189 L" Lt"
190 FC? 01
191 L" Rt"
192 AVIEW
193 CF 08
194 ADV
195 GTO 06
196 →LBL 15
197 -
198 RCL+ 37
199 →DEG
200 RCL 37
201 →REC
202 RCL- 37
203 FC? 05
204 +/-_
205 STO+ 17
206 X<Y
207 FC? 05
208 +/-_
209 STO+ 16
210 RTN
211 →LBL 05
212 RCL+ 15
213 RTN
214 →LBL 10
215 R+
216 FS? 00
217 XEQ 11
218 FS? 00
219 RTN
220 "B.C.Station?4"
221 PROMPT
222 STO 36
223 "Radius?4"
224 PROMPT
225 STO 37
226 "Delta?4"
227 PROMPT
228 →HR
229 X<0?
230 SF 05
231 STO 38
232 ABS
233 →RAD
234 X
235 RCL+ 36
236 STO 39
237 XEQ 11
238 RTN
239 →LBL 11
240 RCL 39
241 RCL 34
242 X>Y?
243 GTO 12
244 RCL- 36
245 RCL+ 37
246 →DEG
247 RCL 37
248 →REC
249 RCL- 37
250 FC? 05
251 +/-_
252 STO+ 33
253 X>Y
254 RCL+ 36
255 STO 34
256 RCL 33
257 RTN
258 →LBL 16
259 →LBL 12
260 "PASSED E.C."
261 AVIEW
262 END

```


The example for using the program will use the alignment that is shown to the left. The program is fully prompted, so that the keystrokes example can also serve as the instructions.

Remember to size the calculator to at least size **0040** before beginning, or you'll get a "size error" the first time you try to use a register that isn't there.

Execute "R'SEC" to bring up the first prompt.

prompt: Sta 3 ↑ 0/S

keystrokes:

1 3 0 0 ENTER
0 R/S

prompt: Curve?

YES NO

keystrokes:

1 0 0 0 ENTER
0 R/S

prompt: Curve?

YES NO

keystrokes:

1 0 0 0 ENTER
0 R/S

prompt: B.C.station?

keystrokes:

1 2 0 0 R/S

prompt: Radius?

keystrokes:

5 0 0 R/S

prompt: Delta?

keystrokes:

2 5 R/S

prompt: \leq 1st - 2nd?

keystrokes:

2 2 . 2 4 3 R/S

prompt: \leq 2nd - 3rd?

keystrokes:

1 0 . 5 9 0 7 R/S

output:

Inst. Located at Sta.
11+25.543 @ 503.60 Rt

Dist to Sta 1 519.01

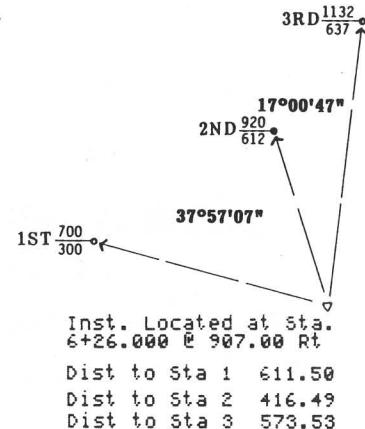
Dist to Sta 2 509.07

Dist to Sta 3 523.33

Do the usual proof reading after you are done with the program input. Try the example to check the program.

coordinate resection

This same program will do coordinate resection, if you input the north-coordinate as the station and the east-coordinate as the offset.


Answer all of the CURVE? prompts **NO**, and the answer will be the coordinates of the new point, even though they are labeled as "station" and offset".

To have more than the two place accuracy, you can fix the display at 04 or 06 places, and then recall the newly computed coordinates directly out of register 16 (north) and 17 (east), where they are stored.

These coordinates could then be added to your coordinate file, and a radial inverse program such as "SPRAY" (book, "HP42S SURVEYING SOLUTIONS", pages 50 and 51) may be used for layout calculations.

limitations

This program will not pass the E.C. of the curve. The setup point must be opposite a station which is **part of the curve or on the back tangent**.

Inst. Located at Sta.
6+26.000 @ 907.00 Rt

Dist to Sta 1 611.50

Dist to Sta 2 416.49

Dist to Sta 3 573.53

storing the slope stake data

It is pretty easy to print out the data in the field while you slopestake, just point the calculator at the printer each time you reach a catch point. If you want to STORE the shots as you go, you can do so with the little program to the right.*

You can put it in right above "STA", and it'll be out of the way. Go to "STA" and scroll up to 00 to begin input. When you've finished, the "END" will separate the two programs.

modify "SS"

You'll need two insertions in the program, "SS", to make it work. Go to the program, then go to label 12 and enter **program mode** with R/S. Stroke **XEQ** and the key that is now corresponding to your new menu label "STOD".

Stroke XEQ . 0 0 0 3 to go to program step 03, and type in 40 STO 40 and exit by stroking **EXIT**.

223 RTN
224 \blacktriangleleft LBL 12
226 FIX 01
227 CLA
02 XEQ "CL1"
03 XEQ "FCL"
04 40
05 STO 40
06 CLST
07 SF 01

00 { 71-Byte Prgm }
01 \blacktriangleright LBL "STOD"
02 ISG 40
03 STO ST X
04 CLST
05 FIX 02
06 RCL 31
07 RND
08 ENTER
09 RCL 30
10 RND
11 1E6
12 \div
13 X \times Y
14 1E3
15 X
16 +
17 STO IND 40
18 ISG 40
19 STO ST X
20 CLST
21 FIX 01
22 RCL 02
23 RND
24 ENTER
25 RCLX 29
26 AB5
27 1E3
28 \div
29 X \times Y
30 1E3
31 X
32 +
33 STO IND 40
34 ISG 40
35 STO ST X
36 RCL 12
37 STO IND 40
38 END

Those insertions should be like the ones shown to the left, for them to work properly. The next thing you need to do is write a program that will recall the data later.

the recall data program

We've called this one "GETD", and you should put it into the main menu. You can do this by putting it at the top of "SS".

*The calculator uses registers 0-40 + 3 registers for each point stored. In order to store 20 catch points you have to size to at least 0101.

Vertical Curves

This program calculates a CONTINUOUS vertical alignment without the need for changing back and forth between Grade and Curve routines, and works equally well with either symmetrical or asymmetrical vertical curves.

With this program you can solve for the station when the elevation is known, or the station can be given, to calculate the elevation. It automatically outputs the high/low point on the curves. Also includes a subroutine for solving vertical intersection problems.

Alignment/Offsets

With this program you can follow any alignment's circular curves and tangents, letting your calculate the coordinates or radial ties to any station or offset to a station.

Options include coordinate output, auto-inverse, or both. The instrument and backsight points do not have to be on the actual alignment. Stake grade, rights-of-way, pipe lines, etc. without having to establish the centerlines of the streets first.

Triangle Solutions

The 42S version of the most complete triangle solutions program ever available. Solves with any of the following knowns" ASA SAA SAS SSA SSS Area-SS Area-AA Area-SA, and each solution only requires 3 keystrokes for input.

Topography

This one turns your 42S into a manual data collector, complete with a labeling system that you can customize to suit the type of topo work you do. The instrument may be set up anywhere, and all of the work is done by the calculator.

All of the shots are stored as finished data, by shot number, for later output. The program also gives you the choice of 3-D coordinates or Station-Offset-Elevation for the output, and output may be sent directly to your computer by using the 'HookUp' from Rush Systems.

Software by DZign
P. O. Box 9790, Fresno CA 93794-9790
(209) 276-3460

Go to "SS", scroll up in the usual manner and type in the new program (below).

```
00 ( 204-Byte Prgm ) 44 AVIEW
01 LBL "GETD" 45 ISG 40
02 XEQ "FCL" 46 STO ST X
03 XEQ "CL1" 47 CLST
04 "Number of shots" 48 CLA
05 L"?4" 49 FIX 01
06 PROMPT 50 RCL IND 40
07 3 X 51 ENTER
08 40 52 53 54 55 56 57
09 + 58 1+
10 1E3 59 60 61 62 63 64 65 66 67 68 69 70 71 72
11 41 1E3 STO 39 R+ FS?C 00 IP 1E3 "FILL" "CUT"
12 15 STO 40 R+ FP X<0?
13 16 LBL R CLST
14 17 RCL IND 40
15 18 ENTER
16 19 IP
17 20 1E3
18 21 4
19 22 5 STO 37
20 23 R+
21 24 FP
22 25 X<0?
23 26 1+
24 27 1E6
25 28 X
26 29 CLA "STA"
27 30 XEQ "FCL"
28 31 FIX 02
29 32 RCL 37
30 33 X<0?
31 34 FC? 00
32 35 RCL ST X
33 36 X<0?
34 37 SF 00
35 38 ABS
36 39 ARCL ST X
37 40 FC? 00
38 41 L" R+
39 42 FS?C 00
40 43
```

Label "GETD" can be used to output the station, offset, cut and distance as well as the elevation of the catch point.

It does not output any of the reference data.

When you are finished slope staking for the day, you can turn on the printer and print out the catch points which were set, by executing "GETD". The only prompt is for the number of shots.

Because "GETD" routine will only be executed when you stroke the ~~DATA~~ key, the output shots are the ones actually set, not the trial shots.

Proof-read the program carefully and, if you want to try it out, do the examples again.

```
11+80.200 @ 44.90 Rt
FILL 6.3 @ 18.9
Elev = 100.60

11+99.800 @ 38.69 Lt
CUT 5.8 @ 8.7
Elev = 111.13
```

The output from "GETD" for the two catch points set in the examples are shown to the right.