

**TRAVERSE, INVERSE and SIDESHOTS
A POINT STORAGE CONVERSION
for the HP-41CV/CX SURVEYING PAC**

Copyright © 1987 by Ted J. Kerber

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.

published by **D'Zign Land Survey & Development**
Pacifica, California 1987

ISBN 0-9616846-4-X

Introduction

Someone once said, "Find a need, and fill it" That, in essence, is what these booklets are all about. To fill the need for software in the field.

Every new book we have published has prompted response that the user wishes that it had ALSO included a program for Or, "I only need the programs for spirals, I haven't tried the rest of them yet."

Most people will buy one of our books for a particular program that it contains, not because they need all of the programs in that particular book. Those comments prompted this series of "do it yourself" booklets. You only buy the ones you have a need for.

This book contains editing procedures for turning your HP Surveying Pac into a point storage system, and instructions for modifying the **TRAVERSE, INVERSE AND SIDESHOT** program of the Surveying Pac into a system that can store 100+ coordinate pairs in memory.

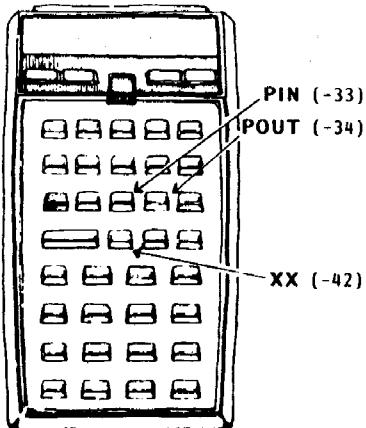
Coordinates may be recalled by point number after a traverse has been run, to do further calculations, and the results of those calculations are also stored.

You need a 41, a survey pac and a little time for editing the programs. Extended memory is NOT needed for point storage.

An added feature of the Traverse modification is an **AUTOMATIC COMPASS CORRECTION** subroutine.

This book has been published in two versions, one with and one without magnetic cards enclosed. If you have the version with the cards, you will still find the editing lists helpful, and you can further modify the programs to suit your particular needs.

Utility Programs


The Traverse, Inverse and Sideshots program contained in your HP Surveying Pac will respond in exactly the same way you are accustomed to, with all of the prompts and responses exactly as shown in the instruction manual you received with your module. At the same time, it will be storing the coordinate values for later use.

An automatic Compass Rule Adjustment program has been included in the modifications. When used, it replaces the original coordinate pairs with the adjusted pairs, and automatically outputs the adjusted bearings and distances of the courses.

The unadjusted data may be written to a data card, stored in extended memory or external memory before adjusting if you like.

There are three short UTILITY programs which must be in program memory as part of the operating system. Two are used for point number manipulation and one is used for automatically inverting between any stored coordinate pairs. A really fast layout routine with pre-stored coordinates.

"Point IN" (PIN) allows direct storage of point-numbered coordinates. "Point OUT" (POUT) will recall any coordinate pair whose point number is in the x-register when executed.

For convenience, assign these utility programs to the keyboard. They are assigned to the **shifted** functions of the button, as shown to the left.

These programs may be keyed in at any time, and should be left in program memory when ANY of the other routines are being used. The program for radial inverting is called "XX".

Let's begin by typing in the utility programs. Before beginning, execute a **GTO**.. and enter **program mode** by using the following keystrokes:

Your display should show **00 REG** and a number, **NNN**. This last number is the number of program registers left in memory. For this program you will need 21 registers available. Type in the program steps shown in the listing below.*

01	LBL "XX"	22	LBL "POUT"	44	*
02	XROM "IN"	23	STO 13	45	19
03	XEQ "C"	24	LBL "OUT"	46	+
04	CF 10	25	RCL 13	47	X<>Y
05	XEQ "POUT"	26	2	48	STO IND Y
06	XROM "NE"	27	*	49	RDN
07	VIEW	28	19	50	1
08	RDY	29	+	51	-
09	STO 08	30	ENTER↑	52	X<>Y
10	RDN	31	ENTER↑	53	STO IND Y
11	STO 07	32	1	54	RTN
12	LBL 03	33	-	55	LBL "C"
13	CF 01	34	RCL IND X	56	.819
14	"TO?"	35	RCL IND Z	57	0
15	PROMPT	36	RTH	58	LBL 11
16	XEQ "PIN"	37	LBL "PIN"	59	STO IND Y
17	38	38	SF 10	60	ISG Y
18	DSE 13	39	STO 13	61	GTO 11
19	STO X	40	XROM "NE"	62	RDN
20	XROM "INVERSE"	41	LBL "IN"	63	RDN
21	GTO 03	42	RCL 13	64	RTN
	RTN	43	2	65	END

The steps, XROM "NE" and XROM "INVERSE", are put in as XEQ "NE" and XEQ "INVERSE". The calculator will change the XEQ to XROM for you. For instance, the keystrokes for input of program step 06 are

Any portion of a program step which is included in quotation marks (" ") indicates that it is **alpha** input, and must be input with the calculator in **alpha mode**.

*If your edition of this book includes program cards, see Appendix A.

User instructions

The only program steps which might give you trouble are the "indirect" store and recall instructions. An example of the input for these is program step 34, which is input by keystroking

RCL . 6

The only other one that may be misleading is step 49, RDN, this is the printout for "rolldown", and is shown on the keyboard as **R↓**. The **↓** symbol at each label is inserted by the calculator, and you don't need to input it.

Next, let's assign these programs to the keyboard so that we can try them out. Keystroke

 XEQ ALPHA X X ALPHA CHS
 XEQ ALPHA P I N ALPHA STO
 XEQ ALPHA P O U T ALPHA RCL

Size your calculator to **040**, and we'll input some coordinates by point number, using "PIN" (assigned to the shifted CHS key, #-42). The keystroke instructions are as follows:

- 1 Input the point number, and stroke CHS
- 2 **NX=?** Input the north coordinate for the point, and stroke R/S
- 3 **EX=?** Input the east coordinate for the point, and stroke R/S

That's all there is to it! Continue in the same manner until all of your coordinates have been stored. We'll do some keystroke examples on the next page, inputting a few coordinate pairs to practice with.

"XX" uses both of the shorter programs as sub-routines, and taps the Surveying Pac to do the inversing between the points. In the keystroke procedures which follow, it is assumed that "XX" has already been assigned to key #41, the shifted CHS key. Just follow these simple steps:

1 Put the calculator into **USER** mode, (normal form is FIX 4, and in Degree Mode)

2 Input the beginning point number, and stroke

CHS

output: **Nx=XXXXX.xxxx**

3 If a printer is attached the output is automatic. If no printer is present keystroke

R/S

output: **Ex=XXXXX.xxxx**

R/S if no printer

TO?

4 Input the point number of the point you are inversing to, and stroke

R/S

output: **AZ=DDD.mmss***

5 Stroke

R/S

output: **HD=XXX.xxxx**

6** Stroke**

R/S

output: **Ny=XXXXX.xxxx**

7** Stroke**

R/S

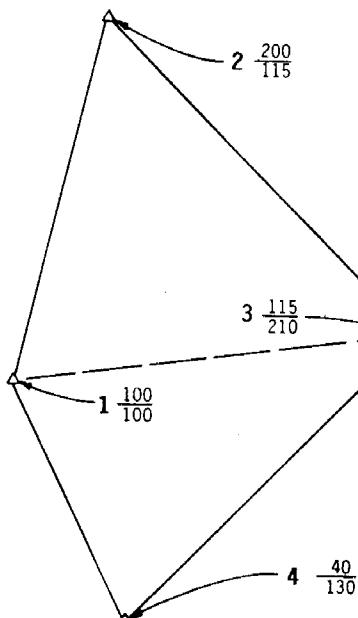
output: **Ey=XXXXX.xxxx**

*Bearing output will be shown instead of azimuth when **FLAG 00** is set.

These last two steps are automatic with the printer attached. If no printer is present, continue stroking **R/S until the prompt **TO?** appears.

Keystroke Examples

Continue calculating RADIAL ties by inputting the next point number each time the **TO?** prompt appears, and stroking


R/S

You may also use this routine to do an **inverse traverse** between pre-stored points. The program will "move up" to the new point when **FLAG 01** is set.

For INVERSE TRAVERSE: Each time the **TO?** prompt appears, input the next point number and stroke

7 **0** **1** before stroking **R/S**

For examples of how this program group works, first we'll input the point numbers from the illustration below, using "**PIN**".

keystroke:

1 **STO**

prompt: **N1=?**

keystrokes:

1 **0** **0** **R/S**

prompt: **E1=?**

keystrokes:

1 **0** **0** **R/S**

keystrokes:

2 **STO**

prompt: **N2=?**

keystrokes:

2 **0** **0** **R/S**

prompt: **E2=?**

keystrokes:

1 **1** **5** **R/S**

keystrokes:

3 **STO**

prompt: **N3=?**

keystrokes:

1 **1** **5** **R/S**

prompt: **E3=?**

keystrokes:

2 **1** **0** **R/S**

We now have all of the points in storage. We'll use these points for the next two examples, starting with an example of **radial inversing**.

Using point #1 as the "setup" point, we may calculate radial ties to each of the other points (FLAG 01 is clear) as follows:

keystrokes:

1 **CHS**

output:

N1=100.0000
E1=100.0000

*

prompt: **TO?**

keystrokes:

2 **R/S**

output:

AZ=8.3151
HD=101.1187

*

N2=200.0000
E2=115.0000

prompt: **TO?**

keystrokes:

3 **R/S**

keystrokes:

4 **STO**

prompt: **N4=?**

keystrokes:

4 **0** **R/S**

prompt: **E4=?**

keystrokes:

1 **3** **0** **R/S**

output:

AZ=82.1405
HD=111.0180

N3=115.0000
E3=210.0000

*

prompt: **TO?**

keystrokes:

4 **R/S**

output:

AZ=153.2606
HD=67.0820

N4=40.0000
E4=130.0000

*

prompt: **TO?**

*An additional **R/S** will be needed if used without printer

Keystroke Examples

We'll use the same stored coordinates to do a keystroke example of an **INVERSE TRAVERSE**, using "XX". The only difference between this example and the last is that we set FLAG 01 each time, prior to entering the point number.

We will also set FLAG 00 before we start, to have **bearing** output instead of azimuth.

keystrokes:

1 **CHS**

output:

N1=100.0000
E1=100.0000

* prompt: TO?

keystrokes:

7 **0** **0** **0**
7 **0** **1** **2** **R/S**

output:

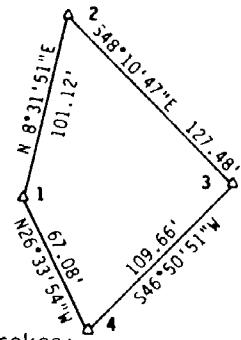
N 8.3151 E
HD=101.1187

N2=200.0000
E2=115.0000

* prompt: TO?

keystrokes:

7 **0** **1** **3** **R/S**


output:

S 48.1047 E
HD=127.4755

N3=115.0000
E3=210.0000

* prompt: TO?

*An additional **R/S** will be needed if used without printer

keystrokes:

7 **0** **1** **4** **R/S**

output:

S 46.5051 W
HD=109.6586

N4=40.0000
E4=130.0000

* prompt: TO?

keystrokes:

7 **0** **1** **1** **R/S**

output:

N 26.3354 W
HD=67.0820

N1=100.0000
E1=100.0000

* prompt: TO?

To use "POUT", simply input the point number, and stroke **RCL**. This recalls the point's coordinates to the x and y registers. The Easting will be displayed, and you may verify that the northing is in the y-register by stroking either **X_Y** or **R_y**.

The time has come to modify our Surveying Pac traverse program. Do a **GTO..** and shift into **program mode** for a minute, stroking **PRGM**. Check to insure that you have enough available registers (you will need at least 80), then stroke **PRGM** again.

We want to copy the program "**TRAV**" from the Surveying Pac, and this is done by stroking

XEO ALPHA C O P Y ALPHA

at the prompt:

ALPHA T R A V ALPHA

Next, go to program step 001 by stroking

□ RCL . 0 0 1

The display should say **001 LBL TRAV**. Stroke **USER** so that you are not in **user mode** (the shifted "STO" function is assigned to "PIN" right now) and type in

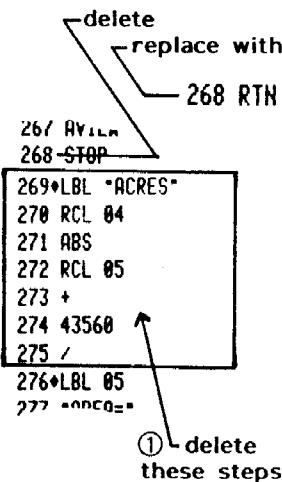
□ STO ALPHA T R A ALPHA □ SST □

This has renamed the program "**TRA**", and deleted the old name. The revisions to the existing program will be done from the bottom, working upward through the program steps, so that we can keep our program step numbers easy to find. Now, follow these steps in the order shown:

1. Stroke

□ RCL . 2 7 5

to go to program step 275. Use


the **→** key to delete steps 275

thru 268, and type in **□ EEX**

to have RTN at step 268.

2. Go to step 208 by stroking

□ RCL . 2 0 8

Editing the Surveying Pac

190 RCL 00

191 +

192 XEQ 05

193 RDN
194 RCL 13
195 ENTER
196 CF 01
197 CLA
198 "+ CORR"
199 ASTO 13
200 SF 10
201 XROM "NE"
202 "CLOSURE"
203 RT
204 STO 13
205 RDN
206 AVIEW
207 XEQ a
208 SF 01
209 STOP

③ delete

replace with
168 XROM "INVERSE"

169 RCL 00
167+LBL a
168+LBL "INVERSE"

169 RCL 08
170 -
171 RCL 03
172 -
173 X<>Y
174 RCL 07
175 -
176 RCL 02
177 -
178 XEQ 08
179 RCL 10
180 RCL 01
181 XEQ 04
182 RTN
00741 RI F

② delete these steps

then replace them
with these

193 "CLSR PT?"
194 PROMPT
195 SF 10
196 STO 18
197 XEQ "PIN"
198 XEQ "OUT"
199 DSE 13
200 ADV
201 CF 01
202 XEQ a
203 SF 01
204 RCL 13

3. Go to step 181 and
delete program steps 181
thru 168. Type in XEQ
"INVERSE"; backstep,
and add these steps

168 1
169 ST- 13
170 RDN

4. Go to program step number 157 (RTN) and delete all of the program steps thru step 102 (RCL 00), backstep and delete step number 100 (LBL "TS").

Singlestep once (the display should now show 100 LBL D) and type in these steps:

101 XROM "TS"
102 XEQ "IN"
103 RTN

④ delete these steps →

98 A=1:
99 X>Y
100LBL "TS"
101LBL D
102 RCL 00
103 X>Y
104 FS? 01
105 GTO 04
106 RCL 10
107 X>Y
108LBL 04
109 01

151 ISG 10
152 FS?C 04
153 SF 01
154 XROM "ME"
155 AVIEW
156 ADV
157 RTN
158LBL 10
159 "L="

⑤ insert these steps

43 -PT. NO.?-
44 PROMPT
45 1
46 -
47 STO 13

here ——————
48 XIN
49LBL J
50 CF 01
51 "SS"
52 RTN

5. Go to step number 042 (CF 01). We want to insert the steps shown to the left between steps 42 and 43 ("SS").

6. If you Single Step ahead as a check, the next step should now read 48 "SS". Step 49 should be AVIEW, and step 50 should be RTN.

Editing the Surveying Pac

7. Backstep to step 023 (XROM "NE"), delete all of the program steps thru step 17 (SF 10).

Type in the new steps shown to the right.

⑦ delete these

15*LBL N
16 SF 02
17 SF 10
18 CLRG
19 .9
20 STO 13
21 ADV
22 ADV
23 XROM "NE"
24 FC? 55
25 GTO 00

insert these

17 XEQ "C*"
18 "PT. NO.?"
19 PROMPT
20 XEQ "PIN"
21 XEQ "OUT"

8. Go to step 010 (LBL 12) and delete it. ~~10*LBL 12~~

Go to the end of the program. As a check, this should be program step 207 END. If it isn't, recheck the steps so far, and correct any errors.

Backstep to program step 206 and type in the following program steps:

207 RTN	222 ADV
208*LBL "INV"	223 RTN
209 RCL 08	224*LBL "CO"
210 -	225 0
211 X<>Y	226 STO 11
212 RCL 07	227 STO 14
213 -	228 STO 15
214 R-P	229 "BEG. PT."
215 "HD=	230 PROMPT
216 ARCL X	231 XEQ "POUT"
217 AVIEW	232 XROM "NE"
218 X<>Y	233 AVIEW
219 HMS	234 ADV
220 XROM "BRG"	235 1
221 AVIEW	236 ST+ 13

237 RCL 10	272 ST+ 14
238 RCL 01	273 RCL 11
239 CHS	274 RCL 05
240 P-R	275 *
241 RCL 06	276 ST+ 15
242 /	277 RCL 14
243 CHS	278 RCL 15
244 STO 16	279 XEQ "IN"
245 X<>Y	280 RCL 13
246 RCL 06	281 1
247 /	282 -
248 CHS	283 XEQ "POUT"
249 STO 05	284 STO 08
250♦LBL 02	285 X<>Y
251 RCL 13	286 STO 07
252 RCL 18	287 1
253 X=Y?	288 ST+ 13
254 GTO 01	289 XEQ "OUT"
255 XEQ "OUT"	290 XEQ "INV"
256 STO 01	291 RCL 00
257 STO 15	292 STO 07
258 X<>Y	293 RCL 01
259 STO 00	294 STO 08
260 STO 14	295 XEQ "OUT"
261 X<>Y	296 XROM "NE"
262 RCL 08	297 AVIEW
263 -	298 ISG 13
264 X<>Y	299 ADV
265 RCL 07	300 ADV
266 -	301 GTO 02
267 R-P	302 RTN
268 ST+ 11	303♦LBL 01
269 RCL 11	304 STOP
270 RCL 16	305 RTN
271 *	306 END

Go to "XX". Go to step 065 (END), and delete it. Now all of the programs are combined, and may be used with each other from the keyboard.

Traversing

Before you try out your new program, you need to re-size the calculator to establish enough storage registers for your coordinates.

With an otherwise empty calculator memory (only "TRA" and the utilities in program memory) you can store 100 coordinate pairs. The storage registers begin at register 20 and two are needed for each coordinate pair.

One easy way to check storage capacity is to size the calculator to 020, pack with a **GTO...** and stroke **PRGM**. The number of registers left, divided by two, is the number of points you may store.

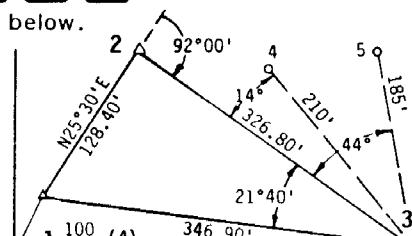
Resize the calculator to the number of registers shown after packing, divided by two, +18.

The program steps are exactly the same as shown on pages 10 through 28 of the HP Surveying Pac instruction manual, with two exceptions. The first of these is an added prompt following the **DSP BRG?** and **DSP L/D?** prompts. The added prompt is "PT. NO.?"

This prompt is added for insurance against overwriting any coordinates you may already have in storage. The second difference is in the closure routine, LBL E, and we'll do a short example traverse before we look at that. Otherwise, you won't notice any real difference (it runs a little faster), but it's storing the coordinates as it calculates them.

Begin with **XEQ ALPHA T R A ALPHA** and we'll work the little traverse shown below.

prompt: DSP BRG?


keystrokes:

Y R/S

prompt: DSP L/D?

keystrokes:

N R/S

prompt: PT. NO.?
keystrokes:

1 R/S

prompt: N1=?

keystrokes:

1 **0** **0** R/S

prompt: E1=?

keystrokes:

1 **0** **0** R/S

output: N1=100.0000
E1=100.0000 *

keystrokes:

2 **5** **.** **3** B

prompt: QD=?

keystrokes:

1 R/S

output:

N 25.3000 E

keystrokes:

1 **2** **8** **.** **4** D

output:

HD=128.4000

N2=215.8920
E2=155.2776 *

keystrokes:

9 **2** C

output:

S 62.3000 E

keystrokes:

3 **2** **6** **.** **8** D

output:

HD=326.8000

N3=64.9925
E3=445.1528 *

keystrokes:

2 **1** **.** **4** CHS C

output:

N 84.1000 W

keystrokes:

3 **4** **6** **.** **9** D

output:

HD=346.9000

N4=100.2497

E4=100.0091 *

Now for the closure:
Again the added prompt
for point number. Input
the next highest number.

keystrokes:

E

output:

ΣHD=802.1000

AREA=20.923.8192

prompt: CLSR PT?

keystrokes:

5 R/S

prompt: NS=?

keystrokes:

1 **0** **0** R/S

prompt: ES=?

keystrokes:

1 **0** **0** R/S

output:

S 11.8727 W

HD=0.2545

N4=100.0000

E4=100.0000

*An additional R/S will be
needed if used without printer

Compass Correction

There are actually two differences in the closure routine, compared to the Surveying Pac. The first was the added prompt for a closure point number, and the second is that the closure isn't labeled. The closing to one point number higher than the actual point is the same in the Surveying Pac. There, the number is generated by the program.

If you leave these coordinates in storage and begin another traverse, or want to do some sideshots, you can begin with point number 5, since it is a duplicate point of number one. You could also re-use point number 4, after the traverse has been adjusted, since it will then be equal to point number 1.

A couple of words of caution: Most of the routines in the Surveying Pac begin with a sequence which includes CLRG, the command to clear the registers. If you have to use a HP routine, it is a good idea to protect your points by storing them.

At this point, if you want to use the built-in compass correction routine, the procedure is:

stroke **XEQ ALPHA C O ALPHA**

prompt: **BEG PT?**

keystrokes:

1 R/S

output: the output is shown to the right, and is automatic. The program will calculate the adjusted coordinates from storage, inverting each course before output of the coordinates.

N1=100.0000
E1=100.0000
HD=128.3605
N 25.3016 E

The procedure which we recommend for traversing with this program is

N2=215.8528
E2=155.2698

1. Run the raw traverse through the program, ignoring sideshots.

HD=326.8292
S 62.2857 E

2. Adjust the coordinates (the adjusted coordinates are stored in place of the original ones).

N3=64.8508
E3=445.1249

3. Rerun the traverse, using the adjusted information, and do the sideshots as you go.

HD=346.9102
N 84.1105 W

N4=100.0000
E4=100.0000

That last isn't as difficult as it sounds, because we can inverse traverse by point number. To do the sideshots, execute "TRA" and answer the first few prompts, through the input of the starting coordinates. Recall the second point (#2 in the example) by executing "POUT", and inverse to it.

.... output: $H1=100.0000$
 $E1=100.0000$

keystrokes:

pause **2** RCL

output: $H=25.3016 E$
 $HD=128.3605$

$H2=215.8528$
 $E2=155.2698$

Repeat the process, and
 inverse to point 3
 keystrokes:

pause **3** RCL

output: $S=62.2857 E$
 $HD=326.8292$

$N3=64.8508$
 $E3=445.1249$

keystroke: **J**

prompt: PT. NO.?

keystrokes:

4 R/S

output: SS

keystrokes:

1 **4** C

output:

$H=48.2857 W$

keystrokes:

2 **1** **0** D

output:

$HD=210.0000$

$N4=284.8489$
 $E4=287.8866$

keystroke: **J**

prompt: PT. NO.?

keystrokes:

5 R/S

output: SS

keystrokes:

4 **4** C

output:

$H=18.2857 W$

keystrokes:

1 **8** **5** D

output:

$HD=185.0000$

$N5=248.3085$
 $E5=386.4769$

keystroke: **I**

output:

TRAV

Resume inverting to the
 next point (in this case
 point number 1).

*An additional R/S will be
 needed if used without printer

Appendix A

The storage registers of any point may be found as follows:

north coordinate

18 + 2(PT#)

east coordinate

19 + 2(PT#)

To store data onto a magnetic card, place 20.*** (where *** is the three-digit number of the highest register) and execute WDTAX.

If your edition of this book includes the program cards, the program is carried on tracks 1 and 2 of cards A, B and C, and on track 1 of card D.

To help with the "proof reading" chores after editing, a complete program listing of the final form of the program is included below.

01LBL "XX"	25 RCL 13	'YH	73 CF 00	97 SF 01
02 XROM "*IN"	26 2	1	74 "DSP L/D"	98 CF 02
03 XEQ "C*"	27 *	51 -	75 XROM "*YH"	99 "TRAV"
04 CF 10	28 19	52 X>Y	76 FS? 10	100 AVIEW
05 XEQ "POUT"	29 +	53 STO IND Y	77 SF 03	101 RTN
06 XROM "NE"	30 ENTER↑	54 RTN	78LBL A	102LBL J
07 AVIEW	31 ENTER↑	55LBL "C*"	79 SF 02	103 CF 01
08 ADV	32 1	56 .019	80 XEQ "C*"	104 "PT. NO.?"
09 STO 08	33 -	57 0	81 "PT. NO.?"	105 PROMPT
10 RDH	34 RCL IND X	58LBL 11	82 PROMPT	106 1
11 STO 07	35 RCL IND Z	59 STO IND Y	83 XEQ "PIN"	107 -
12LBL 03	36 RTN	60 TSC Y	84 XEQ "OUT"	108 STO 13
13 CF 01	37LBL "PIN"	61 GTO 11	85 FC? 55	109 "SS"
14 "T0?"	38 SF 10	62 RDH	86 GTO 00	110 AVIEW
15 PROMPT	39 STO 13	63 RDH	87 CF 10	111 RTN
16 XEQ "POUT"	40 XROM "NE"	64 RTN	88 XROM "NE"	112LBL H
17 DSE 13	41LBL "IN"	65LBL "TRA"	89 AVIEW	113 SF 05
18 STO X	42 RCL 13	66 XROM "*IN"	90 ADV	114LBL C
19 XROM "INVERSE"	43 2	67 CF 05	91LBL 00	115 PI
20 GTO 03	44 *	68 SF 01	92 STO 08	116 R-D
21 RTN	45 19	69 SF 00	93 RDH	117 HMS+
22LBL "POUT"	46 +	70 "DSP BRG"	94 STO 07	118 FS?C 05
23 STO 13	47 X>Y	71 XROM "*YH"	95 STOP	119 GTO b
24LBL "OUT"	48 STO IND Y	72 FC? 10	96LBL I	120LBL C

N1	R19= 0.0000
E1	R20= 100.0000
N2	R21= 100.0000
E2	R22= 215.8520
N3	R23= 155.2698
E3	R24= 64.8508
N4	R25= 445.1249
E4	R26= 204.0489
N5	R27= 287.8866
E5	R28= 240.3085
	R29= 386.4769
	R30= 0.0000
	R31= 0.0000

121 RCL 00	171 "L="	221 STO 11	271 RTN	321 STO 15
122 HMS	172 ARCL X	222 SIGN	272+LBL "INV"	322 X<>Y
123 HMS+	173 AVIEW	223 X<>Y	273 RCL 08	323 STO 08
124 GTO b	174 "D="	224 CHS	274 -	324 STO 14
125+LBL B	175 ARCL Y	225 LASTX	275 X<>Y	325 X<>Y
126 SF 10	176 AVIEW	226 X†2	276 RCL 07	326 RCL 08
127 XROM "A1"	177 ADV	227 *	277 -	327 -
128 HMS	178 RTN	228 2	278 R-P	328 X<>Y
129+LBL b	179+LBL a	229 /	279 "HD="	329 RCL 07
130 HR	180 1	230 *	280 ARCL X	330 -
131 1	181 ST- 13	231 ST+ 05	281 AVIEW	331 R-P
132 P-R	182 RDN	232 "SEG="	282 X<>Y	332 ST+ 11
133+LBL 08	183 XROM "INVERSE"	233 ARCL X	283 HMS	333 RCL 11
134 CF 18	184 RTN	234 AVIEW	284 XROM "BRG"	334 RCL 16
135 R-P	185+LBL E	235 RCL 14	285 AVIEW	335 *
136 STO 01	186 SF 04	236 RCL 11	286 ADV	336 ST+ 14
137 X<>Y	187 "ΣHδ="	237 *	287 RTN	337 RCL 11
138 X<0?	188 ARCL 06	238 ABS	288+LBL "CO"	338 RCL 05
139 GTO 07	189 AVIEW	239 ST+ 06	289 0	339 *
140 360	190 RCL 04	240 "L="	290 STO 11	340 ST+ 15
141 +	191 ABS	241 ARCL X	291 STO 14	341 RCL 14
142+LBL 07	192 RCL 05	242 AVIEW	292 STO 15	342 RCL 15
143 FS?C 02	193 +	243 RCL 12	293 "BEG. PT." 343 XEQ "IN"	
144 STO 00	194 XEQ 05	244 2	294 PROMPT	344 RCL 13
145 FS? 01	195 "CLSR PT?"	245 /	295 XEQ "POUT"	345 1
146 STO 00	196 PROMPT	246 TAN	296 XROM "NE"	346 -
147 STO 10	197 SF 10	247 RCL 11	297 AVIEW	347 XEQ "POUT"
148 FC? 00	198 STO 18	248 *	298 ADV	348 STO 08
149 GTO 09	199 XEQ "PIN"	249 ABS	299 1	349 X<>Y
150 XROM "A0"	200 XEQ "OUT"	250 "T="	300 ST+ 13	350 STO 07
151 AVIEW	201 DSE 13	251 ARCL X	301 RCL 10	351 1
152 RTN	202 ADV	252 AVIEW	302 RCL 01	352 ST+ 13
153+LBL 09	203 CF 01	253 RCL 12	303 CHS	353 XEQ "OUT"
154 HMS	204 XEQ a	254 2	304 P-R	354 XEQ "INV"
155 XROM "A0"	205 SF 01	255 /	305 RCL 06	355 RCL 00
156 AVIEW	206 RCL 13	256 SIN	306 /	356 STO 07
157 RTN	207 STOP	257 RCL 11	307 CHS	357 RCL 01
158+LBL d	208+LBL e	258 *	308 STO 16	358 STO 08
159 "L=?"	209 SF 10	259 2	309 X<>Y	359 XEQ "OUT"
160 PROMPT	210 XROM "DL"	260 *	310 RCL 06	360 XROM "NE"
161 HR	211 CF 10	261 ABS	311 /	361 AVIEW
162 X<>Y	212 HR	262 ST- 06	312 CHS	362 ISG 13
163 P-R	213 STO 12	263 "C="	313 STO 05	363 ADV
164 X<Y?	214 SIN	264 ARCL X	314+LBL 02	364 ADV
165 X<>Y	215 LASTX	265 AVIEW	315 RCL 13	365 GTO 02
166+LBL D	216 D-R	266 RTN	316 RCL 18	366 RTN
167 XROM "TS"	217 STO 14	267+LBL 05	317 X=Y?	367+LBL 01
168 XEQ "IN"	218 -	268 "AREA="	318 GTO 01	368 STOP
169 RTN	219 "R=?"	269 ARCL X	319 XEQ "OUT"	369 RTN
170+LBL 18	220 PROMPT	270 AVIEW	320 STO 01	370 END

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.