\ANAN/

WEW SOFTWARE FRODUCTS GMBH

ASBSEMBL ER

HAardDBUCH

HF—735

Copyright: W&W Software Products GmbH
Autor: [Michael Hartmann

Einleitunﬁ
m—es==m==E=

Durch dieses vor Ihnen liegende Handbuch iiber die Maschinensprache des
HP-75 wird die Programmierung Ihres Rechners nach Ihren Anforderungen
erheblich vereinfacht. Denn es ist nun moglich, LEX-Files, mit denen der
Befehlssatz des Rechners erweitert werden kann, mit Hilfe von Mnemonics
so einzugeben, dal man sie bequem bearbeiten, listen, kopieren,.und

noch vieles mehr machen kann.

Das Handbuch gliedert sich in 3 Hauptteile:

- Im ersten Teil wird der logische Aufbau des Rechners erkldrt,
Dazu gehtren die Erkldrung von Arithmetik, sowie Registerverwaltung,
und noch einiger zum Verstehen der logischen Zusammenhinge wichtiger
Einheiten,

- Im zweiten Teil erhdlt der Leser nun schrittweise die Fihigkeit, sich
selbst LEX-Files herzustellen,

- Im dritten Teil schlieBlich wird das wichtigste Werkzeug dieser neuen
Programmierung ausfiihrlich besprochen: der Assembler.

Das Ganze wird zum SchluB noch abgerundet durch den Anhang, in dem noch
viele weitere Uberraschungen versteckt sind.

Doch nun méchte ich nicht zuviel verraten, sondern sie auffordern, diesen
Exkurs ins Reich der Nullen und Einsen von Beginn an iiber sich ergehen zu
lassen.

St.Wendel, den 4.11.1984 Der Verfasser

0-1

Kapitel 1:

*

*

(oo N B L R W B
. .

Kapitel 2:

L
I

1.2

THHALT

Das Innenleben des HE-75

DiecZenbidledgliedt 4 @ 8 % LG & 8 8 8 8 ¥
Die StromverSorgUlE . « & « « & = & = o o « &
Die Anzeige . . & & v v & v 0 0 4 & 4 4 s o4 s
Die interne Uhr o « & + + + « .« .
DA THSEIEUT 4 s s 0 o on 20 swenomems s e &y @ m s
DESTHP=TT o o o o s o6 or sevowrusmes & s w0 8 ow F
L Kartenlgdel .« w o o o seoowess & & 6 s @ %
Memory—Organisation . & . « + & 5 o & & & o =«
BESRTEER o n onow ow o oo semIMGESIE B M # B a0

Der Aufbau von Files

BASIC~Files« : :

Darstellung interner Zahlen

a) absolute Adresse

b) Programmlinge

c) Zeilennummern

d) Lidngenangaben

) Pointerangaben

Allgemeiner Aufbau von BASIC-Files

a) Header

aa) Angabe der abscluten Adresse

ab) Angabe der Programmldnge

ac) PRIVATE-Sicherung

ad) Angabe der Fileart

ae) Speicherung des Datums und der Zeit

af) Angabe des Filenamens

by Hauptteil des Frogrammes, wenn das Programm
initialisiert ist

ba) Pointer

bh) Programmzeilen

bba) Angabe der Zeilennummer

bbb) Angabe der Zeilenlénge

bbe) Angabe der Befehle

bbd) Angabe des Zeilenendes

be) Ende des Programmes

" - "] +

noch nicht

| i

= e e e
|
e i o T Y TRCRF RN T e e

2-1

a_

[
|
e

Autfbau der BASIC-Befehle, wenn Progrszmm noch nicht initializiert

WUFHEE o0 w0 om o omn e e o 9r ve Sonmess @ g K
a) Rechnergrdlien

aa) Die Darstellung von Konstanten

aaa) Textkonstanten

aab) numerische Konstanten

¢) Darstellung von Variablem
ca) Variablennamen

cbh) Variabelnamen

co) Arravs und ALPHA-Variablen

cd) Besonderheiten bei READ- und PRINT#-Relehl
i) Die verschiedenen Eechnerkonstanten

L
L

I T
L ot

L

L0l L0 L0 L L0 L) B3 RS R b2
B3 M3 RS

e) Eigentlicher Aufbau der BASIC-Befehle 2-4
ea} Befehle, die keine Werte bendtigen

eb) Befehle, die einen Wert zur Ausfilhrung benétigen

ec) Befehle, die zwei Werte zur Ausfithrung bendtigen 2-5

ed) Beispiele fiir Klammerungen &« . . o s o v & & & . . 226
ee) Wertzuweisungen
ef) Befehle, die zur Programmsteuerung netwendig sind 2-8

1. Der IF-Befehl

. Die Sprunghefehle

Die bedingten Sprungbefehle 2-9
andere Programmsteuerungen

« FOR-NEXT-Schleife

ON ERROR . . . v & v s s s e e e s e e e e e .. 221D
. ON TIMER

. OFF ERROR

. OFF TIMER

10, RUK, CALL und OONT

11, Fditierbefehle

12, Befehle, die bestimmte Systemvariablen setzen ., 2-11
13. Hommentare

14, IMAGE-Anweisung

15 DETA=-Anweisung " 5 ¢ 0 % % % 4 5 8 BUEIES 8 w v o e o BT
16, Deklaration von Variablen

17, Aufbau der PRINT-Befehle

R w I I o SR Y - R O |

18. Der Aufbau der READ-Befehle 9-13
19, Der INPUT-Befehl « « v v v v v o v o . 2.14
20. Selbstdefinierte Funktionen
2], Andere Funktionen und Befehle &+ v v « v « + . . 2=15
22, Befehle, die die Peripherie ansprechen 2-17
23. Befehle, die nicht unmittelbar im System-ROM enthalten
sind
Anderung der Codierung der Befehle bei Initialisierung des
Propgramms & & w_ 5 5, 57005 6 5 5 o 8 5 i e m o e o o v v v 2T

a) Angabe von aufgeldsten Adressen

b) Pointer am Programmanfang

c) Zeilennummern bei GOTO und GOSUB

d) Codierung der Variablendefinition nach dem Frogrammende

‘da) Codierung der Namen

db) Beschreibung der folgenden Bytes

dc) Nachtrag zur Verschliisselung wvon selbstdefinierten Funktionen
bei DEF FN.. und beim Ende der Funktion 27—

Darstellung der Variablen im Rechner o=

a) ALPHA-Variablen

b} numerische Variablen

ba) INTEGER-Variablen

bb) SHORT-Variablen

be) REAL-Variablen 4 v v v e e e e e e 278

bd) Array-Variablen

be) nicht belegte Variablen

PRIVALE -BATE-FILO8 o o o sevwine v & @ 8 &8 % & % 3 5 &

Sicherung von Files auf Massenspeichern

Sicherung von Files im Rechner

Abschlieliende Betrachtungen

TERE-TILEE & o o 5 % & 4 @ cemeal & & ¥ % 40% & W % % 0wErD & 0 Dail

Aufbau von normalen Textfiles

Einzelhestandteile

Zusammenfigen der Einzelbestandteile zur Gesamtheit des Textfiles

dufbau ven keys-Textfiles

Einzelbestandteile

Zusammenfiigen der Einzelbestandteile

L n

2
Z

4, LIEL-Filesswr & v 2 & ¢ ¢ 5 % 8 & § % % % 4 30559 0 8 2 5 2299
&l Einzelbestandteile
&2 Zusammenfiigen der Einzelbestandteile
3 aPPI=Fales 0l § v 0 B R 5 5 % T B U T S 5 Bmee e e s n 2530
.1, Normale Appointments (M)
Doy Appoimments fiir Wiederholungsalarm ohne Bestdtigung (R)
5.3. Appoinments fir Wiederholungsalarm mit Bestdtigung (4) 2-31
B, LEX=FIileS . & 4 v v o 4 4 4 o & o o & o & o o v s o a v o « « 2232
[Aufbaun von LEX-Files

a) Der Kontrollhklock

b) Die Systemtabelle + o v v v v v v v 4 e e e e e e e e .. 2233
6.2, Arrribute

a) primidre Attribute

aa) Twp

ab) Klasse

b) sekundire ACrribute . o v v v v h e a e e w e e e e . 2234
S agsemblet=Pefelle: < o v v o v e w v W a9 w3 e e #2235
0 Systemzrifen

a) Operationscode

b} Literal

c) Label

d} AR

e] DE
i3y 2y Vorbemerkungen zur Codierung eines Befehls

a) Codierung der AR

bl Codierung der DR

c) Zusatzbemerkungen zu a) und b}

d) Sprung mit Literal nach vorne

el Sprung mit Literal nach hinten

BT MULEIDREEE o av v & 55 0 & 5 % & 5 6 % S 05 S 0 arovear o o
M T LOAD/STORE-Befehle

ay LDB DR, AR und LDM DR, AR
By STE DR, AR und STM DR, AF
o} LDED DR, AR und LDMD DR, AR
d) STED DR, AR und STMD DR 4R « & & 5 & & % v % & 4 = angg o 2237
e} LDB DR, =literal und LDM DR, =literal
* £} STE DR, =literal und S5TM DR, =literal
g} LDBI DE, AE und LDMI DR, AR
h) STBI DR, AR und STMI DE, AR . i © v o 4 % 4 4 o = e e e . Dang
i} LDBD DR, =label und LDMD DR, =label
i} STBD DR, =label und STHMD DR, =label
k) LDBD DR, XAR, label und LDMD DR, XAR, label, . . . 2=39
1) STBD DE, XAE, lahbel und STMD DR, XAR, label
m) LDOBL DR, =label und LDMI DE: =label
n) STBI DR, =label und STMI DR, =label
o) LDBI DR, XAR, label und LDMI DR, XAR, label 2-40
p) STEL DR, XAR, label und STMI DR, XAR, label
6.3.4, Arithmetische und logische Funktionen
a) Additionshefehle
b) Logische Operationen {AHND) . . . & v v v 4 v v o v o« o . 241
¢) Logische Operationen (OR) & v v 4 v 4 v 4 v w4 o o 2=432
d) Logische Operationen (EXDR) . . v v v & & v o v o v o o v « 2-43
e} Vergleichsoperalionen
E) Inkrpementieruwnp-UICY QU550 & 8 8 6 ¥ 5 5 2 58 5 5 % 55 4 a 2uds
g} Decrementierung (DC)
h} Zweier-Komplement
i} Neuner-Komplement
J) Subtraktionsbefelle . . v v v 4 b 4 e e e e e e e e e e . . -4
Modus-Tunktionen o 0 v o v 4 v v v e e e e e e e e .. 2247

'
"
Lk
*
(9]
W

o R Oh Ch O
L L o Lo L Lo
| i = I S [

.

0.3.12,

-

e s s e e
o N
B Lo b
- L] -

o O
ol -
o Ln

Kapitel 3:

. e e
La b o

-

-

-

Ld L L b=
. PR

Pl =

P

bt = Co =4 O ln Bl
PR A o a & = a

Ll b
.

-

-

e e’ e B RO & L R R) I S S oy W (R P I I T IV B 9%

o

Clear-Befehle . .

Befehle mit dem E—Reglster

Pointerbefehle

Sprungbefehle .

Stackbefehle

Verschiebebefehle .

a) Logische Verschiebung

b) Erweiterte Verschiebung
c) Zusatzbemerkungen
Stack-Adressierung

a) Stack-Instruktionen

b) Stack-Adressierung

¢) Adressierungsformen . . . D e

d) Befehle mit wachsendem Stack

e} Befehle mit fallendem Stack « + . « .
Entwicklung eines LE{-Files

Die Idee

Einfithrung in die Beschreibung der LCD-Anzeige
Umsetzung der LCD-Software auf die, gewiinschten Befehle
Entwicklung des LEX~Files

FoEmblatter « woenicw: & % & % & % 4

Frogrammblitter , . . s e

Eingabe des LEX-Files TLGI}T mlt Hlle des Asaemblers
Beispiele zur Anwendung des neuen LEX-Files

Der Assembler

DOTEMAT RO cn oo mrimoniy, o0 s %6 m B & @ o 38 0 Ty e
Assemblerbefehle

Assemblerinstruktionen

Makrobefehle

Allgemeine Vorbetrachtungen

Mégliche Assemblerbefehle
Vorbemerkungen

Steuerbefehle

a) 1D

B) ZD

o) LABEL

d) DEF

e} ENDE

£} END

g} ASC

h) ASE

i} Kommentare

1-Byte~Befehle

2-Byte-Befehle: ey B @ £ 8 5 % 5 5 B Swie
3-Byte-Befehle

4-Byte-Befehle « . .
5—Byte-Befehle
Zusammenfassung

Das Programm 'COMPILE'

Vorgénge beim Starten des Programmes

Programmablauf

Beispiel

Das Text-File "ASSEM2' ¢ v ¢ &« & o« & =«
Einfithrung

Liste der Einsprungpunkte

Beschreibung besonderer Adressen
Programmlistings . . T RN R R P

Das Programm TCOMPILE'
Das Text-File "ASSEM2'

. 3-1

I
L B =

3-16

. 3=17

—

Anhang A:

1,
i
3

Anhang B:

14
2,
3

Anhang C:

[R s T L

Anhang D:

Anhang E:

L.
2

Anhang F:

Die Speicherung von Informationen auf dem Magnetband

Die ersten beiden Records auf der Spur 0
Das Directory
Der Teil des Bandes, in dem die Files stehen

Beschreibung der bendtigten LEX-Karten

PEEKFOKE
FEKEFOOE
IOUTIL

Vorstellung und Beschreibung der Hilfsprogramme

PROTR s = o o sevmsssiins o o & & & % ® 6 % % 5 o8
BEEEG o & o 5 v & & 8 % 2 % & W & 9 %
LEXAN &

LEXIN .

CEVICES .

FPEMEM .

FEFROD .,

SETTING .

ANLEX . .

COWVERS P

Fehlermeldungen + « & &+ &+ & «
ASCII-Tabelle

Ubersicht iiber die Codierungen der BASIC-Befehle

~-Cpdierungen . . .- . .

Hex-Code-Tabellen . . & 4+ + & & o & « + +

Ubersicht iiber die Assemblerbefehle

Codierungen , .
Hex—Code-Tabelle

Formblatt zum Kopieren

ﬁﬁﬁﬂﬂ{rﬁﬂﬂﬂ{_ﬁﬁ

.

=1
|

I

. A=2

[e s

|
R e el e i s, S W
LR i T R Sl e

. D-6

1. Kapitel

Das Innenleben des HP-75

1. Dde Zentraleinheit (kurz: CPI)
Der Prozessor des HP-75 ist der gleiche, der scheon im HP-85 Verwendung
gefunden hat, Der Unterschied besteht nur darin, daB dem Prozessor des
HP-73 nun CMOS-Speicherbausteine unterscellt sind und nicht herkommliche
Speicher-ICs wie beim HEP-33. Durch diese CHMOS-Technik wurde asuch die
Griofie des Rechners erheblich vermindert.
Dieser Proressor steuert den 2-bit Svstembus, der sédmtliche Daten, Beiehle
und Adressen zu dem jeweilig zustdndigen IC leiret. Die Frequenz, dh. den
Takt, fiir diesen Bus liefert der Clock-Teil der CPU. liber diese Takt-
einehit wird jedoch noch unter Punkt 4 genauer berichtet,
Nun jedoch, wie arbeitet diese CPI ?
Die Central Processing Unit (=CPU) besteht aus 64 8-bit-Registern, einem
Pointer fiir das Adrefiregister (=ARP), einem Pointer fiir das Register, von
dem Daten entnommen werden (=DRP), der Arithmetikeinheit, in der samtliche
Grundoperationen ausgefithrt werden {=Addition, Subtraktion, Verschiebung,..),
einem Shift-Register und einer Reihe von Statusanzeigen (=Flags).
Die 64 S-bit-Register sind aufgeteilt in 2 Gruppen:
Die ersten 32 Register (Nummern 00-40 im Oktalsystem) sind jeweils Z2-Byte
lang und werden ausnahmslos won der CPU zur Speicherung von Adressen
genutzt, Sie erfiillen auch bestimmbe Zwecke zur Kommunikation mit anderen
Teilen (zB. Stackpointer, ...}. Zu diesen Registern hat die CPU direkten
Zugang.
Die nachsten 32 Register (Nummern 41-77 im Oktalsystem) sind voneinander
nur schwer zu trennen. So werden beispielsweise bis zu 8 Register zu einer
Gruppe (dh, zu einem Multibyte) zusammengeschlossen. Um diese abgeschlos-
sene Einheit von anderen Single- oder Multibytes abzugrenzen, benutzt der
Rechner eine interne Grenze zwischen jeweils B Bytes. Nur in diesen Registern
kinnen Flielikommazahlen gespeichert werden.
Irgendein Register der CPU kann als Akkumulator benutzt werden, wenn eine
Operation ausgefiihrt werden soll. Auf dieses Register zeigt dann der DEP.
In diesem Register liegt auch nach einer Operation das Ergehnis.
Die CPU enthdlt 8 Flags und ein 4-bit Register filr den Programmstatus.
Dieger Status kann auch von der CPU beeinflulit werden.
Instruktionen der CPU:
= Arithmetil:
Addition, Subtraktion, Rechts- und Linksverschiebung.
- Nicht-Arithmetilk:
Laden, Speichern, Vertauschen, logische Operationen (AND, OR,..), Loschen,
Testen und Shiften.
Flags:
ICM (Dezimal-Mode-Flag): Dieses Flag gibt den momentanen Rechenmodus der
CPU an: O fiir binar, 1| fir BCD.
CY {Carrv-Flag): Dieses Flag ersetzt bei einer Addition zweier Zahlen
das 9.Bit.
OV (Overflow): Eine negative Zahl wird durch eine 1 im hichsten BTt des
Registers dargestellt., Diese 1 kann aber auch bei einer Addition ven zwei
gdien positiven Zahlen vorkommen. Deshalb gibt es ein Flag, das angibt,
welcher Fall nun vorliegr: 1 falls positivw
o falls negativ,
OD (letztes bestimmendes Bit): OD=0 fir gerade Zahl, 0UD=1 fir ungerade
Zahlen.
HG (erstes bestimmendes Bit): NG=l1 fiir negative Zahlen, NG=0 fir positive
Zahlen.
ZERD (Nullregister); Dieses Flag hat den Wert 1, falls das Datenregister
leer ist, sonst 0. Wichtig bei Vergleichen und Springen.
LDZ {linkes Byle geloscht): Sind die ersten 4 Bit eines Registers 0000,
dann hat LDZ den Wert 1, sonst O,
RDZ {rechtes Byte geléscht): 5ind die letzten & Bit eines Registerblocks
{dh. Byte oder Multibyte) leer (dh. den Wert DO0D), hat RDZ den Wert 1,
sonst den Wert 0.

1-1

jdonyassag

IDEITUDIILY

XLIDER-IN1BISE]

o~
I
=

ani-dll SRp Pl LQI[EYSSYoeTd T 449y

i et R I35

aneIse]

il

SNg-TTOIFUGR— WO 1EG

11-dR
WO
£-3
2 TYIZTI Wod
HO

—

— = o

muuv WO

HOod

Y

muﬁ

0JE) SHOY
—§3215UTT

B

n.d:o

ATAYuTH
—1aylolluoy
-UaB ALY

1]

!

g -a@i el -usBTREuy—50KD

WYY atp Ang

d2IING=FNY 1sT8aagaapy

S0g]-U2 1B -WYY

[SHVE BT WV SOWD 22491

R
= pra—aasuty [

agTawuy

a7 Rl R A o

- F {Zusatzregister): Dieses Hepgister arbeitet im RBCD-Modus. Es kann durch ein-
fache Assemblerbefehle vergréfert (Increment), verkleinert (Decrement) und
geldscht werden, In ihm werden die angezeigten Zeichen nach einer Verschie-
bung aufbewahrt.

4ls nichstes esin Wort zu den Testgelegten Registern:

ROC,EQL RegisterbankzBhler: Diese beiden Register geben den Rest der CFU-
Registerbank an.

RC2,R03 Diese beiden Hegister werden bei der Berechnung voen Adressen bendtigt
wenn mit Indices adressiert wird.

R4, R0OE In diesen beiden Registern steht die zbsclute Adresse des nachsten
Befehls,

RO& ,ROT In diesen beiden Begistern wird bei einem Sprung in ein iUnterprogramm

die Adresse des Sefehls festgehalten, beil dem dieser Zprung erfiolzte.
Das Programm fihrt dann mit dem folgenden Befehl fort,

ROE Enthdlt den Frogramm—Counter beil der Ausfilhrung von BASIC-Programmen.

ROG Dieses Register enthilt im Parse-Modus (=Ferlegungsmedus) die Adresse
des Ferlepungsausgabestacks.

E1l0,R11 Im RUH=Modus nicht softwaregesteuesrt. Im PARSE-Modus zeigen diese
beiden Register auf das ndchste Zeichen eines ASCII-Strings.

Fl12,R13 Operations=-Staclk: Parameter und Ergebnisse werden in das Register ge-
leitet, das durch diese heiden Register festgelegt ist.

K14 Beim Zerlegen enthdlt Rl4 daz aktuelle Zeichen, das veriZndert werden
soll,

Rl6 Dieses Register enthilt den Code, der den laufenden Modus einer Opera-
tion festlegt.

Ri7 Dieses Register enth#lt den Status flir eine externe ¥ommunikation.

411le anderen Register kinnen durch den Benutzer frei beleglb werden.

Nun noch etwas iiber die Speicherung von Zahlen in den Speichern RA0-R77:

Die Zahlenspeicherung in der CPU erfelgt im Oktalsystem. Eine Zahl wird in insgesamt

8 Registern gespeichert. Man unterscheidet dabeil zwischen der Speicherung wvon mit

REAL festpelegten Zahlen und den ibrigen.

— REAL-Zahlen: Diese Zzahlen werden chne VYorszeichen jedach mit Exponent gespelichert.
2%, die Zahl 4678,912345 entspricht 4.678912345 * 1073 und wird wie folgt gespei-
chert:
la & |7 g g i]2 3 |4 5 |0 o e o lo -
[0100 ©ol10i0111 100011001 000l 001i0 0011)0100 Q101! Qo0 Q000 | 0000 0000 | 0000 0011
! ! ! | | | ! | |

- Anders sieht die Sache bei normalen Zahlen aus. Hier wird das Verz&ichen zusHtz-
lich mitgespeichert.

%R, Die Zahl -0.048 entspricht -4.8 = 107-2

I 4 |a 8] o C 1= 2 |

loo1l 0100!1000 0000|0000 Co00|l0o1l 0010l SHORT-Zahlen

I I ! ¥ I

zB. Die Zahl 5001

I+ @ |8 o o 1

loooo 0000|0101 0000 | 000D 0oL | TNTEGER-Zahlen

| ! | |

Wenn man nun im Handbuch des HP=75 nachschligt, sieht man, daf grundsitzlich
REAL-Fahlen 12 Digits mit einem dreistelligen Exponenten habenisiehe oben],
SHORT-Zahlen S Digits mit einem zweistelligen Exponenten haben {sishe chenl,
[NTEGER-Zahlen 5 Digits ohne Exponenten haben.
Damit ist die oben aufgestellte These richtig.

Die Stromversorgung:

Da chne Strom nichts lHEuft, gehirt auch diese Einheit zu den Grundpleilern eines

Computers. Der HP=75 besitzt als Portable-Computer natiirlich einen Akku, der durch

eine Spannung won 8Y and eine Stromstirke von 37VomA aufgeladen wird. Dieser Akku

versorgt zwei Stromkreise mit dem nitigen "Saft". Im ersten Stromkreis befinden
sich die RAM=, deren Inkalt ja auch nach dem fusschalten erhalten bleibt (siehe

Continuos Memory), und die interne Zeiteinheit, die ja zu jeder Zeit die richtige

Zeitangahe angeben soll. Der andere Stromkreis 1568t sich ein- und auszzchalten

durch die ATTH-Taste. Die vom Alkku ankommende Versorgungsspannung wird durch einen

Converter in eine Spannung von 3.5-5.5Y [je nach Ladegzustand des Akku! und eine

Stromstirke ven 50-100mA (auch abhingig vom Zustand des Alkku! umgewandelt. Dieser

DC-Do-—Converter taktet sich selbst durch einen eingebauten Oszillator (= interne

Spulel. 1-3

i

Die Anzeige:

Beim Betrachten des HP-75C fEllt als erste Ausgabeeinheit die 32-stellige

Anzeige lber der Tastatur auf. Jedes Zeichen in der Anzeige wird durch eine

SxB-Matrix dargestellt, wobei die achte, dh. die unterste Reihe fir das Unter-

streichen reserviert ist. Zu der Anzeige gehiren auch noch 4 Indikatoren:

al! BAT erscheint, wenn die Spannung im Akku zu gering ist, um ohne Fehler

arbeiten zu kénnen.

b} ERRCR erscheint, wenn ein Fehler in einem Programm oder in einem Ablauf

direkt liber die Taztatur aufgetreten ist.

¢} APPT erscheint, wenn ein Alarm angesprochen wird oder wurde, dh. sobald

Zeit der Systemuhr (TIME=Modus! die aAlarmzeit (APPT) iberschreitet.

d] PRGM erscheint bei der Programmausfilhrung, dh. bei der RUN-Phase.

Im Gegensatz zur Anzeipe mit 32 Zeichen speichert der Anzeigespeicher insgesamt

96 Zelichen. Dies bedeutet, dal immer nur ein Ausschnitt aus dem Anzeigespeicher

angezeipt wird.

Die LCD-Anzeige wird von 8 ICs aus gesteuert und Kontrolliert. Eines der ICs,

das Anzeigekontroll-IC, hat eine Sonderstellung. Es steuert die Stromzufuhr fiir

die Einzelpunkte der Anzeige, dh. es erzeugt die Punktmatrix, die fiir jedes

Zeichenmuster verschieden ist. Dieses IC steht bei der Anzeige stEndig in

Verbindung mit der CPU, so daf die CPU immer weil, wo welches Zeichen steht.

In diesem IC wird in einem speziellen RAM jedes Zeichen durch zwei Bytes ge-

speichert. Das erste Byte gibt an, wo das Zeichen im Anzeigenspeicher steht,

das zweite Byte gibt den ASCII-Code des Zeichens an.

Jedes Zeichen besteht aus 5 (flir eigentliches Zeichen) + 2 (fiir Zwischenraum),

also insgesamt aus 7 Spalten. Fir jede Spalte eines Zeichens steht 1 IC zur

Verfigung, das diese Spalte steuert, Haben die 7 ICs ein Zeichen erzeugt, so

gehen sie weiter zum nichsten Zeichen, bis die Zeile beschrieben ist.

Die interne Uhr:

Der Hauptteil der Uhreinheit ist ein Zdhler, der mit SET auf die gewiinschte

Zeit gesetzt wird. Mit Hilfe eines 32kHz-Quarzes erreicht er eine Abweichung

von 2 Minuten im I"onat. Disse Genauigkeit lE0t sich jedoch noch verbessern:

Man wihlt mit EXACT einen Zeitpunkt, von dem an bis zum ndchsten EXACT-Zeit-

ounkt der Rechner die Abweichung feststellt und schon gleich als Ausgleich

zur Zeit dazugezdhlt wird. Damit 1E6Gt sich eine Abweichung von nun mehr

153 Sekunden im Monat erreichen. Dies wird dadurch mdglich, dafl die CPU die

Zeit manipulieren lkann, Sie kann eine Sekunde je nach den Trfordernissen his

auf 1.25 Sekunden verldngern, so dal nun £ Sekunden auf & Sekunden verlingert

sind, Das IC, das diese Vorginge steuert, wird auch nech fiir eine andere Zeit-

steuerung im Rechner gebraucht. Wie in jedem Computer bendtigt auch die CPU

des HP=75 eine Taktfrequenz, mit deren Hilfe sie Daten und Befehle durch das

Bus—3system durchdriickt. Die Frequenz, mit der dabei gearbeitet wird, izt

abhdngig vom Schaltzustand des Rechners. Man unterscheidet dabei 3 Zustinde:

a) Der Tiefschlafmodus: Dieser ist dann vorhanden, wenn der Rechner ausgeschal-
tet ist, jedoch trotzdem intern fiir die thr, fiir die Alarmkontrolle und den
Speicherinhalt mit Strom und Spannung versorgt wird., Dafile wird mit einer
Taktfrequenz von wenigen Kilcherz gearbeitet.

b} Der Mormalmodus: Dieser ist dann worhanden, wenn der Rechner zwar einge-
schaltet ist, aber nicht im RUN-Modus arbeitet. Nur die Anzeipge ist aktiv.
Es wurde keine Taste gedrilckt. In diesem Modus wird mit einer Takbtfreguenz
van 4.68kHz gearbeitet.

¢l Der Arbeitsmodus: Dieser ist dann wvorhanden, wenn eine Taste gedrickt wird,
oder etwas in die Anzeige gebracht wird, ¢h. zusammenfassend, wenn Daten
oder Befehle durch das Bus-System, vom User gesteuert, durchgedriickt werden.

Das Umschalten vom Tiefschlafmodus in den Normalmodus bewirkt die ATTN-Taste.

Das weitere Umschalten dann in den Arbeitsmodus bewirkt das Dricken irgendeiner

beliebigen Taste., Ist eine Operation abgeschlossen, schaltet die CPU auto-

matisch wieder zuriick in den Normalmodus. Beim Eommando BYE oder dem gleich-
zeitigen Dricken wvon ATTN- und SHIFT-Taste wird in den Tiefschlafmodus zuriick-
geschaltet, dh, Display und Tastatur, bis auf die ATTN-Taste, werden inaktiv.
fuch fiir die Interface-Loop (abgekiirzt: IL) muP eine Taktfreqguenz zur Verfiigung
gestellt werden, durch die Daten und Kemmandos zu den einzelnen Peripherie—
einheiten transportiert werden. Diese Arbeit ibernimmt auch der og. Integrierte

Schaltkreisz,

1-4

s

Die Tastatur:

Die OQWERTY-Tastaur des HP-75 besteht aus einer B-Spalten-mal-10-Reihen-Matrix,
Wird eine Taste gedriickt, wird dieses von der CPU als Signal aus dieser Ma-
trix empfangen. Mit Hilfe der Spalten und Reihen, kann die CPU bestimmen, wel-
che Taste gedriickt worden ist. Jede Position in dieser Matrix besitzt einen
entsprachenden Code. Dieser Code wird dann von der CPU weiter verwertet.

Ist der Rechner angeschaltet, sind auch die Tasten in einem energiereicheren
Zustand. Sie erwarten kontinuierlich Informationen von Benutzer., Ist der
Fechner jedoch ausgeschalret, befinden sich alle Tasten aufler der ATTN-Taste
im Zustand 0. Deshalb 140t sich der Rechner auch nur durch die ATTN-Taste
einschalten. AuBler den obengenannten Eigenschaften, besitzt die Tastatur noch
die Eigenschaft des Frellens, wenn die Taste lidngere Zeit gedriickt bleibt.

Die HP-IL:

Im HP-735 bereits eingebaut ist ein HP-TL-Modul, Mit dessen Hilfe 143t sich
die HP-TL-Schleife direkt ansteueren. Auch im Betriebssystem des HP-73 ist

im Bereich von $FF10-$FF17 die Steuerung des HP-IL-ICs schon vorhanden.

Turch Verdndern dieser Statusbytes, lassen sich neue [L-Befehle kreieren,

sduch die LEX-Karte HFILCMDS aus dem [/0-Programmpaket, greifrt auf diese
Statusbyres zuriick und erméglicht dem HP-753 damit, jede IL-Schleife indi-
viduell zu steuern.

Der ¥artenleser:

Der im HP-75C eingebaute Magnetkartenleser, mit dem man Daten auf Karten
schreiben kann oder Daten von Karten lesen kann, hat eine Speicherkapa=itdt
von 1,3KBvtes, Die Harten werden veon Hand durch die Lesevorrichtung gezogen,
wenn der Xartenleser auf Datenempfang geschaltet wurde. Die Karten sind

25.4 cm lang und I cm breit.

Der Vorgang der Verarbeitung von Magnetkarten:

Der Benutzer initialisiert eine Kartenleser-Operation mit den zur Verfiigung
stehenden Befehlen, Dansch schiebt er die Karte bis zur schwarzen Markierung
vor, macht den Rechner durch Driicken der RTN-Taste bereir, Daten zu empfangen,
ud zieht schlieflich die ganze Karte mit gleichbleibender Geschwindighkeit
durch.

Aufbau der Karte:

Es gibt vier Bereiche auf jeder RKarte: 2 Daten-Bereiche und zwel Timing—Berei-
che. In den Timing-Bereichen sind die Informaticnen fiir den Kartenleser fest-
gehalten iiber die Geschwindigkeit, mit der die Karte durchgezogen werden muli.
Die Daten-Bereiche enthalten 4 Felder won Informationen. s
Jedes Feld beginnt mit einem Fihrungshbyte, das bestimmt, ob und welche Daten
abgespeichert werden. Desweiteren gibt es noch einen Header (dieser enthidlt
Informationen iiber die Griofe und das Format der Karte), =in Schutzbyte
(dieses Flag zeigt an, ob die Xarte vor dem Uberschreiben geschiitzt ist oder
nicht), dem File-Header (dieser Teil enthélt Informationen idber Filename,
Grofe, Filetyp, Daten, Bereichnummer und Anzahl der insgesamt bendtigten
Bereiche). Danach folgen endlich die Daten {1.3KBvte pro Karte).

IMe Ansteuerung:

Der Kartenleser wird durch den HP-73C mic Hilfe von BASIC-Befehlen angesteu-
ert. Diese Befehle erlauben das Kopieren won Daten von Karte in den Haupt-
speicher oder zuriclk in den Optionen privat, nicht privat, mit oder chne
FaBwortschutz; aullerdem das Katalogisieren und Auflisten wvon Inhalten einer
Harte.

Wird die Karte zu schnell oder zu langsam durch den Leserschlitz gezogen,
stellr dies ein Sensor fest und fordert den Benutzer auf, es noch einmal zu
versuchen ,Gleichfalls, wenn ein Fehler beim Lesen oder Schreiben der Karte
auftritt, wird dieser direkt an den Benutzer weitergeleitet, und es wird

zu einem weitern Versuch des Lesens oder Schreibens dieser Karte aufgefor-
dert,

Die Befehle, durch die der Kartenleser angesteuert wird, sind folgende:

COPY 'filename' TO (CARD/'filename :{CARD/PCRD)(/passwort)')

COPY (CARD/'filename:{CARD/PCRD}(/passwort)') TO 'filename

CAT (CARD/':(CARD/PCRD)'")

FPROTECT

UNPROTECT

Ist der File zugleich workfile, braucht der Filename nicht angegeben =zu
werden, Alle Operationen des Kartenlesers kénnen durch Driicken der ATTN-
Taste geltscht werden. Bereits eingelesene Fileteile werden wieder ge-
loscht, Beveor Informationen eingelesen werden, priift die Steuerungssoft-
ware des Kartenlesers das Schutz-Flag und teilt dem Benutzer mit, wenn
das File geschiitzt ist.

Das Interface zwischen Rechner und Kartenleser:

Dieses Interface benutzteine 2Z-Byte-I/0-Adresse. Das erste Byte enthilt

Informationen und Daten (vom oder zum System, Angaben, ob Lese- oder

Schreibmodus). Das zweite Byte enthdlt den Status des Kartenlesers.

Dieses Byte enthdlt Bits, die dem Benutzer erlauben, den Kartenleser an-

pder auszuschalten, den Kartenleser in den Lese- oder Schreibmodus =zu

bringen, einen RESET durchzufiihren, die Hardware des Kartenlesers zu
priifen.

Der Prozell des Datenaustauschs ist einfach: Zverst wird die Hardware ange-

sprochen und gepriift, ob sie READY ist. Danach beginnt eine Schleife, in

der abwechselnd Daten gesendet werden und die Hardware auf READY (=Betriebs-
bereitschaft) iiberpriift wird. Diese Schleife endet, wenn sdmtliche Daten
eingelesen sind. Danach wird auch wieder der Kartenleser ausgeschaltet.

Dieser Vorgang wiederheolt sich fiir jedes Feld der Karte. Das besondere

an diesem Kartenleser ist die Eigenschaft, daf er liest und schreibt mit

den gleichen Codierungen. Wahrend die Software wartet bis die Hardware

bereit ist, wird im Timing-Register der Inhalt riickwdrts herabgezihlt.

Nach jedem Byte wird das Register zuriickgesetzt. Wenn der Inhalt 0 er-

reicht hat, mufl die Oeration neu gestartet werden.

Memory-Organisation:

Die CPU des HP-75 hat die Fahigkeit, 64kByte des Speichers direkt zu

adressieren., Dieser Speicher beinhaltet Platz fiir verschiedene Teile:

Im Memory des Rechners unterscheidet man mehrere Teile:

a) Sechs System-ROMs zu je 8192 Bytes. Von diesen ROMs belegen zunichst
4 die Adressen UDOO-7FFF, ein ROM die Adressen EQOO-FFFF. Im Bereich
H000-7FFF kénnen unter der gleichen Adresse auch noch mehr ROMs ge-
steuvert werden. In diesem Bereich liegt in der Grundversion noch das
6.ROM (System-ROM 180), spiter Zusatz—ROMs.

b) Zwei RAMs zu je B192 Bytes in der Grundversion mit den Adressen BOO0-BFFF.
Bei der Erweiterung mit dem 8k-Speichererweiterungsmodul belegt dieses
den Adrefibereich COOO-DFFF.

c) Memory durch CPU adressierbar (Adrefbereich QOO0-FFFF)

i) Memory durch den EMC adressierbar 24k-208Lk.

e) Der Block FFOD-FFFF dient zum Abspeichern der I/0-Adressen, wenn der
Bereich direkt von der CPU gesteuert wird, ansonsten zum Abspeichern
von RAM-Daten,

Dezimale Adresse Hexadezimale Adresse

o Q00 IRL-Vektoren

17 Byte o011 b
ROM

gk 2000
ROM

16 k A4000
ROM

24 k 000 J
ROM ROM

37 k BOO0

1-4

Dezimale Adresse Hexadezimale Adresse

a2k B000
HAM
40 Lk AD0D0
RAM
48 k Coo0
EAM
56 k 000 |
ROM
63 k FFOO I/0-Adressen
b4k FFFEF
RAM
236 k FFFFFF

Das Operaticnssvstem im HP-73 steuert iiber die 43k ROM den RAM-Bereich,
Brinegt man den Rechner dazu, del SLEuEruug_an externe Stellen abzugeben,
ist auch ein hiherer RAM-Bereich méglich. Uber die I/0-Adressen steuert

der Rechner direkt s&mtliche INPUT- und OUTPUT-Glieder (Tastatur, Karten-
leser umd die TL-Schleife). Uber diese [/0-Adressen werden auch Daten iiber—
mictelt und zwar in Strings von 8 Bytes Linge.

Einer der Vorteile des HPF-73 ist die Mdglichkeitr im RAM-Bereirch auch Daten
festzuh®en, wenn der Rechner ausgeschaltetr ist (Continous Memory),
Betrachten wir uns den EAM-KEreis, so fallt noch ein Register zwischen EAM-
Bank und der CPU des Rechners auf. Dieses Register iibernimmt die Adressie-
rung der CPU, Will die CPU auf Daten im RAM zuriickgreifen, so spricht sie
liber dieses Register Adressen im RAM-DBereich des Rechners an.

tnders verlduit dieses bei der Adrefierung von ROMs. Hier besitzt jedes

ROM einen eigenen Kreis und ein eigenes Register, das direkt die Daten, die
hentltiglt werden, zur Yerfiigpung stellc. Hier werden also die ROMs direki wvon
der CPU angesprochen,

Ausblicl:

Das Interessanteste im Betriebssystem und im internen Aufban des Rechners
ist der zur Verfiigung stehende EAM-Bereich, Durch richtipges Anpassen des
Betriebssystem durch die Adreflpointer EMC auf eigene Zwecke ist eine Frwei-

terung des RAM-Bereichs dhnlich der ROM-Bank moglich. Dies ist die dringendste

Der Aufhau von Files

1. BASIC-Files:
1l.1. Darstellung interner Zahlen:
al absolute Adresse:
Lie Darstellung erfolgt Hexadezimal. Eine absclute Adresse helegt 2 Bytes.
Umn die Adresse rpichtig zu lesen, muB erst das 2.3yte und dann das 1.Byte
aneinandergeschrieben werden — dies ergibt die richtige Adresse {(=c sind
auch alle anderen Zzhlen, die 2 Hytes belegen in umgekehrter Reihenfolge
dargestellt).
Bap: Die absolute Adresse lautet C2 02, dann lautet das 1.3vte Hex 02 und
das 2.Byte Hex C9.
bl Programmlinge: :
Enensc wie bel der abscluten Adresse erfolgt auch hier die Darstellung Hexa-
dezimal in umgekehrter Heihenfolge.
Bsp: Programmlinge 2483 Bytes ergiht bindr QCO0LCC110110011 und Hexadezimal
C2 B3. Dann lzutet das 1.Byte B3 und das 2.3yte lautet 09,
¢l Zeilennummern:
Hier erfolgt die Darstellung im BCD-Code in umgekehrter Reihenfolge.
{RCD-Code = Binary Coded Decimal). Durch diese Darstellung 13Rt sich die
Zellennummer in der Hexadezimaldarstellung der Bytes im Klartext lesen.
Die Hunderter—- und Tausenderstelle wird im 2.Byte dargestellt und die
Einer- und Zehnerstelle im 1.RByte. Diese Form der Darstellung srklidrt auch
zugleich, warum die hiéchste Zeilennummer 9959 ist.
Bap: Hel einer gewilnschten Zeilennummer wvon 2497 lautet das 1.Byte Hex 97,
das 2.Byte Hex 24,
dl LAngenangabern:
Die angabe wvon Lingen [Zeilenlinge, Textlinge efc.) erfolgt stefts im Hex-Code.
Werden 2 Bytes flir die Lingenanpgabe bendtigt, so sind disse wieder in unge-
kehrter Reihenfolge dargestellt. {siehe Frogrammléngs)
el Pointerangaben {(siche Lingenangaben)
1.2, Allgemeiner Aufbau ven BASIC-Files:
Man unterscheidet 2 Teile eines BASIC-Files: den Programmion?, auch Header genannk
und den eigentlichen Programmbauptteil, die aufl Hassette direkt agufeinanderfolgen
und im 8AM des Rechners getrennt aufgefiihrt sind (giehe aufbau des Memory) .,
al Meader:
‘aal Angabe der absoluten Adresse (Byte 1 und Byte 2):
Hierbel ist zu bemerken, dafll die RAM-Adressen von 2000 bis ECOOD gehen und
in drei Bausteine gufgeteilt sind: Rarl 1 SC00-9FFF
R&M 2 ARQO-EBFFF
RAM 3 CORO=DFFF {(entapricht 8k EAM-Zrweit.)
Niheress ilber die HAM-Bausteine unter dem Stichwert "Memory—-Aufbau'.
Darstellung der Adresse ist in 1.1l.a) beschrieben.
ab! Angabe der Programmlinge {(Bvte 3 und Byte 4):
Darstellung wie unter 1.1.b) beschrieben.
ac] PRIVATE-Sicherung {(Byte 5):
Dieges Byte hat den Dezimalwert 254 bei non-privaten BASIC-Files
202 bei privaten BASIC-Files
ad] Angahe der Fileart [(Byte 6):
Diegses Byte hat fir BASIC-Files den Hex-Wert 42 [(ASCIT-Cade fir B)
Speicherung des Datums und der Zeit {Byte 07 hig Byte 10):
Grunddatum fiir die Errechnung des Datums ist der 1.1.1200 um 0.0C Uhr,
Diese 4 Byhes geben nun in codierkter Form die Anzahl der Sekunden, die wvon
digsem Grunddatum bis zum Datum der Abhspeicherung des Progranms verflossen
sind, Als Grundwert des verwendeten Zahlensystems dient die Zahl 256,
Die Erklirung der Codierung ldGt sich am besten an einem Reispiel =zeigen:
Byte 07 bhis Jvte 10 haben die Werte Hex 60 56 AD 3B, dem dezimal entsprichf:
96 36 173 185, Die Anzahl der Zekunden seit dem Grunddatum errechnet sich
wie folgend: Byte O7 + Byte (0B*2%6 + Byte 09%25872 + Byte LO¥25673, Diesg
ergibt fir unser Beispiel 2,811.828,320 Sekunden. Tine Division durch 86400
ergibt 30229 Tage ergibit {also 82 Jahre und 278 Tage). Den Hezt rechnet man
nun in Minuten und Sekunden um [(Ergebniz: 11 Stunden, 52 Minuten).

-1

13,

Als endgiiltiges Datum erhdlt man nun den 5.10,.1982 um 11.52 Uhr.

af) Angabe des Filenamens (Byte 11 bis Byte 18):
Diese Bytes geben als ASCII-Zeichen den genauen Namen (8 ZElchen} des Files
an. Der Name wird wenn nétig mit Blanks aufgefiillt.

b) Hauptteil des Programmes, wenn es nicht initialisiert ist.

ba) Pointer:

Diese Pointer haben nur bei LEX-Files eine besondere Bedeutung (dazu spiter
mehr}. Sie legen dabei besondere Zielpunkte innerhalb eines Files fest,
Bei BASIC-Files haben sie den Wert 00 (alsoc bei 5 Pointern 00 00 00 00 00).

bb) Programmzeilen:

bba) Angabe der Zeilennummer:
Diese erfolgt wie in 1.1.c) beschreiben in den ersten beiden Bytes einer
Frogrammzeile.

bbb) Angabe der Zeilenlidnge:
In diesem 3.Byte einer Programmzeile wird dezimal die Lange einer Zeile an-
gegeben, dh. die Anzahl der Bytes von einschlieBlich dem 4.Byte einer Zeile
bis zum letzten Byte der Zeile (siehe unter Punkt bbd)).

bbc) Angabe der Befehle:
4.Byte bis zum vorletzten Byte einer Zeile.

bbd} Angabe des Zeilenendes:
Dieses Byte hat konstant den Wert dezimal 14 (Hex OE),.

bc) Ende des

Die letzen 5

Byte | =
Byte 2
Byte 3
Byte 4
Byte 5 =

Nachfolgende
gebracht,
Aufbau der BASIC-Befehle,

Programms:

Hex 99
Hex A9

Bytes eines Programmes haben immer denselben Aufbau:

Hex 02 (Zeilenldnge 2)
Hex BA (Codierung fiir END)
Hex OE (Zeilenende, hier speziell Programmende)

Befehle werden nicht mehr mit diesem Programm in Verbindung

wenn ein Programm noch nicht initialisiert ist:

Da man in eine BASIC-Zeile mehrere BASIC-Befehle schreiben kann, mull sich der
Rechner eines Trennbytes bedienen. Er benutzt dafiir den Klammeraffen, ein Byte

mit dem Wert

dezimal 64,

a} Hechnergrdlien:

aa) Die Darstellung von Konstanten:

aaa) Textkonstanten:

dezimal 150, wenn die Konstante in einfachen Hochkommas (') steht.

dezimal 5 , wenn die Konstnate in Doppelhochkommas (") steht.

dezimal 6 , wenn die Konstante nicht eingeschlossen ist, wie bei
Befehlen wie DATA und IMAGE bzw. bei Kommentaren.

Angabe der Lange.des Strings

Bei einem String der Linge O natirlich 00, wobei dann die folgenden

Bytes 3ff. entfallen.

Byte 3 ff. = Codierung des ALPHA-Strings im ASCII-Code

Die Anzahl dieser Bytes entspricht der im Byte 2 angegebenen Linge.

Byte 1 =

Byte 2

aab} numerische Konstanten: 1.

Byte 1

Byte 2 bis & =

= dezimal 26

1.Halbbyte =
2.Halbbyte =

3.Halbbyte
4. Halbbyte
S.Halbbyte

f.Halbbyte

o

INTEGEE-Konstanten:

Darstellung der Konstanten im BCD-Code

Zehnerstelle

Einerstelle

Tausenderstelle

Hunderterstelle

Hex 0, da INTEGER-Zahlen keine Hunderttausender-
stellen besitzen (maxint = 99959)
Zehntausenderstelle

Bei negativen Konstanten kommt jetzt als 5.Byte ein Byte mit dem Wert dez. 56.
2. REAL-Konstanten

Byte 1

= dezimal 4

2-2

Byte 2 his 2 = Darstellung des Exponenten
positiver Exponent: BCD-Ceode in umgekehrter Reihenfolge
Bsp: E 259 = Hex 59 02
negativer Exponent: Exponent+1C00 im BCD-Code in umge-
kehrter Reihenfolge
Bap: E=159 = Hex 41 08, da =152+1000=841
Zu beachten Ist, dal vom 2.Pyte in Abweichung zu anderen Zahlensystemen
nur das 2.Halbbyte benutzt wird und das 1.Halbbyte stets O ist,
HByte 4 bis 9 = Darstellung der Mantisse im BCD=Code in umgekehrter Reihen-
folge:
1.Halbbyte 11.5telle
2.Halbbyte 12, 5telle
2.Halbbhyte 9.3telle
d.Halbhyte 10.2telle

+

9.Halbbyte 3,5telle
10.Halbbyte 4.Stelle
11.Halbbyte 1.5telle
1Z.Halbhyte 2.5telle
Fei negativen Konstanten kommt jetzt als 10.Byte ein Byte mit dem Wert
Dez, 56.
¢) Darstellung von Variablen:
cal Variablenname:
Byte 1 des Variablennamens:
bei einstelligen Variablen Dezimal 32 (Elank)
bei zweistellipgen Variablen die Zahl im ASCII-Code
Byte 2 des Variablennamens:
der Duchstabe im ABCII-Code
ausnahmen zu dieser Codierung pibt ez hei der Definition wvon Funktionsn,
dies wird jedoch im Teil Funbktionendefinition erliutert.
cbl Jedem Variablennamen ist ein Byte vorangestellt, =sus dem hervorgeht,

1. ob es sich um eine Variable handelt, der stwas zugewiesen wird,oder oh
diese Variable nur angesprochen wird {zB. bei Ausgabehefshlen oder
arikthmetischen Ausdricken).

2. um welchen Typ von Variable es sich handelt.

somit gibt Dezimal 1 an: numerische Yariable nur angesnrochen

2 ! Array-Variable nur angesprochen

3 i ALPHA-Variable nur angesprochen

1 ¢ numerische. Yariable, der etwas zugewiesen wird
ia t Array-Variable, der etwas zugewiesen wird

19 : ALPHA-VYariable, der etwas zugewiesen wird

ccl Array-Variablen und ALPHA Variablen hendtigen in den meisten FEllen noch
welters Angaben, die dann dem Variahlennamen angehingt werden. Bei Arrav-
Variablen milssen die Indices und bei ALPHA-Variablen die Linge des Strings
angegahen werden,
3¢ wird nach den expliciten fngaben [siehe oben! zu den Indices folpgendes
angegehen:
Nezimal 2 bei Ende Array-Variable mit einen Index, der stwas rUgawiesaen wirrd
10 bei Ende Array-Variable mit zwei Indices, der etwas rugewlesen winrd
11 bei Ende Array-Varisble mit esinem Index, die nur angesprochen wird
12 bel Ende Array-Variable mit zwei Indices, die nur angesprochen wird
cd)! Besonderheiten heim READ— und PRINT=-Refehl:
Hier ist es miglich ganze Arrays anzusprechen. Debei wird Dezimal 181 dem
VYariablenamen wvorangestellt bedi Arrays mit einem Index ungd Dezimal 182 hed
Arrays mit zwel Indiges,
solche Arrays werden nach dem Variablennamen mit Dezimal 38 beim READ—Refehl
unc mit Dezimal 34 beim PRINT#-Befenl abgeschlossen {niheres bei der Reschrei—
hung der Befehlel.
d) DNie verschiedenen Rechnerkonstanten:
Fiir verschiedene Rechnerkonstanten existieren einzelne Rytes, diese belegen
dann keinen Textstring.

2-3

Dezimal 151 = TEXT

152 = BASIC
153 = LIF1
155 = INTO

168 = ON (bei Befehlen, bei denen das ON dahintersteht wie zB:
ALARM ON, DEFAULT ON usw.)
169 = OFF (ALAREM OFF. DEFAULT OFF usw.)

187 = AFPT
212 = CARD
214 = keys

219 = T0 {nur bei FOR-NEXT-Schleife nicht)

e } Eigentlicher Aufbau der BASIC-Befehle:

CER

eh)

Nachdem nun die Konstanten und Rechnervariablen erliutert sind, ist es
miglich, auf den Aufbau eines Befehls einzugehen.

Grundsdtzlich ldst der Rechner die Befehle intern so auf, daP er fortlaufend
alles abarbeiten kann. Dabei scheint der Rechner zur fusfijhrung der Befehle
wohl intern einen Stack zu belegen, in dem die zur Ausfihrung notwendipen
Befehle zwischengespeichert werden.

Allgemein gibt es Funktionen, die gar keine Werte benttigen; solche, die
einen Wert zur Ausfihrung bentitigen und solche, die zwei Werte zur Ausfih-
rung benbtigen.

Zum anderen ist es aber auch miiglich, durch Angabe von Klammerungen, die
Anzahl der zwischengespeicherten Werte zu beeinflussen. Da der Rechner die
Yerte chne die Klammern abspeichert und zwar in der Reihenfoloe, wie sie
auszurechnen sind, wobei je nach Anzahl der YWlammerehenen der Stack mehrere
Zahlen abspeichern muf, wverschwinden zB. nach der Eingahe einer Befehlszeile
mit iiberfliizssigen Klammern, diese Klammern,

Hir geben also einen Befehl als Text in eine Zeile ein. Per Bechner inter-—
pretiert diese Zeile, 1dst sie in einen internen Code auf und, wenn diese
Zeile wieder angezeint wird, wird umgekehrt der interne Code wieder inter-—
pretiert angezelpgt., Namit ist auch das. Verschwinden von iberfliissigpen Klam-=
mern klar, dz durch die Stackverwaltung keine Zytes fiir #lammern keniitigt
wercen.

Befehle, die keine Werte bentitigen {konstante Funktionen}:

Dezimal 171 = EPE

178 = MEM
184 = KEYE
182 = VERE
139 = INF
201 = PI

210 = EREN
211 = ERRL
154 = RES

Befehle, die einen Wert zur Ausfilhrung benstigen:
Hier steht der Wert, der zur Ausfiihrung des Befehles notwendig ist, wor
dem Byte, das den Befehl angibt. Hierbei ist es egal, ob der Wert durch
eine andere Funktion erzeugt wird, ob er nur eine Konstante ist, oder
durch eine Kombination ven Funkticnen und Konstanten entsteht. Wichtig
ist, daf wenn das eine Hyte, das den Befehl angibt, im internen Code
erscheint, ein Wert im Stack steht, der fiir diese Funktion paBt, egal,
wie dieser Wert entstanden ist,
Bap: SIN(2) ist intern codiert als dezimal 26 2 0O 0O 216,
wobeli 26 2 0 0 die KHonstante 2 ist und 216 das Byte fiir die Funktion
Sinus.
Bsp: SIN(EPS) ist intern codiert als dezimal 171 216,
wobel 171 EPS ist und 216 Sinus
Bsp: CO5(2+1) ist intern codiert als 26 2 0 0 26 1 0 O 43 217
{hier mache ich einen Vorgriff auf Funktionen mit zwei Variablen)
Das Prinzip ist erkennbar: Zunidchst werden die beiden Werte fiir die
Funktion + (Dezimal 43 = ASCII-Code des Zeichens +) hereitgestellt,
die Funkticon + ausgefilnrt und im Stack steht dann die Summe 3 fiir
die Funktion Cosinus (Dezimal 217) zur Verfigung.
Hun alsc die Liste der Bytes fiir diesze Funktionen:
Einige Funktionen werden hier vermiBt werden, da fiir ihre Ceodierung mehr

24

e

als ein Byte bendtigt wird, dazu in einem spiteren Punkt.

Dezimal 96 = Vorzeichenwechsel, alsc die Angabe eines Minuszelchens vor
einer Funkticon oder einer Xonstanten.

Dezimal 170 = IP

172 = FP
173 = CEIL
176 = 20R
179 = ABS
182 = SGN
185 = COT
186 = C3C
185 = EXF
189 = INT
190 = LOGLO
191 = LOG
193 = SEC
194 = CHR%
185 = STRE
186 = LEN
197 = HUM
192 = Val
202 = UPRCE
216 = ZIN

o e 162
218 = TAN
226 = DEG
227 = RAD
228 = FLOGR

7um Abschlul dieses Punkies noch ein Beispiel fir sine Stringfunktion:
Bsp: UPRCE('abc') ist intern codiert als dezimal 150 3 3% a8 99 202,

wobei 150 Textkonstanhe heift, 3 die Linge des strings, 97 98 29

abe und 202 die Funktion UPRCS ist.
Befehle, die zweil Werte zur Ausfilbhrung bentiigen:
Hier missen im Stack zwei Werte zur Verfiigung stehen, damit die Funktion
ausgefiinrt werden kann, [elglich stehen wvor dem Byke, das die FunkTiocn
angibt, auch mindestens awel Honstanten und/oder Funktionen.
Hier ein etwas komplexeres Seispiel:
LOG{1+21+2IN(A+B) ist intern codiert als dezimal
25 1 0026 20043 191 1 32 65 1 32 66 43 218 42, wobel
26 1 0 0 die Konstante 1 ist

26 2 0 0 die Konstante 2 ist
43 die Funktion + ist
191 die Funktion LOG ist
1 32 65 die numerische Variable & ist, die nur
angesprochen wird
1 32 &6 die numerische Yariable B ist, die
nur angesprochen wird
473 wieder die Funktion + ist
216 die Funkticon S3inus ist
42 die Tunktion ¥ ist

Als neue Funkticnen erscheinen hier + und *.

tufgrund des Beispiels wird die interne Codierung allmshlich klar.

Es ist immer daszelbe, Es erscheinen zunichat die zur Ausfilhrung notwendigen

Werte und dann die Codierung fiir die Funktion. analog erfolgt die Codierung

nel Stringfunktionen.

Hier die Bytecodierung der Funktionen, die zwel Werbte zur susfilhrung

benfitigen:

Dezimal 35 =
42 =
43 = +
A% = —
AT =
-':]H:

5]

(Verkettung won zwei ALPHA-Strings!

x

¥ e

Dezimal 174 = MAX
177 = MIN
208 = DIV
224 =
225 = POS

Hier noch ein Beispiel fir die Funkticon POS:
Bsp: POS(F1S%,"a'b") ist intern codiert als dezimal
349 70 5 3 97 39 88 225, wobel
3 4% 70 die ALPHA-Variable F1% ist, die nur angesprochen wird
(49 steht fiir die 1 und 70 fir F)
S 3 97 39 98 die Stringvariable a'b ist
{5 steht fiir Textkonstante, die mit " einge-
schlessen ist, 3 steht fir die Linge der
der Konstanten, 97 39 98 ist der ASCII-Code
fiir a'b)}
225 die Funktion POZS ist.

ed) Beispiele fiir Klammerungen:
{4+5)*3 ist intern codiert als dezimal
26 4 0 0268 50 0 43 268 30 0 42, wohei
26 4 0 0 die Konstante 4 ist
26 5 0 0 die Konstante 5 ist
43 die Funkticn + ist
26 3 0 0 die Honstante 3 ist
42 die Funktion * ist

SIN{{26-A}*(C1*(D+E})) ist intern codiert als dezimal
26 38 00 1 32 65 45 1 32 68 1 32 69 43 1 49 67 42 42 216, wobei
26 38 0 0 die Konstante 26 ist (Dez 38 ist Hex 26}
iman beachte hier: 28 ist der Anzeiger, dal eine numerische
Integerkonstante vorliegt)
1 22 65 die numerische Variable fA ist, die nur angesprochen
wird
45 die Funktion - ist
1 32 68 die numerische Variable D, die nur angesprochen
wird
1 32 69 die numerische Variable E, die nur
angesprochen wird
43 die Funktion +-
1 49 67 die numerische Variable C1,
die nur angesprochen wird
42 die Funktion *
42 die Funktion *
216 die Funkficon 3IN
Mit diesem Beispiel dirfte auch die Stackbildung klar werden, denn man
zient, dal hier Werte im Laufe der RBechnung fiir die einzelnen Funktionen
zwizchengespeichert werden milssen.
ee} Wertzuweisungen:
Mun ist es an der Zeit zu zeipgen, wie eipgentlich den einzelnen Variablen
Werte zugewlesen werden,
Dies geschieht folgendermaBen:
Zundchst erscheint im internen Code die Variable mit dem entsprechend
vorangestellten Byte wie oben erliutert, dann erfolgt die Ausfilhrung
der Funktionen und/oder Konstanten, die der Variablen zugewiesen werden
sollen, wobel die Codierung genauso erfolgt, wie oben beschreiben ist.
Die Zuweisung wird abgeschlossen durch das sogenannte Zuwelsungsbyte.
Hier nun die Codierung des Zuwelsungsbytes:
Dezimal 7 = Zuweisung zu einer ALPHA-Variablen
8 = Zuweisung zu einer numerischen Variablen, wobei hier nume-
rische Variable eine normale Variabhle oder ein Arcay sein
Hanmn.
Liegen Mehrfachzuweisungen vor, so erscheinen am Ende der Zuwelsung eben-
soviele Zuwsisungsbytes, wie Variablenzuweisungen vorliegen, hier werden
dann aber nicht die Bytes mit den Dezimalwerten 7 cder 8 benutzt, scondern
Dezimal 20 = Zuweisung zu mehreren numerischen Variablen
21 = Zuweisung zu mehreren ALPHA-Variablen

2-6

Wird bei einer Zuweisung das Wort LET hinzugefigt, so wird veor die

Variable, der etwas zugewiesen wird ein Byte mit dem Wert dezimal

98 vorangestellt. (Auf selbstdefinierte Funktionen gehe ich spEter ein),

Zu den Wertzuweisungen nun ein etwas komplexeres Beispiel:

AL{C2/3,80R(28)1=A(1)*8B(1,2) ist intern codiert als

18 49 65 1 50 67 26 3 0 0 47 26 37 0 0 176 10 2 32 65 26 1 0 Q 11 2 32

EE 1 Q0 26 2 0 0 12 42 B, wobei

18 432 6% die Array-Variable Al ist, der etwas zugewiesen wird {deshalh
beginnt der Code mit 18)

1 50 &7 die numerische Variable C2 ist, die nur angesprochen wird {deshalb
der Beginn mit 1)

26 3 0 0 die INTEGER-Konstante 3 iss

47 die Funktion / ist

26 37 0 0die INTEGER-Konstante 25 ist (dezimal 37 entspricht Hex 28}

176 die Funktion SGR ist)

10 bedeutet das Ende der Indices zu einer Array-Variablen, die 2
Indices hat und der etwas zugewiesen wird.

2 32 65 ist die Array-Variable A, die nur angesprochen wird {(dehalb zu
Beginn die 2)

26 1 0 0 ist die INTEGER-Konstante 1

11 izt das Ende der Indices zu einer Array-Variablen, die nur einen
Index hat und auch nur angesprochen wird.

2 32 66 ist die Arrvay-Variable B, die nur angesprochen wird

26 1 0 0 ist die INTEGER-Kcnstante 1

26 2 0 0 ist die INTEGER-Keonstante 2

1z ist das Ende der Indices zu einer Array-Variablen, die zwei Indices
hat und nur angesprochen wird

42 izt die Funktion *

s} ist das Zuwelisungsbyte fiir einen numerischen Wert

An diesem Beispiel ist die Codierung der Array-Variablen gut zu sehen.
Erst erfolgt die Angabe der Variablen mit MNamen und dann erfolgt die An-
gabe der dazugehirigen Indices. genauso sieht es bei der Codierung einer
Stringvariablen aus, wo nur ein Teil ausgewdhlt wird.
fuch hierzu ein Kleines Beispiel:
A% 2,5 = CFEBE 1 ist codiert als
19 32 65 26 2 0 0 26 S0 0 30 3 32 67 3 32 66 26 1 0 0 28 38 7, wobeil
1% 32 65 die Stringvariable A% bedeutet, der estwas zugewiesen wird
Z6 2 0 0 die Integerkonstante 2 ist
26 5 0 0 die Integerkonstante © ist
30 ist das Ende der Indices einer Stringvari-
ablen, bei der zweil Grenzen angegeben worden
sind. (Bei Stringvariablen gibt es keine
Unterschiede, ob der Variablen stwas zugewiesen
wird oder nicht, im Gegensatz zu den Array-
Variablen)
3 32 67 ist die Stringvariable C3
3 32 66 ist die Stringvariable BS
268 1 0 0 ist die Integerkon-—
stante 1
29 ist das Ende der
Indices einer String-
variablen, hei der
nur der Anfangsindex
gegeben wurde)
38 ist Funktion &
7 ist Zuweisungs-
byte fir einen
Stringwert

2
|
]

ef') Sefehle, die zur Programmsteuerung notwendip sind:
1. Der IF-Befehl:
Im Zusammenhang mit dem IF-Befehl tauchen eine Reihe von Funktionen aul,
die auch im Zusammenhang mit Wertzuweisungen zu numerischen Variablen
hitten erliutert werden kinnen.
Zundchst die Ceodierung dieser Funktionen:
Die Codierung dieser Funktionen "kleiner", "griBRer", "gleich" usw.
und die dazugeh¥rigen Werte werden auf die gleiche Weise codiert, wie
auch numerische Funktionen mit zwei Variablen, zB. die Funktion *
Ein kleines Beispiel zeigt dies: .
4 AND B ist codiert als dezimal 1 32 &5 1 32 66 213
& * B ist codiert als dezimal 1 32 65 1 32 G& 42
Der Unterschied in der Codierung liegt alsc nur in der Funktion,
Einmal dezimal 213 fiir AND und dann dezimal 42 fiir *
Hier nun die einzelnen Codierungen:
Zundchst die Funktion, die nur einen Wert zur Ausfihrung bendtigt:
Dezimal 208 = NOT
Dann die Funktionen, die zwei Werte zur fusfihrung bendtigen:
Dezimal 55 "kleiner" bei Stringvergleichen

8 = "kleiner gleich" bei numerischen Vergleichen

3 = "grdfBer gleich" bel numerischen Vergleichen

60 = "ungleich" {weder gréfer noch kleiner! bei num. Vergleichen
43 = "ungleich" {(nicht gleich) bei Stringvergleichen

53 = "gleich" bei Stringvergleichen

61 = "gleich" bei numerischen Vergleichen

62 = "grifer" bei numerischen Vergleichen

63 = "kKleiner" bei numerischen Vergleichen

50 = "kleiner gleich'" bei Stringvergleichen

51 = "gréfer gleich" bheil Stringvergleichen

52 = "ungleich" [weder griéBer noch kleiner) bei Stringvergleichen
54 = "gréfer!" bel Stringvergleichen

57 = "ungleich" (nicht gleiech) bei numerischen Vergleichen

158 = CR

207 = EXOR

213 = AND

Hacn diesem netwendigen Riistzeug fiir Vergleiche, kann ich nun auf den
Aufbey des IF-Befehls naher singeshen:
Fir das Wort IF gibt es keine Codierung, dieses erscheint in der Anzeige
nur als Interpretation des sonstigen Codes, der dazugehdrt {THEN und ELSE].
Im internen Code erscheint zundchst die Codierung fiir die Abfragen,
dann die Codierung fiir THEN,
dann die Codierung fiir die Befehle nach dem THEMN,
dann falls vorhanden, die Codierung fiir das ELSE,
zuletzt die Befehlscodierung fir die Befehle nach dem ELZE, falls
vorhanden ist.
Fir THEN und ELSE gibt es zwei Formate:
1. Format THEN (bzw. ELSE) plus fAngabe der Zeilennummer chne GOTD
1.8yvte dezimal 24 bei THEN und dezimal 31 bei ELEE
2. bis 3.Byte Codierung der Zeilennummer
Bsp: THEN 210 ist codiert als dezimal 24 16 02
- hexadezimall8 10 02
2. Format THEN {bzw. EL5E) plus Befehle
1l.Byte dezimal 27 bei THEN und dezimal 28 bei ELEE
2.Byte algibt es nur THEN, dann gibt dieses Oyte die Linge bis zum
7ellenende an {=dezimal 14],
blgibt es THEM und ELSE, dann gibt dieses Byte bei THEN die
Linge bis zum Befehlsanfang nach ELSE an, bei ELSE die
Linge bis zum Zeilenende {=dezimal 14) an.
3.Byrte ist stets O
4,Byte und folgende geben die Sefehlsfolge in der gewohnten Codie—
CungE an.
2. Die Zprungbefehle:
1.Byte dezimal 90 bei GOTC und dezimal 21 bei GOSUB.
2.Byte bis 3.Byte Codierung der Zeilennummer

[
Ex
1
[

2-8

3. Die bedingten Sprunghefehle:

1.Byte dezimal 102 fir CON

Z.Byte und folgende fiir die Codierung des Wertes, wvon dem der Sprung-

befehl abhingt.

nach diesen Bytez folgen die Sprungbefehle und zwar in der unter 2.
angegebenen Codierung, Die Sprungbefehls stehen unmittelbar hinter-
sinander.
4, andere Frogrammsteuerungen:

Dezimal 138 = END

113 = RETURHN
103 = BYE

23 = POP
117 = 5T0P

5. FORE-NEXT-5chleife:

1.Bvte dezimal 140

2, bis 4.Byite Codierung des Schleifenindex (Schleifenvariable)

Wert des 2.Byte ist dezimal 17, da der Variahlen etwas
zugewiesen wird.

S.Byte und folgende Codierung flr den fnfangswert

das darauf felgende Byte enthidlt dezimal 8 fiir numerische Zuweisung

dig ndchsten Bytes enthalten die Codierung flr den Endwert

daz folgende Byte enthilt den Wert dezimal 159 fiir T0

Izt noch ein STEP-Wert angegeben, so enthalten die nachfolgenden Bytes

die Codierung Tir diesen STEF-Wert,

abgeschlossen wird diese Reihe dann durch das Byte mit dem Wert dezimal

206 Tir STEP.

Mach der Codierung der Befehle innerhalb der Schleife, erfolgt die Co-

dierung fiir MNEXT:

1. bis 3.Byte enthilt den Schleifenindex (Schleifenvariablel, wobeil auch
hisr das 1.Byte den Wert dezimal 17 hat, da der Variablen
etwas zugewiesen wird.

4.Bvte enthilt den wert dezimal 143 fiir NEXT

RBsp: 10 FOR I=1 TO B ZTEF 2

20 A=8-T
30 MEXT I
izt intern codiert als dezimal

16 019 140 17 32 72 26 1 0 0 8 1 32 66 183 26 2 0 0 208 14 [flr Zeile 10

3200 12 17 32 65 1 232 B 1 32 73 43 8 14 fiir Zeile 20

A8.0:°5 17 32 73 143 14 fiir Zeile 20

16 0 bzw. 32 0 bzw. 48 0 sin die Codierungen fir die Zeilennummern.

Danach die Codierung fiir die Hefehle:

Zeile 10:

19 gibt die Langs der Zeiles an
140 ist die Codierung der FOR-MEXT-3chleife
17 32 73 Varisble I, der etwas zugewiesen wird
26 1 0 0O Integer-Zahl 1
8 Codierung Tlr numerische Zuweisung
1 32 66 Variable B, die angesprochen wird
159 Codierung fiir TO

262 0 O Integer-Zahl 2
208 Codierung fir 3TEP
14 Ende der Zeile

Zeile 20:
12 gibt die Lange der Zelle an
17 32 6% Variable &, der elwas zugewiesen wird
1 32 6% ¥Variable &, die angesprochen wird
1 32 73 Variable I, die nur angesprochen wird
43 Funktion +
8 Codierung fiir numerische Zuwsisung
14 Ende der Zeile
Zeile 30:
5 gibt die Liange der Zeile an
17 32 73 Variable I, der etwas zugewiesen wird (nEmlich I=I+2)
143 Codierung filr NEXT

; 14 Ende der Zeile
2=9

G, ON ERROR:
1.Byte dezimal 65 fiir ON ERROR
2.Byte dezimal 156 fir Beginn des Funktionsteils
es folgen nun die Befehle in codierter Form, die unter der Bedingung
eines Fehlers ausgeflihrt werden scllen.
Hach diesen Befehlscodierungen folgt das AbschluBbyte mit dem dezimalen
Wert 16.
7. ON TIMER: i
1.Byte und ff. gibt die Codierung fir den Wert der Nummer des Timers
an
Danach folgen die Bytes, die in codierter Form die Dauer angeben
Es folgen die Bytes mit den dezimalen Werten 100 zur Kennzeichnung
des Befehls und 157 flr den Beginn des Funktionsteiles,
Danach folgen wieder die Codierungen fir die Befehle, die, wenn die
Bedingung erfiillt ist, ausgefiihrt werden.
Schliefllich folgt nach diesen Befehlscodierungen wieder das Abschlufi-
byte mit dem Wert dezimal 16.
8. OFF ERROR:
Iieser Befehl bendtigt nur ein Byte mit dem Wert dezimal &6.
9. OFF TIMER:
Hier erfolgt zuerst die Codierung des Wertes fiir die Timernummer.
Dann folgt das Byte mit dem Wert dezimal 101, das den Befehl bezeichnet.
10, RUN, CALL und CONT:
Beim RUN-Befehl gibt es mehrere Moglichkeiten. E2ie werden aber alle auf
die gleiche Art und Weise codiert. Zundchst werden alle notwendigen Wert-
zuweisungen in den Stack gebracht, um den Befehl RUN ausfilhren zu kinnen.
Danach folgt das Byte mit dem Wert dezimal 84 fiir RUN,
Rsp: RUM 'PGM',10 ist godiert als
150 3 B8O 71 77 26 16 O Q B4
152 Textkonstante, die in eifachen Hochkommas eingeschlossen ist.
3 Liange des Strings
20 71 77 Codierung fir PGM
26 16 0 0 Integer-Konstante 10 {Dez.l16 = Hex.1l0O)
84 Codierung des Befehls RUN
Wichtig ist hier, dal die Zeilennummern nicht in der iblichen Zeilen-
nummerncodierung codiert sind, sondern als Integer-Konstante. Dies gilt
auch bei den Befehlen MERGE, AUTC, RENUMEER usw.
Beim CALL-Befehl erfolgt zun#chst die Codierung flir den Stringwert, dann
das Byte mit dem Wert 79 fiir CALL.
Beim CONT-Befehl steht zuerst der Integer-Konstantenwert, dann das Byte
mit dem Wert dezimal 1485,
11. Editierbefehle:
Die unter 10. angegebene Codierung des RUN-Befehls steht beispielhaft
fiir die Codierung der nun folpenden Befehle, 4Alle Werte werden dem
gigentlichen Byte fiir den EBefehl vorangestellt. Hier alsc nochmals die
Codierungen fiir diese Befehle:
Dezimal 69 = AUTO

7% = LIST {nicht LIST I0Q)

78 = MERGE

87 = FETCH {nicht FETCH KEY)
108 = PLIST

129 = DELETE
137 = RENUMBER
Bsp: PLIST 10,20 ist codiert als
26 16 0 0 26 32 0 0 108
26 16 0 0 Integer-Konstante 10
26 32 0 0 Integer-Konstante 20
108 Codierung fiir PLIST

MERGE 'AB' ist codiert als
150 2 65 A& 78
150 Textkonstante, die in einfachen Hochkommas eingeschlossen ist
2 Liange des Texhbes
6% BE6 Codierung fiir AR
78 Codierung fﬂﬂjden Befehl MERGE

LIST keys ist codiert als

214
214

75

Konstante fiir keys

75 Codierung fir LIST

Mun

MAME :
HEMNAME:

EDIT:

Ll o

PURGE:

CAT AL
CAaT:

p
o=
4
B

FETCH KEY:

12. Befehle,

die Editierbefehle,
Hier stehen Bhnlich wie bhei
digen 3trings an Stelle der
Strings auch Kenstankten wie keys,
Mun folgen

die nichts mit Zellennummern zu tun haben.
den vorhergehenden Befehlen die notwen-
Zahlen im Stack. Dabel kiénnen anstatt der
apopt usw. stehen.
die Codierungen f{iir diese Befehle:
erst der Stringwert, dann das Hyte mift dem Wert 76
erst ein oder zwel Stringwerte, je nachdem ob der File
workfile war oder nicht,
Danach ein Byte mit dem Wert dezimal 219 fir TO
Schlieflich das Byte mit dem Wert dezimal 126 iir RENAME
Zuerst kommt, wenn vorhanden, der MName des esditierten
Programmes nach der lblichen Codierung.
Dann felgt falls ein Filetyp angegehen ist ein
diesen Filetyp spezifiziert (151 fir TEAT, 152
Zum Schlul kommt das Byte, das den Befehl EDIT
hat den Wert dezimal 115,
Bsp: EDIT 'A',TEXT ist codiert als
150 1 65151118
150 Textkonstante, die in einfachen Hochkommas
1 Ldnge des Strings
£5 Codierung fir A
151 Codierung fiir den Filetypen TEXT
11% Codierung fiir den Befehl EDIT

Die Codierung dieses Befehles erfolgt wie bhei RENAME, nur
steht hier anstelle des Bytes mit dem Wert 126 [lir REMAME
das Byte mit dem Wert 124 - COPY.
erst die &ngabe des Stringwertes, falls vorhanden beil nicht
workfiles, dann folgt das Byte mit dem Wert dezimal 125 fiir
den Befehl PURGE.
Codierung durch das Byte mit den Wert dezimal 70
Filename oder appt bzw. keys durch Angabe der Codierung
iStringwert)] in den Stack laden, sann zum Schlul das Byte
mit dem Wert dezimal 74 fir CAT
igt eine Stringfunktion. Zuerst sine Integer-Konstante in- den
Stack laden. Dann zum Abschlufl das Byte mit dem Wert deeimal
T2 fiir CATE.
Zundchst Codierung des Stringwertes im Stack, dann das Byte mit
dem Wert dezimsl 81 fiipr FETCH KEY.
die bestimmte Systemvariablen setzen:

Byte, das
fiir BASIC)
festlepgt. Es

[
)
ot

eingeschlossen

BEEP! Zuerst Freguenz und Tonldnge im Stack laden, dann dezimal 142
DEFAULT: Dezimal 89 [(ON und OFF wie bei ALARMI
DELAY: YWert im Stack, dann dezimal 77
EXDLINE: Dezimal 122
MARGIN: Wert im Stack, dann Syte mit Werl dezimal 83
PWIBTH: rinterdbe codiert im Ztack, danach Byte mit dem Wert dezimal 28
STANDEY : Dezimal 99 (0OM und OFF wie chen)
WIDTH: Druckgrife codiert im Stack, dann Byte mit dem Wert dezimal 32
TRACE FLOW:Dezimal 119
TRACE OFF: Dezimzl 120
TRACE VARS:Dezimal 121
13. Kommentare:
REM: 1l.Byte dezimal 131 filr REM bzw. dezimal 139 fir !
2.Byte ist dezimal &, da der nachfolgende String nichb in Hochkomnas
eingeschlossen 1st,
3.Byte pibt die LEnge des folgenden Kommentars an
4.Byte und Felgende: Eommentar in ASCII-Codierung
14, TMAGE-Anwelsung:
1.Byte dezimal 142 fiir IMAGE
2.8vte ist 6, da der nachfeclgende Gesamtstring nicht in Hochkemmas ein-

geschlossen ist.

2-11

2.Byte gibt die Lange des gesamten Strings der IMAGE-Anweisung an.
Hochkommas, die im String der IMAGE-Anwelsung erscheinen,
werden mit ihrem ASCII-Code dargestellt und zidhlen mit zum
String dazu. =
4.Byte und folgende enthalten die eigentliche Anweisung in ASCII-Codierung.
1%, DATA-Anwelisung:
1.Byte ist ein Byte mit dem Wert dezimal 134 fiir DATA.
ab dem Z2.Byte werden chne irgendwelche Trennbytes, wie sie zum Beispiel
bei PRINT-Anweisungen auftreten, die Konstanten hintereinander dargestellt
mit ihren entsprechenden Anfangsbytes:
4 fiir REAL-Konstante
g fiir String in Doppelhochkommas
= fiir String ohne Hochkomma
26 fiir INTECER-Konstante
180 fiir String in einfachen Heochkommas
eing Langenangabe hinter DATA erfolgt nicht.
16. Deklaration von Variablen:
1.Byte: dezimal 85 flir REAL
127 fiir INTEGER
128 fir SHORT
136 fiir DIM
2.Byte und folgende:
Hier werden die Variablen in den iiblichen Codierkonventionen cohne
Trennbytes hintereinanderaufgefiihrt. Die wvorangestellten Bytes und
auch die nachgestellten Bytes bei Arrays entsprechen denen, die ver-—
wandt werden, wenn eine Variable nur angesprochen wird,
17. fufbau der PRINT-Befehle:
Man unterscheidet zweli Arten von PRINT-Befehlen:
a) Der PRINT-Befehl:
l1.Byte ist immer dezimal 107 fiir PRINT
—ohne USING geht es sofort mit der Codierung der auszugebenden Werte
-mit den dazugehfrigen Trennbytes weiter -siehe unten-.
mit USING gibt es zweli Miglichkeiten:
L. UZSING Zeilennummer wird codiert
180 fiir USING und nachfolgend 2 Bytes fiir die Zejlennummer in der
iblichen Zeilennummerncodierung.
2, USING mit Stringanweisungen wird codiert
zundchst folgen die Codierungen flir die String-Anweisungen und
anschliefend wird das Byte mit dem Wert dezimal 203 fiir USING codiert.
nach diesen unterschiedlichen Codierungen filr USING folgt dann aber
einheitlich innerhalb von den USING-Befehlen das Byte dezimal 39 fiur :
Das folgende ist wieder innerhalb der PRINT-Befehle gleich:
Es folgen die Druckanweisungen, dabei werden die Anweisungen in der
nermalen Codierung durchgefithrt, lediglich die Trennbytes und die
Endbytes unterliegen besonderen Regeln:
Erte 163 reprdsentiert ein ; nach einer ALFHA-Druckanweisung
Byte 164 " i "
Byte 221 " ; nach einer numerischen Druckanweisung
Bvte 232 " i i
Am Ende steht dann das Byte 162, wenn Carriage Return und Line Feed
erzeugkt werden scllen {oder was die ENDLINE-Anweisung vorgibt)
-Diese ganze 3yntax gilt auch flur den DISP-Befehl, nur hat dieser im
1.Byte immer den Wert 286 fir DISP stehen anstatt der 107,
b! Der PRINT-Befehl:
Zuerst erfolgt die Codierung fir den Wert der Filenummer und der
Zeilennummer,
Dann steht das Byte mit dem Wert dezimal 92 fiir PRINTH#.
Danach steht, wenn verhanden, Byte 32 fiir ;
fnschlieRend kommen die Codierungen fir die Variablen.
Das vorangestellte Byte ist hier immer das Byte, das angibt, dal
die Variabkle nur angesprochen wird., Ein ganzes Array ist hier wieder
eine Ausnahme. In diesem Fall steht 181 oder 182 voran. {181 bedeutetf,
dal ein ganzes Array mift einem Index angesprochen wird, 182 bedeutet,
dalf ein genzes Array mit zwel Indices angesprochen wird) Hinter den
nun folgenden Arraynamen steht das Byte mit dem Wert 34,

2-12

Beim PRINT-Befehl steht zwischen mehreren Variablen immer das
Byte mit dem Wert 166, Am Ende der Variablenliste stehen immer
zwei Bytes, nimlich 1685 und 167. '
Wird der PRINT&-Befehl ohne Variablen ceodiert, so steht nach dem
Byte 92 fiur PRINT#-Befehl das Byte 187,
Bzp: PRINTE 2;A,B(),C izt codiert als
25 2 00 92 39 1 32 B5 166 121 32 86 34 168 1 32 87 165 167
26 Integerkonstante
2 0 0 Integerzahl 2
92 PRINT#-Befehl
39 Codierung fir ;
1 Variabhle, die angesprochen wird
32 65 Variable A
166 Trennbyte
181 Array mit einem Index wird angesprochen
32 66 34 Array B
166 Trennbyte
1 32 87 Variable C, die nur
angesprochen wird
165 167 Ende der
Variablenliste

18. Der Aufbau der BREAL-Befehle:

moe @
— =

bl

pibt zwei READ-Befehle, entsprechend gibt es auch leichte Unterschiede
der Codierung.
Def READ-Befehl:
Das 1.Byte ist hier stets 110 fiir READ.
es folgen die Codierungen flir die Variablen, denen etwas zugewliesen
werden solll
Hier tauchen die gleichen Zuweisungsbytes auf wie beim PRINT#-Beleahl.
Zuweisungsbytes 181 bedeutet, daf ein ganzes Array mit einem Index
angesprochen wird.
182 bedeutet, daB ein ganzes Array mit zwei Indices
angesprochen wird
Eei diesen beiden Bytes gibt es keinen Unterschied, ob das Feld nur
angesprochen wird oder ob im Feld etwas zugewiesen wird, denn beim
PRINT4-Befehl stehen die gleichen Bytes vorieinem ganzen Feld.
Wird ein ganzes'Array angesprochen, so steht unmittelbar hinter dem
Namen der Variablen esin Byte, das angibt, ob das ganze Array nur
angesprochen wird {Wert 36 dahinter]) cder ob dem Array etwas zu-
pewiesen wird (Byte 34 hinter den restlichen Bytes dieses Befehls].
Beim READ-Befehl steht wvor den Variablen das Byte, das angibt, daB
etwas zugewiesen wird. [Ausnahme ganzes Array - siche chen) . Hinter
einer numerischen Variablen wird immer Byte 200 codiert, hinter
einer ALPHA-Variablen steht immer Byte 161, Hinter einem Array steht
immer Byte 34.
Bsp: BEAD A,8%,480,) ist codiert als
110 17 32 65 200 19 32 65 161 182 32 65 38
110 Codierung des READ-RBefehls
17 32 65 Variable A, der etwas zugewiesen wird
200 Abschlull der numerischen Variablen A
19 32 6% Variable A%, der etwas zugewiesen wird
161 abschlufl der ALPHA-Variablen AS
182 32 65 Array A {(ganz) mit 2 Indices
38 Abschlull des Arrays &

Der READ#-Befehl:

Der READ#-Befehl beginnt mit der Codierung filr die Filenummer,
anschlieRend steht die Codierung fiir die Zeilennummer (die auch
fehlen kann).

Dann steht das Byte mit dem Wert dezimal 20 [ir READR.

Wird der Befehl fortgesetzt, so steht dann stets das Byte mit dem
Wert 39 fiir ;,anschlisfend steht die Codisrung fir die Variablen.
Der Aufbau ist hier genau wie unter a).

Bep: READE 2,3;4 ist codiert als

26 2 00 26 3 00 80 39 17 32 65 200

2-173

19,

20,

26 2 0 0 ist die Konstante 2
26 3 0 0 ist die Konstante 3
80 ist die Codierung fiir READE
39 ist die Codierung fiir ;
17 32 6% ist die Variable A, der etwas zugewlesen
wird
200 Abschlull der numerizschen Variable A
Der INPUT-Befehl:
Je nachdem in welcher Syntax der INPUT-Refehl vorliegt, werden zundchst
der String fiir den Anforderungstext und der String fir den Defaultwert
der Variablen codiert. Letztere oder beide kinnen auch wegfallen. Dann,
und nur dann, steht das Byte mit dem VWert dezimal 95 filir den INFUT-Befehl,
Anzschliefend steht die Codierung fir die Variablen. Dabei steht hier das
erste RByte in der Form von Variablen, denen etwas zugewiesen wird. Hinter
der Codierung fir sine Variable steht bei einer ALPHA-Variablen stets das
Byte 229 und bel einer numerischen Variablen das Byte 221. Am Ende eines
INPUT-Befehls steht immer Byte 28,
Bso: INPUT "A=",'1':4 ist codiert als
180 2 65 61 150 1 49 17 32 65 221 25
120 Textkonstante, die in einfachen Hochkommas eingeschlossen ist
2 LiEnge des Textes
&5 B1 Codierung fur A=
150 Text in einfachen Hochkommas
1 Linge der Textkonstante
49 Codierung fiir 1
17 32 6% Variable A4, der etwas zugewiesen wird
221 Zeichen fiir numerische Variable
2% Codierung flir INPUT-Befehl
celbstdefinierte Funktionen, wenn sie noch nicht im Programm initialisiert
sind:
Dies ist wohl das komplizierteste, was es bei den BASIC-Files gibt.
Hat man einen BASIC-File ganz neu editiert, so zeigen bei zelbstdefinierten
Funktionen etliche Bytes den Wert Null, Wenn das BASIC-File initialisiert
ist, werden diese RBytes verdndert (davon mehr unter 1.4.).
Man unterscheidet zwei Formen von DEF FN,:
al DEF FN.. in einer Zeile, dh. ohne END DEF
l. Byte ist hier stets 135
2. bis 3.Byte gibt den Namen der Funktion im iliblichen Code an.
4. bis 5.83vte haben die Werte 0 O
. Byte gibt die Anzahl der Variablen verschliisselt wieder.
Es gilt hierbei folgende Regel:
Die Anzahl der Variablen wird mit 2 multipliziert. Handelt es sich um
eine ALPHA-Funktion, dann wird noch 1 auf den Wert dazuaddiert. Die
Codierung erfolgt im Hex-Code.
ab dem V.Byte steht die Codierung fiir die Variablennamen. Diese weicht
nier erheblich von der sonst iblichen Codierung ab. 3 gelten folgende
Hegeln:
1. Byfe giht die Ziffer dez Variablennamens { oder deren Fehlen) verschliis-
selt an.
Zundchst werden die Ziffern von 1 bis 9 mit ihren Werten 1 bis 9 bewertet
Fehlt die Ziffer, wird dafiir der Wert 10 gzenommen. Handelt es sich um
gine numerische Variable, dann wird folgende Codierung wirksam:
a) REAL=Wariablen: - -
Byte 1 besitzt den Wert der Ziffer in Hexcode
b) IMTEGER-Variablen:
Byte 1 besitzt den Wert der Ziffer plus 16 in Hexcode
o) SHORT-Variablen:
Bvte 1 besitzt den Wert der Ziffer plus 32 in Hexcode
Handelt es sich um sine ALPHA-Variable, wird zu dem Wert der Ziffer
128 dazuaddiert (=R ist der Wert von Byte 1 bei AS 10+128=138)

2=-14

Handelt ez sich um Arrays, sieht die Codierung wie folgt aus:
a) BEAL-Arrayv:
Wert der Ziffer plus 64
b! INTEGEE-Array:
Wert der Eiffer plus 20
o) SHORT_Array:
Wert der Ziffer plus 94
2.Byte gibt den Buchstaben verschliizsselt wieder:
Regel: A=1, B=2, C=3,, Z=26

Bei Alphavariablen kommen nun noch zwei Bytes, die die LEnge der String-
variablen angeben. Hat man nichts angegeben, so steht hier 32 0, ansonsten
ist der Vert in der iiblichen Langencedierung wie oben.

Bai Arrays kommen nach den 2 Bytes fiir die Codierung der Variablennamen
noch insgesamt 8 Bytes.

d.Byte — 4, Byte dimensionierte Linge des Array

S.-6. Byte Codierung des 1l.Index

7.-8, Byte Codierung des 2. Index

9.-10. Byte haben die Werte 0 O

wobei bei OPTION 3ASE 0 im Vergleich zu O0PTION BASE 1 128 zur Linge des
Array in Byte 3-4 addiert ist.

Bel numerischen Variablen reichen die 2 3ytes fir die Codierung des
Variablennamens aus.
Fiir jede Varaible, gleich welchen Tyos, kommen nun zwei 3ytes mit den
Werten 0 0, solange das Programm noch nicht initialisiert ist.
Wenn nun nach diesm Schema alle Variablen aufgefiihert sind, werden diese
mit zwel Mullbytes abgeschlossen.
Danach kommt die Cedierung fiir die Befehle, es gibt kein Tuweisungshyte.
Mach den Befehlen erfolgt der Abschluf mit dem Byte 175 und zwei Nullbytes,
Bsp: NDEF FMAS{A,BE 12000 ,C) = BS(A,0) ist codiert als
135 32 65 00 7 101 O 0 138 2 224 46 0 0 10 3 000 0 3 32 &3 1 32 55
13267 30 175 O 0
135 Cedierung fiir DEF FM
32 BE Varisble A
e O werden beim Initialisieren ersetzt (giehe 1.4.)
T hedeutet 3 Variablen, 1 ALFHA-Funktion
10 1 Funktionsvariable &
0 0 siehe cben
138 2 rFunktionsvariahle B#%
224 48 Lingenasngabe von BS
12000 igt hex 2E EO (=46 224)
o 0 siehe chen
10 3 Funkticonsvariahle C©
00 0 siche oben
3 ALFHA-Variahle, die
nur angesprochen wir
32 66 Variable BE
1 32 85 num.
Variable A
1 32 87 numerische Variabkle C, die nur angesprochen wird
30 Abschlul der Indices
175 Ende der Funkticnendefinition
0 0 siehe oben
b} DEF FM.. iiber mehrere Zeilen:
1. Byte ist auch hier 135
die manze Synbtesx flUr die Varaiblendefinition zilk zuch hier.
Bsp: DEF FMAS [4,BS 12000 ,C)
FHAS = BRI{A,C) ist codiert als
EMD DEF

I=a

-15

21.

Hel der nun folgenden Codierung ist nure die Codierung der Funktionen wichtig!

135 32 65 00 7 10 1 O 0 138 2 224 46 0 0 10 2 0 0 0 O fir die 1.Zeile
135 Ceodierung fiir DEF FN
32 65 Variahle A
7 0 siehe ohen
7 3 Variablen, 1 Alphafunktion
10 1 Funkticnsvariable A
Q 0 giehe chen
138 2 224 46 Funktionsvariable B 12000
0 0 siehe cben
10 3 Funktionsvariable C
900 0 siche oben
68 3 32 65 3 32667132 65 1 32 6730 7 fiir die 2.2eile
E8 Ceodierung fir Funktionszuwelsung
3 Alphavariable, die nur angesprochen wird
32 65 Alphavariable 4%
3 32 66 Alphavariable BS, die nur angesprochen wird
1 32 6% numerische Variable A, die angesprochen wird
1 32 87 numerische Variable C, die angespnr. wird
30 AbschluBl der Indices
7 Zuwelisungshyte fiir ALPHA-Zuweisung
133 240 filr die 3.Zeile
133 Codierung fir END DEF
0 0 siehe oben
Anhand dieses Beilspieles wird die Codierung klar.
Da es noch die M8glichkeit gibt, LET FM,.= anzugeben, steht bei solcher
Art von Codierung flicr 68 das Byte 97.
Neben der Definiticn wird die Funktion aber auch im Programm aufperufen.
Auch hier gibft es eine hesondere Codierung.
Zundchst erfolgt die Codierung fiir die Variablen innerhalb der Klammern
mit dem Byte am Anfang, das flir angesprochene VYariablen gilt. Dann steht
bei numnerischen FPunktionen das RByte 22, bei Alphafunktionen das Byte 23,
Dannn felpt die Anzahl der Variablen in der XKlammer. Danach folgt eine
Liste von Bytes und zwar Tir jede Variable in der Klammer ein Byte,
128 fiur numerische Variasblen, 129 fir Alphavariablen.
Bep: RE=FMAS(5,7%,9) ist codiert als
19 32 82 26 5 0.0 3 32 a2 26 9 0 0 23 3 128 128 128 7
1% 32 BE Variable RS, der etwas zugewiesen wird
26 6 0 0 Integerkonstante 5
2 32 B2 Variable E%, die angesprochen wird .
26 9 0 0 numerische Konstante o
23 Alphafunktion
3 Anzahl der Variablen
128 129 128 Bytes fir die Var.
7 Zuweisungshyte

Andere Funktionen und Befehle:

Bel der grofien Menge von Befehlen und Variationen fehlen natiirlich einige

Funktionen, die nicht einzuordnen sind.

RESTORE Hier werden, wenn Werte angegeben sind, zuerst die Werte in
der Form der Integerkonstanten angegeben, dann folgt Byte 112
fiir RESTORE .

RESTORES Zuerst erfelgt die Codierung filr den Wert der Filenummer, dann,
wenn angegehen, der Wert fiir die Zeilennummer, dann das Byte 24
fiir RESTORLE,

ASEICHY TO Tilename ist folgendermafien codiert:

Zuerst die Codierung fiir die Filenummer
dann die Codierung fiir den Filenamen
dann Byte 219 fir TO und Byte 26 flur A3SIGHE

ASSIGHNE TO * Zuerst die Codierung fiir die Filenummer, dann 6 1 42 219 25

ASEIGNg TO ''Zuerst die Codierung filir die Filenummer, dann 150 O 212 98

NEF KEY Hier folgt zuerst die Codierung fiir den 3tring, der einer
Taste normal zugeordnet ist, dann folgt der String fir die
neug Codierung der Taste, dann das Byte 67 fiir DEF KEY
Ist am Ende ein Semikolon codiert, dann erscheint als letztes
Ryte 39 fir ;

2-16

TAR Hier erscheint zunichst die Codierung fiir die Positionierung
des Cursors, dann folgt das Byte 205 fiir TAE.

FROTECT Byte dezimal 105
UHEROTECT Byte dezimal 114 :
PUT Hier steht zuerst die Cedierung fiir den String, der in den
INPUT-Buffer gestellt werden soll, dann das Byte 118 fiir PUT.
WATT Hier steht zuerst der codierte Zahlenwert, dann Byte 104
fiir WAIT.

CLEAR VARS Byfte dezimal 123
RANDOMIZE Hier steht zuerst die Codierung fir den Wert, der der Funktion
mit ibergeben werden soll — dieser kann auch fehlen -, daznn das
Syte 109 fir RANDOMIZE.
22. Befehle, die die Peripherie ansprechen:
Eine Vorbemerkung zur Codierung: CAT ":tp' wird gensuso codiert wie QAT abe'.
In dem einen Stringwert stesht halt :tp statt abe. Befehle, die sich nur in
den unterschiedlichen Strings unterscheiden, aznsonsten aber gleich sind,
werden hier nicht aufgefithrt, wie =zB. COPRY.
ASSIGHNIO Byte dezimal 146
LISTIO Exte dezimal 71
PRINTER IS* ist codiert als 6 1 42 106
& Textkonstante, die in keinen Hochkommas steht
1 Lange des Textes
42 Codierung fir #
106 Codierung filr PRINTER IS
FRINTEER IS''ist cediert als 150 0 106
150 String in einfachen Hochkommas
0 Liange des Strings
106 Codierung fiir PRINTER I3
& 42 73
B Textkenstante, die in keinen Hochkommas steht
1 LEnge des Textes
42 Codierung fur *
73 Codierung fiir DISPLAY IS5
DIZPLAY IS''ist codiert als 150 O 73
150 Ztring in einfachen Hochkommas
0 Linge des Strings
73 Codierung fiir DISPLAY IS

DISPLAY IS¥ ist codiert als

=

OFFI0 Dezimal 116
RESTOREIC Dezimal 111
CLEAR LOCP Dezimal 147
CLEAR (devieces) Dezimal 149
23, Belfehle, die nicht unmittelbar im System—R0M enthalten sind:

Zum Schluf fehlen nur noch die Befehle, die night im eigentlichen Retriehs-
system stehen, sondern in den 8k Fusatz-ROM (siche Innenleben des HE-7EC),
Zu diesen Befehlen gehdren auch die Befehle der ROM=Bank, dh. von Zusatz-—
Rz, und die Zefehle aus LEE-Filez. Die Eigenart dieser Befehle ist, dad
ihnen das Byte 180 wveorgeschoben ist.
a) Befehle im ROM-Bereich, die mit 180 1 0 beginnen:

120 1 © 1 ALARM (0N und OFF sind hier als Konstanten anzusehsn und

warden mit 138 bzw. 169 wvor dem Befshl codiert)

180 1 & 2 LOoCK

120 1 & 3 OPTION AMNGLE DEGEEES

180 1 0 4 OPTICN AMGLE RADIANS

? Bafehle im ROM=Bereich, die mit 180 2 O beginnen:
180 2 0 1 TRANSFORM (erst die Angsbe lber den {(die) Stringwertiel, dann
ein Byte mit dem Wert fiir die Fileart, dann Byte
125 fur INTO, danach die Codierung des Befehls

o

180 2 0 1)
180 2 0 2 PACK
180 2 0 3 INITIALIZE
180 2 0 4 TIMES
180 2 0 5 DATES
1802 & TIME
180 2 0 7 DATE

el

)

gl

180 2 0 B ANGLE
180 2 0 2 ACOS
130 2 0 10 ATN
180 2 ¢ 11 ASIN
180 2 O 12 RMD
180 2 ¢ 13 MOD
180 2 O 14 RND

LEX-File NMCOPY
180 1 80 1 MCOPY

Syntax: MOOPY 'tmaster' TG ‘':copyl (,:copy2,..) '
'M:master' "ALL'
'P:master'

Durch MCOFY werden festgelgte Files {N=non-private, P=sprivate) auf
angegebene Massenspeichermedien kopiert (entweder Angabe der device-
Codes opder Kopien an alle Einheiten {ALLY),
LEX-File INSTALL
180 2 BC 1 TINSTALL
Syntax: INSTALL '"filename:device code’
Mit Hilfe dieses Befehles werden mit Palwort auf Massenspeichersinheiten
gespeicherte Files in den Rechner als privat geschiitzte Files geladen
und zwar ohne Kenntnis des Palwortes,
LEX-File PMSINSTR
Dieses LEX-File ist hilfreich bei der Arbeif mit PM3-Systemen.
lao 2 80 1 BUILD
Syntax: BUILD 'bankname',BRankgrtBe,'filename’
Mit diesem Refehl wird im PMS-Speicher eine festgelegte
Ranlk [ir =in File reserviert,
180 3 80 2 PRIVATE
Syntax:
Privatisierung eines Files im PMS-ROM
80 3 CHECKIUM
Syntax:
Diezer Befehl bestimmt eine Priifsumme,um die Grife einer
Pank zu bestimmen.
180 3 BO 4 ROMAVATL
Syntax:
derechnung des ungenutzten, noch zur Verfigung stehenden
Fereiches

180

L]

180 3 8O 5 RCMID

Syntax:
Zuweisung einer Identitit an eine PMS5-Bank
180 3 80 & ROMSIZR
Syntax: ROMEIZE 'filename’
Berechnung der Anzahl von Bytes, die fir 2in File zur
Abspeicherung im PMS hendtipgt werden,
180 2 80 7 PMSREV
Syntax:

LEX=File AUTDSTRT-
180 35 8O 1 AUTQSTRT
Bei Drilcken der ATTN-Taste, um den Pechner einzuschalten,
wird der im Text-File angesprochene Befehl auspefihrt.
LEA-File RIOWID
180 1% G4 1 WIO
Syntax: WIO (IL-Register),Daten
Dieser Befehl dient zum Schreiben von eigenen IL-Eahmen in
den Il-Registern (0-7)
180 19 B4 2 RID
Syntax: RIO [IL-Register)
Diegser Befehl dient zum Lesen des Inhaltes von IL-Eegistern
LE¥X-File FEKEFOQOK
180 20 64 1 POOK
Svhntax: POOK (Adresse), Inhalt

Nurch diesen Befehl wird in den Bereich BOCO-FFFF des Betriehs-—

systems =2in bestimmter Inhalt an die Adresse geschrisben.
2-18

180 20 64 2 PEKE

Syntax: PEEE (Adresse dezimal)
Lesen des Inhaltes aus einer Adresse (8000-FFFF)

i} LEX-File PEEKPOKE
180 21 64 1 POKE

Syntax: POKE {dezimale Adresse), Inhalt
wie POOK, jedoch fiir Bereich O0O0D-7FFF

180 21 &4 2 PEEK

Svntax: PEEK (dezimale Adresse)
Lesen des Inhaltes aus einer Adresse (QO00-7FFF)

j) LEX-FIle HPILCMDS
180 25 64 1 SENDIO

180 25 64 2

180 25 64 3

Syntax: SENDIO 'Device-Codes', 'Kommandos', 'Daten’

Dieser Befehl dient zum Senden von Statusmeldungen und Daten
in die IL-5chleife und an einzelne IL-Einheiten

ENTIO$

Syntax: ENTIO$('Device-Codes', 'Kommandes')

Mit Hilfe dieses Befehles werden Daten und Statusmeldungen
aus der IL-Schleife und von einzelnen IL-Einheiten empfangen.
SEND?

Syntax: SEND?

Dieser Befehl sendet noch restliche Datenteile, wenn der
Empfang aus der IL-Schleife durch Fehlermeldungen an einzelnen
Einheiten unterbrochen war.

k) LEX-File MUSIC
180 9 128 1 MUSIC

Syntax: MUSIC

Bei Ausfiihrung dieses Befehles wird das Tastenfeld umgewandelt
in eine Tastatur, mit der man harmonische Téne Spieleﬁ kann,
und zwar wird der Ton so lange gehalten, wie die Taste ge-
driickt wird. Durch Driicken der ATIN-Taste kann der alte Status
wieder hergestellt werden.

1) LEX-File AUTOLCOP

180 8 64

180 8 64

180 8 64

I

2

3

180 8 64 4

AUTCLOOFP OFF

Syntax: AUTOLCOP OFF

Dieser Befehl lidscht die automatische Benennung der TIL-Ein-
Reiten und ihre Zuweisung, B -
AUTOLOOP ON

Syntax: AUTOLOOP ON

Dieser Befehl bewirkt, dall beim Einschalten des Rechners die
IL-Schleife neu adressiert wird.

AUTOLOCP

Syntax: AUTCLOOP

Mit diesem Befehl wird eine automatische Adressierung durch-
sefiihrr.

LISTIOS

Syntax: LISTIOS

Mit Hilfe dieses Befehls kann einer ALPHA-Variablen eine
Liste der IL-Einheiten zugewiesen werden. Die Namen der
Einheiten sind jeweils durch Doppelpunkt voneinander getrennt.

Nun noch die Codierungen fiir die Funktionen des MATHE-ROMs. Die Erklédrung
ider Befehle muf im Handbuch des MATHE-ROMs nachgeschlagen werden.

Man unterscheidet zwei Gruppen von Befehlen:

— Befehle mit der Systembasis 180 3 32

- Befehle mit der Systembasis 180 23 32

m} Befehle mit

1. 180 3 32

1

2. Real Scalar

120 3 32
180 3 32
180 3 32
180 3 32
180 3 32

B
7
14
15
16

der Systembasis 180 3 32

REDIM (nachfolgend die Codierung der Arrays, abschliellend
180 3 32 139

Functions:

LOG2

LOGA (die Codierung der Variablen/Konstanten erfolgt normal)
ROUND

TRUNCATE

FACT

£=19

. nochmals

3. Base Conversions:

180 3 32
180 3 32

17 BVAL

18 BSTRES

Real Scalar Functions:
32 8 SINH

32 9 COSH

32 10 TANH

32 11 ASTHH

180 3 32 12 ACOSH

180 3 32 13 ATANH

. Array-Input and Output:

180 13
180 3
180 3
180 3

Die Codierung der Variablen mufl vor der
Codierung fiir die Funktion stehen.

Die folgenden Befehle sind Zuweisungsbefehle, ihre Codierung beginnt

immer mit MAT Array =
Dieg ist codiert als 130 3 32 4.

Dann folgt die Zuweisung und zwar erst die Codierung fiir das Array,

dann der interne Doppelbefehl.
Ausnahme : MAT A=B ist codiert als
180 3 32 4 2.32 65 2 32 66 180 3 32
180 3 32 4 Codierung fiir MAT

2 32 65 Arrayvariable A,

127, wobel

die nur angesprochen wird

2 32 66 Array-Variable B, die nur angesprochen wird.

180 3 32

127 MAT-Zuweisung ohne Doppelbefehl

Bei den Befehlen, bei denen eine zusdtzliche Angabe einer Hedimensionie-
rung miglich ist, pibt es immer 3 Codierungen fiir einen Befehl, je
nachdem, ob ohne subscript, mit 1 oder 2 subscripts.

So ist CON codiert als

180 3 32 116 ohne subscript

180 3 32 117 mit 1 subscript

180 3 32 118 mit 2 subscripts

IDN ist codiert als

180 3 32 122 ohne subscript

180 3 32 123 mit | subscript

180 3 32 124 mic 2 subscripts

ZER ist cediert als

180 3 32 119 ohne subscript

180 3 32 120 mit 1 subscript
180 3 32 121 mit 2 subscripts
Bsp: MAT A=CON(B) ist codiert als
180 3 32 4 2 32 65 2 32 66 180 3 32
180 3 32 4 Codierung fir MAT

2 32 65 Array-Variable A,

2 32 66 Array B,
180 332

Bei der Zuweisung mit einem Numeric
120 3 32 134 180 3 22 141
Bsp: MAT A=(X) ist codiert als
180 3 32 4 2 32 65 2 32 88 180 3 32
180 3 32 & Codierung fiir MAT
2 32 65 Array A, die nur
2 32 BB Array X,
180 3 32

117 180 3 32 126, wobei

die nur angesprochen wird
die nur angesprochen wird
117 Codierung fiir CON (1 subscript)
180 3 32 126 MAT-Zuweisung mit
Doppelbefehl
Expression erfolgt die Codimung

134 180 3 32 141, wobei

angesprochen wird
die nur angesprochen wird
134 Codierung fiir num. Ausdruck
180 3 32 141 Zuweisung mit num.
husdruck

Der Array-INPUT ist wie folgt codierc:
Es beginnt mit 180 3 32 2 fiir MAT INPUT, dann die Codierung fiir ein

Array oder mehrere Arrays, die dann
sind.
Bsp: MAT INPUT A,B ist codiert als

immer mit 180 3 32 138 abgeschlossen

180 3 32 2 2 32 65 180 3 32 138 2 32 66 180 3 32 138

(Erkldrung siehe oben)

2-20

Der Array READ ist wie INPUT codiert, nur steht stact 180 3 37 2
bei READ 180 3 32 3.
Bsp: MAT READ A,B ist codiert als
180 3 32 3 2 32 65 180 3 32 138 2 32 66 180 3 32 138
{Erkldrung siehe oben)
Der Array OUTPUT beginnt immer mit 180 3 32 4 (fiir MAT), es folgt die
Codierung des entsprechnden Befehls (PRINT, PRINT USING, DISP und
DISF USING), wie im normalen Betriehssystem codiert, Der normalen
Arraycodierung nach dem Befehl folgen immer die "Trennbytes"
180 3 32 136 bei Trennung mit Komma
180 3 32 137 bei Trennung mit Semikeolon
Der Abschluf erfolgt wie im normalen Betriebssvstem.
Bsp: MAT PRINT A;B ist codiert als
180 3 32 4 107 2 32 65 180 3 32 137 2 32 66 162, wobei
180 3 32 4 Codierung fiir MAT
107 Codierung fiir PRINT
2 32 65 Array A, die mur angesprochen wird.
180 3 32 137 Trennbytes fir Trennung mit :
2 32 66 Array B, die nur angesprochen
wird
162 Endbyte Fiir CR und LF

. Matrix-Algebra:

Hier handelt es sich wieder um Doppelbefehle.
Vor der Zuweisung steht 180 3 32 4 Fiir MAT.
Nach der Zuweisug folgt bei den meisten Befehlen abschliefend 180 3
32 Lo,
MAT A=-B ist charakterisiert durch 180 3 32 130 fir -
Bap: MAT A=-B ist codiert als
180 3 32 4 2 32 65 2 32 66 180 3 32 130 180 3 32 126, wobei
180 3 32 4 Codierung fiir MAT
2 32 63 Array A, die nur angesprochen wird
2 32 66 Array B, die nur angesprochen wird
180 3 32 130 Codierung fiir -
180 3 32 126 Zuweisung hei
Doppelbefehlen
Bei der Arithmetik wird nun die Bytekombination 180 3 32 130 fiir -
ersetzt, je nach der gewilnschten Funktion.
dddition: 180 3 32 129
Bsp: MAT A=B+C ist codiert als
180 3 32 4 2 32 65 2 32 66 2 32 67 180 3 32 129 180 3 32 126

Subtrakticn: 180 3 32 131

Bsp: MAT A=B-C ist codiert als

|80 3 32 4 2 32 63 2 32 66 2 32 67 180 2 37 131 180 3 32 124
Multiplikation: 180 3 32 125

Bsp: MAT A=B*(ist codiert als
180 3 32 4 2 32 65 2 32 66 2 32 67 180 3 32 128 180 3 32 126

Skalarmultiplikation: 180 3 32 132
Bap: MAT A=(X)}*E ist codiert als
180 3 32 4 2 32 65 2 32 88 180 3 32 133 180 3 32 141 2 32 66 180 3 32 132

Nun noch ein paar Funktionen, die nach folgendem Schems codiert sind:
180 3 32 4, Codierung aller Arravs, Codierung der Funkticn, 180 3 32 126

Funktionen;

180 332 9F INV

180 3 32 99 TEN

180 3 32 101 RSIM

180 3 32 102 CsUM

180 3 32 111 CROSS

Bsp: MAT A=CSUM(B) ist codiert als

180 3 32 4 2 32 65 2 32 66 180 3 32 102 180 3 32 126

d=21

¥

10.

Real-Valued Matrix Funcrions:

Da hier keine MAT-Zuweisung erfolgt, ist hier immer nur eine Befehls-
kombinaticn anzutreffen. Die Codierung sieht wie folgt aus:

Zuerst werden die Werte zur Ausfihrung zur Verfiigung gestellt, danach
folgt die Codierung der Funktion (vgl. mit Funktionen wie SIN, COS,
MaX, MIN (siehe 1.3, 2b) und ec))).

Funktionen:

IB0 3 32 19 FNORM
180 3 32 20 CNORM
180 3 32 21 RNORM
180 332 22 DOT
18033223 DETL
180 3 32 24 DET
180 3 32 25 LBND
180 3 32 26 UBND
180 3 32. 27 ShM
180 3 32 28 ABSUM
180 3 32 29 MAXADR
180 3 32 30 AMAX
180 3 32 31 MINAB
130 3 32 32 AMIN

Bsp: DET(A)} ist codiert als
1 32 b5 180 3 32 24, wobei
1 32 65 die num. Variable 4, die nur angesprochen wird

180 3 32 24 Codierung fiir DET
Bsp: A=DOT(X,Y) ist codiert als
17 32 65 1 32 88 1 32 89 180 3 32 22 8, wobei
17 32 65 num. Variable A, der etwas zugewiesen wird

Il 32 88 num. Variable X, die nur angesprochen wird

1 32 89 num. Variable Y, die nur angesprochen wird
180 3 32 22 Codierung fiir DOT
B Zuweisungsbyte fiir num. Variable

. LU Decomposition:

Diese Funktion ist auch nach folgendem Schema codiert:
180 3 32 4, Codierung der Arrays, 180 3 32 103, 130 2 32 126

. Solving a System of Equations

180 3 32 4, Codierung der Arrays, 180 3 32 112, 180 3 32 126

Complex Variables:

Es gilt bei allen Funktionen folgendes Codierungsschema:

180 3 32 4, Codierung der Arrays, Codierung der Funktion, 180 3 32 126
Codierungen der Funktionen:

180 3 32 77 CRTOFP
180 3 32 78 CPTOR
180 3 32 91 CONJ
180 3 32 92 CRECP
180 3 32 106 CADD
180 3 32 107 CSUB
180 3 32 108 CDIV
180 3 32 109 CMULT

Bsp: MAT Z=CSUB(W,U} ist codiert als
180 3 32 4 7 32 90 2 32 87 2 32 B5 180 3 32 107 180 3 32 126

. Complex Functions

Schema:
180 3 32 4, Codierung der Arrays, Codierung der Funktien, 180 3 32 126
Codierung der Funktionen:

180 3 32 79 CACOSH
180 3 32 80 CACOS
180 3 32 B1 CASINH
180 3 32 82 CASIH
180 3 32 83 CATNH
180 3 32 B4 CATN
1B0 3 32 R85 CCOSH
180 3 32 B8e CCOS
180 3 32 88 CEXP

2=22

180 3 32 90 CLOG
180 3 32 93 CSIKH
180 3 32 94 (CSIN
180 3 32 95 CTANH
180 3 32 96 CTAN
IBD 3 32 104 CEQR
180 3 32 110 CPOWER
180 3 32 115 CROOT

Bsp: MAT Z=CASTNH(W)} ist codiert als
180 3 32 4 2 32 90 2 32 87 180 3 32 81 180 3 32 126
12. Complex Matrix Operations:
Schema:
180 3 32 4, Codierung der Arrays, Codierung der Funktion, 180 3 32 126
Codierung der Funktionen:
180 3 32 87 CDET
180 3 32 89 CINV
180 3 32 100 CTRNW
|80 3 32 112 CS5Ys
180 3 32 114 CMMULT
180 3 32 125 CIDN
Bsp: MAT Z=CDET{A)ist codiert als
180 3 32 4 2 32 90 2 32 65 180 3 32 87 180 3 32 126
13, Finding Roots of Polynomials:
Schema der Funktion PROOT:
180 3 32 4, Codierung der Arrays, 180 3 32 98 180 3 32 126
Besp: MAT R=PROOT(P) ist codiert als
180 3 32 4 2 32 82 2 32 80 180 3 32 93 180 3 32 126
l4. Die Finite Fourier Transform:
schema der Funktion FOUR:
180 3 32 4, Codierung der Arrays, 180 3 32 105 180 3 32 126
Bsp: MAT W=FOUR({Z) ist codiert als
180 3 32 4 2 32 87 2 32 90 180 3 32 105 180 3 32 126
n) Befehle mit der Systembasis 180 23 32
1. Selving fi{xi=0
Eei diesem und den folgenden Befehlen, bei denen eine user—definierce
Funktion auftritt, weicht die Reihenfolge der Codierung etwas ab.
FNROOT (A,B,user—definierte Funktion(X}))
Zundchst erfolgl die Codierung der Variablen A4 und B (Arravs),
dann folgen die Byres 180 23 32 1,
dann erfolgt die Codierung fiir den Funktionsaufruf wie im normalen
Betriebssystem, abschliefend folgen die Bytes 180 23 32 6
Bsp: FHRCOT(A,B,FNY(X)) ist codiert als
2326523266 180233211 3288 22 1 128 180 23 32 6, wobei
2 32 65 Array-Variable A, die nur angesprochen wird
2 32 b6 Array-Variable B, die nur angesprochen wird
180 23 32 1 Codierung fiir ENROOT
1 32 88 num. Var. X, die angesprochen wird
22 num, Funktion
| Anzahl der Variablen
128 Bytes fiir die Variablen
180 23 32 6 Cod. fitr FNROOT
anstelle der Funktionscodierung 180 23 32 | fiir FNROOT Lritt bei
FNGUESS die Codierung 180 23 32 2 auf.
2. MNumerical Integration:
Es pilt das unter |. gesagte:
Hier folgen nach der Codierung der Arrayvar. die Bytes 180 23 32 1 und
nach der Codierung fiir die Funktion 180 23 32 5
Bsp: INTEGRAL (A,B,E,FNY(X}) ist codiert als
232652 326623269 180233211 3288221 128 180 23 32 5, wobei
2 32 65 Array-Variable A, die nur angesprochen wird
2 32 66 Array-Variable B, die nur angesprochen wird
2 32 69 Array-Variable E, die nur angesprochen wird
1B0 23 32 1 Codierung fir INTEGEAL
1 32 82 num. Yar. X, die angesprochen

22 mum., Funktion
2=23

Il Anzahl der Variablen
128 Bytes fiir die Var.
180 23 32 5 Abschlull
Anstelle der Funktionscodierung 180 23 32 1 fiir INTEGRAL treten bei
den ibrigen Funktionen folgende Codierungen auf:
130 23 32 3 IVALIE
180 23 32 4 IBRBOUND

1.4, &nderung der Codierung der Befehle bei Initialisierung des Programms:

a)

b)

c)

d)
da)

db)

Angabe von aufgeldsten Adressen:
Diese erfolgt wie alle Langenangaben (siehe 1.1.d)), und zwar wird hier
stets die relative Anzahl von Bytes vom Programmanfang gezdhlt, angegeben.
Das erste Byte des Programms hat dann 0, das zweite 1, das dritte 2 usw..
Pointer am Programmanfang:
Es gibt insgesamt 5 Pointer am Programmanfang, sie sind stets 2 Bytes lang,
da sie Ldngenangaben enthalten: .
l.Pointer entspricht der Programmldnge des nicht initialisierten Programms.
2,.Pointer enthilt die Anzahl der Eytes, die hinter das Programm geschrieben
werden bei der Initialisierung
3.Pointer ist Null.
4.Pointer enthdlt die Angabe der Linge aller Variablen.
3.Pointer ist Hull,
Alle Line-Nummern bei GOSUB und GOTO werden durch die Anzahl der Bytes relariv
vom Programmanfang bis zu der entsprechenden Line-Nummer ersetzt.
Fiir alle Variablen und selbstdefinierten Funktionen werden Byvtes hinter das
Programm angehdngt, aus denen hervergeht, wie die Variable heifit, wo sie zu
finden ist usw. (siehe unten). Im Programm selbst werden die Jjeweiligen 2
Bytes, die den Programmnamen angeben, durch die Anzahl der Bytes relativ zum
Programmanfang ersetzt, die angeben, wo die Definition der entsprechenden
Variablen hinter dem initialisierten Programm steht.
Hier nun die Codierung der Variablendefinition nach dem Programmende:
Codierung der Namen:
Diese erfolgt in den ersten beiden Bytes der Definition. Das L.Byte gibt
die Art der Variablen an und die Zahl oder das Blank (zE. Al und A) wvom
Variablennamen.
Das zweite Byre gibt den Buchstaben der Variablen an. Aus diesem Byvte ergibc
sich dann auch, ob hier eine Variable definiert wird, die von einer selhst-
definierten Funktion ausgegeben wird.
Beim ersetn Byte ist zundchst die Zahl des Variablennamens mit ihrem Wert
zu nehmen, ein Blank wird hier mit dem Wert 10 angesetzt. Zu diesem Grund-
wert wird eine Konstante addiertm, aus der hervorgeht, um was fiir einen
Variablentyp es sich handelt.
Die Konstanten im einzelnen:
0 numerische REAL-Variable
16 numerische INTEGER-Variable
32 numerische SHORT-Variable
B4 REAL-Arrav-Variable
80 INTEGER-Array-Variable
96 SHORT-Array-Variable
128 ALPHA-Variable
Beim zweiten Byte wird der Buchstabe A mit dem Wert 1, B mit 2 usw. bis zum
Z mit dem Wert 26. Handelt es sich um eine selbstdefinierte Funktion, so
werden zu diesem Wert noch 22 dazuaddiert.
Bsp: -Die numerische REAL-Variable A besitzt die ersten beiden Bytes 10 1
-Die INTEGER-Array-Variable 79 als selbstdef, Funktion besitzt die
ersten beiden Bytes 89 58.
Beschreibung der folgenden Bytes:
Bei ALPHA-Variablen wird hier die Lénge der Variablen angegeben (2 Bytes).
Bei selbstdefinierten Funktionen steht hier immer die Lingge 32, selbst
wenn die L&nge, die ausgegeben wird, griBer als 37 ist,
Dann folgen 2 Bytes, die eine relative Adresse angeben, wo die Variable
im Speicher abgelegt wird (bei numerischen Variablen fallen die 2 HBytes
fir die Linge weg und diese Bytes fiir die Wdresse kommen dann direkt nach
dem Namen) .

2-24

de)

bl
ba

)

H

Hierbei ist folgendes zu beachten:

Die erste Adresse lautet immer 00 1E (hexadezimal), alse 1.Byte 1E, 2.Bvte 00,

Die folgenden Adressen enthalten dann immer den Wert der vorhergehenden

Adresse, zu der die Linge der vorhergehenden Variashle addiert wird, mit

einer Ausbahme: Fiir die Adresse der selbstdefinierten Funktionen sind

noch zusitzlich 9 Bytes dazuzurechnen, da der Rechner sich vor der eigent-

lichen Variablen immer % Bytes fiir irgendwelche Rechnungen reserviert,

Bei Array-Variablen steht die Adresse allerdings erst in den Bytes 9 und 10.

die Bytes 3 bis 8 sind fir andere Zwecke reserviert {sieshe unten).

Um von der Adresse, die bei einer selbstdefinierten Funktion steht, auf die

niachste Adresse zu kommen, mufl man bei einer numerischen Funktion 8§ Bytes,

bei einer ALPHA-Funktion 32 Bytes plus die Lidnge aller lokalen Variablen
rechnen.

Bei einer selbstdefinierten Funktion folgen nun noch 2 Bytes, die die Linge,

angegeben relativ zum Programmanfang bis zur Definition der lokalen Vari-

ablen, die hier ja mitten im Programm stehen und mit der verschliisselten

Variable beginnt.

Die Bytes 3 bis 8 bei Array-Yariablen enthalten die =u erwartenden Angaben,

wie Linge und Indices:

Bvtes 3 und 4 enthalren die Gesamtlidnge des Arrays in verschliisselter Form;
liegt OPTION BASE 1 vor, ist die Li&nge normal verschliisselt (siehe 1.1.B}3,
liegt OPTION BASE O wveor, so enthdlc Byte 4 einen um 128 hheren Wert,

Brtes 5 und & enthalten die Zahlenangabe des ersten Index, wie sie bei der
Dimensiconierung angegeben wurden (hexadezimal).

Byvtes 7 und 8 enthalten die Angaben fiir den 2.Index. Hat das Array nur einen
Index, so ist der Wert von Bvte 7 und 8 hexadezimal FF.

Wachtrag zur Veraschlisselung von selbstdefinierten Funktionen bei DEF TFH..

und beim Ende der Funktion:

Bei Initialisierung des Programms werden die Bytes 2 und 3 durch die Lingen-

angabe ersetzt, die angibt, wo die Variable definiert ist, die ausgegeben

wird., Die gleiche Angabe wird auch am Ende der Funktion angegeben.

Die Byvtes 4 und 5 geben die Lange an bis zum Ende der selbstdefinierten

Funktion relativ zum Programmanfang. Dieses hilft wohl beim Ubersprin-

pen des Codes der Funkrion. Die nachfolgenden Bytes enthalten die Varisblen—

definition der lokalen Yariablen, beginnend mit der wverschliisselten Anzahl,

die Definiticn der Variablen erfolst dann wie o, a. Im Anschluli an die

Variablendefinitien folgen noch zwei Bytes, die die Linge relativ zum Pro-

prammanfang bis zum eigentlichen Beginn der Definition der lokalen Varizablen

angeben {alao nach der verschlisselten Anzahl).

Darstellung der Variablen im Rechner:

ALPHA-Variablen:

ALPHA-Variablen begimen mit 2 Bytes, die die aktuelle Linge der Variablen

angeben, gelolgt von eigentlichen Byvtes der Variablen, wobei die noch

nicht belegten Bytes am Ende der Variablen mit dezimal 32 belegt sind.

numerische Variahlen:

INTECER-Variablen:

Diese belegen 3 Bytes. Die Codierung erfolgt ahnlich wie bei den INTEGER-
Konstanten im Programm.

Eine INTEGER-VYariable kann 5 Ziffern aufnehmen. 3 Byvtes kdnnen maximal &
Ziffern aufnehmen. Diese 6.3telle (entspricht dem linken Halbbyte des
3.Bytes) wird fir das Vorzeichen benutzt. 0 bedeutet positiv, 9 negativ.
Pusitive Zahlen sind wie die INTEGER-Konstanten codiert. Bei negativen
fahlen ist das Fomplement zu 100000 abgespeichert,

SHORT-Variablen:

liese belegen & Bytes.

Das 1.ByLe enthidlt den Absclutwert des Exponenten im BCD-Code. Die Bytes
2 bis 4 sind dhnlich codiert wie eine INTEGER-Konstante. Die Stelle fiir
das Vorzeichen ist nun zwangsldufig anders codiert:

U: positive Fahl, positiver Exponent

positive Zashl, negalbiver Exponent

negative Zzhl, posibiver Exponent

negative Zahl, negativer Exponent

LD 3

2-25

be)

bd)

be)

REAL-VYariablen:

Diese belegen 2 Bytes und sind dhnlich codiert wie die REAL-Konstanten,
Hier dient das linke Halbbyte des 2.Byvtes zur Codierung des Vorzeichens
der Zahl: O positiv, 9 negativ. Der Exponent und die Mantisse sind iden-
tisch codiert wie eine REAL-Konstante,

Besonderheit: Sclange im Programm einer REAL-Variablen nur INTEGER-Werte

zugewiesen werden, unterteilt der Rechner die Variable in zwei Teile: die
ersten 4 Bytes enthalten Zwischenwerte von INTEGER-Rechnungen mit dieser
Variablen. Byte 5 enthdlt dezimal 255 und die Bytes 6-8 enthalten den
eigentlichen Wert. Man kann deshalb schliefen, dall dieser Bereich auch

fiir Nebenrechnungen mitbenutzt wird.

Array-Yariablen:

Hier trifft das unter ba) bis bc) gesagte auch zu. Es werden im Rechner
halt sowviel Variablen des angegebenen Typs angelegt, wie bei der Dimen-
sionierung angegeben wurde. Naturgemil sind bei Arrays nicht alle Varisblen
mit Werten belegt, wie auch andere ¥ars noch nicht mit Werten belegt sein
konnen (die Meldung WO VALUE sagt dies ja iberdeutlich). Der Rechner er-
kennt dies an der Cedierung der Variablen, die nun unter be} folgen.

Hicht belegte Variablen:

Bei der Programminitialisierung legt der Rechner sich alle Variablen an,
die aber zunichst einen undefinierten Zustand besitzen, solange ihnen

kein Wert zugewiesen wird. Dies erkennt der Rechner an dem 1.Byte bei num.
Variablen und an den Bytes 1 und 2 bei ALPHA-Variablen. Die restlichen Bytes
werden mit hex O bei numerischen und mit hex 20 bei ALPHA-Variablen auf-
gefiillt. Die Kennungsbytes enthalten den dezimalen Wert 255, Eine ALPHA-Va-
riable fiangt dann also mit 2535 253 an,

2-26

2, Private BASIC-Files

2.1, Sicherung von Files auf Massenspeichern:

Man unterscheidet hier zwei Arten (PROTECT und UNPROTECT werden nicht
beachtet, da sie im allgemeinen keinen Schutz vor fremdem Zugriff
bieten: UNFROTECT hebt PROTECT wieder auf).

|

aj

b}

Sicherung durch Palwirter:

Das Palwort kann aus einem bis zu vier Buchstaben cder Ziffern be-
stehen, Wird ein Programm chne Paliwort abgespeichert, so stehen an
der Stelle der Buchstaben oder Ziffern vier Blanks (Dez.-Wert 3i).
Der Pafiwort-Eintrag erfolgt nicht im eigentlichen Programm, sondern
nur im Katalog des Programmes. Wenn man das Programm, das mit Pal-
wort geschiitzt ist, von einer Massenspeichereinheit einlesen will,
mull das Pafiwort im Filespezifikator mit angegeben werden; andernfalls
erhidlt man eine Fehlermeldung - INVALID PASSWOED -, und das Pro-
gramm kann nicht kopiert werden. Damit ldfit sich der Programmgebrauch
auf die Besitzer des PaBwortes beschrdnken. Ist das Programm aber
wieder im Rechner, ist der Schutz weg. Mochte man ein Programm ein-
lesen, dessen Palfiwort nicht bekannt ist, kann man dies mit der wvon
Hewlett—Packard erhdltlichen LEX-Karte INSTALL tun, durch die ein
mit PaBwort geschiitztes Programm ohne Kenntnis des Paliwortes in den
Rechner gespeichert wird, und zwar als ein Programm, das im Rechner
durch ein Statusbyte geschiitzt wird. Auf Kassette 130t sich dieser
Schutz auch anders entfernen, nidmlich indem man die letzten 4 Zeichen
eines Katalogeintrages (ab Record 2, Hilfsmittel 'PRREC'), der fiir
jedes Programm 32 Zeichen lang ist, auf die Werte 32 setzt, dann

1i/t sich das Programm wie gewohnt in den Rechner laden,

Sicherung durch Statushytes:

Dieses Statsubyte befindet sich im Header eines BASIC-Files als 5.
Byte. Dieses Byte kann zwel Werte annehmen:

dezimal 254 bei non-privaten BASIC-Files

dezimal 202 bei privaten BASIC-Files

Hierbei findet im Katalog-Eintrag auf Band keine Verdnderung statt.
Durch Andern dieses Statusbytes kann man selbst BASIC-Files schiitzen
oder den Schutz aufheben.

Sicherung der Files im Rechner:

Grundsdtzlich 146t sich im Rechner nur ein BASIC-File schiitzen (FBE im
Katalog). Da der Rechner ein Programm nur mit Header und Hauptteil spei-
chert, also ohne den in der Massenspeichereinheit benutzten Zusatzka-
talog, kann ein Programm nur durch das Statusbyte geschiitzt werden. Der
Rechner geht bei der Editierung, Abspeicherung usw. eines Programms so
vor, dafl er erst den Header, der ja vom eigentlichen Hauptteil getrennt
ist, nach dem Wert dieses Statsubytes ilberprift. Dann entscheidet er je
nach Wert dieses Statusbytes, ob dieser Befehl ausgefiinrt werden kann
oder nicht.

2=27

3. Text-Files:
3.1l. Aufbau von normalen Textfiles
3.1.1. Einzelbestandteile:
a) Header:
aa) Angabe der absoluten Adresse [Byte 1 und Byte 2):
siehe unter BASIC-Files
ab) Angabe der Programmlinge {Byte 3 und Byte 4)
ac) Wert des 5.Bytes ist immer dezimal 180
ad) Angabe der Fileart (Ryte 6):
Dieses Byte hat flir Text-Files den Hex-Wert 54 [ASCII-Code fiir T)
ae) Speicherung des Datums und der Zeit {Byte 7 bis 10):
siehe unter BASIC-Files
af) Angabe des Filenamens (Byte 11 bis 18)
b1 Hauptteil des Text-Files:
ba) Pointer:
Auch hier haben die § Pointer zu je 2 Bytes den Wert O O,
bb) Textzeilen:
bha) Angabe der Zellennummer:
Codierung der Zeilennummern ist gleich mift der Codierung in BASIC-Files.
bbb] Lingenangabe des Textes:
Dieses Byte gibt auch Auskunft iiber die Linge einer Zeile, da keine
gigenen Trennbytes zwischen den Zeilen vorhanden sind wie zB. das Byte
mit dem Wert dezimal 14 beli BASIC-Files.
bbe) Codierung des Textes:
Der Text wird durch die Hex—-Codes seiner ASCII-Zeichen reprisentiert.
3.1.2. Zusammenfiigen der Einzelbestandteile zu der Gesamtheit des Text-Files:
Header und Hauptteil werden chne Unterbrechung cder Zwischenbytes aneinander-
gefiigt., Dies hedeutet,daR die Textzeilen such direkt asufeinanderfolgen. Fiir
das Ende des Text-Files ist auch hier eine eigene Schluflzeile vorgesehen mit
felgendem Aufbau: 5 Bytes mit folgenden Hex—Werten 9% 43 02 84 OE. Was danach
kommt, bringt der Rechner nicht mehr mit diesem Text-File in Verbindung.
2.2. Aufbau ven keys-Textfiles
3.2.1. Einzelhestandteile:
al Header:
Codierung wie unter 3.1.1.a) beschriegben
3] Hauptteil des keys-Text-Files:
ba) PFointer
bb} Textzeilen:
bha) Angabe des Dezimalwertes des Zeichens, dessen Taste neu belegt werden seoll,
NMies erfolgt in der gleichen Codierung wie die Codisrung von Zeilennummern.
bbbl Angabe der Linge der Zuweisung, dh. der Linge des Textes, der fiir die
Zuwelsung bendtigt wird.
bbe! Zeichen fiir Anhidngen:
Dieses Byte hat immer den Wert dezimal 59,
bbd)] Neubelegung der Taste;
Auch hier wird die Meubelegung durch die Hexcodes des ASCII-Textes repri-
sentiert.
3.2.2, Zusammenfiigen der Tinzelbestandteile:
Auch hier werden die Einzelzuweisungen direkt hintereinandergeschriechen, wie
unter 3.1.2. Ende des Files, siehe unter 3.1.2.

2-28

4. LIF1-Files:
4.1. Einzelbestandteile:
Austauschliles cder LIF1-Files dienen zum Austausch von Informationen zwischen
dem HP=7S und anderen Computern. Jeder Textfile und nichtprivate RBASIC-File
im Speicher kann mit Hilfe des Befehles TRANSFORM in einen LIF1-File umgewandealt
werden und dann auf Massenspeichern abgelegt werden. Das Canze kann auch umge—
kehrt veollzogen werden, So kénnen Informationen zwischen den Rechnern ausge—
tauscht werden, Das Bescndere bei diesen Files ist, daB sie nicht editisrt,
gelistet und mit RUN oder CALL aufgerufen werden kdnnen.
al Header:
LIF1-Files sind die einzipen Files, die keinen Header besitzen auf Massern—
speichersinheiten. Im BAM des Rechners sisht der Header aus wie folgt:
zal Angabe der absoluten Adresse {Byte 1 und 2):
ab} fngabe der Programmliinge {Byte 2 und Byte 4)
acl Wert des 5.Bytes ist immer dezimal 140
ad) Angabe der Fileart:
Dieses Byte hat flir LIF1-Files den Hex-Wert 49 (ASCITI-Code e I
ae) Speicherung des Datums und der Zeit (Byte 7 bis 10}
‘af) Angabe des Filenamens (Gyte 11 bis 18)
bl Hauptteil des LIFl-Files:
bal Pointer:
5 Pointer zu je 2 Bytes mit den Werten O 0.
Bh) Zeilen:
bba)Byte mit dem Wert dezimal O
obbiLingenangabe der LIFl-Zeile, wie unter 3.1.1.0bb)
bbelZeilennummer:
Die Zeilennummer sind anders als bisher codiert, Sie sind vierstellig und
sie werden durcnh die 4 Hex—Codes ihrer ASCII-Zeilennummern dargestellt,
Ssp: Eine Zeilennummer ven 10 ist codiert durch dezimal
A5 £8 A9 48 (in ASCII-Form 00100
bbd)Codierung des Textes:
Her Text wird durch die Hex-Codes seiner AS0II-Zeichen repriisentisrt. Wird
2B. im LIF1-File ein BASIC—Programm dargestellt, so stehen die BASIC-Refehle
im Wortlaut (Bsp: DISP wird codiert durch Hex 44 49 53 50 {ASCIT: DISP) .
4.2, Zusammenfiigen der Tinzelbertandteile:
Das Byte mit dem Wert O gibt gleichsam das Ende der einen und den Anfang der
ni#chsten Zeile anm., Danach werden die Einzelzeilen nur durch O O getrennt hinter-
einander codiert. Hinter der letzten Zeile stehen zur Markierung des Endes des
Files zweil Bytes mit den Werten 255 255, Was danach kemmt, ist fiir den Rechner
fann uninteressant.

5. APPT-Files:

5.1.

T

Normale Appointments {N):
Bei normalen Appointments sieht das Display wie folgt aus:
Day Mo/Dy/Yr Hr:Mn AM #IN !Note
Day ist der Wochentag (MON, TUE, WED, THU, FRI, SAT, SUN)
Mo ist der Momat (1..12)
Dy ist der Tag (1..31)
Tr ist das Jahr
Hr ist die Stunde
Mn ist die Minute
AM ist eine Anzeigeart (AM, PM, *=)
Alarmfeld
I Alarmtyp 1 (1..9)
M normaler Alarm
! steht filir einfache Nachricht, > steht fir Kommando
Note. Es kann eine Nachrichr folgen
Wird nun ein Appointment-File initialisiert, so wird dieses File wie folgt im
Memory des Rechners oder auf Magnetband gespeichert;
Byte | gibt die Linge des folgenden Appointments an
Byre Z-5 enthalren die Anzahl der Sekunden, wenn der Alarm f&8llig ist
von dieser Zahl mull das Systemdatum 0A3Z75400 subtrahiert werden.
Brte 6 hat den Wert 14, wenn die interne Uhr nach einem Memory Lost auf eine
Zeit gesetzt wurde,
hat den Wert 0, wenn die interne Uhr nach einem Memory Lost mit RTN
ohne Eingebe von Datum und Zeit gesetzt wurde.
Byte 7 enthilt den Wert fiir den Alarmtyp, falls der Alarm noch nicht vorbei ist
enthdlt den Wert fiir den Alarmtyp + 32, falls der Alarm schon vorbel ist
Byte 8 enthdlt den Wert O, wenn keine Notiz oder Kommandos feolgen.
enthdlt den Wert dezimal 33, falls eine Notiz folgt
enthdlt den Wert dezimal 62, falls ein Kommando folgt
Wenn Notizen oder Kommandos folgen, beginnen diese jetzt mit dem Byte 9, an-
sonsten endet hier der Eintrag.
Appointments fir Wiederholungsalarm ohne Bestdtigung (R):
Bei diesen Appointments sieht das Display so aus:
Day Mo/Dy/Yr Hr:Mn AM #1R !Note
; R Wiederholungsalarm chne Bestdtigung
Mach Driicken won RTN ergibt sich folgende Anzeige:
Rept=Mo+Dy+Hr+HMn I DOW
Rept Wiederholungsalarm
Mo Monat
Dy Tag
Hr Stunde
Mn Minute
DOW In diesem Feld wird der Wochentag eingegeben,
an dem der Alarm wiederholt werden soll.
Wird nun dieser APPT-File initialisiert, so wird er wie folgt abgespeichert:
Evte 1 gibt die Linge des folgenden Appointments an
Bvte 2-5 enthalten die Anzahl der Sekunden, die dann seit dem Systemdatum
bis zum Falligkeitszeitpunkt des Alarms vergangen sind. Von dieser
Zahl wird deshalb das Systemdatum 043753400 subtrahiert.
Byte & hat den Wert 14, wenn die interne Uhr nach einem Memory Lost auf eine
Zelt gesetzt wurde,
hat den Wert {}, wenn die interne Uhr nach einem Memory Lost mit RBTH
gestartet wurde,
Byte 7 enthadlt den Wert fiir den Alarmtyp, zu dem 128 addiert wird.
Im Anschlull daran folgen zusdtzlich 3 Bytes, die folgendermallen codiert sind:
Byte | gibt den Tag an, der im Repeat-Feld angegeben wurde:
0 kein Tag wurde angegeben
16 SA 38 50 48 MO a4 TU 80 WE 96 TH 112 FR
17 541 33 501 49 MOL /5 TUL 81 WEl 97 TH1 113 FRI
18 5A2 34 502 50 MOZ A6 TUZ2 22 WE2Z 98 THZ 114 FRZ
19 5343 35 SUZ 51 MO3 67 TU3 B3 WE3 99 TH3 115 FRE3

2-30

S

20 5A4 3% SU4 52 MDE BB TU4 B4 WE4 100 TH4 116 FR4
21 5A5 A7 S5 53 MO5 A9 TUS A5 WES 101 THS L17:FR5
24 SA+ 40 sU+ 56 MO+ V2 TU+ 88 WE+ 104 TH+ 120 FR+
25 5A- &1 S0~ 57 MO- 73 TU- B9 WE- 105 TH- 121 FER-
Byte 2 gibt die Anzahl der Monate an {BCD-Code)
Byte 3 bis 5 geben die Anzahl der Sekunden aller restlichen Felder aufaddiert
im Hex-Code codiert an {&hnlich wie Datum und Uhrzeit).
Dann folgen die eingegebenen Texthytes, sofern eine Notiz angegeben wurde,
Das 1. Byte ist dann entweder das Ausrufezeichen oder das Grilerzeichen,
wenn ein Kommando ausgefiihrt werden soll, Die folgenden Bytes enthalten dann
die Nachricht.
Appointments fir Wiederholungsalarme mit Bestdtigung (A):
Bei diesen Appointments sieht das Ddsplay so aus:
Day Mo/Dy/Yr Hr:Mn AM #1A !'Note
A Wiederholungsalarm mit Bestdtigung
Mach Dricken von RTN ergibt sich folgende Anzeige:
Eepr=Mo+Dy+Hr+kn I DOy
Wird nun dieser AFPPT-File initialisiert, so wird er wie folgr abgespeicherc:
Byte 1 gibt die Ldnge des folgenden Appointments an.
Byite 2-5 enthalten die Anzahl der Sekunden, die dann seit dem Systemdatum
bis zum F&dlligkeitszeitpunkt des Alarms vergangen sind. Von dieser
Zahl wird deshalb das 3Systemdatum 0A373400 subtrahiert.
Byte 6 hat den Wert 14, wenn die interne Uhr nach einem Memory Lost auf eine
Zeil geserzt wurde,
hat den Wert 0, wenn die interne Ubr nach einem Memory Lost mit RTHN
gestartet wurde.
Byte 7 setzt sich aus der Addition verschiedener Zshlen zusammen:
Alarmtyp + 196 fir Wiederholungsalarm, sofern dieser Alarm noch nie
fdllig war.
Alarmtyp + 212 fiir Wiederholungsalarm, der schon einmal f8llig war,
aber im Moment nicht f4llip ist
Es folgen wieder die 5 Bytes wie beim Wiederholungsalarm ohne Bestdtigung.
Die Codierung dieser 3 Bytes ist wieder gleich.

Zum Abschluf noch eine Bemerkung zum Ende eineas APPT-Tiles.
[Hese Fileart besitzf nicht wie die anderen Files eine Fndeanzeige, wie =B
Bei BASIC-Files die Bytes 99 A9 02 84 OE. :

6. LEX-Files:

6.1.

Auf
Ein
das
hen
ein
Tei
Pha
Man
=0
-0

o
5

= N By Ay

bau von LEX-Files:

LEX-File ist grundsZtzlich in einer Assembler-Sprache geschrieben. Damit
System wichtige Stellen des Files direkt schon wor der Susfilhrung findet,
utzt man zur Festlepung dieser Stellen Markierungen, auf die Pointers in
er bestimmten Reihenfeolge zeigen, Mit Hilfe dieser Pointers werden sclche
le wie Angabe der Schliisselworte, Angabe der Fehlermeldungen, Angabe der
se, in der die Zchliisselworte zerlept werden, ete.

unterscheidet pgrob folgende Teile eines LEX-Files:
er Kentrollhlock des Programms
efinitionen von Markierungen, mit deren Hilfe die durch den LEX-File fest-
elegten Befehle in eine bindre Codierung gebracht und dann ausgefilhrt werden:
Definition der BRUNTIME-Fhase
NDefinition der MAMES-Phase
Definiticn der PARSE-Phase
Definition der ERRCRS=Fhase
Definition der RUN-Phase
Definition der MAIN-Phase(n)
Definition der RUNAGAIN-Fhase

*

-

= In diesen Definitionen der einzelnen Phasen werden die Adressen angegeben

W
+

- N
b
]
B
1
A

al

on den Stellen im File, wvon denen an die definierte Phase beginnt.

die PARSE-Phase teilt dem System mit, wie es das Schlilsselwort auf richtige
Zyntax und richtige Anzahl von Parametern efo. berprift und diese dann in
bindre Codierungen iUberfihrt.

In der RUNTIME-Phase werden die Schlilsselworte dann in Maschinensprache
ibersetzt.

Die Angabe der durch den LEX-File festgelegten Befehle und der dazugehirigen
Schliisselworte erfolgt in der NAMES-Phase,

In der ERROR-Phase werden die EREROE-Meldunpgen fiir diese LEX-Karte festgelepgt.
In der RUN-Phase werden die Statusbedingunpen fiir dieses LEX-File herge-
stellt.

In der MATIMN-Phase bepinnt die Hauptphase des Filaes. Hier sind die Befehle

in Assembler cediert, die beim Aufruf eines Befehls abgearbeitet werden,
damit am Ende das richtige Ergebnis rauskommt.

In der RUNAGAIN-FPhase werden wieder die Bedingungen hergestellt, die vor

dem Adufruf des Befehls wvorhanden waren.

Am Ende dieser Pointertabelle stehen zwei Bytes mit den Werten 255 255,

Sie veranlassen den Rechner, dal er beim ersten Aufruf des Files fiir jeden
SBefehl eine Codierung in einem System-ROM zur Verflipung stellt.

ach dieser Pointertabelle kommen die Routinen, die zur Ausfihrung des Befehls

enttigt werden.

er Rechner wverlilit sich bei der Abarbeitung nur auf die richtige Syntax dieser

ointertabelle, Liegt in dieser ein Fehler, so stirzt der Rechner ab und

dGt sich nur durch Entfernen des fkku und des Hetzteils wieder abfangen.

uFerdem mull jede Phase mit einem RATH heendet werdan.

Der Kontrollblock:

Der Xontrellblock ist 20 Bytes lang. In ihm sind felgende Informationen der

Feihe nach enthalten:

— Die ersten 2 Bytes peben in umgekehrter Heihenfolge den RAM-Bereich an,
in dem das Programm steht.

— Die nidchsten beiden Bytes geben die Linge des Files an und zwar nach
der Codierung der Programmlinge wie unter 1.1.0L)

- Die Bytes 5 und & haben die Hex—Werte 8D und 4C{= ASCIT L)

= In den Bytes 7 bis 10 ist die Zeit codiert., Sie geben die aAnzahl der
Sekunden an wom 1.1.1900 0.00 Uhr bis zum wvorliegenden Datum.

— Der Mame des Files, der bendtipght wird, wenn man den File kopieren will,
steht in den Bytes 11 bis 18. illberfliissige Bytes werden mit Blanks auf-
gefiillt.

- Die Bytes 12 und 20 spielen eine entscheidende Relle hei der Codierung
der RBefehle in einem BASIC=File. So wird der 1,Refehl des LEX-Files wie
folgt codiert: 180,Byte 189(dez.),Byvte 20{dez.},l{=Hinweis, daB ez der
erste Befehl des LEX-Files ist}.

Hsp: Bytes 19 und 2C haben heim PEEKPOKE-LEX-File die Werte dezimal 21 &4
Damit hat der Befehl PEEK als 2.8efehl die Codierung 180 21 &4 2
der Befehl POKE als 1,Befehl die Codierung 180 21 84 1

203

b) Die Systemtabelle:
Mit Hilfe dieser Tabelle interpretiert der Eechner die Befehle
und iibersetzt sie in den Maschinencode. Fiir jede Phase im File
benutzt der Rechner Pointer. Jeder Pointer besteht aus 2 Byres.
Das Z.Bvte mull mit 250 multipliziert und zum Wert des 1.Byte
dazugezdhlt werden, Dann erhdlt man die Anzahl der Zeichen, die der
Rechner vom 19.Byte, dh. von der Basis-Adresse, bis zur Markierung
dieser Phase iberspringen muli.
Auf diese Art sind die einzelnen Adressen fiir die Phasen in der Sys-
temtabelle definiert. Bei meheren Befehlen miissen auch mehrere
MATN-Phasen, dh, auch mehrere Definiticnen von MAIN-Phasen, vorliegen.
In diesem Fall werden die Pointer fir die MAIN-Fhasen durch zwei
Bytepaare eingeschlossen, die vor und hinter der Definition der MAIN-
Fhase gleiche Werte haben.
B.2. Attribute:
Attribute definieren den Tvp des Schliisselwortes. Der Hechner benétigt
Attribute auch dazu, um den Befehl spater im PARSE-Teil richtig zerlegen
zu konnen. Man unterscheidet zweli Arten von Attributen: primdre und sekun-
ddre Attribute. Alle Schlilsselworte besitzen primfre Attribute, jedoch
nur Funktionen besitzen auch sekunddre Attribute. Attribute missen direkt
vor der MATN-Phase eines Schliisselwortes plaziert werden.
a,) primidre Attribute:
Primdre Attribute bestehen sus einem Byte, das Informationen idber den
Typ sowie die Klasse von Schliisselworten enthalt.

Bits: 7 £ 5o 2 2 | 8]
Tvp klasse
aa) Typ:
Bits: 76 Typ

BASIC-Statement, nicht erlaubt hinter THEN

l
1 0 BAEIC-Statement, erlaubt hinter THEN
0 1 Systembefehle, nur iiber Tastatur auss=uliibren
oo Funktionen und andere Arten
ab) Klasse:
Bits: ST e Hlasse
1 2l b 3
1 1 1 1Y 1 O
| R R T E |
1 1 1 5k 3B i)
1 11 O -1 1
1 i 1 3 28 0
1 1 1 @ @ 1
1 1 1 a0 o 0
1 1 0o 1 1 1
i 1 01 -1
1 1 @& 1 & 1
1 1 0 1 O 0
1 1 0o 0 1 1
2 PO PR . 2 i A
1 1 0 0 0 1
SR P A e € 1
Lo L 2l e]
1 0 1 1 1 0 String-Funktiion (wie CHRE§, VAL$)
L 1 I] numerische Funktionen (wie S5IN, COS, IP)
L& 1 1L @ B
L & 1 4% L 1
1 0 1 0 1 ©
1 a1 0 a1
1 0 | G O ©
1 o0 0 1 1 1

2-33

Bits:

Klasse

{0 8 on U - s o 0 e Yot e R (5 o 1, o o 0 e 6 a8 e v e s B s 8 s e com Y e [8 e S B o v o B B R R L)

COCCOoOoO OO0 o000 000 e e e e e e e e e e e e D0 D D000 |

o T B i B e e e e B e e o e s e o s e o o B e e e e e T e R o s S AP

Reservierte Schliisselworte

im0 S O R T i e B e T e T e e B T R e o e e e T T e T e T
D = SO OO O O D0 e (DO (OO =0 O =00 =00 —
i BB o o B e e Y e B e o R o e B el B e R e R e e e o R e B e i e e o B e B e B e i I B B e R [

bl sekundidre Attribute:
Beim Zerlegen eines Schlisselwortes in der PARSBE-Phase mull, wenn das
Schliisselwort eine Funktion ist, auch der Typ dieser Funktion festgelegt
werden. Dies geschieht durch die sekunddren Attribute, Aus wieviel
Bytes dieses Attribut bestebt hdngt von der Anzahl der Parameter ab,
die Fiir die Ausfithrung der Funktion beniitigt werden. In den ersten
4 Bits des ersten Bytes steht die Anzahl der bendtigten Parameter.
Danach stehen fiir jeden Parameter Z Bits zur Verfiigung,
gelegt wird, von welchem Typ der Parameter ist.

Parameter-Typs

in denen fest-

Bits: 12 Typ
1 1 Fremde Art
1 0 String
o1 Numerisches Array
0o 0 Numerisch
Bsp: POKE(m),n ist definiert als (nur sekunddres Attribut):
Q010 01 0o

Z Parameter

numerisches numerischer Parameter

Array

2-34

6.2. Assembler-Befehle:
Da man beim HP-75C iiber kein eigenes Assembler—ROM verfiigt, missen die
Befehle mit ihrem Hex-Code iiber das Programm 'LEXIN' iiber das Laufwerk
in den Rechner gebracht werden. Zundchst einige Vorbemerkungen:

6.3.1. Systemgréfien:

632,

a)

b

c)

d)

e)

Operatimscode:

Der Operationscode ist eine hexadezimale Wiedergabe eines Assembler—
befehles,

Literal;

Diese GriBe ist ein Byte lang. Sie dient bei den Cperationen dazu,
eine absolute Zahl zu repridsentieren. So gibt sie zB. in Verbindung
mit einem Sprungbefehl an, wieviele Bytes absclut iibersprungen werden
miissen,

Label:

Diese Systemgrifie gibt immer eine Adresse im Memory des Rechners an,
Die Codierung erfolgt in umgekehrter Reihenfolge.

Bsp: Die Bytes 10 FF geben die Adresse FF10 an.

AR: Position des Adressregisters

Diese Grofle ist ein Byte lang und gibt an, auf welches Register der
ARP zeigt.

DE: Position des Datenregisters

Auch diese Grofle ist ein Byte lang. Sie gibt die Position des Eegisters
an, auf das der DRP zeigt.

Vorbemerkungen zur Codierung eines Befehles:

In

Register arbeitet der Rechner im Oktalsystem.

a)

b

c)

d)

el

den Codierungen der Befehle, besonders bei den Bezeichnungen der
Codierung der AR:
Um zum Hex-Code zu kommen, der die AR reprdsentiert, wandelt man die
Registernummer vom Oktalsystem in das Hexadezimalsystem um,
Bsp: R 20 als AR ist codiert als
oktal 20 ist 010 00O, was 0001 0000 also 10 im Hex-System entspricht
Codierung der DR:
Um zu diesem Hex-Code zu kommen, wandelt man die Eegisternummer vom
Oktalsystem ins Dezimalsystem um, addiert B4, und wandelt dann diese
Zahl um ins Hexadezimalsystem.
Bsp: R 20 als DR ist codiert als
oktal 20 ist 010 000, also 16 im Dezimalsystem.
16 + 64 = 80, was im Hex—Code 0101 0000, also 50 entspricht.
Zusalzbemerkungen zu a} und b):
AR oder DR missen bei einem Befehl nur angegeben werden, sofern sie
zur Ausfiihrung des Befehls verdndert werden miissen, Ansonsten konnen
sle zur Byteeinsparung entfallen. Der Rechner benutzt dann die aktuelle
bis jetzt giiltige DR oder AR,
In einem Befehl mit AR und/oder DR muf folgende Reihenfolge eingehalten
werden:
- Hex-Code fiir DR ader xm
- Hex-Code filir AR oder XAR (XAR besiczr die gleiche Codierung wie AR)
- Hex-Code fiir den Befehl = Operationscode
Sprung mit Literal nach vorne (dh. positiver Sprung’:
Der Hex-Code gibt umgewandelt ins Dezimalsystem die Anzahl der Zeichen
an, die iibersprungen werden miissen.
Bsp: F7 3D entspricht JZR 3D
3D im Hex=Code ist 61 im Dezimasytem. Dies bedeutet nun, dab
bei der Ausfiihrung dieses Befehls 61 Zeichen ibersprungen
werden, und dafi mit dem 62.Byte die Ausfiihrung des Files fort-
pesetzt wird.
Sprung mit Literal nach hinten (dh., negativer Sprung):
Der Hex-Code, umgewandelt ins Dezimalsystem, und von 255 abgezogen, gibt
die Anzahl der Zeichen an, die riickwirts gesprungen werden.
Bsp: F& F7 entspricht JHZ F7
F7 im Hex-Code ist 247 im Dezimalsystem. Dies bedeutet nun, daf
der Rechner 255-247=8 Bytes nach hinten gesprungen werden, und
dali mit dem 8.Byte,nach hinten gesprungen, die Ausfiihrung des
Files fortgesetzt wird.
2-35

f) Multibytes:

S e

Im Gegensatz zu den Single-Bytes, die aus nur einem Byte bestehen,

konnen Multibytes aus bis zu 8 Bytes bestehen. Da ja wie bekannt

die Registernummer im Oktalsystem codiert ist, bilden 8 Bytes eine

Finheit. Das letzte Byte dieser Einheit ist das Byte, dessen 3 Ab-

schluffibytes im 2.Halbbyte den Wert 1 haben (also Registernummern

07, 17, 27, 37, 47, 57, 67, 77)

Aduch fir das letzte Byte eines Multibytes gilt diese Regel. Ist nun

in einem Assemblerbefehl eine Registernummer fiir das Multibyte ange-

geben, so beginnt dieses Multibyte mit diesem Register und endet mit

dem letzten Register dieser Finheit.

Bsp: Multibyte R40 beinhaltet die Register 40-47 (8 Single-Bytes)
Multibyte R26 beinhaltet die Register 26-27 (Z Single-Bytes)
Mulribyre R14 beinhalter die Register 14-17 (4 Single-Bytes)

LOAD/STORE-Befehle:

a) LDB DR, AR:

Codierung: AQ

Der Inhalt von AR wird nach DR geladen

Bsp: LDB R36, R32 mit der Hex-Codierung 5E 1A AD bedeutet, dall der
Inhalt von Register 32 ins Register 36 geladen wird.

LDM DR, AR:

Codierung: Al

Der Inhalt von dem Multibyte, beginnend bei AR, wird in das Multi-

byte, beginnend mit DR, geladen.

Bsp: LDM R40, RSO mit der Hex-Codierung 60 28 Al bedeutet, dali die
Inhalte von Register 50 bis 57 in die Register 40 bis 47 iiber-
tragen werden,

b) STB DR, AR:

Codierung: A2

Der Inhalt von DR wird nmach AR kepiert

Esp: STB R36, R3Z mit der Hex-Codierung 5E 1A A2 bedeutet, dal der
Inhalt von Register 36 nach Register 32 kopiert wird,

STM DR, AR:

Codierung: A3

Der Inhalt des Multibytes, beginnend bei DE, wird in das Multibyte,

beginnend bei AR, geladen.

Bsp: S5TM R40, R50 mit der Hex-Codierung 60 28 A3 bedeutet, dafl die
Inhalte der Register 40 bis 47 in die Register 30 bis 37 gela-
den werden.

c) LDBD DR, AR:

Codierung: Ad

Das Register DR wird mit dem Inhalt gefiillt, der an der Stelle des

Memory des Rechners zu finden ist, auf die AR =zeigt.

Bsp: LDBD R36, R32 mit der Hex-Codierung 5E 14 A4 bedeutet, dafl
Register 306 mit dem Inhalt gefillt wird, der an der 5telle
des Memory zu finden ist, dessen Adresse in den Registern
32 bis 33 steht. Hat Register 32 den Inhalt 4E und Register
33 den Inhalt Al, dann wird nach Register 36 der Inhalt ge-
bracht, der im Memory auf der Adresse Al 4E zu finden ist.

LDMD DR, AR:

Codierung: A5

Das Multibyte, beginnend mit DR, wird mit dem Inhalt geladen, der,

beginnend bei der Adresse AR bis AR+1l, im Memory des Rechners steht.

Bsp: LDMD R40, RS0 mit der Hex-Codierung 60 28 A5 bedeutet, dall die
Register 40 bis 47 mit den Inhalten geladen werden, die im
Memory des Rechners bei der Adresse zu finden sind, auf die die
Register 50 bis %1 zeigen.

Uhertrﬁgt man die Zahlenwerte von ohben, sieht das dann so aus:
R40 enthdlt den Inhalt des Memory bei der Adresse Al 4E

R41 " Al 4F
R42 H Al 50
R4T " Al 51
R4 " Al 52
R4S it Al 53
R&6 " Al 54

Ra47 2-36 o Al 55

d)

el

£)

g)

STBD DR, AR:

Codierung: A7

Der Inhalt von DR wird an die Stelle des Memory geschrieben, dessen

Adresse in den Registern AR bis AR+] steht.

Bsp: STBD R36, R3Z2 mit der Hex—Codierung 5E 14 A6 bedeutet, dali der
Inhalt von Register 36 an die Stelle im Memory geschrieben
wird, dessen Adresse in den Registern 32 bis 33 steht. Steht
in Begister 32 4E und in Register 33 der Inhalt Al, dann wird
der Inhalt von Register 36 im Memory an der Adresse Al 4E ge-
speichert,

STMD DR, AR:

Codierung: AB

Der Inhalt des dultibytes, das bei DE beginnt, wird an die Stelle

des Memory geschrieben, dessen Adresse mit der Adresse beginnt, die

in den Registern AR bis AR+l steht.

Bsp: STHMD R40, R50 mit der Hex—Codierung 60 28 A7 bhedeutet, dali die
Inhalte der Register R40 bsi R47 an die Stelle des Memory ge-
schreiben werden, dessen Adresse in den Registern R30 bis 51
steht. Steht in Register 30 4FE und in Register 51 Al, so werden
die Register 40 bis 47 in die Memory-Adressen Al 4E bis Al 55
geschrieben,

LDE DR, =literal:

Codierung: AB

Das Register DR wird mit den im literal-Feld stehenden Informationen

zeladen.

Bsp: LDE R36, =124 mit der Hex-Codierung 5E A8 7C bedeutet, dal R36
den Inhalt dezimal 124 erhilt,

LDM. DR, =literal:

Codierung: A9

Das Multibyte, beginnend bei Register DR, wird mit den im literal-Feld

stehenden Informationen geladen.

Bsp: LDM R40, =0,0,0,0,0,0,0,5 mit der Hex-Codierung &0 4% 5 0 O 0 0O
0 0 0 badeutet, dali die Register 40-47 mwit den Inhalten 0 0 O 0
000 und 5 geladen werden.

STB DR, =sliteral:

Codierung: AA

Der Inhalt des Registers DR wird an die Stelle des Memory geschrieben,

auf die der Programmcounter, wvertreten durch das lteral-Feld, =zeigt

Bap: 5TB R36, =124 mit der Hex-Codierung 5B AA 7C bedeutet, dal der
Inhalt won Register 36 in den Memory-Beresich 00 7C geschrieben
wird,

STH DR, =literal:

Codierung: AB

Der Inhalt des Multibytes, heginnend bei Regizter DE, wird in den

Memory-Bereich geschrieben, auf die der Programmcounter (literal-

Feld) zeigt.

HBsp: STM R3Z, =KEYBOARD mit der Hex-Codierung 54 AB 02 FF bedeutet,
dal} das Multibyte E32-33 in den Memory-Bereich geschrieben wird,
auf die der Programmcounter hochgeschoben wird.

Anmerkung: Tm Programmcounter steht nach der Operation.der Inhalt

des Registers DE.

LDET DR, AR:

Codierung: AC

Der Twhalt, auf den das Register zeigt, dessen Nummer sich im AR

befindet, wird in das Register DE geladen.

Bsp: LDBI R36, R32 mit der Hex-Codierung S5E 1A AC bedeutet, dali, wenn
Register 50-31 FFO0 enthdlt, und an der Adresse FFO0 AlGT gespei-
chert steht, der Inhalt Al&Y in R36 geladen wird.

LDMI DR, AR:

Codierung: AD

[He Inhalte, auf die das Register zeigt, das sich im AR befindet,

werden in das Multibyte, beginnend bei DR, geladen,

2-37

h}

i)

i)

k)

Bsp: LDMI R40, R50 mit der Hex-Codierung 60 28 AD bedeutet, dafl, wenn
Register 50 FFOO enthdlt, und an der Adresse FFOO Al67 gespei-
chert ist, der Inhalt A167 in R40, der Inhalt Al68 in R4l, der
Inhalt Al169 in R42, der Inhalt Al6A in R43,, der 'Inhalt
ALBE in R47 gespeichert wird.

STBI DR, AR:

Codierung: AE

Der Inhalt von DR wird an die Stelle des Memory gespeichert, auf die

das Register zeigt, dessen Registernummer in der Memory-Lokation liegt

auf das AR zeigt.

Bsp: STBI R36, R32 mit der Hex-Codierung 5E 1A AE bedeutet, daf, wenn
Register 32 FFOO enthdlt, und an der Stelle FFOO AlG67 steht, der
Inhalt von Register 36 im Memory bei der Adresse Al67 gespeichert
wird.

STMI DR, AR:

Codierung: AF

Der Inhalt der Register, beginnend bei DR, wird an die Stellen des

Memory gespeichert, die mit dem Register beginnen, dessen Register-

nummer in der Memory-Lokation liegt, auf das AR zeigt.

Bsp: S5TMI R40, R50 mit der Hex-Codierung B0 28 AF hedeutet, dal}, wenn
Register 50 FFOO enthdlt, und an der Stelle FFOO Al67 steht, das
Multibyte R40-47 im Memory bei den Adressen Al67-A16E gespeichert
wird, ;

LDBD DE, =label:

Codierung: BO

Das Register DR wird mit dem Inhalt geladen, der unter dem angege-

benen label steht.

Bsp: LDBD R34, =KEYBOARD mit der Hex-Codierung 5C BO 0Z FF bedeutet,
daf der Inhalt bei der Memory-Adresse FFO2 ins Repister 34 gela-
den wird,

LMD DR, =label:

Codierung: Bl

Das Multibyte, beginnend mit dem Register DR, wird mit dem Inhalt

geladen, der im Memory unter den Adressen steht, der mit dem ange-

gebenen label beginnt.

Bsp: LDMD R34, =KEYBOARD mit der Hex—Codierung 5C Bl 02 FF bedeutet,
dafl der Inhalt der Adresse FFOZ in B34, Inhalt bei FTF0O3 in R35,
der Inhalt bei FF0O4 in R36 und der Inhalt bei FFO5 in R37 gela-
den wird.

STBD DE, =label:

Codierung: B2

Der Inhalt des Registers DR wird in den Memory-PBereich unter der

Adresse abgespeichert, die in label angegeben ist.

Bsp: STBD R34, =KEYBOARD mit der Hex-Codierung 3C BZ 02 FT bedeutet,
dafl der Inhalt des Registers 34 im Memory-Bereich unter der
Adresse FFO2 abgespeichert wird.

STMD DR, =label:

Codierung: B3

Der Inhalt des Multibytes, beginnend mit Register DR, wird in den

Memory-Bereich gespeichert, beginnend mit der Adresse, die in label

angegeben ist.

Tsp: STMD R34, =KEYBOARD mit der Hex—Codierung 3C B3 04 FF bedeutet,
dall die Inhalte der Register 34-37 im Memory-Bereich unter den
Adressen FF02-FFO5 abgespeichert werden,

LDED DR, XAR, label:

Codierung: B4

Das Register DR erhdlt als Inhalt die Summe aus der Adresse, unter

der das label abgespeichert ist, und dem Wert wvon XAR.

Bsp: LDBD R36, %32, KEYBCUARD mit der Hex-Codierung 3E 1A B4 02 FF
bedeutet, dal, wenn R32-33 den Inhalt 0002 haben, in Register
36 die Summe FFO2+0003=FF05 abgespeichert wird.

LDMD DR, XAR, label:

Codierung: BS

2-38

L)

m)

Das Multibvte, beginnend mit DR, erhdlt sls Inhalt die Summe aus
der Adresse, unter der das label abgespeichert ist, und dem Wert
von XAR. Die Inhalte der auf DR folgenden Register des Multibytes
erhdlt man, wenn man zu der og. Summe immer hex 01 addiert.

Bsp: LIMD R34, X32, KEYBOARD mit der Hex-Codierung 5C 14 B5 02 FF
bedeutet, daB, wenn R32-33 den Inhalt 0003 haben, in Register
34-35 die Summe FFO240003=FF05 und in Register 36-37 FFO& ab-
gespeichert wird.

STBD DR, XAR, label:

Codierung: B&

Der Inhalr des Registers DE-DRE+l wird unter der Adresse abgespei-

chert, die sich ergibt, wenn man die Summe aus der Adresse, unter

der das label aufgefiihrt ist, und dem Wert wvon XAR bildet.

Bsp: 5TBD R36, X32, KEYBOARD mit der Hex—Codierung 5E 1A Bo 0Z TP
bedeutet, dali, wenn R32-33 den Inhalt 0003 haben, der Wert won
Register 36 unter der Memory-Adresse FF0Z2+0003=FF05 abgespei-
chert wird.

ST¥D DR, XAR, label:

Codierung: B7Y

Der Inhalt des Multibytes, beginnend mit DE, wird abgespeichert be-

ginnend unter der Memory-Adresse, die sich ergibt, wenn man die

Summe aus der Adresse, unetr der das label aufgefithrt ist, und dem

Wert wvon ZAR bildet.

Bsp: STMD R34, X322, KEYBOAED mit der Hex-Codierung 5C 14 BY 02 FF
bdeutet, dafl, wenn RK32-33 den Inhalt Q002 haben, der Wert won
E34-35 unter der Adresse FFDZ4+Q0003=FF03, der Wert wvon R36-37
unter der Adresse FFU6 abgespeichert wird.

LDBEL DR, =lahel:

Codierung: BS .

Der Inhalc, der sich unter der Memory-Adresse befindet, die durch

den Inhalt der Memcry-Adresse festgelest wird, die sich bei label

befindet, wird nach DR geladen.

Bsp: LDBI R34, =KEYBOARD mit der Hex-Codierung 5C BS 02 FF bedeutet,
dafl, wenn sich unter der Adresse FFO2Z-FFO3 der Inhalt l1AGY be-
findet, der Inhalt, der sich unter der Adresse 1467 befindert,
ins Register 34 geladen wird.,

LDMI DR, =label:

Codierung: B9

Beginnend mit dem Inhalt, der sich unter der Memory-Adresse befinder,

die durch den Inhalt der Memory-Adresse festgelegt wird, die sich bed

label befindet, wird das Multibyte, beginnend mic DE, geladen.

Bsp: LDMI R36, =KEYBOARD mit der Hex—Codierung 3E B9 02 FF bedeutet,
dal}, wenn sich unter der Adresse FFO2-FFO3 der Inhalt 1467 be-
findet, der Tnhalt, der sich unter der Adresse 1ABT befindet,
ins Register 36 , der Inhalt der Adresse 1AGS ins Register
B geladen wird.

STBT DR, =label:

Codierung: B4

Der Inhalt des Registers DR wird unter der Memory-Adresse geladen,

die durch den Inhalt der Memory-Adresse festgelegt wird, die sich

bei label befindet.

Bzp: S5TET R34, =KLYBOARD mit der Hex-Codierung 5C BA 02 FF bedeutet,
dali, wenn sich unter der Adresse FFO2=-FFO3 der Inhalt 1AG7 be-
findet, der Inhalt von Register 34 unter der Adresse 1ADY ge-
speichert wird.

STMI DR, =lahel;

Codierung: BB

Der Inhalt des Multibytes, beginnend bei DR, wird beginnend unter

der Memory-Adresse geladen, die durch den Lnhalt der Memory-Adresse

Festpelepgt wird, die sich bei label befinder,

Bap: STMI R36, =KEYBOARD mit der Hex-Codierung SE BB 02 FF bedeutet,
daf, wenn sich unter der Adresse FFOZI-FFO3 der Inhalt 1AL/ be-
findet, der Inhalt von Register 36 unter der Adresse 1A67, der
Inhalt von Register 37 unter der Adresse LAGS gespeichert wird.

-

2-39

o) LDBI DR, XAR, label:

Codierung: BC

Der Inhalt, der sich unter der Memory-Adresse befindet, die durch

den Inhalt der Memory-Adresse festgelegt wird, auf die die Summe

von ¥AR und der Adresse von label zeigt, wird nach DR geladen.

Bsp: LDBI R34, X32, KEYBOARD mit der Hex-Codierung 5C 1A BC 02 FF
bedeuter, dali, wenn R32-33 den Inhalt 0003 haben und wenn sich
unter der Adresse FFO5-FF06 der Inhalt ESFD befindet, der Inhalt,
der sich unter der Adresse ESFD befindet, ins Register 34 gela-
den wird,

LDMI DR, XAR, label:

Codierung: BD

Beginnend mit dem Inhalt, der sich unter der Memory-Adresse befindet,

die durch den [nhalt der Memory-Adresse festgelegt wird, auf die die

Summe von XAR und der Adresse von label zeigt, wird das Multibyre,

beginnend mit DR, geladen,

Bsp: LDMI R36, X32, KEYBOARD mit der Hex-Codierung 5E 14 BD 02 FF
bedeutet, dalB, wenn E32-33 den Inhalt 0003 haben und wenn sich
unter der Adresse FFO5-FF06 der Inhalt ESF0 befindet, der Inhalt,
der sich unter der Adresse E5F0 befindet, ins Register 36, der

© Inhalt, der sich unter der Adresse ESFl befindet, ins Register
37 geladen wird.
p) STBI DE, XAR, label:

Codierung: BE

Der Inhalt des Registers DR wird unter der Memory-Adresse geladen,

die durch den Inhalt der Memory-Adresse festgelegt wird, auf die die

Summe aus XAR und der Adresse von label zeigt.

Bsp: STEL R34, ¥X32, EEYBOARD mit der Hex-Codierung 5C 14 BE 02 FF
bedeutet, dafi, wenn R32-33 den Inhalt 0003 haben und wenn sich
unter der Adresse FFD5-FFO6 der Inhalt ESFQ befindet, der Wert
des Registers 34 unter der Memory-Adresse ESF0 abgespeichert
wird.

STMI DR, XAR, lahbel:

Codierung: BF

Der Inhalt des Multibytes, beginnend bei DR, wird, beginnend unter

der Memory-Adresse, geladen, die durch den Inhalt der Memory-Adresse

festgelegt wird, auf die die Summe aus XAR und der Adresse von label-
zeligt.

Bsp: 5TMI R36, X32, KEYBOARD mit der Hex-Codierunmg SE 14 BF 02 FF
bedeutet, daBl, wenn R32-33 den Inhalt 0003 haben und wenn sich
unter der Adresse FFO5-FF06 der Inhalt ESFD befindet, der Wert
des Registers 36 unter der Memoryv-Adresse ESFD, der Wert des
Registers 37 unter der Memroy-Adresse ES5F1 abgespeichert wird.

6.3.4. Arithmetische und logische Funktionen:
a) Additionsbefehle:

ADB DR, AR:

Codierung: C2

Zum Inhalt von DR wird der Inhalt von AR addiert. Die Summe steht

nach der Operation in DRE.

Bsp: ADB R36, R32 mit der Hex—Codierung 5E 14 C2 bedeutet, daf
der Inhalt von Register 32 zum Register 36 addiert wird, Die
Summe R364R32 steht nach der Operation in Register 36.

Kurzform: DRE=AR+DR

ADE DR, =literal:

Codierung: CA

Zum Inhalt von DR wird die im literal-Feld stehende absoclute Zahl

addiert. Die Zumme steht nach der Operation in DR,

Bsp: ADBE R36, =124 mit der Hex-Codierung 3E CA 7C bedeutet, dafi,
wenn Register 36 als Inhalt 16 hat, die Operation 7C+16 ausge—
fithrt wird, und die Summe 92 ins Register 36 geschrieben wird.

ADM DR, AR:

Codierung: C3

2-40)

b)

Zum Inhalt des Multibytes, beginnend bei DR, wird das Multibyte,
beginnend hei AR, addiert. Die Summe der beiden Multibytes, befin-
det sich nach der Operation im Multibyte, beginnend bei DRE.

Bsp: ADM R36, R46 mit der Hex—Codierung 3E 26 C3 bedeutet, dall
zum Fegister 36 das Register 46, zum Register 37 das Register
47 addiert wird. Die Summe aus E36 und R46 steht nach der
Operation in R36, die Summe aus R37 und R47 in R37.

alM DR, =literal:

Codierung: CB

Zum Inhalt des Multibytes, beginnend bei DR, werden die im literal-

Feld angegebenen ganzen Zahlen addiert und die Summe im Multibyte,

beginnend bei DR, gespeichert.

Bsp: ADM R36, =0,124 mit der Hex—Codierung 3E CE 00 7C bedeutet, dali
zu Register 36 die 0, zum Register 37 die Zahl 124 addiert wird.
Die Summe aus dem Inhalt des Regiders 36 und der Zahl O wird
nach der Operation im Register 36 gespeichert, die Summe aus
dem Inhalt des Registers 37 und der ganzen Zahl 124 wird nach
der Operation im Register 37 gespeichert.

ADED DR, AR:

Codierung: DA

Zum Inhalt des Registers DR wird der Inhalt addiert, der an der Stel-

le des Memory zu finden ist, auf dessen Lokation das Register AR

zeigt,

BSE? ADBD R36, R46 mit der Hex-Codierung 5E 26 DA bedeutet, dafl, wenn
Register 46 Al und Register 47 EF enthdlt, und an der Stelle
EFAl im Memory sich der Inhalt 29 befindet, dieses hexadezi-
male 29 zum Inhalt von Register 36 addiert werden.

ADBD DR, =label:

Codierung: D2

Zum Inhalt von Register DR wird der Inhalt addiert und in DR gespei-

chert, der sich an der Stelle des Memory befindet, die durch das

label festgelept ist.

Bap: ADBD R36, =KEYBOARD mit der Hex-Codierung 5E D2 02 FF bedeutet,
dal} wenn sich unter der Adresse FFO2 ein Inhalt belindet, dieser
Inhalt zum Inhalt des Registers 36 addiert und in Register 36
gespeichert wird.

ADMD DR, AK: N

Codierung: DB

Zum Inhalt des Mulrtibytes, beginnend bei DE, wird der Inhalt addiert,

der sich beginnend mit den Stellen im Memerybereich befindet, auf die

die Fegister AR und AR+1 zeigen,

Bsp: ADMD R36, R46 mit der Hex-Codierung 5E 26 DB bedeutet, dal,
wenn Register 46 Al und Register 47 EF enth#lt, der Inhalt ,
der sich bei der Memory-Adresse EFAl befindet, zum Register 36,
der Tohalt, der sich bel der Memory-Adresse EFAZ befindet, zum
Fegister 37 addiert wird. Die Summen befinden sich im Register
36 bew, 37 (Verfahren wie oben}.

ADMD DR, =label:

Codierung: D3

Zum Inhalt des HMultibytes, beginnend bei DR, wird der Inhalt addiert,

der sich beginnend mit den Stellen im Memory-Bereich befindet, auf die

die Adresse des labels zeigt,

Bsp: ADMD R36, =KEYBOARD mit der Hex-Codierung SE D3 02 FF bedeutet,
dalfi der Inhalt, der sich unter der Memory—Adresse FFOZ befindet,
zum Inhalt des Registers 36 addiert und in Register 36 abgespei-
chert wird, der Inhalrt, der sich unter der Adresse IT03 befindet,
zum Inhalt des Registers 37 addiert und in Register 37 abge-
speichert wird,

Logische Operationen (AND):

ANM DR, AR:

Codierung: €7

Zwischen den Registerpaaren DRE-DE+1 und AR-AR+4| wird die logische

Operation AND durchegefiihrt, dh. es bleibt die 1 nur enthalten, wenn

die 1 in beiden Paaren an der gleichen Stelle wvorhanden ist.

2-41

Bsp: ANM R36, R46 mit der Hex—Codierung S5E 26 C7 bedeutet, dal bei
folgender Registerbelegung im Dualsystem folgendes Resultat

entsteht:
R36: 10101100 R37: 11101000
Ré6: 01011101 R4T 01110010
Resultat:
R36: Q0001100 R37: 01100000

ANM DR, =literal:

Codierung: CF

Zwischen den Registerpaaren DR-DR+l und den im literal-Feld stehen-

den ganzen Zahlen findet eine AND-Verkniipfung statt.

Esp: ANM R36, =34, 217 mit der Hex-Codierung 5E CF 22 D9 bedeutet,
dall folgendes Resultat entsteht:

R36: 10101100 R37: 11101000
=34 00100010 =217 11011001
Resultat:

R36: 00100000 R37: 11001000

ANMD DR, AR:

Codierung: DF

Zwischen den Inhalten der Register DE-DE+1 und dem Register, auf das

beginnend mit AR gezeigt wird, findet eine AND-Verkniipfung stact.

Bsp: ANMD R36, R46 mit der Hex—Codierung 5E 26 DF bedeutet, dal, wenn
Register 46-47 Al56 enthalten und an der Stelle 4l536 01011101,
an der Stelle Al57 01110010 als Inhalt stehen, folgendes Resultat
gebildet wird:

R36; 10101100 R37: 11101000
AlS6: 01011101 A157: 01110010
Resultat;:

R36: 00001100 R37: 01100000

ANMD DE, =label: :

Codierung: D7

Zwischen den Inhalten der Register DR-DE+l und dem Inhalt, der dort

zu finden ist, wo, beginnend mit der label-Adresse, der Pointer hin-

zeigt, Findet eine AND-Verkniipfung statt.

Bsp: ANMD R36, =KEYBOARD mit der Hex-Codierung 5SE D7 02 FF bedeutet,
dafl, wenn an der Adresse FFD2 der Inhalt 01011101 und an der
Adresse FFO3 der Inhalt 01110010 zu finden ist, folgendes Resul-
tat entsteht:

R36: LOL01100 R37: 11101000
FFOZ2: 01011101 FFO3: 01110010
Resultat:
R36: 00001100 R37: 01100000
Logische Operationen (OR):
ORB DR, AR:

Codierung: 94
Zwischen dem Register DR und AR findet eine OR-Verkniipfung statt.
Das Ergebnis wird nach DR ibertragen.
(OR=das Ergebnis wird dann 1, wenn wenigstens eine der beiden Aus-
gangszustdnde 1 war)
Esp: ORB R36, R46 mit der Hex-Codierung 3E 26 94 bedeutet, dafl sich
folgende FErgebnisentwicklung ergibt:
R36: 10101100
R4ap: 0OLO11101
Eesultat:
R36: 11111101
ORM DR, AR:
Codierung: 95
Zwischen dem Multibyte, beginnend mit DR, und dem Multibyte, beginnend
mit AR, findet eine OR-Verkniipfung statt. Das Ergebnis wird ins Multi-
byte, beginnend mit DR, iibertragen.
Bsp: ORM R36, R46 mit der Hex-Cedierung 5E 26 05 bedeutet, dall sich
folgende Ergebnisentwicklung ergibt:

d}

R36: 10101100 R37: 11101000

R4 01011101 R&4T . 01110010
Resultat:
R36; 11111101 B3V 11111010

Logische Uperationen (EXOR):

IRE TR, AR:

Codierung: 96

Zwischen dem Register DR und dem Register AR findet eine EXIORE-Ver-

* kniipfung statt. Das Ergebnis wird nach DR iibertragen.

e)

(EXOR=das Ergebni: ist nur dann 1, wenn heide Ausgangsbits verschieden
vUHEindeLI sind)
Bsp: XRB R36, R46 mit der Hex-Codierung 5E 26 96 bedeutet, daﬁ sich
felgende Ergebnisentwicklung ergibt:

R36: 10101100

RiG: 01011101

Eesultat:

E36: 11110001
XEM DR, AR:

Cudlerung a7

Zwischen dem Multibyte, beginnend mit DR, und dem Multibyte, beginnend

mit AR, findet eine EXOR-Verkniipfung statt, Das Ergebnis wird ins Mul-

tibvte, beginnend mit DR, iibertragen.

Bsp: XRM R36, R46 mit der Hex-Codierung 5E 26 97 bedeutet, dalfi sich
folgende Ergebnisentwicklung erpgibr:

R3t; 10101100 R37: 11101000
Raf: 01011101 R&7 . aL110010
Resultat:

R36 11110001 R37: 10011010

Vergleichsoperationen {(Compare):
Vergleiche gliedern sich in zwei Teile;
— der eigentli<he Yergleich, nach dessen Ergebnis der Zustand von
Z Statusbytes gesetzt wird,
— der Sprung bzw. die Auswertung dieses Vergleichs, die direkt aof
den 5tatus der beiden og. Bytes zurickgreift,
Man unterscheidet vier Arten von Vergleichen:
- Ist DR kleiner als AR, wird das Flag CY auf 0 gesetzt.
Ist AR kleiner oder gleich DR wird das TFlag CY auf 1 geselzt,
- Ist AR gleich DR, wird das Flag ZR auf 1 gesetzt.
- Ist AR ungleich DR, wird das Flag 2R auf 0 gesetzt.
In den eigentlichen Assemblerbefehlen kann man jetzt nur noch die
Werte angeben, die verglichen werden, Wie die Flags gesetzt werden,
ergibl sich dann von selbst. Die Regeln fiir das Setzen der Flags sind
auf jeden Fall bei all.. Assemblervergleichen gleich,
CME DR, AR:
Codierung: CO
hs findet ein Vergleich zwischen den Bytes DR und AR statt.
Bsp: CMB E36, R4H mit der Hex-Codierung 5E 26 CU bedeutet, daf
sich folgender Vergleich ergibt:
E3f: 10101100 Ré&H: oLo11IOL
Da Register 36 (=DR) grofer ist als R46 ({=AR) wird CY auf 1,
ZR auf 0 gesetzt.
CMB DR, =literal:
Codierung: CB
Es findet ein Vergleich zwischen dem Byte DR und der ganzen Zazhl
im literal-Feld statt.
Bsp: CMB R36, =217 mit der Hex-Codierung 5E C8 D9 bedeutet, dab
sich folgender Vergleich ergiber:
R3f: 10101100 =217 11011001
Da Register 36 (=DR) kleiner ist als die ganze Zahl 217 (=ima-
gindrer Inhalt von AR}, wird CY und ZR auf 0 gesetzt,
CMM DR, AR:
Codierung: C1
Es findet ein Vergleich zwischen den Multibytes, beginnend bei DR und
beginnend bei AR, statt,
2-43

Bsp: CMM R36, R46 mit der Hex-Codierung 5E 26 Cl bedeutet, daB sich

folgender Vergleich ergibt:

R3b: 10101100 R37: 11101000

Rab; Q1011101 R&47: 01110010

R3B&R3T : 1010110011 101000

R4BERALT 0101110101110010

Da Register R36&R37 grofier ist als R46&R4V, wird CY auf 1, 2R
auf (0 gesetzt.

CMM DR, =literal:

Codierung: C9 .

Es findet ein Yergleich zwischen dem Multibyte, beginnend bei DR, und

den ganzen Zahlen im literal-Feld statt,

Bsp: CMM R36, =217, 124 mit der Hex-Codierung 3E C9 D9 7C ledeutet, daf
sich folgender Vergleich ergibt:

R36: 10101100 R37: 11101000

=217: 11011001 =124: 01111100

R36&R37: 101011001 1101000

=217&=124: 1101100101111100

Da die ganze Zahl 217&124 grofier ist als das Multibyte R36&R37,
werden CY und ZR auf O gesetzt,

CMBD DR, AR:

Codierung: D8

Es findet ein Vergleich statt zwischen dem Byte DR und dem Byte im

Memory des Rechners, auf das AR zedigt.

Bsp: CMDR36, R46 mit der Hex—Codierung 5E 26 D8 bedeutet, dafB, wenn
R4b-R4T die Adresse AlBY enthalten und an der Adresse AlSY sich
der Inhalt E8 befindet, sich folgender Vergleich ergibt:

R36: 10101100

SALGT: 11101000

Da Register 36 kleiner ist als der Inhalt unter der Adresse Al67,
wird CY und ZR auf 0 gesetzt.

CMBD DR, =label:

Codierung:; DO

Es findet ein Vergleich statt zwischen dem Byte DE und dem Byte, das

unter der im label-Feld stehenden Adresse sich befindet.

EBsp: CMBD R36, =KEYBOARD mit der Hex-Codierung 5E DO 02 FF bedeutet,
dall, wenn sich unter der Adresse FF0DZ das Byte mit dem Wert AC
befindet, sich folgender Vergleich ergibt:

R36: 10101100

SFFO2: 10101100

Da Register 36 gleich dem Inhalt unter der Adresse FF02 ist, werden
ZF und CY auf 1 gesetzt.

CMMD DR, AR:

Codierung: DY

Es findet ein Yergleich statt zwischen dem Multibyte, beginnend mit

DE und den Bytes, die unter der Adresse beginnen, auf die AR zeigt.

Bsp: CMMD R36, R46 mit der Hex-Codierung 5E 26 D9 bedeutet, dafl, wenn
Register 4647 Al67 enthalten und unter der Adresse AlLGT sich der
Inhalt EB, unter Al68 der Inhalt AC befindet, sich folgender
Vergleich ergibt:

R36: 10101100 R37: 11101000
$A167: 11101000 $A168: 10101100
R36&R37: 1010110011101000

FALGTEFALISSE 1110100010101100
Da das Multibyte R3IBAR3T kleiner ist als das Mulitbyte JFALIGTASALGH,
werden CY und ZR auf O gesetzt.

CMMD DR, =label:

Codierung: D1

Es findet ein Vergleich statt zwischen dem Multibyte, beginnend mit

DE und den Bytes, die unter der im label-Feld angegebenen Adresse

beginnen,

Bsop: CMMD R36, =KEYBOARD mit der Hex—Codierung 5E DI 02 FF bedeutet,
daB, wenn sich unter der Adresse FFOZ das Byte mit dem Wert AC,
unter der Adresse FFD3 das Byte mit dem Wert EB befindet, sich
folgender Vergleich ergibt:

2-44

£)

g)

Iy

R36: 10101100 R37: 11101004

$FFO2: 10101100 SFFO3: 11101000

R36&R37: 1010110011101000

FEFO2&FFFO3: 1010110011101000

Da das Multibyte R36&R37 gleich dem Multibyte FFFQO2ZEFFO3 ist,
werden CY und ZR auf 1 gesetzt.

Inkrementierung (IC}:

ICE DE:

Codierung: 28

Bei Ausfiihren dieses Befehls wird das Register DE um 1 erhoht.

Bep: ICB E36 mit der Hex-Codierung 5E 88 bedeutet, dal zum Inhalt
von Register 36 1 addiert wird.

ICH DR:

Codierung: 89

Bei Ausfithrung dieses Befehls wird zu dem Multibyte DR-DR+1 die

Zahl 1 addiert, und das Ergebnis in dem Multibyte DRE-DR+l abgelegt,

Bsp: ICM R36 mit der Hex-Codierung 3E 89 bedeutet, dali zum Multi-
byte R36-R37 1 addiert wird. Das Ergebnis steht nach der Ope-
ration in den Registern R36-R37,

Decrementierung {DC):

DCE DR:

Codierung: 84

Bei Ausfiihrung dieses Befehls wird das Register DE um 1 erniedrigr.

Bsp: DCE R36 mit der Hex-Codierung 3E 84 bedeutet, dali der Inhalt
des Registers 36 um 1 erniedrigt wird.

DCM DR:

Codierung: 5B

Bei Ausfiihrung dieses Befehls wird der Inhalt des Multibytes DE-DE+1

um 1 erniedrigt.

Bsp: DOM E36 mit der Hex—Codierung 3E 8B bedeuvtet, dall der Inhalt
des Multibytes R36-E37 um 1 erniedrigt wird.

Zweier—-Komplement

TCE DR:

Codierung: 8C

Bei Ausfilhren dieses Befehls werden alle Einsen im Register DR

durch Wullen, alle Nullen in DE durch Einsen ersetast,

Bsp: ICE R36 mit der Hex-Codierung 3E BC bedeutet, dalB, wenn Hegister
36 den TInhalt DB enthilt, sich folgende Umwandlung ergibt:
R36: 1101 1011

QOLD 0100
Nach der Umwandlung enthdlt Register 36 also den Inhalt 24,

TCM DR:

Codierung: 2D

Bei Ausfilhren dieses Befehls werden alle Einsen im Multibyte DR-DE+1

durch Nullen, alle Nullen durch Einzsen ersetbzl,

Bep: TCM B30 mit der Hex-Codierung SE 8D bedeutet, dal}, wenn das
Register 36 den Inhalt DB, das Register 37 den Inhalt 3E besicet,
sich folgender Verlauf ergibt:

R36: 1101 1011 R37: 0101 1110
0010 0100 L3110 aool

Mach der Umwandlung besitzt Register 36 alse den Lnhalt 24,

Regisrer 37 den Inhalt Al.

i) Meuner-Komplement:

1. Im BIN-Modus:
Im bindren Modus verhalten sich die beiden folgenden Operationen
wie die &quivalente Operaticn im Zweier-Komplement,

2. Im BCD-Modus:
KCB DR:
Codierung: 8E
Man erhdlt den Wert der beiden Halbbytes des Registers DR, wenn man
den urspringlichen Wert der Halbbytes jeweils von hexadezimsl 9
subtrahiert,
Bsp: NCB E36 mit der Hex-Codierung 3E 8E bedeutet, dall sich fol-

gender Verlauf ergibt:

2-45

i)

R36: 1001 0110 entspricht hexadezimal 96
Zieht man 96 von 99 ab, so ergibt sich mit 03 der neue Inhalt
des Registers 36, E

NCM DR:

Codierung: 8F

Man erhdlt die Werte der beiden Bytes DR-DR+l, indem man die urspriing—

lichen Werte von jeweils 99 subtrahiert,

Bsp: NCM R36 mit der Hex-Codierung 5E 8F bedeutet, daf sich folgender
Verlauf ergibt:

R36: 1001 Q110 R37; 0101 0111

99-96=03 99-57=42
Mit 03 fiir das Register 36 und 42 fiir das Register 37 stehen die
neuen Inhalte fest,

Subtraktionsbefehle:

Man unterscheidet zwei Modi, in denen diese Befehle wirken:

I. Im BIN-Modus:

In diesem Fall wird von der Zahl, die subtrahiert wird, das Zweier-—
komplement gebildet (Umwandlung siehe oben unter Punkt £).

2. Im BCD-Modus:

In diesem Fall wird von der Zahl, die subtrahiert wird, das Neuner-
komplement gebildet (Umwandlung siehe oben unter Punkt a3,

Auf die Unterscheidung zwischen diesen beiden Fdllen verzichte ich

bei der ndheren Erklirung der Assemblerbefehle. Man kénnte die Sub-

traktion auch als Addition zwischen der einen Zahl und dem Homplement
der anderen Zahl auslegen.

SBB DR, AR:

Codierung: C4

Bei dieser Operation wird zum Inhalt des Registers DR das Komplement

des Registers AR addiert.

Bsp: SBB R36, R3Z mit der Hex-Codierung 5E 1A C4 bedeutet, dal
der Inhalt des Registers 36 und das Komplement des Registers
32 addiert und in Register 36 abgelegt werden.

BB DR, =literal:

Codierung: CC

Bei dieser Operation wird zum Inhalt des Registers DR das Komplement

der ganzen Zahl, die im literal-Feld zu finden ist, addiert.

Bsp: SBE R36, =124 mit der Hex-Codierung S5E CC 7C bedeutet, dali zum
Inhalt von Register 36 das Komplement von 124 (hex 83 im BIN-Mo-
dus, hex 4B im BCD-Modus) addiert wird.

SBED DR, AR:

Codierung: DC

Zum Inhalt des Registers DR wird das Komplement des Inhaltes addiert,

der an der Stelle des Memory zu finden ist, auf dessen Lokation das

Register AR zeigt.

Esp: SBED R36, R46 mit der Hex-Codierung 5E 26 DC bedeutet, dali, wenn
Register 46 Al und das Register 47 EF enthilt, und an der Stelle
EFAl im Memory sich der Inhalt 29 befindet, das Komplement von 29
{hex D6 im BIN-Modus, hex 70 im BCD-Modus) zum Inhalt von Regis-
ter 36 dazuaddiert wird.

SBBD DR, =label: Codierung: D4

Zum Inhalt des Registers DR wird das Komplement des Inhaltes addiert,

der an der Stelle des Memory zu finden ist, die durch das label fest-

gelegt ist.

Bsp: SBED R36, =KEYBOARD mit der Hex-Codierung SE D4 02 FF hedeutet,
dali, wenn sich unter der Adresse FFOZ ein Inhalt befindet, das
Komplement dieses Inhaltes zum Inhalt des Registers 36 dazuaddiert
wird.,

SBM DR, AR:

Codierung: C5

Bel dieser Operation wird zum Inhalt des Multibytes, beginnend mit

Register DR, das Komplement des Multibytes, beginnend bei AR, addiert.

Bsp: SBM B36, R46H mit der Hex—Codierung SE 26 C5 bedeutet, dall zum
Fegister 36 das Komplement des Registers 46, zum Register 37 das
komplement des Registers 47 addiert wird.

2-46

6.3.5.

o

B3 7,

6,3.8.

5BM DR, =literal;

Codierung: CD

Zum Inhalt des Multibytes, beginnend bei DR, werden die Komplemente
der im lireral-Feld angegebenen ganzen Zahlen addiert.

SEMD DR, AR:

Codierung: DD

Zum Inhalt des Multibytes, beginnend bei DR, wird das Fomplement des
Inhaltes addiert, der sich, beginnend mit den Stellen im Memorvhereich
befindet, auf die die register AR bis AR+l zeigen. '

SEMD DE, =label:

Codierung: DS

Zum Inhalt des Multibytes, beginnend bei DR, wird das Eomplement des
Inhaltes addiert, der sich beginnend mit den Stellen im Memorv-Bereich
befindet, auf die die Adresse des labels zeigt,

Modus-Funktionen:

Nachdem nun in den letzten Befehlen die Rede von den zwei Modi ECD und

BIN war, mu} nun gekldrt werden, wie man in diese beiden Modi lkommt .

BIN:

Codierung: 98

Mit Hilfe dieses Befehls wird der Rechner in den bindren Modus gesetzt,

Dies bedeutet, dali er die folgenden Assemblerbefehle nur im bindren Modus

abarbeitet.

BCD;

Codierung: 499

Mit Hilfe dieses Befehls wird der Rechner in den BCD-Modus umgeschaltet.

Dies bedeutet, dal der Rechner die folgenden Assemblermbefehle nur im BCD-

Modus abarbeitet,

Clear-Befehle;

CLE DE:

Codierung: 92

Mit Hilfe dieses Befehls wird das Register DR geléscht.

Bsp: CLB R36 mit der Hex—Codierung S5E 92 bedeutet, daB das Register 36
gelischt wird. Dies bedeutet, daB dem Register 36 der Inhalt O zu-
gewiesen wird.

CLM DE:

Codierung: 93

Mit Hilfe dieses BeTehls wird das Multibyte, beginnend mit Register DR,

geldscht,

Bsp: CLM R36 mit der Hex-Codierung 5E 93 bedeutet, dal die Register 36
und 37 geldscht werden, dh., den Wert O erhalten.

Befehle mit dem E-Register (extend-Register):

CLE:

Codierung: 9D

Die ersten 4 Bits des extend-Registers erhalten den Wert 0000,

ICE:

Codierung: 9C

Der Inhalt des extend-Registers wird um 1 erhiht.

DCE:

Codierung: SB

Der Inhalt des extend-Registers wird um 1 ernisdrigt,

Weitere Einzelheiten zu diesem Zuo-tzregister im Kapitel 1 unter Punkt 1,

Fointerbefehle:

LOREP DE:

Codierung: zwischen 40 und 7F

Direkt in die Befehlscodierung aufgenommen ist die Codierung fir das

FRegister, und zwar in der Weise:

die ersten beiden Bits der Codierung sind immer 01, die folgenden Bits

ent’..lten den Wert des Registers DR in der gewohnten Weise.

Ezp: DRP R3&
oktal 36 entspricht bhinir: 0G01 1110
Bit & und Bit 7 erhalten den Wert 01,
damit ergibt sich fiir die Codierung des Befehls DRP R36:

0101 1110, also hexadezimal SE

2-47

6.3.9.

ARP AR:

Codierung: zwischen 00 und 3F

Direkt in die Befehlscodierung aufgenommen ist die Codierung fir das

AR-register, und =zwar folgendermalBien:

Die ersten beiden Bits der Codierung haben den Wert 00, die folgenden

Bits enthalten den Wert des Registers AR in der gewohnten Weise.

Bsp: ARP R36
oktal 36 entspricht binar: OO0l 1110
Bit 6 und Bit 7 enthalten den Wert 00,
damit ergibt sich fir die Codierung des Befehls ARP R36:

0001 1110, also hexadezimal 1E,

Sprungbefehle:

JHMP, literal:

Codierung: FO

Dieser Sprung ist unabhdngig. Immer wenn dieser Befehl erfolgt, wird ein

Unterprogramm aufgerufen.

JHO, literal:

Codierung: FIL a

Ein Sprung erfolgt, wenn bei einer (Operation ein Ubertrag erfolgte.

(wenn ein Ubertrag erfolgt, wird das Flag OVF (Overflow) auf 1 gesetzr.

JPS, literal:

Codierung: F5

Der Sprung erfolgt, wenn die Operation EXOR zwischen den Flags OVF

{Beschreibung siehe oben) und NG (NG ist 1, wenn eine Zahl bazw, ein

Resultat, Ergebnis einer Operation negativ ist) den Wert 1 hat. Anson-

sten erfolgt kein Sprung.

JNG, liceral:

Codierung: F4

Der Sprung erfolgt, wenn die Operation EXOR zwischen den Falgs OVE und

NG den Wert O hat. Ansonsten erfolgt kein Sprung.

Bsp: Im Anzeigeregister steht die Zahl 1 1001 0010, was bedeutet, dall
die Zahl negativ ist (1 in Bit 8 von rechts), und dall ein Ubertrag
stattgefunden hat (I in Bit 9 von rechts). Nach der Cperation
EX0OR mit 2 Einsen erhilt man als Ergebnis die 0.

Folgt der Operation, mit der die negative Zahl ins Anzeigeregister
kam, der Sprungbefehl JNG, so erfolgt auch der Sprung nach der an-
sesehenen Adresse.

JRZ, literal:

Codierung: FE

Ein Sprung erfolgt, wenn das dullerst rechte Digit den Wert O hat. An-

sonsten erfolgt kein Sprung.

JEN, literal:

Codierung: FI

Ein Sprung erfolgt, wenn das dullerst rechte Digit einen Wert ungleich

0 hat.

JLZ, literal:

Codierung: FC

Ein Sprung erfolgt, wenn das dulerst linke Digit im Anzeigeregister den

Wert O hat,

JLN, literal:

Codierung: FD

Ein Sprung erfolgt, wenn das Huferst linke Digit in der Anzeige einen

Wert ungleich O hat.

JEZ, literal: Codierung: F9

Ein Sprung erfolgt, wenn das E-Register (extend-Register) den Wert O

besitzc.

JEN, literal:

Codierung: FB

Ein Sprung erfolgt, wenn das E-Register einen Wert ungliech 0O als Inhalt

hat.

JCD, literal:

Codierung:; F2

2-48

Ein Sprung erfolgt, wenn die Zahl im Anzeigeregister ungerade ist.
JEV, literal:
Codierung: F3
Ein Sprung erfolgt, wenn die Zahl im Anzeigeregister gerade ist.
JCY, literal:
Codierung: FB
Ein Sprung erfolgt, wenn das Flag CY den Wert 1 hat. CY nimmt diesen
Wert bei Vergleichen an, wobel der Operand im Datenregister griller
oder gleich dem Operanden im Adrefregister ist. Ndhere Einzelheiten
bei den Vergleichsbefehlen (Compare).
JNC, literal:
Codierung: FA
Ein Sprung erfolgt, wenn das Flag CY den Wert O hat. CY nimmt den Wert
0 an, wenn bei Vergleichen der Operand im Datenregister kleiner ist als
der Operand im Adrefiregister. Nihere Einzelheiten hei den Vergleichs-
hefehlen (Compare),
JSB, label:
Codierung: CE
Es erfolgt der Aufruf eines Unterprogrammes, das sich im Betriebssystem
oder im RAM-Bereich des Rechners befindet. Diese Unterprogramme enden alle
mit dem Befehl RTN, was bedeutet, dall ein Riicksprung zum Befehl erfolgt,
der sich hinter dem JSB-Befehl befindet. Im J5B-Befehl gibt das label
die Adresse an, unter der das gewiinschte Unterprogramm zu finden ist.
JEB XR, label:
Codierung: C&
Es erfolgt, wie beim JSB-Befehl, der Aufruf eines Unterprogrammes, mit
der Ausnahme, dali der Rechner sich bei diesem Befehl noch die Adresse,
unter der das Unterprogramm zu finden ist, selbsat errechnen mufi, dh, die
Adresse ist variabel., Die Adresse, unter der das Unterprogramm steht,
wird errechnet, indem zu dem Wert des labels noch den Wert won XR-XE+1 da-
zil addiert,
JNZ, literal:
Codierung: F§
Dieser und der folgende Befehl dienen zum Simulieren der IF-THEN und
der FOE-TO-Anweisung.
a) Simulieren der IF-THEN-Anweisung:
Vor dem Sprung-Befehl steht dabei ein Vergleichsbefehl. 5ind die Operan-
den beim Vergleich gleich, so wird das Flag ZR auf 1 gesetzt, ansonsten
auf 0. Der nun auf den Vergleichsbefehl folgende JNZ-Befehl fihrt nur
dann zu einem Sprung, wenn das Flag ZR den Wert O hat.
b) Simulieren einer FOR-TO-Anweisung:
Vor dem Sprungbefehl steht hierbei ein Befehl, bei dem ein Byte oder
Multibyte decrementiert oder inkrementiert wird. Hat das Byte, das
in diesem Befehl erhéht oder erniedrigt wurde, den Wert O erreicht,
wird das Flag ZR auf 1 gesetzt. Ist sein Wert ungleich 0, so hat ZR
den Wert 0. Der nun folgende JNZ-Befehl fithrt nur dann zu einem Sprung,
wenn das Falg ZR den Wert 0 hat.
JZR, literal:
Codierung: F7
Wie oben erwdhnt dient auch dieser Befehl zum Simulieren der IF-THEN-
sowie der FOR-TO-Anweisung. Die Simulation erfolgt wie beim JNZ-Befehl
erwihnt:
a) Simulieren einer TF-THEN-Anweisung:
Vor dem Sprungbefehl steht hierbei ein Vergleichsbefehl. Je nachdem
wie das Ergebnis des Vergleiches aussieht, wird das Flag ZR gesetzt
(Sind die Operanden gleich wird ZE=1, sonst isc ZR=0), Ein Sprung
mit dem JZR-Betfehl erfolgt, wenn das Flag ZR den Wert 1 hat,
b} Simulieren einer POR-TO-Anweisung:
Vor dem Sprungbefehl steht hierbei ein DC- oder ein IC-Befehl.
Hat der Operand in diesem Befehl den Wert O erreicht, wird ZR auf 1
gesetzt, ansonsten hat es den Wert 0. Der Sprung mit dem JZR-Befehl
erfolegt, wenn der Operand den Wert O, db, 2R den Wert 1 hat.

2-49

6.3.10. Stackbefehle:
RETN;
Codierung: SE E
Dieser Befehl steht hinter jedem Unterprogramm und zum AbschluB der
Hauptteile eines Assemblerprogrammes. Bei Ausfiihrung dieses Befehls
wird der return-stack-Pointer uym 2 erniedrigt, und die return-Adresse
in den Programmzihler geschrieben.
SAD:
Codierung: 94
Bei Ausfihrung dieses Befehls werden 3 Bytes in den 3tack gebracht,
um den Status des Rechners zu speichern. Dabei enthalten die
einzelnen Bytes folgende Informationen:
Byte l: Bit 0-5 Wert won ARP

Bit & Wert des CY-Flags

Bit 7 Wert des OVF-Flags
Byte 2: Bit 0-5 Wert von DRP

Bit & Wert des DCM-Flags {ndheres siehe in Kapitel 1)

Bir 7 Wert des OVF-Flags
Byte 3: Bit 0 Wert von LSB

Bit 1 Wert des RDZ-Flags

Bit 2 Wert des ZR-Flags

Bit 3-5 Werte O

Bit & Wert des LDZ-Flags

Bit 7 Wert von MSB

Der Stack-Pointer wird bei Ausfiihrung dieser Funktion um 1 erhsht, insge-
samt 3-mal. Der Status selbst wird durch diese Funktion nicht verindert.
PAD:

Codierung: 9F

Bei Ausfiihrung dieser Funktion wird ein Status hergestellt, iber den
Informationen in 3 Stackregistern enthalten sind.

ARP: Byte 1, Bir 0-=5

LRFP: Byte 2, Bit 0-5

OVF: Byte 1, Bit 7 oder Byte 2, Bit 7
CY Byte 1, Bit 6

DCM: Bvte 2, Bit 6

LSE: Bvte 3, Bit O

EDZ: Byte 3, Bit 1

ZR : Byte 3, Bit 2

LDZ: Byte 3, Bit o

MSB: Byte 3, Bit 7

Der Stack-Pointer wird bei Ausfithrung dieser Funktion um 1 erhoht, insge-
samt 3-mal,

TSB DE:

Codierung: 90

Der Status des Inhaltes eines Registers DR wird getestet, Je nachdem, wie

der Test ausfallt, werden Statusindikatoren gesetzt:

DCM: wird gesetzt, wenn der Inhalt im BCD-Modus vorliegt, sonst Wert O,

E : keine Wirkung

CY : wird in jedem Fall geléscht (Wert D}

OVF: wird in jedem Fall geldscht (Wert 0)

0D : erhdlt den Wert des Bits O innerhalb des Registers DR

NG : erhdlt den Wert des Bits 7 innerhalb des Regizsters DR

ZE : erhdlt den Wert 1, wenn das Register DR leer ist, sonst den Wertc O

LDZ: haben die Bits 4-7 den Wert 0000, so hat LDZ den Wert l, sonst Q.

RDZ: haben die Bits 0-3 den Wert 0000, so hat RDZ den Wert 1, sonst 0.

Bsp: TSB R36 mit der Codierung 5E 90 bedeutet, daf sich folgender Test
ergibt, wenn Register 36 den Inhalt 0000 1011 hat.

DCY Wert 1(BCD-Modus), Wert O(BIN-Modus)
E keine Wirkung

eY Wert O

OVE Wert O

oD Wert 1

MG Wert ()

ZR Wert O

2-50

6.3.11.

LDZ Wert 1
RDZ Wert 0

TSM DR:

Codierung: 91

Der Status des Multibvtes DR=-DR+1 wird getestet. [Me Statusindikatoren

werden gesetzt, wie bei T5BE DE.

Unterschiede:

00 : erhdlt den Wert des Bits 0 innerhalb des Registers DR+1

ZE : erhdlt den Wert 1, wenn die Register DR und DE+]l leer sind, sonst O

LDZ: haben die Bits 4-7 des Registers DR den Wert 0000, so hat LDZ den
Wert 1, sonst 0.

RDZ: haben die Eits 0-3 des Registers DE+1 den Wert 0000, so hat RDZ den
Wert 1, sonst 0.

Bsp: TSE R36 mit der Hex—Codierung 5E 91 hedeutet, daB sich folgender Test
ergibt, wenn Register 36 den Inhalt 0100 0011 und Register 37 den In-
halt Q000 1011 hat:

DoM Wert 1 (BCD-Modus), Wert O {BIN=Modus)
E keine Wirkung

CY Wert 0O

OvFE Wert O

oo Wert 1

NG Wert [

ZR Wert 0

LDZ Wert 0

RDZ Wert 0

Verschiebebefehle:
a) Logiache Verschiebung:
LLE DRE:
Codierung: 84
Der Inhalt des Registers DR wird um | Bit nach links verschoben. Dabei
finden folgende Verschiehungen statc.
7.Bit des Registers DR kommt nach CY
6.Bit des REngtE”S]R kommt ins 7.Bit des ﬂeglsters DR

5.Bit " " O6,.Bit

\{L.Blt 1t ri 11 1r 1m" .:I.Blt] it ar
S.B-j_t 10 Pt 11 1f 11 ‘{I-.Bit (] 1" 1r
deBaes M i w i " FiBdie N e "
J__Bit. 19 P i 18 11 2_Elit [§]] iF
G.E‘lt " r n AL} [R] E.Blt] n 1"

Danach wird das 0.Bit des neuen Registers DR gel&scht.
EBsp: LLB R36 mit der Hex-Codierung 5E 84 bedeutet enn Register 26 den
Inhalt 1100 0OL11 hat, findet folgende Verschiebung statb:

Y RA6
1000 111
LI+ DR:

Codierung: 85

Der Inhalt der Register DRE=DE4]1 wird um | Bit nach links verschoben.
Dabei finden folgende Verschiebungen statt.

CY erh8lt den Wert des 7.Bits des Registers DR+l

Das 7.Bit des ?eglsters DE+1 erhdlc den Wert des 6.Bits dcs Registers DR
L] El 'Hlt_ L3 1F L] L] " _:I .EILL"’J 1"
ST T i ' x Y " 4.Bits " i
i B o b i " G.Bies ¥ !
- o i L ") T OZiBEEE b e
" E,B'lt FI " ir " " " " E,.Bit.S " '
"]_..Bit. ri AL iF " " i M D,EJ‘.L& 1r L
WE R L M E M " 7.Bits des Registers DR
Das 7.Bit des Registers DR erhdlt den Wert des 6.Bits des Reglsters DH
" &,Bic M " " " " " W S.Bitg
Fi I'}'ai:.- 1r n 1® ir " " n |'f|. Blts ar r1 i
L) I'I:liEi: 1" ri n 1% i A1 " 3 BLt h 1" L) n
ir 3.]3‘] t iL 3} 1" L] n n n 2 E-I_CE i1 iF n

+1

Das 2.Bit des Reglsters DR erhdlt den Wert des 1.Bits des Reglsters DR

L:Big: " i 1 i " D.Bits
" g.Bir " n " 1" " 1" 0.
LRB DR:

Codierung: 86

Der Inhalt des Registers DR wird um 1 Bit nach rechts verschoben. Dabei

finden folgende Verschiebungen stact.

CY erhdlt den Wert des 0.Bits des Registers DR

Das 0,Bit des Reglsters DR erhdlt den Wert des 1.Bits des Eegisters DR
L1} Lk [}

s R A L " 2.Bits

Ll ErB.Lt 1m " L4 11 LI LL] Fi 3|Bits 1 11 fr
L 3 Bit LAl 4] r m ' L1 LA £|' BitS AL m L
L "SI- Bit LAl 1 " LAl i Ll r 5 Bits 1" " L
LU EgBit Ll I Ll ™ L1 1 T E.Bits 1 M Ll
L1 6 nBit L] L L1 i1 L1 LA Ft 'II-Ir ; EitS 1 3] L}
L1 ?nBit i 1t L1 i L1 i D‘

Bsp: LEB R36 mit der Hex-Codierung 5E 86 bedeutet: Wenn Register 36 den
Inhalt 1100 0111 hat, findet folgende Verschiebung statt:

CY CR36
0110 0011 im BIN-Modus
LRM DR:

Codierung: 857

Der Inhalt der Register DE bis DE+] wird um 1 Eit nach rechts verschoben.
Dabei finden folgende Verschiebungen statt.

CY erhdlt den Wert des 0.Bits des Registers DR

Das 0.Bit des Reglsters DR erhdlt den Wert des 1.Bits des Reglsters DR

" 1.Bit " e " 2.Bits
1% E.Blt L1 L1} i iF A} L i1 j.ﬂlts It AL} [
n B.Eit I L13 1 L1} 1 Ft 1 4¢Bits it L1} 1
i &‘Eit L L1} " L " i3 n EQEitS T 1r n
i 5-Eit L1 L1} m 1r n T AL} E‘I.Eits r L1 n
[} 6|Bit i1 L1 i iF T L1} i1 ?.Eits 4] L1 L]
o Ree M Y " i L " D,Bits des Registers DR+l
Das 0.Bit des Registers DR+1 erhdlt den Wert des 1.Bits des Reglbters DR+l
LAk 1.Bit .1:'_,. Ll n 1 ir 2 El-l. tE—
.t 1 " " w " " " 3.Bits " " "
1r B.Bit AL} n i ir M Ft 18 'ﬂ-.BiES Ft L1} M
ir "l:I'..B-Lt 1} Lk rt L1 &} e 10 S.Eits rr ir R
LL S.Bit n " L1 ir P L3 11 6‘511_’5 Ft 1k M
" g.Bic " i i i ") " 7.Bits " " "
L1} ?;biL n 1 L1 L1 ik L1} 'I:}.
Erweiterte Verschiebung:
ELB DR:

Codierung: 80
Der Inhalt des Registers DR wird um & Bit nach links verschoben, Dabei
findet folgende Verschiebung statt. (im BCD-Modus, Erkliarungen spiter).
E erhdlc den Wert der Bits 4-7 des Registers DR,
Die Bits 4-7 des Registers DR erhalten den Inhalt der Bits (-3 wvon DR
Die Bits 0-3 des Registers DR erhalten den urspringlichen Inhalc von E.
Bsp: ELB R36 mit der Hex-Codierung 5E 80 bedeutet: Wenn Register 36 den
Inhalt 1000 000 und das Register E den Inhalt 0001 besitzt, sao
findet folgende Verschiebung statt:
R36 E

[oooo oool] [1ooof im BCD-Modus

ELM DR:

Codierung: 81

Der Unterschied zu dem Befehl LLM DR hesteht darin, daB das @.Bit des
Registers DR den urspringlichen Wert von CY erhilt,

ERB DR:

Codierung: 82

2-52

£

Der Unterschied zu dem Befehl LRB DR besteht darin, daf bei ERB DR
das 7.Bit des Registers DR den urspriinglichen Wert ven CY erhilt.
EEM DE:
Codierung: 83
Der Unterschied zu dem Befehl LEM DR hbesteht darin, daf® bei EEM DR
das 7.Bit des Registers DE+l den urspriinglichen Wert veon CY erhilt.
Zusatzbemerkungen:
Man unterscheidet bei den Verschiebebefehlen zwei Arten, je nachdem
in welchem Modus die Verschiebung passiert.
- Verschiebung im BIN-Modus:
Die Verschiebung findet zwischen dem Byte oder Multibyte, beginnend
mit DR, und dem Inhalt des Flags CY um 1 Bit statt {siehe Beschreibung
LRE DR, LEM DR, ELM DR, ERB DR, ERM DR, LLBE DR und LLM DR).
= Verschiebung im BCD-Modus:
Die Verschiebung findet zwischen dem Byte cder Multibyte, beginnend
mit DR, und dem Register F um 4 Bit statt (siche Beschreibung von
ELB DR).

6.3.12, Stack-Adressierung:

a)

b)

Stack-Instruktionen:

In der Srack-Adressierung, dient ein Registerpaar als Pointer zuf den
Stack im Memory des Rechners. Am Kepf des Stacks findet ein Laden oder
cpeichern statt, und das Registerpaar wird vergréfiert oder verkleinert,
bis der neue Kopf des Stacks nach der Stackverschiebung erreicht ist.
Man unterscheidet Befehle, die Daten in den Stack im Hauptspeicher
laden, und Befehle, die Daten aus dem Stack im Hauptspeicher herauslesen.
Diese Stacks kénnen indirekt oder direkt adressiert werden.
Stack-Adressierung:

Man kann einen Stack adressieren von einem beliebigen CPU-Registerpaar
aus. Die Register & und 7 sind durch die Hardware vorbestimmt, dal sie
immer auf den Stack zeigen, in dem die Riicksprungadresse bei einem
Unterprogrammaufruf gespeichert ist. Dieser Stack hat eine GraBe von
312 Bytes. Wird ein Unterprogramm aufgerufen, wird automatisch eine
Adresse in den Stack geladen, und zwar die Adresse, auf der der Rechner
vor dem Aufruf des Unterprogrammes gerade stand. Beim Riicksprung wird
der Programmzihler wieder automatisch mit der Adresse aus dem Stack ge-
laden, die an der Spitze des Stacks steht, dh. von der der letzte Aulruf
ausgegangen war. Dieses Laden der Riicksprungadresse in den-frogrammzah-
ler bewirkt, dali das Programm mit dem Befehl hinter dem Unterprogrammauf-
ruf wieder fortgesetzt wird. Der Stack E& wird auch durch die SAD- und
FAD-Instruktion beeinflufit, da in ihm auch eines der drei Bytes verar-
beitet wird.

Es gibt noch einen weiteren Stack, der die Systemrovtinen eines Pro-
grammes leicht beeinflussen kann: der Uperationsstack in den Registern
12 und 13, Dieser Stack wird dazu benutzt, Parameter zwischen den System-
roubinen eines Programms hin- und herzuschieben.

Stacks konnen vergrifert oder verlkleinert werden., Ein wachsender Stack
ist ein Stack, der gefiillt wird in Richtung zu hiheren Memorvadressen
hin, und der Daten abgibt in Richtung zu kleineren Memoryadressen,

Ein Fallender Stack ist ein 3tack, der gefillt wird in Richrung zu
niedrigeren Memoryadressen hin, und der Daten sbegibt in Richtung =u hi-
heren Memorvadressen hin. [Im Verwirrungen sich zu ersparen, sollte man
fiir wachsende und fallende Stacks jeweils getrennt nur eine Art von Be-
tehlen benutzen, dh, Uberschneidungen zwischen wachsendem und fallendem
Stack zu vermeiden,

Bei Stackadressierungen ist der Stackzediger im Register AR enthalten.
Sein Yorzeichen gibt an, ob wachsender {+) ocder fallender (-} Stack.
Fir Stack wird aktiviert, indem man den Pointer ARP auf die Position
des Stackpointers selzt.

Bei einem wachsendem Stack mull das Register AR auf die Position im
stack gesetzt werden, die unmittelbar auf die sugenblickliche Position
folgt. Bei einem fallendem Stack muf das Register AR aul die momentane
Position des Stack-Pointers zeigen,

=53

¢} Adressierungsformen der Stackadressierung:

1. direkte Adressierung:
In dieser Adressierungsform wird der Stack veranlaft, Daten zu
enthalten. Speichern in den Stack bedeutet zugleich Fiillen des
Stacks, Laden aus dem Stack bedeutet zugleich Leeren des Stacks.
Zum Speichern in einen wachsenden Stack zeigt AR auf die Stelle,
wo Daten abgespeichert werden miissen. Wihrend des Speichervorgangs
wird AR bei jedem Byte, das eingelesen wird, um 1 erhohr.
Zum Laden aus einem wachsenden Stack wird AR zuerst um die Anzahl
der zu lesenden Bytes erniedrigt. Dann zeigt bei jedem Lesevorgang
AR auf die Position, von der Bytes geladen werden,
Zum Speichern in einen fallenden Stack, wird AR zuerst um die An-
zahl der zu speichernden Bytes erniedrigt. Danach werden die Daten
in die Stackpositionen geladen. Nach dem Laden wird AR wider um 1
erniedrigt. Dies geht solange bis alle Bytes geladen sind.
Zum Laden aus einem fallenden Stack zeigt AR auf die Stelle, von
der an Daten gdesen werden, Wihrend des Lesevorgangs wird AR immer
um 1 erhéht, bis sdmtliche Daten eingelesen sind.

2. indirekte Adressierung:
In dieser Adressierungsform wird der Stack veranlalBt, eine Liste
von Adressen zu enthalten. Diese Adressen wiederum zeigen auf die
Stellen im Memory des Rechners, von dem Daten gelesen oder in den
Daten gespeichert werden sollen.
Zum Speichern in einen wachsenden Stack, zeigt AR zur effektiven
Adresse., Nach dem Speichern, wird AR immer um 2 erhéht.
Zum Laden aus einem wachsenden Stack wird AR zuerst immer um 2
erniedrigt, damit es auf die effektive Adresse zeigt. Danach wird
die effekrive Adresse in das CPU-Register geladen, das durch den
Wert im DRF innerball des Assemblerbefehls festgelegt wird.

d} Die Befehle in Zusammenhang mit einem wachsendem Stack:

FUBD DR, +AR:

Codierung: E4

Dieser Befehl dient zum direkten Speichern in den Stackbereich. Dabei

wird AR nach jedem Byte um 1 erhshe,

FUMD DR, +AR:

Codierung: E5

Dieser Befehl dient zum Speichern eines Multibytes direkt in den Stack-

bereich. Dabei wird AR um 1 erhisht,

PFUBI DR, +AR:

Codierung: EC

Dieser Befehl dient zum indirekten Speichern einer Adresse in den Stack-

bereich. Dabei wird AR nach jeda Adresse um 2 erhoht,

FUMI DR, +AR:

Codierung: ED

Dieser Befehl dient zum indirekten Speichern eines Multibytes in den

Stackbereich. Dabei wird AR nach jeder Adresseum 2 erhshr.

FOBD DR, =-AR:

Codierung: E2

Dieser Befehl dient zum direkten Laden eines Bytes aus dem Stackbereich.

Dabei wird AR vor jedem Ladevorgang um 1 erniedrigt.

FOMD DR, -AR:

Codierung: E3

Dieser Befehl dient zum direkten Laden eines Multibytes aus dem Stack-

bereich. Dabei wird AR vor jedem Ladevorgang um 1 erniedrigt.

POBI DR, -AR:

Codierung: E4&

Dieser Befehl dient zum indirekten Laden einer Adresse aus dem Stackbe-

reich. Dabei wird AR vor jedem Ladevorgang um 2 erniedrigt.

FOMI DR, -AR:

Codierung: EB

Dieser Befehl dient zum indirekten Laden eines Multibytes aus dem Stack-
bereich. Dabei wird AR vor jedem Ladevorgang um 2 erniedrigt.

2-54

g) Die Befehle in Zusammenhang mit einem fallenden Stack:
FUED DR, -AR:
Codierung: E&
Dieser Befehl dient zum direkten Speichern eines Bytes in den Stackbe-
reich. Dabei wird AR vor jedem Speichervorgang um 1 erniedrigt.
FIMD DR, -AR:
Codierung: E7
Dieser Befehl dient zum direkten Speichern eines Multibytes in den
Stackbereich. Dabei wird AR vor jedem Speichervorgang um 1 erniedrigt,
FUBI DR, -AR:
Codierung: EE
Dieser Befehl dient zum indirekten Speichern einer Adresse in den Stack-
bereich. Dabei wird AR vor jedem Speichervorgang um 2 erniedrigrt.
FUMI DR, -AR:
Codierung: EF
Dieser Befehl dient zum indirekten Speichern eines Multibytes in den
Stackbereich. Dabei wird AR vor jedem Speichervorgang um 2 erniedrige.
POBD DR, +AR:
Codierung: EQ
Dieser Befehl dient zum direkten Laden eines Bytes aus dem Stackbereich.
Dabei wird AR nach jedem Byte um 1 erhoht.
POMD DR, +AR:
Codierung: El
Dieser Befehl dient zum direkten Laden eines Multibytes aus dem Stack-
bereich. Dabei wird AR nach jedem Byte um 1 erhdht.
FOBI DR, +AR:
Codierung: E8
Dieser Befehl dient zum indirekten Laden einer Adresse aus dem Stackbe=
reich. Dabei wird AR nach jeder Adresse um 2 erhiéht,
FOMI DR, +AR:
Codierung: E%9
Digzer Befehl dient zum indirekten Laden eines Multibytes zus dem Stack-
bereich, Dabei wird AR nach jeder Adresse um 2 erhiéht.

fi.4. Entwicklung eines LEX-Files:
Im folgenden michte ich erkldren, wie man von einer ldee {iber die Entwicklungs-

arbeit zum Ergebnis, dem eigentlichen LEX-File kommt.
Budicla -

Die Idee: =
Durch die Escape-Codes in Verbindung mit dem DISP-Befehl kann man Cursor und
Zeichen zu einer beliebigen Stelle in der Anzeige des Hechners bewegen. Dies
ist jedoch noch sehr aufwendig, vor allen Dingen fehll noch die Moglichkeit,
innerhalb eines Programms aus der Anzeige leicht den L[nhalt =zu lesen,
U diese Liicke =zu beseitigen, sollen nun zwel Befehle kreiert werden, mit
deren Hilfe ich die Anzeige manipulieren kann. Diese beiden Befehle michte
ich nun kurz wvorstellen:
RLCD {(Wert won 0-100) Mit diesem Befehl soll der Inhalt aus der Anzeige
bzw der Zustand der LCD-Inikatoren abgeiragt werden.
WLCD (Wert won O-100%, =u schmeibender Tnhslt
Mit diesem Befehl so0ll man Bytes in die Anzeige
bringen bzw die LCD-Inikatoren verdndern kiinnen,
Einfithrung in die Beschreibung der LCD-Anzeige:
Die LCD-Anzeige des HP-75C beruht auf einem genau abgestimmten Zusammenspiel
von Zoft— und Hardware, Die Hardwareangaben zur Anzeige finden 5ie im 1.Ka-
pitel, An dieser Stelle miGchte ich nur auf die Software der Anzeige, die ja
wichtig ist [iir die Entwicklung der Befehle RLCD und WLCD, ndher eingehen.
a) LCDOFF: Dieser Pointer befindet sich an der Adresse $BIEQ.
Hat dieser Pointer den Wert 0, so ist die Anzeige aktiv,
Hat der Pointer den Wert 2553, =0 ist die Anzeige inaktiwv.
Demnach kann dieser Pointer nur gwel verschiedene Werte (0 und 255) annsh-
METL.
b) DEAD: DHeses Flag befindet sich an der Adresse $82EIL.
Es hat den Wert 0, wenn der Inhalt des Anzeigebuffers in der Anzeige stehrt.
Es hat den Wert 2553, wenn der Inhalt des Anzeigebuffers nicht in der
hnzeige steht.

2-53

6.4.3.

0.4.4.

c) LCDPTR: Dieser Pointer belegt die Adressen $82E2 und $82E3, Er gibt in
diesen beiden Bytes die Position des Cursors an.
Bsp: Hat die Adresse $82E2 den Inhalt E6 und die Adresse $82E3 den Inhalt

HZ, so befindet sich der Cursor bei der Adresse $82E6, was der 1.
Position in der Anzeige entspricht {(unter e)} niheres).

d) LCDWIN: Dieser Pointer belegt die Adressen $82E4 und $82E5. Er gibt in
diesen beiden Bytes die Position des linken Zeichens, das in der 32-
stelligen Anzeige sichtbar ist, innerhalb des 96-stelligen Anzeigebuffers
an. Die Adresse wird festgelegt wie bei LCDPTR.

e} Beginn von LCDBUFFER: Die folgenden 96 Bytes reprédsentieren die 96-stel-
lige Anzeige des HF-753C., In diesem Buffer werden die Zeichen dezimal ge-
speichert.

Umsetzung der LCD-Software auf die gewiinschten Befehle:

Bei der Umsetzung wird von der gewlinschten Adresse die Adresse $82E0 subtra-

hiert (matiirlich intern). Das filhrt dazu, daB man mit dem Befehl RELCD(Q)

den Status von LCDOFF, mit RLCD(6) den Wert des ersten Zeichens in der Anzei-

ge abfragen kanmn.

Entwicklung des LEX-Files:

Zur Entwicklung des LEX-Files benutze ich die Formbldtter. Zundchst muli ich

jedoch noch auf einzelne Adressen eingehen, die im LEX-File vorkommen:

% 3E8E:

5 466D:

$ 4094;

$ FCE4:

An dieser Adresse befindet sich die Subroutine "ONEB'. Sie wandelt
gine im Befehl vorkommende Integer-Zahl um in bindre Form und
speichert sie in den Registern 46-47,

An dieser Stelle befindet sich die Subroutine 'SYSJSB', Mit Hilfe
dieser Routine erfolgt ein Sprung ins System-ROM. Dort wird der
eingegebene LEX-Befehl vom System aufgerufen,

An dieser Adresse befindet sich die Subroutine "ERROR+'., Sie regelt
die Fehlerfeststellung. Nach Aufruf dieser Subroutine erhdlt das
REegister E den Wert O, wenn kein Fehler, den Wert 1, wenn ein Fehler
vorliegt. '

An dieser Adresse befindet sich die Subroutine "PUINTG'. Mit ihrer
Hilfe wird eine bindre Zahl in den Registern 36-37 in eine reelle
Zahl in den Registern 40-47 umgewandelt,

Als Basisadresse fiir das gewiinschte LEX-File wird die Adresse 40 16 festge-

legt.

sonstige Vereinbarungen werden pnicht setroffen. S
B g

2-56

t
2 %o
5
HH: o
HT-97 w82y, 7 _ .m,n@ e
wrp w1 £h-9Wd = 9hY
“oA I @ Q 9T | 9h|9TLE W 1S
sap ~wranVedSs IS ENTE T 7 1 B
& G
e +
I el
C
;7
VB 3NG, ¥ Mm%wmq
Ao ADG @ o O 9h [L83% ﬂ.\n-.u ﬂ)
N NEEDEFBG
o ol
E) Co
5 +4
b e
3 r+09$| O
- (i)
23524 funedg o Q OT PTLE HAS
s sy CEEBDEEAGE B S
I E
12 by
5
L - +
5 o
z v
Srrpe hat gL | _W Q O LE Z_Ms
e L Siine 1 B E BRI B EBEE
£} DWW +2}5162Y, A TINErangl T | DT CO |EY | e | ET|ON| AD| A0 uH | 2T | 24| 142ieg ﬁ

V

Qo7

m j
- ni
5
ESme |, o,
L0 i) Yha | O
-z0% ru___u..muﬂ_ w ‘ToY
N) =Fh
.__ufas. M“_Mjil a rh | T@ 11344 Iﬂ
sap r%dAHm_.mzmh.wﬂi S N S
b, Oy
2 4
R
ﬁ S
%
bk, : N1,
daigy 2P TP [als|n| o N -
t.
2 0o
i S m_um.n.%ﬂ +
5 INBX| ©
‘e3atre § 7 ‘oe il
ps»py + SavaM 7 b
Sep SaeMe p preel (LE1S
sap R TSIEHET rlofl ~
E
2 Oy
3 -+
c werof| B
M ‘DT WX
“23Sarp 0 20YH 2 M ot | 2h * mxm.... r
WP wy Buneds TS R[5 [T F (@
0 U DWOY +2}5162y, wH|BA| 2d| 1M2ieg

e

N +
2 o0
) o
3 H.?.__
Tt O
L TTY
5 T | ot |bers] o ¥H
3H pam 2TY um:-.mlw_‘am N
B
: -
h
()
| o9
s QLY
M @ DT Bexs| AT,
@ e o u[Hals|n[o o Gt
t.
Oy
; -
b ($%)
% i
- @99h §
LY
J,HWMMMMJJW o)} S L@ |Q92h M\mﬂ.,
s N EEBE PR | BN RS
: Oy
e v | 2 o
wr aig wmapal A 5 -
Wus pam P h 20¥t|
"wp rayugodyowas ¢ :
“Ip meywp ﬁ.,m 4 T
wwawﬁﬁwﬂﬁai .M o 90 | t@|sitel AHMN,
i avp wayrndg i als| il clre
_ | IMekeg
103U WO +2}5182y, [TAUS Y uld CIAG |Fang DC|TOEY | AE|ET|ON| A A0 ud | 2d]| 24 ﬁ
mw 27

g .
5
.J._.n.:ﬁwur..u _.\1 | &
wrn fue® noa P] M. .ﬂ_. ¥ .mh P
wapal soa py 3 .ﬁb.&._
H_ﬂﬁ.”ugmwﬂw = 2 o tr| s |shtf TEO
s R a ati PCEE DB st]
0o
2 44
> fad
m SSY| ©
g Z 't
jte-s5d "HEIeNY ¥
p vl ho-TOW 9 o 55| TO [trtg] WIS
b C__.!,._u.ﬂn_m Slalh|{ Tl L]y
3 S
: 4
"3Fiaparanad G 5
¥ ,..N_.J _m,....m,m__ﬁ.n M @___HH_.N&J Q
b urpEr Ao
..Ha...w PAM DU 7 _ne.@
TYFeRs P 3O [0
Ew_‘nam. w sihg @ O 90 | TD ew:m. QHOd,
+3p wapet|r/es|nle|T|r]e I =
: Oy
2 +4
hi]] (78]
;w ht=| T
: 'hsd
hs & ™! ¥ v Tt | he fastel QT
. e s ::.m T|r|e . s Htr?m
1P “Mapov7 5 i al od| 1o
ETION| A AD|2HE Y
$D 3 oEwOH +235162Y, A adTaAGlvig| 3 | OC|CO |EY | dE| E7
h o @O

e e e P
+
3
5 Qo
h =L
i .
[n
mwﬁui .M.:.
g sep __,4,«_1!_” nle[z]r ai @ . Bhid NI
a3
5 Oy
; =
L
A o0y
¥
[
B RNERLEC) Hhtg| 2amqupg
g -
i A] e
5
- -
% 7
T
a0y, J 7 -+l
- NIHO HANY =
My eI nelTlvlo) @ | 3 N1y,
n] P
.J,_.___u;...r 9
L-xa W u_..ww.m]’[ii 3 nXu
.{ﬂ._u.c__.a Iy _m_ i1 s
Try PrY™ aeg 7 .G—_\,N_\ %
‘RS xuﬁn ui e 'hSsd
ES-hG A *e3sIeed 1
1
L0 P DWW +215 1623, TALL Y BIA[TING [k ang DT |CO [EY | wE| E7|ON| AD[nolus|ana| 24| 1vateg| $
3 Ol

i
.*
)
E QATE$| T
t.,.,mm. 3 oh IX ﬂ
wansafay WP Z
OaCe WSPUL ; 9T
Sapap P 533 o) O oh | ot lestg] TL AT
“feys Sap MEPR] nltl2lrle A =
ST o
3
5 o
’ Uy
3 L
v 9¢ W
+E¥-98Y ? st H7
WA ra..-..ﬂuﬂ,..ﬂ.._m nlol vl O 3 oT | 2¢ |s5tF U
t.
7 [
5 o
[L
CH ._m.m,.w_wﬂ "
Ao | DT WX
s i 2) ot|ot| * | QS
NPy Sumadg ElT] 7@ |
£
9 0o
X 5 —l
. otr9¢ =
K '‘'0TY
¥
IST2APY Bunads @ a DT [AhtE H a@m
avmya W 1FsAY NEEGE N
£ 3 WO +2}51Bay, [rald Y ¥ T dAE Fang, SC|TCO|EW | | ZTON| AD| A0 |aH | 2C] 24| 1M2teq ﬂ
9 (L1

L
= oo
. 5 -+
% : o
.;.-._U.J.G - L - Q
ra uﬁ;_,m - 20 =
fgd Pl o x| x| x wtg| ON(C
waam 'Sunrdg H 2 5inlt|ir|e st e, o RS e e
Z oo
: I
: Uy
M —
0 7 ge3cd| O
AN ¥
wp Prdnd TSR T F D ae
t
7 oy
2 +
: 0]
Z
7 M
aip *¥P TPH3lplofsinjcic(vio | | | | | st i
£
> g
+
; o
= had+$| o
Nﬁﬁﬁmm 5 gn| ezlnany WS
?uﬁ*#:?ﬂrm Rl T r|D L .
B 24| 1Meleg
LD} Doy 1235162, [TALd Y BId TINE [Fang DT(COEL [RE| ET|[ON| AJ| AQ ¥ AL | 2d ﬁ
+ T

L Oq
% L o
B o
: e
B ; re d
. YE|---- G@_../._IH_
2 o e ETIE SRSl ey NN e |
AT PAM VER mi.ﬂ:.i .))
Co
: +
: G
Ead . 0o
8 ey 5
.,“ﬁ Mﬂ: NS z 662h¢$
SIS Yo e e m 657h ST
uignaceny I RPN SR IR -
r3p dnabnpg hit2lrle
Lt
) g
5 +
(35! 2 o
k300 SPo U g hi= O
ka-9n 33A23my T
e ligl ‘ . oh[e2t8 DN
M WP AL ol fib} .
wwam! Gunads sejtiriof | |
k
3 L)
; &
e : £900¢| O
£ 202 _J..DM” mH.._. ..ﬂ,—-u.ﬂ_‘_d
e 3T AQUJZ
13q 3o ; & 2h|99tf| WK
th-9h 235180y A | o] B
3P e SR, nE|T agolzw | az| ZT7/ON| A nolub e] 24
NCEEVE +215182y, [TAL |y audTdAg |rang 2>a I
2 G

[alalals]
Cren 2
04
D5
(RIS TRYS
05
D000
L
£100E
10
LT
o012
il g
LRI
Q18
i1 g
i 1is
[T
o2l
o021
]9 S
323
[T)
[RTEEE
DB2s
[e
D25
010 ey
CH1H
D2 H
D Z2E
DO2F
CHEED
Dol
WA L2
(Blemas
R T
il
CMITEA
M3 35H
MIIB
IMIS0
045D
TOzE
IR
i
LTS B e
g4
I
s
LT
4
iy
L HLE
A
AT
A E
oaLE
S0
o
Ly
D055
20154
Q0SS
20EE
S ES

ID 4018
DEF RUNTIME
LEF HMNAMES

DEF PARSE
LEF ERRORS

DEF RLN
LABEL RUNTIME
L0 &105

DEF MAINI

DEF HAINZ
LABEL PARSE
LT a103

DEF RUNAGAIR
EMDE FPOIMNTERS
LABEL MAMES
ASC "WLCDY
ASE "RLCD™
EMDE MAMES
LABEL ERRORE
ENDE ERRORS
DRF RO

ARF RZY
LAEBEL FLin

RTH

BYT Al
LABEL MAINI
BIM

DEF RZ2Z0

SEM RZ0,=F1,&0
JSE $IESR

DRF R4&
ARF R2&
STM R4&,R26
ARP RZO

JSB X20,%6133
DR RZ6

ARF R46

STED K26 ,R44,F52E0
RN _

LAEBEL RUNAGAIN
DRF ROZ

ARF R41

ILDM ROZ,R41
ARF RO&

FUMD ROZ,+RO4
JSE £4648D

oYT 54
EYT L2
BRF RS4
LDE RI34,=EB4
BRF ROZ
fRF RS

FOMD ROZ, ~ROdé
ARF RSS
STM RO2,RS
DRF RS7
ARE RI1Z
FOED RS7,-R12
DRF RS54

FUMD RS4,-FR12

L

HTH

BYT 10

s¥T 2D
LABEL MAINZ
BIM

DRF RZO
2-65

DOET
(818 buTh!
DOSHE
5 E
QOSF
1101450
NTaI=y |
54
T
Tt
DOGT
IRIRT=T 8]
DhGE
Q0T 1
QOTE
(B LRI
(ST Irary

SEM
BRF
J5EB
DRF
CLM
ARF
LDED
JSE
RTHM
JSE
JRGE
DR
A
JMC
J5H
EBYT
END

20,=20,841
R20
XZ20,$6133
RT&
RI&
R4 &
RI4, X846, £82E0
*FCE4

+IEBE

=04

RA&L

Rdb =68 ,00
=F4

+4099

59

2-66

65.4.5. Bearbeiten des LEX-Files 'LCD' mit Hilfe des Assemblers:
Zundchst editiert man ein Text-File mit dem Namen 'LCD'.
Dafiir fithrt man folgende Befehlsfolge aus;:
EDIT LCD,TEXT
AUTO 10,10
Nun gibt man die einzelnen Zeilen ein:
104016
DEF RUNTIME
DEF NAMES
DEF PARSE
DEF ERRORS
DEF RUN
LABEL RUNTIME
206105
DEF MATNI
DEF Malk2
LABEL PARSE
ZDA105
DEF RUMACAIN
ENDE POINTERS
LABEL MAMES
ASC "WLCD"

ASC "RLCDM
ENDE NAMES
LABEL ERRORS
ENDE ERROES
BYT &1

BYT 17

LABEL RUN

BYT Al

LABEL MAINI
BIN

SBM RZ0,=F1,560
JEE $£3ERB

STM R46,R26
JSB X20,3%6133
STBD R26 ,X46,382E0
RTN

LABEL RUNAGAIN
LDM ROZ2,R41
FUMD ROZ,+R0&
JEB 34660

TRF R30

ARP R22

LDB R54,=B4
POMD ROZ,-ROG
STM ROZ,RS55
POEL R37,-RE12
PUMD R54,+R12
RTH

BYT 10

BYT 2D

LABEL MAINZ
BIN

SBM R20,=20,61
JSB X20,$6133
CLM R36

LDBD R36,X46 582210
J5B SFCE4

RTN

J5B 33ERR

JNG =086

CMM R46, =67,00
JHC =F4

JSB $4099
LRP R31
END

Nun 1#dt man das Pregramm 'COMPILE' und kompiliert das Programm.

6.4,6, Beispiele zur Anwendung des neuen LEX-Files:
a) Beispiele zur Anwendung von "RLCD':

190 s4 LCDL 4

20 DI AL94),A$000

30 0N ERROR OFF ERROA
40 DISP “Text”

S0 INPUT A%

&0 FOR I=& TO 100

70 Al[=-aieRLEDLT}

B HEIT 1

5TOP

Gibt man nun einen Text ein, so ist dieser schon ala numerischer Code in den
Registern A{0}-A{90) gespeichert, Will man nun die Lange des eingegebenen
Textes bestimmen, fiigt man folgende Zeilen an:

0 FI4 [=%6 TO O 3EEP -
100 1F AV[IEI2 THEN 120

i1 HEXT [

120 DESR “Laenge: ;I

130 5707
Der Vorteil bei dieser Speiéhermethode ist, dall weniger Speicherplatz bend-
tigt wird, da die Dimensionierung bei numerischen Arrays weniger Platz bend-
tigt als die Dimensionierung von ALPHA-Ketten,
b) Beispiele zur Anwendung von 'WLCD':

1! oee LLD2

0 RESTORE

0 FOR A=L9 70 24 @ READ J
S0 8LCD A0 & WLCD [40

TO HERT &

a0 510

100 DATA 72,80,45,55,55,87

S0 kann man leicht shne DISP-Befehl den Ausdruck "HP-75C" in die Mitte der
Anzeige bringen.

Wachteil ist noch, daB nur dann eine Anzeige erfolgt, wenn das Programm
ateht.

Eine Laufschrift sdhe dann so aus:

Hach jdem Schritt sull man (RTN)} driicken.

101 4% LLI3

20 ON ERRDR OFF ERROR ® RESTORE

25 11K A$L0D

30 FOR A=L% TD 24 B READ J

50 FDR =35 10 & STEP -1

50 WLCD 1, B WLCD T¢l,32 B WLED 1,0 @ [HPUT A4
LY NEXT I

T0 NEIT &

80 S0P

100 BATA 72,80, 45,55,51,67

Der Assembler

1. Definition:

Ein Assembler ist ein Programm zur Umwandlung ven Frogrammen, die in
Assemblersprache geschrieben sind, in Maschinensprache.

Eine Assemblersprache enthdlt drei Arten von Anweisungen: Assemblerhefehle,
Assemblerinstruktionen und Makrobefehle,

1.1, Assemblerbefehle: ;
Assemblerbefehle sind Maschinenbefehle, deren Uperatiocns— und Adressen-
teil nicht numerisch geschrieben werden diirfen. Anstelle des Maschinencodes
fiir den operationsteil eines Befehls darf ein Symbol geschrieben werden.
Um das Programmieren zu erleichtern, verwendet man in Assemblerbefehlen
mnemonische Bezeichnungen fiir den Operationsteil, dh. Zeichen, die eine
Geddchtnisstiitze beziiglich der Wirkung der damit bhezeichneten Operation
darstellen (zB. ADB fiir die Operation "Addiere Bytes"). Fiir den Adreliteil
darf der Programmierer ein von ihm gewiinschtes Symbol bzw. eine alpha-
numerische Bezeichnung setzen, die entweder eine Variable (einen Operanden,
Register) oder eine Marke (ein Label, Sprungziel) repridsentiert, Befehle
mit Symbolen anstelle von Operationsteil und Adressenteil heillen symbo-
lische Befehle oder Pseudobefehle, ihr Adreflteil symbolische Adresse.

Eine Assemblersprache ist eine maschinencrientierte Programmiersprache,
da die Assemblerbefehle in ihrem Aufbsu den Maschinenbefehlen gleich oder
sehr dhnlich sind., Daher sind Assemblersprachen im Gegensatz zu problem-
orientierten Programmiersprachen von Anlage zu Anlage verschieden.

l1.2. Assemblerinstruktionen:

Assemblerinstruktionen geben organisatorische Anwelsungen, die das Fest-
legen von Konstanten und Speicherbereichen, das Zuweisen von Speicher-

adressen, die Steuerung von Ein- und Ausgabe, die Steuerung der Uberset-
zungsarbeit und das Unterteilen und Verkniipfen von Programmen betreffen.

1.3. Makrobefehle:

Makrobefehle dienen zum Einfiigen von Unterprogrammen, die durch Parameter-
angaben modifiziert werden kénnen. Die Umwandlung des Assemblerprogrammes
in ein Maschinenprogramm, das Assemblieren, umfaBte urspriinglich sowohl
die Ubersetzung in die Maschinensprache als auch das Zusammenfiigen wvon
“Teilen eines Programmes, einschlieBlich des Einfiigens von Bibliotheks-
programmen und der Herstellung der notwendigen Programmverbindungen.
Anlagen mivr einem hochorganisierten Betriebssystem fithren das Verkniipfen
von assemblierten Programmteilen mit Hilfe eines Programmverbinders geson-
dert durch und reduzieren das Assemblieren im wesentlichen auf das Uberset-
zen. Die Assemblersprachen haben gegeniiber Maschinensprachen den Vorteil,
dafl die Programmierung durch die Verwendung von symholischen Adressen und
Makroaufrufen erleichtert ist. Auflerdem lassen sich die Programme durch
Ausnutzung der Ahnlichkeit =zur Maschinensprache sowohl speicherplatz- als
auch laufzeitoptimal gestalten. Gegeniiber hoheren Programmiersprachen
treten als Nachteile die griolere Anzahl der zu programmierenden Anweisungen
auf (folglich ldngere Programmierzeiten) sowie die hohere Anzahl und schwie-—
rige Ortung von Programmierfehlern sowohl syntaktischer als auch logischer
Natur {folglich hiherer Testzeitbedarf zur Beseitigung der Fehler).

2. Vorgang des Assemblierens:

Nachdem man sich nun mit Hilfe der Formblitter ein Assemblerprogramm zu-
sammengestellt hat, gibt man die einzelnen Zeilen in ein Text-File ein

mit Hilfe des im HP-75 eingebauten Text-Editors.

Dieses Text-File wird dann vom Compiler 'COMPILE' interpretiert und danach
in ein LEX-File umgewandelt.

3=1

3., Mégliche Assemblerbefehle:

3.1. Vorbemerkungen;

Die Eingabe der Assemblerbefehle ist variabel. ;
Wieviele Balnks miteingegeben werden, ist unwichtig, da vor Bearbeitung
der Rechner selbst alle Blanks loscht und die richtige Syntax herstellrt.
Steuerbefehle:

a} ID (Identifier)

4.2,

4.3,

b)

c)

d)

e)

£)

g)

h)

i)

Syntax: ID 4-Byte-Adresse
Bsp: ID 4016

ZD (Zwischenbyte)

Syntax: ZD 4-Byte-Adresse
Bsp: ZD6005

LABEL:

Syntax: LABEL Labelname

Esp: LABEL RUNTIME

DEF (Labeldefinition)

Syntax: DEF Labelname

Bsp: DEF RUNTIME

ENDE

Ein Programmteil wird beendet
3 mogliche Programmteile: POINTERS, NAMES, ERRORS
Syntax: ENDE Programmteil
Esp: ENDE NAMES

END

Programmende

Syntax: END

Bsp: END

ASC (ASCII-Commands)

Mit diesem Befehl wird ein Befehlsmnemonic definiert.
Syntax: ASC "Befehlsmnemonic"
Bsp: ASC "PEEK"

ASE (ASCII-Errors)

Mit diesem Befehl wird eine Errormeldung definiert.
Syntax: ASE "Fehlermedung"
Bsp: ASE "device sent NRD"
Kommentare (wie bei BASIC)
Syntax: ! Kommentar

Bsp: ! Programmkopf

|-Byte-Befehle:
Zu dieser Befehlsgruppe gehoren.die Befehle:

a)

b)

BIN
BCD
SAD
DCE
ICE
CLE
RTN
PAD
Sie werden eingegeben, wie sie geschrieben werden.

Bsp: BCD
BYT + 2 Bytes

Bsp: BYT F8
DEP R Register
Bsp: DRP R4D
ARP R Register
Bsp: ARP R&40

3-2

3.4, 2-Byre-Befehle:
a} Registerbefehle:
Zu dieser Befehlsgruppe gehtren die Befehle:
ELE DE
EIM DE
EEE DE
ERM DR
LLE DE
L1M DR
LRB DE
LEM DE
ICE DR
ICHM DR
DCE DE
DCM DR
TCE DE
TCM DE
NCE DR
HCM DR
TSE DE
TS DE
CLE DE
CLM DR
Bei diesen Befehlen wird DR mit E Register eingegeben.
Bsp: Lischen des Registers 40
CLE R40
b} Befehle mit Literals:
Zu dieser Befehlsgruppe gehfren die Befehle:
JHP =literal)
JHNO =literal
JOD =literal
JEV =literal
JHG =litersl
JPS =literal
JHZ =literal
JZR =literal
JEN =literal
JEZ =literal
JHNC =literal
JCY =literal
JLZ =literal
JLY =literal
JRZ =literal
JEN =literal
Der eingegebene literal-Wert besteht aus einem Byte, das eine ganze Zahl und
damit die Sprungldnge definiert (in Hex-Form)
Rap: JMP =80
3.5, 3-Brte-Befehle:
z) Belehle mit 2 Registern:
Zu dieser Befehlspruppe gehoren die Befehle:
ORB DR, AR
ORM DE, AR
KRB DR, AR
£FM DR,
LDBE DR, AR
LDM DR,
STR DR, AR
STM DR, AR
LLOBD DR, AR
LDMD DR, AR
STBD DE,AR
STMD DR, AR
LOBEL DE, AR
LDMI DR, AR
3-3

STBI DR, AR

STHI DE,AR

CMB DR, AR

CMM DR, AR

ADB DE,AR

ADM DE, AR

SBB DR, AR

SBM DR, AR

ANM DR, AR

CMBD DR, AR

CMMD DE,AR

ADBD DE,AR

ADMD DE,AR

SBEED DE,AR

SEMD DR, AR

ANMD DE,AR

Bei diesen Befehlen wird der Registerteil mit R DRE,R AE eingegeben.
Bsp: LDED R40,R30

b) Befehle mit einem Register und einem literal:
Zu dieser Befehlsgruppe gehiren die Befehle:
LDB DR,=literal
LM DR,=1literal
STB DR,=literal
5TM DR,=literal
CMB DR,=literal
CMM DE,=literal
ADB DR,=literal
ADM DR,=literal
SEB DRE,=literal
SEM DR,=literal
Bsp: LDM R45,=B0,7F,7E

c) Schiebebefehle:

Zu dieser Befehlsgruppe gehiiren die Befehle:

POBD DR, +AR

POMD DR, +AR

POBD DR, -AR

POMD DR, -AR

FUBD DE,+AR

FUMD DR,+AR

PUBD DRE,-AR

FUMD DR,-4R

POBI DR, +AR

POMI DR, +AR

FOBI DR,-AR

POMI DE,-AR

PUBTI DR,+AR

FUMI DR,+AR

PUBI DR,-AR

FUMI DR,-AR

Die Codierung dieser Befehle ist wie bei den Befehlen mit 2 Registern, nur
muli vor das Z.Register noch ein Vorzeichen gesetzt werden.
Bsp: FOBD R40,+R0Z

d) Befehle mit Labels:

Zu dieser Befehlsgruppe gehiirt nur ein Befehl:
JSB 3Adresse
oder J5B 'Unterprogrammname’
Bsp: JEB $FF10
JSB "ROMJSE'
3.6, 4-Byre-Befehle:

a) Befehle mit einem Register und einem Label:
Zu dieser Befehlsgruppe gehoren die Befehle:
LOED DR,31label
LIMD DR, 5label

-4

3.7.

3.8,

4,1

4.2,

3.

STED
STMD
LDEI
LDMI
STBL
STMI
CMBD
CMMD
ADBD
ATMD
SBED
SEMD
ANMD

Anstelle von $labeladresse kann auch 'Unterprogrammname' stehen,
EBsp: LDBD R40, $FF10
LDBD R40, 'ROMJSBE'

DR,%label
DR, %1label
ER,$label
DR, %label
DR,$label
DR,$1abel
DE,%1label
DR, $label
DE,$label
IR, $label
DR, $label
DR,$label
DR,%label

b) Der Befehl JSBE XR,%label:

Die Handhabung dieses Befehl ist wie unter a) beschrieben,
Bsp: JSB XRZ0,3$FF10

JSB XR20, "ROMISB'

3—Byte-Befehle:
Zu dieser Befehlsgruppe gehiiren die Befehle:
LLBD DR,
LDMD DR,
STBD DR,
STMD DR,
LDBI DR,
LIMI DR,
sTBI DR,
STMI DR,
Bsp: LDBD R20,XR30,3FF10

iR ,$label
¥R,5label
XE,$label
XR,5label
XE,$label
¥R,%label
XR,%label
XR,5label

LDBD R20,XR30, 'ROMISBE'

Zusammenfassung:
Diese Assemblerbefehle werden mit der unter 3.2.-3.7. beschriebenen
Schreibweise eingegeben.

4. Das Programm 'COMPILE'

. Vorgdnge beim Starten des Programmes:

Nach Ausfiibrung von RUN 'COMPILE' erscheint in der Anzeige die Auffor-
derung 'Filename:', worauf man den Namen des Textfiles eingibt, das man
vorher mit dem eingebauten Text-Editor des Rechners editiert hat, und

das man nun in ein LEX-File verwandeln will,
Programmablauf ;
Nun erscheint nach zwei Kataloganzeigen die Anzeige 'Compilation .
die nach Beendigung des Compilierens von der Anzeige 'READY ,
gelidst wird, Wurde ein Fehler gemacht, so stiirzt der Rechner nun meistens

-

. ab-

ab. Dieses Verhalten laBt sich leider nicht verhindern, Deshalb kopiert

man das Text-File vorher am besten auf Hassette,
Liegt kein Fehler vor, so. ldfit sich nun das neue LEX-File benutzen,

Der genaue Ablauf des Programmes (=Programmteile) kann aus den Kommen-

taren im Listing ersehen werden.

Beispiel:

Eingabe des LE{-Files 'PEEKPOKE'
Als Grundlage fir die Eingabe dient folgendes Listing:

¥

0000
DL
g
s
[Slslela
[T T
Qo0
1T
Ca0E
RSN
T s
T
[T
M1 &
18
%11 8
Cix1l
251260
Cr?

el
0 R
LR I
et
Db
CH T
Q24
0o2a
Q0T
o028
0028
Q{12
Q2
{HI=0
L S)
o3
A
R
IR
TS E
RIS =
LA =
| T A
15D
OOEE
L
(ST]
LA
[BINTIE
D45
g 5
AR
AT
100y
od R
Cod4c
O
O E
DA F
IS0
RTRR]
T LTy
ST i
D0ES4a
DO5E
QS

[T TS

iD 4015
DEF RUNTIME
BEF MNAGMES
DEF PARSE
DEF ERRORS
DEF RUN
LagEl. RUNTIME
D 4109

DEF MAIML
BEE TR INZ
LABEL - PARSE
Zn &log

DEF RUNAGAIN
CMDE FOIMTERS
LABEL MAMES
S “FORE"
&56 REElLM
EMDE NEMES
LABEL ERRORS
ENDE ERRORS

IRF RO1
ARF R27
LABEL RUN
FOT

BEYT Al
LAREL MAINI
BIN

DRF RZO
SEM RZ20,=F1,&40
JEE +TEBE

DRP R4&

ARF F26

STH Ri4s,R26

ARF RZ0

IS5E XZ0,$6133

DRFE R26

ARE RAS

5Tal R2&,R4s,F0000
RN

LAREL RUNABAIN

DRE ROZ :

ARF R4l

LOM RO2,R41

ARF ROA

FUMD ROZ, +R0O4

JER #3450
EYT SB

BYT 12

DEF RS54

LDE R54,=B4
LRF RO2

AaRF S ROS
FOMD ROZ,-R04
ARE RES
5TH RoOZ,RDS
DRFP RSV
AaRF o R1Z
FOBD RSV ,-RIZ
LRF RE4
FUMD f5G,-R1Z

TR
BYT 10

EYT 2D
LASEL MAINZ
BTN

DRF RZO

3=6

oogy ShM RE0,=20,461
o005A ARF RZO

oOSE JSR 0 XEZ0, 85133
0SE DRF RIS

OOESF ELM RI6

gns0 AR Rd4

0xsal LDED RE6,X44,20000
o084 J5B FFCE4

s 7 TR
s8 J5EBE ¥3EBH
ooal JRES =05

DOAD DREF RS

QUsE CMM R4S, =FF ,FF
0071 JWNC =F4

Qo7 J5BF #4299

OOFs BYT 59

HIFT7 O ERD

Zur Eingabe dieses Text-Files geht mana wie folgt vor:
1. EDIT 'PEEKPOKE',TEXT
2. Es erscheint in der 0,Spalte der : zur Kennzeichnung der Text-File-Umgebung.
Zur Erleichterung der Eingabe gibt man folgenden Befehl ein AUTO 10,10
3. Im folgenden mochte ich auf die Korrektur von Eingabefehlern nicht eingehen,
da die Text-Editor-Commands im Handbuch des HP-75 zur Geniige erldutert sind.
10 ID4015
20 DEF RUNTIME
20 DEF NAMES
40 DEF FARSE
50 DEF ERRORS
60 DEF RUN
70 LABEL RUNTIME
80 ZD6105
90 DEF MAINI1
100 DEF MAINZ
110 LABEL PARSE
120 ZDA105
130 DEF RUNAGAIN
140 ENDE POINTERS
150 LABEL NAMES
160 ASC "POKE"
170 ASC "PEEK"
180 ENDE NAMES
1490 LABEL ERRORS
200 ENDE ERRORS
210 DRP RO1
220 ARP R27
230 LABEL RUHN
240 RTN
250 BYT 4l
260 LABEL MAINI
270 BIN
280 DRP R20
290 SBM R20,=F1,60
300 JSB $3EBB
310 DRP R46
320 ARF R26
330 STM R46,R26
340 ARP R20

3-7

350
360
370
380
390
400
410
420
430
440
450
460
470
480
450
300
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
6580
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830

Nachdem

JSB X20,$6133
DRP R26

ARP R46

STBD R26,R46,$0000
RTN

LABEL RUNAGAIN
DRP RO2

ARP R41

LDM ROZ2,R41
ARP RO6

PUMD RO2,+R06
JSB $466D

BYT 58

BYT 12

DRP RS54

LDB R54,=B4
DRP RO2

ARP RU6

POMD ROZ,-R06
ARP RS5

STM RO2,RS55
DRP R57

ARP R12

POBD RS7,-R12
DRP RS54

PUMD RS4,+R12
RTN

BYT 10

BYT 2D

LABEL MAINZ
BIN

DRP R20

SBM R20,=20,61
ARP R20

JSB %20,$6133
DRP R36

CLM R36

ARP R46

LDBD R36,X46,3$0000
JSB $FCE4

RTN

JSB $3E8B

JNG =06

DRP R46

CMM R46,=FF,FF
JNC =F4

JSB $4C99

BYT 59

END

man nun das Listing eingegeben hat, kopiert man das Text-File auf

Kasserte. Nun beginnt das Xompilieren. Dazu lidt man die Files 'COMPILE'
"PEKEPOOK' von Kassette in den Rechner. Danach startet man das Pro-
gramm 'COMPILE' mit RUN 'COMPILE'. In der Anzeige erscheint die Auffor-
derung 'Filename:'., Man gibt darauf PEEKPOKE, den Namen des zu kompilie-
renden Text-Files, ein. In der Anzeige erscheint nach dem RTN folgende
Anzeigefolge: Compilation . . .

und

READY .

Das LEX-File ist nun geladen und kann mit seinen Funktionen verwendet
werden.

3-8

7. Das Text-File 'ASSEMZ':

7.1. Einfihrung:
In dieses Text-File konnen Einsprungpunkte mit ihren Adressen eingegeben
werden. Befindet sich dieses File im Rechner, so geniigt es, anstelle der
Adresse die Kurzbezeichnung des Einsprungpunktes in Befehlen mit Adressen

anzugeben.
Esp: JS5B $018A entspricht JSB TCONBIN®

In dem auf der Kassette gespeicherten Text-File befindet sich eine Auswahl
von 10 Einsprungpunkten. Die ganze Palette, die nun mit den Adressen
unter 7.2. aufgelistet wird, sollte nur in Ausschnitten verwandt werden,
da dies auf Kosten des Speicherplatzes geht. Ich empfehle maximal 20 Punkte
zu verwenden. Die Funktion der Einsprungpunkte ist zur Erklidrung in die-
sem Buch zu umfangreich. Als Nachschlagewerk empfehle ich dafiir das Buch

75 NOMAS VOL I

606 Seiten (englisch)

Preis: PPC-Mitglieder $ 28.50

Nicht-Mitglieder § 35.63

erhdlelich bei:

FPC

P.0O: BOX 9599

Fountain Valley, CA

02728-9599 USA

7.2. Liste der Einsprungpunkte:

Mit * markierte Adressen befinden sich im auf der Kassette abgespeicher-
ten Text-File 'ASSEM2'. Ihre Funktion wird noch ndher unter 7.3. er-

lautert.
A.ZERD FEACT BRORT TFEBCD ABSD F3A43
- BRSE— EFE5A4S SBTHRD FF2EM ACHFMD G LA
ADDIS FIE00 ACREAT F7210 anDzao F¥3BOF
ahpe £ 5904 SDDR FFO42 ADDROE FZ7D4
ADJLST F2IIF A I NOCHE 57RO AL ARM. 7450
ALBEEF FI2AE aleall . F1F23 ALFA FOEQD
ALF O FOEDS GLIMI 2539 aLLoC F1lrF9r
Al MOHE FACDT ALOSMY FR2IET ALNWEMT +28E8
ALMWAYES FEFDL AMD . FAESG k. Pt Fa4048
AR L. - 24415 B, B4 FA4ZES &, B— F43E7
AR E+ FAIEE Al . E- EF4SFE [S FHG00
A F— F4405 AMNMUMNS F4IED AMOTE E3507
AHYERT FABEA AOFER o AT BOFER ° FF22
AEDEL T EAHA4O] APEXIT ELAEA APFILG TOFEF
AFFILE FO9E7 AFFND T +544E AR IMNED FHI5]
AFMSIE E&HTET BFMSIKY FHO50 AFFROC =72EBC
AFFT. B R AFFTMD F55E4 GFFTRS E72ET
AFFTTH ThTT AFSTAT F 7500 AFTACE ¥7218
ST ORI FHBE4 AFTDEL FHAIF2 AEFTOSF T541E
S TERR e FLH e AFRPTEMD Foad48 AP TEET 54460
AFTING 55480 AFTHMRG $73SD BPTR+ £54A3
AFTR~- $ 4402 APTRIG #7787 ARDOM FFIFD
ARITH EFIAY ARRMY 1058 AECTIE FaHOLY
ASCHNAM +2EZD ASCHML F2E2T BSINIT F&5540
ASHEOR FAFLCI ASFALCK FoAD7 MRS5S IGEN F1305
ASSTIN. FEI4EF ASTELCD E£TAED STMELT F¥oS0D
ATRZ. FFA4F 4 BThZ. + E7 501 TS IEN FEZED
ATTZ F:34E ANV el FoH4G AVADE2 Fo&seE
AYCALL EF2B07 A AL Poe7E PN D EI&ESS

3-9

AlWAKE!
BADDEY
EASLOC
BCESTO
BEEF. ’
BININT
EL J.I I
BRTIO
ERTS40
C.INIT
CAaLL
CARD.
EaT.
CATEUF
EATTHF
CHZLCD
CHEDIT
CHR#,
CL.A&CT
CLMCAL
CLREERMNY
CLRELCD
CLRVA.
CHMFCHE
CHMFEMT
CHFSRY
CHTRIG
CoOMNCA-
CORINT
COPY.
CRCOM?
CRDUFR
CRTFLE
CSEC1Q
CURSE
CURSE®
DallAab
DATCHR
DaTE.
DDTSD-
DAaYOr
DCCLOR
DCOM
DDTRER
LECURS
DEFKY.
DEGCHY
DELETE
DEDRUE
DIGIT
DIvia
DIvV2n
DREMNT
LOSTER
DTRE-1
DUFCHE
EDEITFI
EDL IN-
EJMFE#
END. O
ENTSIZ
EOL
EDLMD
=0
ERMSE
ERR.FRZ

FOTCY
Fanbo
FEOO?
FA4L00
£7DAC
FZ2EDA
E4 LD
¥F7o4%
FOLSAL
FEAAE
FEOEE
F47ER
ESEDA
E2IF&T
+7FSE
FOAFD
FTOEL
FFCTA
FEEFE

F2CET

FSOE
EEFAS
FOOSF
EOI20
FOE01
FOA05
F7448
¥FCED
FID3V
F16543
£1a7E
FF&5G
FFAZC
FI2ES
rEFEF
FEFET
F2CFE
F5008
F7CBZ
ETOOH
FHEZT
FHETFIO
FIEQT
FFOOL
¥EFE=
F4ECHE
FZAEDE
FIFBZ
FO7A3
*¥OELC
LETEE
FZ734

5719
Fol a0
Fo/dao
FHETE
F748F
L3485
FECTS
FEZOS
FETA4F
=3] I
FOASE
FADEF
7870
45

. IMIT
SASEND
EATS
EEERF
EEEFER
BLANKS
BLLEFIL
BRTS
BTap.FE
CaLCSE
BaALLA
CATE
CATAL.
CATHEDR
1] =)
CHAMGE
CHEEMD
CHSROI
CLDEV.
CLOOF.
CLRERR
CLROFF
CMDEEP
CMFDEA
CHMPLD
CHMFSTR
COMa#H.
CONCA.
COMTI.
COS10
CRDCPY
CROWFR
CETHMDT
CSEC11
CLHRSE+
CYRILM
DaLl aoc
DATCE "
DATREF
DATSND
LAY SELD
DAY
DRLREF
DECOM
CEF
DEG.
DEL
OELL IM
DEVOE
DI
nDIvia
BIVFT
DOCHMD
DSPIS.
DTABO
I-uﬁ.' I T
ELITIT
EDFLRE
EMNCL O
EMDEMT
EnvalLn
EOL.
EFS1o
ERl1&+
ER M.
c=Rel
3-10

FOL4T
FROTH
¥3I58C
FrERS
¥FEL7V
FOPFE
FOFAE
7541
FEOZZ
FLEFF
Fo14F
EFT7EBD
FSF0OD
*7FE8
¥1BoE
FSO02
FSEQD
TI7BO
FOE4F
FoE4S
¥4BCE
FoE1la
FECIF
FO4F7
FOSEF
F4DAG
*EVER1
FFCE2
$£SICE
FIR9ES
FFAEM
FFLHA0
£75249
F3901
FOAEBF
FFISA
F2CDC
FHOZ2T
FECZ4
FFO08
FOASA
FAHEEF
TAFFC
2R 4D
F¥17EL
F79FH
+7041
¥Z21F3
¥7030
F1358
FI771
EIT744
T0L21
FIBAE
FO540
¥490CA
F5293
15824
FHA25
FoOLE
F2AAE
FEATD
¥IABE
*F7472
IFDaS
E4CAA

BACHK 1O
BASIC.
BCDINT
BEEF.
REEFR”
SLEBUF
BOUMD
ERTEZS
BYE.
CALENT
EaLMAM
CAT#.
CATALL
CaTLIN
CEILIG
CHELK
CHEEDQL
CETRIG
CLIF
LCLRCOD
CLRINT
CLRETMT
CHMESHD
CMFEMNF
CHMFEET
CHMSIST
COMBIM
COMNF IS
CarFy
CoTig
CRDEXM
CREDOL™
CRUNMCH
CETRIG
CLURSE-
EYERE
DaTa

PATEE.

DATRF+
DAYOHE
DY T &8
DOL IThl
DDLRF &
DECORR
DEFEEY
DEGLw
LDELET:
LGELL NS
DFEMAME
oIsF.
D T,
DD
DOSEE
r\':l:-l: F'f'
DTECHY
ENTT.
EDLIMNHE
EF G
ErI.
EMDIT
EMVER
EQL.137
EQE.
ERdz
ERNIT-
ERRI+

FOEDR
EDELT
FR2ETT
*FEDL

" 27DEE

£4BCAH
FOBAZ
FOLHFE
g3y
ForE
Fogg
ESEEH
F7EEE
FE5REER
FETHT
LTS
£42F 4
F5772
7184
FLAT3
F7A0D

FSEZS
¥EB1S
FO4E
FOSES
Fqne
FOLEN
FERDT
FRZET
905

EFSTS
FATSD
Fioh
FLTAHE
FOLH04
4848
$159C
¥7C74
FA5TET
FLH0AD
FLEOE
F3ZA8
F57E2
FFAS
FE4EBE
£ZA0CA

F= e

FOLCE
F2HET
£AS5C
F4TDF
iﬁJ%G

ERREY
ERRDR
ERRORX
EXELC
EXFET
EXTRIM
FCR&LD
FDELLN
FETAVE
FETIND
FETRYA
FETSY
FIiHAMN
FIpmM™T
FIiso
FLCHR?
FLFEMN+
FLGORF +
FLETFM
FLEDTH
FLORDT
FLFUREG
FLSAM?T
FLSWCH
FLVFD?Y
FHDLEDR
FMDLRR
FADYFS
FRLET.
Fid L=
FOFERM:®
FGR.
FORMM-+
FREMAM
FRET
FSEE}L
FTR12
FTREa
FTsWl
FEEFFT
FaETIMW
FEo] 2
[ETRR Rl
EOTOGM
GCHAR
GEL:.
GET. Ik
GET24
GETARDE
GETCLE
EEFEL
FETE IR
GETI.NX
EETHXT
GETFaiR
GETRME
GETSTF
GETTER
EOFEN
GOTORR
GF .
GREE
HAMNDIO
HLELTM
I /ROFF

AT
IDW 3N

F10E7
4071
FEZAC
FOHIEN
¥ ID5H
FIETS
F2011
FP1E
$1E4Z
¥1DB=2
¥F1DLoO
FIDR2
¥19B%9
F4A2E
FLELD
F4RTA1
ELSTER
FHTES
FHE2E
F198F
FAAG7
FH200C
FLALT
FESED
EHAEF
F2148
2144
F2ATC
£5839
+1DF2
E2457
FEDSD
o
FZ20L4
25401
FZ2154
¥Ipny
FEOAT
3478
F5C47
E&HFET
F1204
£12DC
F12E

FOLER
2410
¥31450
T1258
F1F11
F745E
FEDCC
¥15DD
FLGOCT
FTEES
F12484
£475E
F12945
F417E
FAHC0C
¥17RE
£4E2S
F1237
5440
FOTFL
EVCES

FERDOD

ERFL.

ERROR+
ERRREF
EAMAT

EXFZO

FCORY

FCREEAT
FEMPT?
FETCH.
FETE.

FETSET
FETSVA
FLLmM!
FIMDTD
FLCAF+
FLCOFRY
FLFIMD
FLEOFE
FLIMIT
FLAFEN
FLFUR !
FLRZS

FLSEOW
FLTOFL
FHMCALE
FRDLIM
FHDRTHM
FREMD

FHMRET.
FOFPARLCT

FOFENG

FORMAR
FPS
FREPLN
FRMNA#
FSREFPL
FTR1Z
FTSTL
FUN1
FYXDATE
FXYEAR
GOl
GO LN
S130R+*
BCHAR#H
GETH 1
GET1#
GETADE
SETALN
GETCM?
GETFST
GETLN
GETNAM
BETFW?
SETREF
GETROM
SETTD
GF 2L R
SOFEN !
GOTOSU
GRANGE
HALT?
HAMD IR
HLFOUT
ICONST
IF

3-11

FFCAR
FALTT
F4E41
FEELD
FIDSE
F2104
2060
FIOAD
F34ZF
F4F 30
F10E7
Fi1DAS
FA403Z0
FEAFE
Fa314
FOHIZF
ELVEER
F5807
F1F1E
: e
F5592
FLREF
£5884
F4OFE
¥o&aL0
F2140C
FEDOF
¥144F
F5071
+247E
Fr4O45
F1451F
FIAAL

-_.E‘_\"!-l:ﬂ
P T R

F2EEZ
F2144
FIREOD
FE401
EFOFCE
THEFS
FLF&F
1250
FLE07
FSETT
FODED
FEL94
128
FiFil
FO0E S
Floak
FARFE
FOAET
FAATT
F125D
F4154
F+4751
F¥74480C
¥iEBER
FTLPT
F17EBE
F18D8
£in3g
5410
EOTDA
FSACE
F1aps

ERRMEG
ERFOFR
EVIL
EXER.

CEXPS

FCORPYG
FCRMLUIL
FETAY
FETCH#A
FETHEM
FETST
FILDRY
FILNM~
FIMMSE
FLCAT
FLDCHE
FLFTOF
FLGER1
FLE
FLORD
FLFUR
FLRERA
FLSTAR
FLOFTOT
FRCAL.
FrRDLFR
FRLTD
FMLET
FRRETH.
FOFER
FOR
FORMM
FFRURGE
FRERPLE
F REhidr
FTRDR
FToS
FTSTLS
FXaLARH
FADOY
EH 1512
ETH N B
GBOINE
Gl
GEOE.
EETH2+
GETIMN
GETAD+
SETLCHR
EETEME:
GETINT
GETL N+
GETHil

GETTEM
SOCARD
GORTH
GRT.
BTM2TE
HardD
Helis
T#FLISH
ICOS.
ELET

FA4DTFG
$4080
£5EFG
FL4EDE
F305E
$2114
F2078
£1DAD
£1DC&
F1DES
TITEDF
L0116
E4R/22
FFBEAS
£40DF
FAECZ
ELIFR
5519
¥s585£48
$4645
F4225
e T

#5834

F2AA0
F17460
*FIoB
£1FD&
F224C
$2EED
$5&AC
$+IBE4
FSARA

TFLEDE

TE5F 27
F1200
£SRE7
£12E9
F1AFE
£40CD
$SDPA

B R A
La k-

[B
IR R N (A

Mmoo

M e - 0N es

L G

S ST T I I
T O

1.3 ke
M v 0 s B e
i

G L N)

i TR T L R U

mn
L
m

INENYT
IMNFRZ
IMIFFR-~
IMIT.
THPLI .
INSERT
IWNTZOM
TRTHUL
INVFCF
I0.0FF
IOFILE
ISCMA!
ITAIL,
I1Z0FEMN
JBECRT
KEY™T
EEYE.
FOFY
LA
LCDOUT
LEARFPYR
LEGE,
LETGEO
LIMNEND
LIST,.
L0
LW7?
LOCkE?
LODk L=
LSTIG.
MAKETT
MAxlo
MBL IME
MERGE.
MIRMHH
MIMNYY
MODET
MOVEIT
MFYZE
MFYROT
MULT&D
MY GETH
NAME .
MEXT.
ROT .

U I O
MLUMCHE
ML A
MNALTARPT
METROM
OFFI0.
OF TO.
OMSOFF
OMET +H
ONET
OHNERI
OMNOFFZ
OMTOH .
OTHER
QUTCHR
OUTESC
DUTSTR
Falk .
FRRSER
FFEMDPR
PILOF !

FEIEE
FIEAAE
FDROS
FéasheH
E4TOT
¥1FFC
FI7D7T
FITFSE
FEDIE
FFO13
FOFEF
F10T73D
FLEOF
E2I?E
FIOZ20
#8254
T499F
FOEST
F7DDF
FEYHD
FEFTY
F4DC4H
£0790
FFESS
*1E48
FE563
FEAETA
F7YCE
FONNTH
FoDAE
FOAAH
FIDZ4
F7 4450
Fa3EE7
FSFAE
FAHFAS
FE4AH
FEEAS
FEHEZ
EERFED
FTA7TE
¥741=
e e
*EDDT
F4EA1
¥q108

ECELT
F07EL
FLAELS
FaEOE
¥2144
F=RBOE

IMFLio
INFR4
INIFRS
INITEL
INFUT
IMNSRTH
INTDIV
INTORL
IMNETH
I0.DON
I00FPEN
ISETUP
TTEM.
JPELMH
JTRUEH#
FEYDSF
FLEYSRY
FYyaDDR
LADREF
LCDRDY
LEHM.
LEfR.
ETELL
LINHED
LIT?

L MZ8
LOAaD
LOGCOM
LEEQFEF
LT#H.
M&ELLOC
MEeXDET
MELJISE
MIRIO
I MMM
MEERRY
MODEERY
MOV ER"Y
MPY =0
MRGIM.
MVEYTS
MYSETZ
MEWLIM
MFE
MOTRSH
LI .
FLIMOLT
MLV AL
[I T
OFalaRm
UFFTHE
(]
OonMTI
OMNETFR
OMER
OMEROI
OoMR127
GPTLON
AUT1ICH
OUTEDL
OUTLIN
FHAaRRY
~aR1
FARRERSIT
o S TR TR

FILON!
3-12

FEIFCE
£IEIAD1
FOBROZ
FOOFS
£1557
£23ICE
ETOALF
FRE1&
FEDDY
FFOOC
$T18E
F4ZD5
F7EED
FECTSH
FECTS
F4124
FO27T
FEAST
FECIE
FFEOQ2T
FFCEE
F4ECE
F¥32240
FOCIS
FOABE
TI5HT4
F¥F7CC
FETT0
ESEZD
F¥ADDE
F740C
ELSOFE
Fadhh1
F¥IDCE
¥5F48
FF&F
FEATT
£201 4
F¥FIHED
FFCO1
¥IF4A3
FTA4ER
SECSD
FIAAA
F71ED
*FCDS
EFFRS
FOETO
F4THEE
7444
FIFSO
¥1775

FETRT

¥ETTE
FIECD
FIEDE
FIFZA
F1Z1F
FOBLD
L Y
EOPTE
FESTE
FOFDT
$OBAT
F4EFEB
FEAQER

INFRZ
INFRZ
INTSIE
IMFLF.
IMPLT .,
INTS
INTEGR
INTRF
I InD
Iav
ity
I5IN.
ITHEM
JMESUE
KEY .,
EEY MAIF
KEYTRM
Y OPEM
LEL4
LEPRST
LENCAL
BT
LIMNEDR
LINLEN
LNZ0
LN

L 0CK .
LOGETS
L

| e
[E—

MaRGEH,
MEL IM—
MEM.
MIFDE
MT R
MOD1 O,
MOVE
MOVYELIF
MFEYR -
MSGEOUT
MVIE D
MYSTFR
MEXT
NOCLC!
HMULERT
MUMEBER
MLETREF
MUMFCH
METLIN
OFF 10+
DEFHML
Ot

bl 3 I o
(NEE
OhieEr—
OhERRD
i THMR
(IR.
auTcac
JUTERE
AT UM

FZRAFT
FIEATO
FLT7TD
FA4ETTE
S22 5
- EAsB
20DiA
¥OOBE
¥EFFE
FEFFE
FIAEE
FTSED
F140F
+EC44
FFECA
FAEAD
Fd1F5
F4ERT
F 728
FFOIT
TEFIT
£1549
E44EF
HIES
FELDH
TR
F7FES
EET7TA
FIETS
FAETD
FIELT
#7445
FFCCS
FAFAR
FAHFROG
EFF0S
F22T0
F£2012
F7F T
SRS
FILOAD
ETL4ER
1785
F17FC
FADS
FoDgo
F 1B
FHFRD
FPERD
FEELL
FOECT
FECCH
FE BT
FoE8R
TEEDD
F1354G
FEFEST
F4E4E
FOSL4
4745
FoSFLEC
F1020C
FLEAG
£74£5
FZIFFA
£45EC

FETST-:
FOS.
FREEND
FREFND
PRINT
FREMOTE
FRSE! !
PSETUR
FPU3ESE
FLURGE.
FLIEHZI2
FUTADR
FUTCHR
PUTWIN
aMaRkE,
RA
RDTRY
READ
FEAD.
RECOM:
HEL.JMF
REM10.,
FEMAM.
REFLAC
REFORT
REFRET—
RESFIL
REST.
RESTH.
RESLIL. .
REVEYT
EMERR -
RMNDIE
S0z G0
ROMCFY
AOMSET
ROOM !
ROLIMND
RETFRE
RSMEM—
RSTREG
RLEMIT
S5.:0FF
SALT
SOVERY
SH3CH
SCARMEL
SCHNET
SEELG
CEF1S
SERMO
SETCE
SETI/R
SETL. Ik
SETFSEHE
SETUF®
SEMNZ
SHFET
SHROMF
SIn1o
SKIF#
SEIPT
SEIFR
SEFCOM
SEFELOF
SNDFRM

1041
FEDAF
FETZE?
F21865
FIBES
£7492
T1T435
¥EFCE
¥12243
F19T7E
F1240
FIFGY
F74=1
F¥oAaDs
FI4mA
EFECD
¥FEFFE
R 2 |
FES?S
$7483
F25A1
FaFF
£1265
F¥Z2IER
F4E40
E4DID
FEFOL
£SDD7F
FESEA
¥FCED
FIIEE
F4710
¥I7OE
£472

TN,
+ ok S SRS

FATED
F1FRA
ke A
FA1005
¥241F
FOESL
FoOOET
FELCE
FI180E
*4rFC4
FLO27
£125%2
FIO4F
EIRA AT
EZCODF
F170E
FS5226A
F7CEH
EOT704
F03CD0D
F4DEL
£2IZ97C
F7F&F
F3AAS
FIGDD
IFEDE
SFEE4
FZ2ECA
FEETD
*ERIE

FOF.
FOSRUN
FR#VAL
FRIM#.
PRINT.
FRMNTEH
FPRSEM.
FTALO?
FU=

FUSH1A
FUSH4 S
FUTEIM
PUTEEY
FWROK?
QUIFP?
RAD.

RDYSD+
READ#
READCR
RECCOVE
RELMEM
REMDAC
REMLIM.
REFLIN
REFRF#
REFTTH
RESFPUT
RESTO.
RESTOR
RETRHM.
REVPEH

RNDIC.

RMDIZ.
FROMCL—
ROMISE
REMVES
ROOM™
FFTADD
REETEN
RSMEM=
FTOIM
RLMEEE
5.0
SAVELIF
SOVREDR
SCAMN
SCAMLLY
SCONST
SEMIH.
SEFZ0
SET
SETCOM
SETIT
SETOFF
SETRI1Z
SETWEE
SHELB?
SHLA
SIGNF-
SI5FUN
SKIFPD
SKIFIT
SKIFS
SEPLM
SEFYR
SFY
3-13

FEDIE
*FDT7
FET7EI
F¥ES4E
FEZF2
¥4575
FETSLTZ
FA2O7T
FITDO
F122F
123

IFERT
$Q7C1
FOLZE
F1Q07
F79FF
F&7RED
F15ES
TFICE
FoOOS
£2455
$51F1
E¥1C2E
£2187
FO252
FSHSEE
= o oF B
FESBOD
1505
FEDGG
FFOED
E77F4
FZ0CB2
¥R
F446H74
£2787
F1IF4AD
FS5FER
F1FZD
F¥2420
E1CES
FES0ES
fEAD]
FEEEZ
FOETT
FOCAS
$F193
35405
$E7BL
£ICCE
FFEAD
F4DFE
FoE3D
& 2] SH B
FiHIE]L
+7ESS
FIELE
F7F43
FR4FE
FIAES
FFEEQ
¥FEELD
*FEE1
F2185
F27CE
F44517

FORPENY
FEO1G

FR.EOL
FRINE.

CPRNFMT

FRMLIM.
FRSTR.
FTRaLD
PUINTG
PLUSHIF
FUT.
PUTCAL
PUTREL
FWRZRY
RitaRAY
RADI1G,
RDYEND
READH.
FE&DMN.
REFMLUM
FEM
REMGEE
RERZL
REFORF
FREFRT+
RESCON
FRESTH.
RESTEN
RESTRT
FETLRR
Fe T NS HE
FHDIMI
FMLST?
FOMCL &
ROMRTN
FCiMF
ROFEM
RFTIMF
RSETUF
FRETELF
Rk,
RILIMROH
SAFE!
SEYEME
SENVRGS
AN+
SCARN
SEARCH
SEF14
SER#
SETAL
SETED
SETL3ID
SETFFR
SETEHN
SF SC AR
EHF1G
SHREA
SIGHMIF
SHIF!
Sk I=EEM
SEIPL
SEFCHE
SEHFPLMN#
SMLINT

SIS0

FS040
FIDL6
F4EFS
F¥5SBET
FFDES
FoF&SS
ESFELF
F258Z2
+FLE4
F4451H
FO7HN
F2C14
EIF0&
FOSEE
FEHODY
+IAH28
*£EH19
FESSA
FEACT
FiGEC
F11AE
FELSS
F4DOT
FOEE

E4BDSH
£2418
FESSZ
+4FF s
F4305
FOFEL
HLHTET
FECAY
FL91F
FIST 4
F481D0
EIAGT
24D
FTOFZ
FEFCE
54D
FLOAC
FaA4754
F3IFD
F¥4741
FOERPF
FioCE0
TFE04E
FOAH0S
FICEX
F17ET
FOOLT
¥ooog
¥745EB
*1FSC
£iF47
FOOTA
Fo7EY
F7FTA
F24FE
+FEE4
FFEET
F20OD4
FOEES
F21E87
FiiaZ
EI2AS

SORS
STALLS
STAND~
START
STBEF '
STMMSK
STORE
STOSY
STR7*7
STREX+
STRREF
SUERD !
SUESTZ
SUMIT+
SVADR+
SYCSET
SYSINT
TAE.
TELZ
TENRIT
THERE 1
T IMCHK
TIME.
TINCH#
TMEF AT
THRONE
TMROF .
THRELY
TO.
TOECDZ
TOBRINT
TOFROM
TRC7
TRCLF
TRERM,
TRNSLF
TRY1N.
TSTRHM
TWOR
TYPSTM
UNEQE.
UNLRP?
UNRCM
UNTREE
UFC#.
UPRC=
LROOM !
VALE.
VCREET
VERIFY
VERMNZ
VERMNS
VFADCL
VFRSY+
WECDCO
VFDDLZ
VFDIR+
VFERR
VEGLOC
VFLAD
VFLIF?
VFMFF 7
VFMSG
VENYE +
VFRDE
YEROO?

F£38%0
¥I1EA
FEACE
FTRZ0
F70S54L
¥&345
708
3098
FoHIR
FIOFA
1134
¥ITCA
o821
FFAFY
FZ4A7
FOL3F4
FIRED
FELTL

ETEST
FEESSE

FTOLT
F7I40
F1a7
E£T7EFA
*&TFT
FEFIE
F4020
TR
FIFFE
FEETA
FOATE
FORCD
FEOOO
o I
4300
FrE12
7055
F12FC
F2919
FIDO2
#1307
F4000
FLOED
FA4TED
FELCG
FEDLE
1835
F1FEBS
(FCBE
FAFFL
FrEERY
et
ELF4L
FAHOER
FETCL
ELDTT
ELCHE
ELTAD
5048
FSELD
14
FLEBRT
FTHEDZS
FLEDY
$670C5
FAHF A
FEEFO

STAaLL
STALREM
STAMND.
STHRTY
STDATE
STOF,
STOST
ETOSVM
STRCRK+
STREXF
STRTHE
SUBSCR
SUBSTF
SWADCE
SWCEHK
SVVALS
5¥Y5JE5R
TADREF
THLZH
TEXT.
THERE™Y
TIMDIV
TIMEMD
TH#GET
TMESET
THRGO
THROM.
THRSS
TOTI
TOBRCDZ
TOEIMNG
TRAFTH
TRCEF
TRCYEL
TRIUMF
TROFF.
TSTALD
TTHFLT
THOROT
LI,
LIMEE:.
LMLSMD
LNSEE
UNTSHD
UFRISF
UFRESE
USING.
VAL .
VER.
VERMMD
VERMRE
YERSUER
YFEAaDDR
VEBYE
YFECDEFR
YFEDECL
VEDUD
WEERCH
WEHI
YELAD
VELTBY
YRR
VEMXD-
YEFED
Y1 REMA
YITRREDC
3-14

+S1C3
F7400
$EABF
F740E
#6811
+51 B9
F54ES
FE597
$1193
F1OFD
7901
$3396
FELHA
£580A
F462E
£54A4
F456D
$ECOF
$TEBE

FOZIE

EFSEY S
FHL4ED
F&T73EA
+ZFDC
*765BZ2
F¥IFFZ
- T
F408E
FEZAL
FOARBE
Foa5DEBE
FEALF
FA4BED
£48390C
F4924
$4820
ED2OT
EHO0T
FIEER
FE4LIG
F4DFA
FEEBES
FF021
#EB1Z
FaHIFF
F7E9
ZEIF?
FFCFED
¥FBFA
FOAHTT
£ 7208
FFC20
FHERBO
F&5DAD
F5DHE
F5DDF
FLEEE
ETHETH
FLAOT
FHTAT
FSCFF
FEATA
F50DE
FaHOFLC
F5EZE
FLHCH0

STALL+
STAND+
START

STRBEEF

STEF:
STORT?
STOSTH
STRICH
STREX!
STRIMD
STRX~!
SLURSTL
SUMIT
SWADR
SVCCLR
aYCAalL
TAE
TAM1O
TCETGEL
THERE!
ICH
TIMES.
TIMMSE
THMELCMD
THMRCLR
THREIL
THROPH
THMTRIG
ToOASCE
TOBLIEY
TOLCD
TRC:
TRCHELD
TRFLO,.
TREEY
TRVAR.
TSTEND
TWoE
TYPORT
LRNALTO
UrlLRER
UnneaT
EIRES T A,
TN
LFENT
FSET
LET 21
VMCCALL
VERH
WERMRM L
VERMMNS
YELITOZ
WEBSY
VWECDA S
VEFCLCH
VEFLDEIR
YEEODT
YFGSET
YFHI+
YELEDT
SMELT Y+
WEMOVE
VERADRE
VERCER
VEFRLET
VERMDE

FES1IoE
FEADF
FoSBCS
FFECH
FEEGAL
FOAHD L
*S4ES
¥FCFD
F127F
FIEFE
24 sy B
FITEZ
FFHF &
FO45%
FOESF
FEOED
FSEDE
FIRED
750G
ETLEFD
#5344
ET7CAD
E5HTH5
£75748
F40FE
FLOTF
FALDF
E4GA2
FixpTd1
FELET
FEOooE
FICFF
FARTY
+4587
FO20RE
FA4EF0
FETETD
FIERE
F2478
FOIFS
FELFS

1247

X
i
R S SRS T |
e R R

D EFY O

B I o) B G T) B R

gt i O B 0 O =
{0 5 6 B)

T LA ko

17

N R
g 00 B0 e e IS A e e
T o R O)

PV R T Yy 1 o i I 1

L L o g i O G o
T -l m

R TS L O T S B T S (O S B S L T
- o

mme

[s S A A

L AT b B R

L™

YFRWO4

VFRKHSO
VERWLUO
YWEEREFL
VETRD+

WETRML

LVEWALCH
YELE
VEWRD-
VFEHWRED
WaITCHK
WaRN
WRITCR
YTX
ZROML=-

£57D0
FTSHBEZ
FEDTF
FLEES
F5T7DS
FafF OF
$4C2F
FECAE
F5DF0
*&CHEG
FFEAS
¥ARBD3I
EF91T
¥I974
+2AT77

WE Rl A
YFRWEER
W IR R
WESTAT
VEFTERM
VEUTL +
VMEWELD
YEWRER
YFWRD 1
VSRCH

WAITEY
MARM. R
YEARTH
YTES'

ZROMEM

T&HTFE
FLEED
£4CF2
F&DOF
FLDAT
FLTDA
*5E84
+ALC0E
FHDED
F2TA0
20735
F4C54
FEEIF
£778R
¥20L80

VERWRED
VERKSR
YFSECT
LETAD

VETIME
WEWACT
YEWOOF
VFLRCL
WEWRDE
HATIT.

WaxeLlF
WCHJSE
¥ INCHE
LE8.5a

ELEETE

FLEBF T
FHBAE
+EHFES
+ECOF
tHF 45
+&5C350
*¥5C3hA
*s5CF3
F4DE=
FETAS
*¥7455
FEZEF
25757

B S A S
—

a1
0857

4

&.3. Beschreibung besonderer Adressen:
a) CONBIN:

b)

c)

d)

e)

£)

g)

h)

i)

Diese Subroutine dient zum Umwandeln einer bindren Zahl in eine Zahl
mit Flielkomma.

INPUT: Bindrzahl in R36/37
QUTPUT : FlieBkommazahl in R&40/47

CONINT;

Diese Subroutine dient zum Umwandeln einer Zahl mit FlieBkomma in eine
bindre Zshl,

INPUT: Fliefkommazahl in RG6O/67
QUTPUT : Bin&rzahl in R76/77

ERRCR :

Mit Hilfe dieser Subroutine wird ein Vergang auf Fehler untersucht.

OUTPUT: E=1 bei Fehlern
E=0 hei Micht-Fehler

EEROE+:

Mit Hilfe dieser Subroutine wird wie bei ERROR ein Vorgang auf Fehler
untersucht.

OUTPUT : E=1 bei Fehlern
E=0 bei Nicht-Fehlern

NUMVAL :

Diese Subroutine dient zum Suchen nach einem numerischen Wert innerhalb
des auszufiithrenden Schlilsselwortes,

OUTPUT: E#0 wenn ein numerischer Wert gefunden wird
E=0 wenn kein numerischer Wert gefunden wird

ONEB:

Diese Subroutine verwertet wie die noch beschriebenen Foutinen ONEI und
ONER die Parameter in den Schliisselworten und schiebt diese in den Stack
der CPU. :

OUTPUT : Resultat in bindrer Form in R46/47 und R76/77.

ONET :

Wie CONEE.
OUTPUT : Resultat in INTEGER-Form in R46/47

ONER ;
Wie ONEB.
OUTPUT; Resultat in reeller Form in R40/47

ROMJSB:

Es wird eine Routine in einem speziellen LEX-File aufgerufen.

INPUT: Die zur Ausfiibrung des LEY-Files bendtigten Werte
QUTPUT Ergebnis der aufgerufenen Routine

SYSJSB:
Es wird eine Routine im System-ROM aufgerufen.

INFUT: Adresse der Unterroutine
OUTPUT: Ergebnis der aufgerufenen Routine

i-1b

—.-3__.

i

e P

A b

o
3 z
o : " ;
e E oxi 1
{] - -
£t i I 1

BN apie
FMHE

ey

5

At
T

\

i

T

i i
= .y
] R

O P 2ER B REoRESCHRE(RE woMEAT
“y TOEBEML) & T” v THEM [-=I+254 ﬁ SoTa 70
O =NUM G2 U=-2]0) #2548 +MUM (RS U100 L7023 22758

HLEN(CF) /2-1 @ v=u+14

TO =

VA& SBTER X

R J'u:L" RE(PEKE(I+1))

810 T=FOS (MO, RFLL, 1] #14+P05 (H93,RELZ, 21} ~17

B2 Fipl L, aRsdry @ r_l il @ REXT I @ YeULin @ Lleii-f &
930 IF LEN(CF)=0 THEM 3790

340 FOR I=2 TO LEN{LI‘ STER -2
g TTPUh'H?T CIET P EPAMFOS(HPE, CH0I+) I413r 37
NEEXT I

e ?E;lﬂtercndierung =
THEN 1159

BEL 13 #3+AL (BF LI r2, I+23) +45a0% {(T=a5)
=5 THE! _=D? El SE =A%

THEN I=E @ CF=CFLFMYE(E) & f=f4

=4 THEM D9=7 ELSE Aa9=F

T,

pees
B
puk

e B e B I l'_-[1
b :
I

A
o
e
L
i
[H]

1070 i=1x4 @ I IxL TIHEM 400 CLSE
1120 1 — interroutine fuer ind. Yz
TR0 E=-NVEl (BFL I+ T+ w2 vaL (REr T
1120 YF EHAT TISEM A=l & CHE=CIsFMYE
i S DIS? DEERFE KT @ i=i+q @ [F I~ TH"
1132 ! = Unterroutine fuer Registercoinl
115 L““m
1170 Is
113 M=l
T2y i

l =
121w Ti-EFiss
2

4LT,?]}HB+QEL($$£:,3=3*&4*1H
1i="D" THEN D9=E LCiLSE A%9=FE
CEELCFEFMNYE IE)Y) & S07T0 SO0
Adressencodi srung -
FEEELIRL BT
) ¥

3

L
1

b o

(Wi
I-u_\'_'

P o) B I:-':I I

1-J 1
[

B A ; o 2 I
1228 & =A i 2 DE=D1e F 1L THEHM &9 £i.50 =350
:

k £ 4

PO Lo~ sl e FeEr Shgoicss =
: RS PVALIREL LS, 1T

i faP=ds @ Eﬁ“‘I'FM g L
i GOTO A0

wor Liforal —
F2Y @ {1=8+41 @ DE=DEy =
WL R

Y
¢
L
E

— —
F £
RN e [I e
0 4 3N 4

1%
(irp]
1
-l
[
4
iy

Ll
2
1751
T
- i

~
h

FLoLENIFE =04l 11 1~ 0 TH
TESTRE(YY @ ZLTD 230

2= 8 DEsDET o
Miiemon: og -
FRELENYE (MUMIBE D0, 8]y b
1.L=13)4+128) @ fiz=f+d
Ende Label -

N=A+2 A CESUSLCFFREC & 8070

SO0 SO0
! abrale -
E:r\,ll)jrf (BEL 1 .. f lzal !__-':_' BTN £ e
GilL-Ar=0 & O0OT D i
SO0 =R E GDTH

CiC)=8 @ B=pinx

=
L
fir;
i
E

A

[

P

ANHANG A

Die Speicherung von Informationen auf dem Magnetband

Durch das Digitalkassettenlaufwerk HF 521614 wird der HP-75 um beachtliche
Massenspeicherfdhigkeiten erweitert. Mit Hilfe dieser Peripherieeinheit kidnnen
bis zu 512 Records (131072 Bytes) an Informationen auf einer Mini-Datenkassette
aufgezeichnet werden. Das Laufwerk wird iiber die Hewlett-Packard-Interface-
Loop {(HP-IL)} an den HP-75 angeschlossen,
Jedes Magnetband muB vor der ersten Benutzung initialisiert werden. Dabed
werden auf zwei Spuren 0 und 1 die 512 Records zu je 256 Bytes eingerichtet;
dh. es wird auf dem Band Anfang und Ende eines jeden Records festgelegt.
Dahei werden die Records auf jeder Spur ven O bis 255 durchnumeriert und
jedes Byte auf den Wert 253 gesetzt,
1. Die RBecords O und | auf der Spur O:
Auf diesen beiden Becords sind Bandkennung und s@mtliche Identifikationsin-
formationen untergebracht.
Record O:

Bytes

0-1

27

B-11
12-13
14-15
16-19
20=-21
22-23
24-27
28-31
32-35
36-41
42-255

Werte

LIF ID 128

0

Kennungstext {Yolume Labél} je nach Text

Anfangsrecord Yerzeichnis

Systemn 3000 1
keine Verwendung

Lédnge des Verzeichnisses

Version

keine Verwendung

Spuren pro Oberflidche

Anzahl der Uberildchen

Records pro Spur

Datum und Uhrzeit der Initialisierung
Verwaltung

oM OO oCOoOoD oS
D DO SO =000 0

DM =00

REecord 1:

Bytes

0-255

System 3000 a

2. Das Directory:
Das Directory ist das Inhaltsverzeichnis des Bandes. Das Directory beginnt
mit dem Record 2 eines Bandes. In jedem Record sind 8 Eintrdge zu je 32
Bytes zusammengefalit., Fir jedes File auf dem Band gibt es demnach einen

Eintrag. Dabei wird in einem Eintrag folgendes abgelegtl:

Bytes

0-9
1d-11

12-1%
1H-13
=25
26-27
28
25
30
31

oz

e Lt]

ao.

Werte
Flename X XX
Filetyp 4] 1
224 82
224 B3
224 1346
224 137
Anfangsrecord des Files 00 x =
Filegrife 00 x =
Datum und Uhrzeit der Erzeugung ¥H XX
Datentrdger—Flag/Nummer 128 1
Implementzrion X
Tmplementation ®
Implementaticon X
Inplementation x

Diese Bytes 28-31 werden beim IIP-73 zur Speicherung des
das Programm auf Kassette geschiitzt werden kann, benutzt.
Die Linge des Directory-Teils wird bestimmt durch das Byte 19 in Record 0O,
Dieser Wert, um]| wvergrifert, gibt an, bis zu welchem Record das Directory

geht.

A-1

LIF1

{=

o O

X

TEXT
AFPT
BASIC
LEX

2 Spuren)

2 Spuren)

256 Records)

Pafiwortes, mit dem

3, Der Teil des Bandes, in dem die Files stehen:
Dieser teil beginnt direkt hinter dem fiir das Directory reservierten Platz.
Die einzelnen Files sind dabei so codiert wie in Kapitel 2 besprochen. Der
Filebeginn eines jeden Files wird durch den Eintrag im Directory fir dieses
File bestimmt. Und zwar ist der Filebeginn durch die Bytes 14-15 festgelegt.
Diese bestimmen, bei welcher Spur- und Recordnummer das File beginnt.

A=Z

ANHANG B

Beschreibung der bendtigten LEX-Karten

1. PREKPOKE:

FEEE (dezimale Adresse im Memory-Bereich DOO00-7FFF)

POKE {dezimale Adresse im Memorv-Bereich ODO0-7FFF), Inhalt Fiir diese Adresse

a) Kopieren des Files 'PEEKPOKE' von Magnetkarte durch das Kommando:

COPY CARD TOQ '"PEEKPOEE'

b} Der Befehl 'PEEK':

Beim Ausfihren dieses Kommandos innerhalb oder auflerhalb eines Programmes
steht im Anzeigeregister der dezimale Wert des Bytes, das durch die Adres-
se festgelegt ist.

Bei PEEK(N) muli N im Bereich von 0-32767 liegen.

o} Der Befehl '"POKE':

Beim Ausfiihren dieses Kommzandos wird das Byte mit der festgelegten Adresse
auf den festgelegten Inhalt gesetzt.
POKE (N),M bedeutet, dal unter der Adresse N das Byte auf den Wert M gesetzt
wird. N liegt im Bereich 0-32767, M im Bereich 0-255.
fuch dieser Befehl kann innerhalb und aullerhalb eines Frogrammes ausgefiihrt
werden,
Beachte: Dieser Befehl 1aBt sich nur auf ganz bestimmte Bytes im Betriebs-
system anwenden., Ob der Wert M idbernommen wurde, kann man jedoch
leicht durch Ausfiihren des Kommandes 'PEEX' iiberpriifen,

) Man bendtigt zur Ausfihrung dieses Kommandos keine weitere Peripherie,

diese LEX-Karte ist ohne Begrenzung immer ausfiihrbar,

ACHTUNG ' ! !

Beim POKEn im Betriebssystem kann es beil nicht sachgemiler Behandlung
passieren, dal der Rechner in einen deep-sleep-mode verfEllt, Er 1HAL
sich daraus nur durch Ausschalten und Entfernen der Stromzufuhr wieder
abfangen, Dabei wird der Inhalt des Rechners geldscht.

Deshalb ist es besser, erst durch den Befehl 'PEEK' das System zu er-
kunden, und dann erst mit "POKE' zu manipulieren.

Hr ID qolS

oo DEF RUNTIME
004 PpEF MEMES
o00s DEF FARSE
Mg BDEF ERRORS
oo ODEF HLi

D L aBEL RUMTIME
GOOL 2D H105

o00E DEF MAINL
1o DEF MAIMZ
Dol LABEL PARSE
iz D SH105

OOl DEFE RUMNAGATIRM
00148 EMDE POINTERS
Dol LABEL MAMES
DolE ASC "FIE"
ColD ABRC "PEEER"
OOE0 ENDE NAMES
21 LABEL ERRORS
o2l ENDE ERRORS
00322 DRP ROf

(MY ARF R27

Ooxd LaseEL RUM

D24 R/Th

DOXE BYT Al

o0Rs LABEL MAINIL
COZ& BIN

Oo0yy DRRP R20

OCZB SEM R20,=F1,&0
QDI SR FZESR
DOLE BREEF R4S

GOZF ARF RIS

D30 5TH F44 ,RZ24
il ARFP RZO

DO3IZ ISR K20, F¥4133
DoEE DREP RZS

DA RFE R4

LY BTEBD R4 R4, £0000
O T ¥
OOTE LABEL RURMGES TN
DOIE DRE A e

DOEC ARFE R4

TS I 3 B 0 G = &
COIE ARP ROS

AE PLUMD ROZ2 HROA
Gogo J2h5 Fa550

DU4E BYT S8
coeld BYT 1D
CUAS DRE RT4

ids LB RES4 ,=E4
oudE DRFE ROZ
049 AREP RoO&s
ade FOMD RO2 ., —R05
D04E aRF RIE
ooa BETH ReZ RasS
04D DRFE RGST
oodE pRFE 1Y
oo4F POBD RS7,-R12
QoS0 NP RO

=1 FUMD RS4,-HIZ
ST RN
ST BYT 1
o0Sd BYT =0
L0505 LAGEL MAINZ
OuEE BIN

aoas DRE R2G

ST
D5
OOEE
OOSE
EFE
&0
QG 1
C0sq
ST
EAERACSE
RIS
ash
, DMIAE
M1/ 1
QOFI
Q0FEs
L7 7

SEi
AR
JSE
DREF
CLM
FARF
LBED
JEE
FT M
JSE
a s
DRE
4
JHC
J=B
BEYT
EnMD

RZ0,=20,41
R20

120, £6133

RZ&6

R=é&

Fad&
F3&,X44,30000
FFCE4

+TESH
=04

R4
Raa,=FF FF
=F4

+40F9

59

B-3

2. PEKEPOOK:

PEKE (dezimale Adresse im Memory-Bereich B000-FFFF)
POOK {dezimale Adresse im Memory-Bereiech BO00-FFFF), Inhalt fiir diese Adresse

a)

b)

Kopieren des Files 'PEKEPOOK' von Magnetkarte durch das Kommando:
COPY CARD TO 'PEKEPOCK'

Der Befehl 'PEKE':

Beim Ausfiihren dieses Kommandos innerhalb cder auBerhalb eines Programms
steht im Anzeigeregister der dezimale Wert des Bytes, das durch die Adresse
festgelegt ist.

Die Werte fiir die Adresse liegen im Bereich 32768-65535. Zur Ausfiihrung

des PEKE-Befehls mull von dieser Adresse 32768 subtrahiert werden, so daB
bei PEKE(N) die Werte von N wieder im Bereich von 0-32767 liegen.

Bsp: Um den Inhalt der Adresse 55748 zu lesen, muf man N=55748-32768=22980

c)

d)

bilden. Der Befehl fiir das Lesen des Inhalts der Adresse lautet
PEKE(22980).
Der Befehl 'POOK':
Beim Ausfiihren dieses Kommandos wird das Byte mit der festgelegten Adresse
auf den festgelegten Inhalt gesetzt.
POOK (N),M bedeutet, daB unter der Adresse N das Byte auf den Wert M gesetzt
wird. Fir N gilt das unter b} gesagte, M liegt wieder im Bereich 0-253.
Auch dieser Befehl 14Bt sich inner- und auflerhalb eines Programmes anwenden,
Beachte: Dieser Befehl 148t sich nur auf ganz bestimmte Bytes im Betriehssystem
anwenden. 0b der Wert M ilibernommen wurde, kann man jedoch leicht
durch Ausfiihren des Kommandos 'PEKE' iiberpriifen.
Man bentitigt zur Ausfihrung dieser Kommandos keine Peripherie, diese LEX-
Karte ist universell einsetzbar.

ACHTUNG ! ! !

Beim POOKen im Betriebssystem kann es bei nicht sachgemifier Behandlung
passieren, dal der Rechner in einen deep-sleep-mode verfdllt. Er 1&ft
sich daraus nur durch Ausschalten und Entfernen der Stromzufuhr w;eder
abfangen. Dabei wird der Inhalt des Rechners geléscht.”

Deshalb ist es besser, erst durch den Befehl 'PEEE' das System zu er-
kunden, und dann erst mit 'POOK' zu manipulieren.

iy P T fixl g
Do DEF RUMT IME
Oooq DEF NAMES
oonés DEF PARSE
oongs DEF ERRORE
G DEF RN

ool LABEL. RUNTIME
e I0 5105
oonE DEF MATIML
oio DEF O MAINZ
0012 LAEEL FARSE
a0l ID SH105
14 DEF RUMAGAINM
ools EMDE POINTERS
] 8 LABEL MAMES
Oola aszc "PDoE"
0a1C ASC "FEKE"
0020 EMDE MAMES
o021 LABEL ERRIRS
0021 EMDE ERRORS
a2E DRFE ROL

2023 ARF 27

D024 LABEL RN
O0zZ4 RTM

D025 BYT AL

OOPEs LABEL MATINI
0025 BIN

noz7 DRF RZO

G328 58BM RZ0G,=F1,40
MR JER FIEBR
ooZ2E DREF R4sS

MEE AR RIZ&

GoED 5TH R4S ,R25
GOl ARFE S RZO

H2ED J5HR A2 wAL RS
35 DRF R2&

CIaa ARF R4S

D037 BTED RZ5,R446,3F2000
OO35a RTH o o
D0TE LABEL RUMAGAIN
UOZEE DRFE OROZ

OIS0 ARF R4t

COIR DM ROZ2,R41
I ZE ARFE ROs

v i PUMD ROZ, +ROA
xdn JER 446D
Gz BYT S8

orgg BEYT 12

o0an DRFEORD

pixds L DE RS54 ,=R4
Ooa4d DRE RO2

DS ARF ROS

Ddn FOMD ROZ,—RO&
ooaqk ARF KRGS

D04C STH RC2,R55S
QA DREF RSY

OodE pRP R1Z

Qo041 FOBD RSV ,—R1Z
QOS50 DREE RE4

ooEtL PUMD Ro4,-RLEZ
Lers2 RN

OS5 BYT Lo

o544 BYT 2D

Q055 LABEL MAIMZ
Q0S5 BIM

O0Ohs DRF O R2O

OOy
D055
CaSE
OOSE
QOSF
I LIt
nInT. N
A4
a7
DDAS
On&R
Doal
oaE
ST |
Da7I
OO7TA
OO7FF

SHHM
ARF
JSE
DRF
CLM
ARF
LDED
JSE
RTN
JSE
JNG
DRF
CMM
JINC
JSE
BYT
END

RZ0,=20,61
RZ0

X20, %4133

R7é

R3&

44

RI&, X486, $3000
+FCE4S

F¥ZEHBE

=0

Ri3é

R4 ,=FF , FF
=F 4

£4C59

59

3. TOUTIL oder HPILCMDS: (& Copyright fiir dieses Produkt liegt allein bei
Hewlett-Packard GmbH, Warenzeichen)

SENDIO '":Code der Einheit','Liste der Kommandos', 'Liste der Daten'
ENTIO$(':Code der Einheit', 'Liste der Kommandos ")
SEND?

a) Kopieren des Files in den rechner durch Eingabe des Assemblerslistings
mit Hilfe des Assemblers in den Rechner.

b) Der Befehl "SENDID':
Der SENDIO-Befehl wird gebraucht, um Kommandos und Daten an eine HP-IL-
Einheit zu senden. SENDIO kann sowchl direkt vom Tastenfeld als auch in
einem BASIC-Programm aufgerufen und ausgefiihrt werden,
Erklarung der Bestandteile: :
":Code der Finheit' Der Name, der der Einheit durch den ASSTIGN I0-
' Befehl gegeben wurde. Ist der Code der Einheit
nicht bekannt, steht dann der Leerstring ''.
":Liste der Kommandos' Fine Liste von HP-IL-Kommandos, durch Kommata
getrennt. Nihere Auskiinfte iiber diese Komman-
dos in IL-Handbiichern, _
":Liste der Daten' Ein Charakter-String, der die Daten iibermittelt
Mit Hilfe des SENDIO-Kommandos kann eine Einheit akriviert ader in einen
status (Listener, Talker, Controller) versetzt werdern.
c) Der ENTIO$-Befehl:
Der ENTIO$-Befehl wird bendtigt, um Daten von einer Einheit zu empfangen.
Man erbdlt einen String, durch den die Daten codiert sind.
Die angesprochene Einheit mufi im Talker—Modus sein, um antwortesn zu kdnnen,
Mit Hilfe von ENTIOS kann man Einheiten siner 3chleife genau einordnen,
da verschiedene Einheiten verschiedene Identifikationscodes senden. Auch
hier kann, wenn der Code der Einheit nicht bekannt ist, folgendermalBen
abgekiirzt werden: ENTIS('','Liste der Kommandos ")
d) Der SEND?-Befehl:
Der SEND?-Befehl benitigt keine Parameter, Nach seiner Ausfiihrung echdlt
mdn eine ganze Zahl. Ihr Wert ist die Position in der Datenliste des
strings , der infolge einer Fehlermeldung nicht vollstédndig mit dem letz—
ten SENDIO-Befehl iibermittelt wurde. Normalerweise erhilt man nach fus-
filhrung des SEND?-Befehls den Wert 0,
e) Zur Ausfiihrung der Karte muli eine IL-Schleife mit mindestens einer Einheit
vorhanden sein,
Ansonsten ist diese Karte universell fiir jede Schleife einsetzbar.

B-7

TERE'T I A

Q00
Caen
SRS R
SRS ERN.
DGaE
ity
O e
CHiZe
OnnE
(RO

a1 LEF

E

el
D014
D1 4
RN
Divif
ERR e
20
DA
ONZ2E
AR B

OOZE

I

PR

DOZEE ENDE
R R B

[vijd 5
(el
IR B
Crisas: i
g7
LR S
revaA s g1
Cear o T
=
T Bt SO e
as T
Criros
RN R
DOE S
DS s
LosF
LR RS =)
BEE

=

oF 24

ooazs ARF
OUET LARE
OOEI RTN
G058 BYT
Crdy FNT
LR fale

B R

RN

OOER R

aOaE 2TH

OOET o

Deah E
=

Ty
A
=

(i

i1

LI MmO
W mm

™

S RN NN

LA I I 9)

Li

5,

=3

D

. LASEL

L]

L

4017
FUMTIME
MAMES
FARTSE
ERREORS
KL
HUNTIME
&143
MAaIML
MAIMZ
MAINI
FaREE
o B
HIIMNAEGATIN
FOIMNTEERS
NArES
"SEMDIO"
"ENTIO®M
"BEMDT"
HMeaMES
ERRORS
35
"dewvics
ERRORS
OEDE
REa

RIS

i
s
e

oy |

”
oo

B

i

ey

S N RS

T e A

CHZ24

I mm;m

]

aACAaC

R0

R

RS =00 81

L

Rl
AT
FLN

l

W

0 LU T S P | [P R

it

Jao o=

LE0L1ED

-

AT M= Mmooy
[W o

LTy

sent MR

OO7% DRF R7S

O07A LDE E75,=40
o070 ARP K14

0070 JSE K14,$4391
OOED DRF RZ&

0081 ARF ROS&

GOBZ FOMD RZ246,-R&
COBT JEN =1E

00BS DRF RZ24

D086 CLM REIZ4

OGB7 DRF RSA

o088 AMM RS&,=EOQ,FF
O0B2 DRF RO2

GOBC LDMD R2,%8447
QCEBF CMM RZ,=A0,54 ,FB,0F .09, A0
00945 DRF ROZ

0097 JNC =0A

D079 ARF RS6&

OLYA CHMM R2Z,RS4
OOPH JINZ =0H

COeD JMP =04

DURF JSE $4C91

GOAZ BYT 39

00AT DRP RSa

Coa4 CLM RS54

OOAS ARP i

VoOAA FUMD RS4,+R12
O0A7 RTH

O0G8 DREFP RSE

COAT ARF RO3

UDAA STE RS&,R3
COAR CMM RS&,=/0,40

coRE JIR =42

QRO CMM FE3&a,=6G0,431]
CaRA JIR =EA

GOREZT DRE RS7

carps ARF R1id

2 e e 14 ,£4H1AA
DRG0 DRE N -

QOER O ANM RIZ,=40,08
coBE DRF oo

OOEF JNZ =12

COCYT LBED RO, FB45A
nocqd JIR =D

ponhs LDE Feea , =0
DOCE aRF K14

oo 358 rid,dbHlan
QOCC DREP RO

QOCD LDE HI,=0A
GOCF ARF FR14

GODO JSE O K14,%414A
00D3 DRP R77

2904 LDBD R77.,5844C
gony JIR =1t

pODTF ARP RST

QODA CHE R77,RS7
CODE ANZ =0&

0ODD ARF R14

OODE J8BR X14,.351A4

DOE1 JMF =19

DOET ARF R4

0OE4 JSEB O X14,%610C0
GOET JMP =RF

O0ES SAY

OLES DRE R24

QOER ICM R24

E-9

[

5
T

Gaf 2
LRI S
onFE 4
QoD
SeFES
GOF 7
RN o
oiaFEe
i F @A
COFEE
DoFC
O0FD
nDoOFE
e FF
ricd
L I
Diog

05

]

e

L
[P T T G S S S O .
[. i

=

[

Y B 0 e S T o Y Y (R I (O A PR

L R I

0 T o o ot R I 9 I

g

S e e e
T

H e
[

oQ
—
o oen 0

[

RS (R I R 8 I

o
ek
- S
J it

473

A)
01EE

ROk ES, A2, ES

o 2, =001 ,F8,04
b

HRF R2d

PUBD R24,+R24
TR

o
BRF ROz

ARF ROA
FOMD RZ,-Ré&
DRF RS7

EEF RZ2&

PUBL RE7,+R26
DREF REL

pEe RO
FUMD RS&,+RA
LDM RS&,=A0D,42
J5E fEE1S2

DRF Ra &

aREF RS
FOMD RE4&,-RA
AR F14

JSE 14,5100
ERE R

CrHH Ro4,=A0, 40
JMF =20

BRF RZ24
SRF R1Z2

FUMD RZ4,+R1Z
DRF RZ&

A RF R4

SBM EZ24,RE24
&RFP R1Z
FUMD RE&,+RiIZ
HTH
JSB F446481

BEYT 05

DRF R4

TN

DREF Rz
el A FZ2
ETMD R2Z,*B9&%
STED RZ,,F¥8440
anE ROS

POMD RZ,-Rbé
DEF R
DM RO, =03 62 ,00,C
LRBED RO,FAZED
STED RC,. #5440
LRF ROS

LOB R3I,=FF
JS58 FEADE

RTM

ORF a2

DED RZ, 32303
DRE R3S
LDBD RI;#32&E
J58 2EADF

ODRF RO2

LDERD R2,£8447%
JIR =0

DRF o5
LoBDR RIS ,$£#828D
fabd M EZ.=14,F7
FUBD RI,—-R&

D215F J5B Xd4456561
D142 LDM1I R3,RE
Gls: DRF RSS
D144 RTH

1465 DRF BE24

olss LDE RZ4 ,=00h
D1&a8 DRP RZE4

2159 TEHM HZ4

Glan JIE =10

o1&s0 ARF T4

O0isD FPOBD RI&L,+R34
O1464E ARP F14

214F JSE 214 ,%480FE
172 JEN =F0

174 DRF F35
8 D I B RE&
0iv4s ARF R37
o177 S5TH EZI&,R3E7
23173 LLEB HI&
o179 LLE RI4

017Aa ADE RI&,REYT
1178 STE R3I&,R3I7
D170 ARF RZ4

G170 FOBD RI&,+R3E4
017E ARF RI14

017F JSE X14,%40FE
182 JEMN <=EC

1154 DRP R34

0185 GRF R37

21E4s ADE o2& RET
0187 CHME R3I&,=20
0189 JINC =D

01BE JS5B #4CAC

1L BE BYT o8

o13F BY T L

Q190 BYT 4=

121 BYT a4

l1es BYT b

lBs BY T 45 w i

Digd4 ayT a4
Gl?5 BYT 4 E
219& BYT OF
S T = b S 4
2198 DRF s
0199 DRE RoS
A1 2a TEE =
a1y BYY q4E
D1 BYT a4F
GLen BYT o0
159E 8%T 10
I1%F BYT o
O1a0 DRF RoS
14! DEF R1&
1f/2 CLE ~id
Dlas BYT D
Gladqd ¥ T g4 4
rlbas BYT 4=
D1as BYT 24
i2IAT OBYT bia 57
QEAS BYT 4E
Glas BV 48
Diaa BYT ZF
213 BYT b g
OIfEC BYT GE
ol BYF 5
G1AE BY' = Bo11

18
] 3o
% Pl
o1pz
O1BS
0i1B4
2l ES
iBps
1B7
niRa
0ig9
O1EA
OLEE
cl1eC
D1 ED
C1EBE
013F
BLCO
K N
3 5 A
G1C3
a1c4
0
R
03
L |
L8 S B
0188
DICE
L1
O1CD

E:.l-!_'

O1CF
a1po
LD
oihe
oiDE
01 hd
91T XS
0lDs
01D7
o1Dg
b
D1DA
o LDE
e T
[l 3
1 DE
DT =
CIED

e

I1EZ
ODlES

LE 4

FES
FEE
o lEF
O 1ES
H1EZ
i EA
oiER
L i B
O1ED
G s =
O1EF
O F O

=
BYT
YT
BYT
BYT
BYT
BYT
BEYT
BYT
BEYT
EYT
BYT
BYT
DRF
DEE
DCE
BYT
DRFP
DRF
58D
BHY T
DRF
LRF
CLmM
By

45

0
i
e
Crid

-
R - T ol

R~ A

[l
p R

i

sIE7

B-12

e

OIF1
GD1F2
O1F3
D1F 4
1 ES
alES
31F7
21F8
OiFe
D1FA
2.1FR
DiFC
D1FB
O1FE
DEEE
OO0
Q2al
G202
L I
20gq
205
0205
Q207
G205
D209
205
D208
(- I
200

]

PY RS ed FERD R B ORY B2

P L i s o R
]

i)
0O~ 0 b k) o= M

[e T e T T P S R

[

0219
OZ1A
0Z21C
021D
021E
OZ1F
GRzZ0
D21

8 ARG

e oy s
N2EI
22
R
D225

DR27

GAg
2T o
D22 H
DETR
ozZ2C
D2ED

i L Y

EYT
BYT
BYT
BYT
BYT
BYT
BYT
BYT
BYT
BYT
BEYT
BY T
BYT
By T
&Y T
BYT
BYT
8YT
EYT
BT
BYT
BYT
BYT
BYT
BYT
BY T
BYT
ORF
DRF
STMI
DRF
~ADMD
BYT
DEF
DRF
ol
By T
bR
DRF
JRN
ERP
DRF
CHMB
BAYL
EYT
By T
By T
YT
DRF
e
LEGH
EBYT
DRF
ARF
ELE
S¥T
DRF
R
oME
Hoyap
BY.T
BYT
BYT
BYT
oY T
BT

0
oo
4E
o
44
42
o=
&4 4
41
&0

WF

e
wd

o4&
al

P

44
49
&z
S3
31
45
&3
sS4
47
S4
Ha
49
ROS
R20

RIE0,X37,%4549

e

23 R

R
ROT

W f]

o

= L

¥

-

90

(0 B0 P o R

,R37

pue T o I o B o I

s e =5 I |

el

)

e

= e

PR ok

R4
R72

R4 ,R72
33

RO4
R72

R4

ng

RO A
R72

R4 ,R72
44

41

=5

o0

45

4E

A

RS
AR
02358
0T
CEIA
D2EA
OZE0
250
0232E
CZ23F
G240
(el |
& L
LR
o244
0245
L
247
G248
D249
G2ahA
o4
240
024D
OZaE
D24 F
0250
'“:1

5‘_\

(@ B

0234
nTsS
':]2-_;...'

0257

0=%5s
Q257
1505
.-]_,\ }:

0750
PR

0290
2EE
it o

1240

NG 1

b S e
o bl 2ia

2

Cr-

h
RO [O) R Y

]

8 3

-~ g

P Y 1 A PO
ek

o i
0 0 0 o o N T T o Y - 0 T T S o

po S0 o Y O

B R R o I ol o PR R

i o Yo
B e |

b P L ol W} L e

R B

oY T 40
ST 47
DR¥ 2
AR EiF
FOED RZ
e a4
EYT b
BYT A
BEYT 20
BEYT -5
BEYT ST
BYT Ry
BY T s
BEYT =54
BYT g
BY T Ry
EYT a0
2Y T Qa0
EYT o
BYT 20
BYT gy
BYT 54
BYT ac
By T yi

BYT 01
BT 4%
BYT B
BYT 2E
BYT 2
BT (BE%]
B Chi
BT £ri)
BYT il
BYT 91
BHEF Rat
DRF S
cELE R4

B a1

Ol —F s
DRFP RZ0
LDE 20
E¥YT 1

R 6

DRF RS
DRF R2:3
£k FRZZ

EYT 41
R1S
DRFE RIO

M

~J
|

AR e BT

T o

2T oo

BYT G

BT SR

LABEL Ma
oI

SEHM ST
AEF 14
STH. BRI
252 Al14
R R0
i EFH =21
BRE RIT
LOE RED
AR R14
Js5Z 14

L=
0230

=

L
ey g
B4 S
DES
R EET
L-ga
QT
aged=ye
AR = e
s =)
028

Fg S
G293
OT9D
B Rt T e
e T
;'J:f%}f’-

d =

D2 A

I

-0 -0
me

I)
o T T 0 T R

Ay

{-_
Fd B FD RSB

-
e R

i

o e

=

[
0 0 O I
T
=

“
I
mmo

NN S

iZ2 B
GRRY
LB
C2E4
AR
0284
R =
g
ZoE
GoRE
L2 P
fTéT
c2C4
N
LS
R e}
AL R
L i
2 EFE
CR Tl bt
L)

S T T P R r} ;} £ M1 B b t’ SRS

3 O T T I =T O (- P % S R

b

by

I
B 3
i D
EREEY
AT
=D
INRES
o2

3opd
IRUB LIRS
= i

= THID

J5E
JER
rEE
JMF
ORF
GoH
o
nhE
|_ I:rl

o 2
PE e

ral s
4

=
-

AaRF
FOFh
DRF
STHMD
AR
DRF
ARF
FOmMD
OD=F
aGRF
LoM
HRP
Faipis

[O
[

LR

A e S o o

A G L S]

9
i

Ja

=35
TS a
s
Ho&
FEg
=L
e
* 2l
=27
FoA
=
&
(3 fornd
ad
“
=
-

i Mo Lt | G e e B E Nk
I
=

1

i

o

o

=+t
po
=0 s

[O T 0 I I O O 0 0 R

L W iy

PRI
=

~ bk}

m 2

Ht

A
s
I3

Rz
IO

+RT4

o

~R34

.
|
LA
]

BB

s =l 40
=2

q""'_\":_'l'

y FE454
i

;_H-:
- =
] EPLI-

OZ2E
DoE&
5 PR T
GRES
aA7ED
O2EA
e
D2ED
GZEA4

o2FEY
OZEE
BR2ER
IS PR EE A]
P ER AT,
L
s
QR
T A
(P30
GE0F
RN B
3 50F
i 0

B
B AR
i P (G
e
1
A
i1 1

1

LY S I Y O

1
1
i

LR RO o s T v e L 0

A R B
L

Ea
[|
ST s
S AR o]
gy
e
e e Je
et
i3 =
RS =
O35 270
i
O38E

-

P il W s

ot

4

ST

1R

S

JFE
CLE
FiRE
FOMD
POMD

Y-
[g 2

DRF

i e B U

Re)

£ S G e

2 ZTWEOTAE
t

PR 1

s R S T T e B
0

ry
A

ar

s
8 B W ¢ s 4
T

*

e

i U R) I 1
e e f R R R B) |

]
).
[

Aam
-

naom

g R 1 B W R o o R Y) S PO I O

o
FIR2E O R R) o~ DD R

A0 DD 0 DI EmD =T

Fd
L]

R o B R o8
e

A

o

s i3
=07
FR&d
| = e

Ll P
DT
14
Hi) &
ni4,-Hab
=4

Al

() B, R o T S o o R I

LT o i e~ N I o T O R Y o 0 0 |

, 8454

P i

&

H s =20
=

404

R7

=1

"3

K2

AZ& ,R20

",
i

Zm o

Rl

T

B-16

B T W (T

i =02,00,76,08,20,F7

Q2SI 3

G358 J
0358 0
0359 P
035A DRFE R4S

O3S5E ARP R24

G356 POMD R4S, +RIZ&

GESD DRF ROO

D3SE LEM Biy=25;FD,EE4 B0l 8y 00 0h S0
G367 DRP R44

069 JEN =17

L14,F54720

G345 DRF R22
AR BEM AL =075 ;00
OIZ6E JZIR 1

CI70 DRP
G371 ARP
0172 FOBD

~ 1T b

AT
il
2 iR
FJ
iy

(O T % O T R o N

(=i ey) R

75 CHME

CETE OANZ =05
nETY DRP 2
278 DCEM 22
Iy JIR ==
D378 JPs =00
LIVD OJSRE £iCA4
CEhel -HY'T =

5581 DRF RO

RSl
RZ0

o
ot

i POMD RS4,+R3I0
(IS3 JTR- =F% - —
0IPF DRFP R45

I95 aRF RSA4
DA94 CHMM R4S .RS54
DI97 INZ =F&
3399 ICE
OIFA RTHN
033EB DRFP RIO
BZOL LB RE0en0, 4808 N5 Bl B wdedy
2345 DRFP RaS
03A& ARP B4
DEET7 JSE A14,F5444F
U3a6 JEN —ss
OIAC GRF R14
0 JET Xta.E&48F
JEM =43
ARF R4
288 X14,F54844F
JEM =24
ARFE R14
JSE X1, F448F
L =

Al

RS
F e S T O P | o S e I L e R T I

R
£
RE B!
JSR Xid,5s44F
SENM =2T
ARE RIS
JSB X134 ,2644F
JEZ =SE

B-17

BEE

(RN
o412
3 ¥l
4148
[B =
o
2915
048
DR R
6 %
cg21
[T R
L R
Crad-2 5}
- e
v 20

MnAEF
JER
JEM
DRF
AR
ALE
aRF
J52
B E
JEE
IcE
RTH
oRF
LORE
STHD
JER

RTH

ARF
FOMD
DRF
FORD
PUZD
DRF

.
i

0 = 0} 201z
1

B0 D Lt gy

e e S
(T et I LI 1 e

: I
o

TRy

l::'l'hi E.

R 4

T BEDEE
=0

RS7

R
FS7,RT4
R4
Al , #5490

=00

e i
oL
o i
il
el

NS4, 584467
EB1S

RE7

BS5&
RS7,R5&
RS 7

RS&
BSbH,=68,84
RS&,R54
RS5

RS5, FR447T

R2o

RZ&
RZO,+RT6
R20,=23
=14

RZ2

R2Z

R

R2Z0,-Ré&

Ra&s '
R3&, -Réa
RiG,+Fé

20

REO, +Ra

R34

oS

_l:_l‘ l"'F

=
I

5

i
N

s e B
o S S o S Rl
JUT B o

RS54 ,=8%0
RES, $24587

FECI1IF

=

oo e
fd 0100

i O

B-18

0428
L e i
042D
04 2E
e32F
041
D=2
RE. Basgad
g7
c4I8
CaqIs
04356
0q3C
45D
Dagq0
0142
DR B LG
G4
5L s B
Gy L
[RELE By
R R
g0
a4 F
R0

s e

Dl gE
rdgF

PO
DREF
DCH
0 i
J MG
ARF
J5E
JEN
CRF
aRF
STE
dJNZ
DRF
ETE
JME
arF
STE
AaRF
LS E
DRF
= M
EL

JMNZ
DFRF
b
JiF
URF
LDR
ERE
STH
£
JIR
J5H
RTHM
DR
ELLH
DRF
aRF
TDH
LFF
FOE
J5H
JEZ
ORF

el

JMBG
DRF
AR
=

JS 8
JEN
GRF
EM
IR
ORF
ceH
J 435
oRF
ILEH
ARF
J3E
F:TH
BRF
LDE
LvEF
fiFF

T
L e

o

[}

D]

0

RZD
j_("_l"\

de u
R2Z

e]
o

=F4
2
X114
~ED
oy
RS&
Ro
=}
RZ
Rz

2~

L]

e

I Aamam s
= Li kR
G R B

3 Y

|
r

i R I

Ll o o ol o

m

nmmmm

moom

S
m

i
o
Lo B ol L SV o |

_
¢ FRZ

£34

834
RZ&
RT4
RZ&
R34 ,RZ4
R2%
RTO, +RD
£OELC
=57

3

| i
m bl F
I 1) k]

o
rd

&

&7

=80,18

l:'-.

R20, +RI&
FOELC

=4
RZ4&
R24
=015

o L
.!"..1'_ a

R2Z
= 0
5=

=i [~ g

mn

,
B
§3

LIt i e i
g .
»
E.

B-19

20
a9t
PE &l
0495
og37
0498
09599
D498
D432k
a9
g 9n
D4 5L
e
a0
i
RS
N
A s
das
o447
0488
0409
Dan g
an
L3 h
T4 GE
O aF
D489
[e
(W=
R s
o and
Odn7
1B 3
CE 30y
e
g
TG ED
- 00
T B |

B8 ¥l

iApE
da Do
Dan7
403
g
0Tl
Ca4ng
Hq40rC
AT
R Naks
CaDE
CE T

LDE
ARF
Joh
JEM
DRE
LLE
LLB
LLg
LLE
ARF
5TE
ARF
LER
AaRF
J5E
DRF
aRF

LAREL

ADR
TN
DRF
LS8
aR=
FUB
&R
LDM
R
FUm™
DRF
FLia
JIZ1
iRH
ARF
JIF
LRF
aRF
FOM

]
o

L8]

o

™
e

i
FJ
:“'

o & B
i
4
-
T
i

l» DM
LR I Y s 5 I O S

A mom
0-.

o
e |
-

i
1

R.55

R20
R3&,R20
RZ1
R35,RT1
R14

X149 ,5460FE
R20

R34
RUNAGAIN
RZO,RI4

HE2
RI,=B4
RO&
R2,+R4
R4l
FR2,R4:
RO&

R2 ,+R&
Fig
F1d4,+R&

FRL56D

F14,R&

REZ

Ri4, -4

J5B £4CAC

BYT
DRF
ARFE
LTE
JSE
IRE
ERF
JMZ
ORF
aFRFE

o |
m

w
[
= I m

Toha [

Tr_,
o

(o N E
IO

(']

]

1

e R
e i |

T

=
=

b2 e 4 B

L1 L =7 T = [T

10 Z

s
-4

T

==

i~

m

=

<k
-

=1 5
[B

RZIé
Rigq,RR3Ia
466D
RLA,FTA
L

=EF

F14

RZ

nla

j e |

F 54

Riz2

54, -R12
54

S04

554, -F&

R1Z

RSg, #R17

A B S ot 3
i =
-

O4E2 JGE SFCEA
425 EMDE

B-21

ANHANG C

Vorstellung und Beschreibung der Hilfsprogramme:

1. PRDIR:
Das Programm 'PRDIR' druckt alle Angaben (ohne PaBwort) auf dem Matrixdrucker
FX 80 von EPSON aus. Zusétzlich wird auch die Anzahl der verbleibenden Eintrige
und der freien Records ausgedruckt. Dazu mull die LEX-Karte "HPILCMDS' aus dem
Programmpaket I/0-Utilities vorhanden sein und der Drucker (':pr') sowie das
Cassetten-Laufwerk (':ca) als IL-Gerdre zugeordnet sein.

Programmbeschreibung:

1. Das Programm sowie.die LEX-Karte 'HPILCMDS' einlesen.

2, Das Programm starten

3. Eine bis zu l53stellige Bandkennzeichnung eingeben (sollte auch auf dem
Kassettenaufkleber stehen)

4. Ausdruck erfolgt automatisch, nach Abschlull Form Feed.

5. Beispiel:

ASSEMBLER1 128 Files 10.12.83
hr . Rec Name Len Tyvp Datum
oGl o-018 MUSIC 002 L 2B.11.82
002 0-020 PEEK ool L 12.01.84
03 0-02Z21 0 ADVIO oodh L 0g,.11.83
Qo4 0-027 AUTOLDOR G003 L 14.01.84
OoE 0-030 FORMATT?S 031 B 25.11.83
s O-04&1 F7SHELF 002 T O4.08.82
Do N-=04% F7SEEYS 001 T 15.11.82
008 0—044 F73PRMPT 002 T 1%.11.82
0409 O-0&44 FPEEKFOKE Q01 L 10,12.95
a1 o-0487 PRDIR oy B 15,190,832
11 D—=074 IOUTIL oos L 2F7.01.00
012 0-07% PEEEPODE 001 L. 11.12.85
L3 D80 PRMEM and B 0,01, 00
olq 0=024 LEXIN oo B O05.11.83
o015 Q-09F . FRREC ong BooD4,11.83 =
14 0-102 LEXAM onf B o04,.11.83
o1y 0-111 FRPRO Qo7 B O1.01.00
18 ©0-118 PRIVAT oy B 21.11.83
110 Filei{s) frei 387 Records frei
Bedeutung der einzelnen Spalten:
Nr. Fortlaufende Nummer der Eintrdge (Files)
Rec. Spur- und Recordnummer des Fileanfangs
zB beginnt das File 'PRDIR' auf Spur O und Record 7
Hame. Name, unter dem das File abgespeichert ist
Len. Lange des Files in ganzen Records (1 Record = 256 Bytes)
Typ. B BASIC
T Text
A Appt
L LEX
I LIF1
Datum. Datum, an dem der File eingerichtet wurde

=1

100
115
120
130
140
150
160
170
180
170
200
210
220
230
2490
250
2480
270
280
250
AT
210
320
20
40
S50
Z40
370
>80
290
400
410
420
430
{440
q4o
Q&0
470
480
490
200
510
S20
b i
sS40
S50
S&e0
a70
S8
o910
&0
&1
&20
S0
H40
&S0

I =
IMNT
BImM
Ef=

SEM

* Direcltory ausdrucken #=
EBER F,L,F,R,R1,F2,T,5,N,Y
C$CE1,EF017,N$083],RECD56], TEL1]
CHRx (27
Fec O ilesen -

DIO ‘:CA’, ‘unl,unt,ladli,ddl4’ ,CHR$ (0)%CHRE (0) @ GOSUE S10

F=NUM({R£[Z20,201) @ R=510-F @ F=F=*B

INF
IF

Fil

UT '"Bandkernnzeichnunc: '; ZF @ BE=UPRCE (Ef:
LEM(BF) »15 THEN Bf=B*¥[1,15]

Drucker einstellen -

DTH 75 @ FRIMT Ef3' ' "%CHRF(B)

IMABE 3w ,17a,3d, " Files' ,3x,8a,/

Usberschrift drucken -

FRINT USING 210 ; B$,F,FNDE(R3:[3Z7,351)

IMA
FRI
] —
SEN
N, L

GE Z#,8a,&5a,%a,4a,3a,%5a

NT USING 240 ; ‘Nr. ', 'Rec’y 'Name’, ‘Len , "Tvp ', Datuwa

Band auf Rec 2 positionieren -

DID :CA 7, "lad#,ddld’ ,CHRE (0) &CHR$ (D)
=0

HRzc lo=sen -

IF MOB(L,8)=0 THEN GAOSUE Sio

Fec in 8 Files aufteillen -

F=rODI(L ,81+3Z32+1 @ FF=Rf[P,F+31] & L=L+]

File zerlegen —

ME=F&£[1,31 @& IF Nf[!l,11=CHRF(255) THEM 480
T=HUMI{FE[12,12]7) @ IF T=0C THEN 300

=N

UMAFEL1IS ;1517

R1=NUM(F¥[i&,161)

RZ=

HUMIFFL20,20])

DFE=FNDEC(FELTL,231)

M=H

PRINT E#% ! "SCHRE(2::

+1 @ R=R-RZ
Fileausdruck -

IMAGE Tty 3z ,2n.dy'— ;3z,2%,%a,32,24,5a.8a
PRINT USING 4ZG ; N,S,R1,N$,R2,FNT$(T),D$

IF
P i
FRI
IMn
FRI
EMD
I -
RE=
RET
I =
BEF
CEF

DEF
FI
IF
1F
IF
IF

IF

END

F#t. THEH Zon

Schlusszeoile -
HT EFs ! "LCHES(E
BE Jn,Tdynel7a,3d;u,12a

MY USING 430 ; F-i, 'File(s) frei’,R, ‘Records frei-

Hecord holen -
ENTID${ :CA', 'unl,tad#,ddt2,ddt 4, odt), sda

LIRR

Datum/le:chenumwandlung (dez hes)

FHR¥ (A) = FNHEAILI, 28 . "SFHE (GE02, 27 % . LENHE (a1
FIHHE (25} = STRENUMIZE) L 1AIRSTREMID CRIUM T8 i 1:&3)

Filetyp -

FHNTE ()
g
¥=1 THEN FNT¥#="'1
Y=82 THEN FNTE="T
V=83 THEN FNT3='A"
=104 THEM FHNT$="&"
¥=1I7 THEM FMT#='L"

5|
=

1w

M

r

F7

& e

E=

FF

FF

FF

Z. PRREC:

B4

o0

18

E2

FF

FF

FF

FF

Das Programm 'PRREC' druckt Records und Files vom Band aus, und zwar wdhlbar

in dez., hexadez. und/oder ASCII-Codierung. Es werden jeweils 32 Zeichen in eine

Zeile gedruckt; damit umfaBt ein Record 8 Zeilen, jeweils in einer der oben
genannten Codierungen. Auf diese art kdnnen Bandinhalte oder Fileinhalte

direkt sichtbar gemacht werden, Dazu mull die LEX-Karte des Programmpaketes
I/0-Utilities und der EPSON-Drucker FX80 vorhanden sein. Der Drucker (':pr')

und das Cassetten-Laufwerk (':ca') missen als IL-Cerdte zugewiesen sein,

Programmbeschreibung:

1.

Das Programm sowie die LEX-Karte 'HPILCMDS' einlesen.

2. Das Programm starten.
3.a) Ausdruck von Records:

4,

FF

FF

FF

Spur- und Recordnummer eingeben, von der ab ausgedruckt werden seoll.

Anzahl der auszudruckenden Records eingeben.
b) Ausdruck von Files:
Bei der Abfrage 'Start bei Spur' RIN driicken
Bei der Abfrage 'Start bei Record' Filename eingeben
Bei der Abfrage 'Wahl: Dez,Hex,ASCII:' die Anfangsbuchstaben
wiinschten Ausdruckformen eingeben.

Beispiel:
Ausdruck des Records 79 (Start bei Spur O, Record 79, Anzahl
Spur 0 Record 79

00 ED

0o 05

10 Cé

ES SE

-

Fa F4

FF FF

FEFF

FF FF

iC
L

bl

(R

10

E

FF

FF

FF

E4

B

8l

a

k)

FF

FF

FF

FO D0 9B 50

0o

b1

58

FF

FF

FF

'Y e

<4

FF

FF

FF

FF

co

FF

=
30
P
i}

20

FF

43
E
4F
o
&0

&l

FF

FF

FF

FF

5. Ausdruck erfolgt antomatisch
B.

43
E

e

FF

FF

FF

FF

FF

FF

Al

b1

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

0

FF

L]

B4

FF

FF

FF

FF

o0

FF

FF

FF

FF

00

17

BO

FF

FF

FF

FF

18 00 12

SE

CE

FF

FF

FF

FF

—

E4

FF

FF

FF

FF

78

A

FC

FF

FF

fiir die ge-

FF

FF

FF

FF

Wahl: HA)

il

[}

42

CE

FF

FF

FF

FF

00

Fl

08

8B

FF

FF

FF

FF

24
-

80

El

v

FF

FF

FF

L]

e

a0

F4

FF

FF

BB

Al

FF

FF

FF

FF

81
IE

&F

FF
FF

FF

100 ' ## Records wvom Band ausdrucken #x

110 INTEGER R,A,D,T1,J,K,L,S,Z,M,N,F,E

120 DIM R$#[25461,E$011,HEL128],P$[3],5%041,D%0128B],A$[464],R1$01461,F#L3
21

130 Ef=CHR*(27) @ S%=" ’

140 ! — Eingaben -

150 INFUT ‘Start bei Spur : ‘,5%; 5% @ S=VAL{5%) & SF=" ’
155 INPUT ‘Start bei Record : ‘;Rl1#% @ Rif=UUPRC¥#{R1%) € FOR M=1 TO LEN
(R1%) -1

1556 IF NUMIR1#¥IM,M+11)<48 OR NUM(R1I#ILM,M+11) >57 THEN 570
157 MNEXT M & R=VAL(R1%)

140 INFPUT - Anzahl der Rec.: ";A

170 ' - Drucker ginstellen -

180 PWIDTH 1230 @ FRINT E#2 " ' "2CHR¥(Z2Z);

170 ! — PBand positionieren -

200 SENDIO ‘:ca’, ‘unl,lad#,ddl4’ ,CHR$ (S)%CHRFIR)
210 ' - Beginn 1.Rec -

215 DISF ‘Wahl: "XCHR¥(19&4&)% ez, "RCHR¥F (2000 % "ex, "RCHRF{(1F3)IL'SCII: "4
214 INFUT ""; 0Of @ RF=UPRC#(3$) €@ D1,D2,D3=0

217 IF FPOS(RF, "'D')#0 THEN Di=1

218 IF FOS(O$F, 'H 40 THEM D2=1

219 IF POS{BF, "A'}#02 THEN D3=1

220 FOR KE=1 TO A

230 ! = Spur— und Rec.Nr. lesen/drucken -

240 FPF=ENTIO#${ :ca’, 'unl,tad#,ddt>,sda’)

250 S=NUMIF£L1,1] @ R=NUM{F£[2,2])

240 PRINT "Spur‘35;' Record ;R @ PRINT

270 ' - Rec lesen -—

280 R¥F=ENTIO#{ :ca’, 'unl,tad#,ddt?,ddtd,ddtl sda "}
290 ' - Rec aufspalten -

300 FOR Jd=1 TO 254 BTEPRP 32

310 | - Druckzeilen (dez ,hex,ASCII} aufbauen -
320 DE HFE,AF=""

I30 FOR I=J TO J+Z1

340 D=NUM(RF¥LI,I11)

50 DE=DFLFMNFF{(STRE(D)]

350 HF=HFLFNF$ (FNH1F (D))

I70 AF=AFLFNAF (DI

380 MEXT £ " # - - -

390 ' — I Zeilen drucken -

400 IF Di=1 THEN PRINT D#

401 IF DZ=1 THENM FRINT Hf

402 IF DZ=1 THEM PRINT EF% ! "RCHREF(34H) %" "LAF

410 PRINT E#%" ! RCHR= (22}

420 NEXT J

430 PRINT

440 MEXT K

450 EMD

440 ' — Zeichenumwand!ung dez/hen -

470 DEF FRHIF(D) = FNHOF{(D\1&)AFMNHGE(MOD (D, i&))
480 DEF FHNHO#(Z) = CHRFIZ+H4B+T7=(L:9))

C-4

— fAusdruch formatieren —

FHFE(74)

I = ASCITI-Zeichen —
CEF FiA$(D)

F’
L=4~| EM(ZF) @ FHF$F=510 & L=4-LEN(ZI*} & FNFE=52[1,L1%7IF

IF D>31 AND D<127 THEN FNAF=CHR$(D) ELSE FN&s="

END DEF
Fis=UPRCE (R1$01 %"

Rif=F14#r1,87 @ BENDIO 'i1ca , unl.lag#.ddid " ;CHREIO)YLCHIE (D)

My E=

IF Map:o LB1=0 THEN RE=ENTIOEL
P=MQD{Q,83+32+1 B FF=RFIP,F+311 @ [HB=014+1
IF F¥L1,1]1=CHRE$£(2Z25) THEM 4HB0
MNeE=F£[1,37 28 A=MNUMIEFL20,Z00]10

IF MUMIFFI12,1200 =0 THEN &00
S=MMFFLLS, 1537 @ R=NMIM{F¥Llo,1£7]

IF ME=Ri1Z THER 1870

M=l @ OIF A#2 THEN &0 ELSE

d=a+1 & G607
DISZF 'File nicht gefundern’ 2 EM

s QRS

C-5

ca o und stagH;cdiisddtd,datl=ca

3. LEXAN:
Das Programm 'LEXAN' analysiert ein LEX-File, das auf Magnetband gespeichert
ist. Es werden Informationen, wie Ldnge, Befehle, Codierungen der Befehle
und Fehlermeldungen ermittelt und ausgedruckt. Fiir die Ausfiihrung dieses
Programmes muf} die LEX-Karte 'HPILCMDS' des Programmpaketes L1/0-Utilities
und der EPSON-Drucker FXB0 vorhanden sein. Der Drucker (':pr') und das
Cassetrenlaufwerk {':ca') miissen als IL-Gerdte zupeweisen sein,

Programmbeschreibung:
Das Programm soweil die LEX-Karte '"HPILCMDS' einlesen.
Das Programm starten.
Filename eingeben.
Ausdruck der Informationen erfolgt automatisch,
. Beispiel:
LEX-File "PEEKPOKE'

LF Ll S

FPEEKFOKE 119Bytes 10.12.93

Bafahle;
180 21 64 1 POKE
180 21 &4 2 PEEK

Fehleraeldungen:
keine
LEX-File 'PEKEPOOK'
PEKEPDDK 119Bytes 11.12.83
Befehler

180 20 &4 1 POOK
180 20 &4 2 PERE

Fehlerseldungen:
keine
LEX-File 'IOUTIL' (gleich mit der LEX-Karte "HPILCMDS')
IDUTIL 1252Bvtes 27.01.00
Befehles

1B 25 &4 1 SENDID
180 23 &4 2 ENTIOS

1B 25 &4 3 sENpT
Fehler meldun gén g
device gnas NBD

T omro L W oD WU Lo AT L i ES Ry
TFE= H 3 = B 7, T T
INTEBER N,L,F,F,T,5,R,X,8,d,1

120 EF=CHR# (27}

135 SENDIDO “ica’, 'unl,lad#..ddi? ;"'
ddtd,ddti,sda’?

140 ! - Fpositicnieren des Dandes auf Direciory -

150 INFUT "Frogrammaame: ":A1E 2 ALF=UPRCE(ALE

RE=ENTIOFI =

fal
g

TOo L=

n

;
8y

= 5
180 | — Ret lessp —
120 IF MODDEiL,.By=0 THEM RF=ENTIDS (" :tca’, uni,tad# dEtz
Z00 P=HOD{L,BI#I2+1 @ FE=RF[F,F+311 & L=L+1
Zin IF FEL1 . 13=CHR=*{255) THEM 270
220 ME=FFL1,BI & F=MUMIFFLZC, _4}
TEG TENUMIFFELI2, 0253 @ IF T=90 THEN L0
240 S=pMUMIFL[i5,15]) & R=pUMI{FE[1s.14]0Y & A=F
220 IF ME=iAE THEM 280
ZE&D b+l @ IF F#HL THEM 190 ELSE L=_+1 @ 5070 1790
270 DISPE 'Files naicht gefunden” @ ENE
B AiIF=AF @B AF=FMNHIFIMUMIFFLZE, 2010 58, SrhHLE (RUM(FE

2F0 AF=AFLENHIF (MUMOFFLZ1,2130 0
00 ! — Band aud Programm positionicren -

210 SENDIO “rocat o, und lad#,ddld CHES{ZSHLOHES (RS
A ' — Hec Iepzen —
ENTIEF . "zca’, 'uni tadd,ddtZ,dddr 3, dgt] j=da)

i
F=pUMIRELA, 45) #2056 +NUMIRELT 200
FHIDTH 75 B PRINT Ef% ! "&TCHRF (2
IMAGE 3Zxy17a,5d, Bytes ' ,3:x,8a,7
FRIMT USINGE 2480 3 S15,F 5%
FRINT 2 !
FRIDTH 1_"1 @ FPRINT E£2%L D RERCHRF (225
ERINT ‘Hefahios
ﬁ:MUM(H$E Teita RS e
W”MEP$'”U,LJj?
h—NUW‘H*xbr Sddh el
1—-rJil**1t|‘-ir""'3 R

IF B GoTO
%.i-.l._.'! mE=RFf ==
470 FOR i CEREI(ZEE)

NLIM f-»lrt,; :

;l'-‘:.l-—,-::. TEEN D=0+ &

THIR

FRINT "Feh mgen:
IF RELg,a7 ;
A0 HESRFLI+1,M] 3
& IF NUMEHELL ;1.3
SGF HE=HSE L POSTHS
Sin FOR I=1 TO LEN
FomAMOMEDT 1T 1723 THEN D=D+1

E g

1
L
i
i

om T
[e 1]

Sl GlFE=sHELL,
872 FRI S F
s phEME: F
FRETNT & EETHNT

P& Y LFRHOE

LR O O SO I

= ol = B

EIM E¥#C013 . H$0Z001,5F041,A4308] AL1EM200] FELIE] RELED:

uni s tadd,.dditid,

J,NFLED

Pmd AF=A$L1,B83 @ SENMDID ‘:ica’, 'ladi#,ddld’ ,CHRF{O) RCHEF (2]

e 'u--.,-,

1

Lo

’

Bty

4, LEXIN:
Das Programm 'LEXIN' dient zum byteweise Abspeichern eines LEX-Files auf
Magnetband. Dazu werden jeweils die Hex-Codes einer Zeile (=32 Hex—Codes)
eingegeben. Fiir die Asufiihrung dieses Programmes muf die LEX-Karte 'HPILCMDS'
des Programmpaketes I/0-Utilities und der Drucker FX80 von EPSON vorhanden
sein. Der Drucker (":pr') und das Cassettenlaufwerk (':ca') missen als IL-
Gerdte zugewiesen sein.

Programmbeschreibung:
1. Das Programm sowie die LEX-Karte 'HPILCMDS' einlesen.
2. Das programm startemn.
3. Zeilen eingeben.
. Nach dem letzten Code als Hex-Code 'GG' eingeben.
4. LEX-File wird uaf Band gespeichert und kann dann in den Rechner geladen
werden.,
5. Beispiel:

Eingabe des durch 'PRREC' ermittelten Listings:
Eingabe der Zeilen:
1: F7867700RD4CEAFODOSES0454B45504FAFAB1A400C0018001200210024000561

2: 260055000561 3B00FFFF504F4FCBS0454BCSFFFFA1179EA19850CDF160CESB3E
3: 6616A310C633615626B600809E4221A106ESCEGDA658126CABBAAZ06EIZDAZGE
: DAEZ26CES9E102D9850CD206110C633615E9326B40080CEEAFCIECESBIEF40666
: COFFFFFAFACESS4CSSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFEY
: GG

oo

Im Katalog des Laufwerks steht dann das File mit

Name Type Len Time Date
PEKEPOOK B 117 19:51 04 11 83

Mit COPY ":ca' TO 'PEKEPOOK' 1&Bt sich das File in den Jechner Jladen.

C-8

Foo P | E¥-Files vom Lizsting sinoshken *#

110 INTEGER Z9,M,L,F,F1,FP2,P3 PJ;S;M,,; ‘?;I.,:F

120 DIM AFITZIRFIZSL],HELBT, E$L1LJ DELTO]

120 ' — Band positionieren —

140 I9=0 & RE=ENTIOE{ s’ ‘unl ctadf,ddtlddoddadtljzda)

150 BENDRIO “:1ca” , 'unl jlacd#§, detls”, HQifﬂ)*rHﬁétr?}

10 MiL=0 B AF=CHRF (255 CHRF (255}

1FCOIF HﬂD";”}:ﬁ THERN RF=ENTIGE('1ca’, 'unl ;tadd, dd:Z ,ddt 4, ddt i scdz"
B} F=RFOS P$ 15

by o T R = nl b CogrammreEcorsgs -

wunl g iacd,dord
gt 4 PR FleERlaREh
L FI+42
=NbH(W$EP:—1,F1—Z]) @ RF="" @ ph=g @ PE 3=
SERMDIC “:ca’, "ladd#,ddid JCHESISILZCHRE (PR
- Einpgabe fe= Liscings -
OIS STREF(JF 275 2@ INPUT : BF B DFE=UPRCE{DF]
FOLER (B 264 THEN 2&0
OF i=1 7O &2 STER Z 8 HE=D3[Ii, 14173
F RNURM(HSLE, 33X 570 OR MuMOoHE E,ZT}}?G THEM PE=P3E+1 2 ZOT0
"E=F Fa=iPOS ("Gl E3A0&TEYARLDEF " HELL 1] -1l 5+FET 0 "]
EFC P o Sk
(Fda
=741
b=
FEI =254

SR RFD R

et e

&

ot~ SRR

£215 - .

ag in Directory —

a', lad#,ddls’ ;CHRE(GILOHRE {79

i g tadd# iz]

T S R |

% T T w

OO A T

BLHRE LR

5. DEVICES:

Das Programm 'DEVICES' dient dazu, die Anzahl von Peripherieeinheiten bestimmter
Einheitsgruppen zu finden. Fir die Ausfihrung dieses Programms mull die LEX-Karte
'"HPILCMDS' des Programmpaketes I/0-Utilities vorhanden sein. Auflerdem muB das
Peripheriesystem in seiner Kennung bestimmte Richtlinien erfiillen.

Das 1l.Zeichen in der ASSIGNIO-Zuweisung fiir jede Einheit gibt die Art der Einheit,
das Z2.Zeichen gibt an, die wievielte Einheit diese Einheit fiir die entsprehende
Gruppe ist.

Controler
Massenspeicher

Printer
Display

Interface
Instrument
Graphikeinheit

Elektr.

OEHOYEE O

Frogrammbeschreibung:
1. Das Programm sowie die LEX-Karte 'HPFILCMDS' einlesen.
2. Das Programm starten.

3. Es erscheint die Aufforderung 'ART:

Nun gibt man den Buchstaben ein:

fiir
fiir
fiir
fiir
fiir
fiir
fiir
fir

FOMAHS Y™ E 0

Controler
Mazzenspeicher
Frinter

Display

Interface

elektr. Instrumente
Graphikeinheiten
ALL

Der Rechner bestimmt nun die Anzahl der spezifizierten Einheiten.
4. Beispiel:

In der Schleife befinden sich 2 Druckereinheiten,

Nach dem Starten des Programmes gibt man P fir Printer ein.

In der Anzeige steht nun '2 P-Einheiten'

Nach einem erneuten 5Starten des Programmes gibt man A fir ALL ein.

In der Anzeige steht nun '2 A-Einheiten'

-

C-10

.'.:..:-L

Bestimmung

C oM RE[LD . A L»ﬁ]

.[1 Ft

-

[o R I i |
n

—
T e

=51

o
15K

INTEGER F.&,

Eingabe der

THFUT "art: ":A

Fontrolle 4
@ f=0 & 1
NTIO®("

Herstelliang
TORE @ FOR I
TIbe-Schiel

"
Yo
5070 =3¢

der

Einheitsart -
id

Zahl wvon IL=Efnkesi

F=FOS5 ¢ CHEDIEES

Zubehosrskennung
THEN DISPE
MNT TED "&5TRE(I 2
|htN S

Ri=lé%pP-1 THEN

TO F 2@ READ AT @
RETRE(AILS CZA

C-11

der Zustandsmelcung

-
F

s UFRC® (&85 3

*falsche frt @

v AT
wd 1T e

MNEXT I

sEEF B EOTD 200

6. PRMEM:
Das Programm 'PRMEM' dient dazu, das Betriebssystem des HP-75 auszudrucken
zu lassen , um es zu analysieren. Der Adrefbereich, der ausgedruckt werden
soll, liafBt sich in den FOR, .TO-Sehleifen in den Zeilen 220 und 270 einstellen.
Im Listing wird das gesamte Betriebssystem ausgedruckt. Zur Ausfiihrung dieses
Programmes muli die LEX-Karte 'PEEKPOKE' und der EPSON-Drucker FX80 vorhanden
sein. Der Drucker (':pr') muB in der IL-Schleide vorhanden und deklariert sein.

Programmbeschreibung:
1. Das Programm und die LEX-Karte 'PEEKPOKE' einlesen. LEX-Karte 'PEKEPCOK' einlesen
2. Das Programm starten.
3. AdreBbereich in Zeile 220 auf volle Vielfache von 256 &ndern.
Adrefiberich in Zeile 270 auf gewiinschte Adresse dndern.
4. Bei der Abfrage 'Wahl: Dez,Hex,ASCII: ' die Anfangsbuchstaben fiir die ge-
wiinschten Ausdruckformen eingeben.
5. Der Ausdruck erfolgt automatisch.
6. Beispiel:
Ausdruck von 0 bis 192 (Adresse COOO-00BF)
Zeile 220: FOR K=0 TD 256
feile 270: FOR J=1 TO 192 STEP 32
Wahl: DHA

$0000
18 0 371610119 2 J2 132 10 4 401327238 5 48 132 56137152 B8 189 0 32 179252 255 178 71 255 178 77 55
1200 23 AL 77 02 20 B4 OA 04 28 B4 EE OF 30 8% 33 B4 98 58 A9 00 20 BI FC FF BY 47 FF 32 48 FF
s w { o a8 X = H
$0020
OF 0 95200 227 28 246 12177 22 96 137 246 6177 32 96139 4 163178 73255178 70 255 &% (69 13 122 1&f 704
Bl 00 50 C9 €F IC Fb OC B 16 50 B9 Fb 06 Bl 20 40 BB 04 A3 B2 49 FF B2 46 FF 44 A9 0D 74 Al CE
*) : I F D z
$0040
147 44 B4 169 99 97 108 99 112 G54 110 103 206 214 31 74 477 79 130 206 45 J1 206 103 0 204 186 BL &4 177 97 130
3 2 &0 AT &3 bl 6L 63 TO T2 &F &7 CE Db IF 4R BL 4F 82 CE 2D IF CE &7 00 CE BA 51 40 Bl a1 81
§i calcpr oag J O - g Qe a
#0040
179 93 130 179 90 130 158 98 177 68 0 80 169 226 0 206 120 32 126 169 &4 2 179 190 131 146 178 189 (I 147 77 14
BY SF B2 B 3 B2 YE A0 Bl 44 00 S0 A9 E2 00 CE TA 20 TE A9 M0 02 B BE BI 97 B) BD 43 9T 4D 92
_ L 1 D F » ™ @ M
F0080
206 236 BO B0 147 28 183 2 158 206 0 A5 78 [47 206 4 1 243 245 7B 144 247 3 204 157 240 240 T 144 244
CE EC 50 50 93 IC B7 02 00 9 CE 00 41 4E 95 CE 04 01 FA F3 4E 90 F7 03 CE 90 00 FO FO 4F 90 Fd
PP & M M

f=]
f="

$00A0
4 206 76 B4 1B 206 63 T 206 246 79 40 17 80 147 B 224 178 B4 132152133 16 181 4 T IS99 0 O 79 144
& CE 4C 54 12 CE 41 47 CE F& 4F FO 11 S0 93 08 E0 B2 54 B4 98 85 [0 BS 22 €0 99 Cb 00 00 4F 90
- L T A G o F T " (]

18300
1ie
120
23
A 8]
150
170
180
21
213
215
247
212
21%
220
i 8

4 Menory
INTEGER R,&,

OIM RFELZEAT, E$E‘J H+C 1287, P&ET] LOFL[4] ,OFLIEB] , AFLL4E,

Ezx= CHHiLLT}
SF="

des Rechnars ausdrucken #+%
DI, JFokyL ,B,Z:MN,F,E

B SF="

' = Drucker sinstellen -
FYIDTH 130 @ FRIMT E£& 50 LOCHRES (40 :
i EEg‘nr LiRBec: —
SISF ‘lWahl: "LZCHREFIOIZS)E sz RCHRFZOODIE 2
IMPUT "'y OF @ QE=UPRCHIGE; & D1, DE,DI=0C
IF FPRSCRE, "D D THEN Dis=
IF POSH{E+, "H &2 THEM D2=!
IF FPOS(EF, A" 180 THEN DI=1
FOR k=90 TO &553% STEF 2545
="~

I EER TSR]
WEAT J
FOr J=t TD 25& ETEF 22
S=p4+J-1 B FPFE="01ZT45L57394BCDERF T & BEs
R=1+MOD(5,15}) @ BEF=FP$LR.RILEF & E=5"15 2 I
FCR S=LEM{BF) TO S @ Bzx="0"%L0F @ MNEXT S &

Y Bty e O

]

Y I e R

L S A R
C okt N

S I
Fiiges (D
P

BEF

IF D31

END DEF

oI - R

(dez s hex 42011 aufhsuen

"5

S
e

[E)

(D0
H1%(D))

L S i 3 o ol W

M PREIMT D=

M PRINT HF

N PRIMT Efk" 1 LEHREFLSSE" LaE
CHR#F (&) 3

Umwandiung dec/han —

I = kﬂHH*”“\jL}ﬁPHPPE“”'f L S

Y o= THREC AB+TEIINF0)

Lt %crmmtgerrn -

3

@ FMFF=5£L]1 LI1%LIF

sichen

D127 THEM FhlRE=CHRE (3

C-13

=1

it
-1

T

SE RT-RILCHE

5 HEN O
= L 7 =
B I e R

BCHRF (19T

e

= T .
b L S

-
1ed

13

[+

My
r
i

7. PRPFRO:

Das Programm 'PRPRO' dient dazu, Programme und Files aus dem Memory des HP-75
auszudrucken, um deren Aufbau zu studieren. Es kénnen sdmtliche Filearten,
sowie die Rechner-Programme 'iofile', 'devfile' und 'calcprogram' ausgedruckt

werden., Zur Ausfiihrung dieses Programms mufl die LEX-Karte 'PEKEPOOK' und der

EPSON-Drucker FX80 vorhanden sein, Der Drucker (T:pr') mufl in der IL-Schleife

vorhanden und deklariert sein.

Programmbeschreibung:

1. Das Programm und die LEX-Karte 'PEKEPCOK' eingeben.

. Das Programm starten,

2
3. Bei der Abfrage 'Programmname: ' den gewiinschten Namen eingehen,
4

. Bei der Abfrage 'Wahl: Dez,Hex,ASCII:
wiinschten Ausdruckformen eingeben.

5. Der Ausdruck erfolgt automatisch.
6. Beispiel;
Ausdruck des Files 'calcprog'
Wahl: DHA

calcprog:
70 & 0 00 0 M O o0 0 0 O 9150 7 80 B2
IB 00 o0& 00 00 00 22 09 00 00 00 00 09 %6 05 0 52
L] . P R

¢ 0 255 255 255 255 295 255 255 255 255 255 255 255 255 255 255
00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Ausdruck des Files 'devfile'
Wahl: DHA

devfile:

a 0 9 00 4 9 0 0 0 1 MY A & 0 |
00 00 00 00 00 00 00 9% 00 00 01 09 AD 43 41 00 Q)
m C A

-

18 0 157 233 255 255 235 100 I35 157 100 1535 I35 235 153 133 353
12 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

253255 %% % 0 ¢ 4 0 % 0 0 0 9 9% 97 108 9%
FF FF o0 04 00 00 00 00 00 OO 00 00 00 &7 61 AC &3
* c a 1l c

L
=
=

oo 20 4 0 L 0 00 0 1 o0 0
0 00 00 GO0 G0 02 00 o0 00 Ob 00 00 00 00 OF 9O 00

2195 159 2 B30 B4 99 253 197 299 255
02 93 A9 021 'FA OE &3 FE FF FF EF

C-14

B0
3t
P

233
FF

g2
a2
R

233
EF

iz
o

=]

Bo
Bl

g2 19 115

d2 4F T3 OE 99 A% 02 BA OFE &R

R O

=

' die Anfangsbuchstaben fir die ge-

14 153 147 2 138 14 138 1R

32

0 30

2 20 0 IE

209 255 193 159 253 399 1535 1533 297 293 259 293 195 233

FF FF FF FF FF FF

Z 0

02 00 M0 G0

g

b 1s

0 0 I3 0235

FF FF FF FF FF FF FF FF

L0

(0 00 o0 00 BY 82 00 FF OFL @0

255 255 235 255 255 255 255 255 255 259 255 255 255 259
FFFF FF FF FF FF FF FF FF FF FF FF FF FF

1i4 11 103

12 &F
r o

gz 79
a2 4F
R O

&7
g

32
2

30
on 00

2 12
P

m 4 0 ¢ &
0F 00 01 00 o0 g0

0oe 9 2 0 4
00 09 00 02 90 04

n
09

a0
il
P

¢ 9
LHTRRVH

g2 128
32 8O

PR

1
iy kL

"

el Y I |

8. SETTING:
Das Programm 'SETTING' dient dazu, das System des HP-75 auf den Zustand bestimm-

ter Statusgrifien hin zu iiberpriifen. Fiir die Ausfithrung des Programmes muli die
LEX-Karte 'PEKEPOOK' vorhanden sein.

Programmbeschreibung:
1. Das Programm sowie die LEX-Karte 'PEKEPOOK' einlesen.
2. Das Programm starten.
3. Auf die Abfrage 'Groesse: ' eine der vier miglichen GréBen eingeben:
WIDTH
DELAY
PWIDTH
MARGIN
. Der Rechner gibt daraufhin den Zustand der hetreffenden Gréfie aus.
. Beispiel:
Testen von FWIDTH.
Zuerst setzt man den Zustand von PWIDTH auf 132 durch Ausfiihrung von
PWIDTH 132.
Nach dem Starten des Programmes 'SETTING' gibt man auf die Abfrage 'Groesse:'
hin PWIDTH ein.
In der Anzeige erscheint nun "PWIDTH=1232'

L

fa

&
#
Ta
o
-h
i

]
113
m
i
il
a
i
fn
h
it
L5
0
1£]
i
ju}
i}
i}
]
m
A
H*
s

SR RsR=2
2 [.I--I .
> T
= &= %
g
i

AF=UPRCE(AE)

i

INFUT "Grossses “AF
IF As="FWIDTH" THEM 250
IF AE="WIDTH® THEM 282
IF Af="MAREIN" THERN I
IF ax="DELAY ™ THEMN 320 ELEE DISF "faische
EOTH 200
PHE: P = lpterprooramm fose PHIDTH —

e R

TSI o B T O B 55 B [W e g

(LA O I O B S W 1 R
L [

Z70 I=FPEMEATIG)—{FERE(TLISY=0) @ BOTO 4410
280 ! — Unterprocramm toer WIDTH -

290 I=PEKEATIE) —CFERE (FITi=0) & 3OTO 400

00 P - Unterarogramm fasr MARGIN -

444y @ 070 400

terorogramm fusr DELAY -

J=0 TG 3 @ [=I+rPERE(J+848 =258 3

il

=2 &8 IF I&£0 THEMR IR ° int” ELSE Z1

i by

]

C-17

bt

i
By

9, ANLEX:
Das Programm 'ANLEX' analysiert ein LEX-File, das sich im Memory des
Rechners befindet. Es werden Informationen, wie Li#nge, Befehle, Codie-
rungen der Befehle und Fehlermeldungen ermittelt und ausgedruckt, Fir
die Ausfilhrung dieses Progrmmes muf die LEX-Karte 'PEKEPOOK' und der
EPSON-Drucker FXB0 vorhanden sein. Der Drucker (':pr') mul als IL-
Gerdt zugewiesen sein.

Programmbeschreibung:
1. Das Programm sowie die LEX-Karte 'PEKEPOOK' einlesen.

2. Das Programm starten.
3, Filename eingeben.
4. Ausdruck der Informationen erfolgt automatisch.
5, Beispiel:
LEX-File 'PEKEPOCK'
FPEKEPDOK 119Bytes 11i.12.83

Befehle:
180 20 &4 1 POOK
180 20 &4 2 PEKE

Fehlerneldungen
keine
LEX-File "IOUTIL' (gleich mit der LEX-Karte 'HPILCMDS')
IOUTIL 125Z2Bvtes 27.01 .00
Befenle:
160 25 64 | SENDID ’) T

180 25 &4 2 ENTIOS
180 29 &4 7 SEMD?
Fehlerseldungent
device sent NRD

LEX-File 'PEEKPOKE'

PEEKFOKE 119Bytes 10.12.93

Befehle:
180 21 b4 1 POKE
180 21 &4 T PEEK
Fehlerseldungen:
keine

C-18

Lo

b T o

1-.

o

=
E
e

B Ty
V.o b
P

1
23

. +
= [£5
| rm -

et Ui [

Ll - b

e el

al i

i

0 -
oo
TSR

17 -2
LY I O T

DB
bt B
foaln
&5
HOTF
H10
&z2o
A0
a4
S0
L&l
S
SHED
520

FRINT ‘Fehlermsidungsn:

IF RFLI,JI=CHRF (2557 THEN FPRIMT "keine & ETOF
HE=RE[J+1,M] @ D=0C

IF MUMOHETE 13 =127 THEN HE=sHECZ LEMIHE:]
HE=H*[1,FPOE (HF;CHRF (2550 F]

FOR I=1 79 LENM(HE)

IF MNUmMiHzEL I, 13 »128 THEMW D=D+1

MNEXT I

FCOR I=1 740 D=1

FOR E=1 TO LEM{HZF;

IF MUMIHSLER,BI) 2127 THEN &S50

MEXT B B DISP "Falsche Cadierwung ':° & S5TOF
AilE=HEC1 B] 2 AlFCE,IF=CHR+ (MM {(ALFLRE BTy —128)
PRIMT AlF @ HE=HF[E,LEMH$)]

MEXT I

FPRIMT @ PRINT
sT0r

DEF FMNIH1F (D)
DEF FRHOE(Z)

FMHOF (W15 LENHOF(MOD (D 253 5
CHREZF {(Z+48+74 {295}

C-20

10. CONVERS:
Das Programm 'CONVERS' dient dazu, Zahlen von einer Basis in eine andere
zu verwandeln. Dieses Programm ist sehr niitzlich bei der Entwicklung wvon
eigenen LEX-Files, da hierbei dauernd zwischen Oktal- und Hexadezimal-
syzsten gewechselr wird. Zur Ausfilhrung dieses Programmes sind keine Hilfa-
mittel notwendig.

Programmbeschreibung:

L.
2a
3.

L83 o]

L]

Das Programm einlesen.
Das Programm startemn.
Bei der Abfrage 'Basis 1, Basis 2, Zahl: ' Ausgangsbasis, Endbasis
und Zahl eingeben.
Der Rechner gibt automatisch die Zahl in Ausgangs- und Endbasis aus.
a) Bei Driicken von RTN wird das Programm erneut gestartet.
B} Bei Driicken von ATTN wird das Menue verlassen.
Andere Tasten sind nicht wirksam,
Beizpiel:
Umwandlung der Hexadezimalzahl 0A in eine Oktalzahl:
Eingabe bei der Abfrage: Ausgangsbasis 16
Endhasis o]
Zahl 04
Ausgabe: QA(16)=12(8)

Umwandlung der Dualzahl 1000001 in eine Dezimalzahl:
Eingabe bei der Abfrage: Ausgangsbasis 2

Endbasis 10

Zahl L0000 L
Ausgabe: 1000001(23=65(10)

Umwandlung der. Dezimalzahl &4 in eine Oktalzahl:
Eingabe bei der Abfrage: Ausgangshasis 10
Fndhasis &
Zahl B4
Ausgabe: B4(10)=100(8)

1o
20
S0
40

' —
el

=18
7O
g
20
100
110
120
130
140
150
160
170

! #% F7ahlen—EBasis—Wandler **
DIM AF, A0X[24]

INFUT 'Basis 1, Basis 2, Zahl: "3 A,A0,AF B AF=UFRCE (Hi) & Al=0
FOR I=1 TO LENiAZ) ‘
AZ=MNUMIAELI 11564

IF AZ<=0 THEN AZ=AZ+T7
AZ=A2+7 B Al1=/1%8+A2
MEXT I
SOFE="" @ AZ.A43=A1

AZ=A3NA0 & AZ=RMD{IAZ A0 -9

IF A2<=0 THEMN &2=A2-7

AZ=AZ7+44 B AOF=CHREF (AZ) LAD0F

IF 4% THEN AZ=A3 & GOTO 100

DISP A$s; " ;8TRE(A); "3=";A0F; " (" §5TRE(AODI; "}
FKf=UFRC# (KEYS$)

IF k#='" THEN 150 ELSE E=NMUMI{KF]

IF E#13 THEM 150 ELEE 2o

L-22

Fehlermeldungen

1. Syatem-Fehler:
18 ROM miszing: Das benétigte LEX-File iat nicht werhanden
56 mno loop reaponse; Es fehlt die Initialisierung der IL-3chleife (ASSIGNIO oder
. RESTORE 10)

93 mass mem error; Das Laufwerk war nicht bereit, Daten zu empfangen oder zu
senden, .

94 no medium: Die Kassette war nicht initislisierc

96 invalid medium: siehe Fehler 94

2. Fehler innerhalb der Programme:
File nicht gefunden: Das angegeben File ist nicht vorhanden im Memory des Rechners

Falsche Codierung !0: Befehle und Fehlermeldungen eines LEX-Files sind intern
falsch codiert

kein BASIC-File: Ein speziell auf BASIC-Files zugeschnittenes Programm wurde
versucht, auf einen anderen Typ anzuwenden

ASCIT Tabelle

C-23

1 2 3 4 5 b 7 8 9 A B e D E F
0l & - % + = 6. ¢ BS o LF A " CR w 3
1187 o S < - i i] 8 ii ii ESC £ & £ 8
A ! i § $ z & ' {) * + : < g
30 1 2 3 4 5 5 7 8 9 : ; £ = > ?
4l@ 4 B c D E F g H I g K L ! N 0
5P v] R 3 T u ¥ W % ¥ Z C N 1 5 _
6" a b c d e £ g h i j k L m 1 a
lp q r] £ i ¥ W x ¥ = { | } e =
Bl = E = = el Il & e T E .S M [} . d ¥
e g & £ by A Y o] g u i & L * £ m
Al _ 1 il F 5 x E il (& 3 oo * £ = * i
BlO & 2 2 4 3 b I L 2 i i £ = > i
e A i) C I E F G H L 4 K L K ik]
DE 9 R 5 I 1] ¥y W X ¥ 2 C % g i 3
E|~ a b £ i e £ 2 h i 3 k 1 m il o
Fip q L] i u x) % ¥ z i 1 I e =

ANHANG D

Tbersicht iiber die Codierungen der BASIC-Befehle

Hex-Code: Dual-Code: Befehl:

00 0000 Q000

01 0000 0001 angesprochene numerische Variable

0z 0000 0010 angesprochenes Array

03 0000 0011 angesprochene ALPHA-Variable

04 0000 a1o0 REAL-Konstante

05 0000 0101 Text, der mit " eingeschlossen ist

06 Qooo 0110 Zweites Byte bei Kommentar und IMAGE

: bedeutet auch ldschen bei DEF KEY

a7 oooo 0111 Zuweisung zu einer ALPHA-Variablen

08 0000 1000 fuweisung zu elner numerischen Variablen

09 ooo0 1001 Ende Array-Variable mit 1 Index, der etwas
zugewiesen wird

04 0oog 1010 Ende der Zuweisung einer Array-Variable mit
2 Tndices

0B OoOO0 1011 Ende Array-Variable mit einem Index, die nur
angesprochen wird

oo Qo000 1100 Ende Array-Variable mit 2 Indices, die nur
angesprochen wird

on 0000 1101

OE 0000 1110 Zeilenende

ar 0000 1111

1 Q001 oo Ende bei ON ERROR und ON TIME

11 Q001 0001 numerische YVariable, der etwas zugewiesen wird

12 Qon1 Q010 Array-Variable, der etwas zugewiesen wird

13 ooo1 0011 ALPHA-Variable, der etwas zugewiesen wird

14 pooL 0100 Zuwelsung zu mehreren numerischen Variablen

15 Doo1 0101 Zuweisung zu mehreren ALPHA-Variablen

16 CooLl 0110 Bei numerischen Funktionen in selbstdef. Funkt.

17 o001 0111 ALPHA-Funktionen in selbstdef. Funktionen

158 Q00T 1000 THEN + Sprungadresse

14 Q001 1001 Ende von INPUT

L& 5 Qo0g1 1014a INTEGEE-Konstidtte

1B 00o1 1011 THEN + 2 Bvtes

bE Qa1 1100 EL3E + 2 Bvtes

1D 0001 1101 Ende der Indices einer ALPHA-Yariablen, bei der
nur ein Anfangsindex gegeben wurde

1E Q0001 1110 Ende der Indices einer ALPHA-Variablen, bei der
zwel Anfangsindices gegeben wurden,

iF ool 1111 ELSE + Sprungadresse

20 0010 0000

21 Qo1a ool

2 0o1a ooLo Abschlull von Zuweisungen ganzer Arrays beil
ERINT#

43 ool 0011

24 QOLG 0100 Abschlull von Zuweisungen ganzer Arrays bel
READ

25 Q010 010l

26 0010 0110 f—Verknipfung

27 0010 0111 + bei READ#, PRINT und DEF KEY

28 0010 1000 {

25 Lo10 1001 3

24 o010 1610 =

2B CoOLg 1011 +

20 oo1d 1104 2

20 QoL0 1101 -

2E Q010 11106

2F 0010 1111 '

Hex-Code: Dual-Code: Befehl:

30 COL1 Q0a0 o

31 0011 0001 # bei ALPHA-Variablen

32 0oLl 0oL ¢= bei ALPHA-Variablen

33 0011 o011 »= bei ALFHA-Variablen

34 OolL 0100 ¢y bei ALPHAVariablen

35 0011 0101 = bei ALPHA-Variablen

36 0oLl 0110 7 bei ALPHA-Variablen

3 0011 0111 £ bei ALPHA-Variablen

38 OOLL 1000 CHS

30 oLl 1001 # bei numerischen Variablen
34 Coll 1010 <= beil numerischen YVariahlen
3B ooll 1011 - »= bei numerischen Variablen
30 0011 1100 €% bei numerischen Variablen
3D 00111101 - = bei numerischen Variablen
3E 0011 1110 » bei numerischen Variablen
aF 0011 1111 ¢ beil numerischen Variablen
40 0100 0000 ¥

4] 0100 0ool ON ERROE

42 0100 0010 OFF ERROR

43 D100 0011 DEF KEY

44 0100 0100 FN (Zuweisung bei einer Funktion)
45 0100 Lol AUTO

4B 0100 0110 CAT aALL

47 GLOO 0111 LIST 10

45 D100 1000 CAT 3

449 0100 1001 DISPLAY IS

& 0100 1010 CAT (file}

4B 0100 1011 LIST

&4C 0100 1100 HAME

4D 0100 1101 DELAY

4F 0100 1110 MERGE

4F 010¢ 1111 CALL

a0 0101 0000 READL#

51 0101 0001 FETCH KEY

52 0101 Qoo WIDTH

33 0101 0011 - POP

24 oLol 0Loo0 RUN

35 0101 0101 REAL

26 Q101 OL1o DISP

37 0101 0111 FETCH

o8 0101 1000 PWIDTH

59 Q101 1001 DEFAULT

54 0101 1010 COTD

5B 0101 1011 GOSUR

5C 0101 1100 PRINT#

5D 0101 1101 MARGTN

5E Q101 1110 EESTORE#

5F Q101 1111 INFPUT

i) Q110 0000 ASSIGN#

&1 0110 Jo01 LET FN

&2 QL1I0 0010 LET

&3 Q110 0011 STANDEY

B4 0110 0100 ON TIMER#

&5 0110 0101 OFF TIMER#

&6 0110 0110 ON (goto, gosub)

a7 0110 0111 BYE

fats; 0110 1000 WaIT

69 0110 1001 FROTECT

BA 0113 1010 FRIKTER IS

61 0110 1011 PRINT

B 0110 1104 FLIST

HD 0110 1101 RANDOMIZE

D-2

Hex-Code:

Dual-Code:

0110 1110
0110 1111
OL1T 0000
0111 DOOL
0111 0010
0111 0011
0111 0100
0111 0101
0111 4110
0111 0111
0111 1000
CLED 1001
0111 1010
0111 1011
0111 1100
0111 1101
0111 1110
0111 1111
1000 0000
LoD Q001
1000 0010
1300 0011
1000 0100
1000 0101
100G 0110
1000 0111
1000 1000
1000 1001
1000 1010
1000 1011
1000 1100
1000 1101
1000 1110
oo L1l
1001 0000
1001 0001
1001 0010
1001 0011
1001 0100
1001 0101
1001 0110
1001 0111
1001 1000
ool 1001
1001 1010
1000 1011
1001 1100
1001 1101
1001 1110
1001 1111
1010 0000
1010 0001
1010 0010
1010 0011
1010 0100
1010 0101
1010 0110
1010 0111
10140 1000
1010 1001
1010 1010
1010 1011

READ
RESTORE 10
RESTORE
RETURN
UNPROTECT
EDIT

OFF 10
STOR

PruT

TRACE FLOW
TRACE OFF
TRACE VARS
ENDLINE
CLEAR VARS
COPY

PURGE
EENAME
INTEGER
SHORT
DELETE

ROM missing
REM
OPTION BASE
END DEF
DATA

DEF FN

DIM
EENUMEER
END

!

FOR

IF

IMAGE

HEXT

BEEF

ASSIGN IO

CLEAR LOOP

CONT

CLEAE

Text folgt + I Byte Lange

TEXT

BASIC

LIF1

RES

TRTO

Beginn Funktionsteil won ERROR
Beginn Funktionsteil von TIMER
OR

T

USING mit Reference-Nr.

Schlulf von READ bei einer ALPHA-Variablen
schlull von PRINT, erzeugt CR und LF
; von DISF, PRINT nach Text

v wvon DISP, PRINT bei ALPHA

Nach letzter Variable bei PRINT#
Zwischen Variablen bei PRINT#
SchluB von FRINT#

ON bei Befehlen

UFF bei Befehlen

IP

EES

D-3

Hex-Code:

AC
AD
AE
AF
B
Bl
B2
B3
B4
BS
Bé&
E7
B3
ES
BA
BB
BC
BD
RE
BF
B
21
G2
4k
O
L9%]
]3]
7
]
.9
Ca
CB
oo
CH
CE
CF
Do
D1
Dz
03
14
03
D
D7
ne
Da
D4
DB
i
oo

DE
DF
EOQ
El
E2
E3
B4

E5

Eb

Dual-Code:

1010
1010
1010
1010
1011
1011
1011
1011
1011
1611
1011
1011
1011
1011
1011
1a11
1011
1011
1aL1
1011
L 100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1101
1101
1101
1101
1101
1101
1101
1101
LELETE
1101
1101
1101
1101
1101

1101
1101
L1160
1110
1110
1110
L1110
L1110

1110

1100
1101
1110
1711
0oo0
ool
0010
001l

0100

0101
0110
0111
L OO0
1001
1010
1011
1100
1101
1110
i
000G
ool
DoLo
0oLl
o0
0101
OLLO
0111
1000
1001
1014
1011
1100
1101
1110
1LY
GO0a
0001
0010
ooLl
0100
Lol
0110
OLLL
1000
1001
10140
1011
1100
1101

1110
LTl
0000
(001
oo
0011
000
0101

0110

Befehl:
FF
CEIL
MAX
Abschluf bei einzeiligen Funktionen
SOR
MIN
MEM
ABS _
externe BASIC-Befehle (System—-ROM)
Zuweisung eines ganzen ARFAYs bei Feld mit 1 In.
Zuweisung eines ganzen AREAYs bed Feld mit 2 In.
SGHN
KEYS
CoT
CSC
APPT
EXP
INT
LOG10
LOG
VERS
SEC
CHES
STRS
LEK
NUM
VAL
INF
Schluf von REEAD bei numerischen Variablen
FI
UPRCS
USING
THEN
TAB
STEP
EXOR
NOT
DIV
ERRN
ERRL
CART
AND
KEYS
ELSE
ST
Cos
TAN
TO

, bel der Zuweisung =zu numerischen Variablen in
giner INPUT-Anweisung

£

-

o

kY

PO2

DEG

EaD

FLOOE

y bei der Zuweisung =zu ALPHA-Variablen in eir
INPUT=Anweisung

D4

Hex-Code:

E7

E8
ES
EA
EB
EC
ED
EE
EF
FO
Fl
FZ
'3
F&
F3
Fé
F7
F&
i
FA
FB
FC
FT)
FE
F¥

Tual -Caode:

1110

1110
1110
1110
1110
LLLD
1110
1110
1110
1111
iR
1111
1D
1111
1111
1111
1111
1111
1111
1111
1111
ileabi B
1111
1111
1111

0111

1000
1001
1010
1011
1100
1101
1110
1111
D000
0001
DoLo
0oLl
0100
G100
0110
0111
1000
1001
1010
1011
1100
1101
1130
1111

Befehl:

; zwischen numerischen Yariablen bei FRINT
und bei DISP

b

bei numerischen Variablen bei PRINT und DISP

! A T | 2 S| d) & + 9 S h T T Y)] -
tZr| 9gTyv| stV htV 1TY¥] TTH ¥TY @TFr| BrY avy try 3 77 hv Vi N7% Tyy]
| =~ 1) ZEIA| XM AN F|S|2]b]|d
s3A A SHHA| 4i0| MO L3l
YELAf BHEN DY 3nand,| AdoD| ABIFIBNNEMT| Fosul] oud L 3L L[AVd| 4OLS | 01220 11@3| odd AT NEINLTY I%0153Y
K Yl ovr SOy Loy to¥| Sgr| so0F har| Tor 20/ Yor| oor &6 [13 3 26
PO MM A] Yy &y PP q @
ot 221H 51 HEAHIL [FdawIL)
UOLTIY| AP DY, -CENHEW | L5174 | LM dd PN 1231084 L1 HM ang HNO 30 NO [aNH LS A3 7| Nt LT T NDISSH
5% h& s 6 ¥ 0% 6& £g & 2 Se he i T v od
B v LIN] D E[A XM AM]| LS ||| 4
kzpz_ruﬁmﬁa.dmmx BLAAd | BnsoD| QLo Bmb23q hediMd| HIL3 4 d5l| HIY| NnE dod| #213iM] #diad] HTbay
54 £t tt oy st hi Tt Tt ¥t ok <9 9 Lo 99 s9 (%]
h|OIN| W T A O] HD| 23] Q)|D < | d)
W
2740 Ao¥an|Amag | awen| 1517] Taokensic] $1u|ousiohi suo| omb| Nl sae X8| Y oNe D
9 9 ro 09 65 zs t5 85 = hS Ls TS ¥s oS &h th
i P . .
Cl2l Ll =|>] 1| :|6|&|t]2]|s|h|le|T|V]|oO
> 4 = &> (= -7 H#| SHD > < = L7 L=| D= # v
+h 2 hH 5h hh th Zh ¥h @ h L34 &g £T 29 54 hgl 1% i
; . ! o "
/ : ot __ + Rl (J 4 .4 _
kE DE &T 8T LT St ST N4 LT [vt ot 6V gr tr 9w
v
M| F| | 2(>3 7| n| 2| Q| | | 4| 3| P| &| 6
Sy h¥ o zr ¥¥ ar 6 & t 2 s h T T 4 @
o $| ~|lwo| | Y| 17| o|sg| # J| I| °| = X| | W
. + | 3|lac| o| s a|l ol 6| £t 2l s | nle || v]| o

3| | O] €| d c| & | 9| s h ¢c| T| v
ssp| hst| tst| est| vst| aost| Ght| &nT| EhRT| 2nt| sShT| nhd e ThY vhY

2 4| S| J| T[T IE | X x|~ A|n| 3|S5 b
GET| &£iT teY 9tT| sSET| hET| EEC| TEC Yig = ©OfT| &TY| £TT | ITL| SUL] WTT

O N M AT M| B | F eI al ® 3
— i doo7:| aud| D3IC| <04 \
teg oLl rrr| ety eryl &rt] vy 9vo| svi hYg syl Wi oyl ort| 60T gt

@ v LI N2 ZE A XM AlMm|]S | ¥ O dla

L 1 0L NdL| sod| ANis| 3573| SATH| anp| gubd| weal NR33] Arg| 1oN _

t0r| 90t| soz| hKotr| tOT| EOT rat| oot 66K 14 6K 96¥] s6Y] h& Y] £6¥] TEY] 1

QI OIN| W[2[d ||l V| H|D®| 2| 3| a|d|8|]| O
oxF| dale| FHL | NIHL|DANIST| $Dueh Id AN THA| HNDN na7| $31s| $dHD| 23S| $¥aa
414)19 4 11 4 & + 2V S8V L~ 44 hEW e TEY ¥YEH- @& ctH FEY tEH 9+ ¥
= == — —— I\I. — — — == — M ¥ r— — e — — —

g 2| < | = | 7 6l |l t| 9|l s| h|l | T| V| @|¢
sor|lerwor| aal| 4%X3| 1ddH| DIsSD 102 §AIA| mMbs wﬁﬁmh._ sgH| W3IW| NIH| WbdS
Str| hey| sty| vev| viy| otr 69} 9y £9H 99¥| =9r| heK fav] TIH ¥ar 09V
. | | T e | m e

H| 7 x|l o] el ¢] =] 4]0 H

e 1A dt 543 ! £10 MO BNIET)
6s¥y| gsr| Esr| 9sM sst| hsY tsr| Ts¥] v¥S¥| oSy 6w zhH EhY 9h¥| sh¥ hh]

5| 8] F| ¥| | 3| 7| n| 3| 0| B V| L| 3| £ B| &b

Ll] L=0s |
Lol § A0 oLM | SaAd | wvir7| DisBE| Lxsy B3| fHeD unmd HEBISSH 433G
Sh¥Y| Th¥| rhr| onr| SEH ¥ +EF| 9%¥| sSt¥ ne¥| re¥| TEH rir oTr| 6TF &TY
r— — L — Ry — — — A |IXI. e —
gl | L M| 7| ¥ F| o =l | J|l I 2 = X| J|¥&
. 83 X3q 354g Bursgia
AX3N IO 3| do4i V| aNa| HnN3d] WICeE 23] BRG] TH3| NoildD| WY WOA| 334 1OHK
- +|l3lc|olslelelelt]o|ls|nlec|lTc|Vv]o

@O

b= @A

HL T ROM

B alc|ofa]lule|le|[t]o]s][n[e[T]V|®
1TV 144 344 hTl gir] zvr rey| oty 344 vy 1 vV 5vY] h¥) 37 rr
Bl =~ 1111 }] % Al X| M| A n| 3| S|+ b| d
rrvl or¥| eor| &o¥ Tor| 9or| s0v] hor] wor| aor| vov oor ©8 % iy 6
19| O | w| | H O 2| Y o) 2P| 2| 9l = ,
5% e 6 25 re| 06 67 8 tqd o Y ;3 7] ZI)3
3 v DI N JIZ A XM A L] ST O A
ot £t tt " st +t Tt Tt Y t] ot 69 £3 E 9 9 EL h9)
h| O NI W| 712 c| 1| H Dl x| 2| | D] & Hl 3
£2 29 ¥9 @9 _mm £5 t5 24| 59 hS| s TS G DS %h gh
El 2| & =| 7] | *| 6| 8| 2|2| S| h|C|T|V|O
kh 2h Sh hh ih Th vh Ok 6% [€l 3¢ s€ hil 3 Tt
W \ . S x ._ *® A u i % n\n ﬁ nﬂu Y |
(g1 @ s &7 17 2T 5T hT| it 1T vl (T4 b ¥ 2¥ tr A
VIR F| #] 2|3 | n| Q| o] B VYLl 2P| B e
Y i Y 43 Yv oy) 4 t 5 n T T ¥ @
Q| $| Al V| Y| a7 o sg| W | I| | = X T
oYW | DIE| HIOT|HuHTH
13| C| 2] ae|d| 6| &|t]|9|s| h|le|T|V|o

= @2 @d

X

MEL ROM

=) T 2 o w] 6 & £, =4 & h T [v
LTy ary st¥| hoY £TH LT¥ ¥eH oY B ¥V Fidd L1t 144 srr ArH £FV
A~ {11} EIA] X[M| Al 3]s | +|b
vrr| ovv] co¥ gov] taor o2o¥| sor| ror| zor 70Y| ror| ool 66 ES L6 26
O MM A Tl M| B F|2|e|2]9]|® ,|?
56 hé €6 TH 3 o5 33 rYs ts e S& hE ic TE rd of
vl LIN T EIAIXIMIAIM|ILIS|L|DO| d|4
Gt et 4 ot St hi XY Tt re D1 37 £9 +9 29 59 hd
O| N| H| 7| 2| (C 1| H| 9 x| 3| | 2|l e d| &|b
T rs| @9| &S| <4 ES| 98| 85| S rs| ts vs| o5 eh Zh
I S T N B| &| t| 9| S| h| S| C| V| @|¢
+h 7k Sh !... Th Th rh @h &% [tL 2T 13 hEl it e
/1=] x| C) 2 K S _ T
Fe oE sT &T T 9T ST 34 o TT vyl oY &V [T tr 9V
B 7| #[X3 n|n| 2| 0| B|V| L3 2 Y06
ST W (A7 Ty 13 oF 6 F + 9 g h < T ¥ @
b| AW Y |17 ©|se|dp| S| Y| | 7| 2| | WToO
QN ToH| aWd| NisH| pid]| Sodd| FOmd| FHT u.r._._. Fa1uqg «mz...rr:u_hi MoHd, Matsabl
s3] e| o] e|luv[6|slt]|ols|nlelc]r| o]}

= 03 10

iRl O™ A

Wz =[c][>][eluls]s] t]o]a[nlejT|r]|a
1Y o2F| S2F| herl tev] wey ver| ox¥| el grv| £rF[9ry| srY| hWiY| el T
2 Al ~l {1 ¥l =lAIX|IA[AA|I3]s | +]| bl d
_ NQID| NaQl| NQi| NG| 33T| 23F| 33T NODI| NOD| NOJ [IoOAIUIMUHI SASD
vr¥l or¥] GoN gov] +0¥| 920V Sor| por| serv| zor| ior| ooF 66 &6 13 26
g o w|wi| (| | F| 2|yl 8| F] 2| 29" |,
! SsodotamMed?| LTHDl AlG)| gns)| QA ¥nod [0SO MNTHNSD | munsd| NILD| NAL1o0dd| ANIT| NHID
_ S6 A& £6 26 re 25 L £8 t& 24 1 h& T & 13 Y8 o8
s vl TIN[T EIAIXIMIAM[L|S|X[O] d
HNHLD| NISD| HNISODIED| rNOD| BOT2| ANID| X33 LaQ2| SOID | HSODIY NLUD|HNLHED MISHIHNISYD| So2dD
33 &t +4 I st Wil “tl Tt rt ot G9 29 % I 52 h9
hloN|[W|T7IA || 1| H 2| 2|2|ClD|e|H|
sooHIA0LAD| 01D :
<9 79 ro 29 1=\ &S +S 25 S5 hS £9 T4 rs ©S &h h
. - ... Q
elos <= > ! El&|+|9|S|h|%|T|V]|®
th 94 Sh hh th zh Yhl Dh St &g L 2¢ SE hy P21 2
o . ! "
\ - o * ﬁ, v ! /% a\a % "E.. i _
NIHH
e o 6T &0 +T 9T 5T hT <7 ¢ re DT oF gY £V ay
VIRl F| £ ZPsa|m M| QO BV L 2P| Ble
gHATH| xuwH suxaHlwnsgl| Wns|angn| ang1 13a| 113¢| L1o@|HaoNYHBION T HAONE| Faisg| HAR| A0HE
SV hH 7 3% % o] 3 & +] S h T T, % D
0| P | A\ V| X|27| o|se|W| J| J| | X P
: a M
JwanAdQan no HaeltlHsoo ot HeisH| Hauy Hsod| pwats| Hmol| 2907 iuu _...__,w_m. hﬂﬂx H1Q3Y,
+| 3| C|lo|e|dH|G|&|t]|9|s|h|le|T |V]|O

@3 AQ

=
el

1D

MATHROM A

+ 2| (o>l aelule|e]|] 9 kle |l ¥ I.
STl WSC[&P Sy sy ast| 6hT| 2hT W[IRT| ShT[RRG| ShE| ThT| VhE| @he
J| ~ ﬂ q] | Al X| M| Al M 3| S| T bl d|4
652 F344 +re IIT 55T hil 122 2%t re&e eLT| 61t £2T +10 5T szl hTT |
Of Mfwf 1 o ¢ 2| Y 8| ¥ 2| P |39 | ®| T3
o T B T L I e T trd 9rg| srd nrd tvg try wgo | ori] <@Y ot
vl LI X| J| E] A X| M| A M| L] S| & O] d|G
| 9ot| Sot] hog) 07| 20¢ rot 0oL GEF| gEF t6F] a6l s&r heV 6 ToF
O| N| H| 7| | T| 1| H|®| £| 3| ¢| 2] €| H| |2
Y6¥| oBY csr £8H LeY 9g¥ 58Y hat gy TEN rey oLy 6tV Bryl tiH g
=L "2l "l S T = o | e [e 2l S~ | o = = .%{ =
vl <l =1 ?2 | | Bl Bl E| 9| S| R £E| T| Tl @|9
517 heEl <tV Tir v EV] oty 59H LETY +91 29 L9Y h9¥ S 9Y 2] 14 2T
== | = _— T ' 5y G oy — = - T = == g —
/ - T ® A v | % \n %, ﬂ " I E
GEl] g5V tSH 95k 557 hE ¥ o] TsH ¥Fsr oSy Eh Zhr +.hi GhF 1,14 hhY
B 7 # X3 2| 2| 0| | V| XL 3| P Bl 6|6
ihF] TA| ¥hi] @hyY 6L gLh ®SV| ORH] ser| wiK goy| TEF| vEY| QY| eTH #ur
%u A m v Y| 9| 2| ~| ¥ o am..u | = R n| T8
ﬁ: pwmz . 1.Etr._u,Ez AHH| = Ly
4l 3|lclole|lu|le|le|l el 2|ls|hnlele|v]o .

D= A3 20

MATHROM 2

2| 3|la|lo]elulele]t|olslnlclclvio '
tev| 9TH s2r| wer| L3 wzy] 72 oY ®rrl syl evY| e9rv{ ¥ nir] S¥F| =z
Al ~ {])] }E|A X| M AlMm| 3] s| | b|] d|¢
Yy arr| 60F| sa¥| +of| oo soY| hoHl zor] o/ rey| Qor Gg| el +% 96
| |~ (1

A 8| F 2 e| 2|9 |9
Se| hG 6] 26 re| o6 o6& g8 & 38| =X hel & ¢4 rel og
TV DN JEIAIXIMIAIN| LIS VO] d]|s
6+ &t ti| 9t st h| s&| 2&] FE] ot 59 g2 +9 99| SS9 ko
OIN|H|T7|A| TV H|[D| x| 32|C| > e H| ah
£3 29 v9| @9 65 #5| &5 98 25| wE| S5 TE va =s e i —n
| &=l > ‘| | Blelkt|9|s|hlT| TV Q¢
+h oh| Sh hh Sh| Th rh oN X3 gy ts oY sY hel Y e X

i .
\. - + * ﬂ u 1 /% n\n % nﬂ“ i |
vg 0Ll BT &Ll LT 96| &G he T A rg DT oV &Y t 2y
B F| 2|23 M| 20| B|Y| L 3P| Bl 6|V
Sy h¥ £ r Yy oy 3 & + 2 h_ “h % s » 4 @
$| A | |27 o] sg|Ww|J|Y| ™| =] X o w0

100UNAPP0ALA | TN HORLBNTUAL fFanons

[3[c]o]a[d]e[#[+[2][s[n|=[T[V O =

ANHANG E

[lberaicht iiber die Assemhlerbefehle;

Hex—Code: Dual-Code: Bafehl:

20 AR b ARF AR
a1 2000 0001 ARF #

a1 IR) DRF DR
41 0100 0001 ORF #
80 L1000 QOO0 ELE DR
Bl 1000 0001 ELM T
a2 1000 Q010 ERE TR
B3 1000 0011 ERM TR
84 - 1000 0100 LLE DE
85 1000 0101 LLM DE
B6 000 0110 LER DE
57 1000 0111 LEM DE
88 1000 1000 ICR 2%
89 1000 1001 ICH IR
H5a LOG0 1010 ICE DE
2B 1anc 1011 DCM DR
BC 1000 1100 TCE DE
8D 1QG0 1101 TCM DR
BE 1000 1110 NCE DE
8F oo 1111 MCM DR
an 1001 Q0co TSB DE
a1 1001 Q001 TSM DR
g2 1001 0010 CLE DR
93 1001 0011 CLM DE
G 1001 0100 . ORB DR, AR
95 100 0101 CRM DR, AR
G 1001 0110 AREE DR, AR
a7 1001 0111 AEM DE, AR
G 1001 1000 BIN
a4 1001 1001 BCD
G 1001 1010 SAD
GE 1001 1011 DCE
ac 1001 1100 ICE -
apn 1001 1101 CLE
SE ool 1110 BTN
oF 1001 1111 PAD
Al 1010 D000 LDE DE, AR
Al 1010 D001 LDM DR, AR
AZ LOLO D010 STE DR, AR
A3 1010 0011 STM DR, AR
A4 1010 0140 LIDED DR, AR
a5 1010 0101 LDMD DR, AR
Af 1010 0110 2TED DE, AR
AT 1010 0111 STMD DR, AR
AR 10100 1000 LDE DE, =literal
A0 1010 1001 LDM DR, =literal
A 10103 1010 STE DR, =literal
& Lol 1011 3T DR, =literal
AC 1010 1100 LDEI DE, AR
AD 1010 1101 LDMI DR, AR
AR 1010 1110 STEI DE, AR
A 1010 1111 STHMI DR, AR

E-1

Hex—Code Dual-Code:
BO 1011 0000
Bl 1011 0001
B2 1011 0010
B3 1011 2011
B4 1011 0100
BS 1011 0101
B& 1011 0110
B7 1011 0111
B8 [OL1 1000
B9 1011 1001
BaA 1011 1010
EE 1011 1011
BC A011 1100
ED 1011 1101
BE 1011 1110
BF 1011 1111
0 1100 0000
1 L1100 0001
G2 1100 ao010
3 L1oo 0011
C4 1100 9100
C5 LoD Q101
Ch 1100 0110
o7 L1000 0111
C8 1100 1000
9 1100 1001
Ca 1100 1010
CBE 1100 1011
CC 1100 1100
D 1100 1101
CE 1100 1118
0 1100 1111
oo 1101 0000
Il 1101 0001
D2 1101 0010
D3 1101 0011
D LLOL CLoD
B5 1101 0101
)]s LLO1 9110
D7 1101 0111
D8 1101 1000
DG 1101 1001
[MES 1101 1010
DE Liol 1011
D L1001 1100
Do 1101 1101
DE 1101 1110
bF 1101 1111

Befe

LDBD
LDMID
STED
STMD
LDBD
LoMD
STED
STHMD
LDEI
LOMI
STBI
STMI
LDBI
LDMI
3TRI
STMl
CMB

GMH

ADB

ADM

SBE

5BH

J5B X

nl:

ANM DR,
CMB DR,
MM DR,
aDB DR,

ATM I

SBEE DR,

SBM
JSB
ANM
CMBD

ADBD
ADMD
SBED
SBMD

ANMD
CMBD
CMD
ADBD

ADMD L

SEBD
SEMD

ANMD 1

IR,

=lahel
=lahel
=label
=lahbel
TAR, lahel
xAR, label
XAR, label
XAR, label
=lahbel
=lahbel
=lahbel
=lahel
XAR, label
XAR, label
¥AR, lahbel
XAR, label
AR

."'!I.R

AR

AR

AR

AR

label

AR
=literal

=literal

=l 1 1_ET'.I’}SJ.

=literal

=literal

=]literal

=label

LR,

=literal
=label
=label
=lahel
=label
=lahel
=label

=label
Illll. R
AR
AR
MR
.I'IIII. R
AR

AR

Hex—Code: Dual-Code:
EQ 1110 0000
El 1110 G001
EZ 1110 ool
E3 1110 0011
E4 1110 0100
ES 1110 0101
E& 1110 p11o
E7 1110 0111
E& 1110 1000
ES 1110 1001
EA 1110 1010
EB 1110 1011
EC 1110 1100
ED 1110 1101
EE 1110 1110
EF ERE 1| DB T EOL
FD 1111 Q000
Fl1 1111 Q001
F2 1111 Q010
F3 1111 Q11
Fé 1111 Q100
F3 1111 0101
F& EF11 G310
F7 1111 0111
Fg 11311000
F9 1111 1001
Fa 1111 1010
FB 1111 1011
FC 1111 1100
FD 1111 1101
FE 1111 1110
FF 1111 1111

Befe

POBD
POMD
POBD
FOMD
PUBD
PIMD
PUBD
F1IMD
POBI
POMI
FOBI
POMI
FUBI
PUMI
FUBI
PUMI
JME
JHO
JoD
JEV
JNG
JEE
JNZ
JZR
JEN
JEZ
JNC
JCY
JLZ
JLN
JRZ
JEN

hi:

DR,
label
label
label
label
label
label
label
Tabel
label
label
label
lahel
label
label
label
label

+4K
+AR
-4R
—AR
+4K
+AR
=-AR
—AR
+AK
+AR
—-AR
AR
+AR
+AR
—-AR

| B(Cc|2|S| 8] §|& t |2 |s || S| T |V |o
55T hST| ST TST VST| @St 6©ht dhC| thT Iht Shf] hnt ThT] ThT FhY ohT
4 = T _ } z A 3 oy Al ™ 3 S 21 B d
= [(=223l WARN] AR 1R (oARN] [RIR|a| \mAIRILa] osayie VBAAg Lef (BAIN x| 1oARRN S| 123N VORI yuaate | raane| Josmae &
NIM| 240 NIF| 270 | ADT | 2Nr| 230 NAC| 8&r| 2Nr| s540| BNr| A3C| gof| ONF AWl :
LT 5T 4 A ST hET Tit T5T (1 DL, 61T 8T £ZT 9T 51T hit |
g TS| [T q) Y} T 9y B F| S| P| B| 9] © Tia
Bu~ | wy- BHE | BHE | WH- | WH- | wHE | b Wo- | Bu- | owHe | odu+ | owH- | owH- | wd+ | wHe
16 tund f2g 1ENd (30 1HndfEa 12 NL[AC 1HaL[3C 190430 1Hou(¥a 1804, 30 A ndl'se qend|ue gundl'3e aendae GHosfaa @0l (30 aHod[de T
LT 1tT Yoo oTT BrT &y tro wE srT h¥E £ve Tre e ort| ot £o0 '
@, g | & \ 1| E| A X | M Al M| L| S Y| O NG
uH 4u uH | uH A L BH | a9 § 1799) $| vaol §| Pavl$| RPawf| P9 | e §
e euny 40 augelan aegs fac auch 3T a3alfic EHWOlG CEWO AT QHNY A0 QWSS [0 aaesBa aHaufac aget o annd e ain
tot| 90y sot| hot 0% 07T roz| o0C GEY] 26¥| £6K 95F 6 hEV eV TeF
20 O N | W 7| A £] H| 2| £] 3| & 2| &(H| |
maayllel vquid| |esangs] peragija| toaag e 1oraRial 19433 0| Loray e uH o § aH pts] iy A g% Y
30 W Ny mmw 22 wis|'wa 28s]'ac von|2e 2an|Me wfed GHIEC HAE|EX Tsri'ue WEs|'se 2e5[uC WaHEe FEH[se WHO BT Gw D
k&Y sr Tid E8Y 2V 28 ¥ i% hE K 14 TEY YEK QLY gLy FtH ELY] LV
= = Fees o o - — - son - s — = - — —
Ll 1| <| = 7 : 5| & £ 9| 8| | ¢ | T vl o|g
1o} X [P x| pae b P wx| weot | veeol g | pavid | vaor ¢ feqo g ux rant x|pani’ sx paeid "ad vae) §| rae] §| pavl ¢ o 4
30 iHis|ar 19 ua 1B e ey aa VISBa VELS[BE WMaT'ud ﬁﬁﬁ m:ﬁ,mh wmh aa m:&._ﬁ ﬂﬁﬂnﬁ QH1S 34 RIS AU e GeLT]
StV h&¥] IEF| TEY| ¥EY oty 63F 23y LI 29t 53t hav] t9 T9 ¥orl 09V
e I.._ll TE Jl. e — L == S , == — = — ey ..I-r —
H / -— + - () ' P °fe % Fr W 1 H
aH | HH E-= TH | rerays| yesaydis| jeadtils| 1Or=| WM Y k-3 BH 2 e we ad
e \WLS e VIS Paa 1WaT[3a (ea7fue Wis[Be 215 ['80 WaE'ae faTjaa Owasha onisfie orafae cearfac wis|ue gisfae war|ue L7
6S5)r| &Sy tsH 95/ s5¥ hS¥ £5Y¥] TSV rsri asY] BhY] Ehr th Fh¥ shf hh¥
of| W| F| *| 2| A P D2 |O|E|lY|L> | B O|6
: i . By | wd wH | wd 2
GHd| Nl 32| 301 Ioal aHs| «og] NIL sa Wuxfac auxha maofic SYola H1jEe $TORRE WSY e €si]
EhF| THT Yhr| ahn¥ GLY| BtV EEY 9LV sy hi¥ Ly Ter rey oLr ETY £rY]
gl | XZ|R| 7| X| S| | ~|¥*| | I|=| 32| ,|"|¢
RC WONRE SoNRC HUBT FoLREC WITRE LOQAC WOIjUE TORC HUTHE 84740 W1 877pC W33 |ve wwapa wiafsa w13
sl 3| c|lo|elu]le|e|] o|ls|n|leclc]r]|o]}

il
t
a9

115

B

L

7

T

0

A& njE|Elrio o b -

3

5

h

4

z

¥

[
als(n[t1]r]o

£

2

5

h

%

z

- @]
als|hL|T]r|@

E

2

3

h

&

[4

¥

| @
NS nfe|T|r e

0 WOy +2}5182Y, [RALd Iy 31d [CIAE [k ang T|CcOo|EW | vE| ET[ON| AD| nolud|aa| 24| IM2ieg

	hp75wwASMp001
	hp75wwASMp002
	hp75wwASMp003
	hp75wwASMp004
	hp75wwASMp005
	hp75wwASMp006
	hp75wwASMp007
	hp75wwASMp008
	hp75wwASMp009
	hp75wwASMp010
	hp75wwASMp011
	hp75wwASMp012
	hp75wwASMp013
	hp75wwASMp014
	hp75wwASMp015
	hp75wwASMp016
	hp75wwASMp017
	hp75wwASMp018
	hp75wwASMp019
	hp75wwASMp020
	hp75wwASMp021
	hp75wwASMp022
	hp75wwASMp023
	hp75wwASMp024
	hp75wwASMp025
	hp75wwASMp026
	hp75wwASMp027
	hp75wwASMp028
	hp75wwASMp029
	hp75wwASMp030
	hp75wwASMp031
	hp75wwASMp032
	hp75wwASMp033
	hp75wwASMp034
	hp75wwASMp035
	hp75wwASMp036
	hp75wwASMp037
	hp75wwASMp038
	hp75wwASMp039
	hp75wwASMp040
	hp75wwASMp041
	hp75wwASMp042
	hp75wwASMp043
	hp75wwASMp044
	hp75wwASMp045
	hp75wwASMp046
	hp75wwASMp047
	hp75wwASMp048
	hp75wwASMp049
	hp75wwASMp050
	hp75wwASMp051
	hp75wwASMp052
	hp75wwASMp053
	hp75wwASMp054
	hp75wwASMp055
	hp75wwASMp056
	hp75wwASMp057
	hp75wwASMp058
	hp75wwASMp059
	hp75wwASMp060
	hp75wwASMp061
	hp75wwASMp062
	hp75wwASMp063
	hp75wwASMp064
	hp75wwASMp065
	hp75wwASMp066
	hp75wwASMp067
	hp75wwASMp068
	hp75wwASMp069
	hp75wwASMp070
	hp75wwASMp071
	hp75wwASMp072
	hp75wwASMp073
	hp75wwASMp074
	hp75wwASMp075
	hp75wwASMp076
	hp75wwASMp077
	hp75wwASMp078
	hp75wwASMp079
	hp75wwASMp080
	hp75wwASMp081
	hp75wwASMp082
	hp75wwASMp083
	hp75wwASMp084
	hp75wwASMp085
	hp75wwASMp086
	hp75wwASMp087
	hp75wwASMp088
	hp75wwASMp089
	hp75wwASMp090
	hp75wwASMp091
	hp75wwASMp092
	hp75wwASMp093
	hp75wwASMp094
	hp75wwASMp095
	hp75wwASMp096
	hp75wwASMp097
	hp75wwASMp098
	hp75wwASMp099
	hp75wwASMp100
	hp75wwASMp101
	hp75wwASMp102
	hp75wwASMp103
	hp75wwASMp104
	hp75wwASMp105
	hp75wwASMp106
	hp75wwASMp107
	hp75wwASMp108
	hp75wwASMp109
	hp75wwASMp110
	hp75wwASMp111
	hp75wwASMp112
	hp75wwASMp113
	hp75wwASMp114
	hp75wwASMp115
	hp75wwASMp116
	hp75wwASMp117
	hp75wwASMp118
	hp75wwASMp119
	hp75wwASMp120
	hp75wwASMp121
	hp75wwASMp122
	hp75wwASMp123
	hp75wwASMp124
	hp75wwASMp125
	hp75wwASMp126
	hp75wwASMp127
	hp75wwASMp128
	hp75wwASMp129
	hp75wwASMp130
	hp75wwASMp131
	hp75wwASMp132
	hp75wwASMp133
	hp75wwASMp134
	hp75wwASMp135
	hp75wwASMp136
	hp75wwASMp137
	hp75wwASMp138
	hp75wwASMp139
	hp75wwASMp140
	hp75wwASMp141
	hp75wwASMp142
	hp75wwASMp143
	hp75wwASMp144
	hp75wwASMp145
	hp75wwASMp146
	hp75wwASMp147
	hp75wwASMp148
	hp75wwASMp149
	hp75wwASMp150
	hp75wwASMp151
	hp75wwASMp152
	hp75wwASMp153
	hp75wwASMp154
	hp75wwASMp155
	hp75wwASMp156
	hp75wwASMp157
	hp75wwASMp158
	hp75wwASMp159
	hp75wwASMp160
	hp75wwASMp161
	hp75wwASMp162
	hp75wwASMp163
	hp75wwASMp164
	hp75wwASMp165
	hp75wwASMp166
	hp75wwASMp167
	hp75wwASMp168
	hp75wwASMp169
	hp75wwASMp170
	hp75wwASMp171
	hp75wwASMp172

