- ~
01 445CPROGRAM DESCRIPTION I s, o

Program Title PROGRAMMER PLUS
Contributor’'s Name James H. Boardman

Address 4321 North Bear Claw Way

city Tucson . State/Country Arizona Zip Code 85715

Program Description, Equations, Variables . This program is an aid to developing, debugging and
testing computer routines involving Boolean functions and bit shifting operations. To
provide maximum flexibility, signed or unsigned integers may be entered in one of 3
bases (hex, decimal or octal) and signed or unsigned results displayed in hex, decimal
or octal (independent of input base). - The program was specifically developed as a
(superior) replacement for the TI PROGRAMMER calculator...RPN version, of course.

Rotation, complementation, justification and the common Boolean functions (AND, OR,
EXCLUSIVE OR) are all provided. The program simulates a word size of anywhere between
2 and 32 bits (inclusive). Special provisions were made for allowing user written
programs to call upon the various routines. Used in this way, the 4lc program is
transformed from a Boolean calculator to a powerful problem solving program aid.

On page 23 you will find a detailed user written program example.

The next 29 pages give a complete description and more than 16 examples of using
the PROGRAMMER PLUS program.

Necessary Accessories 4 memory modules OR quad memory OR HP 41CV

Operating Limits and Warnings Integers only for input (and output). Simulated word size

_must fall between 2 and 32 bits (inclusive). gey integers with 9 or more digits

may cause erroneous function results. Max hex integer digits: 12. Decimal integers
greater than 4294967295 (2**32 - 1) may cause erroneous function results.
Word size must always be set appropriately as explained on page 12.

Reference(s) Yaohan Chu, INTRODUCTION TO COMPUTER ORGANIZATION, Prentice-Hall, Inc.
Englewood Cliffs, N.J., 1970

j2-22- 8/

This program has been verified only with respect to the numerical example given in Program Description 1. User accepts and uses this program material AT HIS OWN RISK. in rellance solely upon his own
inspection of the program material and without reliance upon any representation or description concerning the program matenal. ¢

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING. BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING. USE OR PERFORMANCE OF THIS PROGRAM MATERIAL

01 -

PROGRAM DESCRIPTION I (continuation Page) Page 2 of 40

/

TERMINOLOGY and SYMBOLS . .

INPUT, OUTPUT MODES and INTEGER ENTRIES
ENTERING INTEGERS
POSITIVE INTEGERS . . . + ¢ ¢ « « v . .
NEGATIVE INTEGERS
OVER-RIDING THE PREVAILING INPUT MODE o e .
USING the PROGRAM for HEX, OCTAL, DECIMAL CONVERSIONS
INTRODUCTION to BOOLEAN VARIABLES and FUNCTIONS
USING the BOOLEAN FUNCTIONS . . .

WORD SIZE and the COMPLEMENT FUNCTION .
NEGATIVE INTEGERS AND TWO'S COMPLEMENT

SIGNED MAGNITUDE DISPLAY

ROTATION AND JUSTIFICATION . . .« « v & v o . .
RIGHT AND LEFT JUSTIFICATION . . .+ o« « « . . .
RIGHT AND LEFT ROTATION . .

ROTATIONS IN COMBINATION WITH BOOLEAN EUNCTIONS

USING THE FUNCTIONS AS SUBROUTINES FROM YOUR OWN.PROGRAM'

LABEL CONVENTIONS
THE ROTATE FUNCTION . &« v v 4 v 4 ¢ o v o o o o o
THE COMPLEMENT FUNCTION . .

CHANGING THE WORD SIZE . .

DISPLAYING RESULTS

ENTERING HEX INTEGERS FROM YOUR PROGRAM .

USER PROGRAM EXAMPLE « o e

AVATLABLE STORAGE REGISTERS

CONVENIENCE SUGGESTIONS . . .
PROGRAM SIZE STATISTICS AND REDUCTION TECHNIQUES
PROGRAM ORGANIZATION AND LOGIC . .
SUMMARY . . . o e . - . .

D i JEEU QU U N N S
O OTJVITNND OO NI P

N

01448C

Page 3 of 40

HP PROGRAMMER PLUS DOCUMENTATION

PROGRAM DESCRIPTION I
(continuation page)

1.0 TERMINOLOGY AND SYMBOLS

In the following discussion of functions and operations, the
examples all assume you are starting from +the "initialized state".
Unless otherwise noted, the "initialized state" is reached by starting
the program at step 1 followed by setting decimal output mode. Specific
key presses to invoke USER mode functions will be designated by referring
to the blue (ALPHA) letters. 1In the case of shifted functions, the word
"GOLD" is used to denote that the shift key should be pressed first. Key
sequences themselves are specified in a 1line separated by ";". For

example, to achieve +the 1initialized state, perform the following
sequences:

GTO .001 ; R/S DSPLY: "HEX: 41C" FLGS: 1 MODE: U
D [DECO] DSPLY: "DEC: O" FLGS: 1 MODE: U

The left portion of the above lines indicates which keys you should
press. The label enclosed in square brackets is the name of the function
being executed. DSPLY indicates what will appear in the display. FLGS
indicates which flag annuciators will be on. MODE indicates which alpha
annuciators will be on. (U = USER, A =ALPHA). Many of the examples in
this section assume +the display is in decimal mode output (as just
achieved) and use decimal mode input which is the default mode after GTO
.001 ; R/S. To illustrate the terminology further, let us proceed past
the initialized state.

Example (1): HEX OUTPUT, OCTAL INPUT
From the initialized state:

E [HEX0] DSPLY: "HEX: O" FLGS: 1 ‘ MODE: U
GOLD ; C [oCTI] DSPLY: "HEX: O" FLGS: 1,3 MODE: U

Example (2): OCTAL OUTPUT, HEX INPUT
From the initialized state:

GOLD ; E [HEXI] DSPLY: "DEC: O" FLGS: 1,4 MODE: U,A
ALPHA ; C [0CTO] DSPLY: "OCT: O" FLGS: 1,4 MODE: U,A

Note that the ALPHA key had to be used +to extinguish the ALPHA
annunciator in order that the USER mode function "C" could be executed.

Return to initialized state:

ALPHA ; GOLD ; D [DECI] DSPLY: "OCT: O" FLGS: 1 MODE: U
D [DECO] DSPLY: "DEC: O" FLGS: 1 MODE: U

01 448C

PROGRAM DESCRIPTION I (continuation page) Page 4 of 40

2.0 INPUT, OUTPUT MODES AND INTEGER ENTRIES

As you may have already deduced, the C, D and E functions specify
the output mode (oCtal, Decimal and hEx) while the GOLD ; c, GOLD ; D,
and GOLD ; E functions specify +the corresponding input modes. In
addition, flags 3 and 4 indicate the current input mode.

Flag 3 Flag 4 Input Mode

OFF OFF DECIMAL
OFF ON HEX
ON OFF OCTAL

Hex input mode is somewhat inconvenient for executing USER mode
functions since the program leaves ALPHA mode on (for easy input of hex
digits) when it stops with a new display. To defeat this feature, change
step 191 from an AON instruction +to AOFF. Now, Thowever, it is
inconvenient to enfer hex digits (you must manually switeh to ALPHA mode
first). There is no overall convenient solution, but another alternative
will be described later.

2.1 ENTERING INTEGERS

Before learning how to enter integers in the various modes, it may
be helpful +to wunderstand that no matter what the display says ("HEX:",
"DEC:" or "OCT:"), the stack registers ALWAYS contain numeric, decimal
quantities (integers). The display always represents the base 8, base
10, or base 16 equivalent of the value contained in the X register.

2.1.1 POSITIVE INTEGERS

Decimal integers can be entered by either pressing +the numeric
digits O through 9 followed by R/S or followed by ENTER.

Octal integers can ONLY be entered by pressing the numeric digits O

through 7 followed by R/S. Of course, the program must also be in the
octal input mode (flag 3% "ON").

Hex integers can only be entered from the ALPHA keyboard (ALPHA mode
on) followed by R/S. Since two key presses are required to enter each of
the digits O through 9 (because the digits are shifted quantities in
ALPHA mode) and since this can be rather inconvenient, the program
accepts 2 representations for each of the 10 numeric digits. Either the
digit itself OR the ALPHA letter on that same key can be used to enter a
hex digit. For the other 6 hex digits, there is no problem and hence A
through F are represented only by themselves. Thus, the hex quantity
B75A can be entered either by:

B ; GOLD 3 7 3 GOLD ; 5 ; A ; R/S ORby B ; R ;W ; A ; R/S

0i 448C
PROGRAM DESCRIPTION I (continuation page) Page 5 of 40

The disadvantage of using the shorter key stroke sequence is that if
the output mode 1is also hex, an internal decimal-to-hex conversion
process will always be executed in order to display correct hex notation.
If +the 1longer input sequence 1is used and the output mode is hex, the
internal conversion is not necessary since the output display process
will use the same characters that were input.

2.1.2 NEGATIVE INTEGERS

For decimal and octal negative 1integers, use the same technique
described above along with the usual CHS key press. In the case of hex
input, you must actually enter a minus sign as the FIRST character of the
ALPHA mode string. The minus sign is, of course, really the algebraic

subtraction key. As with the numeric hex digits, the minus sign can be
entered either by:

GOLD ; - OR by Q

2.2 OVER-RIDING THE PREVAILING INPUT MODE

Decimal input while in octal input mode: If +the -entered integer
contains either the digit 8 or 9, the integer will be taken as a decimal
quantity instead of octal.

Hex input while in either octal or decimal input mode: If ALPHA
mode input is detected by the program (after pressing R/S), an attempt
will be made to interpret the input as hex regardless of the prevailing
input mode. If +the attempt fails, the error message "IN ERR" will be
momentarily displayed and the entry ignored. The stack contents will be
unaffected and +the previous display will return. If the attempt is
successful, the equivalent decimal integer will be placed in the X
register in a normal manner.

Numeric input while in hex input mode: If ALPHA mode is switched
off and a numeric quantity entered, an attempt to interpret the input as
octal will be made. If the attempt fails (integer contained either an 8
or 9) the entry will be taken as decimal.

01 443C
PROGRAM DESCRIPTION I (continuation page) Page 6 of 40

5.0 USING THE PROGRAM FOR HEX, OCTAL, DECIMAL CONVERSIONS

It should now be evident that since +the input mode 1is selected
independently from the output mode, base conversion is automatic. Simply
select the desired input and output modes. To illustrate, let's convert
a series of positive integers from one base to another.

Example (3): OCTAL INPUT, HEX OUTPUT
From the initialized state, select the desired modes:

GOLD ; ¢ [OCTI] DSPLY: "DEC: O" PLGS: 1,3 MODE: U
E [HEXO] DSPLY: "HEX: O" PLGS: 1,3 MODE: U

Convert octal 3726347 to hex:

3726347 3 R/S DSPLY: "HEX: FACE7" PLGS: 1,3 MODE: U
Convert octal 7777 to hex:

7777 ;3 R/S DSPLY: "HEX: FFF" FLGS: 1,3 MODE: U

Example (4): HEX INPUT, DECIMAL OUTPUT
Continuing from the above example, select the desired modes:

D [DECO] DSPLY: "DEC: 4095" FILGS: 1,3 MODE: U
GOLD ; E [HEXI] DSPLY: "DEC: 4095" FLGS: 1,4 MODE: U, A

Convert hex 13B0O5 to decimal:

GOLD ; 1 ; GOLD ; 3 ;3 B ; GOLD ; O ; GOLD ; 5 ; R/S
DSPLY: "DEC: 80645" FLGS: 1,4 MODE: U,A

Convert hex 13B0O5 to decimal using short-hand notation:
7Z?B W ; R/S DSPLY: "DEC: 80645" PLGS: 1,4 MODE: U,A

Once an integer has been entered, the prevailing OUTPUT mode can be
changed to see that integer's value in any of +the available base
displays. Simply execute the desired output mode function (C, D or E).
This action does not change the state of the stack registers or the LASTX
register.

Example (5): DISPLAY DECIMAL 12345 in EACH of the AVAILABLE OUTPUT MODES
FProm the initialized state:

12345 ; R/S DSPLY: "DEC: 12345" PLGS: 1 MODE: U
C £OCTO} DSPLY: "OCT: 30071™" FLGS: 1 MODE: U
E [HEXO DSPLY: "HEX: 3039" PLGS: 1 MODE: U

01448C

PROGRAM DESCRIPTION I (continuation page) Page 7 of 40

Example (6): DISPLAY OCTAL 12345 in EACH of the AVAILABLE OUTPUT MODES
Continuing from the previous state:

GOLD ; ¢ [ocTI] DSPLY: "HEX: 3039" FLGS: 1,3 MODE:
12345 ; R/S DSPLY: "HEX: 14E5" FLGS: 1,3 MODE:
D [DECO DSPLY: "DEC: 5349" FLGS: 1,3 MODE:
¢ LocTo ' DSPLY: "OCT: 12345" FLGS: 1,3 MODE:
Example (7): DISPLAY HEX 12345 in EACH of the AVAILABLE OUTPUT MODES

Continuing from the previous state:

GOLD ; E EHEXI] DSPLY: "OCT: 12345" FLGS: 1,4 MODE:
Z=?VW ; R/S DSPLY: "OCT: 221505" FIGS: 1,4 MODE:
ALPHA ; D {DECO] DSPLY: "DEC: T4565" FLGS: 1,4 MODE:
ALPHA ; E [HEXO DSPLY: "HEX: 12345" FLGS: 1,4 MODE:

dadd

aggadcd
= e

01 443C

PROGRAM DESCRIPTION I (continuation page) Page 8 of 40

4.0 INTRODUCTION TO BOOLEAN VARIABLES AND FUNCTIONS

If you are already familiar with Boolean algebra and functions, you
will want +to skip to the next section and proceed with how to use the
program's built-in functions. Otherwise, this section is a Dbrief
introduction to the subject. It is not intended to make anyone an expert
or even be especially thorough. The justification is simply to see why
the particular built-in functions were chosen to be implemented.

Boolean variables differ from algebraic variables in that +they are
quantities which may have only one of two possible values. Ordinary
algebraic quantities may take on many different values. The +two values

for a ?oolean variable are typically denoted by 1 and O (also "true" and
"false").

As in algebra where the addition, subtraction, multiplication and
‘division operators are defined, there is a set of Boolean operators whicn
specify "logical" operations on two Boolean variables. Given variables X
and Y, consider some arbitrary function, F(x,y), the result of which is a
Boolean value. You can easily see that either F(x,y)=0 or PF(x,y)=1.
Since there are four combinations of x and y for which F(x,y) yields a
result, we must therefore enumerate the resulting values for F(x,y) in
order to completely define the function. Once each of the 4 results is
listed, we can consider F(x,y) to be an operator. The following +table

shows that there are 16 possible Boolean operators denoted by F1 through
F16.

Possible results of a Boolean Operator on Two variables X and Y

X Y ™M F2 F3 F4 F5 PF6 F7T F8 F9 F10 F11 M2 M3 F14 F15 M6

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 i 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
To illustrate how to read this table, consider F7(1,0). In +this

case, X=1 and Y=0 so refer to the third row under the X Y heading. Look
across to the column labeled F7 and read the value. F7(1,0) = 1.

Examining +this +table reveals +that +there are several trivial
functions. F1 and P16, for example, yield a constant result and are
therefore independent of the particular set of "input" values for X and
Y. Also, it 1is evident that P4(x,y) = X and F6(x,y) = Y making these
also "trivial" functions. F11 and P13 are similarly a function of only
one of the "input" values. But they are very important (as we shall see)

in that they have the effect of reversing or complementing the input
value.

01 443C

PROGRAM DESCRIPTION I (continuation page) Page 9 of 40

Now consider the other, non-trivial functions. These are: F2, F3,
¥5, F®7, ¥8, TF9, MO, P2, F14 and 5. It turns out that if we select
F2, F7, P8 and T3 as a group and call them fundamental or "basic"
operators, then all of +the remaining functions (F3, F5, F9, ™0, Fi12,
F14, F15) can be expressed in terms of +the %basic ones. For exanmple,

FB(x,y) = P7(x,P2(x,y)). This is demonstrated in the following two
tables.

X Y PF2(x,y) X PF2(x,y) F3 = F7(x,F2(x,y))

o o o o o o

0 1 0 0 0 0

1 0 0 1 0 1

1 1 1 1 1 0

If you can keep the parenthesis straight, it will be found that:

F5(x,y) = F7(F2(x,y),y)
F9(x,y) = F13(F8(x,y),y)
P10(x,y)= M3(F7(x,y),y)
M2(x,y)= M3(P7(F2(x,y),),Y)
F4(x,y)= M13(F7(x, F2(x yg
P15(x,y)= F13(F2(x,y),y

Notice that only F2, F7, F8 and ™3 are really needed in order +o
generate all possible results of functions on two Boolean variables. It
“turns out that these are not the only ones that could have been selected,
nor do they constitute a minimum set. If you choose the right 2
functions, all the others can be generated from them. However, the ones
chosen happen to correspond to machine instructions commonly implemented
on most computers. F2 is called the "AND" function, F7 1is called +the
"EXCLUSIVE OR" function, P8 is +the "INCLUSIVE OR" (or simply "OR")
function and, as mentioned above, F13 is the "COMPLEMENT" function.

30 far, we have considered only Boolean variables - that is,
variables which take on a value of only O or 1. Since algebraic
variables can be represented by a string of 1's and O's (in base 2 form
or as binary numbers), +the fundamental functions can be applied to
algebraic variables by performing +the function on each pair of
corresponding Dbinary digits. For example, consider applying the AND
function to the base 10 integers 9 and 5.

Base 10 integer: 9 5
Base 2 equivalent: 1001 0101

Now, number the "bits" in the binary equivalents from right to left:

BITO(9)= 1 BITO(5)= 1
BIT1(9)= 0 BIT1(5)= 0
BIT2(9)= 0 BIT2(5)= 1
BIT3(9)= 1 BIT3(5)= 0

01i443C
PROGRAM DESCRIPTION I (continuation page) Page 10 of 40

Next, perform the AND function on each pair of corresponding bits

BITO(9) BITO(5) BITO(9) "AND" BITO(5)
31%1(9) 31;1(5) BIT1(9) "A%D" BIT (5)
3122(9) 3182<5) BIT2(9) "AgD" BIT2(5)
BI§3(9) BI%3(5) BIT3(9) "A§D“ BIT3(5)

Finally, recombine the bits to form the result:
(1001) "AND" (0101) = (0001) or 9 "AND" 5 =1

The three other fundamental functions (EXOR, OR. and CCMPL: are
likewise always applied to individual bits. AND, EXOR and OR operate on
corresponding bit pairs of the two variables whereas COMPL operates on
each bit of a single variable. It 1is probably obvious that in the
PRGRMR+ program, AND, EXOR, OR and COMPL are the built-in functions which
were referred +to before. AND, XOR, and OR use arguments in the 41C's X
and Y registers, leaving their result in X with the normal stack "drop"
associated with all diadic functions. COMPL works only on the value in X
(as a good monadic function should). Naturally, all four functions leave
the original contents of X in the LASTX register.

4.1 TUSING The BOOLEAN FUNCTIONS

The Boolean functions are executed by using the 1local ALPHA
functions F ("AND"), G ("OR"), H ("EXOR") and J ("COMPL"). The following
examples will be performed in octal input and output mode because it is
very easy to visulize the individual bits that comprise each octal digit.
An octal digit always represents 3 Dbinary bits. (hex digits always
represent 4 bits which is also fairly easy, but decimal digits do not
correspond tto an integral number of bits{. Octal 0 = (000), octal 1 =
(001), octal 2 = (010) etc. +through octal 6 = (110), octal 7 = (111).
Let's see what the result of various Boolean operations is on a few pairs
of integers.

Example (8): FIND the RESULT of 4377 "AND" 2155 (octal integers)
From the initialized state:

¢ [ocTo] DSPLY: "OCT: O" FLGS: 1 MODE: U
GOLD ; C [oCTI] DSPLY: "OCT: O FLGS: 1,3 MODE: U
4377 ;3 R/S DSPLY: "OCT: 4377" FLGS: 1,3 MODE: U
2155 ; R/S DSPLY: "OCT: 2155" FLGS: 1,3 MODE: U
F [AND] DSPLY: "OCT: 155" FLGS: 1,3 MODE: U

01 443C

PROGRAM DESCRIPTION I (continuation page) Page 11 of 40

The next example will illustrate use of each of +the +two argument
Boolean functions ("AND", "OR" and "EXOR"). For arguments we will choose

two special decimal numbers: 172 and 202. To see why these are special,
write down the binary equivalents:

172

(10101100)
202 (11

001010)

Comparing corresponding pairs of bits, you will find +that every
possible combination of "O" and "i" will Dbe exercised twice by the
functions. Predicting the results, we find that:

(10101100) "™AND" (11001010)
(10101100) "OR" (11001010)

(
(11101110) [238
(10101100) "EXOR" (11001010) (

01100110) [102

Bonon

10001000) t1361

Partition the result bits into 2 groups of 4 bits each and observe
that each group is identical. The results in hex should be three double

digit numbers: 88, EE and 66. Now duplicate +the results with +the
program.

Example (9): FIND 172 "AND" 202, 172 "OR" 202 and 172 "EXOR" 202. OQUTPUT
the RESULTS in BOTH DECIMAL and HEX FORMS.
From the intialized state:

172 ; R/S DSPLY: "DEC: 172" FLGS: 1 MODE: U
202 ; R/S DSPLY: "DEC: 202" FPLGS: 1 MODE: U
F [AND] DSPLY: "DEC: 136" FLGS: 4 MODE: U
E [HEXO] DSPLY: "HEX: 88" FLGS: 1 MODE: U
172 3 R/S DSPLY: "HEX: AC" FLGS: 1 MODE: U
202 ; R/S DSPLY: "HEX: CA" FLGS: 1 MODE: U
G [OR] DSPLY: "HEX: EE" FLGS: 1 MODE: U
D DECO} DSPLY: "DEC: 238" FLGS: 9 MODE: U
172 ; R/S DSPLY: "DEC: 172" FLGS: 1 MODE: U
202 ; R/S DSPLY: "DEC: 202" FLGS: 1 MODE: U
H {EXOR] DSPLY: "DEC: 102" FLGS: 1 MODE: U
E [HEXO DSPLY: "HEX: 66" FLGS: 1 MODE: U

0L 4&4153 C
PROGRAM DESCRIPTION I (continuation page) Page 12 of 40

5.0 WORD SIZE AND THE COMPLEMENT FUNCTION

Almost all the functions in the PRGRMR+ program make use of a '"word
size" constant. "Word size" means the number of binary digits (bits)
that are considered to be available for a binary representation of an
integer. Consider for example how one would represent the integer 5 in
binary form. There are many choices depending on the word size.

WORD SIZE BINARY REPRESENTATION OF 5
0 Not possible
1 Not possible
2 Not possible
3 101
4 0101
5 00101
5 0001 01

etec., ete.

Perhaps this seems trivial, but consider what happens if one wishes
to perform the COMPLement function. ZExactly how many bits get reversed?
The answer depends on the currently selected word size.

WORD SIZE NUMBER 5 COMPL of 5 BASE 10 equiv.
3 101 010 2
4 0101 1010 10
5 00101 11010 26
6 000101 111010 58

To demonstrate this using the PRGMR+ program in USER mode, let's

select a word size of 7, enter the number 5 and complement it to see the
result.

Example (10): COMPLEMENT 5 with WORD SIZE = 7
From the initialized state:

DSPLY: "DEC: O" FLGS: 1 MODE: U

A [wsiz] DSPLY: "3%2, NEW SIZ:" FLGS: 1 MODE: U

7 ; R/S DSPLY: "DEC: O" FLGS: 1 . MODE: U
The program has now been set to have a word size of 7. This size

will remain in effect indefinitely until it is again changed with the "A"
function.

5 : R/S DSPLY: "DEC: 5" FLGS: 1 MODE: U
J fCOMPL] DSPLY: "DEC: 122" FLGS: 1 MODE: U

PROGRAM DESCRIPTION I (continuation page) Page 13 of 40
Evidently, the COMPL of 5 using a word size of 7 has a decimal value

of 122. Obviously, 1if we reverse all the bits again by taking another

COMPL, the original value should return:

J [CoMPL] DSPLY: "DEC: 5" FLGS: 1 MODE: U

Starting with 5, find the COMPL for various word sizes:

A [ws1zZ] DSPLY: "7, NEW SIZ:" FLGS: 1 MODE: U
9 ; R/S DSPLY: "DEC: 5" PLGS: 1 MODE: U
J ECOMPL] DSPLY: "DEC: 506" FLGS: 1 MODE: U
A [Ws1z] DSPLY: "9, NEW SIZ:" FLGS: 1 MODE: U
23 ; R/S DSPLY: "DEC: 506" PLGS: 1 MODE: U
5 ; R/S DSPLY: "DEC: 5" FLGS: 1 MODE: U
J ECOMPL] DSPLY: "DEC: 8388602" PLGS: 1 MODE: U

The default word size for the program is 32. If you will be mostly
dealing with machines whose word size is other than this, the default can
be reset by changing step 96 from 32 to any INTEGER from 2 through 32.
No program checks are made to ensure that you have selected a number in

this range, but larger or smaller selections will cause incorrect results
for most operations.

5.1 NEGATIVE INTEGERS AND TWO'S COMPLEMENT

So far we have considered only positive integers in our discussion
of Boolean functions and word size. What about negative integers? How
can they be represented in terms of a string of 1's and 0's? Almost all
modern day computers use the left-most bit in the binary representation
of a number to indicate whether it is dealing with a positive or negative
integer. The left-most bit is commonly referred to as +the "most
significant bit" or MSB. Naturally, then, the right-most bit is the
"least significant bit" or LSB. In most computers the MSB is used as a
"sign" bit when the machine 1is dealing with gigned integers. MSB=0
indicates a positive integer, MSB=1 indicates a negative integer.

Unlike written notation, however, where we negate a number simply by
putting a "-" in front, the negative representation in binary form does
NOT involve simply setting the MSB to 1. There are several reasons for
this, probably the most important one being that when an integer and it's
negative are added, the result should be O (zero). If all we did +to
represent a negative number was turn the MSB bit "on", this additive
property could not be easily implemented in the machine's hardware. As
an illustration, consider 5 (000101) and -5 (100101). If you perform a

binary addition, the result is (101010) which would represent -10 instead
of the desired O.

Instead, -5 is represented by (111011). Now, when 5 and -5 are
added the result is correct: (000101) + (111011) = ([1]000000). EXCEPT,
there was a "carry" (represented by [1]) into the next higher,
non-existent bit. This 1is no problem. Since there is no place to put

0i 443C

PROGRAM DESCRIPTION I (continuation page) Page 14 of 3¢

the overflow bit, it is simply discarded (or kept track of by the machine
in some other form). This leaves all zeroes in the result word. How do
you generate (111011) from -5? The process involves only two steps:
start with +the positive representation of the number (000101), COMPL it
(111010), and add 1 (111011). This process is called "two's
complementation”. When carried out on any positive integer (MSB=0), the

result will be the negative of that integer and the MSB will always De
set to 1.

The COMPL process discussed in the previous section is called "one's
complementation" and 1is most wuseful when we are not particularly
interested in dealing with signed numbers. After all, there 1is nothing
very special about +the MSB. If we agree that all numbers in a program
will be positive, then the MSB might as well just be used as part of the
number itself. TFor cases where we DO care about the sign of an integer,

it would te nice %0 be able to take a "two's complement” as well 4as =2
"one's complement". In the PRGRMR+ program, the "J" function is used for
both kinds of complementing. The selection is governed by FLAG 1. If

flag 1 is ON, then the J function performs a one's COMPL. If flag 1 is
OFF, the J function performs a two's COMPL (i.e., it adds 1 to the result
of a one's COMPL operation).

There is no function in the program to turn flag 1 ON or OFF. This
is mainly Dbecause there are no more available local ALPHA functions
available! All 15 are allocated for other functions. It is very easy,
however, +to manually SF O1 or CF O1 as appropriate. The program sets
"one's COMPL" as the default (flag 1 ON) in step 84. Steps 1 through 102
are all initialization steps, performed only once when you GTO .001 ;
R/S. Many program defaults are setup in these steps including flag 1 and
can be changed to suit individual tastes. To set "two's COMPL" as the
default for the J function, change step 84 from SF 01 to CF O1.

»014480

PROGRAM DESCRIPTION I (continuation page) Page 15 of 4q

6.0 SIGNED MAGNITUDE DISPLAY

Using the sign bit (MSB) to distinguish between negative and
positive numbers and then actually displaying a minus sign for negative
numbers is called the "signed magnitude" display mode. Signed magnitude
display mode is controlled by FLAG 2. If "ON", flag 2 signifies that
integers with their MSB set to 1 will be displayed with a minus sign
followed by the magnitude of the number. PFlag 2, in turn, is controlled
by the local ALPHA function "a". (GOLD ; A). Whenever GOLD ; A is
executed, +the program reverses the state of flag 2. If it was ON, it is
turned OFF and vice versa. Notice that the default is for flag 2 +to be
OFF. To change the default, change step 85 from CF 02 to SF 02.

Continuing from the last example, display +the current number in
signed magnitude form. Recall that the program currently has the word
size set to 23 and the display is showing the one's COMPL of 5.

Example (11): DISPLAY SIGNED MAGNITUDE VALUE for -5, WORD SIZE = 23

DSPLY: "DEC: 8388602" FIGS: 1 MODE: U
GOLD ; A [SGNM] DSPLY: "DEC: -6" FILGS: 1,2 MODE: U
What went wrong? Instead of "-5", we have "-6". The problem is

that in +the previous example, we took the "one's COMPL" of 5 instead of

the "two's COMPL". Try again by taking the "one's COMPL" to get back a
5:

J [comMpPL] DSPLY: "DEC: 5" FLGS: 1,2 MODE: U

Now, manually clear flag 1 so that the COMPL function will wuse the
"two's COMPL" instead:

GOLD ; CF 01 ; J DSPLY: "DEC: -5" FLGS: 2 MODE: U

With the correct result at hand, you will note +that subsequent
presses of the J [COMPL] function will simply turn the minus sign on or
off. We could have predicted the "erroneous" result of -6 above by
thinking about +the binary representation. Going back to 6 bits for the
word size instead of 2%, we had: 5 (000101). Then it was one's
COMPLemented: 58 (111010). If we now examine this binary number with
the idea in mind that it represents a negative number (MSB=1), what would
that number Dbe? To find out, take the two's COMPL: (000101) + (1) =
(000110) or 6. Since the MSB is ON, (111010) must be the representation
for -6 and, indeed, this is what was initially displayed above. The word
size doesn't matter here. The results are the same since the one's COMPL

of 5 in 23 bit form has 20 leading 1's instead of just 3 as in this
example.

Signed magnitude display is most useful to programmers when they are
examining binary "dumps" of memory from a computer. The dump programs
almost always print out words in wunsigned form (MSB is just another
"bit"). However, the programmer may know that certain of the numbers are
really signed integers. This display mode easily gives a translation of

0i 448C

PROGRAM DESCRIPTION I (continuation page) Page 16 of 49

the dumps in the same form as the programmer originally thought about the
numbers.

To illustrate this procedure, let's translate a series of dumps from
a hex form +to +the real signed decimal integers that they represent.
Assume we have a 16 bit machine (word size = 16), and that a hex dump of
the following numbers has occurred: F2A0, A35B, TF6C, 90C2, D197.

Example (12): TRANSLATE HEX INTEGERS into DECIMAL SIGNED MAGNITUDE FORM
From the initialized state:

A [WSIZ] DSPLY: "32, NEW SIZ:" FLGS: 1 MODE: U
16 ; R/S DSPLY: "DEC: O" FLGS: 1 MODE: U
GOLD ; A {SGNM] DSPLY: "DEC: O" FLGS: 1,2 MODE: U
GOLD ; E |HEXI DSPLY: "DEC: O FLGS: 1,2,4 MODE: U, A

Now the program is ready to accept the dumps. Remember that the hex
digits can be entered either in long form using GOLD or short form form
using just the 1letters on +the corresponding keys. To make this

description more concise, the individual key presses for long form won't
be shown.

F2A0 ; R/S DSPLY: "DEC: -3424" FLGS: 1,2,4 MODE: U,A
A35B ; R/S DSPLY: "DEC: -23717" FLGS: 1,2,4 MODE: U,A
7F6C ; R/S DSPLY: "DEC: 32620" FLGS: 1,2,4 MODE: U,A
90C2 ; R/S DSPLY: "DEC: -28478" FLGS: 1,2,4 MODE: U,A
D197 ; R/S DSPLY: "DEC: -11881™" FLGS: 1,2,4 MODE: U,A

0i448C
PROGRAM DESCRIPTION I (continuation page) Page 17 of ¢

7.0 ROTATION AND JUSTIFICATION

In many computer applications the programmer is not interested in
dealing with integer values. Instead, he is more concerned with bit
patterns. In other words, it is not a binary number that is being dealt
with but the individual bits themselves. Perhaps the bits are considered
to be flags as in the 41C or perhaps a group of bits taken together have
some particular meaning. This is particularly true when programs deal
with devices like terminals or line printers. To make a terminal print a
particular 1letter, for example, it must transmit a certain vrattern of
bits to activate the mechanism for printing.

Computers usually have several instructions designed to handle bit
patterns. This program has four functions which treat the X register in

a similar way. All of them involve moving a pattern to +the right or
left.

7.1 RIGHT AND LEFT JUSTIFICATION

The justification functions cause continuous movement until a Dbit
with the value 1 fills either the MSB or LSB position. The following
table illustrates the effect of the left and right justify functions.

WORD SIZE START PATTERN RIGHT-JUSTIFY LEFT-JUSTIFY
6 001000 % 81 000001 t 11 100000 t 321
7 0110010 | 50 0011001 25 1100100 [100
8 10001000 [136] 00010001 17 10001000 [136

To demonstrate this using the program, let's duplicate the results
of +the above table. Since ©binary modes for input and output are not
available, we will use the numbers in square brackets which indicate the
decimal value of the preceeding binary number.

Example (13): LEFT and RIGHT JUSTIFY USING VARIOUS WORD SIZES
From the initialized state:

A [ws1z] DSPLY: "32, NEW SIZ:" FLGS: 1 MODE: U
6 ; R/S DSPLY: "DEC: O" FLGS: 1 MODE: U
8 ; R/S DSPLY: "DEC: 8" FLGS: 1 MODE: U
B fRJY] DSPLY: "DEC: 1" FLGS: 1 MODE: U
GOLD ; B [LJY] DSPLY: "DEC: 32" FLGS: 1 MODE: U
A [WS1z] DSPLY: "6, NEW SIZ:" FPLGS: 1 MODE: U
7 3 R/S DSPLY: "DEC: 32" FLGS: 1 MODE: U
50 ; R/S DSPLY: "DEC: 50" FLGS: 1 MODE: U
B [RJIY] DSPLY: "DEC: 25" FLGS: 1 MODE: U
GOLD ; B [LJY] DSPLY: "DEC: 100" FLGS: 1 MODE: U
A [wsIiz] DSPLY: "7, NEW SIZ:" FLGS: 1 MODE: U
8 ; R/S DSPLY: "DEC: 100" FLGS: 1 MODE: U
136 ; R/S DSPLY: "DEC: 136" FLGS: 1 MODE: U
B [RJY] DSPLY: "DEC: 17" FLGS: 1 MODE: U
GOLD ; B [LJY] DSPLY: "DEC: 136" FLGS: 1 MODE: U

01 448

PROGRAM DESCRIPTION I (continuation page) Page 18 of 40

7.2 RIGHT AND LEFT ROTATION

The left and right rotation functions are similar +to the justify
functions in +that bit patterns are moved right or left. Now, however,
you are asked how many shifts to the right or left are wanted. If you
respond with a positive integer, the shifts will take place to the right.
For left shifts, input a negative number. There is no maximum number of
shifts. However, 1if your request is such that a 1 bit would shift off
the end of the binary string, the bit is not lost. Bits shifted off the
end cause flag 0O to turn on. Before the next shift movement is
performed, flag O is checked. If it is ON, a 1 will shift into the
opposite end of the ©binary string. Otherwise, zeroes shift into the
opposite end. This whole operation is commonly known as rotation with
end-around carry. It is NOT true shifting (in which bits moving off one
end are lost). Actually, flag O is effectively an extra ©bit in the
binary string.

The rotation operations are the only routines in the entire program
that do anything with flag O. You can always see whether a bit is being
held before a rotation function is executed. Flag O is NOT cleared prior
to the operation so that anything "left-over" from a previous rotate will
have an effect on the next rotate. If this is undesirable for you, flag
O can be always cleared at the beginning of an operation by inserting a
CF 00 instruction just AFTER step 339. Step 339 contains an SF 08
instruction.

The following table illustrates the rotation function as it proceeds
step by step. The contents of flag O is indicated within parenthesis and
the equivalent decimal value is indicated in square brackets.

DIR. SIZ START PATTERN _ AFTER 1 ROT AFTER 2 ROTS AFTER 5 ROTS
right 8 (0)00100010 {34} (0)00010001 (1)00001000 (0)00100001 {33]
left 5 (1)00010 2 (0)00101 (0)01010 (0)10001 [17

Again, let's duplicate the results in the table by running the same
process on the 41C.

Example (14): ROTATE DECIMAL 34 to the RIGHT 5 PLACES USING WORD SIZE 8
From the initialized state:

A [wsiz] DSPLY: "32, NEW SIZ:" PLGS: 1 MODE: U
; R/S DSPLY: "DEC: O" FLGS: 1 MODE: U
34 ; R/S DSPLY: "DEC: 34" FLGS: 1 MODE: U
I [ROT] DSPLY: "PLACES?" FLGS: 1 MODE: U
; R/S DSPLY: "DEC: 33" PLGS: 1 MODE: U

To duplicate the left rotation table example, note that flag O must
be set Dbefore doing the rotation. This can, of course, be easily done
with a manual SF 00. However, to be slightly tricky, we can set flag O
by doing one more, single place right rotation. This will serve %o
demonstrate that the state of flag O carries over from one rotation
execution to the nex%t.

0 448¢C

PROGRAM DESCRIPTION I (continuation page) Page 19 of 4g

Example (15): ROTATE DECIMAL 2 to the LEFT 5 PLACES USING WORD SIZE 5
Continuing from the previous state:

I [ROT] DSPLY: "PLACES?" FLGS: 1 MODE: U
1 ;3 R/S DSPLY: "DEC: 16" FLGS: 0,1 MODE: U
A tWSIZ] DSPLY: "8, NEW SIZ:" FLGS: 0,1 MODE: U
5 3 R/S DSPLY: "DEC: 16" FLGS: 0,1 MODE: U
2 ;3 R/S DSPLY: "DEC: 2" FLGS: 0,1 MODE: U
I fROT] DSPLY: "PLACES?" FLGS: 0,1 MODE: U
5 ; CHS ; R/S DSPLY: "DEC: 17" FLGS: 1 MODE: U
7.3 ROTATIONS IN COMBINATION WITH BOOLEAN FUNCTIONS

The ability to use bit pattern functions in combination with +the
Boolean functions and the normal 41C operations (+, -, *, /) will now be
demonstrated. In using combination functions, very complex operations
executed at high speeds on a computer can be duplicated and minutely

"examined" by a programmer. The example here will be a rather simple
one.

Suppose we wish %o split a 16 bit word into two 8 bit halves
(commonly called "bytes"). After the split, the left half must be one's
complemented and added to the right half. Splitting a word is most
easily accomplished with +the "AND" function. The procedure will be to
load a "mask" value to be wused with +the "AND" function into +the Y
register. The 16 bit word to be split will then be loaded into the X
register and the "AND" performed. This will isolate the right half in X.
Since the original 16 bit word is still in LASTX, we will recall it, load
another "mask" value (this time into X), left justify the mask (since we
now want the left half of the word) and perform another "AND". Finally,
the isolated left half-word (now in X) will be complemented, rotated 8
places to the right and added to Y (which still contains the right
half-word). The final result is to be displayed in hex mode. Let's pick
the octal number 125252 as the value to be split. The mask value for
isolating bytes is octal 377. Again, when dealing with bit patterns, it

is easier +to work with octal or hex modes in order to visulize the
individual bits. .

nj443C

PROGRAM DESCRIPTION I (continuation page) Page 20 of 49

Example (16): COMBINATION OPERATIONS to ISOLATE and ADD HALF-WORDS
From the initialized state:

¢ [ocTo] DSPLY: "OCT: O" FLGS: 1 MODE: U
GOLD ; C [ocCTI] DSPLY: "OCT: O" FLGS: 1,3 MODE: U
A [wSIZ] DSPLY: "32, NEW SIZ:" FLGS: 1,3 MODE: U
16 ; R/S DSPLY: "OCT: O" FLGS: 1,3 MODE: U
377 ; R/S DSPLY: "OCT: 377" FLGS: 1,3 MODE: U
125252 ; R/S DSPLY: "OCT: 125252" FLGS: 1,3 MODE: U
F [AND] DSPLY: "OCT: 252" FLGS: 1,3 MODE: U
GOLD ; LASTX ; C [OCTO] DSPLY: "OCT: 125252" FLGS: 1,3 MODE: U
377 3 R/S DSPLY: "OCT: 377" FLGS: 1,3 MODE: U
GOLD ; B [LJY] DSPLY: "OCT: 177400" FIGS: 1,3 MODE: U
F [AND] DSPLY: "0OCT: 125000" FLGS: 1,3 MODE: U
J [COMPL] DSPLY: "OCT: 52777" FIGS: 1,3 MODE: U
I [ROT] DSPLY: "PLACES®?" FLGS: 1,3 MODE: U
8 ; R/S DSPLY: "0OCT: 177125" FLGS: 2,1,7% MOT®: U
377 ; R/S DSPLY: "OCT: 377" FLGS: 0,1,3 MODE: U
F [ANDE DSPLY: "OCT: 125" FLGS: 0,1,3 MODE: U
+ ; E [HEXO] DSPLY: "HEX: FP@" FLGS: 0,1,3 MODE: U

Note particularly in the above example that after issuing a standard
41C function (LASTX and +) the "standard" display for this program is
obliterated and the decimal result of +the operation appears instead.
That is the reason for executing a program output mode function after
LASTX. After the "+", the hex output mode function was executed because
the example called for a hex display of the result.

0i4438¢C
PROGRAM DESCRIPTION I (continuation page) Page 21 of ‘49

8.0 USING THE FUNCTIONS AS SUBROUTINES FROM YOUR OWN PROGRAM

Special care was taken in the design of this program to make all the
functions wusable as subroutines from your own program. For this reason,
the 41C instructions for each function begin with two labels. One of the
labels is referenced when you execute the local ALPHA function. The

other label, which is a global ALPHA, is +to be referenced from user
written programs.

8.1 LABEL CONVENTIONS

The global ALPHA labels all consist of double 1letters. The "AND"
function, for example, has the local ALPHA label: *LBL F and the global
ALPHA label *IBL "FF". Similarly, the global 1label for "OR", "EXOR",
"ROT", "COMPL", "LJY" and "RJY" respectively are: *LBL "GG", *LBL "HH",
*LBL "II", *LBL "JJ", *LBL "bb" and *LBL "BB".

8.2 THE ROTATE FUNCTION

Among these functions, only the rotate ("ROT") requires a keyboard
prompt response before function execution proceeds. Recall that [ROT]
asks: "PLACES?". To avoid the prompt when using "ROT" from a wuser
program, the program must supply in register 22 a value indicating how
many shifts are desired and in which direction. In other words, prior to
a call to +the "ROT" function, register 22 must be pre-loaded with
whatever PROMPT response would have been keyed in. Negative integers
cause left rotation, positive integers rotate X to the right. If you
WANT the "ROT" function to PROMPT, just make sure register 22 is clear
before calling the subroutine.

Note that during execution of ANY function, register 22 1is always
cleared just before returning to your program. So, it must be loaded
everytime you call "ROT" (except when you WANT the prompt).

Don't forget about flag O! The "ROT" function includes flag O as a
bit in +the simulated word. Your program must set or clear flag O
appropriately to achieve correct results.

8.3 THE COMPLEMENT FUNCTION

Recall that flag 1 governs the [COMPL] function (global ALPHA label
"Jgm). If "ON", the COMPL function performs a one's complement on X. If

"OFF", a two's complement is performed. Your program must set or clear
flag 1 accordingly.

01 448C
PROGRAM DESCRIPTION I (continuation page) Page 22 of 40

8.4 CHANGING THE WORD SIZE

Register 25 and 26 always contain values pertinent +o +the current
simulated word size. Register 25 contains the integer number of bits in
the simulated word. Register 26 contains 2 raised to the power of the
integral number of bits. Thus, to change the word size to 23 bits, say,
your program would execute:

2 ; ENTER ; 2% ; STO 25 ; Y**X (Y up-arrow X) ; STO 26

Remember that erroneous results will occur if the word size is not in the
range 2 to 32 (inclusive).

8.5 DISPLAYING RESULTS

As with the Boolean functions, the 3 output mode functions are also
equipped with a double set of labels. Global label "CC" displays the
current X value in octal form, "DD" displays in decimal form and "EE"
displays in hex form. Calling any of these labels does not change the
state of either the stack or the LASTX register, so your program can
easily display intermediate or final results in whatever form you wish.

Setting flag 2 "ON" will force the display to be in signed magnitude
form, flag 2 "OFF" results in the unsigned display.

8.6 ENTERING HEX INTEGERS FROM YOUR PROGRAM

There is one more global ALPHA label which can be called to convert
a hex integer generated by your program into decimal. Global label "HX"
provides this function. The procedure is to load the ALPHA register with
the hex digits and XEQ "HX". Your ALPHA string will be converted to a
decimal equivalent in the X register. The normal stack 1ift process will

also occur just as though your program had directly entered the decimal
value instead.

Ny 448¢C
PROGRAM DESCRIPTION I (continuation page) Page 23 of 40

8.7 USER PROGRAM EXAMPLE

To illustrate the process,ywe will write a program to duplicate the
results of Example (16). TFirst, ensure you are in your own program space

by executing GTO .. Switch to PRGM mode and key in the following
program:

STEP INST ARGUMENT COMMENTS

01 *LBL "SPLIT"

02 XEQ "cen Force octal display

03 2 Change word size

04 ENTER to 16 bits

06 16

o7 3TO 25

08 Y**X Also store 2¥%%*16

09 STO 26

10 377 Generate "mask"

" DEC in octal

12 125252 Load number to be split
13 DEC also in octal

14 XEQ "FF" Perform "AND" function
15 LASTX Recover number

16 377 Generate another mask
7 DEC

18 XEQ "bb" Left justify the mask
19 XEQ nppn and extract left byte
20 SF 01 Take one's complement
21 XEQ "JJn (call the COMPL routine)
22 8 - Setup for right rotate
23 STO 22 (this does a stack 1lift)
24 RDN Undo the 1lift

25 CF 00 Ensure flag O has a "O"
26 XEQ "II" Finally, "ROT"

27 377 One more mask

28 DEC

29 XEQ "pR" Extract just the left byte
30 + Right byte was in Y

31 XEQ "EE" Display in hex form

32 STOP and stop with display
33 GTO "SPLIT" Repeat if desired

34 END That's it

Position the 41C to step 01 and press R/S. The final display, if
you loaded the program correctly, will be "HEX: FF" -~ just as in
Example (16) where all of this was done manually. On my 41CV with fairly
fresh batteries, the above program executes in 58 seconds.

0, 443C

PROGRAM DESCRIPTION I (continuation page) Page 24 of 40

8.8 AVAILABLE STORAGE REGISTERS

The PRGRMR+ program makes use of all registers from 00 wup to and
including register 75. So, to have your own registers, you must execute
a SIZE O77 or higher. However, registers 21, 22, 23 and 24 are

temporaries. That is, they are used only when functions are actually
being executed and their contents do not have to be maintained between
function calls. Therefore, 1if you only need a few registers BETWEEN

calls to the Boolean routines, go ahead and use these. But remember that
their contents will be destroyed after a return to your program.

9.0 CONVENIENCE SUGGESTIONS

When using the functions in "calculator" mode (not from a user
program;, I find 1%t inconvenient %o execute a "-", U MEM MM aps
and have the display obliterated. Also, of course, when a "+" or
whatever 1is executed you wind up looking at the X register in its raw
decimal form. As a result, one winds up always executing [OCTO] or
[HEXO]. To avoid this, several tiny routines can be added to the PRGRMR+
program which perform the desired function AND end u re-creating the
desired display. Pick your own global ALPHA labels Favoiding, however,
the ones already used!) and ASN your routine(s) +to the corresponding
key(s). The routine should always begin with the global label you want
(of course), perform the function you want, and return by XEQ 9% ; GTO
21.

For example, to implement a handy routine for displaying the results
of a "+", you could install the following routine:

*LBL "+"

+
XEQ 93
GTO 21

The best place to insert routines like this is just after step 256
(your routine would start at step 257). When placed there, you can use
an already defined sequence of "XEQ 93 ; GTO 21" which exists at 1local
label 14. (Label "144" in the listing). Placement there also does not
have the effect of slowing down hex input dispatch calls which do global
ALPHA calls for each hex digit. (Notice that all the hex input labels
are defined at the end of the program so that the 41C will find +them as

quickly as possible.) Using this +technique, your "+" routine would
become:

257 *LBL "+"
258 +
259 GTO 14
I typically install a number of these routines for convenience. In

addition +to the other algebraic operators, ENTER, RDN, LASTX, etc. are
other good candidates. Such routines are not included in the PRGRMR+

01 448C
PROGRAM DESCRIPTION I (continuation page) Page 25 of 40

program as received from +the 1library because they would require the
assignment of a global ALPHA label to the corresponding key. This is not
appropriate according to library standards.

Of course, to make use of the above "+" routine, you must finish the
job by:

ASN ; ALPHA ; GOLD ; + ; ALPHA ; +

014480
PROGRAM DESCRIPTION I (continuation page) Page 26 of 40

10.0 PROGRAM SIZE STATISTICS AND REDUCTION TECHNIQUES

The program as supplied occupies 269 registers and references all
registers between 00 and 75 (inclusive). Therefore, a SIZE 076 must be
performed before the program will run. The program fits on 7 cards,
barely overflowing onto +the 13th +track. As a result of all this, it
needs either a 41CV or a 41C with 4 memory modules.

The program can be reduced in size significantly. One of the first
things one could do is to create a data card which would hold all the
constants created in steps 4 through 81. All these steps could +then be
deleted and replaced by an RDTA instruction. Simply 1load the
initialization routine by itself (replacing step 82 with a STOP), execute
it, and then write your data cards. 5 tracks will be required. Since
initialization is a once only process, the entire section could be
deleted after one execution. Another thing which will reduce the size is
to change or delete all the global ALPHA labels. EXCEPT, the hex inpus
dispatch 1labels which all begin with *LBL "?". Even these could be
deleted if you change the hex input conversion routine. (In +that case,
you would not need any of the steps from 543 to the end). I tried
several different hex conversion techniques and chose this one for speed
reasons. A simple alternative method would be to split off each hex
digit (as is done already, except you would need to get rid of the
leading "?") and fall into an ISG loop comparing the digit with the ALPHA
constants stored in registers 00 through 15.

Eliminating the shifting displays would save some space also. To do
this, eliminate subroutine 96, change everything referencing 96 to
reference 93 instead, and delete the ALPHA display constants appearing
near the start of each- function. The "ROT" function sets up its own

shifting display, so you would want to eliminate steps 333 through 336 as
well.

If you do all of the things mentioned, the program should fit into a

41C with only 2 extra memory modules. However, this is an estimate. I
have not actually tried it.

11.0 PROGRAM ORGANIZATION AND LOGIC

The PRGRMR+ program can be grouped into 9 major sections. They are:
initialization, output display processing, integer input conversion
processing, mode setting routines, Boolean function routines, rotation

routines, justification routines, utility routines and hex input dispatch
routines.

0L 448C
' PROGRAM DESCRIPTION I (continuation page) Page 27 of 40.

11.1 INITIALIZATION (steps 1 Through 102)

The bulk of this section is involved in setting 64 registers to hold
the ALPHA constants for hex output and the Boolean function tables. The
rest of +the initialization sets wup default operation modes and
parameters. Setting defaults differently is perfectly possible. The
main things to be careful about are:

1.) Register 25 (word size) must contain a value between 2 and 32.
Register 26 must be set to 2 raised to the power of this value.

2.) Flags % and 4 should never both be "ON". All other combinations are
valid and govern the input mode:

3 "OFF", 4 "OFF" implies decimal input
3 "OFF", 4 "ON" implies hex input
3 "ON", 4 "OFF implies octal input

3.) Similarly, flags 5 and 6 should never both be "ON".

5 "OFF", 6 "OFF" implies decimal output
5 "OFF", 6 "ON" implies octal output
5 "ON", 6 "OFF" implies hex output

4.) Since I don't have a printer, I did not attempt to +take printer
displays into account except to simply clear flag 21 at initialization.

5.) Decimal point and grouping is turned off (flag 27) since it would be
difficult to provide consistency between modes and since the program is
only designed %o deal with integers.

11.2 OUTPUT DISPLAY (steps 103 Through 195)

A significant complexity factor in this section 1is +the 1logic to
correctly handle signed magnitude output. Steps 103 through 111 provide
various entry points for program routines to finish up by creating the
next display. Actual display generation is fairly simple except for the
hex output section (steps 139 through 184). Processing always terminates
at step 195 with an RTN instead of a PROMPT so that user written programs
can call the various functions as subroutines.

11.3 INTEGER INPUT CONVERSION (steps 196 Through 256)

Once again, fairly simple routines except for hex input. The main
problem with hex input is in splitting off each ALPHA character. Once
separated, each digit is used as part of a dispatch address which is
called at step 241 to load the corresponding hex value into X. The hex
input routine loops until all of the ALPHA input is exhausted (up to 12
characters) or until a non hex character is encountered.

01 448C
PROGRAM DESCRIPTION I (continuation page) Page 28 of 40

11.4 MODE SETTING (steps 257 Through 285)

A set of simple routines to set flags appropriately for the various

input/output modes. User added routines should go in this area of the
program.

11.5 BOOLEAN FUNCTIONS
11.5.1 (steps 286 Through 318)

This section "sets +%things up" for +the "AND", "OR" and "EXOR"
functions. The major work is really done by the routines at labels 90
and 94. Note the pointers to the Boolean tables. They point to the
first registar used for sach function.

11.5.2 (steps 397 Through 409)

These few steps perform the COMPLement functions. If flag 1 1is
"ON", a one's complement is done. If "OFF", a two's complement is
performed. ZEither operation affects only the X and LASTX register.

11.6 ROTATION (steps 319 Through %96)

This section includes the PROMPT for the number of places to shift.
It also checks register 22 to see if a user program has already set up a
shift parameter value. Recall that negative values cause left rotates,
positive values cause right rotates and that flag O is involved as a bit
in the end-around carry process.

11.7 JUSTIFICATION (steps 414 Through 445)

Fairly straightforward routines.

31448C

PROGRAM DESCRIPTION I (continuation page) Page 29 of 40

11.8 UTILITY SUBROUTINES
11.8.1 LABELS 90, 94

These routines do the bulk of the work for +the "AND", "OR" and
"EXOR" functions. Routine 94 loops until all bits from the smallest of

the two arguments are used up. Bits are split off each argument two at a

time and wused to generate pointers to the Boolean tables for looking up
the result of the operation. '

11.8.2 LABEL A

Used in conjunction with setting the simulated word size.

11.8.3 LABELS 92, 93

These routines maintain stack integrity. 93 saves the stack, 92
restores it.

11.8.4 ©LABEL 96
A stack save routine (falls into 93) which starts the shifting
display going. The idea for +this came from Patrick Shibli in HP Key

Notes V5N1p12c. It does slow execution somewhat and can be eliminated
with no loss except for the info contained in the display.

11.8.5 LABEL 95

Changes a negative number to a positive equivalent for proper
operation of various functions.

11.9 HEX INPUT DISPATCHES (steps 543 Through 616)

Placed at the end of the program for shortest possible global ALPHA
label search time.

0y 448C

PROGRAM DESCRIPTION I (continuation page) Page 30 of 40

12.0 SUMMARY

This completes the description of the functions and capabilities of
the PRGRMR+ program. It may be helpful +to review the name of each
function and give a short description of what they do.

NAME KEY PRESS DESCRIPTION

LSGNM] GOLD ; A Sets/clrs flag 2 to govern signed magnitude mode.
| WSIzZ] A Sets internal simulated word size (2 to 32).
_LJY% GOLD ; Left justifies X. MSB set to 1 in simulated word.
 RJY B Right justify X. LSB set to 1 in simulated word.

Specifies octal oubtput display.

|] Clrs flag 3 and flag 4. Specifies decimal input.

| DECO] D Specifies decimal output display.

Y Cirs flag %, sets flag 4. Specifiss nex inou~-.
E Specifies hexadecimal output display.

| F Boolean "AND" between X and Y. Stack drops.

| OR] G Boolean "OR" between X and Y. Stack drops.
H Boolean "EX OR" between X and Y. Stack drops.
I Rotate X right (+ve response to prompt).

Rotate X left (-ve response to prompt).

[COMPL] J One's complement of X (flag 1 "on")

Two's complement of X (flag 2 "off")

B
0CTI] GOILD ; C Sets flag 3, clrs flag 4. Specifies octal input.
D

Ty
=1
b4
-
o)
O
=
©)
€3]

Recall that, like the standard 41C monadic and diadie functions,

anytime a function modifies +the X register, a copy of the original is
placed in LASTX.

ADDENDUM

In section 2.0 page 4, it was mentioned that an alternative method for hex digit entry
and function convenience would be described later. The idea is to spell out the desired
function name, preceeding it with a ":". This is slightly more convenient (I think) then
switching out of ALPHA mode to execute the function. If nothing else, the technique is

interesting. To execute the "AND" function, for example, while in hex input mode, you
would enter ":FF" ; R/S.

A1l that is needed to implement this feature is a function dispatch routine which
executes when a failure is encountered during hex digit input processing. (The ":" will
cause this failure to occur). Here are the needed steps:

GTO .243 to position the 41C at the appropriate step for insertion

STEP Key Entry Comment

244 XEQ 92 Restore stack

245 SF 25 Protect against error
246 GTO IND 24 Dispatch to function

Recall that all functions are labeled withdouble letter global ALPHA labels (section
8.1, page 21). These are the names that you would use with this technique.

0y 448C
| PROGRAM DESCRIPTION II -+, oy

Sample Problem (Sketch if Desired)

Henry Programmer is developing a subroutine for his home computer to encode

4 octal integers into a non-unique hex integer. To see if it is working OK,

he needs an independent way to find results from the function that his subroutine
computes. His encoding function is: (nl "AND" n2) "EXOR" (n3 "“OR" n4).

Given 4 octal integers: nl1=67271, n2=73333, n3=44504 and n4=106120, Henry's
subroutine comes up with the HEX result: "BAD1". Is Henry's subroutine
functioning correctliy?

As shown below, (67271 "AND" 73333) "EXOR" (44504 "OR" 106120) = "ABCD" (hex)
Therefore, Henry's subroutine must have a bug.

Note that if the program has already been initialized in a previous problem,
the first step (initialization) is not necessary. In this case, however, it
may be necessary to press function (E) as the first step to achieve HEX output

mode.
SOLUTION:
Input Function Display Comments
GTO .001 R/S HEX: 41C Initialize
] GOLD (C) HEX: O Set for octal input
67271 v R/S HEX: 6EB9 Enter nl
73333 - R/S HEX: 76DB Enter n2 :
(F) : HEX: 6699 Display (nl "AND" n2)
44504 . R/S : HEX: 4944 Enter n3
106120 : R/S HEX: 8C50 Enter n4
e (G) o HEX: CD54 "1 Disptay (n3 "OR" n4)

(H) HEX: ABCD - (n1 fAND”‘ﬂZ) "EXOR" (n3 "OR" n4)

0, 443C

USER INSTRUCTIONS

Page 32 of40 -

SIZE:
(HP-a1c) 076
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY
1. | Enter the program
2. | Initialize GTO .001 R/S HEX: 41C
3. | Set modes as desired
-decimal input (default) GOLD D HEX: 0
-hex output (default) E HEX: O
-signed magnitude OFF (default) GOLD A toggles flag 2
-COMPL = 1's complement (default) SF 0l
~-octal input GOLD C HEX: O
-hex input GOLD E HEX: O
-octal output C 0CT: 0
~-deciaml output D DEC: O
-signed magnitude ON (flag 2 ON) GOLD A toggles flag 2
~-COMPL = 2's complement CF 01
-WSIZ (see USER DES. I, sect 5.0, pg 12) A "n, NEW SIZ:."
4.} Enter numbers, perform functions
as you would with any HP calculator
using X,Y,Z,T and LASTX.
- terminate integer entry with R/S
- for hex entries, enter either
numeric digits or ALPHA letter on
corresponding key. If negative,
always enter minus sign first.
- default WSIZ is 32 bits
5. | Diadic functions (stack drops)
"AND F x IlANDu Y
'OR G x l|0Rn Y
-EXOR (exclusive OR) H X "EXOR" Y
6. | Monadic functions (operates on X)
-RJIY (right justify) B X, right justif]
-LJY (left justify) GOLD B X, left justifid
-ROT (rotate left or right) I "PLACES?"
enter nmbr of places to shift
enter -ve number to rorijeft,
enter +ve number to rot right. n R/S X, rotated
-COMPL J X, complemented

ed
b d

04240t

PROGRAM LISTING Page 33 of 40
. Step Key Entry Comments Step Key Entry Comments

1 *LBL "HP+" Start of prog 53 ASTO 02
2 "HP PRGRMR+" 54 n"Epn

3 XEQ 96 INITIALIZATION 55 ASTO 03
4 16.075 Init. Boolean 56 "4

5 ENTER table 57 ASTO 04
6 0 constants 58 nge

7 *¥LBL 09 (LO9a)* 59 ASTO 05
8 STO IND Y 60 e

9 ISG Y 61 ASTO 06
10 GTO 09 (GO9a) 62 A

1" 1 63 ASTO o7
12 STO 33 64 ng"

13 STO 35 65 ASTO 08
14 STO 41 66 "gn

15 STO 45 67 ASTO 09
16 STO 48 68 AT

17 STO 49 69 ASTO 10
18 STO 61 70 "B"

19 STO 64 T ASTO 1"
20 STO 71 72 nce

21 STO T4 73 ASTO 12
22 2 74 npn

23 STO 38 75 ASTO 13
24 STO 39 76 "E"

25 STO 42 77 ASTO 14
26 STO 46 78 npn

27 STO 52 79 ASTO 15
28 STO 54 80 "o

29 STO 62 ' 81 ASTO 16
30 STO 67 82 FIX 0
31 STO 68 83 CF 00
32 STO 73 84 SF 01
33 3 : 85 CF 02
34 STO 43 86 CF 03
35 STO 47 87 CF 04
36 STO 50 88 SF 05
37 STO 51 89 CF 06
38 STO 53 90 CF 09
39 STO 55 91 CF 10
40 STO 56 92 CF 21
44 STO 57 93 SF 27
42 STO 58 94 2

43 STO 59 95 CF 29
44 STO 63 96 32
45 STO 66 97 XEQ 99 (X99a)
46 STO 69 98 "41Cc"

47 STO 72 99 ASTO 22
48 "o Init. hex 100 CLA

49 ASTO 00 ALPHA 101 ASTO 23
50 mn constants 102 GTO 20
51 ASTO 01 103 *LBL 23 OUTPUT
52 n"on 104 "X>WRD SIZ" PROC.

Note: Refer to "HP-41C OWNER'S HANDBOOK AND PROGRAMMING GUIDE" for specific information on
keystrokes. The function index is found at the very back of the handbook.

4(1-1 4{41 %5 () PROGRAM LISTING Page 34 of 40
Step Key Entry Comments Step Key Entry Comments
105 AVIEW 157 ABS
106 *LBL 22 158 STO 21
107 RCL 17 159 SF 25
108 *LBL 21 160 LOG Setup hex
109 SF 10 161 16 digit
110 STO 17 162 LOG loop
111 *LBL 20 163 / entr
112 X<0°? 164 INT
113 GTO 13 (G13a) 165 X=0°?

114 X#02 166 CPF 25

115 FC? 02 167 X< 21

116 GTO 14 (G14a) 168 FC?C 25

17 ST+ X 169 GTO 13 (G13e)

118 RCL 26 170 *IBL 01 (LO1a)*
119 X<=Y? 171 STO Y Loop to
120 ST- 17 172 16 generate
121 RCL 17 173 RCL 21 hex

122 *LBL 13 (I13%a)* 174 Y**Y digits
123 FC? 02 175 STOo A

124 XEQ 95 176 /

125 STO 17 177 INT

126 *LBL 14 (L14a)* 178 ARCL IND X

127 CF 25 179 *

128 FS? 05 : 180 -

129 GTO 13 (G13Db) 181 DSE 21

130 "OCT: " Octal output 182 GTO 01 (GO1a)

131 FC? 06 183% *LBL 13 (I13c)*
132 SF 25 184 ARCL IND X

133 FC? 06 185 *LBL 14 (L14b)*
134 ocT 186 CLX Clr "ROT"
135 FC?C 25 187 STO 22 parm. val.
136 "DEC: " Decimal output 188 XEQ 92 Restore stk
137 ARCL X 189 AQFF

138 GTO 14 (G14b) 190 FS? 04

139 *LBL 13 (L13b)* 191 AON (hex input)
140 "HEX: " Hex output 192 CF 22

141 FS? 10 193 CF 23

142 GTO 12 (G12D) 104 AVIEW View

143 X<0*? 195 RTN results
144 GTO 1" (G11a) 196 FS? 23 ALPHA inp?
145 FS? 09 197 GTO 14 (G14c)

146 GTO 12 (G12b) 108 FC? 22 Num. inp?
147 *LBL 10 (110a)* 199 RCL X (no,dup. X)
148 ARCL 22 200 XEQ 93 Save stk
149 23 201 FS? 22 Num. inp?
150 GTO 173 (G13¢c) 202 FC? 03 Oct. mode?
151 *LBL 11 (IL11a)* 203 GTO 21 (no, done)
152 FS? 09 204 SF 25 Cnvrt oct
153 GTO 10 (G10a) 205 DEC to dec
154 *LBL 12 (L12b)* 206 STO 17

155 X<0? 207 GTO 21 Done

156 Lo n_n 208 *LBL "HX" Hex inp

Note: Refer to "HP-41C OWNER'S HANDBOOK AND PROGRAMMING GUIDE" for specific information on

keystrokes.

The function index is found at the very back of the handbook.

1Qy 44380 PROGRAM LISTING Page 35 of 40

- Step Key Entry Comments Step Key Entry Comments
209 *LBL 14 (L14c)* 261 *LBL a
210 XEQ 93 262 CF 04
211 CLX 2673 CF 0%
212 ASTO 22 264 GT0 14 (G144)
213 ASTO 24 265 *1,BL c
214 ASHF 266 CF 04
215 ASTO 23 267 SF 03
216 SF 07 268 GTO 14 (G144)
217 CF 09 269 *LBL "EE"
218 CF 10 270 *1,BL E
219 neoooon Setup stk 271 SF 05
220 ASTO 2 272 CF 06
221 *I,BL, 02 (LO2a)* 273 GTO 14 (G144)
222 16 274 *ILBL "DD"
223 ST* 21 Build dec 275 *LBL D
224 RDN equiv. 276 CF 05
225 ST+ 21 277 SF 06
226 RDN 278 GTO 14 (G144)
227 CLA 279 *LBL "CC"
228 ARCL Y 280 *L,BL C
229 ARCL 24 281 CF 05
230 *LBL 03 (LO3a)* 282 CF 06
231 ASTO X 283 *1,BL 14 (L144)*
2%2 X=Y? 284 XEQ 93
233 GTO 13 (¢134) 285 GTO 21
234 ASHF 286 *LBL "FP" BOOLEAN
235 ASTO 24 287 *I,BL F PROCESSORS
236 noon Split off 288 "AND"
237 ARCL X ldg hex 289 XEQ 90
238 ASHF digit 290 28 AND tbl ptr
239 ASTO X 291 XEQ 94
240 SF 25 292 GTO 14 (G14e)
241 XEQ IND X Dispatch 29% *LBL "GG"
242 FS? 25 to get val. 294 *I,BL G
243 GTO 02 (G02a) 295 "OR"
244 "IN ERR" 296 XEQ 90
245 AVIEW Error 297 44 OR tbl ptr
246 GTO 22 return 298 GTO 04 - (GO4a)
247 *LBL 13 (L13%3)* 299 *I,BL "HH"
248 ARCL 23 Process 2nd 300 *LBL H
249 FS?C 07 set of chars 301 "EXOR"
250 GTO 03 (G03a) 302 XEQ 90
251 XEQ 92 Done 303 60 EXOR tbl ptr
252 RCL 21 304 *I,BL 04 (LO4a)*
253 F3°? 09 305 XEQ 94
254 CHS 306 RCL 17
255 XEQ 93 307 X=0°?
256 GTO 20 308 RCL 18
257 *LBL e MODE SETTING 309 INT
258 SF 04 routines 310 RCL 22
259 CF 03 311 *
260 GTO 14 (G144) 312 ST+ 21

Note: Refer to "HP-41C OWNER'S HANDBOOK AND PROGRAMMING GUIDE" for specific information on
keystrokes. The function index is found at the very back of the handbook.

nc01 4430

PROGRAM LISTING Page 36 of A0
Step Key Entry Comments Step Key Entry Comments
313 *LBL 14 (L14e)* 365 CLX
314 RCL 20 Fix stk 366 +
315 X< 19 to display 367 FS?C 00
316 X< 18 results 368 +
317 RCL 21 369 2
318 GT0 21 370 / Rot. right
319 *LBL "II" ROTATE PROC. 371 INT
320 *ILBL I 372 FS?C 08
321 X<0? 373 SF 00
322 XEQ 95 Make X +ve 374 ISG 24
323 XEQ 93 375 GTO 05 (GO5a)
324 RCL 22 Need to 376 GTO 21
325 X#0? PROMPT? 377 *I,BL 14 (L14g)*
326 GTO 14 (G1471) 378 X<>Y
327 "PLACES?" 379 CLX
328 CF 22 380 +
329 PROMPT 3831 *I,BL 06 (LO6a)*
330 FC? 22 382 ST+ X Rot. left
334 aTo 21 _ 38% X<Y®?
 3%2 *LBL 14 (L14°F)* 384 GTO 14 {G14h)
333 "ROT" 385 X<OY
334 SF 25 386 MOD
335 AVIEW 387 SF 08
336 GTO nen 388 *I,BL 14 (L14h)*
337 CF 08 389 FS?C 00
338 X<0°? 390 IS6 X
339 SF 08 391 *1,BL 00 (null)
340 ABS 392 FS?C 08
341 RCL 25 393 SF 00
342 1 394 ISG 24
343 + 395 GTO 06 (G06a)
344 MOD 396 GTO 21
345 X=0°? 397 *LBL "JJ" COMPLEMENT
346 GTO 22 398 *I,BL J PROC
347 1 E3 399 "COMPL"
348 / 400 XEQ 96
349 ISG X 401 CHS
350 STO 24 Setup rot 402 1
351 RCL 17 counter 40% -
352 RCL 26 Chk wrd siz 404 X<0°?
353 X<=Y? Too small? 405 XEQ 95
354 GTO 23 (yes) 406 FC? 01
355 STO 7 407 IsG X (2's comp.)
356 RDN Setup stk 408 *LBL 00 (filler)
357 FS?C 08 ROT left? 409 GTO 21
358 GTO 14 (G14g) 410 *LBL A WSIZ
359 *LBL 05 (LOSa)* 411 XEQ 93
360 STO Y 412 XEQ 91
361 2 4173 GTO 22
362 MOD A4 *LBL "Dbb" LEFT
3673 X#0? 415 *I,BL b JUSTIFY
364 SF 08 416 nLJY"

Note: Refer to "HP 41C OWNER'S HANDBOOK AND PROGRAMMING GUIDE" for specific information on

keystrokes.

The function index is found at the very back of the handbook.

- /1 s A}
sic Q1L 4a498(PROGRAM LISTING Page 37 of 40

Step Key Entry Comments Step Key Entry Comments
417 XEQ 96 469 *T,BL 91 WSI7Z utility
418 RCL 26 470 CLA

419 XY 471 ARCL 25

420 X<=0°% 472 2

421 GTO 21 473 l— ", NEW SIZ:"

422 *LBL 07 (LO7a)* 474 CF 22

423 STO 17 475 PROMPT

424 ST+ X 476 FC? 22

425 X<Y? 477 RCL 25

426 GTO 07 (607a) 478 *LBL 99 (1.99a)*
427 GTO 22 479 X<=07%

428 *I,BL, "BB" RIGHT 480 GTO 91

429 *TLBL B JUSTIFY 481 ST0 25

430 "RJY" 482 Y**X

431 XEQ 96 41873 STO 26

432 X<0®? 4184 RTN

433 XEQ 95 485 *TLBL 92 STK restore
434 ST0 L 486 RCL 27

435 X=0? 487 3TO L

436 GTO 21 488 RCL 20

437 *LBL 08 (LO8a)* 489 RCL 19

438 LASTX 490 RCL 18

439 STO 17 491 RCL 17

440 2 492 RTN

441 / 493 *LBL 96

442 FRC 494 SF 25

4473 X=0? 495 AVIEW

444 GTO 08 (G08a) 496 GTO neon

445 GTO 22 497 *T,BL 93 STK save
446 *LBL a SIGNED MAG 498 STO 27

447 FC?C 02 MODE 499 STO 17

448 SF 02) 500 RDN

449 GTO 21 501 STO 18

450 *LBL 90 BOOLEAN 502 RDN

451 XEQ 96 UTILITY 503% STO 19

452 X<07? 504 RDN

453 XEQ 95 Ensures 505 ST0 20

454 STO 17 args are 506 CLX

455 RCL 18 +ve 507 STO 21

456 X<0*? 508 RCL 17

457 XEQ 95 509 RTN .

458 STO 18 510 *T,BL, 94 BOOLEAN
459 1 511 RCL 17 utility
460 STO 22 512 4

461 CF 08 513 MOD

462 RDN 514 ST- 17

463 X<=Y? Ensures 515 RCL 18

464 RTN smallest 516 X=0°?

465 STO 17 arg is in X 517 SF 08

466 XY 518 4

467 STO 18 519 ST* Z

468 RTN 520 MOD

Note: Refer to "HP 41C OWNER'S HANDBOOK AND PROGRAMMING GUIDE" for specific information on
keystrokes. The function index is found at the very back of the handbook.

ne 0144380

PROGRAM LISTING

Page 38 of 40

Step Key Entry Comments Step Key Entry Comments
521 ST- 18 573 RTN

522 + 574 *LBL "?W"
523 + 575 SF 10
524 RCL IND X Get 2 bit 576 *LBL "75"
525 4 result 577 5

526 st/ 17 578 RTN

527 st/ 18 579 *IBL "?X"
528 X< 22 580 SF 10
529 ST* 22 581 *LBL "?6"
530 * 582 6

531 ST+ 21 583 RTN

532 X< T 584 *LBL "%?R"
533 rC? 08 585 SF 10
534 GTO 94 586 *LBL "o
535 RTN 587 7

536 *LBL 95 +VE X 588 RTN

537 X<> 26 utility 589 *LBL "?3"
538 STO 21 590 SF 10
539 X< 26 591 *LBL "78"
540 ST+ 21 592 8

541 X< 21 593 RTN

542 RTN 594 *LBL "o
543 *LBL "?Q" HEX INPUT 595 SF 10
544 SF 10 DISPATCHES 596 *LBL "?9"
545 *LBL "?-" 597 9

546 SF 09 598 RTN

547 0 599 *¥LBL "?A"
548 RTN 600 10

549 *LBL "? " 601 RTN

550 SF 10 602 *LBL "?B"
551 *LBL "?0" 603 "

552 0 604 RTN

553 RTN 605 *LBL "2?C"
554 *LBL "oz 606 12

555 SF 10 607 RTN

556 *LBL "™ " 608 *LBL "?D"
557 1 609 13

558 RTN 610 RTN

559 *LBL "?=" 611 *LBL "?E"
560 SF 10 612 14

561 *LBL "?2" 613 RTN

562 2 614 *LBL "?F"
563 RTN 615 15

564 *LBL "2ov 616 RTN

565 SF 10

566 *LBL "?3"

567 3

568 RTN

569 *LBL "ov"

570 SF 10

571 *LBL "?4"

572 4

Note: Refer to "HP 41C OWNER'S HANDBOOK AND PROGRAMMING GUIDE" for specific information on
keystrokes.

The function index is found at the very back of the handbook.

0y 448C

Page 39 of 40

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

DATA REGISTERS STATUS
00 “o¢ 47 3 size 076 TOT. REG. 269 USER MODE
or "1 .48 1 ENG Fix 0 sc oN X OFF
02 "2" .49 1 DEG X RAD GRAD
03 3" 50 3
04 "gv 51 3
05 . "s" 52 2 INIT FLAGS
06 “g" 53 3 # SIC SET INDICATES CLEAR INDICATES
07 "I .54 2 ? g gg;PEa;ry bit=1 gggpta;ry bit=0
08 "g" 55 3 : =1's comp. =2's comp
09 vuou 56 3 2 C signed mag. ON signed mag. OFF
10 =A® 57 3 3 € octal input decimal or hex inp
11 "g® 58 3 4 C hex input decimal or oct inp
12 nc* 59 3 5 S hex output decimal or oct out
13 »pv 60 0 6 C decimal output hex or oct output
14 “g# 61 1 7 - C -internal scratch internal scratch
15 nf» 62 2 8 C “internal scratch internal scratch
16 "10" 63 3 9 C internal scratch internal scratch
17 Stack save: X 64 1 16 C 1internal scratch internal scratch
18 Stack save: Y 65 0 21 ¢ (never set) no printer output
19 Stack save: Z .66 3 22 C numeric key press no numeric key p.
20 Stack save: T 67 2 23 C ALPHA key press no ALPHA key press
21 Scratch 68 2 27 'S USER mode normal mode
gz WSIZ prompt arg. 69 3 29 C Digit grouping ON Digit grouping OR
3 _Scratch 70 0
24 Scratch 71 1
25 # of bits in WSIZ 72 3
26 2**4S1Z . 73 2
27 LASTX save 74 1
28 0 e 75 -0
290 » s
300
31 0
32 0
33 1
34 0
35 1
36 0 ASSIGNMENTS (LOCAL ALPHA)
g; g FUNCTION KEY FUNCTION KEY
SGNM GOLD A HEXO E
20 0 sert e OR A
3 DECI GOLD D EXOR H
43 3 HEXI GOLD E ROT I
44 0 WSIZ A COMPL J
45 1 0CTo ¢
6 2 DECO D

01 448C

KEYBOARD

SYSTEM
CONFIGURATION

CARD

S

KEYBOARD
CARD LABELING

¥ oW o\ NN
7 S S S e T it né 7.5 7.5

i

Ul WE

(@ W e wiLiETT - PACKARTD 41C

‘1 PROGRAMMER PLUS track n of 13

! memory | 2 memory
3memory | 4 memor

SIZE 076

Page 40 of 40 -

PROGRAMMER PLUS USERS’ LIBRARY PAGE 1
HP PROGRAM NUMBER: 01448C OF 6
PROGRAM REGISTERS NEEDED: 194

ROW 1 (1:2)

ow 2:

2

R

e
I IR
: JIm
O |

| TN
| | T |
| | THTHIN |

Il | I i

PROGRAMMER PLUS USERS’ LIBRARY PAGE 2
HP PROGRAM NUMBER: 01448C OF 6

ROW 19 (106 : 113)

oW

20 (113 : 120)
W21 (121 127)

R

W 23 (132 : 137)

ROW 30 (183 : 190)

PROGRAMMER PLUS USERS’ LIBRARY PAGE 3
HP PROGRAM NUMBER: 01448C OF 6

ROW 37 (229 : 236)

QO EEmEm—
WREEER e

ROW 40 (248 : 254)

ROW 41 (255 :

ROW 52 (308 : 316)

PROGRAMMER PLUS USERS’ LIBRARY PAGE 4
HP PROGRAM NUMBER: 01448C OF 6

ROW 55 (327 : 330)

PROGRAMMER PLUS

HP

ROW 73

ROW 79

ROW 80

(445 : 450)

(4

(4

(5

(5

50 :

: 528)

USERS’ LIBRARY

PROGRAM NUMBER: 01448C

PAGE 5
OF 6

PROGRAMMER PLUS USERS’ LIBRARY PAGE 6
HP PROGRAM NUMBER: 01448C OF 6

ROW 91 (559 : 562)

ROW 94 (571 : 574)

