

021720 PROGRAM DESCRIPTION I

Page 1 of 54

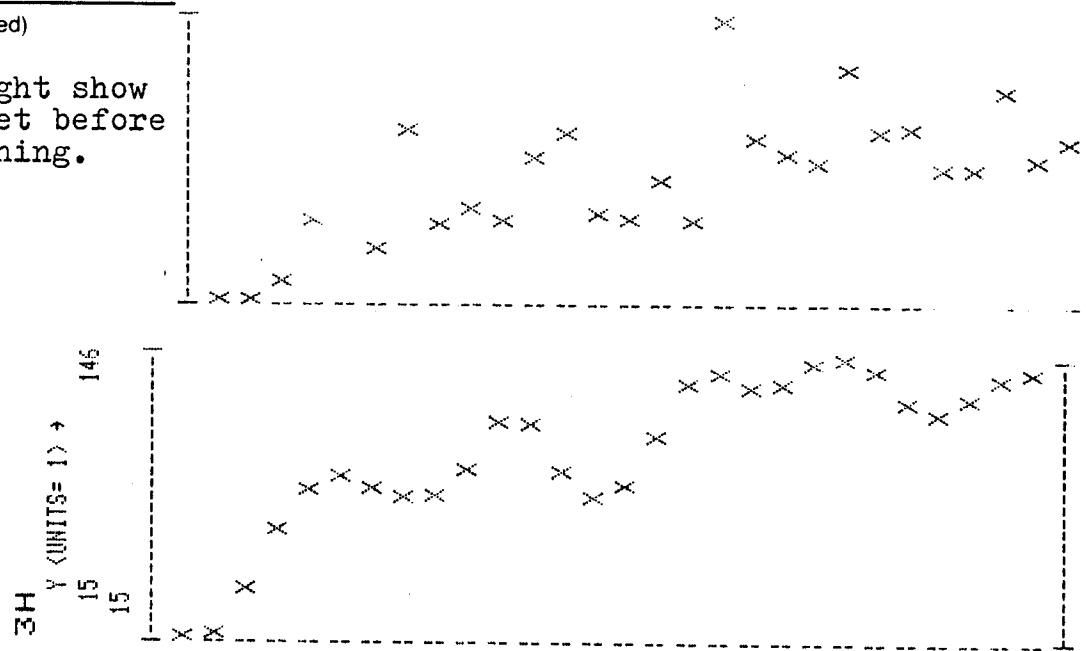
Program Title SMOOTH
Contributor's Name Benjamin A. Fairbank, Jr.
Address McFann-Gray and Associates, Inc., 5825 Callaghan Road, Ste. 225
City San Antonio State/Country Texas Zip Code 78228

Program Description, Equations, Variables

See the attached documentation for a description. The table of contents appears together with a summary on page 6 of the documentation.

Necessary Accessories 41 CV or quad memory module. Printer and card reader highly recommended.

Operating Limits and Warnings See program notes on page 38.


Reference(s) See references on page 7.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Problem (Sketch if Desired)

The plots at right show a sample data set before and after smoothing.

SOLUTION:

Input	Function	Display	Comments
			The sample problem above is given on pages 22-26.

ST* 021720 **USER INSTRUCTIONS**

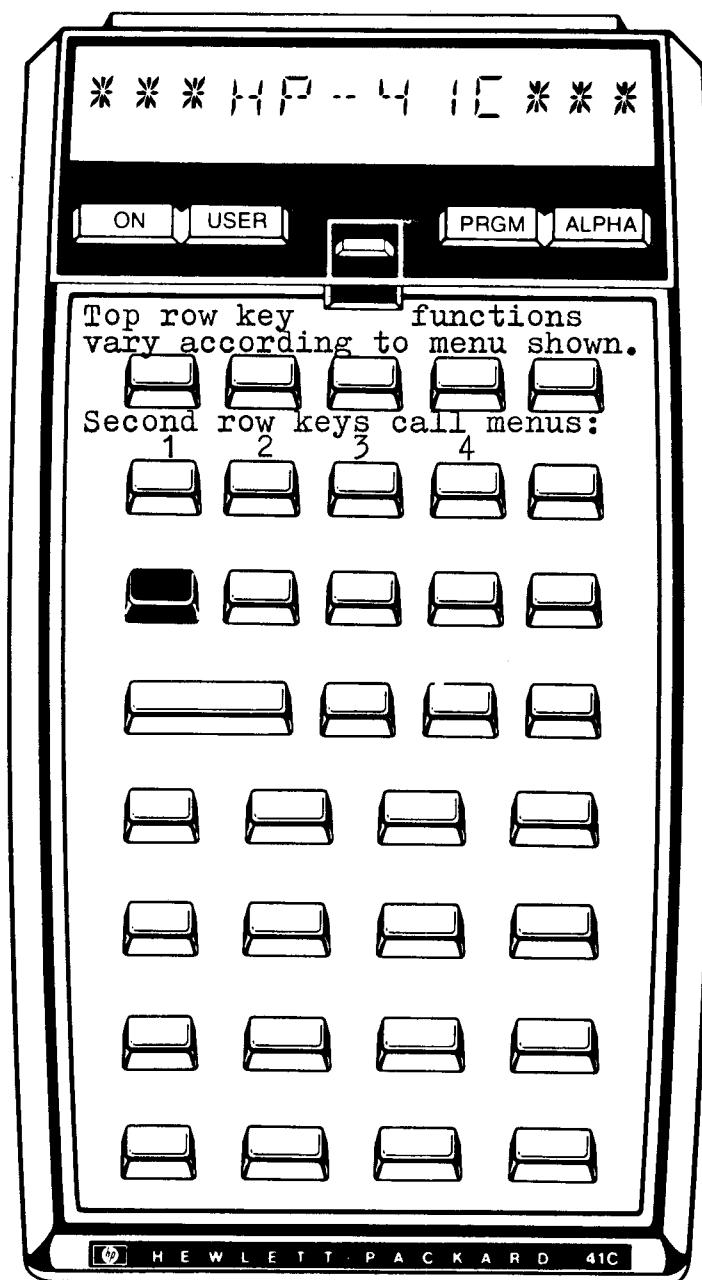
SMOOTH
Page 3 of 54

SIZE:
(HP-41C) 136

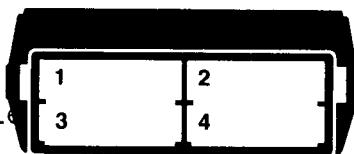
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
	User instructions are in the attached documentation, beginning on page 14.			

021720

SMOOTH
Page 4 of 4


REGISTERS, STATUS, FLAGS, ASSIGNMENTS

DATA REGISTERS		STATUS			
See pages 39-40.		SIZE 136 TOT. REG. 319			
		ENG	FIX	X	SCI
		DEG	RAD		GRAD
FLAGS		INIT SET INDICATES CLEAR INDICATES			
		See pages 41-42 for a list of flags and their uses.			
ASSIGNMENTS					
FUNCTION	KEY	FUNCTION	KEY		
None.					


021720

KEYBOARD CARD LABELING

KEYBOARD

SYSTEM
CONFIGURATION 41CV or
quad module
needed

CARD

SF 021720

SMOOTH

SMOOTH is a coordinated set of programs which together perform a variety of data smoothing operations. Four menus allow the user to call any of 24 operations. The menus may be deleted for added data storage and any of the programs may be executed by an XEQ statement. Furthermore, to perform a sequence of consecutive operations, such as several smoothing and printing routines, the user can set up a Batch Mode to execute a succession of programs without user intervention. I/O, limited file handling, and utility programs are included to increase the versatility of the basic smoothing programs. Application areas include virtually all enterprises which use quantitative data. Examples here are drawn from meteorology, economics, and veterinary science.

The following documentation is divided into seven sections:

Topic	Page
I. Introduction to data smoothing	7
II. General program and data organization	10
III. User instructions	14
IV. Examples	22
V. Program summaries	32
VI. Program notes	38
Miscellaneous information	
Register use	
Flag use	
Labels	
Utility subroutines	
VII. Annotated listing	45
VIII. User card	54

For an introductory example, see pages 22-26

4-021720

I. Introduction to Data Smoothing

A. The need for data smoothing

Data smoothing is a technique often applied to time series data to remove short term fluctuations in the data and so to allow longer term trends to become evident. While its use is not restricted to time series data, it is most relevant when the variable along the X axis increases in equal steps and a single value of a Y variable is associated with each X value. Obviously, time series data fit those specifications very well, regardless of whether the time increments are microseconds or years. The general idea which governs data smoothing is that long term trends affect adjacent or vicinal data points similarly, while events and influences unrelated to longer trends affect data points independently of each other. Most smoothing techniques use values adjacent to the value which is being smoothed in order to estimate what the value might have been if it had not been subject to influences (i.e. noise) other than the influences of the long term trend.

This documentation is not intended to present the topic of data smoothing to one unfamiliar with it. The programs are intended to be used with either of two excellent books on the subject. While the documentation will, to some extent, make it possible to use the programs without the books, the program author strongly recommends either or both of the following books. The first is somewhat more technical and complete, the second is somewhat briefer and less demanding.

Tukey, John. Exploratory Data Analysis, Addison-Wesley Publishing Company, Reading, Massachusetts, 1977.

Velleman, Paul F. and Hoaglin, David C. Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury Press, Boston, Massachusetts, 1981.

B. Varieties of smoothers

Many different methods of data smoothing are available. The program package SMOOTH has includes six basic smoothing operations and several support routines. Combinations and variations raise the total of callable smoothers to nine. The references given above describe the methods in detail, explain how to judge when each may be useful, and give details on the rationale of the methods.

One commonly used smoothing technique is to take the moving

44021780

median of a set of data points centered about the point being smoothed. Clearly, medians of three and five are simple to compute -- the sample of three or five points is centered on the point in question, and the median is found. The programs "3" and "5" find moving medians of span three and five. Moving medians of span four are trickier. For each point to be smoothed, two medians of span four are found, one span includes the point in question as its second serial value of the four, and the other span includes the point as its third value. The mean of those two values is then the smoothed value. The program "42" accomplishes such smoothing.

Another smoothing technique, Hanning, is based not on medians, but on weighted means. Each smoothed value is equal to one fourth of the sum of twice the unsmoothed point, the preceding point, and the following point. The program "H" Hanno's the data. A similar technique, also based on means, involves replacing each value with the mean of the two flanking values. Tukey refers to that process as taking "skip means;" following his nomenclature, the symbol ">" indicates skip means.

Smoothing with "3" often leaves high spots and low spots exactly two points wide in the processed data. The program "SP" splits such points apart, treats each as an end value of a sequence, and so makes a smoother finished data set.

One rarely applies only one smoother to a data set, although occasionally one does suffice. It is more common to apply one or more smoothers repeatedly or in combination until the data are so smooth that the trends are readily evident. For example, the smoother "3" may be applied repeatedly until there is no further change, then "SP" may be applied to remove high and low spots, and finally "3" may be used again to smooth the results of the splitting. When a technique is applied repeatedly until there is no further change, its description is given by the name of the technique followed by "R," for repeated. Thus "3R" indicates that "3" is repeatedly applied until there is no further change as a result of applications.

When a series of smoothers is used, one describes the series with a character string composed of a concatenation of the descriptors of the individual smoothers. Thus, "3RS3RH" indicates repeated smoothing with "3," splitting, a second repeated application of "3," and finally an application of Hanning. SMOOTH keeps a running record of up to twelve characters to summarize the smoothing operations performed on any data set. That record is printed whenever output is

Mr. Q31726

specified.

Occasionally, even such compound smoothers do not suffice to smooth the data. It may be necessary to subtract the smoothed data from the original data, thus obtaining the "rough." The rough is then smoothed and added back to the original smooth. Such a technique is called reroughing, and is treated in the references above. SMOOTH contains data manipulation utilities to make such complex smoothing operations reasonably easy. The examples (section IV) include a suggested sequence for the use of the utilities in reroughing.

MF-021720

II. Program and data organization

A. Memory structure

The data storage registers used by SMOOTH can be divided into three sections. Registers 00 through 15 are used for pointers, printing and plotting routine requirements, scratch storage, the record of smoothers used, and descriptors of the data set. The remaining registers (120 additional registers in the unaltered version of SMOOTH) are divided into Bank 1 and Bank 2. All smoothing operations and most utility operations take as their input data the values in Bank 1. The smoothed output is placed in Bank 1 while the unsmoothed original data are placed in Bank 2. The prior contents of Bank 2 are lost. Therefore, following any given smoothing operation the banks are set for another operation. Furthermore, if the smoothing operation is found not to have had the desired effect, and the user wishes to restore the data from its effects, it is necessary only to switch banks to recover the data. A bank-switching program, "SW," accomplishes the change. That fundamental rule, that data are smoothed from Bank 1 back to Bank 1, with the original data ending up in Bank 2, is essential to the understanding of the flow of data in SMOOTH.

Bank 1 always starts its storage in register 16. Bank 2 starts in register $16 + N$, where N is the number of data points in the data set. For example, if one is smoothing a set of 40 values, Bank 1 will extend from register 16 to 55, inclusive, while Bank 2 will extend from register 56 to 95.

B. I/O routines

SMOOTH has four menus, each of which presents five announced options and one implicit option to the user. The options are selected by means of keys A through E, plus one shifted key. The menus themselves can be called by pressing one of the keys F through I, or one can move from menu to menu by pressing R/S. As explained in section III-D, the menus are a convenience, not necessary to the functioning of the routines. They may be deleted to obtain extra storage space and the programs may be run by XEQ statements.

The first menu, called by pressing F, presents six programs (or program entry points) concerned with data entry and retrieval. The I/O programs all load data into or take it from Bank 1, although the printing program also prints Bank 2.

41021420

Menu 1

Key A, under menu item "I," selects data Input. The program prompts for the number of items, then for the data values, then for information regarding the data set. Control is then returned to the user again at the I/O menu (Menu 1).

Key B selects a Card-reading program designated by the menu letter "C." The program asks how many data values are to be entered, then prompts for the card.

Key C, under the item "PR," PRints the values in Banks 1 and 2, together with the X values which correspond to the Y values in Bank 1. The X values start at whatever value has been provided, and increase by steps of 1. The shifted key "c" will perform the same function except that it will not cause printing of the Bank 2 values. See a full description in section V.

Key D, under the menu item "PL," calls a PLotting program which plots each value in Bank 1 in succession. The full plotting scale is used, so that the smallest and largest values are always plotted at the top and bottom of the scale, respectively, even if smoothing has reduced the range of the data values (as it usually does).

Key E, corresponding to menu item "CW," calls a Card Writing program and allows the user to record the data in Bank 1 onto HP magnetic cards.

C. Smoothing routines

The second and third menus, which may be called by keys G and H, are used to call the smoothing routines. The second menu itself may be reached either by pressing key G from any point in the program, or by pressing R/S when Menu 1 is displayed. Each of the routines (except 3R) smooths the data in Bank 1, leaves the result in Bank 1, and places the original data into Bank 2. 3R loses the original data, but it places the smoothed data in Banks 1 and 2.

Menu 2

Key A, under menu item "3," calls the routine which performs smoothing by running medians of span 3.

Key B, corresponding to menu item "42," calls the program which performs smoothing first by running medians of 4, then recenters by running means of 2.

Key C, under "5," calls the program which smooths by running medians of span 5.

Key D, under the menu item "SP," Splits apart high and low runs of length two. Such splitting is typically followed by smoothing with repeated medians of span 3 (see references), hence key d (shifted D) is provided to perform the splitting and the smoothing by 3R as one operation. Note in this case, however, that following the completion of operations Bank 2 will contain not the original data, but rather a copy of the data in Bank 1. (See section V for the reason for that.)

Key E, corresponding to menu item "H," calls the program which smooths the data by Hanning them.

Menu 3

Key A, corresponding to menu item 3R, smooths the data repeatedly by application of "3" until there is no further change in the data. Note that this program does not leave the original data in Bank 2, but leaves the smoothed data in both banks.

Key B, corresponding to menu item ">," smooths the data by applying skip means, so that each value is replaced by the mean of the adjacent values.

Key E, corresponding to menu item "EV," smooths the data set's two End Values according to the process described in section V.

D. Utilities.

Menus 3 and 4, callable by keys H and I, respectively, are used to call various utilities. Menu 3, as mentioned above, also calls some of the smoothing programs.

Ab. 021726

Menu 3

Key C, under menu item "B," calls a Batch program which will execute a number of the smoothing programs in succession so that a compound smoothing sequence can be carried out without user intervention. Smoothing large data sets is time consuming; the batch mode can be a major convenience.

Key D, under menu item "R," Reviews, by displaying or printing, a summary of the smoothing operations which have been executed since registers 14 and 15 were cleared. Shifted D, or d, clears the two summary registers.

Menu 4

Key A, under the menu item "SW," calls a program which SWitches or interchanges the data between Banks 1 and 2.

Key B, under "CP," calls a program which CoPIes the contents of Bank 1 into Bank 2. Key b (shifted B) clears Bank 2.

Key C, under menu item "+," adds the contents of Bank 2 to the contents of Bank 1 and places the result in Bank 1, leaving Bank 2 unchanged.

Key D, under "-", subtracts the contents of Bank 2 from the contents of Bank 1 and places the results in Bank 1, leaving Bank 2 unchanged. Keys C and D are used for compound smoothers which involve such processes as reroughing.

Key E, under "T," calls a program which Transforms the data in Bank 1 according to a program furnished by the user. The untransformed data are left in Bank 2.

E. Operating modes

Smooth may be operated in any of three modes. The first mode, Menu Mode, is the default mode, and is used for most operations. In Menu Mode all of the operations are selected by pressing menu keys. In Direct Execution Mode, exactly the same programs are available, but they are executed by means of XEQ statements. In Direct Execution Mode the menus are typically deleted for extra data space. Finally, there is a Batch Mode which allows successive execution of several smoothing programs.

FF 021720

III. User Instructions

These instructions are prepared under the assumption that the user will be operating the program in Menu Mode, in which each program is called from a menu. When in Menu Mode the user can move about from menu to menu in either of two ways. The keys F, G, H, and I will call Menus 1, 2, 3, and 4 respectively. It is also possible to advance to the following menu, or from Menu 4 to Menu 1, by pressing R/S when any menu is displayed.

If the user is in Direct Execution Mode, when each program is called by an XEQ statement, then much of the information here still applies, but the actual method of initiating the program actions is different. The use of the Direct Execution Mode allows the user to delete the menus and so increase the storage space available for data to 80 locations per bank instead of 60. See section III-D for details on Direct Execution mode.

A. Loading and Starting Smooth

Perform master clear if all memory is to be used for smoothing, set the size equal to or smaller than 136, and then read the twelve program sides into the card reader. Pack and resize, if necessary, to 136. The only global label in the program is the initial label, "S," therefore the program can always be started or restarted by "Exec S." The program will display Menu 1. Whenever restarting Smooth, as for a new data set, flags 0-4 must be cleared. Set **USER mode**.

B. Input and Output

1. Input.

Data are entered into Bank 1 only. If the data are required in Bank 2, then they may be moved using one of the utility programs, Switch or Copy. Data may be entered in either of two ways, manually or from a magnetic card. In order to enter data, go to Menu 1. The program SMOOTH automatically starts by going to Menu 1, but Menu 1 can also be reached by pressing key F or by repeatedly pressing key R/S when in any of the other menus.

Manual Data Entry

When in Menu 1, press A, under program "I," to enter data by hand. The display will show "N=?" In response, enter the number of data points in the sequence to be smoothed and press R/S. The display will then show "Y1=?" Enter the first datum and press R/S. The display will continue to

021740

prompt for successive data values until all have been entered. If two successive values are the same, it is not necessary to enter the value a second time. Simply pressing R/S will enter the same value as was just entered.

If an error is made in entering data it must be manually corrected following data entry; there is no routine to remove incorrect data. When an error is made, continue entering the rest of the data, then correct it. If it is necessary to correct the data, note that each value is entered into a register which is equal to the ordinal position of the data point plus 15. Thus, for example, the tenth datum is to be found in register 25. The easiest way to correct an incorrect entry is to enter first the ordinal number of the incorrect entry (e.g. if the eleventh value is incorrect, enter 11), then 15, +, then the correct value, and finally Store Indirect Y.

When all of the data have been entered, the display will prompt with "Xi=?". Enter the first X value and press R/S. The X values are those to which the Y values (the data to be smoothed) correspond. In most cases, the first X value will be 1, but in some cases it may be a given year, or some other initial time period. For example, if one were smoothing meteorological data for the years 1900 to 1950, the initial x value would be 1900. The display will then prompt "Y FIX=?". Enter the number of digits to be displayed after the decimal point when the data in banks one and two are printed out, and press R/S. The program then returns to Menu 1. (It is advisable at this time to record the data on a card by means of the Card Write program, especially if it is a large data set. See below on Card Writing.)

Magnetic Card Data Entry

To enter data from previously recorded magnetic cards, go to Menu 1 and press key B. As in the manual data entry routine, the HP-41C will prompt for the number of data values. It will then prompt for a card, and will continue the prompts until all cards have been read. It then, as in the manual entry mode, prompts for the first X value and the number of digits to the right of the decimal point when the data are printed out.

Notes

1. CAUTION. Inadvertent operation of I (Input) or C (card input) will cause a loss of, at a minimum, the contents of the review registers. If you press either key accidentally, press one of the menu keys (F through I) when the first

LQ21780

prompt occurs. That will limit the damage to the loss of the review, or summary registers, 14 and 15.

2. Both of the input programs, I and C, clear registers 14 and 15, the registers that maintain the record of the smoothing operations performed. Those registers will contain empty alpha strings, not zeros. In order for one of the tests for the end of the data registers to function correctly, register 15 must contain alpha data. Do not change the contents of that register.

3. The values of X will increase by 1 with each line when the data are printed out. If some other increment is desired, change line 70 of the program from 1 to the desired increment value. If, for example, data are available for some phenomenon only every other year, line 70 would be changed to 2. It is also assumed that the user will want the X values to be printed out with no places to the right of the decimal point, or in FIX 0 format. If that is not the case, change line 63 of the program accordingly.

2. Output

Printing or Displaying Data

In order to print out the contents of Banks 1 and 2, press key C, under "PR" on the Menu 1. The values of X (i.e. the values to which the values in Bank 1 correspond), the values of the data in Bank 1, and those of the data in Bank 2 will all be printed if there is a printer available, and will be displayed if there is no printer. Before the data are printed or displayed, the contents of registers 14 and 15 are displayed or printed. Those registers contain a running record (up to twelve characters) of the smoothing operations which have been performed. If there is no printer, then the 41-C will stop when each value is displayed and will await the pressing of R/S before going on to the next value. When all values have been printed or shown, the program returns to Menu 1.

To print only the contents of Bank 1 and the X values, then press shifted key C, or c. The printing of Bank 2 will thereby be suppressed.

Data Plotting

Press key D in Menu 1 to plot the values in Bank 1 as a function of evenly spaced intervals on the X axis. There are no options or prompting available for this program. The full range of the printer's plotting axis is used -- the smallest value in Bank 1 is plotted at the bottom of the

46 021720

axis, and the largest is plotted at the top. The printer's default plotting character, the small x, is used to show the points. Some other character may be preferable, such as the large X used in the accompanying examples. To load the large X, execute the following steps when the printer is attached to the 41-C. (See pages 64-66 in 82143A Printer Owner's Handbook).

```

@  

Enter  

65  

BLDSPEC  

34  

BLDSPEC  

20  

BLDSPEC  

8  

BLDSPEC  

20  

BLDSPEC  

34  

BLDSPEC  

65  

BLDSPEC  

ACSPEC  

Store @3

```

The large X (or other character) will be kept in register 3 until that is changed manually. No other program in SMOOTH uses register 3, although it is available for use as part of a transformation program written by the user.

PL returns control to Menu 1.

Card Writing

To write a magnetic card of the data in Bank 1, press key E in Menu 1 to call program "CW," or Card Write. The machine will prompt for as many card sides as are needed to record the entire bank. CW returns control to Menu 1. When finished, it is good practice to verify the cards, but the program does not automatically call VER. VER (or any other program) may be called from any menu by the usual XEQ instruction. XEQ S will return control to Smooth.

Note: When entering data by card it is necessary to specify the number of items to be read from the card(s) in order for the Bank 1 and 2 pointers to be set correctly. Therefore, when writing data to cards it is good practice to indicate on the card the number of values recorded.

File 021620

C. Data Smoothing

Six of the smoothing programs are called from Menu 2, and three are called from Menu 3. To call any of the smoothing programs simply press the key corresponding to the data smoothing method desired.

Smoothers from Menu 2

Menu 2 allows the user to call any of the five basic smoothing programs described in sections I-B and II-C. Each of the programs 3, 42, 5, SP, and H has its own calling key under its menu entry. In addition, key D may be entered in the shifted mode to provide splitting followed by repeated smoothing by application of "3" until no further change occurs (3R). To use any of these smoothers, press the appropriate key and await the beep and the return of the menu, which indicate that the smoothing operation is complete. As mentioned above, the smoothed data are placed into Bank 1; the data as they were before being smoothed are placed into Bank 2. SP followed by 3R, the combination callable by key d, does not leave the raw data in Bank 2; instead, both banks will contain the smoothed data.

The smoothing programs are time-consuming, especially with large data sets. Therefore program "SW," which interchanges, or switches, the banks, includes a beep instruction at its end. The smoothing programs all call program "SW" at their completion, hence the completion of a smoothing operation will be signaled by a beep. Note, however, that "3R" will beep at every completion of a pass of "3" and so may give premature indications of completion.

Smoothers from Menu 3

To smooth data repeatedly by application of "3" until no further change is found, press key A, under "3R," in Menu 3. As with the simple smoothers the finished data are left in Bank 1, but in contrast to the operation of the simple smoothers, Bank 2 will not contain the data as they were prior to the application of the smoother. (Each simple smoother works in effect from Bank 1 to Bank 2 and then calls "SW" to transpose banks. When more than one smoothing operation is called, as by "3R," the original data are lost as soon as the second run of the program begins to place data into Bank 2.)

To smooth by skip means, press key B, under ">" in Menu 3.

021720

To smooth the end values, typically done only once per data set, press key E, under menu item "EV," in Menu 3. Note that using EV does not affect the running record of the smoothers that have been applied to the data (registers 14 and 15).

Note

If a key is pressed in error, it is unwise to stop the program and assume that the data registers will be in an interpretable configuration. Once a smoothing operation has started, it is advisable to let it go to completion. If a key is pressed in error, the error may be recovered by using the "SW" program to return the original contents of Bank 1 to that bank following a smoothing operation. That technique will work for any of the five unshifted operations of Menu 2 and for ">" and "EV" in Menu 3, but it will not recover from inadvertent use of the "3R" program. It is advisable to keep card copies of important and/or long data files, partly in order to recover from such accidents.

D. Utilities

Utilities from Menu 3

Press key C, under "B" in Menu 3, to execute a previously arranged batch program.

To arrange a batch submission for SMOOTH, go to line 488 in the program mode, and insert XEQ statements following line 488, prior to the Return instruction. The numeric labels associated with the 24 routines are given in section V. They also appear below on the section on direct execution, and on the user card at the end of the documentation. Note that it will probably be necessary to reduce the number of data registers in order to insert the XEQ instructions into the program. Thus it may be advisable to delete the menus before using Batch Mode. See paragraph E, Direct Execution, of this section for instructions for the Direct Execution mode. Batch Mode will also beep the HP-41C with every completion of Switch, a utility used by every smoother. First clearing Flag 26 and including an SF 26 and BEEP at the end of the smoothers will silence the beep until the end of the batch.

Press Key D, under "R" in Menu 3, to review the smoothing steps taken since the review registers were last cleared. If the printer is connected, the results will be printed, otherwise they will be shown in the display. To clear the review registers, press Shifted D, or d, in Menu 3 to clear

021720

the registers. Do not store numeric information in the review registers, registers 14 and 15. To do so might cause one of the smoothing programs to malfunction, since it finds the lower end of Bank 1 by testing for alpha data.

Utilities from Menu 4

To interchange the data in the two banks, i.e. switch banks, press key A in Menu 4, under the entry "SW." The contents of the two banks are interchanged and a Beep signals completion of the change. Flag 9 is set if there is any difference in corresponding values in the banks, and is clear otherwise. The flag can be used as a quick check to see if the contents of the two banks are identical. The clear flag is used by "3R" to indicate no change was brought about by the application of "3."

Copying and Clearing.

To copy Bank 1 into Bank 2, press key B, under "CP" in Menu 4.

To clear Bank 2, press shifted key B, or key b.

Adding and Subtracting the Banks.

To add Bank 2 to Bank 1, as one might wish to do when adding a smoothed "rough" to an initial smooth, press key C, under "+" in Menu 4. The sums are placed in Bank 1; the contents of Bank 2 are unchanged.

To subtract Bank 2 from Bank 1, as one might wish to do when computing a "rough," press key D, under "-" in Menu 4. The difference, Bank 1 minus Bank 2, is placed in Bank 1; the contents of Bank 2 are unchanged.

To use any data transformation program which the user cares to supply, press key E in Menu 4, under the Menu entry "T." The user must supply a program labeled "T," which transforms a value in the X register and leaves the result in the same register. The registers 0 to 7 and 14 and 15 are available for use by T. Several of the main programs use DEG as a no-op instruction following an ISG. Therefore, if the transformation program is to use a trig mode other than degrees, it should be specified at the beginning of the program.

E. The Direct Execution Mode

Most of the program details presented throughout this documentation are fully applicable in Direct Execution Mode. The only difference is that in Direct Execution Mode the menus are not used, and are usually deleted to allow more

02172C

data to be stored in the registers. To delete the menu sections, go to line 568 and delete the remainder of the program, by executing DEL 089. Then pack, and the program space saved becomes available for data. When SMOOTH is run from its beginning, however, an error message will result from the nonexistence of Label F. The program may still be used in the Direct Execution mode in spite of the error message. Any of the programs labeled from 21 to 44 may be executed. The size may now be set to 176, which allows data sets of up to 80 elements.

To use any of the programs in Direct Execution Mode, use XEQ, followed by the number given in the program description section, on the user card, or below. The numbers are the numbers of the labels which begin the programs. All programs end with a Return and so will simply halt upon completion. For example, in Direct Execution Mode, entering XEQ 27 will smooth the data by running medians of span three.

Label Equivalent menu and key, program

21	1-A	"I"	Input data by hand
22	1-B	"C"	Card input of data
23	1-C	"PR"	PRint Banks 1 and 2
24	1-c	--	Print Bank 1 only
25	1-D	"PL"	PLot Bank 1
26	1-E	"CW"	Card Write, Bank 1
27	2-A	"3"	Medians of 3
28	2-B	"42"	Medians of 4, then 2
29	2-C	"5"	Medians of 5
30	2-D	"SP"	SPlit highs and lows of length 2
31	2-d	--	Same as 30, but followed by 33
32	2-E	"H"	Hanning
33	3-A	"3R"	Repeated medians of 3
34	3-B	Smooth by finding skip means	
35	3-C	"B"	Execute Batch Mode
36	3-D	"R"	Review smoothers used
37	3-d	--	Clear the review registers
38	3-E	"EV"	Smooth the end values
39	4-A	"SW"	Switch banks
40	4-B	"CP"	Copy Bank 1 to Bank 2
41	4-b	--	Clear Bank 2
42	4-C	"+"	Add Bank 2 to Bank 1
43	4-D	"-"	Subtract Bank 2 from Bank 1
44	4-E	"T"	Call transformation program

IV. Examples

M 02172C

This section includes four examples of varying complexity. The first example is given in the greatest detail and is intended as an introduction to the use of the programs. The second example repeats the first, using Batch Mode. Tukey's book Exploratory Data Analysis provides the third, more complex, example. Finally, the book by Velleman and Hoaglin, A-B-Cs of EDA, provides an example of compound smoothing or reroughing.

1. Tornadoes in Texas.

This example will be given in more detail than those which follow. Each action which the user takes with respect to the 41C will be followed by two slashes (//) and the response of the 41C. The data concerning the number of Tornadoes in Texas for the years 1951 to 1978 are taken from the 1980 - 1981 Texas Almanac.

Perform master clear, set size to 136, read in the program cards, pack, and set USER mode. // 0.0000

XEQ alpha S alpha // Menu 1.

At this point any of the menu options can be selected, but since there are no data in the machine, the first task is to put data in. First, however, try using keys F, G, H, and I to display the four menus. Note also that when any menu is displayed it is possible to move to the next menu by pressing R/S.

Press F to return to Menu 1 // Menu 1

Press A, under menu "I" for input // N=?

The program is asking how many data points are in the set.

Respond: 28 R/S // Y1=?

The 41C takes and uses the number of data points, then starts to ask for the data. The first data point is to be Y1, and SMOOTH is prompting for it.

Respond: 15 R/S // Y2=?

The 41C takes 15 as its first value and keeps on asking for input until the end of the set. The values are listed on the print-out below; continue entering data until the prompting for the twenty-eighth value.

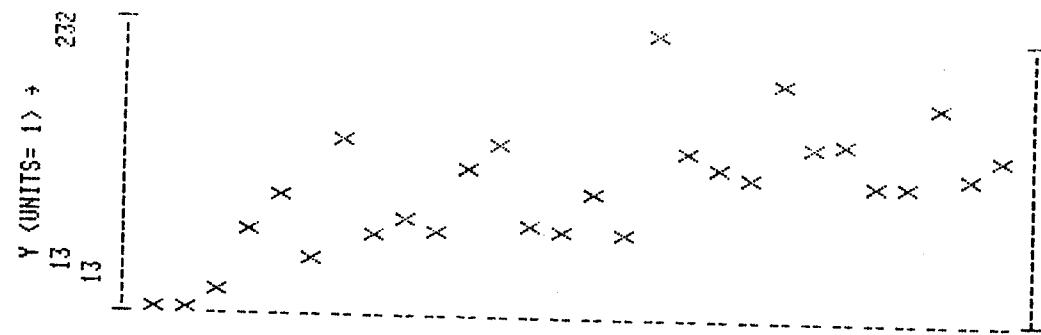
Respond (to the prompt for 28th value): 137 R/S // X1=?

When SMOOTH has the last value of the data set, which it knows because it has been keeping count of the values entered, SMOOTH asks for the first X value.

021720

Respond: 1951 R/S // Y FIX=?

Smooth takes 1951 as the first X value, then asks the number of decimals to use in printing the Y values.


Respond: 0 R/S // Menu 1

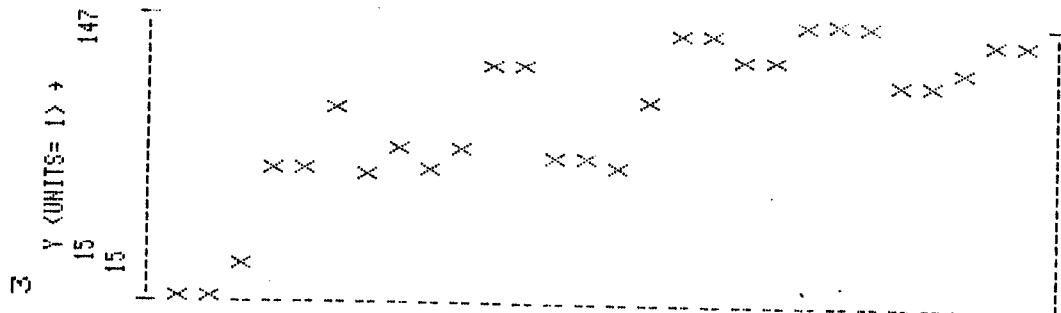
The data are now stored, together with the values needed to describe the data. It would be a good idea to save the data on a card at this point (key E, under CW in Menu 1) but it is neither necessary nor included in this example.

Still in Menu 1, press shifted C, under "PR," to print the data in Bank 1 // The data print out as shown below, and Menu 1 returns. If there is no printer connected, the data are displayed, with a stop at each value.

1951:	15 13 02 7 4	1 1 3 7 7	1 1 0 5 6 5 4	1 0 7 4 0 0 0 0	0 7 0 2 0 7 0 7	1 1 2 1 1 9 1 4 7	0 7 0 7 0 7 0 7
1952:	1 0 5 6 5 4	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1953:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1954:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1955:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1956:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1957:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1958:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1959:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1960:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1961:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1962:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1963:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1964:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1965:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1966:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1967:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1968:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1969:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1970:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1971:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1972:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1973:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1974:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1975:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1976:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1977:	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7
1978:	1 0 7 6	1 4 7 6	1 0 7 4 0 7 0 7	1 0 7 0 7 0 7 0 7	1 0 7 0 7 0 7 0 7	1 1 2 1 1 9 1 4 7	1 1 2 3 3 7

Still in Menu 1, press D, under "PL," to plot the data (if there is no printer connected, skip this step and go on to the next.) // The data are plotted as below, except that the plotting character will be the small x. See instructions for changing the plotting character, section III-B-2. Control returns to Menu 1. If you press ADV to move the paper out, the menu will vanish. Return to it by pressing F.

Note that only the most general upward trend in the number of tornadoes is evident. Without smoothing, the data are too disorderly to be sure whether there are other patterns.


To begin the actual smoothing, press G to go to Menu 2, where most of the smoothers may be called // Menu 2.

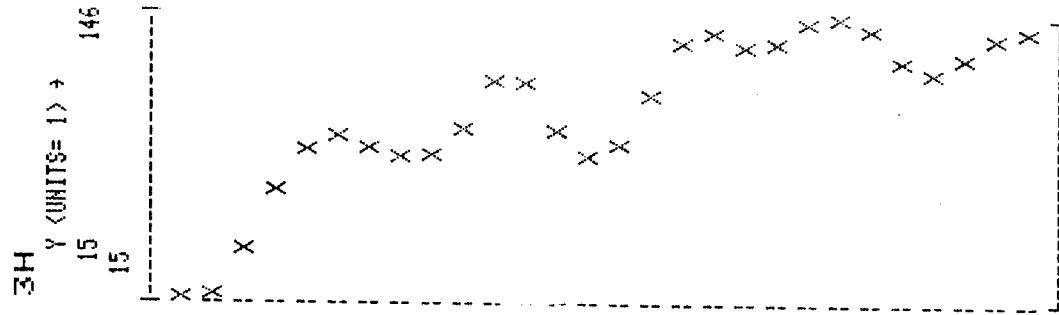
In Menu 2, press A, under "3," to smooth by running medians of length 3 // Calculator will Beep and show Menu 2.

It would now be helpful to see the effects of the smoothing, as by another graph.

Return to Menu 1 by pressing F // Menu 1.

In Menu 1, press D, under "PL," to plot the now smoothed data // The following plot is drawn and control is returned to Menu 1.

The data are much improved, just by the single application of 3, but the jerkiness of the line makes it hard to spot any patterns. Use of Hanning may help.


021720

Press G to go to Menu 2 // Menu 2.

In Menu 2, press E, under "H," to Hann the data // Menu 2.

Press F to return to Menu 1 // Menu 1.

In Menu 1, press D, under "PL," to plot the data following the second smoother // The following plot results, and control returns to Menu 1.

Still in Menu 1, press C, under "PR," to print the data in both banks // The following printing results, and control is returned to Menu 1.

1951:	15, 15
1952:	15, 15, 32, 77
1953:	39, 66, 77
1954:	39, 84, 77
1955:	90, 104
1956:	85, 74
1957:	81, 86
1958:	82, 77
1959:	93, 88
1960:	93, 82
1961:	81, 82
1962:	115, 124
1963:	114, 124
1964:	87, 78
1965:	108, 108
1966:	131, 139
1967:	136, 139
1968:	130, 127
1969:	131, 127
1970:	141, 144
1971:	146, 147
1972:	138, 144
1973:	124, 117
1974:	119, 117
1975:	125, 123
1976:	134, 137
1977:	137, 137
1978:	137, 137

H

Note that the contents of both Bank 1 and Bank 2 are printed, with the contents of Bank 1 coming first. Bank 1 contains the data which have been smoothed by 3 and by H, while Bank 2 contains the data which have been smoothed by 3 only. The "3H" at the top of the printings and the plots show which smoothers have been used.

Even the use of these two relatively simple smoothers have

021240

made it much easier to find trends and patterns in the data. A periodicity of about five years emerges from the data where no such periodicity was apparent in the first plot.

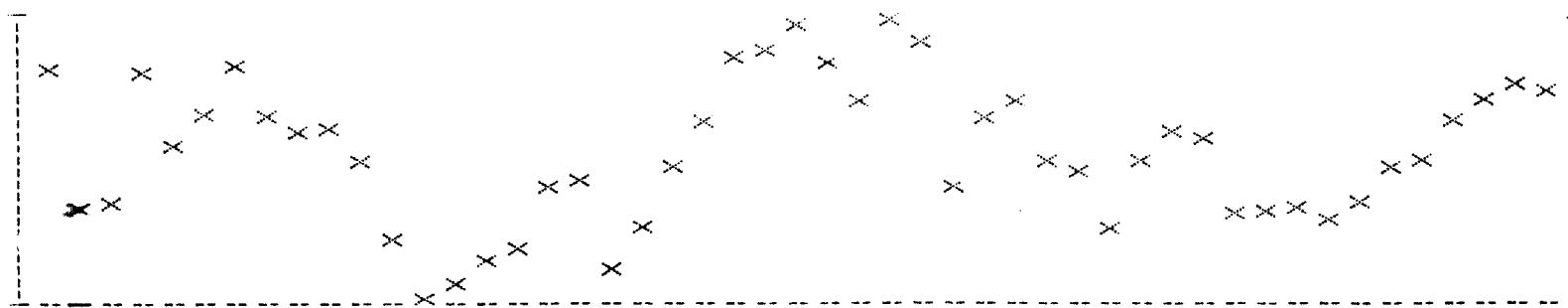
2. Batch Mode

The same smoothing can be accomplished in Batch Mode by adding lines between line 488 and 489. The following short listing shows the necessary lines.

```

487 RTN
488+LBL 35
489 XEQ 21
490 XEQ 25
491 XEQ 27
492 XEQ 32
493 XEQ 23
494 XEQ 25
495 ADV
496 ADV
497 RTN
498+LBL 54

```


The segment calls the Input program (21), plots the data (25), smooths by 3 (27), Hanning (32), prints the data (23), and finally plots it again (25). The results were just the same as with example 1, but the process went on unattended.

3. Bituminous Coal Mined

Tukey (p. 212) gives data for the years 1920-1968 for the number of tons of bituminous coal mined in the United States. While the following data and plot are not very disorderly, they can be improved by smoothing. Tukey uses an involved smoother which consists of the following: repeated smoothing by 3 until no further change occurs, splitting, splitting again, Hanning, repeated smoothing by 3 again, two more splittings, another Hanning, and, finally, another smoothing by 3. The raw data follow.

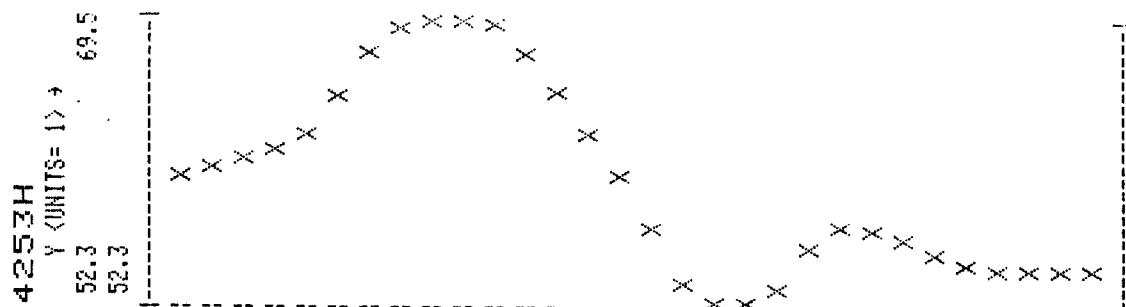
1920:	56
1921:	412
1922:	422
1923:	565
1924:	484
1925:	520
1926:	573
1927:	518
1928:	501
1929:	505
1930:	468
1931:	382
1932:	316
1933:	334
1934:	359
1935:	372
1936:	439
1937:	446
1938:	349
1939:	395
1940:	461
1941:	511
1942:	583
1943:	598
1944:	620
1945:	578
1946:	534
1947:	631
1948:	600
1949:	438
1950:	516
1951:	534
1952:	467
1953:	457
1954:	392
1955:	467
1956:	500
1957:	493
1958:	416
1959:	412
1960:	416
1961:	403
1962:	422
1963:	459
1964:	467
1965:	512
1966:	534
1967:	552
1968:	545

Plotted, the data look as follows.

Following smoothing, the data appear as follows (note that the summary registers report all of the smoothers used in the sequence.) While the changes are not dramatic, the trends are certainly easier to see now than before smoothing.


4. Cow Temperatures

A data set from Velleman and Hoaglin (pp. 174-175) gives data obtained daily by telemetry on the internal temperature of a single cow. The entire data set covered 75 days; this fragment contains the first 30 days. The following print-out and plot show that the original data are not easy to interpret, and it is not clear that the temperatures are behaving in an orderly way. This data set illustrates the use of a compound smoother, or reroughing, even though with these data such a powerful smoother is almost excessive.


1: 69 - 00	2: 70 - 00	3: 54 - 00	4: 56 - 00	5: 70 - 00	6: 66 - 00	7: 53 - 00	8: 95 - 00	9: 70 - 00	10: 69 - 00	11: 56 - 00	12: 70 - 00	13: 70 - 00	14: 60 - 00	15: 60 - 00	16: 60 - 00	17: 50 - 00	18: 50 - 00	19: 48 - 00	20: 59 - 00	21: 50 - 00	22: 60 - 00	23: 70 - 00	24: 54 - 00	25: 46 - 00	26: 57 - 00	27: 57 - 00	28: 51 - 00	29: 51 - 00	30: 59 - 00
------------	------------	------------	------------	------------	------------	------------	------------	------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------

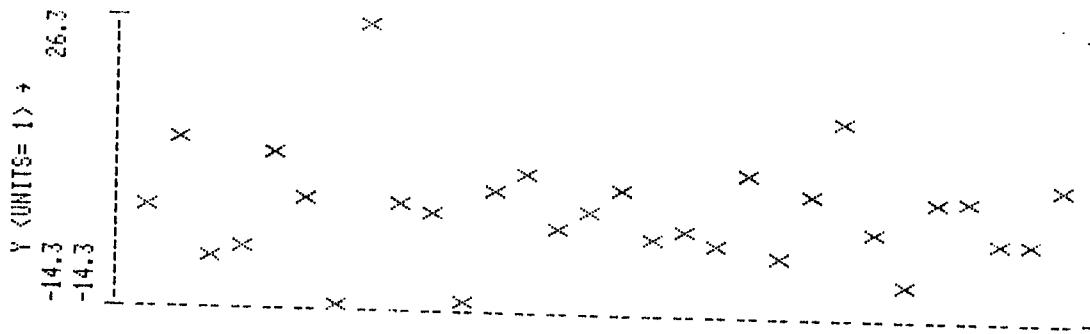
The plot appears as follows.

031720

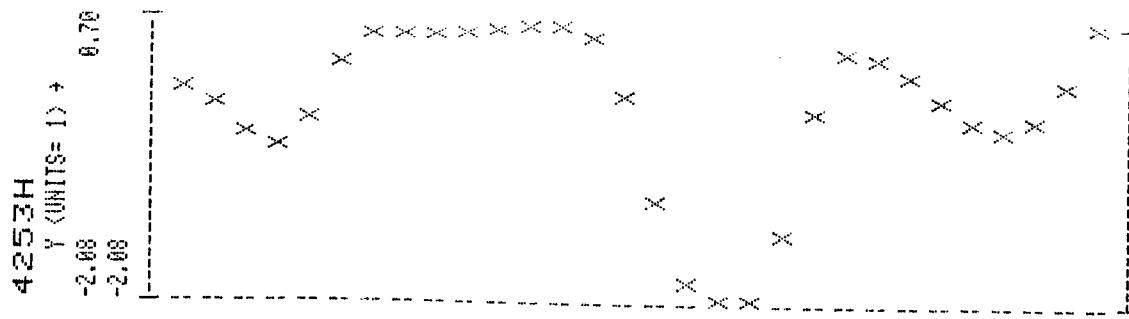
These data are smoothed well by the sequence 42, 5, 3, H. The plot below makes the regular, orderly changes over time quite obvious.

Velleman and Hoaglin, however, decide to re-rough the data, a process that involves finding the "rough," smoothing that, and adding it back to the original smooth. Since that is a fairly common procedure, the method follows in detail. Note that the utility programs of Menu 4 are used heavily.

It is assumed that the data have just been smoothed and the smooth data are in Bank 1, while the contents of Bank 2 are not important. It is also assumed that the original data have been recorded on cards. Take the following steps:


Menu 1, "CW," to write the smoothed data onto cards.

Menu 4, "SW," to switch the smoothed data to Bank 2.

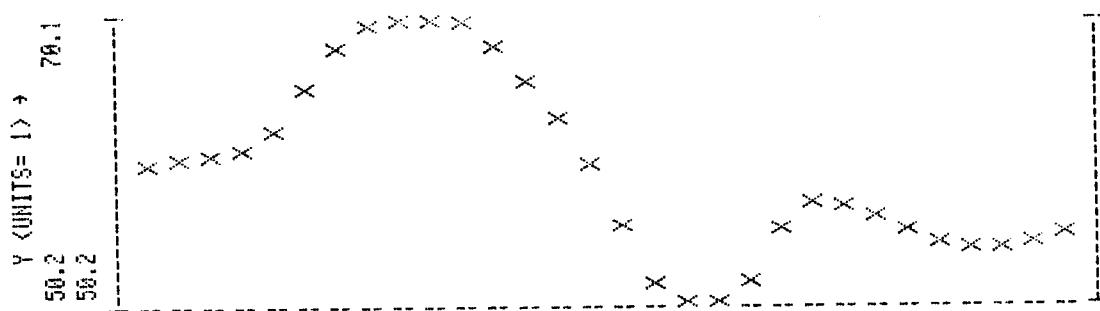

M 0 2 1

Menu 1, "C," to read in cards. Read in the cards which have the original, unsmoothed data on them.

Menu 4, "-", to subtract Bank 2, the smoothed data, from Bank 1, the unsmoothed data, leaving the result, called the "rough," in Bank 1. The "rough" is the difference between the original and the smoothed data -- in essence it is what the smoothing process removed. The rough appears as follows:

The rough itself is now smoothed. Velleman and Hoaglin used the same sequence of smoothers as before, 42, 5, 3, and H. The result of the smoothing of the "rough" is shown below. The magnitude of the smoothed points is small in comparison to the values of the original smooth, but there is definitely information there, not just noise.

To complete the process of reroughing, the smoothed rough must be added back to the original smooth. To do that, take


the following steps:

Menu 4, "SW," to put the smoothed "rough" into Bank 2.

Menu 1, "C," to read in the original smoothed data recorded after the first round of smoothing.

Menu 4, "+," to add the two banks and leave the result in Bank 1.

Menu 1, "PL," to plot the final smooth.

The final smooth, shown above, is not obviously better than the initial smooth, but the excursions are slightly more apparent. As with all aspects of smoothing, the exact choices must be a matter of judgment, not rule-following. One advantage of using SMOOTH is that such choices can be tried out, and if the result is not satisfactory, an alternative course of smoothing may be tried. The author again urges users to consult the books mentioned above, in order to gain a much deeper understanding of smoothing than this brief presentation can give.

H.0218

V. Program Summaries.

A. Introduction

Each of the 24 programs which may be called from the menus is described here in enough detail to indicate what it does and, in general, how it does it. The listing must be consulted for further detail, but basic information will be found here. Summary information on flags, labels, subroutines, and registers will be found in section VI. In this section a register is listed as being used only if the program changes the contents of the register.

B. Summaries of the 24 menu-callable subroutines.

The numbers (21-44) correspond to labels, letters in parentheses and quotation marks indicate the designation on the menu. E. g. "Menu 1-C" indicates that key C in Menu 1 calls the program.

21. Data input by hand ("I"). Menu 1-A. Lines 5-51.
 Subroutines called: 37
 Flags used: 00
 Registers used: 13, 8, 10, 9, 7, 12
 Labels within program: 00, 05, 10

The input program first clears the summary registers, 14 and 15, then prompts for the number of items to be smoothed. It uses the number of items to set up two pointers in registers 8 and 9 to set the beginning and ending limits to Banks 1 and 2. The program then prompts for each successive data value until all are entered, then prompts for the initial X value and the number of decimal places to be displayed with the data. Those values are stored in registers 7 and 10 respectively. No error correcting routines are provided.

22. Data entry from cards ("C"). Menu 1-B. Lines 3-51.

This program is the same as program 21, above, except that it starts by setting Flag 00. At the point where program 21 prompts for input, the setting of Flag 00 causes program 22 to jump to label 05 for card input.

23. Print Banks 1 and 2 ("PR"). Menu 1-C. Lines 54-95.
 Subroutines called: 50, 51
 Flags used: 00 set suppresses Bank 2 printing
 Registers used: 10, 11
 Labels within program: 23, 8, 14

This segment first prints the review registers, or displays them in the absence of a printer, then prints, or displays,

M 0210

the X values followed by the contents of Banks 1 and 2. Line 60 calls subroutine 50 to set pointers for the loop, while the rest of the program is a series of recalls, increments, tests for the printer, and print statements. Line 70 may be changed if the value by which X is to be incremented is not to be 1. For example, if one is smoothing measurements of Highway deterioration at one half mile intervals the initial value might correspond to the highway mile number of the measurement and the increment to 0.5. Line 63 may be changed to change the display format for X. If X is incremented in steps of .5, then FIX 1 would be appropriate. In line 91, as elsewhere throughout the program, DEG is used as a No Op instruction.

24. Print Bank 1 only. Menu 1-c. Lines 52-95.

This is identical to the above, program 23, except that the setting of flag 00 at the beginning causes the program to skip over the printing of Bank 2 values.

25. Plot the Bank 1 values ("PL"). Menu 1-D. Lines 96-143.

Subroutines called: 51
 Flags used: none
 Registers used: 10, 4, 2
 Labels within program: 01, 06, 07

Program 25 starts by printing the review registers, then finds the minimum and maximum values in Bank 1 and stores them in registers 00 and 1. The contents of Bank 1 are then plotted using REGPLOT to obtain maximum scale. Finally, a right axis is printed.

26. Card writer ("CW"). Menu 1-E. Lines 144-147.

This short program segment writes the data from Bank 1 on magnetic cards. The pointer in register 8 is used to direct the writing. The program does not call the program VER, but it would be good practice to use it after writing the cards.

27. Smooth by medians of 3 ("3"). Menu 2-A. lines 156-183.

Subroutines called: 16, 39, 50, 52, 53
 Flags used: Sets Flag 03 to indicate "long form" of subroutine 50, 02
 Registers used: 10 and 11 as pointers.
 Labels within program: 12 used as an entry point by the program "3R" to avoid adding a "3" to the summary each time "3R" calls "3." 4 used as loop point. 2 used as a continuation point or skipped (line 167) to exit point when

H 021720

all values have been smoothed.

The program segment "3" shares its main sections with the programs segments for Hanning and finding skip means. Only the entry points and subroutines called are different. The program steps through the data, taking three values at a time, finding the median, the weighted mean (for Hanning), or the skip mean as appropriate, and placing it into the corresponding Bank 2 register.

28. Smooth by medians of 4, then 2 ("42"). Menu 2-B. Lines 211-261.

Subroutines called: 16, 39, 50, 54, 55.

Flags used: Sets Flag 03 to indicate "long form" of subroutine 50. Tests and clears flag 2 (set by the subroutine at Label 55 at last data value) to see if all data have been smoothed.

Registers used: 10 and 11 as pointers.

Labels within program: 13 as loop point, 15 as exit point when all values smoothed.

The program 42 first smooths the second value in Bank 1, then (Label 13) loops through the rest of the data, then smooths the next to last value, and finally exits.

29. Smooth by medians of 5 ("5"). Menu 2-C. Lines 262-295.

Subroutines called: 16, 50, 52, 56

Flags used: 03, 02

Registers used: 10, 11

Labels within program: 77, 76

The program 5 first smooths the next to end values by taking medians of three, then uses the subroutine at label 56 to find medians of span 5 centered at the register indicated by the value in the X register when subroutine 56 is called.

30. Split highs and lows of length 2 ("SP"). Menu 2-D. Lines 298-345.

Subroutines called: 16, 40, 39, 33, 57

Flags used: 29, 00

Registers used: 10, 11, 14

Labels within program: 11, 78, 79

31. Split highs and lows of length 2, then apply "3R". Menu 2-d. Lines 296 & 297, plus all of program 30.

Identical to (and part of) program 30 except that Flag 00 is set to cause an excursion to program "3R" at lines 326 and 327 after the values have been split.

021720

32. Hann the data ("H"). Menu 2-E. Lines 153-183.

This program is identical to program 27 ("3") except that it is entered three lines earlier and Flag 02 is set. The set condition of Flag 02 causes the program (lines 177 and 178) to jump to the subroutine (53) which Hanns the three values in the stack instead of finding their median.

33. Find medians of span three repeatedly until there is no further change ("3R"). Menu 3-A. Lines 382-389.

This short program segment repeatedly calls "3" until the presence of a clear flag 9 indicates that when "SW" interchanged Banks 1 and 2 after "3" found medians of span 3, there were no differences between the two banks. The program "3" is called not at its usual starting point, but at Label 12, so that repeated callings of the program will not add repeated "3"s to the summary registers. Label B0 is the loop point.

34. Smooth by finding skip means (">"). Menu 3-B. Lines 148-172.

This program is identical to program 27 ("3") except that it is entered eight lines earlier and Flag 01 is set. The set condition of Flag 01 causes subroutine 52 to find skip means (subroutine 03) instead of medians of 3.

35. Execute batch mode ("B"). Menu 3-C. Lines 488-489.

The user must insert XEQ statements between lines 488 and 489 to use the batch mode. The statements may call any of the subroutines 21 through 44. See the examples in section VII for an example of a batch program.

36. Review contents of summary registers ("R"). Menu 3-D. Lines 410-413.

This program calls subroutine 51 which displays the contents of registers 14 and 15, the summary or review registers. The program is then stopped until R/S is pressed. Note that the program stops regardless of whether the printer is connected or not.

37. Clear the summary registers. Menu 3-d. Lines 405-409.

38. Smooth the end values ("EV"). Menu 3-E. Lines 438-456.

421720

This is largely a directing and pointer-managing program. The work of the end value smoothing is done by the subroutine at label 57. End value smoothing is one of the more complex smoothing operations to program, hence the associated routines appear long, quite out of proportion to the frequency with which they are used.

39. Switch banks. ("SW"). Menu 4-A. Lines 422-437.

This is a straightforward data moving program which just sets up the pointers and interchanges the two banks. Flag 09 is set if any of the values in the two banks differ when they occupy the same relative position, otherwise SW leaves Flag 09 clear, even if it was set on entering.

40. Copy Bank 1 to Bank 2 ("CP"). Menu 4-B. Lines 466-475.

This routine sets the pointers, loops through the banks, and exits.

41. Clear Bank 2. Menu 4-b. Lines 457-465.

This program, useful primarily when debugging modifications to the program, sets a pointer and packs zeros into Bank 2.

42. Add Bank 2 to Bank 1 ("+"). Menu 4-C. Lines 390-404.

This program does duty for both the program to add and that to subtract the two banks. The only difference is that Flag 4 is set for adding, and clear for subtracting, in which case the sign of the value in X is changed before the addition. The contents of Bank 2 are added to or subtracted from Bank 1, with the result left in Bank 1.

43. Subtract Bank 2 from Bank 1 ("-"). Menu 4-D. Lines 392-404.

See discussion above in 42.

44. Call transformation program ("T"). Menu 4-E. Lines 476-487.

Without a user-supplied program labeled T, this routine does nothing except set up the pointers for both banks, call values out of Bank 1, try to transform them, and put them into Bank 2. It ends by calling Switch, to put the transformed data back into Bank 1. The user can supply any kind of transformation program under the label T.

110 021720

C. Summaries of subroutines used by the 24 menu-callable subroutines. Numbers indicate the labels of the subroutines.

16. Update the summary registers. Lines 372-381.

This short subroutine concatenates the contents of the alpha register to the contents of registers 14 and 15. If the resulting concatenation would have more than twelve characters, then only the first twelve are preserved.

50. Set pointers, copy end values. Lines 552-568.

Subroutines called: None.

Flags used: If flag 3 is set, the "long form" is executed, otherwise the "short form."

Registers used: 8, 9, 10, 11, 13.

Labels within program: None.

Subroutine 50, when executed with flag 3 clear, or in the "short form," sets the pointers in registers 10 and 11 to be equal to those in 8 and 9, so that the original values will not be lost as the smoothing programs step through the data. The "long form" does the same thing but also copies the first and last values of Bank 1 to the same locations in Bank 2. Few of the smoothers operate on the end values; using the "long form" conveniently copies on the end values.

See Section VI-E, Utility Souroutines, for description of other subroutines in SMOOTH.

1021726

VI. Program notes

VI-A: Miscellaneous Information

1. Most of the routines will run slowly the first time they are run after loading. As explained in the HP-41C Owner's Handbook, the GTOs and EXECs must be compiled on first execution, and SMOOTH uses many such instructions. Subsequent runs will be faster.

2. To determine whether or not Banks 1 and 2 contain the same data, run "SW," or switch, to interchange the contents of the two banks. If Flag 9 is set following the switch, then at least one value in Bank 1 is different from the value in the corresponding register in Bank 2. If, for example, it is noted that the plot of a set of data appears unchanged by a smoothing operation, then a look at Flag 9 will indicate whether or not any change took place, since all of the smoothing programs end by calling "SW."

3. Long sequences of smoothing operations can result in an overflow of the summary registers, 14 and 15. There is no warning that those registers may have overflowed. The symptom is that a full twelve characters are printed out or displayed when the registers are reviewed. Any further characters are simply ignored. If overflow becomes a problem, it is possible to note the smoothing sequence already accomplished, then clear registers 14 and 15 by means of the shifted D key (d) in Menu 3.

4. When a set of data is too long to be smoothed in one continuous operation, the data must be broken into two overlapping sets for smoothing. Because of the distortions that may be introduced at the ends of a data set, it is advisable to have the two parts of the set overlap by at least ten values if several smoothers are to be used. For example, if one is smoothing a set of 100 values, it would be a good idea to break it into two sets, one from value 1 to 65, the other from value 36 to 100. If, when re-assembling the two smoothed sets, there is not a sequence of matching values where the strings come together (e.g. values 45 to 55), then the overlap was not long enough. (It is assumed that exactly the same sequence of smoothers is applied to the two parts of the longer sequence.)

5. Two points mentioned elsewhere bear repeating. First, end value smoothing is not reflected in the summary registers, and, second, it is important to start the program with flags 0 - 4 clear.

M. 021720

VI-B: Register Use

All registers numbered 16 and above are available for use as data storage registers. The registers numbered 00-15 have assigned uses for various of the smoothing programs. Those used are listed in this section. Note that registers 7-13 describe the data set currently in the calculator. Those registers should therefore not be used for other purposes as long as the data set may be used again. Registers 00 through 6 may be used for scratch, as may 14 and 15, if the user observes two cautions. First, register 15 must have alphabetic information stored in it when the smoothing programs are operating, due to one of the conditional tests. Second, register 3 is used to store the plotting character. If the user is using a nonstandard plotting character, then it may be necessary to avoid using register 3, or to restore its contents before using the plotting routine. Counting registers 0-7 and 14 and 15 there are, then, 10 registers available for a user program, such as a transformation program (callable by "T" from Menu 4).

Register Use

00	Contains the minimum value of Y during the plotting routine, also used as a pointer.
01	Contains the maximum value of Y during the plotting routine, also used as a pointer.
02	Used by plotting routine, also as a temporary pointer, as by line 352 and following.
03	Special plotting character.
04	Used by Praxis, when plotting the Y axis, also as another temporary pointer.
05	Scratch.
06	Scratch.
07	Initial value of X (commonly 1), the values to which the Y values (the data being smoothed) are presumed to correspond.
08	Permanent pointer for Bank 1. This pointer does not change until a new data set is loaded in or until it is changed outside of program control.
09	Permanent pointer for Bank 2. As with above, this does not change.
10	Working pointer for Bank 1. This pointer does change as any of the callable subroutines works through the data.

021720

- 11 Working pointer for Bank 2. As above, this pointer changes as the subroutines sweep through the data.
- 12 Number of decimal places to be used when printing Y.
- 13 N, number of points being smoothed.
- 14 First register of record of smoothing actions.
- 15 Second register of record of smoothing actions.

021720

VI-C: Flag Use

SMOOTH uses relatively few flags. Those that it does use, however, are checked frequently and are vital to the flow of program control. Listed below are all flag references in SMOOTH. Each reference gives the flag number, the line(s) at which it is set, the line(s) at which it is cleared, and the line(s) at which it is tested. Flags 0 and 2 each serve several purposes, depending on where in the program each is tested. Finally, the last column shows what the flag indicates when it is set.

Flag	Line at which			Flag set indicates
	Set	Cleared	Tested	
0	4	25	25	Input will be from cards.
0	297	326	326	Splitting to be followed by 3R.
0	53	94	80	Suppresses printing of Bank 2.
1	149	169	185	Find skip means, rather than medians or Hanning.
2	154	170	157, 175 177	Perform Hanning, not medians or skip means.
2	522	278	278	End of Bank reached while finding medians of span 5.
2	546	239	239	End of data bank reached while performing 4-2 smoothing.
3	161, 214 265	557	557	When setting the bank pointers, also copy on the end values.
4	391	403	396	Add the banks, not subtract.
9	430	423	387	At least one pair of corresponding values was found to differ when switching banks (clear flag indicates to 3R that further smoothing not needed.)
12	74, 418	77, 420		Emphasized printing.
25	364	366	366	Error due to finding alpha data in register 15 and therefore indicates that the end of the data bank has been reached.
29 & 52		309, 361 521, 545		Skip next instruction.

51 021726

21 Tested in lines 66, 68, 75, 78, 84, and 87 for presence of the printer.

VI-D: Program Labels

Each of the numeric labels used in the programs is listed here, with the exception of labels 21-44, which mark the entry points of the various callable subroutines. For each label, a reference is given. The reference indicates the line which refers to the label. The references are all GTO statements unless there is an x preceding the line number, in which the referring line number holds an XEQ statement. If an x applies to more than one line, then the lines are in parentheses. For example x(56, 99, 411) indicates that a subroutine is called from lines 56, 99, and 411.

Two abbreviations are used; LP indicates a loop point, or a point to which a loop repeatedly returns, while JP indicates a jump point, or a point to which control is transferred, often as a result of a conditional test.

Label	Line	Reference	Meaning
00	27	39	LP for input
01	105	116	LP for finding the largest and smallest
02	173	168	continuation of "3"
03	196	186	JP for finding skip means of X & Z
04	163	183	LP for 3, H, and >
05	41	26	JP for card input
06	127	131	LP for data plotting
07	136	139	LP for axis-printing subroutine
08	60	93	LP for data printing
09	536	x(530,531)	Put 4 values in stack, sum the two of middle value to register 00
10	44	40	JP for reading of card
11	304	320, 345	LP in program to split pairs apart 336, 332, 314
12	160	152, x386	Entry point in "3," used by 3R
13	234	242	LP in 42

00	27	39	LP for input
01	105	116	LP for finding the largest and smallest
02	173	168	continuation of "3"
03	196	186	JP for finding skip means of X & Z
04	163	183	LP for 3, H, and >
05	41	26	JP for card input
06	127	131	LP for data plotting
07	136	139	LP for axis-printing subroutine
08	60	93	LP for data printing
09	536	x(530,531)	Put 4 values in stack, sum the two of middle value to register 00
10	44	40	JP for reading of card
11	304	320, 345	LP in program to split pairs apart 336, 332, 314
12	160	152, x386	Entry point in "3," used by 3R
13	234	242	LP in 42

14	86	81	JP in printing program
15	243	240	JP in Hann for exit
16	372	x(151,159,213 264, 300, 384)	Append to the review registers
50	552	x(59, 162, 215 266, 393, 424 467, 477)	Set the bank pointers, also copy on end values if Flag 3 is set
51	414	x(56, 99, 411)	Summary register print
52	184	x(176, 272, 292 369, 524)	Skip means or medians of X, Y, &Z, depending on flag
53	202	x178	Find mean of X, 2*Y, and Z
54	490	x(225, 255 519, 548)	Find middle two of stack
55	526	x238	Heart of 42 smoothing
56	508	x277	Finds medians of span 5
57	346	x(340, 344 441, 447)	Smooths the end values
76	275	283	LP for medians of span 5
77	284	279	JP for medians of span 5
78	324	310	JP for segment to split pairs
79	329	323	JP in split, when not out of data
80	385	388	LP for repeating "3" in "3R"
81	394	402	LP for "+" and "-"
82	425	435	LP for "SW," program to switch banks
83	461	464	LP for clearing Bank 2
84	468	474	LP for copying Bank 1 to Bank 2
85	478	485	LP within the transformation program.

File 02172

Section VI-E: Utility Subroutines

The following subroutines are called from several places in the main program, but are not themselves callable from the menus. Subroutines 21 through 44, which make up the bulk of the program and which are callable from the menu, are described in detail in section V, and so are not treated here.

Label	Line	Returns	SRs	Function
9	536	551	54	Back the pointer by 2, get 4 consecutive values starting there, sum the two of middle values, add result to R00.
12	160	172	50, 39 52	Smooth by "3" without appending "3" to the summary registers.
16	372	381	--	Append a record of the current action to summary registers.
50	552	558 568	--	Set the working pointers for Banks 1 & 2, copy on the end values if Flag 3 is set.
51	414	421	--	Print or view summary of operations.
52	184	195 201	--	Median of X, Y, & Z if Flag 1 is clear, mean of X & Z if set.
53	202	210	--	Find mean of X, Y, & Z, giving double weight to Y.
54	490	507	--	Place the two numerically middle values of stack in X & Y.
55	526	535	9	Find two medians of span 4 and take their mean to recenter on the point being smoothed.
56	508	525	54, 52	Find median of 5 values.
57	346	362 371	52	Smooth the end values, upper or lower, depending on sign of X.

021720 PROGRAM LISTING

□ 67 □ 97 □ 41C

COMMENTS		COMMENTS
01♦LBL "S"		47 STO 07
02 GTO F	To menus.	48 "Y FIX=?"
03♦LBL 22	Card input.	49 PROMPT
04 SF 00		50 STO 12
05♦LBL 21	Manual input.	51 RTN
06 XEQ 37		52♦LBL 24
07 "N=?"		53 SF 00
08 PROMPT		54♦LBL 23
09 STO 13		55 ADV
10 15	Set the pointers	56 XEQ 51
11 +		57 RCL 07
12 1 E-3		58 STO 00
13 *		59 XEQ 50
14 16		60♦LBL 08
15 +		61 CLA
16 STO 08		62 "
17 STO 10		63 FIX 0
18 RCL 13		64 ARCL 00
19 +		65 "F: "
20 RCL 13		66 FS? 21
21 1 E-3		67 ACA
22 *		68 FS? 21
23 +		69 CLA
24 STO 09	Card or manual?	70 1
25 FS?C 00	Card.	71 ST+ 00
26 GTO 05	Manual.	72 FIX IND
27♦LBL 00		12
28 "Y"		73 ARCL IND
29 RCL 10		10
30 15		74 SF 12
31 -		75 FS? 21
32 FIX 0		76 ACA
33 ARCL X		77 CF 12
34 X<>Y		78 FS? 21
35 "F=?"		79 CLA
36 PROMPT		80 FS? 00
37 STO IND		81 GTO 14
38 ISG 10	Store each input	82 "F, "
39 GTO 00	value.	83 ARCL IND
40 GTO 10		11
41♦LBL 05	Card input	84 FS? 21
42 RCL 08	starts here.	85 ACA
43 XROM 30,		86♦LBL 14
44♦LBL 10		87 FC? 21
45 "X1=?"	Get data on the	88 PROMPT
46 PROMPT	data set.	89 ADV
		90 ISG 10

PROGRAM LISTING

□ 67 □ 97 □ 41C

COMMENTS		COMMENTS
91 DEG		134 "--"
92 ISG 11	All done?	135 22
93 GTO 08	No.	136+LBL 07
94 CF 00	Yes.	137 ACA
95 RTN		138 DSE X
96+LBL 25	Plot data.	139 GTO 07
97 ADV		140 124
98 ADV		141 ACCHR
99 XEQ 51	Print summary	142 ADV
100 RCL 08	registers.	143 RTN
101 STO 10		144+LBL 26
102 RCL IND		145 RCL 08
10		146 XROM 30,
103 ENTER↑		08
104 ENTER↑		147 RTN
105+LBL 01		148+LBL 34
106 RCL IND	Find largest	149 SF 01
10	and smallest	150 ">"
107 X>Y?	values in Bank	151 XEQ 16
108 X<>Y	1 to use as the	152 GTO 12
109 RCL Z	upper and lower	153+LBL 32
110 RCL IND	limits when	154 SF 02
10	plotting.	155 "H"
111 X>Y?		156+LBL 27
112 X<>Y		157 FC? 02
113 RDN		158 "3"
114 X<>Y		159 XEQ 16
115 ISG 10		160+LBL 12
116 GTO 01		161 SF 03
117 STO 00		162 XEQ 50
118 X<>Y		163+LBL 04
119 STO 01		164 RCL IND
120 RCL 00		10
121 STO 04		165 ISG 10
122 RCL 08		166 RCL IND
123 STO 10		10
124 168		167 ISG 10
125 STO 02		168 GTO 02
126 XROM "PR	Print left axis.	169 CF 01
AIXIS"	Plot the points.	170 CF 02
127+LBL 06		171 XEQ 39
128 RCL IND		172 RTN
10		173+LBL 02
129 REGPLOT		174 RCL IND
130 ISG 10		10
131 GTO 06		175 FC? 02
132 127	Plot right	176 XEQ 52
133 ACCHR	axis.	177 FS? 02

PROGRAM LISTING

□ 67 □ 97 □ 41C

		COMMENTS	COMMENTS
178	XEQ 53	Perform smooth-	222 RCL IND
179	ISG 11	ing operation	10
180	STO IND	on one triad,	223 ISG 10
11		store its value	224 RCL IND
181	1	and reset pointers,	10
182	ST- 10	loop back.	225 XEQ 54
183	GTO 04	Find median of	226 +
184	LBL 52	X, Y, & Z.	227 RCL IND
185	FS? 01		11
186	GTO 03		228 +
187	X>Y?		229 4
188	X<>Y		230 /
189	RDN		231 STO IND
190	X>Y?		11
191	X<>Y		232 2
192	RT		233 ST- 10
193	X<>Y?		234 LBL 13
194	X<>Y		235 ISG 10
195	RTN	Find skip means	236 ISG 11
196	LBL 03	of X, Y, & Z.	237 RCL 10
197	RCL Z		238 XEQ 55
198	+		239 FS?C 02
199	2		240 GTO 15
200	/		241 STO IND
201	RTN	Hann X, Y, & Z;	11
202	LBL 53	i. e. find mean	242 GTO 13
203	X<>Y	of X, Y, and Z,	243 LBL 15
204	ENTER†	with Y counted	244 2
205	+	twice.	245 ST- 10
206	+		246 RCL IND
207	+		10
208	4		247 ISG 10
209	/		248 RCL IND
210	RTN		10
211	LBL 28	Smooth by med-	249 ISG 10
212	"42"	ians of 4, re-	250 RCL IND
213	XEQ 16	centered with	10
214	SF 03	means.	251 STO IND
215	XEQ 50	Reset pointers	11
216	ISG 10	and copy on the	252 ISG 10
217	ISG 11	end values.	253 RCL IND
218	STO IND		10
11			254 ST+ IND
219	RCL IND		11
10			255 XEQ 54
220	ST+ IND		256 +
11			257 ST+ IND
221	ISG 10		11

PROGRAM LISTING

□ 67 □ 97 □ 41C

COMMENTS		COMMENTS
258 4		297 SF 00
259 ST/ IND		298+LBL 30
11		299 "S"
260 XEQ 39		300 XEQ 16
261 RTN	medians of span	301 XEQ 40
262+LBL 29	5	302 RCL 08
263 "5"		303 STO 10
264 XEQ 16		304+LBL 11
265 SF 03	set pointers	305 RCL 10
266 XEQ 50		306 STO 11
267 ISG 10		307 RCL IND
268 ISG 11		11
269 RCL IND		308 ISG 10
10		309 FS? 52
270 ISG 10		310 GTO 78
271 RCL IND	find median of 3	311 ISG 11
10	store it	312 RCL IND
272 XEQ 52		11
273 STO IND		313 X=Y?
11		314 GTO 11
274 ISG 11		315 -
275+LBL 76		316 LASTX
276 RCL 10	find median of	317 ISG 11
277 XEQ 56	5 points center-	318 RCL IND
278 FS?C 02	ed on register	11
279 GTO 77	which X points	319 X≠Y?
280 STO IND	to	320 GTO 11
11		321 RDN
281 ISG 10		322 ISG 11
282 ISG 11		323 GTO 79
283 GTO 76		324+LBL 78
284+LBL 77		here when done
285 DSE 10		325 XEQ 39
286 DEG		switch banks
287 RCL IND		326 FS?C 00
10		3R if Flag 00
288 ISG 10		327 XEQ 33
289 RCL IND		is set
10		328 RTN
290 ISG 10		329+LBL 79
291 RCL IND	find median of	330 RCL IND
10	X, Y, Z	11
292 XEQ 52		331 X=Y?
293 STO IND		332 GTO 11
11		333 -
294 XEQ 39		334 *
295 RTN		335 X>0?
296+LBL 31	split, then 3R	336 GTO 11
		337 RCL 10
		338 STO 04
		339 CHS
		340 XEQ 57
		end value smthr

□ 67 □ 97 □ 41C

	COMMENTS		COMMENTS
341 RCL 04		385+LBL 80	loop point
342 1		386 XEQ 12	smooth by 3
343 +		387 FS? 09	any change?
344 XEQ 57	end value	388 GTO 80	yes, do it ag'in
345 GTO 11	smoother	389 RTN	no, go away
346+LBL 57	starts here	390+LBL 42	add the banks
347 STO 02		391 SF 04	
348 ABS		392+LBL 43	subtract the
349 RCL 13		393 XEQ 50	banks, set
350 +		394+LBL 81	pointers
351 STO 11		395 RCL IND	
352 RCL IND		11	
02		396 FC? 04	
353 ISG 02		397 CHS	
354 DEG		398 ST+ IND	
355 RCL IND	save a byte	10	
02	or so with 3 x	399 ISG 10	
356 ENTER↑		400 DEG	no op
357 ENTER↑		401 ISG 11	
358 ST+ X		402 GTO 81	
359 +		403 CF 04	
360 ISG 02		404 RTN	
361 FS? 52	acts as skip	405+LBL 37	clear the
362 RTN	instruction	406 CLA	recap regis-
363 RCL IND		407 ASTO 14	ters
02		408 ASTO 15	
364 SF 25	has the pointer	409 RTN	review smoothers
365 ST+ X	reached the	410+LBL 36	used so far
366 FC?C 25	alpha data?	411 XEQ 51	
367 RTN		412 STOP	
368 -		413 RTN	
369 XEQ 52		414+LBL 51	print or view
370 STO IND	store smoothed	415 CLA	summary regs.
11	data value	416 ARCL 14	
371 RTN	add to recap	417 ARCL 15	
372+LBL 16	registers	418 SF 12	
373 ASTO X		419 AVIEW	
374 CLA		420 CF 12	
375 ARCL 14		421 RTN	
376 ARCL 15		422+LBL 39	switch banks
377 ARCL X		423 CF 09	
378 ASTO 14		424 XEQ 50	set pointers
379 ASHF		425+LBL 82	heart of the
380 ASTO 15		426 RCL IND	switching rtns
381 RTN		10	
382+LBL 33	repeated 3	427 ENTER↑	
383 "3R"	smoothing	428 X<> IND	
384 XEQ 16		11	

PROGRAM LISTING

□ 67 □ 97 □ 41C

		COMMENTS	COMMENTS
429	X#Y?	Flag 9 set mean	471 ISG 10
430	SF 09	the banks con-	472 DEG
431	STO IND	tain at least	473 ISG 11
10		one pair of	474 GTO 84
432	ISG 10	values which	475 RTN
433	DEG	differ from	476+LBL 4
434	ISG 11	bank to bank.	477 XEQ 58
435	GTO 82	Signal done.	478+LBL 85
436	BEEP		479 RCL IND
437	RTN	End value smth.	10
438+LBL	38	Copy.	480 XEQ "T"
439	XEQ 40	Bank 1 pointer.	481 ST IND
440	RCL 08	Smooth end	11
441	XEQ 57	values, upper	482 ISG 10
442	STO IND	or lower de-	483 DEG
09		pending on	484 ISG 11
443	RCL 09	sign.	485 GTO 85
444	1		486 XEQ 39
445	-		487 RTN
446	CHS		488+LBL 35
447	XEQ 57	End values agn.	489 RTN
448	RCL 09		490+LBL 54
449	RCL 13		491 X>Y?
450	+		492 X<>Y
451	1		493 RDH
452	-		494 X>Y?
453	X<>Y		495 X<>Y
454	STO IND		496 RDH
Y			497 X>Y?
455	XEQ 39	Switch banks	498 X<>Y
456	RTN	and exeunt.	499 RDH
457+LBL	41	Clear Bank 2.	500 RDH
458	RCL 09		501 X<Y?
459	STO 11		502 X<>Y
460	CLX		503 RDH
461+LBL	83		504 X<Y?
462	STO IND		505 X<>Y
11			506 RT
463	ISG 11		507 RTN
464	GTO 83		508+LBL 56
465	RTN		509 2
466+LBL	40	Copy Bank 1	510 -
467	XEQ 50	into Bank 2.	511 STO 01
468+LBL	14	Loop point.	512 RCL IND
469	RCL IND		01
10			513 ISG 01
470	STO IND		514 RCL IND
11			01

021720 PROGRAM LISTING

SMOOTH
Page 51 of 54

□ 67 □ 97 □ 41C

COMMENTS	COMMENTS
515 ISG 01	556 STO 11
516 RCL IND	557 FC?C 03
01	558 RTN
517 ISG 01	559 1
518 RCL IND	560 -
01	561 RCL IND
519 XEQ 54	X
520 ISG 01	562 RCL 13
521 FS? 52	563 ST+ Z
522 SF 02	564 RDN
523 RCL IND	565 STO IND
01	Y
524 XEQ 52	566 RCL IND
525 RTN	10
526+LBL 55	567 STO IND
527 STO 01	11
528 CLX	568 RTN
529 STO 00	569+LBL F
530 XEQ 09	570 "I C PR
531 XEQ 09	PL CW"
532 RCL 00	571 PROMPT
533 4	572 GTO G
534 /	573+LBL A
535 RTN	574 XEQ 21
536+LBL 09	575 GTO F
537 2	576+LBL B
538 ST- 01	577 XEQ 22
539 RCL IND	578 GTO F
01	579+LBL C
540 ISG 01	580 XEQ 23
541 RCL IND	581 GTO F
01	582+LBL C
542 ISG 01	583 XEQ 24
543 RCL IND	584 GTO F
01	585+LBL D
544 ISG 01	586 XEQ 25
545 FS? 52	587 GTO F
546 SF 02	588+LBL E
547 RCL IND	589 XEQ 26
01	590 GTO F
548 XEQ 54	591+LBL G
549 +	592 " 3 42 5
550 ST+ 00	SP H"
551 RTN	593 PROMPT
552+LBL 50	594 GTO H
553 RCL 08	595+LBL A
554 STO 10	596 XEQ 27
555 RCL 09	597 GTO G

PROGRAM LISTING

□ 67 □ 97 □ 41C

COMMENTS	COMMENTS
598+LBL B	644 GTO I
599 XEQ 28	645+LBL b
600 GTO G	646 XEQ 41
601+LBL C	647 GTO I
602 XEQ 29	648+LBL C
603 GTO G	649 XEQ 42
604+LBL D	650 GTO I
605 XEQ 30	651+LBL D
606 GTO G	652 XEQ 43
607+LBL d	653 GTO I
608 XEQ 31	654+LBL E
609 GTO G	655 XEQ 44
610+LBL E	656 GTO I
611 XEQ 32	657 END
612 GTO G	
613+LBL H	
614 "3R > B	
R EV"	
615 PROMPT	
616 GTO I	
617+LBL A	
618 XEQ 33	
619 GTO H	
620+LBL B	
621 XEQ 34	
622 GTO H	
623+LBL C	
624 XEQ 35	
625 GTO H	80
626+LBL D	
627 XEQ 36	
628 GTO H	
629+LBL d	
630 XEQ 37	
631 GTO H	
632+LBL E	
633 XEQ 38	
634 GTO H	
635+LBL I	90
636 "SW CP	
+ - T"	
637 PROMPT	
638 GTO F	
639+LBL A	
640 XEQ 39	
641 GTO I	
642+LBL B	
643 XEQ 40	00

Return to
Menu 4.
End.

PT 021720

Request for Comments

The author of this program would appreciate receiving comments, notification of errors, and indications of inadequacies in the documentation. A future version is planned which will use the X-funcion module and memory, as well as the tape drive. Comments will be helpful in preparing those versions.

Please send comments to:

Benjamin A. Fairbank, Jr.
McFann Gray and Associates, Inc.
5825 Callaghan Road, Suite 225
San Antonio, Texas 78228

#02172C

Page 54 of 54

This page intentionally left blank to
account for page-numbering mistake.